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We study the effective low energy dynamics of the topologically twisted super Yang-Mills theory on
compact four-manifolds that support surface defects where the gauge field becomes singular along certain
directions. Following recent work on the topic of u-plane integrals in topological theories, we show that the
integrand of the path integral can be expressed in terms of mock modular forms, which allows the
evaluation of correlation functions using Stokes’ theorem.
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I. INTRODUCTION AND BACKGROUND

Studying the low energy dynamics of supersymmetric
gauge theories is an important task which has the potential to
lead to a better understanding of more realistic theories such
asN ¼ 1 SQCD and even standard QCD. Nevertheless, it is
a difficult task indeed. Topologically twisted supersymmetric
gauge theories on compact four-manifolds provide a powerful
laboratory to explore such dynamics [1–7]. In this article we
study the low energy dynamics of the topologically twisted
version of the pureN ¼ 2 super Yang-Mills theory (SYM) in
four dimensions with gauge group of rank one, also known as
Donaldson-Witten theory [8], with arbitrary ’t Hooft fluxes on
a compact four-manifold X that admits surface defects. As
a result of the UV to IR flow, the original gauge group SU(2)
or SO(3) breaks down to U(1) [9]. The order parameter
u ¼ 1

16π2
hTrðϕ2Þi, where ϕ is the scalar field of the theory,

parametrizes the Coulomb branch B of the theory, also
referred to as the u-plane. Topologically B corresponds to
a Riemann sphere with three punctures at u → ∞ (classical
limit), as well as at u ¼ �Λ2, where Λ corresponds to the
symmetry breaking scale of the theory. Without loss of
generality, we can set Λ ¼ 1 for the rest of the article.
The objects of interest are the correlation functions

hO1O2…Oni ≔
R ½DX �e−SO1O2…On, where X denotes

the fields we integrate over, S the action, and the set fOig,
i ∈ f1;…; ng, corresponds to the observables of the theory.
In order for such correlators to be nontrivial the underlying
four-manifold X must satisfy bþ2 ðXÞ ≤ 1 where bþ2 ðXÞ
corresponds to the number of positive eigenvalues of the
manifold’s intersection form Q. The path integral of the
theory on such a four-manifold X receives two types of
contributions [3]: the Seiberg-Witten contribution ZSW and
the contribution from the u-plane integral Zu,

Z ¼ ZSW þ Zu: ð1Þ

In this article we focus on the contribution Zu for compact
four-manifolds X with bþ2 ðXÞ ¼ 1 that admit surface defects
S. The contribution Zu reduces to a finite-dimensional
integral over the zero modes of the fields of the theory
when bþ2 ðXÞ ¼ 1 [1,3] and by including nonperturbative
corrections to the integrand, using the Seiberg-Witten theory,
one can potentially evaluate the path integral precisely.
Nevertheless, the presence of surface defects induces certain
singularities for the gauge field A which exhibits singular
behavior as it approaches the defect S.
Explicitly, a surface defect S corresponds to a codimen-

sion two compact manifold embedded in X with the
property that the self-dual part of the field strength F of
the gauge field A satisfies

Fþ ¼ 2παeδ
þ
S ; ð2Þ

where for any 2-form l we denote by lþ its self-dual
component and by l− its antiself-dual component such that
l ¼ lþ þ l−. In Eq. (2) we interpret αe as the electric charge
of the surface defect. The dual magnetic charge is denoted
as αm and together they form a vector α ¼ ðαe; αmÞ⊤.
Additionally, δS corresponds to a delta function defined
along the surface of S and topologically corresponds to the
two-form dual of the class of S. We realize that the theory
satisfies the usual antiself-dual equation Fþ ¼ 0 except on
the surface defect. We can overcome this complication by
defining a gauge field A such that its field strength is [10]:

F ¼ F − 2παeδS: ð3Þ

The presence of the surface defect induces a magnetic flux
that contributes to the path integral of the theory with*georgios.korpas@fel.cvut.cz
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expð{∘αm
R
S FÞ, where {

∘ ≔
ffiffiffiffiffiffi
−1

p
. Mathematically, the gauge

field in the presence of the surface defects corresponds to a
connection on a parabolic gauge bundle [11,12]. In the
following we will treat the theory as the standard low
energy topologically twisted gauge theory and the effect of
the surface defect will be masked by the transformation
ðA;FÞ → ðA;F Þ together with the contribution to the path
integral mentioned above.
In a recent work [13–15] it was shown that the integrand

of the path integral for theories without surface defects can
be formulated in terms of mock modular forms [16,17]
which have a tendency to appear frequently in Coulomb
branch computations [18,19]. In this article we derive an
explicit expression for the evaluation of the path integral
of the theory, the so-called (ramified) u-plane integral, on
a simply connected four-manifold X in the presence of a
surface defect S with nontrivial flux, in terms of the
modular completion Θ̂ of a mock modular form Θ that
is related to the sum of the U(1) fluxes of the path integral
of the theory. We further show that by taking the limit
volðSÞ → 0, we obtain the result for the theory without
surface defects. The final result, Eq. (24), additionally
provides the wall-crossing formula for the theory [3,13].

II. INGREDIENTS OF THE u-PLANE INTEGRAL
WITH SURFACE DEFECTS

Both the UV Donaldson-Witten theory as well as its low
energy effective theory contain a scalar nilpotent super-
chargeQwhich is a result of the topological twist [8]. In the
following we will take advantage of the fact that for any
Q-exact operator O, fQ;Og ¼ 0 [8]. This low energy
effective theory is subject to electric-magnetic duality
expressed by Γ0ð4Þ transformations [3]. The field content
of the theory contains a complex scalar field a, the gauge
field A, an auxiliary boson field D and three anticommut-
ing Grassmann valued forms: a 0-form η, a 1-form ψ and a
2-form χ [3]. For the Lagrangian see [3,10]. The gauge

coupling of the theory is τ ¼ τ1 þ {
∘
τ2 ∈ H, where H

denotes the Poincaré upper half plane. The Lagrangian
L and the supersymmetry algebra are well known [8,10].
We aim to evaluate the contribution Zu from Eq. (1):

Zu ¼
Z

½DX � exp
�
−
Z
X
L
�Y

i

Oi; ð4Þ

with the insertion of certain operators Oi, where
DX ≔ DaDāDADηDψDηDD. In topological field theo-
ries, insertion of Q-exact observables must not alter the
path integral and the correlation functions of the theory
[8]. Following [13], we introduce the Q-exact surface
observable:

IðxÞ ≔ −
1

4π

Z
x

�
Q;

dū
dā

χ

�
; ð5Þ

where x ∈ H2ðXÞ. Such operators first appeared in [20] in
the context of interpreting Witten type indices of bound
states in string theory in terms of topological field theory
integrals in various dimensions. Due to the fact that X is
simply connected, there are no ψ field contributions and
Eq. (5) takes the form:

Iðx; SÞ ¼ −
1

4π

Z
x

�
1

2

d2ū
dā2

η ∧ χ þ
ffiffiffi
2

p

4

dū
dā

ðFþ −DÞ
�
: ð6Þ

In what follows, we modify the exponent in the path
integral of Eq. (4) by adding this Q-exact operator. The
path integral (4) localizes to the zero modes of the fields [3].
Schematically, it can be factorized as:

Zu ¼ ZgravityZcontactZphotonZGrassmann; ð7Þ

where each factor, respectively, corresponds to the gravi-
tational coupling to the background geometry, the contact
terms due to the UV to IR flow, the U(1) flux, and the
Grassmann variables contribution. In the following sub-
sections, we analyze each of these contributions to combine
them together into Zu.

A. Gravitational couplings

Since the theory is defined on a generic simply con-
nected compact four-manifold X, gravitational couplings
due to the nontrivial curvature of X contribute to Zu. These
contributions are proportional to the Euler characteristic
χðXÞ and the signature σðXÞ of the four-manifold. These
contributions are combined to the holomorphic “measure
factor”:

νðτÞ ¼ −π−12
3σðXÞ
4

þ1ðu2 − 1ÞσðXÞ8

�
da
du

�σðXÞ
2
−2
; ð8Þ

where the dependence on χðXÞ was eliminated using the
fact that for simply connected four-manifolds with bþ2 ¼ 1

it holds χðXÞ þ σðXÞ ¼ 4.

B. Contact terms

The contact term contributions are a result of the self-
intersection of surface operators in the IR [3,4]. By
rescaling S as S̃ ¼ παe

2
S the holomorphic contact term

contributions for the theory with surface defects take the
form [10]:

GðuÞ ¼ 1

24

�
8u − E2ðτÞ

�
du
da

�
2
�

ð9Þ

HðuÞ ¼ up2ðu−1Þ; ð10Þ

where p2ðuÞ is a certain polynomial with coefficients in Q
chosen such that it vanishes in the classical limit [10].
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C. Grassmann contribution

To evaluate Zu one can start by first performing the
Gaussian integral over the Grassmann zero modes, evalu-
ating ZGrassmann, which results in the following contribution:Z

½Dη0Dχ0�e−
R
X
LGrass ¼

ffiffiffiffi
τ2

p
4π

dτ̄
dā

∂ τ̄ð
ffiffiffiffiffiffiffi
2τ2

p
B½F − 4πb; J�Þ:

ð11Þ
In the expression above, B∶H2ðXÞ ×H2ðXÞ → Z is the
bilinear form defined as Bða; bÞ ≔ R

X a ∧ b, while J
denotes a polarization J ∈ H2ðXÞ normalized by QðJÞ≡
BðJ; JÞ. Finally, the class b that appears in Eq. (11) is
defined as:

b ≔
ImðρÞ
τ2

; ð12Þ

where ρ is an elliptic variable defined as ρ ≔ x
2π

du
da. The

definitions of these variables should not worry the reader as
they come out of the computation and they are designed so as
to simplify the presentation [13]. The crucial element to
observe is the ability to write the result as a total derivative
with respect to the “kernel” Kðk̃Þ ¼ ffiffiffiffiffiffiffi

2τ2
p

Bðk̃ − 4πb; JÞ,
where k̃ ≔ ½F �=4π and k̃ ¼ k − α

2
δS.

D. Photon contribution

The next ingredient we need to consider is the contri-
bution to the path integral from the U(1) flux sector:

Zphoton ¼
Z

½DA� exp
�
−
Z
X

{
∘

16π
ðτ̄jFþj2 þ τjF−j2Þ

�
:

ð13Þ
To this end, we introduce the conjugacy class μ ∈
H2ðX;Z2Þ such that the flux k̃ ∈ H2ðX;Zþ μÞ. This
contribution takes the form of a theta function [21]:

Zphoton ¼
X
k̃

expð−π{∘ τ̄ k̃2þ − π{
∘
τk̃2−Þ: ð14Þ

Combining the remainders of the Grassmann integration of
(11) together with Eq. (14) as well a standard prefactor
ð−1ÞKX;w2 where KX is the canonical class of X and w2 the
second Stiefel-Whitney class of the bundle that the gauge
field belongs to, we obtain a (modified due to the surface
defect) Siegel-Narain theta function [3]:

Ψ̃J
μ½K�ðτ; ρ; αÞ ¼ e−2πτ2b

2
þ
X

k̃∈Λþμ

∂ τ̄Kðk̃Þð−1ÞBðk̃;KXÞ

× e−π{
∘
τ̄ k̃2þ−π{

∘
τk̃2−e−2π{

∘
Bðk̃;αm

2
δSÞ

× e−2π{
∘
Bðk̃þ;ρ̄Þ−2π{∘Bðk̃−;ρÞ: ð15Þ

In the limit ðαe; αmÞ → ð0; 0Þ, one obtains the Siegel-
Narain theta function for the theory without surface defects
[13]. In order for the modular invariance of the integral to
be satisfied, it is required that αe ∈ Z for SU(2) theories
and αe ∈ 2Z for SO(3) theories as one can verify by
making the appropriate modular transformations (see
Supplemental Material [22]).

III. EVALUATION OF THE u-PLANE INTEGRAL

Having analyzed the factors that contribute to the
u-plane integral for the theory with surface defects, we
can combine them together as follows:

ZJ
u ¼

Z
B
da ∧ dāνðτÞfðp; x; S̃ÞΨ̃J

μ½K�ðτ; τ̄; αÞ; ð16Þ

where fðp; x; S̃Þ ≔ e2puþx2GðuÞþS̃2HðuÞ and a; ā in the path
integral’s measure are the only remaining zero modes to be
integrated. Within the function fðp; x; S̃Þ of Eq. (16) above,
except for the contact terms corresponding to GðuÞ and
HðuÞ there exists another contribution e2pu where p
corresponds to the class of a point [3]. The u-plane integral
is indexed by the choice of the period point J. One would
expect that in a topological theory the dependence on
period points (families of metrics) should not matter. For
the class of manifolds we are interested in, it turns out that
the theory is piecewise topological, quasitopological, in the
sense that there exist families of metric representatives in
H2ðXÞ where ZJ

u is a constant and its value only changes
after crossing certain “walls” [3].

A. Zu as an integral over H̃

In Eq. (16) the domain of integration is the Coulomb
branch B, parametrized by a; ā or u; ū by a change of
coordinates [9]. Nevertheless, the u order parameter is
related to the holomorphic gauge coupling as [3]:

uðτÞ ¼ ϑ42ðτÞ þ ϑ42ðτÞ
2ϑ22ðτÞϑ23ðτÞ

: ð17Þ

The intuition behind this relationship lies in the fact that the
Coulomb branch B is isomorphic toHwith three punctures,
Hnf∞;�1g [3,9] which can be realized as the modular
domain H=Γ0ð4Þ ≔ H̃. Therefore, it is possible to express
Zu as an integral over H̃ with coordinates τ; τ̄, after the
transformation νðτÞ → da

dτ νðτÞ, as follows:

ZJ
u ¼

Z
H̃
dτ ∧ dτ̄νðτÞfðp; x; S̃ÞΨJ

μ½K�ðτ; τ̄; αÞ: ð18Þ

Notice that the integrand of ZJ
u is modular invariant with

respect to Γ0ð4Þ ⊂ SLð2;ZÞ as required. This is discussed
in detail in Sec. F of the Supplemental Material [22] as well
as in [13].
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B. Discussion on the domain of integration

The domain of integration H̃ corresponds to six copies of
the fundamental domain F∞ of SLð2;ZÞ [3]:

H̃ ≅
�
⋃
3

l¼0

TlF∞

�
∪ SF∞ ∪ T2SF∞; ð19Þ

where T, S are the generators of the SLð2;ZÞ group. The
first four domains correspond to the semiclassical limit,
while the last two correspond to the monopole point
(u ¼ 1) and the dyon point (u ¼ −1) of the Coulomb
branch B [3].
Integrals of modular invariant integrands of the form

dτ ∧ dτ̄hðτ; τ̄Þ, such as the integrand of Eq. (18), can be
evaluated, in special cases in a quite straightforward way.
These cases involve integrands that can be expressed as the
total antiholomorphic derivative to τ̄ of a very specific
function Ĥ with the property [13]:

∂Ĥðτ; τ̄Þ
∂ τ̄ ¼ hðτ; τ̄Þ: ð20Þ

Using (20) we can try to find such a function Ĥ whose
antiholomorphic derivative corresponds to the Siegel-
Narain theta function ΨJ

μ of Eq. (18). To this end, we
define the following theta function [13,14]:

Θ̂JJ0
μ ½K� ¼

X
k∈Λþμ

1

2
Kðk̃; J; J0Þð−1ÞBðk̃;KXÞ

× q−
k2
2 expð−2π{∘Bðk̃; ρÞÞ; ð21Þ

where

K½k̃; J; J0� ¼ EðtBðk̃þ b; JÞÞ − sgnðtBðk̃þ b; J0ÞÞ: ð22Þ

In this expression t ¼ ffiffiffiffiffiffiffi
2τ2

p
, q ¼ expð2π{∘τÞ, J0 and

arbitrary element inH2ðXÞ and E, sgn are the error function
and sign function respectively defined in the Supplemental
Material [22]. Θ̂ corresponds to the modular completion of
a mock modular formΘ [13,16]. One can readily verify that
for gðτÞ ¼ νðτÞfðp; x; S̃Þ and ĤJJ0

μ ¼ gðτÞΘ̂JJ0
μ we have:

∂ĤJJ0
μ ðτ; τ̄Þ
∂ τ̄ ¼ νðτÞfðp; x; S̃ÞΨJ

μðτ; τ̄Þ; ð23Þ

that is the integrand of Eq. (18).

C. Integrating Zu

The final step in our computation amounts to performing
the integral of Eq. (18) using Eqs. (21) and (23):

ZJ
u ¼

Z
dτ ∧ dτ̄ĤJJ0

μ ½Kðk̃; J; J0Þ�ðτ; τ̄; αÞ: ð24Þ

The integral Eq. (24) can be interpreted as a contour
integral on the Coulomb branch around the three singular
points f∞;�1g as:

ZJ
u ¼

I
∂ðBÞ

du

�
da
du

�
ĤJJ0

μ ½Kðk̃; J; J0Þ�ðτ; τ̄; αÞ; ð25Þ

which amounts to extracting the q0 coefficient of the
integrand for each of the six copies of the fundamental
domain. This allows to express ZJ

u for the theory with
surface defects as:

ZJ
u ¼ 4

��
da
du

�
ĤJJ0

μ ½Kðk̃Þ�ðτ; τ̄; αÞ
�
q0

þ ½SF �q0 þ ½T2SF �q0 : ð26Þ

In this expression, by abusing the notation, the last two
summands correspond to taking the S and T2S transform of
the first summand so as to include the contributions from
the monopole and dyon points on the Coulomb branch B.
We stress that the S appearing in Eq. (26) does not denote
the surface defect. In practice one can substitute Ĥ with H
in Eq. (26), which amounts to substituting the completed Θ̂
with the mock theta function Θ (by substituting the error
function EðuÞ in the kernel with the sign function sgnðuÞ),
due to the fact that only the q0 terms contribute.
The careful reader might be puzzled by the fact that in

Eq. (26) the left-hand side (lhs) shows a dependency on J
only while the right-hand side (rhs) shows a dependency on
both J, J0. The reason of this ambiguity has been addressed
in [13,14]. Essentially, to perform the computation of ZJ

u
one needs to choose a period point for the manifold X as
well as a “reference” period point J0 which might or might
not represent a physical metric for X. If J0 corresponds to a
physical metric and J ≠ J0 Eq. (26) provides the wall-
crossing formula for Zu from a chamber where the metrics
of the manifold are represented by J to the metrics
represented by J0. For this reason, the effective low energy
theory of DW theory can be coined as “quasitopological.”
The theory does have a piecewise metric dependence such
that the values of the path integral and correlators jump
discontinuously between chambers but are constant within
each one of them.
Finally, note that the convergence properties of integrals

of the form (18) and (24) are far from trivial. However, in
Ref. [14] is was proven that under a certain regularization
scheme, they are well defined asymptotically.

IV. SUMMARY AND CONCLUSIONS

Using recent results on the connections of Coulomb
branch integrals of the low energy effective DW theory and
mock modular forms [13–15] we were able to derive an
explicit expression of the u-plane integral Zu in the
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presence of surface defects in terms of the modular
completion of a mock theta function. The result has a
dependence on the pair of electric and magnetic charges α
of the defect S as well as its cohomology class. The main
result of Eq. (26) corresponds to contribution of the
Coulomb branch to the low energy theory on a simply
connected four-manifold with bþ2 ¼ 1. A natural and
generic extension is to derive such a result for a generic
nonsimply connected four-manifold using recent results
from [23] and/or for theories with matter representations.
Surface defects have physical interest since they provide

laboratories to study the behavior of supersymmetric gauge
theories where the gauge field can become singular while
mathematically they correspond to interesting bundle
extensions. Furthermore, as shown in Eq. (1), Zu together
with ZSW correspond to the full path integral of the theory

(with certain field insertions to be precise) and Z is known
to reproduce the (ramified) Donaldson invariants of the X in
the presence of surface defects. It is natural to ask whether
such interesting objects can be studied in the context of
other twisted gauge theories such as the N ¼ 4 Vafa-
Witten theory. We leave this for future work.
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