
Probing isovector scalar mesons in the charmless three-body B decays

Jian Chai ,1 Shan Cheng ,1,2,* and Ai-Jun Ma3
1School of Physics and Electronics, Hunan University, Changsha 410082, China

2School for Theoretical Physics, Hunan University, Changsha 410082, China
3Department of Mathematics and Physics, Nanjing Institute of Technology, Nanjing 211167, China

(Received 18 October 2021; accepted 27 January 2022; published 17 February 2022)

We propose to study the multiparticle configurations of isovector scalar mesons, a0ð980Þ and a0ð1450Þ,
in the charmless three-body B decays by considering the width effects. Two scenarios of a0 configurations
are assumed in which the first one takes a0ð980Þ as the lowest-lying qq̄ state and a0ð1450Þ as the first radial
excited state, the second one takes a0ð1450Þ as the lowest-lying qq̄ state and a0ð1950Þ as the first
radial excited state while a0ð980Þ is not a qq̄ state. Within these two scenarios, we do the perturbative QCD
(PQCD) calculation for the quasi-two-body B → a0½→KK̄=πη�h decays and extract the corresponding
branching fractions of two-body B → a0h decays under the narrow width approximation. Our predictions
show that the first scenario of the a0ð980Þ configuration cannot be excluded by the available measurements
in B decays, and the contributions from a0ð1450Þ to the branching fractions in most channels are
comparable in the first and second scenarios. Several channels are suggested for the forthcoming
experimental measurements to reveal the multiparticle configurations of a0, such as the channel
B0 → a−0 ð980Þ½→π−η�πþ with the largest predicted branching fraction, the channels B0 →
a�0 ð1450Þ½→K�K̄0; π�η�π∓ whose branching fractions obtained in the second scenario is about three
times larger in magnitude than that obtained in the first scenario, and also the channels Bþ →
aþ0 ð1950Þ½KþK̄0=πþη�K0 whose branching fractions are linearly dependent on the partial width
Γa0ð1950Þ→KK=πη.

DOI: 10.1103/PhysRevD.105.033003

I. INTRODUCTION

It is known that the scalar mesons with the masses below
and near 1 GeV, say the isoscalar mesons σ=f0ð500Þ and
f0ð980Þ, the isovector a0ð980Þ and the isodoublet κ, form a
SUð3Þ flavor nonet. Meanwhile, the mesons heavier than
1 GeV, including f0ð1370Þ, f0ð1500Þ, a0ð1450Þ, and
K�

0ð1430Þ, make up another nonet. The underlying assign-
ment of the heavier nonet is almost accepted as the quark-
antiquark configuration replenished with some possible
gluon content [1–4], while the inner nature of scalar
mesons in the lighter nonet is still not clear [5–7], even
though the compact tetraquark state [8–10] and the KK̄
bound state [11] are the most favorite two candidates
nowadays. This is easy to understand from the views of
spectral analysis at low energy because the scalar meson in
qq̄ configuration has a unit of orbital angular momentum
which increases their masses. In contrast, it is not necessary

to introduce the orbital angular momentum when the scalar
meson is in the q2q̄2 configuration [12]. The case
becomes different in the weak decays like B →
f0ð980Þlν with large recoiling, where the conventional
qq̄ assignment can be expected to be dominated in the
energetic f0ð980Þ since the possibility to form a tetra-
quark state is power suppressed compared to the state of
the quark pair [13]; meanwhile, the final state interaction
(FSI) is weak too. However, this argument encounters a
challenge from the PQCD calculation of B → a0ð980ÞK
decays [14], where the theoretical predictions of branch-
ing fractions are much larger than that of the measured
upper limits. We would like to comment that their
calculation is carried out in the static a0ð980Þ approxi-
mation while the experiment measurement is actually
fulfilled by the πη invariant mass spectral. It is apparent
that the salient property of scalar mesons, say, the large
decay width which cause a strong overlap between
resonances and background, and subsequently influence
the PQCD prediction.
The width effect of intermediate resonant states has been

studied in three-body B decays with a large number of
channels by variable theoretical approaches based on QCD,
due to the significant physics to understand the hadron
structures and also the matter-antimatter asymmetry.
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We here highlight some developments in this research filed
in the order of different theoretical approaches.

PQCDA global analysis of three-body charmless decays
in the type of B → V½→P1P2�P3

1 is performed [15] to
determine the lowest several Gegenbauer moments of
two-meson system, which are the nonperturbative
inputs describing the nonasymptotic QCD correction
effect in the light-cone distribution amplitudes
(LCDAs). In Ref. [16], the factorization formulas of
PQCD is expanded in the four-body B decay to two
½Kπ�S;P pairs with the invariant mass around the
K�ð892Þ resonance, some further observations like
the triple-product asymmetries and the S-wave in-
duced direct CP asymmetries are presented with the
interference between different helicity amplitudes.
Motivated by the measurement of significant deriva-
tions from the simple phase-space model in the
channels B → KK̄P1 and BðsÞ → DðsÞP1P2 at B fac-
tories and LHC, the virtual contribution clarified by
the experiment collaborations is understood theoreti-
cally by the Breit-Wigner-tail (BWT) effects from the
corresponding intermediate resonant states, say ρ, ω
and D�

ðsÞ, respectively [17,18].
QCDF The QCD factorization (QCDF) formula of
amplitudes in three-body B decays [19] is parame-
trized in a new way where the contributions from
valence u and c quark are separated, and a new source
of CP violation can be generated via the strong phase
with the opening ofDD̄ threshold in the high invariant
mass region [20]. Motivated by the next-to-next-to-
leading-order αsðmbÞ correction and the finite width
effect, three-body B decay is studied from the point of
view of factorization for the heavy-to-heavy
B → Dρ½→ππ�, DK�½→Kπ� decays in the kinematics
with small invariant mass of dimeson system [21].
Very recently, a novel observation named the forward-
backward asymmetry induced CP asymmetry (FBI-
CPA) is introduced in the three-body heavy meson
decays, the estimation based on the generalized
factorization approach implies that the FBI- CPA in
the channel D� → KþK−π� is about a milli, which is
at the same order of current experiment measurement
capability [22]. In Refs. [23,24], the finite-width
effects of intermediate resonant states in three-body
B=D decays is expressed by a correlation parameter
ηR and the evaluation is carried out in QCDF.

LCSRs The width effect of intermediate resonant ρ and
its radial excited states is discussed in detail in the
P-wave B → ππ transition form factors from the B
meson light-cone sum rules (LCSRs) approach [25],

revealing the sizeable effects from width and back-
ground (20%–30%) to the conventional treatment in
the single narrow-width approximation for the LCSRs
prediction of the B → ρ transition form factors. This
result is confirmed by the other independent LCSRs
with dipion distribution amplitudes (DAs) where the
hadronic dipion state has a small invariant mass and
simultaneously a large recoil [26,27]. The further
studies are carried out for the P-wave B → Kπ form
factors with the isodouble intermediate resonances
K�

0 [28] and the Bs → KK̄ form factors with the
isoscalar scalar intermediate resonances f0ð980Þ and
f0ð1450Þ [13].

The above considerations mainly focus on the P-wave
and isoscalar S-wave contributions from the intermediate
resonant states, while the study of isovector scalar
intermediate resonance is still missing. In this paper we
will demonstrate this issue in the framework of the PQCD
approach. The motivations of this study are twofold. First,
we perform the PQCD prediction of B → a0ð980Þ½→ηπ�K
decays that go beyond the single pole approximation,
trying to explain the measurement status. Second, we
consider the roles of a0ð1450Þ and a0ð1950Þ in the B →
K̄KK decays inspired by the recent measurements of
charm meson decays where a0ð1450Þ and a0ð1950Þ are
observed in the KK̄ invariant mass spectral [29–31],
supplementing to the B → ηπK decays observed first at
the Crystal Barrel Collaboration a long time ago [32,33].
The study would be executed in parallel by taking two
different scenarios of a0 states, where the first one says
that a0ð980Þ is the lowest lying qq̄ state and a0ð1450Þ is
the first excited state, and the second one states that
a0ð1450Þ and a0ð1950Þ are the lowest lying qq̄ state
and the first excited state, respectively. Our calculations
show that the qq̄ configuration of a0ð980Þ is not to be
excluded by the available measurements in B decays,
which confirms the statements we made above.
Predictions in this work would help us to probe the
inner structure of energetic isovector scalar mesons. For
example, (a) the channel B0 → a−0 ð980Þ½→π−η�πþ has the
largest branching fraction under the qq̄ configuration of
a0ð980Þ, (b) the branching fractions of channels B0 →
a�0 ð1450Þ½→K�K̄0; π�η�π∓ obtained in the second sce-
nario are about three times larger in magnitude than that
obtained in the first scenario, even though the results
obtained from two scenarios are close to each other
in the most channels with the intermediate state
a0ð1450Þ, (c) the branching fractions of channels Bþ →
aþ0 ð1950Þ½KþK̄0=πþη�K0 are linear dependent on the
partial width Γa0ð1950Þ→KK=πη in the second scenario.
This article is organized as follows. In Sec. II, the

framework of the PQCD approach to deal with the
resonance contribution in three-body B decays is briefly
described in terms of kinematics and dynamics. Section III
presents the PQCD predictions of the B → a0½→KK̄; ηπ�h

1Here V, P denote the vector and pseudoscalar meson,
respectively, and S indicates the scalar meson in the following.
In the fit, only the P1P2 ¼ ππ; πK;KK̄ channels are considered
due to the experiment precision.
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decays with some discussions. We summarize in Sec. IV.
The PQCD predictions on Bs decays are presented in the
Appendix A, and the factorization formulas of the related
quasi-two-body decay amplitudes are listed in Appendix B.

II. KINEMATICS AND DYNAMICS

Concerning three-body B decays, there are three typical
kinematical configurations in the physical Dalitz plot of two
independent invariant masses by considering the four-
momentum conservation, in which only the kinematical
region with collinear decay products can be calculated
reliably from the perturbative theory based on the factori-
zation hypothesis [18]. The other two kinematical regions
with the three energetic decay products and a soft decay
product configurations are either lacking the rigorous
factorization proof or are beyond the available perturbative
picture of heavy meson decays. Collinear decay products
means that two energetic hadronsmove aheadwith collinear
momenta while the rest recoil back,2 corresponding to the
intermediate parts of three edges in the Dalitz plot.
The matrix element from vacuum to collinear two meson

system sandwiched with certain two quark operators is
defined by the dimeson DAs, the chirally even two quark
dimeson DA is quoted for example as [34]

hMa
1ðp1ÞMb

2ðp2Þjq̄fðxnÞτqf0 ð0Þj0i

¼ κab

Z
dz eizxðpR·nÞΦab;ff0

M1M2
ðz; ζ; sÞ; ð1Þ

where the indexes f, f0 respect the (anti)quark flavor; a, b
indicate the electric charge of each meson, κab is the isospin
symmetry coefficient which in the case of dipion system
reads κþ−=00 ¼ 1 and κþ0 ¼

ffiffiffi
2

p
, pR ¼ k1 þ k2 is the total

momentum of dimeson state, τ ¼ 1=2; τ3=2 correspond to
the isoscalar and isovector dimeson DAs, respectively. The

generalized dimeson DA Φab;ff0
k is characterized by three

independent kinematical variables, say the momentum
fraction z carried by the antiquark, the longitudinal
momentum fraction carried by one of the mesons ζ ¼
pþ
1 =p

þ
R and the invariant mass squared s ¼ p2

R. Besides the
conventional Gegenbauer expansion stemmed from the
eigenfunction of QCD evolution equation, the partial wave
expansion considered in the dimeson system contributes
the other Legendre polynomial C1=2

l . The double expansion
of two quark dimeson DA is written as

ΦI¼1
M1M2

ðz; ζ; s; μÞ ¼ 6zð1 − zÞ
X∞

n¼0;even

Xnþ1

l¼1;odd

BI¼1
nl ðs; μÞ

× C3=2
n ð2z − 1ÞC1=2

l ð2ζ − 1Þ; ð2Þ

here the even Gegenbauer index n and the odd partial-wave
index l are guaranteed by the C parity. For the expansion
coefficients Bnl, they have a similar scale dependence as the
Gegenbauer moments of single pion and rho mesons. In the
narrow width approximation in the vicinity of the reso-
nance, dimenson DAs reduce to the DAs of the relative
resonance, indicating that the Gegenbuer moments of the
intermediate resonance are actually proportional to the
expansion coefficient at zero point with the lowest partial
wave, says aRn ðμÞ ∝ Bn1ðs ¼ 0; μÞ. In this way, the decay
constant of intermediate resonance is proportional to the
product of its decay width with the imaginary part of first
expansion coefficient at the resonant pole, that is fR ∝
ΓRIm½B01ðm2

RÞ� [35].
With this definition, the dimeson DAs are the most

general objects to describe the dimeson mass spectrum in
hard production processes whose asymptotic formula
indicates the information of the deviation from the unstable
intermediate resonant meson DAs. After integrating over
the momentum fraction of antiquark, the isovector scalar
dimeson DA in our interest is normalized to the timelike
meson form factor as

Z
1

0

dzΦI¼1
M1M2

ðz; ζ; sÞ ¼ ð2ζ − 1ÞΓI¼1
M1M2

ðsÞ; ð3Þ

where the timelike form factor at zero energy point is
normalized to unit as ΓI¼1

M1M2
ð0Þ ¼ 1. When the invariant

mass of dimeson system is small, the higher OðsÞ terms in
the expansion of coefficient Bnlðs; μÞ around the resonance
pole can be safely neglected due to the large suppression
Oðs=m2

bÞ in contrast to the energetic dimeson system in B
decay, so the relation Bn1ðs; μÞ → anðμÞΓI¼1

M1M2
ðsÞ can be

obtained in the lowest partial wave approximation. This
argument induces the basic assumption in PQCD that the
energetic dimeson DAs can be deduced from the DAs of
resonant meson by replacing the decay constant by the
timelike form factor.
The isovector scalar form factor of KK̄ and πη systems

are defined by the local matrix elements sandwiched by two
quark operator [36,37]

hK−K0ðπ−ηÞjūð0Þ τ3
2
dð0Þj0i ¼ m2

π

mu þmd
ΓI¼1
KK̄ðπηÞðsÞ

≡ B0ΓI¼1
KK̄ðπηÞðsÞ ð4Þ

with the normalization conditions ΓI¼1
KK̄ ð0Þ ¼ 1 and

ΓI¼1
πη ð0Þ ¼ ffiffiffi

6
p

=3. In the single resonance approximation,
we insert a a0 state in the matrix elements

2Ei ∼mB=2 and Ej þ Ek ∼mB=2 in the massless approxima-
tion of final mesons.
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hK−K0ðπþηÞjūð0Þ τ3
2
dð0Þj0i

≈
hK−K0ðπþηÞja−0 iha−0 jūð0Þ τ32 dð0Þj0i

Da0

¼ ga0KK̄ðπηÞma0 f̄a0
Da0

; ð5Þ

and ultimately arrive at

ΓI¼1
KK̄ðπηÞðsÞ ¼

ga0KK̄ðπηÞma0 f̄a0
B0Da0

: ð6Þ

Several comments are supplied to demonstrate this
expression.

(i) The decay constants of scalar meson are defined
with the scalar and vector currents,

hSjūð0Þ τ3
2
dð0Þj0i ¼ mSf̄S;

hSðpÞjūð0Þγμ
τ3
2
dð0Þj0i ¼ pμfS: ð7Þ

They are related by the equations of motion
mSfS
mu−md

¼ f̄SðμÞ, indicating that the neutral scalar
meson cannot be produced via the vector current
because of the charge conjugation invariance or the
conservation of vector current, but the constant f̄S is
still finite.

(ii) Under the narrow a0 approximation, the matrix
element of strong decay is defined by the coupling
[38]

hK−K0ðπþηÞja−0 i ¼ ga0KK̄ðπηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πm2

a0Γa0→KK̄ðπηÞ
q0

s

ð8Þ

with the energy independent partial decay width3

Γa0→KK̄ðπηÞ. In the definition, q0 ¼ qðm2
a0Þ is the

magnitude of daughter meson [KðπÞ or K̄ðηÞ]
momentum

qðsÞ

¼1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s−ðmKðπÞ þmK̄ðηÞÞ2�½s−ðmKðπÞ−mK̄ðηÞÞ2�=s

q
ð9Þ

at a0 mass. We take the renormalized mass of a0
rather than the pole mass obtained from T-matrix
analysis, since the mass and width parameter are

strongly distorted with lying just below the opening
of the KK̄ channel and hence generating an im-
portant cusplike behavior in the resonant amplitude
[39]. Actually, q ¼ ffiffiffi

s
p

βðsÞ with βðsÞ being the
nondimensional phase space factor of KK̄ðπηÞ
system, which reflects the information of momen-
tum difference described by the variable ζ men-
tioned in the dimeson DAs.

(iii) We take the conventional energy-dependent Breit-
Wigner denominator for a00 and a000 mesons,4

Da0
0
¼ m2

a0
0
− s − ima0

0
Γtot
a0
0

qðsÞ
q0

ma0
0ffiffiffi
s

p ; ð10Þ

where Γtot
a0
0
is the total decay widths of resonant state

meson a00. For the meson a0ð980Þ, we consider the
Flatté model [40]

Da0 ¼ m2
a0 − s − iðg2πηβπη þ g2KK̄βKK̄Þ; ð11Þ

the coupling constants gπη ¼ 0.324 GeV and
g2KK̄=g

2
πη ¼ 1.03 are fixed by the isobar model fits

[39]. Furthermore, we can get ga0πη ¼ 2.297 GeV
and ga0KK̄ ¼ 2.331 GeV with the relations gKK̄ ¼
ga0KK̄=ð4

ffiffiffi
π

p Þ and gπη ¼ ga0πη=ð4
ffiffiffi
π

p Þ. We mark
that, in the a0 → πη channel, the phase factor βKK̄
could also be pure imaginary number when the
invariant mass of πη state is small than the threshold
value of KK̄ state, the contribution from this region
interacts destructively with that from the rest region
of πη invariant mass.

With rearranging the kinematical variable ζ into the
daughter meson momentum qðsÞ and considering the
SUð3Þ symmetry, the matrix element from vacuum to S-
wave KK̄=πη state can be decomposed as [12]

ΦKK̄ðπηÞðz; sÞ ¼
1ffiffiffiffiffiffiffiffi
2Nc

p ½=pRϕðz; sÞ þ
ffiffiffi
s

p
ϕsðz; sÞ

þ ffiffiffi
s

p ð=v=n − 1Þϕtðz; sÞ�: ð12Þ

In the lowest partial-wave accuracy, the twist 2 LCDA is
written as [41]

ϕðz; sÞ ¼ ΓKK̄ðπηÞðsÞ
2

ffiffiffiffiffiffiffiffi
2Nc

p 6zð1 − zÞ

×

�
fS

f̄SðμÞ
þ
X∞
m¼1

BmðμÞC3=2
m ð2z − 1Þ

�
; ð13Þ

with B0ðμÞ≡ fS=f̄SðμÞ ≫ 1. It is clear that the even
Gegenbauer coefficients Bm are suppressed and the odd

3The partial widths of a00 → KK̄ decays have the relations
Γa0

0
→KþK− ¼ Γa0

0
→K0K̄0 ¼ Γa0→KK̄=2.

4Hereafter we use the abbreviations a0, a00 and a000 to denote
a0ð980Þ, a0ð1450Þ, and a0ð1950Þ, respectively.
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Gegenabauer moments are dominated in the twist 2 LCDA
of scalar meson, this is definitely different from the π and ρ
mesons in which the odd moments vanish. The twist 3
LCDAs are

ϕsðz;sÞ ¼ ΓKK̄ðπηÞðsÞ
2

ffiffiffiffiffiffiffiffi
2Nc

p
�
1þ

X∞
m¼1

amðμÞC1=2
m ð2z− 1Þ

�
;

ϕtðz;sÞ ¼ ΓKK̄ðπηÞðsÞ
2

ffiffiffiffiffiffiffiffi
2Nc

p ð1− 2zÞ
�
1þ

X∞
m¼1

bmðμÞC1=2
m ð2z− 1Þ

�
:

ð14Þ

The definitions of Bmeson and light meson wave functions
and the models of their LCDAs, as well as the basic
procedures of PQCD approach to deal with the so called
quasi-two-body B decays as a marriage problem, can be
found in detail in Ref. [18].
In Fig. 1, we depict the typical Feynman diagrams of the

B → a0½→KK̄=πη�h decays with h ¼ π, K in the PQCD
approach, inwhich the symbols⊗ and× denote the vertex of
weak interaction and thepossible attachments of hard gluons,
respectively, the rectangle indicates the intermediate resonant
states a0 and the subsequent strong decays a0 → KK̄=πη. In
theBmeson rest frame, the explicit definitions of kinematics
in the BðpBÞ → RðpRÞ½→h1ðp1Þh2ðp2Þ�h3ðp3Þ decays are
considered as follows,

pB¼
mBffiffiffi
2

p ð1;1;0Þ; kB¼
�
0;
mBffiffiffi
2

p xB;kBT

�
;

pR¼
mBffiffiffi
2

p ð1;ξ;0Þ; kR¼
�
mBffiffiffi
2

p z;0;kT

�
;

p3¼
mBffiffiffi
2

p ð0;1−ξ;0Þ; k3¼
�
0;
mBffiffiffi
2

p ð1−ξÞx3;k3T

�
; ð15Þ

where kB, kR, and k3 are the momenta carried by the
antiquark in the meson states with the momentum fractions
xB, z and x3, respectively. The new variable ξ≡ s=m2

B
indicates the momentum transfer from B meson to resonant
state R. The differential branching ratios for the quasi-two-
body BðsÞ → a0½→KK̄=πη�h decays is written as [42]

dB
dζ

¼ τBqhðsÞqðsÞ
64π3mBðsÞ

jAj2; ð16Þ

in which daughter meson momentum qðsÞ has been defined
in Eq. (9), and qhðsÞ is the magnitude of momentum for the
bachelor meson h

qhðsÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðm2

B −m2
hÞ2 − 2ðm2

B þm2
hÞsþ s2�=s

q
: ð17Þ

The decaying amplitudes is exactly written as a convolution
of the hard kernelH with the hadron distribution amplitudes
(DAs) ϕB, ϕh and ϕKK̄;πη

AðBðsÞ → a0½→KK̄=πη�hÞ≡ h½KK̄=πη�a0hjHeff jBðsÞi
¼ ϕBðx1; b1; μÞ ⊗ Hðxi; bi; μÞ ⊗ ϕKK̄=πηðx; b; μÞ
⊗ ϕhðx3; b3; μÞ; ð18Þ

in which ½KK̄=πη�a0 indicates the dimeson system in our
interesting, μ is the factorization scale, bi are the conjugate
distances of transversal momenta. We present the expres-
sions of amplitudesA for the considered decaying processes
in the Appendix B. Under the narrow width approximation

A ¼
Z

ds
hKK̄=πηja0iha0hjHeff jBðsÞi
½m2

a0 − s − ima0Γa0ðsÞ�
→ hKK̄=πηja0iha0hjHeffjBðsÞi; ð19Þ

we can extract the branching fractions of two-body decays
from the quasi-two-body decays by

BðBðsÞ → a0½→KK̄=πη�hÞ
≈ BðBðsÞ → a0hÞ · Bða0 → KK̄=πηÞ: ð20Þ

III. NUMERICS AND DISCUSSIONS

In Table I, we present the PDG averaged value for the
masses and total widths of single mesons, as well as the
Wolfenstein parameters of CKM matrix. The BðsÞ meson
wave function relies on the three independent parameters,
the mass mB, the decay constant fB and the first inverse
moment ωB. For the inverse moment ωB, we take the
interval ωBð1GeVÞ¼0.40�0.04GeV and ωBs

ð1 GeVÞ ¼
0.50� 0.05 GeV obtained by the QCD sum rules [43] with
considering smaller uncertainty. The mean lives of B

(a) (b) (c) (d)

FIG. 1. Typical Feynman diagrams of the BðsÞ → a0½→KK̄=πη�h decays with h ¼ π; K in the PQCD approach.
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mesons are also taken from PDG, they are τB� ¼
1.638 × 10−12 s, τB0 ¼ 1.520 × 10−12 s, and τBs

¼
1.509 × 10−12 s.
The PDG value of light meson decay constant follows

from the lattice QCD average fKþ=fπþ ¼ 1.193 [44]. We
truncate to the second moments for the Gegenbauer
expansion of leading twist LCDAs, and take aπ1 ¼ 0 and
aπ2ð1 GeVÞ ¼ 0.270� 0.047 obtained recently from the
LCSR fit [45] of the pion electromagnetic form factor.5

For the kaon meson, we take the lattice result obtained by
usingNf ¼ 2þ 1 sea quarks and the domain-wall fermions
[52], say, aK1 ð1 GeVÞ ¼ 0.060� 0.004 and aK2 ð1 GeVÞ ¼
0.175� 0.065, which is comparable with the QCD sum
rules calculations [50,53] and the result from Dyson-
Schwinger equations with dynamical chiral spontaneously
breaking (DCSB)-improved kernel [54]. We take the chiral
masses at mπ

0 ¼ 1.913 GeV, mK
0 ¼ 1.892 GeV with con-

sidering the well-known chiral perturbative theory (χPT)
relations [55]

mπ
0 ¼

m2
πR

2ms
; mK

0 ¼ m2
K

ms½1þ 1
R ð1 − R2−1

4Q2 Þ�
; ð21Þ

in which R≡ 2ms=ðmu þmdÞ ¼ 24.4� 1.5, Q2 ≡ ½m2
s−

ðmu þmdÞ2=4�=ðm2
d −m2

uÞ ¼ ð22.7� 0.8Þ2, the current
quark masses are m̄sð1 GeVÞ ¼ 0.125 GeV, m̄dð1 GeVÞ ¼
0.0065 GeV, and m̄uð1 GeVÞ ¼ 0.0035 GeV. For the twist
3 LCDA, we only take into account the asymptotic terms in
the numerical analysis.
Concerning the intermediate resonant isovector scalar

states a0s, the main inputs are the timelike form factor
entered in each LCDA and the Gegenbauer moments in the
leading twist LCDA. To reveal the timelike form factor
described in Eq. (6), we use the QCD sum rules predictions

on the decay constants [12], they are f̄a0ð1GeVÞ¼
0.365�0.020GeV and f̄a0

0
ð1GeVÞ¼−0.280�0.035GeV

obtained in the first scenario where a0 is treated as the
lowest lying qq̄ state and a00 as the first excited state,
and f̄a0

0
ð1 GeVÞ ¼ 0.460� 0.050 GeV and f̄a00

0
ð1 GeVÞ ¼

0.390� 0.040 GeV obtained in the second scenario where
a00 is the lowest lying qq̄ state and a000 as the first excited
state. As shown in Eq. (8), the strong coupling constants
ga0KK̄ and ga0πη are decided by the partial decay widths,
which are fixed by the following considerations

(i) With the measurements ðΓa0→πη × Γa0→γγÞ=Γtot ¼
0.21 keV and Γa0→γγ ¼ 0.30� 0.10 keV [56],
one gets Γa0→πη ¼ 0.053� 0.018 GeV. We do not
use Eq. (8) to determine the partial width since
it is an approximation expression under the
narrow width limit. Furthermore, one can get
Γa0→KK̄ ¼ 0.009� 0.003 GeV with the measure-
ment Γa0→KK̄=Γa0→πη ¼ 0.177 [42].

(ii) The partial decay widths of a00 to KK̄ and πη states
are decided by the measured branching ratios
Γa0

0
→KK̄=Γtot

a0
0
¼ 0.082� 0.028 and Γa0

0
→πη=Γtot

a0
0
¼

0.093� 0.020 [42].
(iii) For the a000 decays, there is no direct measurement

and the predictions from different models vary
widely. For example, the extended linear sigma
model (eLSM) states that Γa00

0
→ KK̄ ¼ 94�

54 MeV and Γa00
0
→ πη ¼ 94� 16 MeV [57], while

the 33P0 quark model gives the result 0.74 MeVand
5.13 MeV correspondingly [58]. So in our evalu-
ation, we take the largest interval of this variable to
account its uncertainty.

(iv) To close the descriptions, we summarize the inter-
vals of partial decay widths as

Γa0→KK̄ ¼ 0.009� 0.003 GeV; Γa0→πη ¼ 0.053� 0.018 GeV;

Γa0
0
→KK̄ ¼ 0.022� 0.008 GeV; Γa0

0
→πη ¼ 0.025� 0.006 GeV;

Γa00
0
→KK̄ ∈ ½0; 0.150� GeV; Γa00

0
→πη ∈ ½0; 0.110� GeV: ð22Þ

Concerning the Gegenbauer expansion of scalar mesons,
we take into account the first two odd moments B1 and B3

in the twist 2 LCDAs [59] and the asymptotic terms in the
twist 3 LCDAs due to the large theoretical uncertainty of
am and bm [60–62]. They are

Ba0
1 ¼ −0.93� 0.10; Ba0

3 ¼ 0.14� 0.08;

B
a0
0

1 ¼ 0.89� 0.20; B
a0
0

3 ¼ −1.38� 0.18 ð23Þ

in the first scenario, and

B
a0
0

1 ¼ −0.58� 0.12; B
a0
0

3 ¼ −0.49� 0.15;

B
a00
0

1 ¼ 0.73� 0.45; B
a00
0

3 ¼ 0.17� 0.20 ð24Þ

in the second scenario, where the default scale at 1 GeV is
indicated.

5This result agrees with the previous LCSRs extractions from
spacelike pion electromagnetic form factor [46], B → π form
factor [47–49], and also the QCD sum rule prediction [50], but
much larger than the recent lattice QCD evaluation
(aπ2ð1 GeVÞ ¼ 0.130) with the new developed momentum smear-
ing technique [51].
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Our numerical evaluations are carried out in two scenar-
ios. In the first scenario, we treat a0 as the lowest-
lying qq̄ state and a00 as its first excited state, and

study the contributions from a0 and a00 in the B →

að0Þ0 ½→KK̄=πη�h decays. The second scenario indicates that
a00 is the lowest-lying qq̄ state and a000 is the first excited
state, with this ansatz we study their contributions in the
B → a0=000 ½→KK̄=πη�h decays.
In Table II and Table III, we present the PQCD predict-

ions of B → a0½→KK̄=πη�h and B → a00½→KK̄=πη�h
decays in the first scenario of multiparticle configurations
of a0, respectively. Besides the result of quasi-two-body
decays, say the branching fractions (in the 2nd column) and
the CP violations (in the last column), we list the branching
fractions of two-body B → a00h decays6 obtained in the
narrow width approximation (in the 3rd column), for the

sake of comparison, the direct two-body calculations based
on PQCD [14] and QCDF approach [41], and also the
available data are listed too (in the 4th and 5th columns).
The theoretical uncertainties come from the inputs of
LCDAs, mainly from the inverse moment ωB which we
put as the first error source, the uncertainties from
Gegenbauer moments Ba0

1 , Ba0
3 of dimeson systems are

added together as the second error, we do not consider the
uncertainty from other parameters, like fa0 , f̄a0 since their
influences are small. We comment in orders,
(a) The branching fractions of quasi-two-body channels

with strong decays a0 → πη is about 5 times larger than
that with the strong decay a0 → KK̄, which is under-
stood by the suppressed phase space for KK̄ state.

(b) Under the narrow width approximation of the quasi-
two-body decays, we extract the branching fractions of

relevant two body decays B → að0Þ0 h. The result
obtained from the a00 → KK̄ and a00 → πη modes
are consist with each other with in the uncertainties,
more important is that this result have a large dis-
crepancy with the direct two-body calculation from

TABLE II. The PQCD predictions of branching fractions (in unit of 10−6) and CP violations of B → a0½→KK̄=πη�h decays in the first
scenario of multiparticle configurations of a0.

Decay modes Quasi-two-body Narrow approximation Two-body Data [42] CPV

Bþ → aþ0 ½→KþK̄0�π0 0.08þ0.03þ0.00
−0.03−0.00 0.41þ0.00

−0.23 [63] 38.2þ3.5þ3.5
−1.4−7.7

→ aþ0 ½→πþη�π0 0.37þ0.14þ0.04
−0.08−0.04 0.52þ0.20þ0.06

−0.11−0.05 0.70þ0.32
−0.23 [41] <1.4 56.3þ1.2þ2.8

−3.1−7.3
Bþ → a00½→K−Kþ�πþ 0.33þ0.12þ0.04

−0.08−0.04 2.8þ0.0
−1.3 [63] 24.1þ2.6þ6.5

−2.4−6.6
→ a00½→π0η�πþ 2.41þ0.91þ0.37

−0.62−0.30 3.44þ1.29þ0.54
−0.88−0.42 4.9þ1.4

−1.3 [41] <5.8 26.5þ0.1þ5.4
−2.7−6.1

Bþ → aþ0 ½→KþK̄0�K0 0.26þ0.03þ0.16
−0.01−0.10 6.9þ2.4

−2.1 [14] 6.1þ5.5þ5.4
−4.9−6.2

→ aþ0 ½→πþη�K0
0.94þ0.04þ0.85

−0.02−0.51 1.35þ0.06þ1.21
−0.03−0.72 0.08þ2.20

−0.11 [41] <3.9 3.72þ2.4þ5.1
−3.3−3.0

Bþ → a00½→K−Kþ�Kþ 0.11þ0.0þ0.06
−0.0−0.04 3.5þ1.1

−1.2 [14] −26.4þ4.8þ4.9
−4.2−6.7

→ a00½→π0η�Kþ
1.06þ0.02þ0.59

−0.04−0.42 1.51þ0.03þ0.85
−0.06−0.61 0.34þ1.12

−0.16 [41] <2.5 −21.3þ4.0þ7.4
−4.6−9.5

B0 → aþ0 ½→KþK̄0�π− 0.17þ0.06þ0.01
−0.04−0.01 0.51þ0.12

−0.12 [63] 70.5þ0.5þ6.9
−3.1−7.4

→ aþ0 ½→πþη�π− 0.67þ0.24þ0.06
−0.15−0.07 0.95þ0.34þ0.08

−0.22−0.10 0.58þ0.65
−0.25 [41] 68.3þ3.4þ6.4

−6.2−7.2
B0 → a00½→K−Kþ�π0 0.04þ0.02þ0.01

−0.01−0.00 0.51þ0.12
−0.11 [63] 79.4þ0.4þ7.9

−6.6−9.6
→ a00½→π0η�π0 0.33þ0.09þ0.05

−0.05−0.06 0.47þ0.12þ0.07
−0.07−0.08 1.0þ0.5

−0.3 [41] 84.1þ7.2þ1.9
−5.6−5.9

B0 → a−0 ½→K−K0�πþ 3.48þ1.33þ0.34
−0.92−0.29 0.86þ0.17

−0.17 [63] 17.8þ2.3þ3.1
−2.2−3.5

→ a−0 ½→π−η�πþ 14.8þ5.6þ1.7
−3.9−1.4 21.1þ7.9þ2.3

−5.6−2.1 5.3þ1.7
−1.4 [41] 20.6þ2.6þ2.7

−2.7−3.6
B0 → a00½→K−Kþ�K0 0.11þ0.03þ0.04

−0.01−0.02 4.7þ1.4
−1.4 [14] −27.5þ6.9þ5.6

−1.7−2.1
→ a00½→π0η�K0 1.36þ0.21þ0.43

−0.23−0.51 1.95þ0.30þ0.61
−0.32−0.72 0.05þ0.91

−0.05 [41] <7.8 −43.2þ1.7þ5.7
−7.8−8.8

B0 → a−0 ½→K−K0�Kþ 0.99þ0.14þ0.38
−0.09−0.33 9.7þ3.3

−2.8 [14] −69.7þ1.2þ1.7
−4.1−2.6

→ a−0 ½→π−η�Kþ
4.51þ0.60þ1.72

−0.61−1.60 6.44þ0.85þ2.53
−0.87−2.33 0.34þ2.35

−0.14 [41] <1.9 −83.2þ2.5þ3.4
−9.6−9.9

TABLE I. Inputs of the single mesons (in units of GeV) and the Wolfenstein parameters [42].

mB0 ¼ 5.280 mB� ¼ 5.279 mB0
s
¼ 5.367 fB ¼ 0.190 fBs

¼ 0.230
mπ� ¼ 0.140 mπ0 ¼ 0.135 mK� ¼ 0.494 mK0 ¼ 0.498 mη ¼ 0.548
fπ� ¼ 0.130 fπ0 ¼ 0.156 ma0 ¼ 0.980 ma0

0
¼ 1.474 ma00

0
¼ 1.931

Γa0 ¼ 0.075� 0.025 Γa0
0
¼ 0.265� 0.013 Γa00

0
¼ 0.271� 0.036 [29]

λ ¼ 0.22650� 0.00048 A ¼ 0.790þ0.017
−0.012 ρ̄ ¼ 0.141þ0.016

−0.017 η̄ ¼ 0.357� 0.011

6The narrow width approximation is not applicable to the
modes involving a0h → KK due to the threshold effect, so in
Table II we do not list the result of two-body B → a0h decay
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PQCD [14] and QCDF [41], revealing the important
role of width effects of a0 and a00.

(c) In the B → a00h and the following B → a000h decays,
only the partial width expression is used due to the
lack of direct measurements, that is why the branching
fractions of these decays extracted from KK̄ and πη
modes are very close to each other.

(d) The PQCD predictions of branching fractions of the

six B → aðþ;0Þ
0 ½→πη�h quasi-two-body decays do not

excess the experimental upper limit, the p redictions of
two channels B0 → a�0 ½→π�η�π∓ excess the exper-
imental upper limit 3.1 × 10−6 [42] at first glance, but
the large uncertainties would be larger if we consider
the uncertainty of ωB ¼ 440� 110 MeV. Within
acceptable limits, the qq̄ configuration of a0 is not
ruled out in B decays. It is shown that the decaying
channel B0 → a−0 ½→π−η�πþ has the largest branching
fraction, and we suggest the measurement to examine
the qq̄ configuration.

We list in Table IV and Table V with the PQCD predic-
tions of B → a00½→KK̄=πη�h and B → a000½→KK̄=πη�h
decays in the second scenario of multiparticle configura-
tions of a0, respectively. For the latter one, we also present
the uncertainty (as the third error) in the quasi-two-body
decays from the partial decay width Γa00

0
→KK̄=πη as demon-

strated in Eq. (22), this parameter would not bring addi-
tional uncertainty to the two-body decays under narrow
approximation. A similar result is obtained with showing
that the decaying channels B0 → a0−0 ½→K−K0=π−η�h have
the largest branching fractions both for the quasi-two-body

and the extracted two-body decays. We would like to
mark that our predictions of the a00 contributions are
comparable in most of the B → KK̄h; πηh decays no
matter what the scenarios of a0 configurations are taken,
while for the channels B0 → a0þ0 ½→KþK̄0; πþη�π− and
B0 → a0−0 ½→K−K0; π−η�πþ, the predictions of branching
fractions in the second scenario are about three times larger
in magnitude than that predicted in the first scenario,7

which provide another opportunity to check which one
is correct with the future measurement. In these tables we
also list CP violations which provide another observable to
study the interactions between different operators and/or
topological amplitudes, especially the different sources of
strong phases.
The width effect of intermediate isovector scalar mesons

is exhibited explicitly by the KK̄=πη invariant mass
spectral. In the first scenario of multiparticle configurations
of a0, we plot in Fig. 2 for the differential branching

fractions of the typical B → að0Þ0 ½→KK̄=πη�h decaying
channels on the invariant masses, in which the top panel
shows the result of channels Bþ → a00½→KþK−=π0η�πþ
(left) and Bþ → aþ0 ½→KþK̄0=πþη�K0 (right) with varying
the invariant mass from thresholds to 2.0 GeV, the medium
panel is the result of Bþ → a000 ½→KþK−=π0η�πþ (left) and
Bþ → a0þ0 ½→KþK̄0=πþη�K0 (right) decays with varying

TABLE III. The same as Table II, but for the B → a00½→KK̄=πη�h decays.

Decay modes Quasi-two-body Narrow approximation Two-body [41] CPV

Bþ → a0þ0 ½→KþK̄0�π0 0.08þ0.01þ0.00
−0.02−0.01 0.94þ0.12þ0.03

−0.20−0.19 −4.6þ1.9þ4.5
−9.2−9.1

→ a0þ0 ½→πþη�π0 0.09þ0.02þ0.01
−0.02−0.01 0.95þ0.18þ0.06

−0.21−0.16 0.4þ0.3
−0.3 −13.2þ9.1þ7.8

−12.7−8.3
Bþ → a000 ½→K−Kþ�πþ 0.12þ0.04þ0.03

−0.03−0.02 2.81þ1.09þ0.73
−0.61−0.54 26.6þ23.7þ13.3

−19.9−17.0
→ a000 ½→π0η�πþ 0.28þ0.10þ0.07

−0.07−0.04 3.02þ1.09þ0.78
−0.74−0.52 2.7þ0.7

−0.7 28.2þ14.6þ13.0
−16.7−18.4

Bþ → a0þ0 ½→KþK̄0�K0 1.28þ0.03þ0.45
−0.05−0.40 15.6þ0.4þ2.7

−0.6−2.2 4.8þ1.5þ2.9
−0.5−3.1

→ a0þ0 ½→πþη�K0
1.50þ0.04þ0.53

−0.06−0.48 16.1þ0.5þ5.7
−0.5−5.0 2.7þ10.1

−3.2 4.8þ1.4þ1.9
−0.3−0.6

Bþ → a000 ½→K−Kþ�Kþ 0.44þ0.01þ0.16
−0.01−0.14 10.8þ0.3þ2.9

−0.4−2.6 1.0þ0.1þ5.9
−0.8−3.2

→ a000 ½→π0η�Kþ 1.02þ0.03þ0.37
−0.03−0.34 11.1þ0.2þ4.0

−0.4−3.6 0.7þ3.2
−0.6 0.8þ0.5þ6.2

−0.6−3.0

B0 → a0þ0 ½→KþK̄0�π− 0.04þ0.01þ0.01
−0.01−0.01 0.49þ0.14þ0.17

−0.08−0.14 −24.0þ12.0þ19.3
−13.0−18.2

→ a0þ0 ½→πþη�π− 0.03þ0.01þ0.01
−0.00−0.01 0.36þ0.10þ0.17

−0.03−0.12 0.02þ0.75
−0.01 −20.7þ15.6þ25.4

−10.7−23.0
B0 → a000 ½→K−Kþ�π0 0.03þ0.01þ0.01

−0.01−0.01 0.67þ0.16þ0.21
−0.12−0.15 −22.0þ19.1þ18.0

−13.1−19.6
→ a000 ½→π0η�π0 0.07þ0.01þ0.02

−0.01−0.02 0.70þ0.16þ0.18
−0.08−0.23 1.3þ2.1

−1.1 −31.9þ13.4þ19.1
−8.5−19.2

B0 → a0−0 ½→K−K0�πþ 1.08þ0.35þ0.18
−0.24−0.17 13.2þ4.2þ2.2

−2.9−2.2 24.8þ1.2þ4.4
−0.7−5.3

→ a0−0 ½→π−η�πþ 1.24þ0.39þ0.21
−0.27−0.21 13.3þ4.3þ2.4

−2.9−2.2 11.2þ5.2
−5.7 25.6þ2.9þ4.3

−0.8−5.9
B0 → a000 ½→K−Kþ�K0 0.25þ0.02þ0.12

−0.02−0.09 6.06þ0.50þ3.01
−0.56−2.28 −0.3þ2.9þ2.5

−4.9−0.4
→ a000 ½→π0η�K0

0.58þ0.05þ0.29
−0.05−0.22 6.27þ0.52þ3.14

−0.52−2.39 0.9þ3.8
−1.1 −0.6þ3.4þ2.1

−6.5−0.8
B0 → a0−0 ½→K−K0�Kþ 2.62þ0.31þ0.71

−0.29−0.62 32.0þ3.8þ6.7
−3.4−4.7 −18.9þ2.7þ1.1

−2.3−3.8
→ a0−0 ½→π−η�Kþ

3.04þ0.35þ0.80
−0.33−0.73 32.7þ3.7þ7.7

−3.6−6.6 1.9þ8.1
−1.8 −19.5þ2.0þ0.9

−2.2−4.0

7The PQCD predictions in the second scenario for these
channels consist of the result from the factorization approach
under SUð3Þ symmetry [64], and the predictions in both
scenarios are under the experiment’s upper limit.
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the invariant mass from thresholds to 3.0 GeV, the
comparison of a0 and a00 contributions in Bþ → ½π0η�πþ
(left) and Bþ → ½πþη�K0 (right) decays is depicted in the
bottom panel. We take these typical charged channels
because they carry almost all the characteristics of the
relevant quasi-two-body decays: (a) the a0 contribution

from KK̄ mode is much smaller than it from πη modes as
expected by the highly phase space suppression8; (b) the a00

TABLE V. The same as Table IV, but for the B → a000 ½→KK̄=πη�h decays.

Decay modes Quasi-two-body Narrow approximation CPV

Bþ → a00þ0 ½→KþK̄0�π0 0.38þ0.17þ0.02
−0.10−0.02 � 0.22 1.14þ0.50þ0.06

−0.30−0.04 17.6þ1.9þ0.8
−4.1−0.8

→ a00þ0 ½→πþη�π0 0.39þ0.16þ0.01
−0.10−0.01 � 0.07 1.16þ0.48þ0.03

−0.31−0.04 13.3þ3.1þ0.9
−0.1−0.7

Bþ → a0000 ½→K−Kþ�πþ 3.04þ1.22þ0.59
−0.81−0.48 � 1.75 18.1þ7.3þ3.5

−4.8−2.8 −6.7þ1.1þ2.1
−1.3−2.2

→ a0000 ½→π0η�πþ 6.31þ2.48þ1.20
−0.71−1.07 � 1.07 18.8þ7.4þ3.5

−5.1−3.3 −7.0þ0.9þ0.9
−0.9−1.7

Bþ → a00þ0 ½→KþK̄0�K0 2.60þ0.15þ3.18
−0.08−2.01 � 1.49 7.73þ0.37þ9.49

−0.25−6.01 0.6þ0.0þ1.4
−0.7−0.6

→ a00þ0 ½→πþη�K0
2.62þ0.15þ3.21

−0.09−2.04 � 0.44 7.81þ0.44þ9.59
−0.25−6.09 0.5þ0.4þ0.7

−0.8−0.3
Bþ → a0000 ½→K−Kþ�Kþ 0.58þ0.00þ0.83

−0.00−0.52 � 0.33 3.46þ0.02þ4.96
−0.01−3.13 −27.9þ3.8þ6.3

−4.2−6.8
→ a0000 ½→π0η�Kþ

1.19þ0.01þ1.66
−0.00−1.07 � 0.20 3.56þ0.01þ4.95

−0.05−3.13 −30.8þ4.4þ7.3
−5.4−7.0

B0 → a00þ0 ½→KþK̄0�π− 1.02þ0.35þ0.27
−0.23−0.21 � 0.59 3.05þ1.03þ0.80

−0.72−0.66 −7.0þ2.5þ8.4
−2.6−8.5

→ a00þ0 ½→πþη�π− 1.01þ0.35þ0.27
−0.23−0.20 � 0.17 3.02þ1.04þ0.83

−0.70−0.64 −7.8þ3.2þ8.8
−2.2−7.9

B0 → a0000 ½→K−Kþ�π0 0.22þ0.06þ0.11
−0.05−0.10 � 0.13 1.32þ0.33þ0.69

−0.27−0.59 −31.3þ1.2þ5.7
−2.9−8.9

→ a0000 ½→π0η�π0 0.44þ0.12þ0.24
−0.08−0.19 � 0.07 1.30þ0.36þ0.72

−0.25−0.56 −32.6þ2.7þ7.5
−1.8−8.1

B0 → a00−0 ½→K−K0�πþ 4.76þ2.03þ1.45
−1.34−1.19 � 2.73 14.2þ8.0þ4.2

−4.0−3.7 −24.2þ3.6þ11.5
−3.9−10.7

→ a00−0 ½→π−η�πþ 4.76þ2.04þ1.46
−1.34−1.19 � 0.81 14.2þ8.0þ4.2

−4.1−3.7 −24.3þ3.5þ9.7
−4.0−10.1

B0 → a0000 ½→K−Kþ�K0 0.86þ0.22þ0.73
−0.13−0.67 � 0.50 5.15þ1.33þ4.40

−0.80−3.05 −1.8þ1.4þ0.9
−0.6−1.8

→ a0000 ½→π0η�K0 1.74þ0.43þ1.48
−0.26−1.04 � 0.29 5.20þ1.29þ4.42

−0.79−3.12 −2.1þ1.2þ0.2
−0.2−1.1

B0 → a00−0 ½→K−K0�Kþ 3.82þ1.01þ2.11
−0.67−1.32 � 2.19 11.4þ2.9þ6.2

−2.0−3.9 24.9þ0.7þ5.5
−0.4−4.0

→ a00−0 ½→π−η�Kþ 3.80þ1.02þ2.18
−0.64−1.31 � 0.65 11.3þ3.1þ6.7

−1.8−3.8 25.6þ1.2þ8.5
−0.6−9.7

TABLE IV. The PQCD predictions of branching fractions (in unit of 10−6) and CP violations of B → a00½→KK̄=πη�h decays in the
second scenario of multiparticle configurations of a0.

Decay modes Quasi-two-body Narrow approximation Two-body [41] CPV

Bþ → a0þ0 ½→KþK̄0�π0 0.10þ0.04þ0.00
−0.03−0.01 1.24þ0.52þ0.03

−0.34−0.09 −19.2þ4.9þ5.1
−4.3−8.1

→ a0þ0 ½→πþη�π0 0.12þ0.05þ0.01
−0.03−0.01 1.24þ0.53þ0.08

−0.31−0.10 2.1þ1.1
−0.8 −15.2þ2.4þ5.3

−3.1−6.8
Bþ → a000 ½→K−Kþ�πþ 0.25þ0.11þ0.04

−0.07−0.04 6.07þ2.80þ1.06
−1.77−0.98 −0.1þ1.6þ3.6

−1.5−2.0
→ a000 ½→π0η�πþ 0.56þ0.27þ0.09

−0.16−0.09 6.01þ2.91þ1.08
−1.72−0.99 5.1þ1.8

−1.7 1.0þ0.8þ3.4
−2.6−3.7

Bþ → a0þ0 ½→KþK̄0�K0 1.29þ0.03þ0.68
−0.02−0.52 15.8þ0.4þ4.6

−0.2−3.9 0.5þ0.1þ0.6
−0.1−0.6

→ a0þ0 ½→πþη�K0 1.51þ0.04þ0.79
−0.03−0.62 16.3þ0.5þ8.4

−0.3−6.5 4.2þ18.8
−4.8 0.3þ0.2þ0.8

−0.3−0.9
Bþ → a000 ½→K−Kþ�Kþ 0.50þ0.00þ0.23

−0.01−0.20 12.3þ0.1þ3.9
−0.3−3.1 −22.7þ2.4þ1.3

−3.2−0.8
→ a000 ½→π0η�Kþ

1.13þ0.00þ0.56
−0.02−0.43 12.2þ0.1þ5.9

−0.1−4.7 2.2þ8.1
−2.2 −23.6þ3.0þ3.8

−2.0−1.8

B0 → a0þ0 ½→KþK̄0�π− 0.13þ0.05þ0.01
−0.03−0.01 1.56þ0.57þ0.18

−0.37−0.13 24.8þ0.5þ6.5
−0.6−6.8

→ a0þ0 ½→πþη�π− 0.14þ0.05þ0.01
−0.03−0.01 1.51þ0.57þ0.16

−0.37−0.12 0.74þ2.9
−0.6 28.5þ0.4þ6.7

−0.5−4.6
B0 → a000 ½→K−Kþ�π0 0.05þ0.01þ0.01

−0.01−0.01 1.07þ0.16þ0.34
−0.10−0.32 26.1þ5.1þ8.1

−6.7−8.6
→ a000 ½→π0η�π0 0.10þ0.01þ0.04

−0.01−0.03 1.10þ0.15þ0.34
−0.11−0.34 3.3þ3.1

−1.7 24.3þ6.5þ17.2
−6.4−12.3

B0 → a0−0 ½→K−K0�πþ 3.61þ1.32þ0.38
−0.92−0.36 44.0þ16.2þ4.7

−11.2−4.4 25.8þ3.3þ4.0
−3.0−3.6

→ a0−0 ½→π−η�πþ 4.15þ1.52þ0.45
−1.05−0.42 44.6þ16.4þ4.9

−11.4−4.5 2.5þ3.8
−1.0 26.1þ3.3þ3.5

−2.9−3.6
B0 → a000 ½→K−Kþ�K0 0.33þ0.01þ0.17

−0.00−0.13 8.10þ0.16þ4.05
−0.02−3.01 −6.3þ0.1þ0.8

−2.5−3.1
→ a000 ½→π0η�K0 0.78þ0.01þ0.40

−0.00−0.29 8.34þ0.17þ4.29
−0.02−3.96 1.9þ7.8

−2.2 −7.5þ0.7þ1.1
−2.3−2.4

B0 → a0−0 ½→K−K0�Kþ 2.93þ0.49þ1.05
−0.35−0.89 35.7þ6.0þ9.9

−4.2−9.7 −46.7þ1.6þ4.1
−0.3−3.6

→ a0−0 ½→π−η�Kþ
3.39þ0.52þ1.02

−0.39−1.02 36.5þ5.6þ13.0
−4.2−10.0 3.5þ17.5

−3.9 −46.0þ3.3þ4.0
−1.5−4.1

8We multiply the result of the KK̄ mode by a factor of ten to
show apparently for the curves.
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contributions from these two modes are comparable, we
comment that the lower curves in the left plot can be
compensated by the channel Bþ → a000 ½→K0K̄0�πþ which
is not depicted here; (c) in contrast to the a0 contributions,
the a00 contribution is negligible in the ½π0η�πþ channel and
small in the ½πþη�K0 channel, while its contributions in the
½KþK−�πþ and ½KþK̄0�K0 channels are (much) larger than
the contributions from a0, this is mainly decided by the
different phase spaces. We can also see the difference

between the three plots in the left panel for the channels
with h ¼ π and the other three plots on the right panel for
the channels with h ¼ K, this is determined by the weak

decay of relevant two-body decays Bþ → að0Þ0 π and Bþ →

að0Þ0 K whose invariant amplitudes are collected in the
Appendix B. These points support the corresponding result
in Tables II and III for the partial decay branching fractions
obtained by integrating the differential branching fractions
over the invariant masses.

FIG. 2. Differential branching fractions of typical B → að0Þ0 ½→KK̄=πη�h decays in the first scenario of multiparticle configurations of
a0 mesons.
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We similarly plot the a00 and a000 contributions in the
typical B → ½KK̄=πη�h decay in the second scenario
of multiparticle configurations of a0, as depicted in
Fig. 3, where the top panel shows the result of
channels Bþ → a000 ½→KþK−=π0η�πþ (left) and Bþ →
a0þ0 ½→KþK̄0=πþη�K0 (right) with the invariant mass
starting from the thresholds and closing up at 3.0 GeV,
the plots in the medium panel are depicted for the

channels Bþ → a0000 ½→KþK−=π0η�πþ (left) and Bþ →
a00þ0 ½→KþK̄0=πþη�K0 (right) with varying the invariant
mass from thresholds to 4.0 GeV, and the bottom panel
presents the result of channels Bþ → a0=00þ0 ½→KþK̄0�K0

(left) and Bþ → a0=00þ0 ½→πþη�K0 (right). We can easily get
that (a) the contributions from a00 in the channels Bþ →
½π0η=KþK−�πþ and Bþ → ½πþη=KþK̄0�K0 in the second
scenario of multiparticle configurations of a0 are very close

FIG. 3. Differential branching fractions of typical B → a0=000 ½→KK̄=πη�h decays in the second scenario of multiparticle configurations
of a0 mesons.
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to that obtained in the first scenario, we would like to mark
again that the neutral B meson decaying channels
B0 → ½K�K0=π�η�π∓, even though they have similar
shapes, have apparent different predictions in magnitude
in these two scenarios; (b) the contributions from a000 are
larger than that from a00, in the ½π0η=KþK−�πþ channels even
larger by about an order. This is an impressive result, but it is
not surprising if we look at the twist 2 LCDAs in Eq. (13) and
the relevant parameters, and we look forward to the experi-
ment check; (c) the a000 contributions in the channels ½πþη�K0

and ½KþK̄0�K0 are almost overlapping because the a000 is far
away from the KK̄ and πη thresholds, as we can also find in
the channels ½π0η�πþ and ½KK̄�πþ if we consider both the
KþK− and K0K̄0 contributions; (d) the partial widths of
a000 → KK̄=πη effect are significant for the result of the quasi-
two-body, we plot the varying band in the bottom panel by
taking the result Γa00

0
→ KK̄ ¼ 94� 54 MeV and Γa00

0
→

πη ¼ 94� 16 MeV obtained from the eLSM model [57].
We depict in Fig. 4 the dependence of the branching fractions
of Bþ → a00þ0 ½→KþK̄0=πþη�K0 on the partial widths
Γa00

0
→KK̄=πη with considering the largest uncertainties in

Eq. (22). It is shown that the width effect of a000 in the
relevant quasi-two-body B decays is linear, so we suggest
these channels in B decays to determine the partial
widths Γa00

0
→KK̄=πη.

IV. CONCLUSION

Motivated by the discrepancy between the experimental
measurements of three-body B → a0ð980Þ½→πη�K decays
and the theoretical predictions of two-body B → a0ð980ÞK
decays, we study the contributions from a0 in the three-
body B → ½πη�ð½KK̄�Þh decays in the framework of the
PQCD approach, where the width effects of the inter-
mediated isovector scalar mesons a0 are demonstrated
in detail. This is also the first systematical study of the width
effect in B → a0 decays. In the face of controversy for the

multiparticle configurations of a0ð980Þ, particularly in the B
decays, we consider two scenarios where the first one states
that a0ð980Þ is the lowest-lying qq̄ state, and the second one
says that the lowest-lying qq̄ state is a0ð1450Þwhile a0ð980Þ
is a compact tetraquark state or KK̄ bound state.
We find that the width effect from intermediate a0 states

is significant in the relevant quasi-two-body decaying
channels, with which we extract the branching fractions
of corresponding two-body decays under narrow width
approximation, showing a large difference to the previous
direct two-body calculation under the static a0ð980Þ
assumption. Our calculations show that the a0ð980Þ as
the lowest-lying qq̄ state cannot be ruled out in B decays
within acceptable limits with the current measurements.
To examine the nature of a0 state in B decays, we
suggest several channels for the future experiments. The
first candidate is the B → a−0 ½→π−η�πþ mode with the
largest branching fraction from the calculation under
the first scenario, the second ones are the B0 →
a�0 ð1450Þ½→K�K̄0=π�π0�π∓ modes, whose branching
fractions obtained in the first scenario are about three
times smaller in magnitude than that obtained in the second
scenario. Last, but not the least, is the partial widths
(Γa0ð1950Þ→KK̄=πη) dependence of the partial branching
fractions of B → a0ð1950Þ½KK̄=πη�h modes. This depend-
ence is shown in the linear behavior and could be examined
by the future data. As a by-product, we present a0 mesons
contributions in the CKM suppressed Bs decays, which
seems harder for the near future experiments.
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APPENDIX A: PROBING a0 MESONS IN THE
QUASI-TWO-BODY Bs DECAYS

We also predict the contributions from isovector scalar
mesons in the CKM suppressed Bs decays under, as
presented in Table VI and Table VII under scenarios I
and II, respectively, the channel ðB0

s → a−0 ½π−η�KþÞ with
the predicted branching fraction ð0.75þ0.22þ0.13

−0.14−0.12 Þ × 10−6 is
the most possible available at the near future experiments.

FIG. 4. Evolutions of BðBþ → a00þ0 ½→KþK̄0=πþη�K0Þ on the
partial widths Γa00

0
→KK̄=πη in the second scenario of multiparticle

configurations of a0 mesons.
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TABLE VI. The same as Table II, but for the B0
s → að0Þ0 ½→KK̄=πη�h decays.

Decay modes Quasi-two-body Narrow approximation CPV

B0
s → aþ0 ½→KþK̄0�π− 0.03þ0.00þ0.01

−0.00−0.01 −8.1þ6.0þ4.8
−2.7−7.1

→ aþ0 ½→πþη�π− 0.17þ0.00þ0.06
−0.00−0.04 0.25þ0.00þ0.09

−0.01−0.05 −11.7þ2.7þ1.5
−9.3−5.7

B0
s → a00½→K−Kþ�π0 0.04þ0.00þ0.01

−0.01−0.01 16.5þ2.5þ8.0
−0.3−3.5

→ a00½→π0η�π0 0.49þ0.03þ0.16
−0.06−0.11 0.70þ0.04þ0.24

−0.09−0.14 22.7þ1.2þ2.6
−1.5−3.4

B0
s → a−0 ½→K−K0�πþ 0.03þ0.01þ0.00

−0.01−0.00 22.1þ6.5þ12.9
−3.1−10.8

→ a−0 ½→π−η�πþ 0.14þ0.05þ0.09
−0.02−0.02 0.20þ0.08þ0.04

−0.03−0.03 44.4þ4.2þ2.9
−9.5−8.4

B0
s → a00½→K−Kþ�K0 0.16þ0.05þ0.02

−0.03−0.01 54.8þ0.1þ6.4
−5.3−7.5

→ a00½→π0η�K0 0.74þ0.19þ0.09
−0.15−0.07 1.05þ0.28þ0.12

−0.21−0.10 61.4þ1.3þ5.9
−1.6−7.5

B0
s → a−0 ½→K−K0�Kþ 0.07þ0.02þ0.01

−0.01−0.01 81.5þ4.8þ1.5
−8.8−3.5

→ a−0 ½→π−η�Kþ 0.75þ0.22þ0.14
−0.13−0.12 1.06þ0.32þ0.20

−0.19−0.18 77.8þ1.6þ5.6
−9.1−3.1

B0
s → a0þ0 ½→KþK̄0�π− 0.09þ0.02þ0.03

−0.02−0.02 1.05þ0.29þ0.33
−0.21−0.28 −10.1þ0.2þ1.8

−0.8−0.3
→ a0þ0 ½→πþη�π− 0.10þ0.03þ0.03

−0.02−0.03 1.08þ0.31þ0.33
−0.22−0.31 −8.3þ1.8þ1.8

−3.0−3.9
B0
s → a000 ½→K−Kþ�π0 0.13þ0.03þ0.03

−0.02−0.03 3.07þ0.61þ0.84
−0.56−0.71 19.7þ1.9þ2.0

−0.4−3.8
→ a000 ½→π0η�π0 0.30þ0.06þ0.08

−0.06−0.07 3.20þ0.68þ0.84
−0.61−0.71 20.8þ1.2þ2.0

−0.2−3.9
B0
s → a0−0 ½→K−K0�πþ 0.05þ0.01þ0.02

−0.01−0.01 0.67þ0.16þ0.22
−0.12−0.18 53.9þ0.5þ1.5

−3.8−3.7
→ a0−0 ½→π−η�πþ 0.06þ0.02þ0.02

−0.01−0.02 0.69þ0.18þ0.21
−0.13−0.18 55.4þ0.5þ2.7

−2.0−2.5
B0
s → a000 ½→K−Kþ�K0 0.07þ0.01þ0.02

−0.01−0.02 0.88þ0.12þ0.29
−0.09−0.29 −6.6þ0.9þ9.2

−5.0−12.1
→ a000 ½→π0η�K0 0.08þ0.01þ0.03

−0.01−0.02 0.89þ0.13þ0.30
−0.08−0.28 −8.8þ2.2þ10.4

−5.9−12.1
B0
s → a0−0 ½→K−K0�Kþ 0.03þ0.01þ0.01

−0.00−0.01 0.64þ0.11þ0.25
−0.04−0.12 −28.3þ2.7þ10.1

−9.1−8.6
→ a0−0 ½→π−η�Kþ 0.06þ0.01þ0.02

−0.00−0.01 0.66þ0.11þ0.23
−0.04−0.13 −27.8þ1.4þ6.1

−6.1−8.6

TABLE VII. The same as Table IV, but for the B0
s → a0=000 ½→KK̄=πη�h decays.

Decay modes Quasi-two-body Narrow approximation CPV

B0
s → a0þ0 ½→KþK̄0�π− 0.08þ0.02þ0.03

−0.01−0.03 1.02þ0.20þ0.39
−0.18−0.35 −0.9þ1.0þ1.0

−0.2−0.7
→ a0þ0 ½→πþη�π− 0.10þ0.02þ0.04

−0.02−0.03 1.05þ0.20þ0.40
−0.19−0.36 −0.9þ1.6þ0.3

−0.3−0.3
B0
s → a000 ½→K−Kþ�π0 0.11þ0.02þ0.04

−0.02−0.04 2.73þ0.58þ1.11
−0.49−0.92 17.9þ0.3þ1.5

−1.3−2.3
→ a000 ½→π0η�π0 0.26þ0.06þ0.10

−0.05−0.08 2.79þ0.50þ1.14
−0.50−0.92 16.2þ0.6þ0.8

−0.1−1.0
B0
s → a0−0 ½→K−K0�πþ 0.03þ0.01þ0.02

−0.01−0.01 0.36þ0.07þ0.14
−0.06−0.17 26.8þ4.8þ4.8

−8.5−6.5
→ a0−0 ½→π−η�πþ 0.03þ0.01þ0.02

−0.01−0.02 0.36þ0.09þ0.25
−0.05−0.16 22.4þ6.7þ1.5

−2.2−2.2
B0
s → a000 ½→K−Kþ�K0 0.15þ0.04þ0.04

−0.02−0.03 1.88þ0.44þ0.39
−0.28−0.33 22.6þ2.2þ5.1

−1.6−3.5
→ a000 ½→π0η�K0 0.17þ0.04þ0.04

−0.03−0.03 1.88þ0.44þ0.40
−0.27−0.31 23.4þ2.2þ4.4

−1.9−4.2

B0
s → a0−0 ½→K−K0�Kþ 0.04þ0.01þ0.01

−0.01−0.01 1.07þ0.27þ0.23
−0.16−0.19 57.1þ0.1þ6.1

−1.4−5.4
→ a0−0 ½→π−η�Kþ 0.10þ0.02þ0.03

−0.01−0.01 1.09þ0.25þ0.26
−0.16−0.19 57.6þ0.2þ7.1

−0.9−4.8
B0
s → a00þ0 ½→KþK̄0�π− 0.02þ0.01þ0.06

−0.01−0.02 � 0.01 0.07þ0.03þ0.17
−0.01−0.06 50.9þ6.0þ13.3

−9.3−11.0
→ a00þ0 ½→πþη�π− 0.03þ0.01þ0.06

−0.01−0.03 � 0.01 0.08þ0.02þ0.17
−0.02−0.07 48.5þ3.7þ8.6

−9.6−10.5
B0
s → a0000 ½→K−Kþ�π0 0.03þ0.01þ0.08

−0.0−0.04 � 0.02 0.20þ0.08þ0.48
−0.01−0.17 37.0þ3.8þ6.0

−0.9−11.1
→ a0000 ½→π0η�π0 0.07þ0.02þ0.16

−0.01−0.07 � 0.01 0.22þ0.05þ0.48
−0.03−0.19 42.7þ4.1þ13.2

−3.7−5.8
B0
s → a00−0 ½→K−K0�πþ 0.10þ0.01þ0.08

−0.01−0.05 � 0.06 0.30þ0.03þ0.24
−0.04−0.17 35.3þ2.0þ13.7

−0.4−9.2
→ a00−0 ½→π−η�πþ 0.10þ0.01þ0.08

−0.02−0.06 � 0.02 0.31þ0.03þ0.23
−0.05−0.18 31.0þ3.4þ8.7

−0.5−7.5
B0
s → a0000 ½→K−Kþ�K0 0.69þ0.24þ0.24

−0.16−0.18 � 0.39 2.06þ0.71þ0.74
−0.48−0.56 −3.6þ3.4þ7.5

−3.5−8.8
→ a0000 ½→π0η�K0

0.69þ0.24þ0.25
−0.16−0.19 � 0.12 2.06þ0.71þ0.74

−0.48−0.57 −3.8þ3.4þ7.5
−3.6−9.3

B0
s → a00−0 ½→K−K0�Kþ 0.20þ0.07þ0.08

−0.05−0.05 � 0.11 1.19þ0.41þ0.47
−0.28−0.33 −6.6þ8.8þ10.6

−8.9−10.9
→ a00−0 ½→π−η�Kþ

0.40þ0.14þ0.16
−0.09−0.10 � 0.07 1.18þ0.43þ0.50

−0.27−0.32 −7.6þ9.9þ9.5
−7.7−10.3
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APPENDIX B: DECAY AMPLITUDES

In this section, we list the Lorentz invariant decay amplitude A for the considered quasi-two-body decay in the PQCD
approach.

AðBþ → aþ0 π
0Þ ¼ GF

2

�
V�
ubVud½ða1ðFLL

Th þ FLL
Ah − FLL

Aa0
Þ þ a2FLL

Ta0
þ C1ðMLL

Th þMLL
Ah −MLL

Aa0
Þ

þ C2MLL
Ta0

� − V�
tbVtd

��
−a4 þ

5C9

3
þ C10 −

3a7
2

�
FLL
Ta0

−
�
a6 −

a8
2

�
FSP
Ta0

þ
�
C9 þ 3C10

2
− C3

�
MLL

Ta0
−
�
C5 −

C7

2

�
MLR

Ta0
þ 3C8

2
MSP

Ta0

þ ða4 þ a10ÞðFLL
Th þ FLL

Ah − FLL
Aa0

Þ þ ða6 þ a8ÞðFSP
Th þ FSP

Ah − FSP
Aa0

Þ

þ ðC3 þ C9ÞðMLL
Th þMLL

Ah −MLL
Aa0

Þ þ ðC5 þ C7ÞðMLR
Th þMLR

Ah −MLR
Aa0

Þ
��

; ðB1Þ

AðBþ → a00π
þÞ ¼ GF

2

�
V�
ubVud½a1ðFLL

Ta0
þ FLL

Aa0
− FLL

Ah Þ þ a2FLL
Th þ C1ðMLL

Ta0
þMLL

Aa0
−MLL

Ah Þ

þ C2MLL
Th � − V�

tbVtd

�
ða4 þ a10ÞðFLL

Ta0
þ FLL

Aa0
− FLL

Ah Þ −
�
a6 −

a8
2

�
FSP
Th

þ ða6 þ a8ÞðFSP
Ta0

þ FSP
Aa0

− FSP
AhÞ þ ðC3 þ C9ÞðMLL

Ta0
þMLL

Aa0
−MLL

Ah Þ

þ ðC5 þ C7ÞðMLR
Ta0

þMLR
Aa0

−MLR
Th Þ þ

�
5

3
C9 þ C10 þ

3a7
2

− a4

�
FLL
Th

þ
�
C9 þ 3C10

2
− C3

�
MLL

Th −
�
C5 −

C7

2

�
MLR

Th þ 3C8

2
MSP

Th

��
; ðB2Þ

AðBþ → aþ0 K
0Þ ¼ GFffiffiffi

2
p

�
V�
ubVus½a1FLL

Aa0
þ C1MLL

Aa0
� − V�

tbVts

��
a4 −

a10
2

�
FLL
Ta0

þ
�
a6 −

a8
2

�
FSP
Ta0

þ
�
C3 −

C9

2

�
MLL

Ta0
þ
�
C5 −

C7

2

�
MLR

Ta0
þ ða4 þ a10ÞFLL

Aa0

þ ðC3 þ C9ÞMLL
Aa0

þ ða6 þ a8ÞFSP
Aa0

þ ðC5 þ C7ÞMLR
Aa0

��
; ðB3Þ

AðBþ → a00K
þÞ ¼ GF

2

�
V�
ubVus½a1ðFLL

Ta0
þ FLL

Aa0
Þ þ a2FLL

Th þ C1ðMLL
Ta0

þMLL
Aa0

Þ

þ C2MLL
Th � − V�

tbVts

�
ða4 þ a10ÞðFLL

Ta0
þ FLL

Aa0
Þ þ ða6 þ a8ÞðFSP

Ta0
þ FSP

Aa0
Þ

þ ðC3 þ C9ÞðMLL
Ta0

þMLL
Aa0

Þ þ ðC5 þ C7ÞðMLR
Ta0

þMLR
Aa0

Þ

þ 3

2
ða7 þ a9ÞFLL

Th þ 3C10

2
MLL

Th þ 3C8

2
MSP

Th

��
; ðB4Þ
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AðB0 → aþ0 π
−Þ ¼ GFffiffiffi

2
p

�
V�
ubVud½a2FLL

Aa0
þ C2MLL

Aa0
þ a1FLL

Th þ C1MLL
Th �

− V�
tbVtd

�
ða3 þ a9 − a5 − a7ÞFLL

Aa0
þ ðC4 þ C10ÞMLL

Aa0

þ ðC6 þ C8ÞMSP
Aa0

þ ða4 þ a10ÞFLL
Th þ ða6 þ a8ÞFSP

Th

þ ðC3 þ C9ÞMLL
Th þ ðC5 þ C7ÞMLR

Th þ
�
4

3

�
C3 þ C4 −

C9

2
−
C10

2

�

− a5 þ
a7
2

�
FLL
Ah þ

�
a6 −

a8
2

�
FSP
Ah þ

�
C3 þ C4 −

C9

2
−
C10

2

�
MLL

Ah

þ
�
C5 −

C7

2

�
MLR

Ah þ
�
C6 −

C8

2

�
MSP

Ah

��
; ðB5Þ

AðB0 → a00π
0Þ ¼ GF

2
ffiffiffi
2

p
�
V�
ubVud½a2ðFLL

Aa0
þ FLL

Ah − FLL
Ta0

− FLL
Th Þ þ C2ðMLL

Aa0
þMLL

Ah

−MLL
Ta0

−MLL
Th Þ� − V�

tbVtd

��
a4 −

5C9

3
− C10 þ

3a7
2

�
FLL
Ta0

þ
�
a6 −

a8
2

�
ðFSP

Ta0
þ FSP

Aa0
þ FSP

Th þ FSP
AhÞ þ

�
C3 −

C9 þ 3C10

2

�
ðMLL

Ta0
þMLL

Th Þ

þ
�
C5 −

C7

2

�
ðMLR

Ta0
þMLR

Aa0
þMLR

Th þMLR
Ah Þ −
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2
ðMSP
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þ
�
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3
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�
ðFLL
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þ FLL
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�
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Aa0
þMLL
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�
2C6 þ

C8

2

�
ðMSP

Aa0
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AhÞ

þ
�
a4 −

5C9

3
− C10 −

3a7
2

�
FLL
Th

�
; ðB6Þ

AðB0 → a−0 π
þÞ ¼ GFffiffiffi

2
p

�
V�
ubVud½a1FLL

Ta0
þ a2FLL

Ah þ C1MLL
Ta0

þ C2MLL
Ah � − V�

tbVtd

�
ða4

þ a10ÞFLL
Ta0

þ ða6 þ a8ÞFSP
Ta0

þ ðC3 þ C9ÞMLL
Ta0

þ ðC5 þ C7ÞMLR
Ta0

þ
�
4

3

�
C3 þ C4 −

C9 þ C10

2

�
− a5 þ

a7
2

�
FLL
Aa0

þ
�
a6 −

a8
2

�
FSP
Aa0

þ
�
C3 þ C4 −

C9 þ C10

2

�
MLL

Aa0
þ
�
C5 −

C7

2

�
MLR

Aa0
þ
�
C6 −

C8

2

�
MSP

Aa0

þ ða3 þ a9 − a5 − a7ÞFLL
Ah þ ðC4 þ C10ÞMLL

Ah þ ðC6 þ C8ÞMSP
Ah

��
; ðB7Þ

AðB0 → a00K
0Þ ¼ GF

2

�
V�
ubVus½a2FLL

Th þ C2MLL
Th � − V�

tbVts

�
−
�
a4 −

a10
2

�
ðFLL

Ta0
þ FLL

Aa0
Þ

−
�
a6 −

a8
2

�
ðFSP

Ta0
þ FSP

Aa0
Þ −

�
C3 −

C9

2

�
ðMLL

Ta0
þMLL

Aa0
Þ

−
�
C5 −

C7

2

�
ðMLR

Ta0
þMLR

Aa0
Þ þ 3

2
ða7 þ a9ÞFLL

Th þ 3C10

2
MLL

Th

þ 3C8

2
MSP

Th

��
; ðB8Þ
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AðB0 → a−0K
þÞ ¼ GFffiffiffi

2
p

�
V�
ubVus½a1FLL

Ta0
þ C1MLL

Ta0
� − V�

tbVts

�
ða4 þ a10ÞFLL

Ta0

þ ða6 þ a8ÞFSP
Ta0

þ ðC3 þ C9ÞMLL
Ta0

þ ðC5 þ C7ÞMLR
Ta0

þ
�
a4 −

a10
2

�
FLL
Aa0

þ
�
a6 −

a8
2

�
FSP
Aa0

þ
�
C3 −

C9

2

�
MLL

Aa0

þ
�
C5 −

C7

2

�
MLR

Aa0

��
; ðB9Þ

AðB0
s → aþ0 π

−Þ ¼ GFffiffiffi
2

p
�
V�
ubVus½a2FLL

Aa0
þ C2MLL

Aa0
� − V�

tbVts

�
ða3 þ a9 − a5 − a7ÞFLL

Aa0

þ ðC4 þ C10ÞMLL
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þ ðC6 þ C8ÞMSP
Aa0

þ
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a3 −

a9
2
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a7
2

�
FLL
Ah

þ
�
C4 −

C10

2

�
MLL

Ah þ
�
C6 −

C8

2

�
MSP

Ah

��
; ðB10Þ

AðB0
s → a00π

0Þ ¼ GF

2
ffiffiffi
2

p
�
V�
ubVus½a2ðFLL

Aa0
þ FLL

Ah Þ þ C2ðMLL
Aa0

þMLL
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��
2a3 þ
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2
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a7
2

�
ðFLL

Aa0
þ FLL
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þ
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2C4 þ
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�
ðMLL

Aa0
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�
2C6 þ

C8

2

�
ðMSP

Aa0
þMSP

AhÞ
��

; ðB11Þ

AðB0
s → a−0 π

þÞ ¼ GFffiffiffi
2

p
�
V�
ubVus½a2FLL

Ah þ C2MLL
Ah � − V�

tbVts

��
a3 −

a9
2
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FLL
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þ
�
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þ
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C8

2

�
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Aa0
þ ða3 þ a9 − a5 − a7ÞFLL
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þ ðC4 þ C10ÞMLL
Ah þ ðC6 þ C8ÞMSP

Ah

��
; ðB12Þ

AðB0
s → aþ0 K

−Þ ¼ GFffiffiffi
2
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Th þ C1MLL
Th � − V�

tbVtd

�
ða4 þ a10ÞFLL

Th
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a10
2
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FLL
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þ
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a8
2
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Ah þ
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C9

2

�
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�
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�
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Ah

��
; ðB13Þ

AðB0
s → a00K̄

0Þ ¼ GF
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ubVud½a2FLL

Th þ C2MLL
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tbVtd

��
5C9

3
þ C10 þ

3a7
2
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FLL
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−
�
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�
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AhÞ þ

�
C9

2
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�
MLL
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�
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C9

2

�
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��
; ðB14Þ

In these expressions,GF is the fermi coupling constant, V’s are the CKMmatrix elements, the combinedWilson coefficients
ai are defined as
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a1 ¼ C2 þ
C1

3
; a2 ¼ C1 þ

C2

3
;

ai ¼ Ci þ
Ciþ1

3
with i ¼ 3 − 10: ðB15Þ

The factorizable and nonfactorizable amplitudes, F and M, respectively, can be found in Refs. [38].
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