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Geometric (Aharonov–Anandan) phases in neutrino oscillations have been claimed [Phys. Lett. B 780,
216 (2018)] to be sensitive to the Majorana phases in neutrino mixing. More recently, however, it has been
pointed out [Phys. Lett. B 818, 136376 (2021)] that the proposed phases are not gauge invariant. Using
both kinematic and geometric approaches, we show that all gauge-invariant Aharonov–Anandan phases
(including the off-diagonal geometric phases associated with flavor transitions) are independent of the
Majorana phases. This finding, which generalizes the well-known fact that conventional oscillation
experiments cannot discern the Dirac or Majorana nature of the neutrino, implies that a hypothetical
interference experiment cannot distinguish between the two either.
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I. INTRODUCTION

Measuring the parameters associated with neutrinos and
their mixing is one of the major endeavors of particle
physics. Many of these parameters are accessible through
oscillation experiments, but not all. As is widely known, the
nature of the neutrino—Dirac or Majorana—is reluctant
to disclose itself. Strategies for making this discovery are
sought, most prominently including neutrinoless double
beta decay experiments [1]. Other ideas involve chiral
transitions [2–14], neutrino decay [15,16], and oscillations
in the presence of nonstandard decoherence [17,18].
The question of interest in this paper is whether geo-

metric phases in neutrino oscillations are sensitive to the
Majorana phases even when the survival and transition
probabilities are not.
Connections between geometric phases and neutrino

oscillations have been made from many different angles
[19–39], reflecting the diverse physics of geometric phases
[40]. Here the focus is on Aharonov–Anandan phases [41],
where the parametric variation is in the quantum state itself
rather than the Hamiltonian. These phases appear naturally
in neutrino oscillations and highlight the geometric signi-
ficance of the mixing parameters.
Recent publications have disagreed on whether the

Aharonov–Anandan phases in neutrino oscillations
depend on the Majorana phases [42–44]. We consider this

issue from two different perspectives (one kinematic, one
geometric) and establish that none of the geometric phases
are sensitive to the Majorana phases. This conclusion
supports the contention of Ref. [43] that the geometric
phases of Ref. [42], which depend on the Majorana phases,
are in fact gauge dependent and unphysical.
In this paper it is made apparent, moreover, why the

geometric phases cannot be sensitive to theMajorana phases.
In short, the freedom to rephase the charged-lepton fields
renders the Majorana phases irrelevant to the geometry of
projective Hilbert space. This is explicit in the usual para-
metrization of the mixing matrix U [Eqs. (2) and (3) below],
where the Majorana phases are equivalent to translations
along the Uð1Þ fibers attached to the mass-eigenstate rays.
Production and detection of neutrinos in flavor states ensure
the unobservability of Majorana phases in traditional oscil-
lation experiments [45] and in hypothetical neutrino inter-
ferometers. Accordingly, Refs. [1–18], which identify
potential avenues for accessing the Dirac orMajorana nature,
all hinge on there being a new interaction basis that differs
from the flavor basis or on there being a transition in chirality
or particle type.
Section II introduces geometric phases in the context

of neutrino oscillations and describes the disagreement
between Refs. [42,44] and Ref. [43] in more detail.
Section III discusses what it means for geometric phases
to be associated with flavor transitions. Section IV, by
expressing the geometric phase as the difference between
the total and kinematic phases, then shows that the
Majorana phases do not appear. Section V confirms this
finding by demonstrating that the Majorana phases are
irrelevant to the geometry of projective Hilbert space.
Sec. VI compares this situation with what one encounters
in considering traditional oscillation experiments. Section VII
concludes.
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II. PHASES IN NEUTRINO OSCILLATIONS

Neutrino oscillations are an interference phenomenon.
A single particle’s flavor state jνi is a superposition of
energy eigenstates jνii, each of which acquires phase at a
different rate. These phases interfere with each other in a
time-dependent way, causing flavor to oscillate.
Aside from the energy-eigenstate phases e−iEit, there are

phases and angles that are introduced by the conversion
between mass and flavor bases,

jνðtÞi ¼
X
i

U�
αie

−iEitjνii; ð1Þ

where the neutrino is assumed to have flavor α initially.
With two flavors, the mixing matrix is

U ¼
�

cos θ sin θ

− sin θ cos θ

��
eiα1 0

0 1

�
; ð2Þ

with a single mixing angle θ and a single Majorana
phase α1. With three flavors,

U ¼

0
B@

c12c13 s12c13 s13e−iδCP

−s12c23 − c12s13s23eiδCP c12c23 − s12s13s23eiδCP c13s23
s12s23 − c12s13c23eiδCP −c12s23 − s12s13c23eiδCP c13c23

1
CA
0
B@

eiα1 0 0

0 eiα2 0

0 0 1

1
CA ð3Þ

with mixing angles θ12, θ13, and θ23, the Dirac phase δ, and
the Majorana phases α1 and α2.
Thus we have two sources of phases: the dynamics and

the basis transformation. Neutrino flavor transition prob-
abilities depend on the dynamical parameters (δm2

ij=2E)
as well as some of the parameters in U (θij and δ). The
probabilities are notoriously independent of α1 and α2.
But quantum mechanics exhibits other kinds of phases,

namely geometric ones, which are only observable under
special experimental conditions. How do these relate to the
other phases in neutrino oscillations? Is it possible that they
depend on the Majorana phases, making neutrino oscil-
lations potentially sensitive to α1 and α2 even if the standard
experiments are not?
Capolupo et al. [42] have argued that this is indeed the

case. They consider the Aharonov–Anandan phase [41,46]

ΦΓ ¼ arghψðs1Þjψðs2Þi − Im
Z

s2

s1

dshψðsÞj d
ds

jψðsÞi ð4Þ

along the path Γ from s1 to s2, and first establish that

ΦΓ
ναðzÞ¼ arghναð0ÞjναðzÞi− Im

Z
z

0

dz0hναðz0Þj_ναðz0Þi ð5Þ

is independent of the two-flavor Majorana phase α for
α ¼ e, μ. (The dot indicates derivative with respect to
propagation distance z0.) They then observe that

ΦΓ
να→νβ ¼ arghναð0ÞjνβðzÞi− Im

Z
z

0

dz0hναðz0Þj_νβðz0Þi ð6Þ

does depend on α1 for β ≠ α. The authors refer to these
quantities as the geometric phases associated with flavor
transitions.

The claims of Ref. [42] have recently been disputed by
Lu [43], who observes thatΦΓ

να→νβ is not gauge invariant for
β ≠ α and that α1 can be eliminated from the formula by a
charged-lepton field rotation. Capolupo et al. [44] have
replied, asserting that Lu’s arguments are incorrect and
maintaining that ΦΓ

να→νβ is gauge invariant and measurable.
Reference [44] claims to prove the gauge invariance

of ΦΓ
νe→νμ by showing, in that paper’s Eq. (11), that the

phase is invariant under jνe;μi → eiλjνe;μi. This is inad-
equate as a proof because jνei and jνμi can be rotated
independently (see the next section). It can immediately be
seen that ΦΓ

νe→νμ is not invariant under jνe;μi → eiλe;μ jνe;μi
when λe ≠ λμ.
A crucial point of disagreement between Ref. [43] and

Refs. [42,44] is whether charged-lepton field rephasing can
legitimately be used to transform the mixing matrix. The
argument made by the latter authors is that the mixing
matrices

Uð1Þ ¼
�

cos θ sin θeiα1

− sin θ cos θeiα1

�
;

Uð2Þ ¼
�

cos θ sin θeiα1

− sin θe−iα1 cos θ

�
ð7Þ

identify physically distinct scenarios despite being
related by

Uð2Þ ¼
�
1 0

0 e−iα1

�
Uð1Þ: ð8Þ

The authors claim that charged-lepton field rephasing
cannot be used to transform these matrices because the
mixing matrix is properly defined by
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ðUðjÞÞ†HðjÞUðjÞ ¼
�
m1 0

0 m2

�
ð9Þ

for j ¼ 1, 2. By this line of reasoning, Uð1Þ is the
appropriate matrix for Dirac neutrinos, which have

Hð1Þ ¼
�
mee meμ

meμ mμμ

�
; ð10Þ

and Uð2Þ is the appropriate matrix for Majorana neutrinos,
which have

Hð2Þ ¼
�

mee meμeiα1

meμe−iα1 mμμ

�
: ð11Þ

The problem with this argument is that the mixing matrix
is not defined by Eq. (9). It is defined (for two flavors) by

LCCðxÞ ¼
gffiffiffi
2

p
X
α¼e;μ

X
i¼1;2

αLðxÞγρUαiνiLðxÞWρðxÞ þ H:c:;

ð12Þ

where g is the weak coupling constant and eL, μL, νL, and
Wρ are respectively the electron, muon, neutrino, and W
boson fields. The matrices Uð1Þ and Uð2Þ correspond to
different bases, not different physics. If one wishes to work
in the flavor basis, thenUðjÞ is equal to the mixing matrixU
defined by Eq. (12)—up to whatever rephasing freedom U
has—because this is precisely what one means by flavor
basis. Since U can be transformed by rephasing eL and μL,
UðjÞ has the associated freedom as well. That is, contrary to
the assertions of Refs. [42,44], Uð1Þ and Uð2Þ are physically
equivalent if they are related by multiplication by a
diagonal matrix of phases. As we see from Eq. (8), that
is the case here.
The remarks above support the conclusion of Ref. [43]

that ΦΓ
να→νβ is not a gauge-invariant geometric phase. But

this statement on its own does not prove that geometric
phases are necessarily insensitive to Majorana phases:
perhaps other quantities can be constructed that exhibit
the desired dependence.

III. OFF-DIAGONAL GEOMETRIC PHASES

Although not mentioned in Refs. [42–44], gauge-
invariant quantities do exist that are associated with
transitions. They are known as off-diagonal geometric
phases [47–51]. The set of all geometric phases—diagonal
and off-diagonal—gives all of the geometric information
about neutrino oscillations. Thus, to see if there is sensi-
tivity to the Majorana phases, it suffices to evaluate the off-
diagonal geometric phases. We do this in the next section.
But before doing so, let us consider why the diagonal

phases on their own do not exhaust the geometric

information. Suppose that a beam of two-flavor neutrinos
is split in two and recombined in such a way that at the end
of the process the flavor state is

jνðzÞi ¼ ½a0ðzÞjνei þ b0ðzÞjνμi� þ ½aðzÞjνei þ bðzÞjνμi�;
ð13Þ

where the coefficients are properly normalized and depend
on the paths (and the potentials encountered along them).
In this hypothetical neutrino interferometry experiment,
the second set of square brackets encloses the part of the
beam that is rerouted over a different path than the one
taken by the rest of the incident beam. Further suppose that
jνð0Þi ¼ jνei. Then the probability of measuring electron
flavor at position z is

Pνe→νeðzÞ ¼ jhνejνðzÞij2 ¼ ja0ðzÞ þ aðzÞj2: ð14Þ

The survival probability is a measure of one of the diagonal
phases because the overlap is being calculated with respect
to the initial flavor state. The expression ja0ðzÞ þ aðzÞj2 is
sensitive to the phase difference acquired by the neutrinos
along the two paths, but only in the νe part. Because of the
orthogonality of the flavor states, some of the phase
information is not discoverable by this procedure.
That information can be discovered through the tran-

sition probability

Pνe→νμðzÞ ¼ jhνμjνðzÞij2 ¼ jb0ðzÞ þ bðzÞj2; ð15Þ

which is sensitive to the relative phase acquired by a
neutrino as it oscillates into νμ along the two paths. Here the
overlap is taken with respect to a state that is orthogonal to
the initial one, hence the phase that arises is off-diagonal.
In the literature on off-diagonal geometric phases, one

typically works in terms of energy eigenstates and imagines
that the Hamiltonian is changed such that eigenstate jψ ii
becomes an orthogonal eigenstate jψ ji. Then, in the course
of this evolution, the diagonal geometric phase becomes
undefined because one needs the argument of hψ ijψ ji ¼ 0.
Phase information cannot be lost, however, because jψ ji
could very well be subsequently brought back to jψ ii. In a
similar way, if jνð0Þi ¼ jνei evolves into jνðzÞi ¼ jνμi,
then hνð0ÞjνðzÞi ¼ hνejνμi ¼ 0 entails phase ambiguity. If
the state only partially evolves into νμ, some of the phase
information is nonetheless still missing if one only con-
siders the inner product with jνei.
But while the diagonal phase hνejνðzÞi is gauge invari-

ant, the off-diagonal quantity hνμjνðzÞi is not. One way to
understand why they differ in this respect is as follows.
Consider the gauge transformation

jνð0Þi → eiφjνð0Þi: ð16Þ
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Then

jνei → eiφjνei ð17Þ
and the diagonal phase is invariant under the change:

hνejνð0Þi → hνejνð0Þi: ð18Þ
But a rotation of jνμi is not entailed because there is no jνμi
part of the initial flavor state. Thus

hνμjνð0Þi → eiφhνμjνð0Þi: ð19Þ
In this setup, the relative phase between the production
state jνei and the measurement state jνμi is unphysical.
Each of these states has its own Uð1Þ gauge invariance. In
the literature on off-diagonal geometric phases, a similar
statement is that

jψ i;ji → eiφi;j jψ i;ji; ð20Þ
which is to say that each eigenstate can be rephased
independently.
Gauge invariance motivates constructing off-diagonal

geometric phases as [47]

γΓij ¼ σΓijσ
Γ
ji ð21Þ

with

σΓij ¼ Φ½hψk
i ðs1Þjψk

jðs2Þi� ð22Þ
and Φ½z� ¼ z=jzj for z ≠ 0. The states here are the parallel-
transported vectors

jψk
i ðs2Þi¼ exp

�
−
Z
Γ
ds ·hψ iðsÞj∇sψ iðsÞi

�
jψ iðs2Þi; ð23Þ

The exponential factor, which is required to ensure parallel
transport along Γ, cancels the dynamical phase

iφΓ
i;dyn ¼

Z
Γ
ds · hψ iðsÞj∇sψ iðsÞi ð24Þ

accumulated during the evolution. Therefore

σΓij ¼ exp½i arghψ iðs1Þjψ jðs2Þi − iφΓ
j;dyn� ð25Þ

and the off-diagonal geometric phase is

γΓij ¼ exp½i arg ðhψ iðs1Þjψ jðs2Þihψ jðs1Þjψ iðs2ÞiÞ
− iφΓ

i;dyn − iφΓ
j;dyn�: ð26Þ

Considering the same gauge transformations as before,

σΓij → eiðφj−φiÞσΓij ð27Þ
and γΓij is clearly gauge invariant.
Equation (26) is a kinematic expression, but the off-

diagonal phase can also be understood in a more obviously

geometric manner as the integral of the Berry curvature
2-form. In Sec. V we adopt a geometric perspective to show
that none of the Aharonov–Anandan phases can depend
on the Majorana phases. The important point for now is
that the surface in projective Hilbert space is bordered by
curves connecting four rays: those associated with jψ iðs1Þi,
jψ jðs1Þi, jψ iðs2Þi, and jψ jðs2Þi. In a similar way, Pνe→νμðzÞ
[Eq. (15)] involves jνð0Þi ¼ jνei, jνμi, and the two states
(corresponding to the two paths) that are superposed at
position z to give jνðzÞi.
Having established the nature of the transition phases,

we show in the next two sections that neither these nor the
diagonal geometric phases are sensitive to the Majorana
phases.

IV. THE KINEMATIC APPROACH

The kinematic approach identifies the geometric phase
as the total accumulated phase minus the dynamical part.
It is straightforward to show that neither the total nor the
dynamical phase can depend on the Majorana phases and
that, therefore, the geometric phase cannot either.
Considering first the initial–final overlap, we have

hναð0ÞjνβðzÞi ¼
�X

i

Uαihνij
��X

j

U�
βjjνjie−iEjz

�

¼
X
i

UαiU�
βie

−iEiz: ð28Þ

Since Uαi contains a factor eiαi and U�
βi contains a factor

e−iαi , the Majorana phases drop out for all α, β. (α2 ¼ 0 in
the two-flavor case and α3 ¼ 0 in the three-flavor case.)
Next we consider the dynamical phases. Here we have,

using jνð0Þi ¼ jναi,

iφdynðzÞ ¼
Z

z

0

dz0hνðz0Þj_νðz0Þi

¼ −i
�X

i

jUαij2Ei

�
z: ð29Þ

Again the Majorana phases clearly drop out.
Since the total and dynamical phases are independent of

the Majorana phases, the geometric phases (diagonal and
off-diagonal) must be as well, as per Eq. (5) for the diagonal
phases and Eq. (26) for the off-diagonal phases.

V. THE GEOMETRIC APPROACH

With two flavors, the flavor state is a vector jνi, which
can be parametrized as

jνi ¼ eiχ
 

cos ϑ
2
ei

ϕ
2

sin ϑ
2
e−i

ϕ
2

!
: ð30Þ
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Here ϑ and ϕ are polar angles, parametrizing the position of
the associated ray in projective Hilbert space (which for
two-level systems is the Bloch sphere). The phase factor eiχ

parametrizes the Uð1Þ fiber. While in this sense it has a
geometric meaning, it is irrelevant in projective Hilbert
space. Indeed, the associated ray is the density matrix
ρ ¼ jψihψ j, from which χ obviously cancels.
Similarly, the Euler-angle parametrization of SU(3) is

convenient when there are three flavors [52]:

jνi ¼ eiχ

0
B@

sinϑ cos βeiðηþγÞ

sinϑ sin βe−iðη−γÞ

cos ϑ

1
CA: ð31Þ

Rays in the three-level projective Hilbert space are para-
metrized by four angles. One parameter again simply
parametrizes the fiber.
We work in the mass basis because we would like to

consider the evolution of jνi. For three flavors, we have

jναi ¼ Ũ�
α1e

−iα1 jν1i þ Ũ�
α2e

−iα2 jν2i þ Ũ�
α3jν3i; ð32Þ

where Ũ is the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix with Majorana phases set to zero. We
then parametrize each jνii with its own set of angles
fχi; ηi; γi; βi; ϑig. Then

jναi ¼ Ũ�
α1e

iðχ1−α1Þ

0
B@

sinϑ1 cos β1eiðη1þγ1Þ

sinϑ1 sin β1e−iðη1−γ1Þ

cosϑ1

1
CA

þ Ũ�
α2e

iðχ2−α2Þ

0
B@

sin ϑ2 cos β2eiðη2þγ2Þ

sin ϑ2 sin β2e−iðη2−γ2Þ

cosϑ2

1
CA

þ Ũ�
α3e

iχ3

0
B@

sin ϑ3 cos β3eiðη3þγ3Þ

sinϑ3 sin β3e−iðη3−γ3Þ

cos ϑ3

1
CA: ð33Þ

Each of χ1, χ2, χ3 can be chosen freely, so let χ1 and χ2
absorb α1 and α2, respectively. Then the Majorana phases
have in effect been absorbed into the mass eigenstates. It
follows that the Majorana phases are, like the χ parameters,
geometrically irrelevant in projective Hilbert space: they
cannot show up in geometric phases. An analogous argu-
ment applies with two flavors.
Note that if an arbitrary initial state could be produced,

then the Majorana phases could potentially be detectable.
For example, if one could make a measurement of

jhνejðA1jν1i þ A2jν2i þ A3jν3iÞj2
¼ jA1Ũe1eiα1 þ A2Ũe2eiα2 þ A3Ũe3j2; ð34Þ

where Ai is an arbitrary coefficient, then such an experi-
ment would be sensitive to α1 and α2. The dependence,
however, would be unrelated to geometric phases, or even
to the dynamics at all. The reason the Majorana phases are
not geometric is that the PMNS matrix can be parametrized
in such a way that the phases attach to mass eigenstates.
That is, U can be factorized into the product of a rotation
matrix (possibly including a Dirac phase) and a diagonal
matrix of Majorana phases. The reason they are not
observable in oscillation experiments is that neutrinos
are always produced and detected in flavor states.
We come to the same conclusions by considering the

quantum geometric tensor [53–55]:

Tμν ¼ h∂μψ j∂νψi − h∂μψ jψihψ j∂νψi; ð35Þ

where μ, ν refer to coordinates in parameter space. This
object is invariant under the usual gauge transformations.
Its real and imaginary parts are both geometrically signifi-
cant. Writing

Tμν ¼ gμν þ i
Vμν

2
; ð36Þ

the real part gμν is the metric tensor measuring distances
between rays in projective Hilbert space and the imaginary
part Vμν is the curvature 2-form whose flux through a
circuit C accounts for the geometric phase γðCÞ. From the
parametrizations of ψ in Eqs. (30) and (31), it is clear that
neither gμν nor Vμν has any dependence on the χ phases.
The implication, as before, is not that Majorana phases

cannot show up at all. The implication is that if they do, it is
because of the production and detection processes, not the
geometry. Here we have another perspective on the geo-
metric irrelevance of Majorana phases, this time from the
vantage point of the quantum geometric tensor rather than
that of the states.
The arguments in this section are also consistent with a

simple counting of degrees of freedom. A state has Uð1Þn
gauge invariance for n flavors because each jνii can be
rephased independently due to orthogonality. [This is
what allows for the χ parameters to be chosen freely in
Eq. (33).] Mixing is described by an n × n unitary matrix,
and dim½UðnÞ=Uð1Þn� ¼ nðn − 1Þ. Given production and
detection in flavor states, charged-lepton field rephasing is
equivalent to the further freedom to choose the phases of
jνμi and jντi relative to jνei. This leaves a total of ðn − 1Þ2
parameters, none of which is a Majorana phase.

VI. INTERFERENCE VS OSCILLATION
EXPERIMENTS

We are now in a position to say that the Majorana phases
are inaccessible to interference experiments for the same
reasons that they are inaccessible to standard oscillation
experiments.
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In an oscillation experiment, the relevant measurement is

Pν→νeðzÞ ¼ jhνejνðzÞij2; ð37Þ

where, following Giunti’s treatment in Ref. [45], we let

jνð0Þi ¼ Aejνei þ Aμjνμi þ Aτjντi ð38Þ

with arbitrary coefficients Aα. Then

jνðzÞi ¼
X
i

ðAeU�
ei þ AμU�

μi þ AτU�
τiÞjνii ð39Þ

and

Pν→νeðzÞ

¼
����Xi;j

hνjjUejðAeU�
ei þ AμU�

μi þ AτU�
τiÞe−iEizjνii

����2

¼
����Xi

ðAejUeij2 þ AμU�
μiUei þ AτU�

τiUeiÞe−iEiz

����2:
ð40Þ

Because α1 and α2 appear only in phase factors multiplying
their respective mass states, they cancel out just as they did
in Eqs. (28) and (29). This occurs at the amplitude level.
It is possible to be led to a seemingly different result by

choosing the mixing matrix differently [45]. Going back to
two flavors, consider the change Uð1Þ → Uð2Þ, where these
are the matrices defined in Eq. (7). As discussed in Sec. II,
Uð1Þ andUð2Þ are related by rephasing of the charged-lepton
fields and must lead to physically equivalent results. But
using Uð2Þ, one calculates that α1 does not vanish from
Pν→νe because

ðUð2Þ
μ1 Þ�Uð2Þ

e1 ¼ −ðUð2Þ
μ2 Þ�Uð2Þ

e2 ¼ − sin θ cos θeiα1 : ð41Þ

(In this case Aτ ¼ 0 by assumption of having only two
flavors.)

The resolution is that the α1-dependent terms vanish
when only one of the coefficients Aμ is nonzero. This
condition is necessitated by having production in flavor
states. (Ref. [45] also addresses situations involving neu-
tral-current processes.) We saw in the previous section that
the same point applies to geometric phases. Ultimately it is
production and detection in flavor states that account for
the inaccessibility of Majorana phases by interference or
oscillation experiments.

VII. DISCUSSION

The findings reported above are unchanged if neutrino
oscillations take place in a medium where the mass states
do not coincide with the energy eigenstates. Geometric
phases of Berry type [56], where the Hamiltonian is
parametrically varied (by changing the matter density,
for example), offer no advantage in sensitivity to the
Majorana phases as compared to geometric phases of
Aharonov–Anandan type.
Majorana phases can appear, however, due to helicity-

flavor oscillations, which take place in a larger Hilbert
space. Neutrinos produced at weak-interaction vertices
are not definite-helicity states. As is well known, though,
the associated effects are suppressed by mν=Eν, the ratio of
neutrino mass to neutrino energy. This small factor is what
makes it so challenging to determine whether neutrinos are
Majorana or Dirac. Unfortunately, geometric phases do not
present a strategy for discerning the nature of the neutrino
without incurring the usual mν=Eν penalty.
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