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The cross section of the process eþe− → ωπ0π0 is measured at nineteen center-of-mass energies from
2.0 to 3.08 GeV using data collected with the BESIII detector at the BEPCII storage ring. A resonant
structure around 2.20 GeV is observed with statistical significance larger than 5σ. Using a coherent fit to the
cross section line shape, the mass and width are determined to be M ¼ 2222� 7� 2 MeV=c2 and
Γ ¼ 59� 30� 6 MeV, respectively, where the first uncertainties are statistical and the second ones are
systematic.

DOI: 10.1103/PhysRevD.105.032005

I. INTRODUCTION

The process eþe− → Vππ, where V denotes a vector
meson state, has been widely studied and provides an
important arena for the measurements of resonant structures.
For example, there are bottomonium states in the process
eþe− → ϒðnSÞπþπ− [1], charmonium states in the eþe− →
J=ψππ and ψð2SÞππ processes [2–5], and ϕð2170Þ in
eþe− → ϕπþπ− [6,7]. Hence, it is natural to search for vector
mesons in eþe− → ωππ processes. According to isospin
conservation in strong interactions and the Clebsch-Gordon
coefficients involved, of the two intermediate-state isospin
possibilities, I ¼ 0 and I ¼ 1, both are allowed for the
process eþe− → ωπþπ−, while only I ¼ 0 is allowed for
eþe− → ωπ0π0, which makes the ωπ0π0 channel most
suitable to search for an intermediate isoscalar resonance.
The BABAR Collaboration has used the initial state

radiation method to measure the cross sections of various
processes in the low energy region below 2.2 GeV [8,9].
More recently they have expanded their measurements up
to 2.5 GeV and used the results in conjunction with their
previous results to investigate the nature of the resonance
observed by the BESIII Collaboration in the eþe− →
KþK− cross section near 2.2 GeV [10]. Among the cross
sections measured by BABAR were the processes eþe− →
ωπþπ− and ωπ0π0 [8,9], where they reported a resonant
structure with a mass of 2265� 20 MeV=c2, a width of
75þ125

−27 MeV, and a significance of 2.6σ, by combining the
ωπ0π0 and ωπþπ− channels [11].
Since ϕ → ωπ0π0 is an Okubo-Zweig-Iizuka (OZI)

suppressed process, a resonant structure in eþe− →
ωπ0π0 is more likely to be an ω excited state than a ϕ
excited state. According to the Particle Data Group (PDG)
[12], there are three ω excited state candidates around
2.2 GeV, ωð2205Þ [13], ωð2290Þ [14] and ωð2330Þ [15],
which are not fully understood yet. Reference [16] predicts
these to be n3S1 states for ωð2290Þ and ωð2330Þ and an
n3D1 state for ωð2205Þ. Further experimental investiga-
tions are needed to disentangle this scenario.
In this paper, the Born cross sections of the process

eþe− → ωπ0π0 are measured with data samples collected at
nineteen center-of-mass energies (

ffiffiffi
s

p
) from 2.0 to

3.08 GeV corresponding to a total integrated luminosity
of 647 pb−1. With the same data samples, several other
hadronic processes have been used to search for excited

meson states above 2.0 GeV, including eþe− → η0πþπ−,
ωπ0, ωη, etc. [10,17–22].

II. DETECTOR AND DATA SAMPLE

The BESIII detector [23] records symmetric eþe−
collisions provided by the BEPCII storage ring [24], which
operates in the center-of-mass energy range from 2.0 to
4.95 GeV. BESIII has collected large data samples in this
energy region [25]. The cylindrical core of the BESIII
detector covers 93% of the full solid angle and consists of a
helium-based multilayer drift chamber (MDC), a plastic
scintillator time-of-flight system (TOF), and a CsI(Tl)
electromagnetic calorimeter (EMC), which are all enclosed
in a superconducting solenoidal magnet providing a 1.0 T
magnetic field. The solenoid is supported by an octagonal
flux-return yoke with resistive plate counter muon identi-
fication modules interleaved with steel. The charged-
particle momentum resolution at 1 GeV=c is 0.5%, and
the dE=dx resolution is 6% for electrons from Bhabha
scattering. The EMC measures photon energies with a
resolution of 2.5% (5%) at 1 GeV in the barrel (end cap)
region. The time resolution in the TOF barrel region is
68 ps, while that in the end cap region is 110 ps.
Simulated data samples produced with a GEANT4-based

[26] Monte Carlo (MC) simulation, which includes the
geometric description of the BESIII detector and the
detector response, are used to determine detection efficien-
cies and to estimate backgrounds. The known decay modes
are modeled with EvtGen [27] using branching fractions
taken from the PDG [12]. Final state radiation (FSR) from
charged final state particles is incorporated using PHOTOS

[28], and initial state radiation (ISR) is incorporated using
ConExc [29]. The ωπ0π0 state is simulated by using a
uniformly distributed phase space (PHSP) model. The
decay of ω to πþπ−π0 is simulated by using a Dalitz plot
analysis as described in Ref. [30]. Inclusive MC events for
studying background contamination are generated using a
hybrid generator [31], which includes hadronic events and
background events.

III. EVENT SELECTION AND
BACKGROUND ANALYSIS

For the process eþe− → ωπ0π0, with subsequent decays
ω → πþπ−π0 and π0 → γγ, candidate events are required to
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have two reconstructed charged tracks and at least six
reconstructed photons. Charged tracks detected in the
MDC are required to be within a polar angle (θ) range of
j cos θj < 0.93, where θ is defined with respect to the z-axis,
which is the symmetry axis of the MDC. The distance of
closest approach to the interaction point must be less than
10 cm along the z-axis and less than 1 cm in the transverse
plane. Photon candidates are identified using showers in the
EMC. The deposited energy of each shower must be more
than 25 MeV in the barrel region (j cos θj < 0.80) and more
than 50MeV in the end cap region (0.86 < j cos θj < 0.92).
To exclude showers that originate from charged tracks, the
angle between the line joining the interaction point (IP) to
the position of the selected shower and a line joining the IP to
the pointwhere any charged track is projected to intersect the
EMC must be greater than 10 deg. To suppress electronic
noise and showers unrelated to the event, the difference
between the EMC time and the event start time is required to
be within [0, 700] ns.
Particle identification (PID) for charged tracks combines

measurements of dE=dx in the MDC and the flight time in
the TOF to form likelihoods LðhÞðh ¼ p;K; πÞ for each
hadron h hypothesis. Tracks are identified as pions when
the pion hypothesis has the greatest likelihood
[LðπÞ > LðKÞ and LðπÞ > LðpÞ]. Two identified oppo-
sitely charged pions are required and then used in a vertex
fit. Only events with two oppositely charged pions satisfy-
ing the vertex fit are selected.
To suppress background events, a four-constraint (4C)

kinematic fit imposing four-momentum conservation is
performed under the hypothesis eþe− → ωπ0π0 →
πþπ−γγγγγγ, with χ24C < 100 required, where χ24C is the
χ2 from the kinematic fit. For events with more than six
photon candidates, the combination of six different photons
with the smallest χ24C is retained and χ24C should be less than
100 as well. Three photon pairs corresponding to the three
π0 candidates are selected by choosing the combination
with the smallest value of χ2

π0π0π0
¼ðMγ1γ2−MPDG

π0
Þ2=σ2γ1γ2þ

ðMγ3γ4−MPDG
π0

Þ2=σ2γ3γ4þðMγ5γ6−MPDG
π0

Þ2=σ2γ5γ6 , where
MPDG

π0
is the mass of π0 from the PDG [12], while Mγiγj

and σγiγj are the invariant mass of γiγj and its calculated

standard deviations from MC samples. Of the three π0

mesons, the one with the minimum jMπþπ−π0 −MPDG
ω j is

assigned to be from the ω decay and tagged as π01, where
MPDG

ω is the mass of ω from the PDG [12]. The two photons
used to reconstruct π01 are tagged as γ1 and γ2. The other
two π0 mesons are tagged as π02 and π03 according to
Mωπ0

2
< Mωπ0

3
, where Mωπ0

2
and Mωπ0

3
represent the

invariant mass of ωπ02 and ωπ03, respectively. The photons
used to reconstruct them are tagged as γ3, γ4, γ5 and γ6,
respectively.
The difference between the invariant mass of the

reconstructed π0 and MPDG
π0

is required to be less

than 3 times the left (right) side standard deviation:
Mγiγj ∈ ½MPDG

π0
− 3 · σðleftÞγiγj ; M

PDG
π0

þ 3 · σðrightÞγiγj �, where
σðleftÞ and σðrightÞ are the quadratic means of the difference of
the mass of reconstructed π0 and MPDG

π0
for π0 candidates

with mass above and below MPDG
π0

, respectively.
The invariant mass distribution of the reconstructed ω

candidates at
ffiffiffi
s

p ¼ 2.1250 GeV is shown in Fig. 1. There
are contributions from both PHSP MC and inclusive
backgrounds. In this distribution, jMπþπ−γ1γ2 −MPDG

ω j <
0.05 GeV=c2 is chosen as the signal region, as shown in
Fig. 1, while jMπþπ−γ1γ2 −MPDG

ω j ∈ ½0.10; 0.20� GeV=c2 is
chosen as the sideband region to estimate backgrounds.
Inclusive MC events are selected with the same event

selection criteria. Detailed event type analysis over these
events with TopoAna [32] shows that the dominant back-
grounds come from processes with πþπ−π0π0π0 final states
but through different intermediate states. However, no
peaking background appears under the ω resonance.

IV. BORN CROSS SECTION MEASUREMENT

The Born cross section of eþe− → ωπ0π0 is calculated
from

σB ¼ Nsignal

L · ε · Bω→πþπ−π0 · B
3
π0→γγ

· ð1þ δÞ ; ð1Þ

where L is the luminosity, Nsignal is the signal yield, ε is the
detection efficiency and Bω→πþπ−π0 and Bπ0→γγ are branch-
ing fractions taken from the PDG [12]. The product of the
ISR correction factor times the vacuum-polarization (VP)
correction factor is represented by 1þ δ.
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FIG. 1. The invariant mass distribution of πþπ−γ1γ2 atffiffiffi
s

p ¼ 2.1250 GeV. The black dots with error bars are data.
The blue histogram represents the contribution of PHSP MC.
Other colored histograms represent contributions of backgrounds
from inclusive MC. The red box indicates the signal region.
Backgrounds are normalized according to the estimated cross
section of each process.
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The PHSP MC samples are found to strongly deviate
from the data. To obtain a more reliable detection effi-
ciency, the PHSP MC events are weighted according to the
multidimensional distribution. Two-body invariant mass
distributions and pion angular distributions are suitable
to correct the impact of intermediate processes. Since
Mπþπ−γ1γ2γ3γ4 and Mπþπ−γ1γ2γ5γ6 are strongly correlated
(the relationship chosen in Sec. III is not sufficient to
separate the role of π02 and π03), two-dimensional distribu-
tion of Mπþπ−γ1γ2γ3γ4 versus Mγ3γ4γ5γ6 are found to be better
to satisfy the consistency of data and PHSP MC. The
weight factor is the ratio between data and the PHSP MC in
this distribution with 40 bins for each dimension. It is
defined as w ¼ ðnData − nSidebandÞ=nMC, where n denotes
the number of events in the corresponding bin. Good
agreement between data and weighted MC distributions
is observed, as shown in Fig. 2. The detection efficiency (ε)
is taken as the total weight of selected events divided by the
total weight of generated events.
The signal yield of eþe− → ωπ0π0 is obtained by

fitting the πþπ−γ1γ2 mass spectrum with an unbinned
maximum likelihood method. The contribution of back-
ground events is described by a second order polynomial
function, and the ω signal is described by the MC-
simulated shape convolved with a Gaussian function which
accounts for the difference between MC and data. Figure 3
shows the fitted πþπ−γ1γ2 mass spectrum for the data
sample at

ffiffiffi
s

p ¼ 2.1250 GeV.

The ISR and VP effects are incorporated by ConExc
[29], which provides ISR and VP factors depending on the
input cross section. An iterative procedure is performed,
with comparison between the input cross sections and the
measured ones, until the difference of (1þ δ) is less than
1% between the last two iterations.
The Born cross sections for all nineteen energies together

with all values used in the measurement are shown in
Table I.
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FIG. 2. The invariant mass distributions of (a) γ3γ4γ5γ6, (b) πþπ−γ1γ2γ3γ4, (c) πþπ−γ1γ2γ5γ6, (d) γ5γ6, and (e) cos θγ5γ6 atffiffiffi
s

p ¼ 2.1250 GeV, where θγ5γ6 is the polar angle of the γ5γ6 system defined with respect to the z-axis. In both (d) and (e), the
distribution of γ5γ6 is shown as an example of the three possible γγ combinations. The black dots with error bars represent data. The blue
histogram represents the contribution of the weighted signal MC. The red and green histograms represent the contributions of estimated
backgrounds, which are given by one half of the sum of the left and right sidebands in the πþπ−γ1γ2 invariant mass distribution,
respectively. Histograms are stacked above one another to compare with data. The histograms are normalized according to the number of
events in the histograms.
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FIG. 3. Fitting result for the πþπ−γ1γ2 mass spectrum for the
data sample at

ffiffiffi
s

p ¼ 2.1250 GeV. Dots with error bars represent
data. The blue solid line represents the fitting function, and the
red dashed line represents the background.
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V. SYSTEMATIC UNCERTAINTY

Several sources of systematic uncertainties, which
include the luminosity measurements, tracking efficiency,
PID efficiency, photon detection, kinematic fit, γγ mass
requirement, fitting procedure, branching fractions of
intermediate state decays and the ISR and VP corrections,
are considered in this analysis.
(a) The integrated luminosities of the data samples used in

this analysis are measured using large angle Bhabha
scattering events, and the corresponding uncertainties
are estimated to be 1.0% [33].

(b) The uncertainty of the tracking efficiency is investigated
using samples of the eþe− → KþK−πþπ− process
[10,34]. The difference in tracking efficiency between
data and the MC simulation is estimated to be 1.0% per
pion.Hence, 2.0% is taken as the systematic uncertainty.

(c) To estimate the uncertainty in the PID efficiency, the
same samples as used to investigate the tracking
efficiency are studied. The average difference in the
PID efficiency between data and the MC simulation is
found to be 1.0% per charged pion. Therefore, 2.0% is
taken as the systematic uncertainty.

(d) The uncertainty associated with the photon selection
efficiency is studied with samples of eþe− →
KþK−πþπ−π0 [34]. The samples cover the same angle
and momentum ranges as in this analysis. The result
shows that the difference in detection efficiency

between data and MC simulation is 1.0% per photon.
The systematic uncertainty of six photons is fully
correlated and result in 6.0% uncertainty in total.

(e) The uncertainty associated with the branching fractions
of intermediate states are taken from the PDG as 0.7%.

(f) The uncertainty associated with reweight procedure
comes from the choosing of bin size and the fluctuation
of bin content of distribution of data. To estimated those
impact, number of bins for each dimension are varied
from 20 to 60 and the sampling of reweight factors is
performed based on the error of bin content of data, with
total number of data sample remains the same. These
parallel samples of reweight factors are used to calculate
detection efficiency again. The standard deviation of
these parallel detection efficiencies in percentage is
taken as the systematic uncertainty.

(g) The uncertainty associated with the kinematic fit
comes from the inconsistency of the track helix
parameters between data and the MC simulation.
The helix parameters for the charged tracks of MC
samples are corrected to eliminate the inconsistency,
as described in Ref. [35], and the agreement of the χ24C
distributions between data and MC simulation is
significantly improved. The differences of the selec-
tion efficiencies with and without the correction are
taken as the systematic uncertainties.

(h) The uncertainty associated with the background shape
is estimated by the difference if a first order poly-
nomial function is used for the background shape.

(i) The uncertainty associated with the signal function in
the signal determination is estimated by the difference
if an alternative fit with a Breit-Wigner function
convolved with a Gaussian function is used for the
signal shape.

(j) The uncertainty associated with the mass window of
the γγ invariant mass distribution is estimated by
changing the number of one-side standard deviations
from 3 to 2.8 and 3.2. The larger difference in the
calculated cross section results is taken as the sys-
tematic uncertainty.

(k) The uncertainty associated with the mass window of
πþπ−γ1γ2 is estimated by changing the fitting range
from MPDG

ω � 0.15 GeV=c2 to MPDG
ω � 0.14 GeV=c2

and MPDG
ω � 0.16 GeV=c2. The larger difference in

the result of the calculated cross section is taken as the
systematic uncertainty.

(l) The uncertainty associated with 1þ δ is obtained from
the accuracy of the radiation function, which is about
0.5% [36], and the contribution from the cross section
line shape, which is estimated by varying the model
parameters of the fit to the cross section. All param-
eters are randomly varied within their uncertainties,
and the resulted parametrization of the line shape is
used to recalculate 1þ δ, ε and the corresponding
cross section. This procedure is repeated 100 times,

TABLE I. Born cross sections for eþe− → ωπ0π0. The columns
represent center-of-mass energy (

ffiffiffi
s

p
), signal yield, luminosity,

detection efficiency, ISR and VP corrections and calculated Born
cross section. The first uncertainties for the Born cross section are
statistical, and the second ones are systematic. The uncertainties
for the signal yield are statistical only.

ffiffiffi
s

p
(GeV) Nsignal Lðpb−1Þ ε 1þ δ

Born cross
section (pb)

2.0000 273� 18 10. 1 0.12 0.89 296.9� 20.1� 20.2
2.0500 86� 10 3.34 0.12 0.94 276.3� 32.7� 18.9
2.1000 249� 18 12.2 0.11 0.97 218.1� 15.9� 15.2
2.1250 2144� 53 108.0 0.11 0.98 211.2� 5.2� 14.4
2.1500 54� 8 2.84 0.11 0.98 206.6� 31.6� 14.1
2.1750 242� 18 10.6 0.11 0.98 227.9� 16.6� 15.5
2.2000 308� 20 13.7 0.12 0.97 229.9� 14.6� 15.6
2.2324 224� 17 11.9 0.11 1.04 185.6� 13.7� 12.7
2.3094 207� 17 21.1 0.10 1.13 102.1� 8.2� 7.0
2.3864 194� 19 22.5 0.10 1.14 88.2� 8.5� 6.0
2.3960 526� 27 66.9 0.10 1.14 76.7� 3.9� 5.2
2.6444 207� 16 33.7 0.10 1.25 59.4� 4.6� 4.0
2.6464 188� 16 34.0 0.10 1.28 54.8� 4.5� 3.7
2.9000 296� 19 105.0 0.10 1.34 25.4� 1.6� 1.7
2.9500 32� 9 15.9 0.10 1.33 19.8� 5.5� 1.4
2.9810 52� 8 16.1 0.10 1.38 30.4� 4.7� 2.1
3.0000 28� 6 15.9 0.10 1.29 15.5� 3.6� 1.1
3.0200 30� 6 17.3 0.09 1.34 15.6� 3.1� 1.1
3.0800 156� 14 126.0 0.09 1.34 12.7� 1.2� 0.9
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and the standard deviation of the resulting cross
section is taken as the systematic uncertainty.

All systematic uncertainties are summarized in Table II.
The total systematic uncertainty is obtained by adding all
individual contributions in quadrature.

VI. LINE SHAPE FITTING TO THE
CROSS SECTION

To study the possible structure around 2.20 GeV, the
cross section σBðsÞ is fitted by the coherent sum of the
possible resonant component together with a phase space
component for the continuum contribution,

σBðsÞ ¼ jfrðsÞeiϕr þ fcðsÞj2;

frðsÞ ¼
Mrffiffiffi
s

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12πCΓr

eeBrΓr
p
s −M2

r þ iMrΓr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φð ffiffiffi

s
p Þ

ΦðMrÞ

s
;

fcðsÞ ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φð ffiffiffi

s
p Þ

p
ð ffiffiffi

s
p Þb ; ð2Þ

where frðsÞ represents the resonant component [37], in
which Mr and Γr are the mass and width of the resonant
structure near 2.20 GeV. Parameter Γr

eeBr is the electric
partial width times the branching fraction of the resonance
decaying to ωπ0π0, ϕr is the relative phase between the
resonant and nonresonant amplitude, and the continuum
part fcðsÞ is parametrized by a and b. All six parameters

above are floated, while Φ is the calculated three-body
phase space factor and C is a conversion constant
which equals to 3.893 × 108 pb · GeV2 [8]. The results
from the fit are shown in Fig. 4 and Table III. Two solutions
are found. Solution (a) corresponds to the case of con-
structive interference between the resonant and continuum
contributions and solution (b) corresponds to the case of
destructive interference. The fitting quality χ2=ndf is
22.6=13, where ndf is the number of degrees of freedom.
To study the systematic uncertainties for the resonant

parameters, an alternative fit is carried out by parametrizing
the continuum component with an exponential function [2],

fcðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φð ffiffiffi

s
p Þep0up1

q
; ð3Þ

where p0, p1 are floated parameters and u ¼ffiffiffi
s

p
− ð2MPDG

π0
þMPDG

ω Þ. The differences of the results
between the alternative fit with Eq. (3) for the continuum
component and the nominal fit are taken as systematic
uncertainties for the resonant parameters. The systematic
uncertainties associated with the signal model are also
studied by using a relativistic Breit-Wigner function with
an energy-dependent width as the signal shape [12]. They
are found to be negligible. Finally, the mass and width of
the resonance are determined to be M ¼ 2222� 7�
2 MeV=c2 and Γ ¼ 59� 30� 6 MeV with a statistical
significance of 5.3σ, which is calculated from the change in
χ2 of the fit if the resonant contribution is removed. Both

TABLE II. Systematic uncertainties (in percentage) in this analysis. The columns represent center-of-mass energy (
ffiffiffi
s

p
), the

uncertainty associated with luminosity, charged track selection, PID, photon selection, branching fraction, 4C kinematic fit, reweight
procedure, background shape, signal shape, γγ invariant mass window, πþπ−γ1γ2 invariant mass window and 1þ δ calculation. The last
column is the total systematic uncertainty.

ffiffiffi
s

p
(GeV) L

Charged
track

selection PID
Photon
selection

Branching
fraction

4C
kinematic

fit
Reweight
procedure

Background
shape

Signal
shape

Mγγ

window
Mπþπ−γ1γ2
window 1þ δ Total

2.0000 1.0 2.0 2.0 6.0 0.7 0.57 0.35 0.22 0.13 0.18 0.18 0.5 6.81
2.0500 1.0 2.0 2.0 6.0 0.7 0.55 0.66 0.10 0.18 0.16 0.18 0.5 6.83
2.1000 1.0 2.0 2.0 6.0 0.7 0.66 0.33 0.17 1.43 0.11 0.11 0.5 6.96
2.1250 1.0 2.0 2.0 6.0 0.7 0.36 0.14 0.19 0.41 0.26 0.17 0.5 6.80
2.1500 1.0 2.0 2.0 6.0 0.7 0.68 0.66 0.12 0.45 0.14 0.14 0.5 6.85
2.1750 1.0 2.0 2.0 6.0 0.7 0.46 0.45 0.11 0.18 0.11 0.18 0.5 6.80
2.2000 1.0 2.0 2.0 6.0 0.7 0.52 0.46 0.19 0.14 0.15 0.16 0.5 6.81
2.2324 1.0 2.0 2.0 6.0 0.7 0.47 0.48 0.14 0.15 0.17 0.52 0.5 6.82
2.3094 1.0 2.0 2.0 6.0 0.7 0.36 0.46 0.93 0.16 0.18 0.16 0.5 6.86
2.3864 1.0 2.0 2.0 6.0 0.7 0.34 0.53 0.14 0.17 0.11 0.13 0.5 6.80
2.3960 1.0 2.0 2.0 6.0 0.7 0.54 0.34 0.11 0.24 0.47 0.10 0.5 6.82
2.6444 1.0 2.0 2.0 6.0 0.7 0.39 0.32 0.17 0.26 0.32 0.36 0.5 6.81
2.6464 1.0 2.0 2.0 6.0 0.7 0.60 0.73 0.13 0.29 0.10 0.16 0.5 6.84
2.9000 1.0 2.0 2.0 6.0 0.7 0.23 0.35 0.17 0.14 0.17 0.15 0.5 6.78
2.9500 1.0 2.0 2.0 6.0 0.7 0.49 0.95 0.18 1.48 0.61 0.77 0.5 7.08
2.9810 1.0 2.0 2.0 6.0 0.7 0.50 1.17 0.14 0.13 0.13 0.11 0.5 6.89
3.0000 1.0 2.0 2.0 6.0 0.7 0.64 1.04 0.13 1.06 0.13 0.66 0.5 6.99
3.0200 1.0 2.0 2.0 6.0 0.7 0.26 1.02 0.14 0.11 0.12 0.17 0.5 6.85
3.0800 1.0 2.0 2.0 6.0 0.7 0.35 0.73 0.11 0.13 0.15 0.10 0.5 6.82
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statistical and systematic uncertainties of measured Born
cross sections are considered in the calculation of χ2 of the
fit. In addition, Γr

eþe−Br is determined to be 0.3� 0.1�
0.1 eV or 13.8� 6.6� 5.2 eV for the two solutions from
the fit, where the first uncertainties are statistical and the
second ones are systematic.

VII. CONCLUSION

The cross section of the process eþe− → ωπþπ− is
measured at nineteen center-of-mass energies from 2.0 to
3.08 GeV with a total integrated luminosity of 647 pb−1.
The resonant structure around 2.20 GeV is observed
with a statistical significance of 5.3σ in the coherent fit to
the cross section line shape. The resonance has a
mass of M ¼ 2222� 7� 2 MeV=c2 and a width of
Γ ¼ 59� 30� 6 MeV, where the first uncertainties are
statistical and the second ones are systematic. The resonance
observed in this analysis, which could be an ω excited state,
is consistent with BABAR’s measurement [11]. A future study
of this channel with more data sets around

ffiffiffi
s

p ¼ 2.2 GeV
will be helpful to improve knowledge of this resonance [25].
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TABLE III. The result of the fit to the eþe− → ωπ0π0 cross
section with functions described by Eq. (2). The uncertainty is
statistical only. The statistical significance is calculated from the
difference in χ2 of the fit if only the continuum shape is used to fit
the Born cross sections.

Parameter Solution (a) Solution (b)

MrðMeV=c2Þ 2222� 7

ΓrðMeVÞ 59� 30
ϕr 2.4� 0.3 −1.7� 0.1
Γr
eeBrðeVÞ 0.3� 0.1 13.8� 6.6

að×103Þ 1.3� 0.2
b 5.0� 0.1
Significance 5.3σ
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FIG. 4. Fit to the Born cross section of eþe− → ωπ0π0. (a) The
solution with constructive interference. (b) The solution with
destructive interference. Red dots with error bars represent data,
while blue solid line represents total fitting function, and green
dotted, magenta dashed and yellow dashed curves represent the
contributions of nonresonant, resonant and interference compo-
nents, respectively.
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