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We establish a holographic QCD model for four flavors, where a light scalar field X and a heavy scalar
field H are introduced separately. The H field is responsible for the breaking of SUðNf ¼ 4Þ to
SUðNf ¼ 3Þ. The ground state and its radial Regge excitation of meson spectra in the light flavor sector
and heavy flavor sector as well as the light-heavy mesons are well in agreement with the Particle Data
Group. Due to the additional introduction of the H field in the model, different Regge slopes for light and
heavy mesons can be achieved.
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I. INTRODUCTION

There are six flavors of quarks as fundamental building
blocks of matter, u, d, s in a light flavor sector with a
current quark mass ranging from several MeV to hundred
MeVand c, b, t in a heavy flavor sector with a current mass
of 1.5–172 GeV, which is much larger than the QCD scale
ΛQCD; thus, the flavor symmetry is badly broken. The chiral
symmetry and its spontaneous breaking is dominant in the
light flavor sector while the heavy flavor sector is charac-
terized by heavy quark symmetry [1]. Apart from the
puzzles of flavor hierarchy and flavor desert issues [2], the
heavy flavor sector, especially hadrons composed of charm
quarks, attracts much attention both in particle physics and
heavy ion physics. Recently, the Belle Collaboration and
the BESIII Collaboration have reported the observations of
multiquark exotics with heavy flavor, see review article [3].
On the other hand, charmonium suppression was suggested
as a signal of deconfinement phase transition almost
35 years ago [4] and has been always an important topic
in heavy ion collisions.
Theoretically, because the large mass of a heavy quark,

multienergy scales from high-energy perturbative to low-
energy nonperturbative contributions are involved in the
calculations, and the description of hadrons containing one
or two heavy quarks is rather challenging. A nonrelativistic
treatment of the heavy quarkonium dynamics has been
developed in nonrelativistic QCD, and the heavy quark

effective theory has been used to describe systems with
only one heavy quark, see review article [5]. Also an
extended linear sigma model for four quark flavors has
been developed in Ref. [6], where light flavor mesons and
light-heavy flavor mesons as well as charmonium can be
described reasonably well.
In recent decades, the gravity/gauge duality, or anti-de

Sitter/conformal field theory (AdS=CFT) correspondence
[7–9] offers a new possibility to tackle the difficulty of
strongly coupled gauge theories, for reviews see Ref. [10].
Much effort has been devoted to the study of nonperturba-
tive QCD properties from top-down and bottom-up
approaches [11–19]. The “bottom-up” holographic models
of QCD based on AdS=CFT have emerged as an effective
approach to the low energy phenomenology of QCD,
which have been widely and successfully used in describ-
ing hadron physics, especially light flavor hadron spectra
[20–24]. On the other hand, the heavy flavor hadron spectra
has been seldom investigated in the framework of holo-
graphic QCD until very recently [25–29].
The hard-wall holographic QCDmodel has been directly

extended to four flavors in Refs. [28,29], which in some
sense can be regarded as the 5D version of the extended
linear sigma model for four quark flavors [6], where
the ground states of light flavor mesons and light-heavy
flavor mesons as well as charmonium can be described.
A holographic model for heavy-light mesons has been
discussed in [25]. Holographic heavy-light chiral effec-
tive action in the D4-D8 system has been constructed
in [26,27].
In this work, we establish a holographic QCD model for

four flavors Nf ¼ 4, where the ground states and the higher
excitation states of light flavor mesons and light-heavy
flavor mesons as well as charmonium can be generated.
Moreover, different radial Regge slopes for light flavor
spectra and heavy flavor meson spectra can be realized in
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this framework. The paper is organized as following: After
the Introduction, in Sec. II, we introduce the framework
of the Nf ¼ 4 holographic model. Then, in Secs. III and IV,
we introduce how to calculate the meson spectra and decay
constant, and we show our numerical results in Sec. V. Last,
we give the conclusions in Sec. VI.

II. 5D MODEL SETUP

TheQCDcan be described as a holographic 5-dimensional
(5D) model according to AdS=CFT duality. In this section,
we introduce the holographic QCD model, which includes
the complex scalar fields X and two gauge fields La

M and
Ra
M, which correspond to the hq̄RqLi and hq̄L;RγμtaqL;Ri

operators from boundary theory, respectively [20], where
ta; a ¼ 1; 2;…N2

f − 1 are the generators of the SUðNfÞ
group. In this paper, we take Nf ¼ 4 and let the generators
satisfy TrðtatbÞ ¼ 1

2
δab. The scalar field X describes the

breaking of the chiral symmetry of light flavor quarks in
QCD, at the UV boundary, which has XðzÞjz→zUV →
Mqzþ σz3. It can be seen that the first term describes
the explicit breaking of the chiral symmetry due to the
nonzero quark mass, and the second term describes the
chiral condensation of QCD. Unlike the traditional soft-
wall and hard-wall models, the dilaton field and hard
cutoff zm are introduced simultaneously in this model.
With reference to [21], we introduce the dilaton field ϕ ¼
μ2z2 to implement the linear Regge behavior of the light
hadrons, which contains information about the gluon
dynamics. It should be clarified that the Regge trajecto-
ries in this paper describe the slope of the radial
excitation rather than the spin/orbit excitation. Here, μ2

is proportional to the slope of Regge trajectories of light
flavor mesons. The reason for the introduction of hard
cutoff is to realize the difference in Regge slopes of
light and heavy mesons, which has almost no effect on
light mesons, similar to the soft-wall model, while for
heavy mesons the effect is similar to the hard-wall model
due to the heavy quark mass.
In addition to this, another scalar field H is introduced to

describe the difference between the light and heavy quark
masses. Since the scalar field X breaks the SUðNfÞL ×
SUðNfÞR ≃ SUðNfÞV × SUðNfÞA symmetry of the system
to SUðNfÞV , the residual symmetry makes the equations
of motion of the light vector mesons indistinguishable
from those of the charmonium. Therefore, the H field is
introduced to describe the difference between the ρ mesons
and the J=ψ mesons. The H field acts similarly to the Ψ
field of the D4-D8 model [26,27] and arises from the large
difference between the light and heavy quark masses. From
the top-down point of view, this difference is described by
the distance of the light and heavy flavor brane, thus
introducing the Ψ field in the DBI action. Equivalently, by
introducing the H field, we break the residual SUVðNfÞ

symmetry to SUVðNf − 1Þ. Therefore, the suitable con-
figuration for the auxiliary H field can break SUð4ÞV
symmetry to SUð3ÞV in the case of Nf ¼ 4.
Therefore, the total 5D action is

SM ¼ −
Z

zm

ϵ
d5x

ffiffiffiffiffiffi
−g

p
e−ϕTr

�
ðDMXÞ†ðDMXÞ þm2

5jXj2

þ 1

4g25
ðLMNLMN þ RMNRMNÞ

þ ðDMHÞ†ðDMHÞ þm2
5jHj2

�
; ð1Þ

where DMX ¼ ∂MX − iLMX þ iXRM and DMH ¼
∂MH − iV15

MH − iHV15
M are the covariant derivative of the

scalar field X and H, respectively. According to [20],
the coupling constant g25 ¼ 12π2=Nc. The 5-dimensional
masses of the scalar fields H and X are fixed to
m2

5 ¼ ΔðΔ − 4Þ ¼ −3, due to the conformal dimension
of the operator hq̄qi. The strength of the non-Abelian gauge
field LM and RM are defined as

LMN ¼ ∂MLN − ∂NLM − i½LM; LN �;
RMN ¼ ∂MRN − ∂NRM − i½RM; RN �; ð2Þ

with LM ¼ La
Mt

a and RM ¼ Ra
Mt

a. It is convenient to
rewrite the left and right gauge fields in terms of vector
and axial fields, i.e., LM ¼ VM þ AM and RM ¼ VM − AM.
The bilinear field X can be decomposed as

X ¼ eiπ
ataX0eiπ

btb ; ð3Þ

where X0 ¼ diag½vlðzÞ; vlðzÞ; vsðzÞ; vcðzÞ�. Similar to the
case of Nf ¼ 2, the vl;s;cðzÞ field has the behavior of
vl;s;cðzÞ → Ml;s;czþ Σl;s;cz3 at the UV boundary. The
auxiliary field H is given as H ¼ diag½0; 0; 0; hcðzÞ�.
Since the H field reflects the effect of the charm
quark mass, the behavior of hc at the UV boundary has
hcðzÞ → mcz. It is worth noting that we consider mc ≠ Mc
in order to obtain better results of the vector meson mass
spectra.
In this paper, we do not consider the backreaction of the

flavor brane, so the Poincare patch of the 5-dimensional
AdS spacetime is

ds2 ¼ L2

z2
ðdz2 þ ημνdxμdxνÞ; ð4Þ

with μ, ν ¼ 0, 1, 2, 3 and ημν ¼ diag½−1; 1; 1; 1�. Without
loss of generality, the AdS radius L is set to 1. According to
the AdS=CFT duality, the 5-dimensional coordinate z
describes the running of the energy scale, and z → 0
corresponds to UV boundary and z → zm to the IR
boundary.
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A. Expansion of the action

To obtain the meson masses as well as the three- and four-point coupling constants, the action Eq. (1) is expanded to
quartic order, which is given as

S ¼ Sð0Þ þ Sð2Þ þ Sð3Þ þ Sð4Þ;

where

Sð0Þ ¼ −
Z

zm

0

d5x

�
e−ϕðzÞ

z3
ð2v0lðzÞv0lðzÞ þ v0sðzÞv0sðzÞ þ v0cðzÞv0cðzÞÞ þ

e−ϕðzÞ

z5
m2

5ð2vlðzÞ2 þ vsðzÞ2 þ vcðzÞ2Þ

þ e−ϕðzÞ

z3
ðh0cðzÞh0cðzÞÞ þ

e−ϕðzÞ

z5
m2

5hcðzÞ2
�
; ð5Þ

Sð2Þ ¼ −
Z

zm

0

d5x

�
ηmn e

−ϕðzÞ

z3
ðð∂mπ

a − Aa
mÞð∂nπ

b − Ab
nÞMab

A − Va
mVb

nMab
V þ V15

m V15
n m15;15

V Þ

þ e−ϕðzÞ

4g25z
ηmpηnqðVmnVpq þ AmnApqÞ

�
; ð6Þ

Sð3Þ ¼ −
Z

zm

0

d5x

�
ηmn e

−ϕðzÞ

z3
ð2ðAa

m − ∂mπ
aÞVb

nπ
cgabc þ Va

mð∂nðπbπcÞ − 2Ab
nπ

cÞhabcÞ

þ e−ϕðzÞ

2g25z
ηmpηnqðVa

mnVb
pVc

q þ Va
mnAb

pAc
q þ Aa

mnVb
pAc

q þ Aa
mnAb

pVc
qÞfbca

�
; ð7Þ

Sð4Þ ¼ −
Z

zm

0

d5x

�
ηmn e

−ϕðzÞ

z3

�
½∂mπ

a − Aa
m�
�
Ab
nπ

cπd −
1

3
∂nðπbπcπdÞ

�
labcd þ Va

mVb
nπ

cπdðhabcd − gacbdÞ

þ
�
1

2
∂mðπaπbÞ − Aa

mπ
b

��
1

2
∂nðπcπdÞ − Ac

nπ
d

�
kabcd

�
þ e−ϕðzÞ

4g25z
ηmpηnqðVa

mVb
nVc

pVd
q þ Aa

mAb
nVc

pVd
q þ Va

mVb
nAc

pAd
q

þ Aa
mAb

nAc
pAd

q þ 2Va
mAb

nVc
pAd

q þ 2Aa
mVb

nVc
pAd

qÞfabcd
�
: ð8Þ

It is worth noting that ηmn is the 5-dimensional Minkowski spacetime metric, and VðAÞmn ¼ ∂mVðAÞn − ∂nVðAÞm is the
Abelian field strengths. Here, Mab

A , Mab
V , mab

V , habc, gabc, gabcd, labcd, habcd, kabcd, and fabcd are defined as

Mab
A ¼ Trðfta; X0gftb; X0gÞ; Mab

V ¼ Trð½ta; X0�½tb; X0�Þ;
m15;15

V ¼ TrðfH; t15gfH; t15gÞ; fabcd ¼ fαabfαcd;

habc ¼ iTrð½ta; X0�ftb; ftc; X0ggÞ; gabc ¼ iTrðfta; X0g½tb; ftc; X0g�Þ;
habcd ¼ Trð½ta; X0�½tb; ftc; ftd; X0gg�Þ; gabcd ¼ Trð½ta; ftb; X0g�½tc; ftd; X0g�Þ;
labcd ¼ Trðfta; X0gftb; ftc; ftd; X0gggÞ; kabcd ¼ Trðfta; ftb; X0ggftc; ftd; X0ggÞ; ð9Þ

with structure constant fabc of SUð4Þ Lie algebra.
The vectors, axial vectors, and pseudoscalars mesons can be described by 4 × 4 matrices,

V ¼ Vata ¼ 1ffiffiffi
2

p

0
BBBBBB@

ρ0ffiffi
2

p þ ω0ffiffi
6

p þ ψffiffiffiffi
12

p ρþ K�þ D̄�0

ρ− − ρ0ffiffi
2

p þ ω0ffiffi
6

p þ ψffiffiffiffi
12

p K�0 D�−

K�− K̄�0 −
ffiffi
2
3

q
ω0 þ ψffiffiffiffi

12
p D�−

s

D�0 D�þ D�þ
s − 3ffiffiffiffi

12
p ψ

1
CCCCCCA
; ð10Þ
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A ¼ Aata ¼ 1ffiffiffi
2

p

0
BBBBBB@

a0
1ffiffi
2

p þ f1ffiffi
6

p þ χc1ffiffiffiffi
12

p aþ1 Kþ
1 D̄0

1

a−1 − a0
1ffiffi
2

p þ f1ffiffi
6

p þ χc1ffiffiffiffi
12

p K0
1 D−

1

K−
1 K̄0

1 −
ffiffi
2
3

q
ðf1Þ þ χc1ffiffiffiffi

12
p D−

s1

D0
1 Dþ

1 Dþ
s1 − 3ffiffiffiffi

12
p χc1

1
CCCCCCA
; ð11Þ

π ¼ πata ¼ 1ffiffiffi
2

p

0
BBBBBB@

π0ffiffi
2

p þ ηffiffi
6

p þ ηcffiffiffiffi
12

p πþ Kþ D̄0

π− − π0ffiffi
2

p þ ηffiffi
6

p þ ηcffiffiffiffi
12

p K0 D−

K− K̄0 −
ffiffi
2
3

q
ηþ ηcffiffiffiffi

12
p D−

s

D0 Dþ Dþ
s − 3ffiffiffiffi

12
p ηc

1
CCCCCCA
: ð12Þ

By substituting the above matrices into the action Eqs. (6),
(7), (8), the wave functions, mass spectra, decay constants
and coupling constants of the mesons can be obtained.

B. Scalar vacuum expectation value

The equations of motion (EOMs) of scalar vacuum
expectation value vl;s;c can be obtained by Eq. (5),

−
z3

e−ϕðzÞ
∂z

e−ϕ

z3
∂zvqðzÞ þ

m2
5

z2
vqðzÞ ¼ 0: ð13Þ

The analytic solutions are

vqðzÞ ¼ C1ðqÞz
ffiffiffi
π

p
U

�
1

2
; 0;ϕ

�
− C2ðqÞzL

�
−
1

2
;−1;ϕ

�
;

ð14Þ

where U is a confluent hypergeometric function, and L is
the generalized Laguerre polynomial. Here, the q following
the constants C1 and C2 indicate that for different quarks
the values are different. Expanding vq at the UV boundary
gives

vqðzÞjz→0 ¼ 2C1ðqÞzþ
�
C2ðqÞμ2 þ C1ðqÞ

�
−μ2 þ 2γEμ

2

þ 2μ2Logzþ 2μ2Logμþ μ2Ψ
�
3

2

���
z3;

ð15Þ

with the Euler’s constant γE and the digamma functionΨ. It
can be seen that the quark mass Mq is related to C1ðqÞ,
while the quark condensation Σq is related to C1ðqÞ and
C2ðqÞ. Referring to Ref. [23], C2ðqÞ will produce the
nonlinear spectra of a1 mesons, so we set C2ðqÞ ¼ 0. For
the auxiliary field hc, there is similar result,

hcðzÞ ¼ D1z
ffiffiffi
π

p
U
�
1

2
; 0;ϕ

�
−D2zL

�
−
1

2
;−1;ϕ

�
: ð16Þ

As we discussed above, we setD2 ¼ 0. This means that the
difference between the light-flavored and heavy-flavored
vector meson masses comes from the mass term of the
heavy quark.

III. WAVE FUNCTIONS, MESONS SPECTRA,
AND DECAY CONSTANTS

A. Wave functions and mesons spectra

The EOMs of the transverse part of vector fields are
obtained by Eq. (6),

�
−

z
e−ϕ

∂z
e−ϕ

z
∂z þ

2g25ðmab
V −Mab

V Þ
z2

�
Va
μ⊥ðq; zÞ

¼ −q2Va
μ⊥ðq; zÞ; ð17Þ

where Vz;a ¼ 0 gauge is considered, and Vμ;a
⊥ satisfy

∂μV
μ;a
⊥ ¼ 0. Also, Va

μ⊥ðq; zÞ are the 4D Fourier transform
of Va

μ⊥ðx;zÞ ¼
R
d4qeiqxVa

μ⊥ðq;zÞ. According to AdS=CFT
duality, the fields Va

μ⊥ðq; zÞ can be written as Va
μ⊥ðq; zÞ ¼

VðnÞa
μ⊥ ðq; zÞ þ V0a

μ⊥Va⊥ðq; zÞ, where Va⊥ðq; zÞ are bulk-to-
boundary propagators and V0a

μ⊥ respect to the source.
The discrete mass spectra and wave functions can be

obtained by setting KK towers VðnÞa
μ⊥ ðq; zÞ with boundary

conditions VðnÞa
μ⊥ ðzÞjq;z→0 ¼ 0 and ∂zV

ðnÞa
μ⊥ ðzÞjz→zm ¼ 0.

Similar to the vector fields, the EOMs of the transverse
part of axial vector fields are obtained by Eq. (6),

�
−

z
e−ϕ

∂z
e−ϕ

z
∂z þ

2g25M
ab
A

z2

�
Aa
μ⊥ðq; zÞ ¼ −q2Aa

μ⊥ðq; zÞ;

ð18Þ
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where Az;a ¼ 0 gauge and transverse condition ∂μA
μ;a
⊥ ¼ 0

are considered.Also,Aa
μ⊥ðq; zÞ are the 4DFourier transforms

of Aa
μ⊥ðx;zÞ¼

R
d4qeiqxAa

μ⊥ðq;zÞ. The fields Aa
μ⊥ðq; zÞ

can also be written as Aa
μ⊥ðq; zÞ ¼ AðnÞa

μ⊥ ðq; zÞ þ
A0a
μ⊥Aa⊥ðq; zÞ, with bulk-to-boundary propagators Aa⊥ðq; zÞ

and KK towers of axial vector mesons AðnÞa
μ⊥ ðq; zÞ. For the

axial vectormesonswave functions, the boundary conditions

of the axial vector field A are set as AðnÞa
μ⊥ ðq; zÞjz→0 ¼ 0

and ∂zA
ðnÞa
μ⊥ ðq; zÞjz→zm ¼ 0.

The longitudinal part of the axial vector fields and the
pseudoscalar fields have mixing, and their EOMs can be
described through Eq. (6) as

q2∂zφ
aðq; zÞ þ 2g25M

ab
A

z2
∂zπ

aðq; zÞ ¼ 0; ð19Þ

z
e−ϕ

∂z

�
e−ϕ

z
∂zφ

aðq; zÞ
�

−
2g25M

ab
A

z2
ðφaðq; zÞ − πaðq; zÞÞ ¼ 0; ð20Þ

where φ is the longitudinal part of the axial vector
fields Aμk ¼ ∂μφ. Similarly, the boundary condition of
the pseudoscalar fields are set to πðnÞaðq; zÞjz→0 ¼
φðnÞaðq; zÞjz→0 ¼ 0 and ∂zφ

ðnÞaðq; zÞjz→zm ¼ 0.
However, for the lowest mode obtained under the above

boundary conditions, numerical calculations show that it is
not the Goldstone mode, and the lowest eigenvalue does not
converge to 0 for quark mass Mq → 0. To obtain the
Goldstone mode, the quark mass Mq ¼ 0 and the eigen-
value q2 ¼ 0 are chosen, and the analytical solution of φ is
ðeμ2z2 − 1Þ=ð2μ2Þ= given by Eqs. (19) and (20). Obviously,
φ does not satisfy ∂zφ

ðnÞaðq; zÞjz→zm ¼ 0 at the IR boun-
dary. Therefore, the boundary condition of the pseudoscalar
meson is set to πðnÞaðq; zÞjz→0 ¼ φðnÞaðq; zÞjz→0 ¼ 0 and
∂zφ

ðnÞaðq;zÞjz→zm ∝ ∂zπ
ðnÞaðq;zÞjz→zm for the Goldstone

mode.

B. Decay constants

Similar to Ref. [20], we derive the decay constants of
pseudoscalar, vector, and axial vector mesons in this
section. According to the AdS=CFT correspondence,
the vector current two-point function can be obtained by
differentiating the on-shell action twice,

Z
x
eiqxhJaV;μðxÞJbV;μð0Þi¼ δabðqμqν−q2gμνÞΠVðq2Þ; ð21Þ

ΠVðq2Þ ¼ −
e−ϕðzÞ

g25q
2

∂zVðq; zÞ
z

jz¼ϵ→0; ð22Þ

with Vðq; ϵÞ ¼ 1. For the Sturm-Liouville equation
[Eq. (17)], Vðq; zÞ can be expressed as

Vðz0Þ ¼ e−ϕðzÞ

z

X
n

ψ 0
VnðϵÞψVnðz0Þ
q2 −m2

n
; ð23Þ

where ψVn is the eigenfunction of the vector equation
[Eq. (17)] and satisfies the normalization conditionR
dz e−ϕðzÞ

z ψVnψVm ¼ δnm. Taking the above equation to
the two-point function yields

ΠVðq2Þ ¼ −
1

g25q
2

X
n

½e−ϕðϵÞψ 0
VnðϵÞ=ϵ�2

q2 −m2
n

: ð24Þ

Considering the definition of the decay constant
h0jJμV jVðpÞi ¼ ifVpμ, it can be given as

F2
Vn ¼ ½e−ϕðϵÞψ 0

VnðϵÞ=ϵ�2
g25

				
ϵ→0

: ð25Þ

Similar to the vector, the decay constant of the axial vector
meson is

F2
An ¼ ½e−ϕðϵÞψ 0

AnðϵÞ=ϵ�2
g25

				
ϵ→0

; ð26Þ

where ψAn is the eigenfunction of the axial vector part and
satisfies the normalizationcondition

R
dze

−ϕðzÞ
z ψAnψAm ¼ δnm.

Since ΠAðq2Þ → −f2πq2 with q2 → 0, the decay constant
of the pseudoscalar meson is

f2π ¼ −
e−ϕðϵÞ∂zAð0; ϵÞ

ϵg25

				
ϵ→0

; ð27Þ

where Að0; ϵÞ is the solution of Eq. (18) with q ¼ 0
and satisfies the boundary condition A0ð0; zmÞ ¼ 0 and
Að0; ϵÞ ¼ 1.

IV. THREE- AND FOUR-POINT FUNCTIONS

The three-point interaction of mesons can be obtained by
the cubic order term of 5D action. From Eq. (7), it can be
seen that the cubic order of the action can be divided into
four parts SVVV , SVAA, SVAπ , and SVππ , where

SVVV ¼ −
Z

zm

0

d5x
e−ϕðzÞ

2g25z
fbcaVμν;aVb

μVc
ν; ð28Þ

SVAA ¼ −
Z

zm

0

d5x
e−ϕðzÞ

2g25z
fbcaðVμν;aAb

μAc
ν þ 2Aμν;aVb

μAc
νÞ;

ð29Þ

SVAπ ¼ −
Z

zm

0

d5x
e−ϕðzÞ

z3
2Vμ;aAb

μπ
cðgbac − habcÞ; ð30Þ
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SVππ ¼ −
Z

zm

0

d5x
e−ϕðzÞ

z3
Vμ;aπb∂μπ

cðhabc þ hacb − 2gcabÞ:

ð31Þ

Substituting the 5D eigenfunctions of the mesons into
the action, the coupling constants of three-point inter-
actions are obtained as

gVVV ¼
Z

zm

0

dz
e−ϕðzÞ

2g25z
fbcaψa

VðnÞψ
b
VðmÞψ

c
VðkÞ ; ð32Þ

gVAA ¼
Z

zm

0

dz
e−ϕðzÞ

2g25z
fbcaψa

VðnÞψ
b
AðmÞψ

c
AðkÞ ; ð33Þ

gVAπ ¼
Z

zm

0

dz
e−ϕðzÞ

z3
2ψa

VðmÞψ
b
AðmÞψ

c
πðkÞ ðgbac − habcÞ; ð34Þ

gVππ ¼
Z

zm

0

dz
e−ϕðzÞ

z3
ψa
VðnÞψ

b
πðmÞψ

c
πðkÞ ðhabc þ hacb − 2gcabÞ;

ð35Þ

where ψ is the eigenfunction of the mesons.
Similar to the three-point interaction of mesons, the four-

point interaction can be obtained from the quartic order term
of 5D action. From Eq. (8), it can be seen that the quartic
order of the action can be divided into seven parts SVVVV ,
SVVAA, SAAAA, SVVππ , SAAππ , SAπππ , and Sππππ, where

SVVVV ¼ −
Z

zm

0

d5x
e−ϕðzÞ

4g25z
fabcdVμ;aVν;bVc

μVd
ν ; ð36Þ

SVVAA ¼ −
Z

zm

0

d5x
e−ϕðzÞ

4g25z
f2Vμ;aVν;bAc

μAd
νðfabcd þ fcbadÞ þ 2Vμ;aVb

μAν;cAd
νfacbdg; ð37Þ

SAAAA ¼ −
Z

zm

0

d5x
e−ϕðzÞ

4g25z
fabcdAμ;aAν;bAc

μAd
ν ; ð38Þ

SVVππ ¼ −
Z

zm

0

d5x
e−ϕðzÞ

z3
Vμ;aVb

νπ
cπdðhabcd − gacbdÞ; ð39Þ

SAAππ ¼ −
Z

zm

0

d5x
e−ϕðzÞ

z3
Aμ;aAb

μπ
cπdðkacbd − labcdÞ; ð40Þ

SAπππ ¼ −
Z

zm

0

d5x
e−ϕðzÞ

z3
Aμ;a∂μπ

bπcπd
�
lbacd þ labcd

3
þ lacbd

3
þ lacdb

3
− kbcad − kcbad

�
; ð41Þ

Sππππ ¼ −
Z

zm

0

d5x
e−ϕðzÞ

z3
ð∂μπa∂μπ

bπcπd þ ∂zπ
a∂zπ

bπcπdÞ
�
kacbd þ kcabd þ kacdb þ kcadb

4

−
labcd þ lacbd þ lacdb

3

�
: ð42Þ

Similarly, by substituting the eigenfunctions into the action, the four-point coupling constants can be obtained as

gVVVV ¼
Z

zm

0

dz
e−ϕðzÞ

4g25z
fabcdψa

VðnÞψ
b
VðmÞψ

c
VðkÞψ

d
VðjÞ ; ð43Þ

gVVAA ¼
Z

zm

0

dz
e−ϕðzÞ

4g25z
2ψa

VðnÞψ
b
VðmÞψ

c
AðkÞψ

d
AðjÞ ðfabcd þ fcbadÞ; ð44Þ

gAAAA ¼
Z

zm

0

dz
e−ϕðzÞ

4g25z
fabcdψa

AðnÞψ
b
AðmÞψ

c
AðkÞψ

d
AðjÞ ; ð45Þ

gVVππ ¼
Z

zm

0

dz
e−ϕðzÞ

z3
ψa
VðnÞψ

b
VðmÞψ

c
πðkÞψ

d
πðjÞ ðhabcd − gacbdÞ; ð46Þ
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gAAππ ¼
Z

zm

0

dz
e−ϕðzÞ

z3
ψa
AðnÞψ

b
AðmÞψ

c
πðkÞψ

d
πðjÞ ðkacbd − labcdÞ; ð47Þ

gAπππ ¼
Z

zm

0

dz
e−ϕðzÞ

z3
ψa
AðnÞψ

b
πðmÞψ

c
πðkÞψ

d
πðjÞ

�
lbacd þ labcd

3
þ lacbd

3
þ lacdb

3
− kbcad − kcbad

�
; ð48Þ

gππππ ¼
Z

zm

0

dz
e−ϕðzÞ

z3
ðψa

πðnÞψ
b
πðmÞψ

c
πðkÞψ

d
πðjÞ þ ψ 0;a

πðnÞψ
0;b
πðmÞψ

c
πðkÞψ

d
πðjÞ Þ

�
kacbd þ kcabd þ kacdb þ kcadb

4

−
labcd þ lacbd þ lacdb

3

�
; ð49Þ

where 0 represents the derivative with respect to z.

V. NUMERICAL ANALYSIS

In this section, we present the numerical results for the
spectra, decay constants, and coupling constants. In our
holographic model, there are six physical parameters:
quadratic term coefficient μ of dilaton field, IR cutoff
zm, constants of vacuum expectation values C1ðqÞ for
q ¼ ðl; s; cÞ, and constant of auxiliary field D2. These
parameters are fixed by the following meson masses, as
specified in Table I.
Since the equation of motion of the vector meson ρ has

Ma
V
2 ¼ 0, it is used to fit μ. The parameter μ is chosen to be

0.43 GeV, in which case both the mass and the Regge slope
of ρ meson can be fitted. After μ is chosen, the masses and
Regge slopes of the mesons a−1 , K

�−, and χc1 are used to fix
C1ðlÞ, C1ðsÞ, and C1ðcÞ. The remaining two parameters zm
and D1 are fixed by the mass of J=ψ and its Regge slope,
where the Regge slope is replaced with the mass of
ψð3770Þ. Thus, the parameters are finally fixed by the
mass of J=ψ and ψð3770Þ. Through the expansion of
the vacuum expectation value vl;s;c at UV boundary, the
parameters C1ðlÞ, C1ðsÞ, and C1ðcÞ can be translated into
quark massesMl;s;c and quark condensation Σl;s;c. With the
numerical fitting strategy described above, the quark
masses and condensation are chosen as Ml ¼ 140 MeV,
Ms ¼ 200 MeV,Mc ¼ 1200 MeV and Σl ¼ ð135 MeVÞ3,
Σs ¼ ð152 MeVÞ3, Σc ¼ ð276 MeVÞ3. Similarly, the
parameter D1 can also be translated into quark mass and
condensation as mc ¼ 1020 MeV and σc ¼ ð262 MeVÞ3.

QCD phenomenology suggests hs̄si ∼ 0.8hl̄li and hc̄ci ∼ 0.
The large values of the condensation of strange and charm
quarks are a problem of the soft-wall model itself. For the
field X, which satisfies the second order differential
equation [Eq. (13)], there are two integration constants
C1 and C2 corresponding to the quark mass and conden-
sation. As stated in [23], C2 leads to a nonlinear behavior of
a1 meson spectrum and is therefore set to 0. The result is
that both quark mass and condensation, which come from
the asymptotic expansion of the X field, depend on a unique
integration constant C1, such that the value of condensation
is proportional to the quark mass. The solution to the
problem is to solve the Einstein-dilaton-scalar system in
which the backreaction of the scalar field is to be
considered.
By fixing the parameters of the model, the masses of

pseudoscalar, vector, and axial vector mesons and their
excited states can be obtained. The model predictions and
experimental data of the mesons masses are listed in
Table II, where the experimental data are taken from [30].
Figure 1 shows the graphical display of Table II.
As can be seen in Fig. 1, for axial vector mesons, the

a1 and K1 mesons results are in good agreement with
the data. For the f1 meson, the results are slightly
deviated from the data because the mixing of s and u, d
quarks are not considered. For D1 and Ds1 mesons, the
model calculations are about 0.2 GeV heavier than the
data. For χc1 mesons, the ground state and the first two
excited states fit the experimental data relatively well,
while the third excited state is about 0.2 GeV heavier
than the data.

TABLE I. Experimental data of meson masses were used to fit the parameters μ, zm, D1, and C1ðqÞ. The experimental data are taken
from [30].

Resonance Quark content JP Experiment (MeV) Model (MeV) Resonance Quark content JP Experiment (MeV) Model (MeV)

ρ0 ūu; d̄d 1− 775 860 a−1 ūd 1þ 1230 1222
K� d̄s; s̄d 1− 892 884 χc1 c̄c 1þ 3511 3464
J=ψ c̄c 1− 3097 3098 ψð3770Þ c̄c 1− 3773 3712
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For vector mesons, the calculations are degenerate
because the model cannot distinguish between ρ and ω
mesons. From the results, it can be seen that the ρ meson
fits better compared to the ω. This is also understandable
due to the mixing of the s quark with u, d quarks being
neglected. For the ω and ϕ mesons, their equations of
motion are the same as for the rho meson. Since the
equation of motion shows that it is closer to the pure uūdd̄
state, which is more consistent with the ωmeson, the model
is chosen for the ω meson. For the K� meson, its excited
state results are about 0.2 GeV lighter than the experimental
data, so it can be seen that its Regge behavior does not fit
very well. The reason for this result could be that the mass
of the s quark fitted by the model is too close to the mass of
the u, d quark. For the D� meson, the model gives the
ground state mass that is about 0.3 GeV heavier than the
data, while the excited state fits relatively well. For ψ
mesons, the first and third excited states do not fit very well
compared to the data.
It is worth noting that only the excited state D�

s1ð2700Þ
was found in the experiment, which is close to the mass of
the second excited state ofDs1 in the model. Therefore, our
model predicts the possible existence of a new excited state
with a mass of roughly 2436 MeV.

For pseudoscalar mesons, the second, third, and
fourth excited states of π mesons are about 0.15–
0.3 GeV lighter compared to the data, so the Regge
slope of π is not well matched. From the data, it can be
found that the Regge slope of the π meson is higher
than that of other light mesons, so it is challenging to
solve this problem in the holographic model. For η
mesons, the calculated excited state masses are about
0.25 GeV heavier compared to the data, but their Regge
behavior remains the same. The reason for this may also
come from the absence of the mixing term. Since the
mass of the η0 meson is associated with the chiral
anomaly, the η meson is considered in the model. For D
and Ds mesons, their ground state calculations are
0.2 GeV lighter compared to the data, while the ground
state results for ηc mesons are 0.4 GeV lighter.
Due to the introduction of the IR cutoff zm and additional

auxiliary field H, different Regge trajectories for light and
heavy mesons can be achieved. Among them, the H field
serves to improve the intercept of the Regge behavior,
while the IR cutoff zm can increase the slope of the heavy
mesons. The Regge trajectories of light mesons and charm
mesons can be seen in Fig. 2, where different colors
represent different components of mesons.

TABLE II. The masses of the mesons are predicted by the model. The experimental data are taken from [30].

Quark
content 0−

Experiment
(MeV)

Model
(MeV) 1−

Experiment
(MeV)

Model
(MeV) 1þ

Experiment
(MeV)

Model
(MeV)

ūu; d̄d; s̄s π0 135� 0.0005 349 ρð770Þ 775� 0.25 860 a1ð1260Þ 1230� 40 1222
πð1300Þ 1300� 100 1446 ρð1450Þ 1465� 25 1216 a1ð1420Þ 1411� 15 1468
πð1800Þ 1810� 10 1649 ρð1570Þ 1570� 98 1490 a1ð1640Þ 1655� 16 1685
πð2070Þ 2070� 35 1835 ρð1700Þ 1720� 20 1727 a1ð1930Þ 1930þ30

−70 1892
πð2360Þ 2360� 25 2021 ρð1900Þ 1909� 42 1957 a1ð2095Þ 2096� 138 2111

ρð2150Þ 2150� 90 2202 a1ð2270Þ 2270þ55
−40 2346

s̄d; d̄s K0 498� 0.013 424 K�ð892Þ 892� 0.26 884 K1ð1270Þ 1253� 7 1328
Kð1460Þ 1482� 19 1546 K�ð1410Þ 1414� 15 1230 K1ð1400Þ 1403� 7 1557
Kð1630Þ 1629� 7 1743 K�ð1680Þ 1718� 18 1500 K1ð1650Þ 1672� 50 1763
Kð1830Þ 1874þ102

−158 1925

ūu; d̄d; s̄s η 548� 0.017 454 ωð782Þ 782� 0.12 860 f1ð1285Þ 1282� 0.5 1369
ηð1295Þ 1294� 4 1585 ωð1420Þ 1410� 60 1216 f1ð1420Þ 1426� 0.9 1593
ηð1475Þ 1475� 4 1779 ωð1650Þ 1670� 30 1490 f1ð1510Þ 1518� 5 1796
ηð1760Þ 1751� 15 1962 ωð1960Þ 1960� 25 1727 f1ð1970Þ 1971� 15 1998
ηð2010Þ 2010þ105

−50 2148 ωð2205Þ 2205� 30 1957 f1ð2310Þ 2310� 60 2214
ωð2290Þ 2290� 20 2202
ωð2330Þ 2330� 30 2462

c̄u; ūc D0 1865� 0.05 1671 D�ð2007Þ0 2007� 0.05 2296 D1ð2420Þ 2422� 0.5 2615
D0ð2550Þ0 2549� 19 2778 D�

1ð2600Þ0 2627� 10 2512
D�

1ð2760Þ0 2781� 31 2756
c̄s; s̄c D�

s 1968� 0.07 1746 D��
s1 2112� 0.4 2227 Ds1ð2460Þ 2460� 0.6 2682
? ? 2436

D�
s1ð2700Þ� 2714� 4 2674

c̄c ηc 2984� 0.5 2600 J=ψð1SÞ 3097� 0.006 3098 χc1ð1PÞ 3511� 0.05 3464
ηcð2SÞ 3637� 1.1 3641 ψð2SÞ 3686� 0.06 3773 χc1ð3872Þ 3872� 0.17 3808

ψð3770Þ 3773� 0.4 3712 χc1ð4140Þ 4147� 2.4 4138
ψð4040Þ 4040� 1 4317 χc1ð4274Þ 4274� 7 4460
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The model predicts the decay constants of the mesons,
and their ratios are shown in Table III. The measurements
are also shown in the table, where the decay constants of
pseudoscalar mesons are from Refs. [30–32] and vector and
axial vector mesons from Ref. [29].
As can be seen from Table III, for pseudoscalar mesons,

the ratios of decay constants are close to the data. Among
them, the ratio fK=fπ is in good agreement with the data,

while the results of ratios fDs
=fD and fηc=fDs

are smaller
than the data by about 0.1.
For the vector and axial vector decay constants, the

model results are compared with Ref. [29]. It can be seen
that for f1=2K� =f1=2ρ , f1=2D�

s
=f1=2D� , and f1=2K1

=f1=2a1 , the model
results are opposite to the Ref. [29] results. The ratio greater
than 1 in our model is less than 1 in Ref. [29], and vice
versa. For this result, it may come from the introduction of

FIG. 1. The meson spectra for Nf ¼ 2þ 1þ 1, where the dashed and solid lines represent the experimental data and model results,
respectively. Different colors indicate different quarks, where the u, d quark, s quark, and c quark are indicated by green, red, and blue,
respectively.
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the dilaton field, which deforms the configuration of the 5D
wave function, generating Regge trajectories while revers-
ing the ratio of the decay constants. In addition, the ratio
f1=2Ds1

=f1=2D1
is also predicted by the model.

In the model, coupling constants for cubic and quartic
vertices can be obtained by substituting the eigenfunctions
of the mesons into Eqs. (32)–(35) and (43)–(49). The ratios
of the coupling constants ðDð�Þ; D; AÞ, ðDð�Þ; Dð�Þ; VÞ,
ðDð�Þ; Dð�Þ; VÞ, and ðψ ; Dð�Þ; D; PÞ are calculated in the
model, and their results are listed in Table IV.

VI. CONCLUSION

In summary, in this paper, the soft-wall model with
Nf ¼ 2[21] is extended to the case ofNf ¼ 4, where a light
scalar field X and a heavy scalar field H are introduced,
separately. The H field is responsible for the breaking of
SUðNf ¼ 4Þ to SUðNf ¼ 3Þ. The ground state and its
Regge excitation of meson spectra in the light flavor sector

and heavy flavor sector as well as the light-heavy mesons
are well in agreement with the Particle Data Group. It is
noticed that with only the X field, the vector meson ρ and
J=ψ are degenerate, and the introduction of the H field can
distinguish ρ and J=ψ . Furthermore, due to the additional
introduction of the H field in the model, different Regge
slopes for light and heavy mesons can be achieved. The
Nf ¼ 4 holographic model consists of six parameters
including the Regge slope μ, quark masses C1ðqÞ with
q ¼ ðl; s; cÞ, and D1. These parameters are fitted to the
experimental masses of ρ, a1, K�, χc1, J=ψ , and ψð3770Þ
mesons. The masses of other pseudoscalars, vectors, and
axial vector mesons as well as the ratio of decay constants
are calculated in the model and compared with the
experimental data. In addition to this, the coupling con-
stants ðDð�Þ; D; AÞ, ðDð�Þ; Dð�Þ; VÞ, ðDð�Þ; Dð�Þ; VÞ, and
ðψ ; Dð�Þ; D; PÞ are also estimated in the model.
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FIG. 2. Comparison of light meson and charm meson Regge slopes, where the hollow triangles and squares represent the experimental
data and model results, respectively. The dashed line is the linear fit of the model results. The different colors indicate the different
components of the mesons, specifically selected as red (l̄l), cyan (S ¼ �1), magenta (s̄s), pink (C ¼ �1), blue (C ¼ �1, S ¼ �1), and
purple (c̄c).

TABLE III. The ratio of decay constants predicted by the model. The measured value are taken from [29–32].

Observable Experiment/LQCD Model Observable Reference [29] Model Observable Reference [29] Model

fK=fπ 1.196 1.199 f1=2K� =f1=2ρ 1.005 0.973 f1=2K1
=f1=2a1

1.085 0.706

fDs
=fD 1.180 1.040 f1=2D�

s
=f1=2D� 0.954 1.951 f1=2Ds1

=f1=2D1

0.504

fηc=fDs
1.576 1.427

TABLE IV. Coupling constants for model calculations.

Observable Model Observable Model

gK�D�D�
s
=gρD�D� 1.038 gK�DDs

=gρDD 0.203
gK1DsD�=ga1DD� 0.433 gψD�

sDK=gψD�Dπ 0.435

YIDIAN CHEN and MEI HUANG PHYS. REV. D 105, 026021 (2022)

026021-10



[1] N. Isgur and M. B. Wise, Phys. Rev. Lett. 66, 1130 (1991).
[2] Z. z. Xing, Phys. Rep. 854, 1 (2020).
[3] N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C. P.

Shen, C. E. Thomas, A. Vairo, and C. Z. Yuan, Phys. Rep.
873, 1 (2020).

[4] T. Matsui and H. Satz, Phys. Lett. B 178, 416 (1986).
[5] N. Brambilla et al. (Quarkonium Working Group), CERN

Yellow Report No. CERN-2005-005, Geneva, CERN, 2005,
p. 487.

[6] W. I. Eshraim, F. Giacosa, and D. H. Rischke, Eur. Phys.
J. A 51, 112 (2015).

[7] J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998).
[8] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys.

Lett. B 428, 105 (1998).
[9] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998).

[10] O. Aharony, S. S. Gubser, J. Maldacena, H. Ooguri, and Y.
Oz, Phys. Rep. 323, 183 (2000); O. Aharony, arXiv:hep-th/
0212193; A. Zaffaroni, Proc. Sci. RTN2005 (2005) 005;
J. Erdmenger, N. Evans, I. Kirsch, and E. Threlfall, Eur.
Phys. J. A 35, 81 (2008).

[11] J. Erdmenger, K. Ghoroku, and I. Kirsch, J. High Energy
Phys. 09 (2007) 111.

[12] S. S. Afonin and I. V. Pusenkov, Phys. Lett. B 726, 283
(2013).

[13] T. Nakas and K. S. Rigatos, J. High Energy Phys. 12 (2020)
157.

[14] M. Dhuria and A. Misra, J. High Energy Phys. 11 (2013)
001.

[15] K. Sil and A. Misra, Nucl. Phys. B910, 754 (2016).
[16] M. Mia, K. Dasgupta, C. Gale, and S. Jeon, Nucl. Phys.

B839, 187 (2010).
[17] V. Yadav, A. Misra, and K. Sil, Eur. Phys. J. C 77, 656

(2017).
[18] V. Yadav and A. Misra, J. High Energy Phys. 09 (2018) 133.
[19] V. Yadav, G. Yadav, and A. Misra, J. High Energy Phys. 08

(2021) 151.

[20] J. Erlich, E. Katz, D. T. Son, and M. A. Stephanov, Phys.
Rev. Lett. 95, 261602 (2005).

[21] A. Karch, E. Katz, D. T. Son, and M. A. Stephanov, Phys.
Rev. D 74, 015005 (2006).

[22] T. Sakai and S. Sugimoto, Prog. Theor. Phys. 113, 843
(2005); 114, 1083 (2005); G. F. de Teramond and S. J.
Brodsky, Phys. Rev. Lett. 94, 201601 (2005); L. Da Rold
and A. Pomarol, Nucl. Phys. B721, 79 (2005); K. Ghoroku,
N. Maru, M. Tachibana, and M. Yahiro, Phys. Lett. B 633,
602 (2006); O. Andreev and V. I. Zakharov, Phys. Rev. D
76, 047705 (2007); Phys. Rev. D 74, 025023 (2006); M.
Kruczenski, L. A. P. Zayas, J. Sonnenschein, and D. Vaman,
J. High Energy Phys. 06 (2005) 046; S. Kuperstein and J.
Sonnenschein, J. High Energy Phys. 11 (2004) 026; H.
Forkel, M. Beyer, and T. Frederico, J. High Energy Phys. 07
(2007) 077.

[23] D. Li and M. Huang, J. High Energy Phys. 11 (2013) 088;
D. Li, M. Huang, and Q.-S. Yan, Eur. Phys. J. C 73, 2615
(2013); D. Li and M. Huang, J. High Energy Phys. 11
(2013) 088.

[24] U. Gursoy and E. Kiritsis, J. High Energy Phys. 02 (2008)
032; 02 (2008) 019.

[25] Y. Bai and H. C. Cheng, J. High Energy Phys. 08 (2013)
074.

[26] Y. Liu and I. Zahed, Phys. Rev. D 95, 056022 (2017).
[27] Y. Liu and I. Zahed, Phys. Lett. B 769, 314 (2017).
[28] S. Momeni and M. Saghebfar, Eur. Phys. J. C 81, 102

(2021).
[29] A. Ballon-Bayona, G. Krein, and C. Miller, Phys. Rev. D 96,

014017 (2017).
[30] P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp.

Phys. 2020, 083C01 (2020).
[31] S. Aoki et al. (Flavour Lattice Averaging Group), Eur. Phys.

J. C 80, 113 (2020).
[32] C. McNeile, C. T. H. Davies, E. Follana, K. Hornbostel, and

G. P. Lepage, Phys. Rev. D 86, 074503 (2012).

HOLOGRAPHIC QCD MODEL FOR Nf ¼ 4 PHYS. REV. D 105, 026021 (2022)

026021-11

https://doi.org/10.1103/PhysRevLett.66.1130
https://doi.org/10.1016/j.physrep.2020.02.001
https://doi.org/10.1016/j.physrep.2020.05.001
https://doi.org/10.1016/j.physrep.2020.05.001
https://doi.org/10.1016/0370-2693(86)91404-8
https://doi.org/10.1140/epja/i2015-15112-2
https://doi.org/10.1140/epja/i2015-15112-2
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.1016/S0370-1573(99)00083-6
https://arXiv.org/abs/hep-th/0212193
https://arXiv.org/abs/hep-th/0212193
https://doi.org/10.1140/epja/i2007-10540-1
https://doi.org/10.1140/epja/i2007-10540-1
https://doi.org/10.1088/1126-6708/2007/09/111
https://doi.org/10.1088/1126-6708/2007/09/111
https://doi.org/10.1016/j.physletb.2013.08.032
https://doi.org/10.1016/j.physletb.2013.08.032
https://doi.org/10.1007/JHEP12(2020)157
https://doi.org/10.1007/JHEP12(2020)157
https://doi.org/10.1007/JHEP11(2013)001
https://doi.org/10.1007/JHEP11(2013)001
https://doi.org/10.1016/j.nuclphysb.2016.07.014
https://doi.org/10.1016/j.nuclphysb.2010.06.014
https://doi.org/10.1016/j.nuclphysb.2010.06.014
https://doi.org/10.1140/epjc/s10052-017-5219-5
https://doi.org/10.1140/epjc/s10052-017-5219-5
https://doi.org/10.1007/JHEP09(2018)133
https://doi.org/10.1007/JHEP08(2021)151
https://doi.org/10.1007/JHEP08(2021)151
https://doi.org/10.1103/PhysRevLett.95.261602
https://doi.org/10.1103/PhysRevLett.95.261602
https://doi.org/10.1103/PhysRevD.74.015005
https://doi.org/10.1103/PhysRevD.74.015005
https://doi.org/10.1143/PTP.113.843
https://doi.org/10.1143/PTP.113.843
https://doi.org/10.1143/PTP.114.1083
https://doi.org/10.1103/PhysRevLett.94.201601
https://doi.org/10.1016/j.nuclphysb.2005.05.009
https://doi.org/10.1016/j.physletb.2005.12.004
https://doi.org/10.1016/j.physletb.2005.12.004
https://doi.org/10.1103/PhysRevD.76.047705
https://doi.org/10.1103/PhysRevD.76.047705
https://doi.org/10.1103/PhysRevD.74.025023
https://doi.org/10.1088/1126-6708/2005/06/046
https://doi.org/10.1088/1126-6708/2004/11/026
https://doi.org/10.1088/1126-6708/2007/07/077
https://doi.org/10.1088/1126-6708/2007/07/077
https://doi.org/10.1007/JHEP11(2013)088
https://doi.org/10.1140/epjc/s10052-013-2615-3
https://doi.org/10.1140/epjc/s10052-013-2615-3
https://doi.org/10.1007/JHEP11(2013)088
https://doi.org/10.1007/JHEP11(2013)088
https://doi.org/10.1088/1126-6708/2008/02/032
https://doi.org/10.1088/1126-6708/2008/02/032
https://doi.org/10.1088/1126-6708/2008/02/019
https://doi.org/10.1007/JHEP08(2013)074
https://doi.org/10.1007/JHEP08(2013)074
https://doi.org/10.1103/PhysRevD.95.056022
https://doi.org/10.1016/j.physletb.2017.04.007
https://doi.org/10.1140/epjc/s10052-021-08870-x
https://doi.org/10.1140/epjc/s10052-021-08870-x
https://doi.org/10.1103/PhysRevD.96.014017
https://doi.org/10.1103/PhysRevD.96.014017
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1140/epjc/s10052-019-7354-7
https://doi.org/10.1140/epjc/s10052-019-7354-7
https://doi.org/10.1103/PhysRevD.86.074503

