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In this work, we consider a massive gauge boson field in AdS5 dual to odd glueball states with twist-5
operator in 4D Minkowski spacetime. Introducing an IR cutoff, we break the conformal symmetry of the
boundary theory allowing us to calculate the glueball masses with odd spins using Dirichlet and Neumann
boundary conditions. Then, from these masses, we construct the corresponding Regge trajectories
associated with the odderon. Our results are compatible with the ones in the literature.
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I. INTRODUCTION

The history of what would come to be called glueballs
goes back to the early days of hadronic physics, before the
emergence of QCD. At that time, hadron-hadron scattering
processes at high-energies and low transferred momenta,
written in terms of the Mandelstan variables, s ≫ m2 ≃ −t,
were ruled by Regge theory. In that scenario, Regge
proposed that in the hadronic processes “particles were
exchanged,” for instance, as a meson (ρ, ω, etc.) or as a
“Reggeons.” In both cases, their scattering amplitudes, in
the t channel, behaves likeAðs; tÞ ∼ sαðtÞ. If one considers a
family or a set of resonances sharing the same quantum
numbers, one can display them in a plane ½t≡m2; αðtÞ≡
J� fulfilling a linear relationship written as

Jðm2Þ ¼ α0m2 þ α0; ð1Þ

where J is total angular momentum, m is the mass of the
Reggeized particle, α0 and α0 are two constants. The above
relationship plotted in a Chew-Frautschi plane is known as
the Regge trajectory.
If these Reggeized particles are Reggeized gluons, one

has the so-called glueballs. Glueballs are represented by
their total angular momentum J and their vacuum quantum
numbers P, C, and I, where P is the P—parity (or spatial

inversion), C is the C—parity (or charge conjugation), and
I is the isospin. By using the spectroscopy notation, one has
JPC, omitting the isospin I since it is zero for all states
considered here. For a review on glueballs, one can
see Ref. [1].
From now on, let us focus on oddballs or glueballs

with odd angular momentum (J ≥ 1), and quantum
numbers taken as P ¼ −1, C ¼ −1, and I ¼ 0, such as,
1−−; 3−−; 5−−; � � �. Odd spin glueballs are particularly inter-
esting because they lie on the Regge trajectory of an
exchanged Reggeon called odderon.
In the context of perturbative QCD, the odderon is

described by the Bartels-Kwiecinski-Praszalowicz (BKP)
equation [2–4], as a colorless C-odd three reggeons
(gluons) compound state in the t channel, as can be seen
pictorially in Fig. 1. An interesting review on the odderon
physics can be seen in Ref. [5].
The original proposal for the existence of the odderon in

early 1970s appeared in Ref. [6], the first attempts for its
measurement in Refs. [7,8], and continued through the
decades of 1980 and 1990 [9,10]. Note that all these
collaborations did not provide reliable experimental evi-
dence about the existence of the odderon. Recently, the
outstanding efforts done in TOTEM and D0 Collaborations,
analyzing the cross sections for pp and pp̄, and eventually,
their differences, ΔσðsÞ ¼ σppðsÞ − σpp̄ðsÞ ∝ ln s, sup-
ported the existence of the odderon with 3.4σ of significance
[11]. In Ref. [12], the significance was improved to
5.2σ–5.7σ. The combination of these results may be con-
sidered sufficient to give the odderon experimentally
discovered.
Motivated by this recent discovery, in the present work,

we are interested in odd spin glueballs J−−, with (J ≥ 1).
Our aim here is to contribute with new insights and
proposals to compute the oddball masses and then calculate
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the corresponding Regge trajectory related to the odderon.
To do so, we will resort to an AdS/QCD model inspired by
a duality proposed by Maldacena [13]. AdS/QCD is a
suitable approach to deal with QCD phenomenology in the
nonperturbative regime, where glueballs are formed. The
AdS/QCD model used here is known as the hardwall
model, as proposed independently in Refs. [14–16]. In this
model, conformal symmetry is broken due to the intro-
duction of an IR cutoff zmax in the holographic coordinate z
and considering a slice of the anti–de Sitter (AdS) space,
given by the interval 0 ≤ z ≤ zmax. In Ref. [17], the authors
used the hardwall model to compute the masses of vector
mesons. In the last 20 years, the AdS/QCD community
have done many contributions offering many approaches to
deal with glueballs and correlated issues. Here, one can see
in Refs. [18–41] an incomplete list of those contributions,
which take into account even and odd spin glueballs, top-
down and botton-up holographic models, considering
anomalous dimension, dynamical AdS/QCD models,
deformed AdS metric space, Einstein-Maxwell-dilaton
background, among other proposals.
This work is organized as follows: in Sec. II, we present

our holographic description of the odd spin glueballs with
JPC ¼ 1−−, 3−−, 5−−, etc., starting from a twist five
operator in a massive vector gauge boson. In Sec. III,
we calculate oddball masses using Dirichlet and Neumann
boundary conditions and construct some proposals to the
odderon Regge trajectory. In this section, we also compare
our results for masses and trajectories with known results
from the literature. Finally, in Sec. IV, we present our last
comments, interpretations, and conclusions.

II. HOLOGRAPHIC DESCRIPTION
OF ODD SPIN GLUEBALLS

Here, in this section, we are going to present the
description of a vector glueball state within the AdS/
QCD model, compute the masses for JPC ¼ 1−−, 3−−,
5−−, etc., and construct the Regge trajectory associated
with the odderon.
First of all, let us emphasize the main feature of this

work. As the ground state for the odd spin glueballs, 1−− is

a vector object, living at the UV boundary, we start our
calculation within the holographic hardwall model by
relating it to a five-dimensional massive gauge boson field
defined in the AdS5 space. This procedure, which relates
operators in the four-dimensional theory to fields in the
bulk of five-dimensional space, represents the accomplish-
ment of the AdS=CFT correspondence.
The twist or twist dimension, represented by τ, is given by

the conformal dimension (Δ) of an operatorminus its spin. In
particular, it will be shown that the conformal dimension of
the state 1−− isΔ ¼ 6, and then τ ¼ Δ − J ¼ 5. In this sense,
we are going to refer to our model as a twist-five approach.
Note that in the Ref. [24] the authors dealt with oddballs

and odderon Regge trajectories, also using the hardwall
model, however relating the ground state for the odd
glueballs 1−− to a massive scalar field in the AdS5 space.
In the Ref. [30], the authors also started their computation,
within the hardwall model, from a massive boson field in
AdS side. However, among many exotic glueball states, the
authors considered only one odd glueball state, namely the
state 1−−.
Now let us introduce the action for a five-dimensional

massive gauge boson field Am, which represents the
physical vector glueball at four-dimensional boundary
theory, so that

S ¼ −
1

2

Z
d5x

ffiffiffiffiffiffi
−g

p �
1

2
gpmgqnFmnFpq þM2

5g
pmApAm

�
:

ð2Þ

Note that vector field stress tensor is assumed as Fmn ¼∂mAn − ∂nAm andM5 is the mass of the gauge boson field.
Besides g is the determinant of the metric gmn of the AdS5
space, given by

ds2 ¼ gmndxmdxn ¼
L2

z2
ðdz2 þ ημνdyμdyνÞ; ð3Þ

where z is the holographic coordinate, and L is the AdS
radius. From now on, we take L ¼ 1 throughout the text,
and ημν with signature ð−;þ;þ;þÞ is the Minkowski flat
spacetime metric.
By computing δS=δAn ¼ 0, one obtains the correspond-

ing equations of motion,

∂p½
ffiffiffiffiffiffi
−g

p
gmpgnqFmn� −M2

5

ffiffiffiffiffiffi
−g

p
gnqAn ¼ 0: ð4Þ

Plugging the AdS metric in the above equation and
considering p ¼ z, μ, one finds

FIG. 1. The odderon as colorlessC-odd three-gluon bound state
exchanged in a hadron-hadron scattering.
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∂z

��
1

z

�
Fznη

nq

�
þ ∂μ

��
1

z

�
ηmμFmnη

nq

�

−M2
5

�
1

z

�
3

Anη
nq ¼ 0; ð5Þ

with gmn ¼ z2ηmn.
In order to solve the above equation, firstly, we will use

an ansatz for a plane wave with four-momentum qμ,
which is propagating in the in the transverse coordinates
xμ, given by

Aρðz; xμÞ ¼ ϵρvðzÞeiqμxμ ; ð6Þ

where ϵρ is the polarization four-vector defined in the
transverse space to z coordinate, and the plane wave
amplitude depends on of z coordinate, only. Note
that ϵρϵρ ¼ ηρλϵρϵλ ¼ 1.
Following Ref. [17], we are going to consider Az ¼ 0,

and then, it implies that Fzn ¼ ∂zAn. Besides we choose
∂μAμ ¼ 0, which implies qμϵμ ¼ ημλqμϵλ ¼ q · ϵ ¼ 0

ensuring that the field can be written as a plane wave.
Therefore, one can get

ηmμ∂μFmn ¼ ηmμðiqμÞðiqmAn − ∂mAnÞ
¼ −q2An − ð∂μAμÞ
¼ −q2An: ð7Þ

At this point, we can rewrite Eq. (5) as

∂z

��
1

z

�
∂zAnη

nq

�
−
�
1

z

�
q2Anη

nq −M2
5

�
1

z

�
3

Anη
nq ¼ 0;

ð8Þ

or using (6), one has

�
∂z

��
1

z

�
∂zvðzÞ

�
−
�
1

z

�
q2vðzÞ −M2

5

�
1

z

�
3

vðzÞ
�

· eiqμx
μ
ϵq ¼ 0: ð9Þ

Defining vðzÞ ¼ zψðzÞ and plugging it in above equa-
tion, so that

z2
d2ψðzÞ
dz2

þ z
dψðzÞ
dz

− ½ð1þM2
5Þ þ q2z2� ¼ 0; ð10Þ

whose solutions are given by a linear combination of Bessel
(Jν) and Neumann (Yν) functions,

ψðzÞ ¼ Aν;kJνðmν;kzÞ þ Bν;kYνðmν;kzÞ; ð11Þ

where Aν;k and Bν;k are normalization constants, the index

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

5 þ 1
q

, andm2
ν;k ¼ −q2 will be the mass squared of

the odd spin glueballs at the boundary. Note that k ¼
1; 2; 3;… denote radial excitations, with k ¼ 1 for the
ground state. As we are interested in regular solutions
inside the bulk, we are just considering the Bessel solution
and disregarding the Neumann one. Now, by plugging
Eq. (11) in Eq. (6), we can construct the complete solution
for the field Aρðz; xμÞ, so that

Aρðz; xμÞ ¼ Aν;kzJνðmν;kzÞeiqμxμϵρ: ð12Þ

In order to get the odd spin glueball masses, we are going to
impose boundary conditions, such as Dirichlet and
Neumann, on the vector field Aρðz; xμÞ. Before we impose
those boundary conditions, one has to resort to the
AdS=CFT dictionary and learn how to relate the gauge
boson bulk mass (M5) and the conformal dimension (Δ) of
the corresponding operator (O) in the four-dimensional
theory. Such a relationship is written as

M2
5 ¼ ðΔ − pÞðΔþ p − 4Þ; ð13Þ

where p represents the p—form index. Here, we will
consider p ¼ 1.
In particular, for the glueball ground state 1−−, it is

associated to an operator O6 at the UV, given by
[20,24,42,43]

O6 ¼ SymTrðF̃μνF2Þ: ð14Þ

From this operator, one can infer that the scaling or
conformal dimension should be Δ ¼ 6. As a consequence,
the ground state for oddballs is associated with a twist-five
operator, since the twist τ is defined as the dimension minus
spin, and then, τ ¼ Δ − J ¼ 5.
To construct higher spin glueball states, we will follow

Ref. [44], where the authors proposed to raise the total
angular momentum by inserting symmetrised covariant
derivatives in a given operator with spin S. After this
insertion, one gets

O6þl ¼ SymTrðF̃μνFDfμ1���DμlgFÞ; ð15Þ

with conformal dimension Δ ¼ 6þ l and total angular
momentum J ¼ 1þ l. So to obtain the states 3−−; 5−−,
etc., we take l ¼ 2; 4;…. Then, all odd spin states in this
formulation will have twist τ ¼ 5.
Now, replacing Δ ¼ 6þ l in Eq. (13), one has

M2
5¼ðΔþl−pÞðΔþlþp−4Þ; ðevenl≥2;p¼1Þ:

ð16Þ

In this work, we consider all odd spin glueball states
associated with p ¼ 1 forms.
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III. RESULTS ACHIEVED

In this section, wewill present our results for themasses of
higher odd spin glueballs as well as the Regge trajectories
associated with the odderon achieved from our holographic
hardwall model within a twist five operator approach,
considering the usual Dirichlet and Neumann boundary
conditions. In order to compare our results for oddball
masses, we consider as benchmarks other results found
within different approaches. Those data were extracted from
the literature and are summarized in Table I. Note that there
are no experimental data for glueball masses and there are
few values from lattice simulations, QCD rules, Wilson
loops, and semirelativistic potentials. In particular, lattice
simulations require strong computational efforts to compute
high spin glueball masses.
Regarding the odderon’s Regge trajetory, one should

note that the precise values for its slope (α0) and intercept
(α0), are not consensus and are still open questions. Almost
twenty years ago, the Ref. [56] pointed out that Refs.
[57–59], considering different solutions for BKP equation,
found divergent values for the odderon’s intercept. Besides,
in Ref. [59], one can see the largest intercept reported
which is close to the unity.
In particular, two different odderon’s Regge trajectories

were proposed in Ref. [52], which are

JRMBðm2Þ ¼ 0.23m2 − 0.88; ð17Þ

obtained by using a relativistic many-body (RMB) model,
and

JNRCMðm2Þ ¼ 0.18m2 þ 0.25; ð18Þ

based on a nonrelativistic constituent model (NRCM).

A. Dirichlet boundary condition

In order to apply the Dirichlet boundary condition to
compute the masses of oddballs, it requires the following
condition on Eq. (12):

Aνðz; xμÞjz¼zmax
¼ 0 ⇒ Jνðmν;kzÞjz¼zmax

¼ 0; ð19Þ

meaning that odd glueball masses will be given by the roots
of the Bessel function. From the above equation, one has

mD
ν;k ¼

ξν;k
zmax

; ð20Þ

where ξν;k is the kth zero of the Bessel function of order ν.
Due to a lack of experimental/theoretical data regarding
higher radial excitation states for odd glueballs, we are
going to focus only in the ground state and fix k ¼ 1. Then
Eq. (20) becomes

mD
ν;1 ¼

ξν;1
zmax

: ð21Þ

As we are interest higher odd spin glueballs, let us take a
look at the Bessel function index ν, in Eq. (12). Such an
index is related to the bulk mass M5 by

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

5 þ 1

q
: ð22Þ

TABLE I. Glueball masses for JPC states expressed in GeV, with odd J, achieved with nonholographic and some
holographic models from the literature. Note the abbreviations in the first column of this table can be read as: SUð3Þ
gauge th. (SUð3Þ gauge theory in ð3 þ 1Þd); Iso. lattice (Isotropic lattice); Anis. lattice (Anisotropic lattice); Doub.
pole model (Double pole model), Relat. many body (Relativistic many body); Nonrelat. const. (Nonrelativistic
constituent); Vac. correlator (Vacuum correlator) and Semirelat. pot. (Semirelativistic potential)

Odd glueball states JPC

Models used 1−− 3−− 5−− 7−− 9−− 11−−

SUð3Þ gauge th. [45] 4.03(7)
Iso. lattice [46,47] 3.240(330)(150) 4.330(260)(200)
Anis. lattice [48] 3.830(40)(190) 4.200(45)(200)
Anis. lattice [49] 3.850 (50) (190) 4.130 (90) (200)
QCD sum rules [50] 3.29þ1.49

−0.32 3.47þ?
−0.50

Doub. pole model [51] 3.001 4.416 5.498
Relat. many body [52] 3.95 4.15 5.05 5.90
Nonrelat. const. [52] 3.49 3.92 5.15 6.14
Wilson loop [53] 3.49 4.03
Vac. correlator [54] 3.02 3.49 4.18 4.96
Vac. correlator [54] 3.32 3.83 4.59 5.25
Semirelat. pot. [55] 3.99 4.16 5.26
Hardwall twist 4D [24] 3.24 4.09 4.93 5.75 6.57 7.38
Hardwall twist 4 N [24] 3.24 4.21 5.17 6.13 7.09 8.04
Modified softwall [26] 2.82 3.94 5.03 6.11 7.19 8.26
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Now, by plugging Eq. (16) in the above equation, one gets a
relationship between the Bessel function index and the
glueballs’ angular momentum,

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔþ l − pÞðΔþ lþ p − 4Þ þ 1

p
: ð23Þ

In particular, for the state 1−− one has l ¼ 0, Δ ¼ 6, p ¼ 1
and then ν ¼ 4. The IR cutoff zmax will be fixed by using
the mass of this state, mD

4;1, as an input.
At this moment, we can eliminate zmax by dividing an

arbitrary odd spin state by the mass of the ground odd spin
state 1−−, in Eq. (21), and get an expression to compute the
masses of higher odd spin glueball states [lðevenÞ ≥ 2], so
that

mD
4þl;1 ¼

ξ4þl;1

ξ4;1
mD

4;1: ð24Þ

Note that wewill choosemD
4;1 ¼ 3.02 GeV as an input from

[54].For this chosen input, onehaszmax ¼ 2.51 GeV−1.This
value for zmax was obtained froma chi-squaredminimization
procedure with the rms error given by

δRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N − Np

XN
i¼1

�
δOi

Oi

�
2

vuut × 100; ð25Þ

for the glueball masses present in Table II with Dirichlet
boundary condition. Here,N is the number ofmeasurements
(glueball masses), and Np ¼ 1 is our only free param-
eter (zmax).
Note that in the original hardwall model presented in

Ref. [17], the ρ-meson mass was chosen to set the scale for
the other particle masses. In that case, this is quite
appropriate since they were considering three different
meson families all with conformal dimension operator
Δ ¼ 3. In our case, the oddballs are characterized by
Δ ¼ 6þ l. Thus, it is natural for the present model to take
the mass of the oddball ground state 1−− to fix zmax.
Now, we are going to consider different sets of oddball

states to construct possible odderon Regge trajectories. By
considering the set 1−−;…; 11−−, and taking the masses in
Table II, one can construct the following Regge trajectory
associated with the odderon:

Jf1−11gDir ðm2Þ ¼ ð0.21� 0.01Þm2 − ð0.35� 0.48Þ: ð26Þ
Analogously, for the states 1−−;…; 9−−, one gets

Jf1−9gDir ðm2Þ ¼ ð0.24� 0.01Þm2 − ð0.95� 0.24Þ; ð27Þ

and for 3−−;…; 11−−, one finds

Jf3−11gDir ðm2Þ ¼ ð0.19� 0.01Þm2 þ ð0.26� 0.53Þ: ð28Þ

It is worthwhile to mention that these Regge trajectories
Eqs. (26)–(28) were obtained from a standard linear
regression method by using the glueball masses from
Table II. The errors for the slope and intercept come from
such an analysis. These Regge trajectories are displayed in
Figs. 2–4.

B. Neumann boundary condition

For Neumann boundary condition on Eq. (12), it requires

d
dz

Aνðz; xμÞjz¼zmax
¼ 0 ⇒

d
dz

½zJνðmν;kzÞ�jz¼zmax
¼ 0: ð29Þ

TABLE II. Odd spin glueball masses expressed in GeV con-
sidering Dirichlet boundary condition, given by Eq. (24).

Odd glueball states JPC

1−− 3−− 5−− 7−− 9−− 11−−

Dirichlet b.c. 3.02 3.95 4.87 5.76 6.45 7.52

FIG. 2. Odderon Regge trajectory with Dirichlet boundary
condition corresponding to Eq. (26).

FIG. 3. Odderon Regge trajectory with Dirichlet boundary
condition corresponding to Eq. (27).
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And then one gets

JνðmN
ν;kzmaxÞ þmN

ν;kzmax

�
d
dz

JνðmN
ν;kzmaxÞ

�
¼ 0: ð30Þ

By using the following property:

d
dz

JαðxÞ ¼ Jα−1ðxÞ −
α

x
JαðxÞ; ð31Þ

one has

mN
ν;kzmaxJν−1ðmN

ν;kzmaxÞ þ ð1 − νÞJνðmN
ν;kzmaxÞ ¼ 0; ð32Þ

where the odd glueball mass computed in the hardwall
model with Neumann boundary condition is given by

mN
ν;k ¼

χν;k
zmax

: ð33Þ

Here, we will fix zmax¼ 1.89GeV−1 withmN
4;1 ¼ 3.02GeV,

coming from [54], as an input. The value of zmax is
determined by a chi-square minimization procedure analo-
gous to the one done for Dirichlet boundary condition but
now with the masses coming from Table III.
To get higher odd spin glueball states, we will proceed as

done for Dirichlet boundary condition, and then we can
rewrite Eq. (32) as

χνþl;kJνþl−1ðχνþl;kÞþð1−νþlÞJνþlðχνþl;kÞ¼0; ð34Þ

so that

mN
νþl;k ¼

χνþl;k

zmax
: ð35Þ

As before, we just consider k ¼ 1 corresponding to non-
excited radial states. Then, from our model with Neumann
boundary condition, we get the set of masses, presented in
Table III.
Considering different sets of oddball states to construct

possible odderon Regge trajectories from our model with
Neumann boundary condition, we get for 1−−;…; 11−−,

Jf1−11gNeu ðm2Þ ¼ ð0.16� 0.01Þm2 þ ð0.33� 0.45Þ: ð36Þ

In the same way, for 1−−;…; 9−−,

Jf1−9gNeu ðm2Þ ¼ ð0.17� 0.01Þm2 − ð0.06� 0.41Þ; ð37Þ

and for 1−−;…; 5−−,

Jf1−5gNeu ðm2Þ ¼ ð0.22� 0.02Þm2 − ð0.83� 0.30Þ: ð38Þ

Once again, these Regge trajectories Eqs. (36)–(38) were
obtained from a standard linear regression method by using
the glueball masses from Table III. The errors for the slope
and intercept come from such an analysis. These Regge
trajectories are displayed in Figs. 5–7.
In order to compare these results for the glueball masses,

we are going to calculate the rms error with Eq. (25).
Taking the values of the glueball masses from 1−− to 7−− of
the vacuum correlator model in Ref. [54] as our bench-
marks, from (25) with N ¼ 4, one finds that δRMS ¼ 3.60%
for the Dirichlet boundary condition from Table II and
δRMS ¼ 5.61% for the Neumann boundary condition from

TABLE III. Odd spin glueball masses expressed in GeV
considering Neumann boundary condition, given by Eq. (35).

Odd glueball states JPC

1−− 3−− 5−− 7−− 9−− 11−−

Neumann b.c. 3.02 4.14 5.26 6.38 7.48 8.59 FIG. 5. Odderon Regge trajectory with Neumann boundary
condition corresponding to Eq. (36).

FIG. 4. Odderon Regge trajectory with Dirichlet boundary
condition corresponding to Eq. (28).
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Table III. From this point of view, the results for the
hardwall model with twist-5 operator approach the
Dirichlet boundary condition seems to work better.

IV. CONCLUSIONS

In this section, we present our last comments on our
work and present some interpretations on our achieved
results. Here, we have used the holographic hard wall
model to compute the masses of odd spin glueball states
from a twist-five operator approach as well as derive the
corresponding Regge trajectories related to the odderon
with Dirichlet and Neumann boundary conditions.
As the oddball ground state 1−− has spin 1 and the

corresponding operator has conformal dimension Δ ¼ 6,
the twist of this state is τ ¼ 5. In this sense, the twist-five
operator approach seemed appropriated to deal with the
odd glueball ground state. To implement it, we started with
a massive gauge boson field living in the AdS5 related to

the vector glueball at the boundary theory. The higher spin
oddballs J−− ¼ ð1þ lÞ−− (with even l) are then repre-
sented by operators with conformal dimension Δþ l ¼
6þ l so these states also have twist τ ¼ 5.
Note that one can wonder if it is possible to accom-

modate higher even spin glueball states in our model. Note
however that two possible even spin ground states 0þþ and
2þþ are a twist-4 or twist-2 objects. In our case, we are
dealing with just the twist-5 objects.
In order to compute the odd spin glueball masses, we had

to introduce an IR cutoff zmax by using the mass of ground
state 1−− as an input. For our purposes, our input was taken
from the vacuum correlator model as in Ref. [54]. Besides,
in this reference, one can also find values for higher odd
spin glueballs masses as well as other Refs. mentioned in
Table I.
As one can see, the masses computed here for higher

spin oddballs, by considering Dirichilet and Neumann
boundary conditions (Tables II and III, respectively) are
fully compatible with most of the models presented in
Table I. It is worth to mention that mass for the state 3−−

computed in this work is also in agreement with the one
obtained using a holographic QCD model as reported
recently in Ref. [41]. It is worth mentioning that in this
work the results coming from the Dirichlet boundary
condition seems to give better glueball masses than the
Neumann one, taking as benchmarks the results from
Ref. [54], since the respective rms errors are 3.60% and
5.61%, as discussed at the end of the previous section.
Another point of interest in this work is to derive, from

the odd spin glueball masses, the Regge trajectories
associate with the odderon. By taking a look at the masses
in Table II, within Dirichilet boundary condition, one can
construct Regge trajectories for the odderon. For the
oddballs considered in this work, from the ground state
1−− to the state 11−− and from the ground state 1−− to the
state 9−−, one can obtain the Regge trajectories presented in
Eqs. (26) and (27), respectively. These Regge trajectories
are compatible with the one presented in Eq. (17) within the
RMB model of Ref. [52]. On the other hand, if the one
considers the set of the states 3−−; 5−−; 7−−; 9−−, and 11−−,
the hardwall model used here, provides a Regge trajectory
given by Eq. (28) compatible with the one in Eq. (18)
within the NRCM, also in Ref. [52].
Regarding to the Neumann boundary condition, from

Table III, one can also consider different sets of oddball
states and derive the corresponding Regge trajectories
related to the odderon. The Regge trajectories presented
in Eqs. (36) and (37), considered the sets from the ground
state 1−− to the state 11−− and to the state 9−−, respectively,
are compatible with the one presented in Eq. (18) within the
NRCM in Ref. [52]. Nevertheless, the Regge trajectory in
Eq. (38), considering the states 1−−; 3−−, and 5−− is
compatible with the one presented in Eq. (17) within the
RMB model of Ref. [52].

FIG. 7. Odderon Regge trajectory with Neumann boundary
condition corresponding to Eq. (38).

FIG. 6. Odderon Regge trajectory with Neumann boundary
condition corresponding to Eq. (37).
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One should notice that the values of odd spin glueball
masses within Neumann boundary condition are greater
than the ones coming from Dirichlet boundary condition.
To build the Regge trajectory, one has to choose a set of
oddball states. This feature implies that if one increases the
number of elements in the chosen set, the slope of the
Regge trajectory will decrease. This explains the difference
between the slope and intercept of the Regge trajectories
obtained in this work with both boundary conditions.
Even though the hardwall model may be the simplest

among the AdS/QCD models, it provides good estimates of
glueball masses despite the fact that the corresponding
Regge trajectories are not intrinsically linear. Anyway, the
hardwall model can provide approximate linear trajectories
as the ones presented in this work compatible with other
holographic and nonholographic approaches. In particular,
one can note that the rms errors found here for glueballs are
smaller than the corresponding ones for other hadrons as
presented, for instance, in Ref. [17].
To conclude, we should keep in mind that although the

oddballs discussed here are still lacking direct observation,

the odderon itself was discovered experimentally [11,12].
We hope that the oddball quest will come to a good end in
future experiments.

ACKNOWLEDGMENTS

J. P. M. G. is supported by Conselho Nacional de
Desenvolvimento Científico e Tecnológico (CNPq) under
Grant No. 151701/2020-2. H. B.-F. is partially supported by
Conselho Nacional de Desenvolvimento Científico e
Tecnológico (CNPq) under Grant No. 311079/2019-9.
This study was financed in part by the Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior (CAPES),
finance code 001.

Note added in proof.—Recently Refs. [60] and [61]
appeared on arXiv proposing a holographic study for
glueballs at finite temperature, within softwall and hardwall
models, respectively.

[1] V. Mathieu, N. Kochelev, and V. Vento, The physics of
glueballs, Int. J. Mod. Phys. E 18, 1 (2009).

[2] J. Bartels, High-energy behavior in a nonabelian gauge
theory (I): Tn→m in the leading ln s approximation, Nucl.
Phys. B151, 293 (1979).

[3] J. Bartels, High-energy behavior in a nonabelian gauge
theory (II): First corrections to Tn→m beyond the leading ln s
approximation, Nucl. Phys. B175, 365 (1980).

[4] J. Kwiecinski and M. Praszalowicz, Three gluon integral
equation and odd c singlet Regge singularities in QCD,
Phys. Lett. 94B, 413 (1980).

[5] C. Ewerz, The odderon in quantum chromodynamics,
arXiv:hep-ph/0306137.

[6] L. Lukaszuk and B. Nicolescu, A possible interpretation of
pp rising total cross-sections, Lett. Nuovo Cimento 8, 405
(1973).

[7] D. Hill, P. Koehler, T. Novey, P. Rynes, B. Sandler, H.
Spinka, A. Yokosawa, D. P. Eartly et al., Measurement of
Polarization π−p → π0n at 3.5 and 5.0 gev=c, Phys. Rev.
Lett. 30, 239 (1973).

[8] P. Bonamy, P. Borgeaud, M. Crozon, J. P. Guillaud, O.
Guisan, D. P. Le, P. Sonderegger, H. Bienlein et al., Meas-
urement of the polarization parameter of the reactions
π−p → π0n and ηn at 5 and 8 gev=c, Nucl. Phys. B52,
392 (1973).

[9] V. D. Apokin, I. A. Avvakumov, N. S. Borisov, B. V.
Chuiko, Y. M. Goncharenko, Y. M. Kazarinov, B. A.
Khachaturov, G. G. Macharashvili et al., Observation of
polarization in reaction π−p → ηn at 40-GeV=c, AIP Conf.
Proc. 95, 118 (2008).

[10] C. Augier et al. (UA4/2 Collaboration), A precise meas-
urement of the real part of the elastic scattering amplitude at
the S anti-p p S, Phys. Lett. B 316, 448 (1993).

[11] G. Antchev et al. (TOTEM Collaboration), First determi-
nation of the ρ parameter at

ffiffiffi
s

p ¼ 13 TeV: Probing the
existence of a colourless C-odd three-gluon compound state,
Eur. Phys. J. C 79, 785 (2019).

[12] V. M. Abazov et al. (TOTEM and D0 Collaborations),
Odderon Exchange from Elastic Scattering Differences
between pp and pp̄ Data at 1.96 TeV and from pp Forward
Scattering Measurements, Phys. Rev. Lett. 127, 062003
(2021).

[13] J. M. Maldacena, The large N limit of superconformal field
theories and supergravity, Int. J. Theor. Phys. 38, 1113
(1999); Adv. Theor. Math. Phys. 2, 231 (1998).

[14] J. Polchinski and M. J. Strassler, Hard Scattering
and Gauge/String Duality, Phys. Rev. Lett. 88, 031601
(2002).

[15] H. Boschi-Filho and N. R. F. Braga, Gauge/string duality
and scalar glueball mass ratios, J. High Energy Phys. 05
(2003) 009.

[16] H. Boschi-Filho and N. R. F. Braga, QCD/string holo-
graphic mapping and glueball mass spectrum, Eur. Phys.
J. C 32, 529 (2004).

[17] J. Erlich, E. Katz, D. T. Son, and M. A. Stephanov, QCD and
a Holographic Model of Hadrons, Phys. Rev. Lett. 95,
261602 (2005).

[18] H. Boschi-Filho, N. R. F. Braga, and H. L. Carrion, Glueball
Regge trajectories from gauge/string duality and the Pom-
eron, Phys. Rev. D 73, 047901 (2006).

CAPOSSOLI, GRAÇA, and BOSCHI-FILHO PHYS. REV. D 105, 026026 (2022)

026026-8

https://doi.org/10.1142/S0218301309012124
https://doi.org/10.1016/0550-3213(79)90441-3
https://doi.org/10.1016/0550-3213(79)90441-3
https://doi.org/10.1016/0550-3213(80)90019-X
https://doi.org/10.1016/0370-2693(80)90909-0
https://arXiv.org/abs/hep-ph/0306137
https://doi.org/10.1007/BF02824484
https://doi.org/10.1007/BF02824484
https://doi.org/10.1103/PhysRevLett.30.239
https://doi.org/10.1103/PhysRevLett.30.239
https://doi.org/10.1016/0550-3213(73)90568-3
https://doi.org/10.1016/0550-3213(73)90568-3
https://doi.org/10.1063/1.33888
https://doi.org/10.1063/1.33888
https://doi.org/10.1016/0370-2693(93)90350-Q
https://doi.org/10.1140/epjc/s10052-019-7223-4
https://doi.org/10.1103/PhysRevLett.127.062003
https://doi.org/10.1103/PhysRevLett.127.062003
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.1103/PhysRevLett.88.031601
https://doi.org/10.1103/PhysRevLett.88.031601
https://doi.org/10.1088/1126-6708/2003/05/009
https://doi.org/10.1088/1126-6708/2003/05/009
https://doi.org/10.1140/epjc/s2003-01526-4
https://doi.org/10.1140/epjc/s2003-01526-4
https://doi.org/10.1103/PhysRevLett.95.261602
https://doi.org/10.1103/PhysRevLett.95.261602
https://doi.org/10.1103/PhysRevD.73.047901


[19] P. Colangelo, F. De Fazio, F. Jugeau, and S. Nicotri, On the
light glueball spectrum in a holographic description of
QCD, Phys. Lett. B 652, 73 (2007).

[20] C. Wang, S. He, M. Huang, Q. S. Yan, and Y. Yang, Scalar
mesons and glueballs in Dp-Dq hard-wall models, Chin.
Phys. C 34, 319 (2010).

[21] S. He, M. Huang, Q. S. Yan, and Y. Yang, Confront
holographic QCD with Regge trajectories, Eur. Phys. J. C
66, 187 (2010).

[22] S. S. Afonin, Generalized soft wall model, Phys. Lett. B
719, 399 (2013).

[23] H. Boschi-Filho, N. R. F. Braga, F. Jugeau, and M. A. C.
Torres, Anomalous dimensions and scalar glueball spec-
troscopy in AdS/QCD, Eur. Phys. J. C 73, 2540 (2013).

[24] E. Folco Capossoli and H. Boschi-Filho, Odd spin glueball
masses and the Odderon Regge trajectories from the
holographic hardwall model, Phys. Rev. D 88, 026010
(2013).

[25] D. Li and M. Huang, Dynamical holographic QCD model
for glueball and light meson spectra, J. High Energy Phys.
11 (2013) 088.

[26] E. Folco Capossoli and H. Boschi-Filho, Glueball spectra
and Regge trajectories from a modified holographic softwall
model, Phys. Lett. B 753, 419 (2016).

[27] F. Brünner, D. Parganlija, and A. Rebhan, Glueball decay
rates in the Witten-Sakai-Sugimoto model, Phys. Rev. D 91,
106002 (2015); Erratum, Phys. Rev. D 93, 109903 (2016).

[28] F. Brünner and A. Rebhan, Nonchiral Enhancement of
Scalar Glueball Decay in the Witten-Sakai-Sugimoto
Model, Phys. Rev. Lett. 115, 131601 (2015).

[29] E. Folco Capossoli, D. Li, and H. Boschi-Filho, Pomeron
and odderon Regge trajectories from a dynamical holo-
graphic model, Phys. Lett. B 760, 101 (2016).

[30] Y. Chen and M. Huang, Two-gluon and trigluon glueballs
from dynamical holography QCD, Chin. Phys. C 40,
123101 (2016).

[31] E. Folco Capossoli, D. Li, and H. Boschi-Filho, Dynamical
corrections to the anomalous holographic soft-wall model:
The pomeron and the odderon, Eur. Phys. J. C 76, 320
(2016).

[32] F. Brünner and A. Rebhan, Holographic QCD predictions
for production and decay of pseudoscalar glueballs, Phys.
Lett. B 770, 124 (2017).

[33] D. M. Rodrigues, E. Folco Capossoli, and H. Boschi-Filho,
Twist two operator approach for even spin glueball masses
and pomeron Regge trajectory from the hardwall model,
Phys. Rev. D 95, 076011 (2017).

[34] D. M. Rodrigues, E. Folco Capossoli, and H. Boschi-Filho,
Scalar and higher even spin glueball masses from an
anomalous modified holographic model, Europhys. Lett.
122, 21001 (2018).

[35] M. Rinaldi and V. Vento, Scalar and tensor glueballs as
gravitons, Eur. Phys. J. A 54, 151 (2018).

[36] S. S. Afonin and A. D. Katanaeva, Glueballs and deconfine-
ment temperature in AdS/QCD, Phys. Rev. D 98, 114027
(2018).

[37] M. Rinaldi and V. Vento, Pure glueball states in a light-front
holographic approach, J. Phys. G 47, 055104 (2020).

[38] E. Folco Capossoli, M. A. Martín Contreras, D. Li, A. Vega,
and H. Boschi-Filho, Hadronic spectra from deformed AdS
backgrounds, Chin. Phys. C 44, 064104 (2020).

[39] M. Rinaldi and V. Vento, Scalar spectrum in a graviton soft
wall model, J. Phys. G 47, 125003 (2020).

[40] M. Rinaldi and V. Vento, Meson and glueball spectroscopy
within the graviton soft wall model, Phys. Rev. D 104,
034016 (2021).

[41] L. Zhang, C. Chen, Y. Chen, and M. Huang, Spectra of
glueballs and oddballs and the equation of state from
holographic QCD, arXiv:2106.10748.

[42] C. Csaki, H. Ooguri, Y. Oz, and J. Terning, Glueball mass
spectrum from supergravity, J. High Energy Phys. 01 (1999)
017.

[43] R. C. Brower, S. D. Mathur, and C. I. Tan, Glueball spec-
trum for QCD from AdS supergravity duality, Nucl. Phys.
B587, 249 (2000).

[44] G. F. de Teramond and S. J. Brodsky, Hadronic Spectrum of
a Holographic Dual of QCD, Phys. Rev. Lett. 94, 201601
(2005).

[45] A. Athenodorou and M. Teper, The glueball spectrum of SU
(3) gauge theory in 3þ 1 dimensions, J. High Energy Phys.
11 (2020) 172.

[46] H. B. Meyer and M. J. Teper, Glueball Regge trajectories
and the pomeron: A lattice study, Phys. Lett. B 605, 344
(2005).

[47] H. B. Meyer, Glueball Regge trajectories, Ph.D. Thesis,
University of Oxford, 2004.

[48] Y. Chen, A. Alexandru, S. J. Dong, T. Draper, I. Horvath,
F. X. Lee, K. F. Liu, N. Mathur et al., Glueball spectrum and
matrix elements on anisotropic lattices, Phys. Rev. D 73,
014516 (2006).

[49] C. J. Morningstar and M. J. Peardon, The glueball spectrum
from an anisotropic lattice study, Phys. Rev. D 60, 034509
(1999).

[50] H. X. Chen, W. Chen, and S. L. Zhu, Toward the existence
of the odderon as a three-gluon bound state, Phys. Rev. D
103, L091503 (2021).

[51] I. Szanyi, L. Jenkovszky, R. Schicker, and V. Svintozelskyi,
Pomeron/glueball and odderon/oddball trajectories, Nucl.
Phys. A998, 121728 (2020).

[52] F. J. Llanes-Estrada, P. Bicudo, and S. R. Cotanch, Oddballs
and a Low Odderon Intercept, Phys. Rev. Lett. 96, 081601
(2006).

[53] A. B. Kaidalov and Y. A. Simonov, Glueball spectrum and
the Pomeron in the Wilson loop approach, Yad. Fiz. 63,
1428 (2000) [Phys. At. Nucl. 63, 1428 (2000)].

[54] A. B. Kaidalov and Y. A. Simonov, Odderon and pomeron
from the vacuum correlator method, Phys. Lett. B 636, 101
(2006).

[55] V. Mathieu, C. Semay, and B. Silvestre-Brac, Semirelativ-
istic potential model for three-gluon glueballs, Phys. Rev. D
77, 094009 (2008).

[56] Y. V. Kovchegov, L. Szymanowski, and S. Wallon, Pertur-
bative odderon in the dipole model, Phys. Lett. B 586, 267
(2004).

[57] R. A. Janik and J. Wosiek, Solution of the Odderon
Problem, Phys. Rev. Lett. 82, 1092 (1999).

ADS/QCD ODDBALL MASSES AND THE ODDERON REGGE … PHYS. REV. D 105, 026026 (2022)

026026-9

https://doi.org/10.1016/j.physletb.2007.06.072
https://doi.org/10.1088/1674-1137/34/3/003
https://doi.org/10.1088/1674-1137/34/3/003
https://doi.org/10.1140/epjc/s10052-010-1239-0
https://doi.org/10.1140/epjc/s10052-010-1239-0
https://doi.org/10.1016/j.physletb.2013.01.055
https://doi.org/10.1016/j.physletb.2013.01.055
https://doi.org/10.1140/epjc/s10052-013-2540-5
https://doi.org/10.1103/PhysRevD.88.026010
https://doi.org/10.1103/PhysRevD.88.026010
https://doi.org/10.1007/JHEP11(2013)088
https://doi.org/10.1007/JHEP11(2013)088
https://doi.org/10.1016/j.physletb.2015.12.034
https://doi.org/10.1103/PhysRevD.91.106002
https://doi.org/10.1103/PhysRevD.91.106002
https://doi.org/10.1103/PhysRevD.93.109903
https://doi.org/10.1103/PhysRevLett.115.131601
https://doi.org/10.1016/j.physletb.2016.06.049
https://doi.org/10.1088/1674-1137/40/12/123101
https://doi.org/10.1088/1674-1137/40/12/123101
https://doi.org/10.1140/epjc/s10052-016-4171-0
https://doi.org/10.1140/epjc/s10052-016-4171-0
https://doi.org/10.1016/j.physletb.2017.04.036
https://doi.org/10.1016/j.physletb.2017.04.036
https://doi.org/10.1103/PhysRevD.95.076011
https://doi.org/10.1209/0295-5075/122/21001
https://doi.org/10.1209/0295-5075/122/21001
https://doi.org/10.1140/epja/i2018-12600-9
https://doi.org/10.1103/PhysRevD.98.114027
https://doi.org/10.1103/PhysRevD.98.114027
https://doi.org/10.1088/1361-6471/ab72b2
https://doi.org/10.1088/1674-1137/44/6/064104
https://doi.org/10.1088/1361-6471/abba71
https://doi.org/10.1103/PhysRevD.104.034016
https://doi.org/10.1103/PhysRevD.104.034016
https://arXiv.org/abs/2106.10748
https://doi.org/10.1088/1126-6708/1999/01/017
https://doi.org/10.1088/1126-6708/1999/01/017
https://doi.org/10.1016/S0550-3213(00)00435-1
https://doi.org/10.1016/S0550-3213(00)00435-1
https://doi.org/10.1103/PhysRevLett.94.201601
https://doi.org/10.1103/PhysRevLett.94.201601
https://doi.org/10.1007/JHEP11(2020)172
https://doi.org/10.1007/JHEP11(2020)172
https://doi.org/10.1016/j.physletb.2004.11.036
https://doi.org/10.1016/j.physletb.2004.11.036
https://doi.org/10.1103/PhysRevD.73.014516
https://doi.org/10.1103/PhysRevD.73.014516
https://doi.org/10.1103/PhysRevD.60.034509
https://doi.org/10.1103/PhysRevD.60.034509
https://doi.org/10.1103/PhysRevD.103.L091503
https://doi.org/10.1103/PhysRevD.103.L091503
https://doi.org/10.1016/j.nuclphysa.2020.121728
https://doi.org/10.1016/j.nuclphysa.2020.121728
https://doi.org/10.1103/PhysRevLett.96.081601
https://doi.org/10.1103/PhysRevLett.96.081601
https://doi.org/10.1134/1.1307465
https://doi.org/10.1016/j.physletb.2006.03.032
https://doi.org/10.1016/j.physletb.2006.03.032
https://doi.org/10.1103/PhysRevD.77.094009
https://doi.org/10.1103/PhysRevD.77.094009
https://doi.org/10.1016/j.physletb.2004.02.036
https://doi.org/10.1016/j.physletb.2004.02.036
https://doi.org/10.1103/PhysRevLett.82.1092


[58] G. P. Korchemsky, J. Kotanski, and A. N. Manashov, Sol-
ution of the Multi-Reggeon Compound State Problem in
Multicolor QCD, Phys. Rev. Lett. 88, 122002 (2002).

[59] J. Bartels, L. N. Lipatov, and G. P. Vacca, A new odderon
solution in perturbative QCD, Phys. Lett. B 477, 178 (2000).

[60] A. Vega and A. Rodriguez, Effects of beta function on mass
and melting temperature for scalar glueballs in AdS/QCD
models at finite temperature, arXiv:2110.14826.

[61] M.Rinaldi andV.Vento,Glueballs at high temperaturewithin
the Hard-Wall holographic model, arXiv:2112.11307.

CAPOSSOLI, GRAÇA, and BOSCHI-FILHO PHYS. REV. D 105, 026026 (2022)

026026-10

https://doi.org/10.1103/PhysRevLett.88.122002
https://doi.org/10.1016/S0370-2693(00)00221-5
https://arXiv.org/abs/2110.14826
https://arXiv.org/abs/2112.11307

