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We study the spectra of two-gluon glueballs and three-gluon oddballs and corresponding equation of
state in 5-dimensional deformed holographic QCD models in the gravity-dilaton system, where the metric,
the dilaton field, and the dilaton potential are self-consistently solved from each other through the Einstein
field equations and the equation of motion of the dilaton field. We compare the models by inputting the
dilaton field, inputting the deformed metric, and inputting the dilaton potential, and find that with only 2
parameters, the 5-dimensional holographic QCD model predictions on glueballs/oddballs spectra, in
general, are in good agreement with lattice results except three oddballs states 0þ−, 2þ− and 3−−. From the
results of glueballs/oddballs spectra at zero temperature and the equation of state at finite temperature, we
observe that the model with quadratic dilaton field can simultaneously describe glueballs/oddballs spectra
as well as the equation of state of pure gluon system. The model with quadratic AEðzÞ can describe
glueballs/oddballs spectra, but its corresponding equation of state behaves more like Nf ¼ 2þ 1 quark
matter, which is consistent with the dimension analysis at ultraviolet (UV) boundary. Our results suggest
that the Einstein-Maxwell-dilaton model with the profile ϕðzÞ ¼ z2 can be regarded as a candidate of dual
theory of pure gluodynamics. Though it is still difficult to find the dual theory of full QCD, the existence of
dual theory of pure gluodynamics would be quite encouraging.

DOI: 10.1103/PhysRevD.105.026020

I. INTRODUCTION

Glueball is one of the most crucial predictions from
quantum chromodynamics (QCD), whose non-Abelian fea-
ture makes it possible to form bound states of gauge bosons,
i.e., glueballs made of two/three gluons (gg, ggg, etc.), [1].
The gauge field plays a more important dynamical role in
glueballs than that in the standard hadrons, therefore study-
ing particles like glueballs offers a good opportunity of
understanding nonperturbative aspects of QCD. The glueball
spectra has attracted much attention for four decades [1], and
it has been widely investigated by using various nonpertur-
bative methods. For example, glueballs have been studied by
using lattice QCD [2–11], by using effective models like flux

tube model [12] andMIT bag model [13–17], by using QCD
sum rules [18–32] as well as by using the relativistic many-
body approach [33–35]. There are also some other analyses
of glueballs in Refs. [36–44]. For more information, please
refer to review papers [45–47].
On the other hand, the spin and mass of the glueball can

be constrained from high energy scattering data. Regge
trajectories αðtÞ ¼ α0 þ α0t of the glueball have been used
to fit high energy pp and pp̄ scattering cross section. The
C-parity even glueball, Pomeron exchange gives the lightest
J ¼ 2þþ glueball mass M ¼ ffiffi

t
p ¼ 1.92 GeV. Analogy

with the “Pomeron,” C-parity odd “odderon” contributing
to large odd amplitude was proposed in the 1970s in
describing the high energy pp and pp̄ scattering [48,49].
The odderon was regarded as a three-gluon state:

Oμνσ
abcðk1; k2; k3Þ ¼ dabcG

μ
aðk1ÞGν

bðk2ÞGν
cðk3Þ ð1Þ

where the lower indices refer to color and the upper ones
refer to the Lorentz structure, and dabc is the fundamental
symmetric tensor in SU(3). The evidence for the identifica-
tion of the odderon has been debated for a longtime.
Recently, the D0 collaboration and TOTEM Collaboration
announced the evidence of a t-channel exchanged C-parity
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odd odderons in pp and pp̄ scattering [50]. Especially the
odderon’s contribution at the dip-bump region is very
essential. The mass of 3−− odderon M3−− ¼ 3.001 GeV
and dacay width Γ3−− ¼ 2.984 GeV are extracted by using
the dipole (DP) Regge model to fit the scattering data
[51–54].
In Ref. [32], the oddball spectra has been calculated by

using the QCD sum rule. In this work, we are going to
investigate the glueball spectra in the framework of holo-
graphic QCD, which is based on the gravity/gauge duality,
or anti-de Sitter/conformal field theory (AdS=CFT) corre-
spondence [55–57]. AdS=CFT correspondence offers a
new possibility to tackle the difficulty of strongly coupled
gauge theories [58–61]. Many efforts from both top-down
and bottom-up approaches have been paid on examining
the nonperturbative properties of QCD [62], e.g., QCD
equation of state [63–65], phase transitions [66–72], fluid
properties of quark-gluon plasma, meson spectra [72–84],
baryon spectra [85–87], as well as the glueball sector
[88–111]. In Refs. [112,113], by linearizing the fluctua-
tions around a classical σ-model coupled to gravity in dþ 1
dimensions, a gauge invariant (diffeomorphism invariant)
formalism for calculating the spectra of scalar glueballs and
tensor glueballs was developed, which was initially pro-
posed in Refs. [114–116]. This algorithmic formalism was
tested and some nontrivial applications were given in
Refs. [117–126]. The glueball mass spectra and decay rate
in the Sakai-Sugimoto model have been investigated in
Refs. [127–129]. Glueballs and oddballs spectra have also
been widely studied by using the bottom-up approach,
where some studies are based on hard-wall [73] and soft-
wall holographic QCD models [74] with the conformal
AdS5 background metric.
A realistic nonconformal holographic QCD model should

reveal both the spontaneous chiral symmetry breaking and
color charge confinement or linear confinement, which are
two main features of QCD in the low energy regime. In the
top-down approach, the Sakai-Sugimoto (SS) model or
D4–D8 brane system [75,76] is one of the most successful
nonconformal holographic QCD models. In the bottom-up
approach, the dynamical holographic QCD (DhQCD) model
constructed in Refs. [67,102,130] can simultaneously
describe both chiral symmetry breaking and linear confine-
ment, where the gluon dynamics background is solved by
the coupling between the gravity and the dilaton field ΦðzÞ,
which is responsible for the gluon condensate and confine-
ment, and the scalar field XðzÞ is introduced to mimic chiral
dynamics. Evolution of the dilaton field and scalar field in
5-dimensional space-time resemble the renormalization
group from ultraviolet (UV) to infrared (IR). This dynamical
holographic QCDmodel describes the scalar glueball spectra
and the light meson spectral quite well [67,102,130]. Except
the dynamical holographic QCD model, there are several
other nonconformal holographic QCD models in the
same gravity-dilaton system which can well describe

nonperturbative QCD properties, e.g., the Gubser model
[131–133] and the improved holographic QCD model
[134–136] with inputting of a dilaton potential, and the
refined model [137] and Dudal model [138] with inputting of
a deformed metric.
In the gravity-dilaton system, the metric, the dilaton field,

and the dilaton potential are self-consistently solved from
each other through the Einstein field equations and the
equation of motion of the dilaton field. In principle, the three
types of models, (A) inputting the form of the dilaton field,
(B) inputting the deformed metric, and (C) inputting the
dilaton potential, should be equivalent to describe the
background at zero temperature and zero density. We will
compare the spectra of glueballs/oddballs including scalar,
vector, as well as tensor states and their excitations with
those from the lattice QCD, and compare thermodynamic
properties with the lattice QCD results for pure gluon system
and/or 2þ 1 flavors system in these three types of models.
Though these models have been separately investigated on
thermodynamics and scalar/tensor glueballs, however, it is
still worthy to check the consistency of the models and
whether they can simultaneously describe the glueball
spectra and the equation of state. Only those models which
can simultaneously describe the glueball spectra and pure
gluon system’s equation of state are candidates of dual
theory of gluodynamics. It is still difficult to find the dual
theory of full QCD, the existence of dual theory of pure
gluodynamics would be quite encouraging.
The paper is organized as follows: we introduce the

general Einstein-Maxwell-dilaton framework in Sec. II.
Then in Sec. III we introduce five different models in the
gravity-dilaton system. In Sec. IV we introduce the glueball
and oddball operator and calculate the mass spectra in these
models and we compare the results of mass spectra with
lattice results, results from the QCD sum rule, and results
extracted from high energy scattering data. In Sec. V we
compare thermodynamic properties of these models with
lattice results. Finally, a summary is given in Sec. VI.

II. THE GENERAL EINSTEIN-MAXWELL-
DILATON SYSTEM

To keep the self-consistency of investigating the glueball
spectra as well as further studies on QCD matter at finite
temperature and finite chemical potential, we first introduce
the general framework of the Einstein-Maxwell-dilaton
(EMD) system, which comes back to the gravity-dilaton
coupling system at zero chemical potential. The total action
of the 5-dimensional holographic QCD model including
glueball/oddball excitations is

Sstotal ¼ Ssb þ Ssg; ð2Þ

where Ssb is the action for the background in the string
frame, and Ssg is the action describing glueballs in the
string frame.
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The Einstein-Maxwell-dilaton action Ssb for the back-
ground in the string frame is

Ssb ¼
1

2κ25

Z
d5x

ffiffiffiffiffiffiffiffi
−gs

p
e−2Φ

�
Rs þ 4gsMN∂MΦ∂NΦ

− VsðΦÞ − hðΦÞ
4

e
4Φ
3 gsMM̃gsNÑFMNFM̃Ñ

�
; ð3Þ

where s denotes the string frame, κ25 ¼ 8πG5, the G5 is the
5-dimensional Newton constant. The gs is the determinant
of the metric in the string frame: gs ¼ detðgMNÞ, and the
metric tensor in the string frame is extracted from

ds2¼L2e2AsðzÞ

z2

�
−fðzÞdt2þ dz2

fðzÞþdy21þdy23þdy23

�
; ð4Þ

where L is the curvature radius of the asymptotic AdS5
space-time. For simplicity, we set L ¼ 1 in the following
calculations. The Rs is the Ricci curvature scalar in the
string frame. The scalar fieldΦðzÞ is the dilaton field which
depends only on the coordinate z, FMN is the field strength
of the Uð1Þ gauge field AM:

FMN ¼ ∂MAN − ∂NAM: ð5Þ

The 5-dimensional field AM is dual to baryon number
current. hðΦÞ describes the coupling strength of AM in the
theory, VsðΦÞ represents the potential of the dilaton field in
the string frame. hðΦÞ and VsðΦÞ are the functions that
depends only on the value of Φ.

A. The Einstein-Maxwell-dialton system in the
Einstein frame

As discussed in Ref. [139], it is convenient to calculate the
vacuum expectation value of the loop operator in the string
frame, and it is more convenient to work out the gravity
solution and to study equation of state in the Einstein frame.
So we apply the Weyl transformation [140,141]

gsMN ¼ e
4
3
ΦgEMN ð6Þ

to Eq. (3). Here gEMN is the metric tensor in the Einstein
frame, the capital letter “E” denotes the Einstein frame.
Then, Eq. (3) can be written as

SE ¼ 1

2κ25

Z
d5x

ffiffiffiffiffiffiffiffi
−gE

p �
RE −

4

3
gEMN∂MΦ∂NΦ − VEðΦÞ

−
hðΦÞ
4

gEMM̃gENÑFMNFM̃ Ñ

�
; ð7Þ

with VE ¼ e
4
3
ΦVs.

Then we define a new dilaton field ϕ:

ϕ ¼
ffiffiffi
8

3

r
Φ: ð8Þ

Now Eq. (7) becomes

SE ¼ 1

2κ25

Z
d5x

ffiffiffiffiffiffiffiffi
−gE

p �
RE −

1

2
gEMNð∂MϕÞð∂NϕÞ−VϕðϕÞ

−
hϕðϕÞ
4

gEMM̃gENÑFMNFM̃ Ñ

�
; ð9Þ

where VϕðϕÞ ¼ VEðΦÞ, and hϕðϕÞ ¼ hðΦÞ. According to
Eqs. (4), (6), and (8), we can derive the line element in
Einstein frame:

ds2 ¼ L2e2AEðzÞ

z2

�
−fðzÞdt2 þ dz2

fðzÞ þ dy21 þ dy23 þ dy23

�
;

ð10Þ
where

AEðzÞ ¼ AsðzÞ −
ffiffiffi
1

6

r
ϕðzÞ: ð11Þ

After applying variation to Eq. (9), we can derive the
Einstein field equations and the equations of motion of AM
and ϕ as follows

RE
MN −

1

2
gEMNR

E − TMN ¼ 0;

∇M½hϕðϕÞFMN � ¼ 0;

∂M½
ffiffiffiffiffiffi
−g

p ∂Mϕ� − ffiffiffiffiffiffi
−g

p �
dVϕðϕÞ
dϕ

þ F2

4

dhϕðϕÞ
dϕ

�
¼ 0; ð12Þ

with the energy-momentum tensor TMN

TMN ¼ 1

2

�
ð∂MϕÞð∂NϕÞ −

1

2
gEMNg

EPP̃ð∂PϕÞð∂P̃ϕÞ

− gEMNVϕðϕÞ
�
þ hϕðϕÞ

2

�
gEPP̃FMPFNP̃

−
1

4
gEMNg

EPP̃gEQQ̃FPQFP̃ Q̃

�
: ð13Þ

We can safely suppose all the components of AMðzÞ are
zero except AtðzÞ. Substituting Eq. (10) into the EOMs
Eq. (12), we then derive the EOMs for the components:

A00
t þ A0

t

�
−
1

z
þ hϕ0

hϕ
þ AE

0
�

¼ 0; ð14Þ

f00 þ f0
�
−
3

z
þ 3AE

0
�
−
e−2AEA02

t z2hϕ
L2

¼ 0; ð15Þ
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A00
E þ f00

6f
þ A0

E

�
−
6

z
þ 3f0

2f

�
−
1

z

�
−
4

z
þ 3f0

2f

�

þ 3AE
02 þ L2e2AEVϕ

3z2f
¼ 0; ð16Þ

A00
E − A0

E

�
−
2

z
þ A0

E

�
þ ϕ02

6
¼ 0; ð17Þ

ϕ00 þ ϕ0
�
−
3

z
þ f0

f
þ 3A0

E

�
−
L2e2AE

z2f

dVϕðϕÞ
dϕ

þ z2e−2AEA02
t

2L2f

dhϕðϕÞ
dϕ

¼ 0: ð18Þ

In the above five equations, only four of them are indepen-
dent. Thus we can choose Eq. (18) as a constraint, which can
be used to check the solutions.

III. FIVE DIFFERENT MODELS IN THE
EMD SYSTEM

In the gravity-dilaton system, the metric, the dilaton
field, and the dilaton potential can be self-consistently
solved from each other through the Einstein field equations
and the equation of motion of the dilaton field. At zero
temperature and zero chemical potential, the function
fðzÞ ¼ 1 and AtðzÞ ¼ 0, then Eq. (14) to Eq. (18) can
be simplified:

A00
E −

6

z
A0
E þ 4

z2
þ 3AE

02 þ L2e2AEVϕ

3z2
¼ 0; ð19Þ

A00
E − A0

E

�
−
2

z
þ A0

E

�
þ ϕ02

6
¼ 0; ð20Þ

ϕ00 þϕ0
�
−
3

z
þ 3A0

E

�
−
L2e2AE

z2
dVϕðϕÞ
dϕ

¼ 0; ð21Þ

where Eq. (21) is the constraint. Under the condition that
we have proper boundary conditions, if we input (A) the
form of the dilaton field ϕðzÞ, or (B) the function AEðzÞ, or
(C) the dilaton potential VϕðϕÞ, we can solve the other two.
In principle, these three types of models of EMD system are
totally equivalent to describe the background in the
vacuum. However, at finite temperature and finite chemical
potential, the situation will become different. If we input
VϕðϕÞ, the form of VϕðϕÞ is independent of the temper-
ature/chemical potential, from Eq. (14) and Eq. (18), we
can solve different functions AEðzÞ and ϕðzÞ at different
temperature/chemical potential, which can be denoted by
AET;μðT; μ; zÞ and ϕT;μðT; μ; zÞ. On the other hand, if we
input AEðzÞ [or ϕðzÞ], whose form is independent of
temperature/chemical potential, we can derive VϕðϕÞ with
temperature/chemical potential dependence, which can be
denoted by VϕT;μðT; μ;ϕÞ. The two descriptions, that are

equivalent at vacuum, now become distinct from each other
at finite temperature/chemical potential. From now on, we
call fixing VϕðϕÞ “description A,” fixing AEðzÞ or ϕðzÞ is
denoted by “description B.”
It is more convenient to solve the system in the Einstein

frame from Eqs. (19)–(21). In the following we list two sets
of vacuum solutions of VϕðϕÞ, AEðzÞ, and ϕðzÞ that satisfy
the EOMs.

A. Vacuum solutions: Set A

From the experiences in Refs. [137,138], we can input
the function AEðzÞ in the Einstein frame, and solve VϕðϕÞ
and ϕðzÞ. The simplest ansatz for the deformed metric is
AEðzÞ ¼ −az2, and from Eqs. (19)–(21) one can derive the
solution as following:

AEðzÞ ¼ −az2; ð22Þ

VϕðϕÞ ¼ −
6

L2
e2ðkðϕÞÞ2ð6ðkðϕÞÞ4 þ 5ðkðϕÞÞ2 þ 2Þ; ð23Þ

ϕðzÞ ¼ z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3að3þ 2az2Þ

q
þ 3

2

ffiffiffi
6

p
arcsinh

� ffiffiffiffiffiffi
2a
3

r
z

�
; ð24Þ

where the auxiliary function kðφÞ is defined as the inverse
function of

φðzÞ ¼ z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð3þ 2z2Þ

q
þ 3

2

ffiffiffi
6

p
arcsinh

� ffiffiffi
2

3

r
z

�
; ð25Þ

which means kðφðzÞÞ ¼ z with z ¼ ffiffiffi
a

p
z. Starting from any

of the above three functions, together with proper boundary
conditions, we can solve other two functions from Eq. (19)
and Eq. (20).
From Eq. (24) we know that ϕðz ¼ 0Þ ¼ 0,

limz→þ∞ϕðzÞ → þ∞. At UV boundary (z → 0), the
asymptotic forms of VϕðϕÞ and ϕ are given below:

L2Vϕðϕ → 0Þ ¼ −12 −
3

2
ϕ2 −

1

12
ϕ4 −

377

174960
ϕ6

−
977

33067440
ϕ8 −

53483

214277011200
ϕ10

−
1564351

1145524901875200
ϕ12 þOðϕ14Þ;

ð26Þ

ϕðz → 0Þ ¼ 6
ffiffiffi
a

p
zþ 2

3
a

3
2z3 −

1

15
a

5
2z5 þ 1

63
a

7
2z7

−
5

972
a

9
2z9 þ 7

3564
a

11
2 z11 −

7

8424
a

13
2 z13

þOðz15Þ: ð27Þ
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From the UV asymptotic form of VϕðϕÞ, we can extract
the 5-dimensional mass square of ϕ

M2
ϕ ¼ −3: ð28Þ

According to the mass-dimension relationship M2 ¼
ðΔ − qÞðΔþ q − 4Þ and q ¼ 0, the dimension

Δϕ− ¼ 1; Δϕþ ¼ 3: ð29Þ

At IR boundary (z → þ∞), VϕðϕÞ and ϕðzÞ behave as

L2Vϕðϕ → þ∞Þ ¼ −
27

4

�
3

8

�1
4

e−
3
2e

ffiffi
6

p
3
ϕþ���ðϕ1

2 þ � � �Þ; ð30Þ

ϕðz → þ∞Þ ¼
ffiffiffi
6

p �
az2 þ 3

4

�
1þ ln

�
8

3

�
þ ln ðaz2Þ

�

þ 9

32

1

az2
þO

�
1

z4

��
: ð31Þ

Equation (23) lead to the masses of glueballs mn
behave as

mn ∼ n
1
2; when n → þ∞: ð32Þ

which shows the linear Regge behavior along n.

B. Vacuum solutions: Set B

As for another set of solution, we start from the form of
ϕðzÞ. One simple but nontrivial ansatz is to take the
quadratic form of ϕðzÞ: ϕðzÞ ¼ bz2. As discussed in
Refs. [67,102,130,139], the quadratic form of the dilaton
field is dual to a dimension-2 gluon condensation operator,
which is responsible for the linear confinement of the gluon
system. Then the solution VϕðϕÞ, AEðzÞ and ϕðzÞ take the
form of

ϕðzÞ ¼ bz2; ð33Þ

VϕðϕÞ ¼
1

L2
2 × 2

3
4 × 3

1
4ϕ

3
2

�
Γ
�
5

4

��
2
��

I1
4

�
ϕffiffiffi
6

p
��

2

− 4

�
I−3

4

�
ϕffiffiffi
6

p
��

2
�
; ð34Þ

AEðzÞ ¼ − ln

�
2
3
8 × 3

1
8Γð5

4
ÞI1

4
ðbz2ffiffi

6
p Þ

b
1
4

ffiffiffi
z

p
�
; ð35Þ

where ΓðzÞ is the Euler gamma function, InðzÞ is the
modified Bessel function of the first kind.
From Eq. (33) we know that ϕðz ¼ 0Þ ¼ 0,

limz→þ∞ϕðzÞ → þ∞. At UV boundary (z → 0), the
asymptotic forms are

L2Vϕðϕ→ 0Þ ¼ −12− 2ϕ2 −
4

15
ϕ4 −

49

6075
ϕ6 −

11

94770
ϕ8

−
11

11153700
ϕ10 −

38

6851160225
ϕ12

þOðϕ14Þ; ð36Þ

AEðz → 0Þ ¼ −
1

30
b2z4 þ 1

4050
b4z8 −

4

1184625
b6z12

þOðz16Þ: ð37Þ

From the UVasymptotic form of VϕðϕÞ, we can extract the
5-dimensional mass square of ϕ

M2
ϕ ¼ −4: ð38Þ

According to the mass-dimension relationship M2 ¼
ðΔ − qÞðΔþ q − 4Þ and q ¼ 0, the dimension

Δϕ− ¼ Δϕþ ¼ 2: ð39Þ

At IR boundary (z → þ∞), VϕðϕÞ and AEðzÞ behave as

L2Vϕðϕ→∞Þ ¼ −
1

π
2
5
4 × 3

7
4

�
Γ
�
5

4

��
2

e
ffiffi
6

p
3
ϕϕ

1
2

×

�
1−

23
ffiffiffi
6

p

48

1

ϕ
þO

�
1

ϕ2

��

×

�
1þ 5

ffiffiffi
2

p

6
e−

ffiffi
6

p
3
ϕ

�
1þO

�
1

ϕ

���
; ð40Þ

AEðz → ∞Þ ¼ −
ffiffiffi
6

p

6
bz2 þ 3

2
lnð

ffiffiffi
b

p
zÞ þ ln

�
π

1
2

2
1
83

3
8Γð5

4
Þ

�

−
3

ffiffiffi
6

p

32

1

bz2
þO

�
1

z4

�
þOðe−

ffiffi
6

p
3
bz2Þ

þO
�
1

z2
e−

ffiffi
6

p
3
bz2

�
: ð41Þ

Again, from the asymptotic expansion of VϕðϕÞ at IR
boundary, we can conclude that linear Regge behavior of
the masses of glueballs mn:

m2
n ∼ n; when n → þ∞; ð42Þ

which shows the linear Regge behavior along n.

C. Five different models

The two sets of vacuum solutions listed above have
linear confinement and can produce glueball bound state.
Not all models can show such feature. According to
Refs. [136,142], if we require that the theory is confined
and bad singularities are absent, the asymptotic behavior of
VϕðϕÞ at IR boundary should be
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L2Vϕðϕ → þ∞Þ ¼ cVecϕ;1ϕþ���ðϕcϕ;2 þ � � �Þ;

×

� ffiffi
6

p
3
< cϕ;1 <

2
ffiffi
3

p
3
; cϕ;2 is real number;

cϕ;1 ¼
ffiffi
6

p
3
; cϕ;2 ⩾ 0;

ð43Þ

where cV is constant. When cϕ;1 ¼
ffiffi
6

p
3

and cϕ;2 > 0, the
behavior of the glueball spectra is

mn ∼ ncϕ;2 when n → þ∞: ð44Þ

If cϕ;2 ¼ 1
2
, it becomes asymptotically linear Regge

behavior.
For comparison, we plot three different dilaton potentials

VϕðϕÞ in Fig. 1. One of them is the Gubser model taken
from Ref. [133]:

VϕðϕÞ ¼
−12 cosh ð0.606ϕÞ þ 2.057ϕ2

L2
; ð45Þ

the others two are Eq. (23) and Eq. (34). Here we set L ¼ 1.

The dashed black line is e
ffiffi
6

p
3
ϕ. According to the conclusion

in Sec. III A, if the potential is more gradual than this line,
such as the blue line that represents the Gubser model in
Eq. (45), the theory is gapless and nonconfining.
As we stated below Eqs. (19)–(21), there are two different

descriptions of the input of EMD system. Combining with
the two different sets of vacuum solutions Eqs. (23)–(24) and
Eqs. (34)–(33), we consider five models in this article.

1. Model I and II

In model I, we use description-B and input AEðzÞ as
Eq. (22):

AEðzÞ ¼ −az2: ð46Þ

Note that the dimension of the parameter a is ½E�2 and its
value decides the energy scale of the EMD system.
According to Ref. [138], the simple quadratic form of
AEðzÞ can produce Hawking/Page phase transition, which
is dual to confinement/deconfinement phase transition. At
vacuum, we use the boundary condition

ϕðz ¼ 0Þ ¼ 0: ð47Þ

Combining the boundary condition Eq. (47) with the
EOMs Eq. (20) and Eq. (19), we can solve ϕðzÞ and
VϕðϕÞ. The results are Eq. (24) and Eq. (23).
As for finite temperature and finite chemical potential, the

EOMs are Eq. (14)–(17). There may exist the black hole
[143] in space-time manifold, the metric of which in
conformal coordinate z is Eq. (10). The boundary conditions
are given as

Atðz ¼ 0Þ ¼ μ;

Atðz ¼ zhÞ ¼ 0;

fðz ¼ 0Þ ¼ 1;

fðz ¼ zhÞ ¼ 0;

ϕðz ¼ 0Þ ¼ 0; ð48Þ

where z ¼ zh is the location of the event horizon of black
hole on the coordinate z, μ is the chemical potential. Besides
the boundary condition Eq. (48), the form of hϕðϕÞ are also
needed to solve the EOMs. However, we consider the μ ¼ 0
case, which means AtðzÞ ¼ 0 through the article. Thus our
calculations and results are independent on hϕðϕÞ.
In model II, we use description-A and input VϕðϕÞ as

Eq. (23):

VϕðϕÞ ¼ −
6

L2
e2ðkðϕÞÞ2ð6ðkðϕÞÞ4 þ 5ðkðϕÞÞ2 þ 2Þ: ð49Þ

At vacuum, we use the boundary conditions

AEðz ¼ 0Þ ¼ 0; ð50Þ

ϕðz ¼ 0Þ ¼ 0; ð51Þ

dϕðzÞ
dz

				
z¼0

¼ 6
ffiffiffi
a

p
: ð52Þ

Equation (50) guarantees the space-time is asymptotic AdS5
at UV boundary. Equation (52) contains a parameter a, the

FIG. 1. These are three different dilaton potentials VϕðϕÞ. The
longitudinal axis is the value of −VϕðϕÞ in logarithm coordinate.
The horizontal axis is the value of ϕ. The dashed black line is

e
ffiffi
6

p
3
ϕ. The blue line, orange line, and green line represent the

potential in Eq. (45), Eq. (23), and Eq. (34) respectively. The
meaning of “model II” and “model IV” will be explained later.

The dashed black line is e
ffiffi
6

p
3
ϕ. The bound is given by Eq. (44)

from Refs. [136,142]. If the potential is more gradual than this
bound, the theory is gapless and nonconfining.
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dimension of which is ½E�2 and the value of which decides
the energy scale of the EMD system. Given these boundary
conditions and the value of a in Eq. (52) being same with
that in Eq. (46), we can solve the EOMs at vacuum, then it
will be found that the solutions are totally equivalent to those
in model I at vacuum.
As for finite temperature and finite chemical potential,

the EOMs are Eq. (14)–(17). The boundary conditions are
given as

Atðz ¼ 0Þ ¼ μ;

Atðz ¼ zhÞ ¼ 0;

fðz ¼ 0Þ ¼ 1;

fðz ¼ zhÞ ¼ 0;

AEðz ¼ 0Þ ¼ 0;

ϕðz ¼ 0Þ ¼ 0;

dϕðzÞ
dz

				
z¼0

¼ 6
ffiffiffi
a

p
; ð53Þ

where z ¼ zh is the location of the event horizon of black
hole on the coordinate z, μ is the chemical potential. We
should emphasize here that at finite temperature or finite
chemical potential case, the solutions here are different
from those in model I.

2. Model III and IV

In model III, we use description B and input ϕðzÞ as
Eq. (33):

ϕðzÞ ¼ bz2: ð54Þ
Note that the dimension of the parameter b is ½E�2 and its
value decides the energy scale of the EMD system.
According to Ref. [74], the desired linear confinement
m2

n;S ∼ ðnþ SÞ of mesons at large radially excited quantum
number n or large orbitally excited quantum number S can
be reproduced in the background metric, in which the large z
(IR) asymptotic expansion of Φ isΦ ∼ z2. At the same time,
according to Ref. [109], the quadratic dilaton ΦðzÞ ¼ z2 in
the IR can also leads to confinement and an approximate
linear glueball spectrum. Substituting Eq. (54) into Eq. (20),
we can solve a general solution for AEðzÞ with two
integration constants. However, the value of this general
solution is usually complex. If we force the reality of AEðzÞ
and consider the boundary condition

AEðz ¼ 0Þ ¼ 0; ð55Þ

we can derive AEðzÞ and VϕðϕÞ. The results are Eq. (35)
and Eq. (33).
As for finite temperature and finite chemical potential,

the EOMs are Eqs. (14)–(17). The boundary conditions are
imposed as

Atðz ¼ 0Þ ¼ μ;

Atðz ¼ zhÞ ¼ 0;

fðz ¼ 0Þ ¼ 1;

fðz ¼ zhÞ ¼ 0; ð56Þ

where z ¼ zh is the location of the event horizon of black
hole on the coordinate z, μ is the chemical potential.
Collecting these boundary conditions and Eq. (54),
Eq. (35), we can then solve the EMD system.
In model IV, we use description A and input VϕðϕÞ as

Eq. (34):

VϕðϕÞ ¼
1

L2
2 × 2

3
4 × 3

1
4ϕ

3
2

�
Γ
�
5

4

��
2
��

I1
4

�
ϕffiffiffi
6

p
��

2

− 4

�
I−3

4

�
ϕffiffiffi
6

p
��

2
�
: ð57Þ

At vacuum, we use the boundary conditions

AEðz ¼ 0Þ ¼ 0; ð58Þ

lim
z→0

ϕðzÞ
z2

¼ b; ð59Þ

Again, we force that AEðzÞ is real. The Eq. (58) guarantees
the space-time is asymptotic AdS5 at UV boundary.
Equation (59) contains a parameter b, the dimension of
which is ½E�2 and the value of which decides the energy scale
of the EMD system. Given these boundary conditions and
the value of b in Eq. (59) being same with that in Eq. (54),
we can solve the EOMs at vacuum, then it will be found that
the solutions are totally equivalent to those in model III at
vacuum.
As for finite temperature and finite chemical potential,

the EOMs are Eqs. (14)–(17). The boundary conditions are
given as

Atðz ¼ 0Þ ¼ μ;

Atðz ¼ zhÞ ¼ 0;

fðz ¼ 0Þ ¼ 1;

fðz ¼ zhÞ ¼ 0;

AEðz ¼ 0Þ ¼ 0;

ϕðz ¼ 0Þ ¼ 0: ð60Þ

Given these boundary conditions, we still have the freedom
to choose the energy scale of the EMD system. We should
emphasize here that at finite temperature or finite chemical
potential case, the solutions here are different from those in
model III.
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3. Model V

In model V, we input ϕðzÞ as

ϕðzÞ ¼ 2
ffiffiffi
6

p

3
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3dð3þ 2dz2Þ

q
þ 6 arcsinh

� ffiffiffiffiffiffi
2d
3

r
z

�
: ð61Þ

Note that the dimension of the parameter d is ½E�2 and its
value decides the energy scale of the EMD system.
Substituting Eq. (61) into Eq. (20), we force the reality
of AEðzÞ and consider the boundary condition

AEðz ¼ 0Þ ¼ 0; ð62Þ

we can derive AEðzÞ and VϕðϕÞ numerically. Although we
cannot get the analytical form of AEðzÞ, we can still derive
its asymptotic expansions:

AEðz→ 0Þ ¼−
8

3
dz2þ 8

9
d2z4−

512

567
d3z6þ 1664

1701
d4z8

−
311296

280665
d5z10þ 19972096

15324309
d6z12þOðz14Þ:

ð63Þ

As for finite temperature and finite chemical potential, the
EOMs are Eqs. (14)–(17). The boundary conditions are
imposed as

Atðz ¼ 0Þ ¼ μ;

Atðz ¼ zhÞ ¼ 0;

fðz ¼ 0Þ ¼ 1;

fðz ¼ zhÞ ¼ 0; ð64Þ

where z ¼ zh is the location of the event horizon of black
hole on the coordinate z, μ is the chemical potential.
Collecting these boundary conditions, the Eq. (61), and the
numerical solution of AEðzÞ, we can then solve the EMD
system.

IV. SPECTRA OF GLUEBALLS AND ODDBALLS

In this section, we discuss the spectra of glueballs and
oddballs. There are two different methods to investigate
the glueball spectra in holographic QCD. The first
method can be called the “glueball fluctuations method”
as in Refs. [63,94,97,109,122,135], where the scalar and
tensor fluctuations are treated as the 5-dimensional fields
dual to scalar and tensor glueballs respectively. Another
method, which is used in this work, can be called the
“glueball excitations method,” where the action of the
related glueball fields are introduced and the glueballs are
treated as excitations from the background as used in
Refs. [99,100,103,104,144], where the glueball spectra
are treated in the same way as the meson spectra in the

bottom-up framework. In practice, the glueball fluctua-
tions method is more widely used in the top-down
framework, and the glueball excitations method is more
widely used in the bottom-up framework. We adopt the
glueball excitations method in this work in order to keep
the way of treating the meson spectra and glueball spectra
on an equal footing in the deformed holographic QCD
models.
Although we could consider more generic Lagrangians

[145], we still use the simple action describing scalar,
vector, and tensor glueballs/oddballs here. In the string
frame, the action is

Ssg ¼ −cg
Z

d5x
ffiffiffiffiffiffiffiffi
−gs

p
e−pΦ

×

��
1

2
gsMN∂MS∂NS þ 1

2
e−cr:m:ΦM2

S;5S
2

�

þ
�
1

4
gsMM̃gsNÑð∂MVN − ∂NVMÞð∂M̃VÑ − ∂ÑVM̃Þ

þ 1

2
e−cr:m:ΦM2

V;5V
2

�

þ
�
1

2
∇LT MN∇LT MN −∇LT LM∇NT NM

þ∇MT MN∇NT −
1

2
∇MT ∇MT

þ 1

2
e−cr:m:ΦM2

T ;5ðT MNhMN − T 2Þ
�

þ terms for high spin fields ðspin S⩾ 3Þ
�
; ð65Þ

where s denotes the string frame, cg describes the coupling
strength of glueballs part in the whole theory. The fields S,
VM, and T MN are 5-dimensional fields that are dual to
scalar glueball, vector glueball, and spin-2 glueball oper-
ators respectively. T ¼ gsMNT MN , and T MN satisfies the
following constraints

∇MT MN ¼ 0; T ¼ 0;

T μν ¼
1

z2
e2As T̃ μν; T Mz ¼ 0: ð66Þ

As in Ref. [146], the parameter p is introduced to make a
distinction between glueballs (oddballs) with different
P-parity:

�
p ¼ 1; for even parity;

p ¼ −1; for odd parity:
ð67Þ

Also we introduce a z dependent modified 5-dimensional
mass:
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M2
5ðzÞ ¼ e−cr:m:ΦM2

5; ð68Þ

where cr:m: is a constant. The M2
5 is listed in Table I given

by the AdS5=CFT4 correspondence dictionary. The
AdS5=CFT4 duality gives one-to-one correspondence
between 4-dimensional operators in the N ¼ 4 super
Yang-Mills theory and the spectrum of the type IIB string
theory on AdS5 × S5. Based on the AdS=CFT dictionary, the
conformal dimension of a q-form operator at the ultraviolet
(UV) boundary is related to the 5-dimensional mass square
M2

5 of its dual field in the bulk as follows [55–57]:

M2
5 ¼ ðΔ − qÞðΔþ q − 4Þ: ð69Þ

A. Glueballs and oddballs

In the bottom-up holographic QCD models, one
can expect a more general correspondence, i.e., each 4-
dimensional operator OðxÞ corresponds to a 5-dimensional
field Oðx; zÞ in the bulk theory. To investigate the glueball
spectra, we consider the lowest dimension operators with the
corresponding quantum numbers defined in the field theory
living on the 4-dimensional boundary. We show the C-parity
even/odd glueball and oddball operators and their corre-
sponding 5-dimensional mass square in Table I.
The lowest dimension gauge invariant three-gluon cur-

rents that couple to the exotic 0þ− and 0−− glueballs are
constructed in Ref. [31]:

j0
þ−
α ðxÞ ¼ g3sTrðfðDτGμνðxÞÞ; ðDτGρνðxÞÞgðDμGραðxÞÞÞ;

ð70Þ

j0
−−
α ðxÞ ¼ g3sTrðfðDτGμνðxÞÞ; ðDτGρνðxÞÞgðDμG̃ραðxÞÞÞ:

ð71Þ

For trigluon glueball 1−þ, and 2þ−, the currents that
match the unconventional quantum number and satisfy the
constraints of the gauge invariance are given in Refs. [27]:

j1
−þ;A

α ðxÞ ¼ g3sfabc∂μ½Ga
μνðxÞ�½Gb

vρðxÞ�½Gc
ραðxÞ�;

j1
−þ;B
α ðxÞ ¼ g3sfabc∂μ½Ga

μνðxÞ�½G̃b
vρðxÞ�½G̃c

ραðxÞ�;
j1

−þ
α ; CðxÞ ¼ g3sfabc∂μ½G̃a

μνðxÞ�½Gb
vρðxÞ�½G̃c

ραðxÞ�;
j1

−þ;D
α ðxÞ ¼ g3sfabc∂μ½G̃a

μνðxÞ�½G̃b
vρðxÞ�½Gc

ραðxÞ�; ð72Þ

and

j2
þ−;A

μα ðxÞ ¼ g3sdabc½Ga
μνðxÞ�½Gb

vρðxÞ�½Gc
ραðxÞ�;

j2
þ−;B
μα ðxÞ ¼ g3sdabc½Ga

μνðxÞ�½G̃b
vρðxÞ�½G̃c

ραðxÞ�;
j2

þ−;C
μα ðxÞ ¼ g3sdabc½G̃a

μνðxÞ�½Gb
vρðxÞ�½G̃c

ραðxÞ�;
j2

þ−;D
μα ðxÞ ¼ g3sdabc½G̃a

μνðxÞ�½G̃b
vρðxÞ�½Gc

ραðxÞ�; ð73Þ

where dabc stands for the totally symmetric SUcð3Þ
structure constant and gtαβ ¼ gαβ − ∂α∂β=∂2.

B. Equation of motion for scalar, vector, and tensor
glueballs/oddballs

From the 5-dimensional action for the glueball/oddball
in the string frame Eq. (65), we can derive the equation of
motion for the glueballs. The equation of motion for the
scalar glueballs S is given as

TABLE I. 5-dimensional mass square of C-parity even glueballs and C-parity odd oddballs. The operators are
taken from Refs. [27,31,32,94].

JPC 4-dimensional operator: OðxÞ Δ q M2
5

0þþ TrðG2Þ ¼ E⃗a · E⃗a − B⃗a · B⃗a 4 0 0

0−þ TrðGG̃Þ ¼ E⃗a · B⃗a 4 0 0

0þ− TrðfðDτGμνÞ; ðDτGρνÞgðDμGραÞÞ 9 0 45

0−− TrðfðDτGμνÞ; ðDτGρνÞgðDμG̃ραÞÞ 9 0 45

1−þ fabc∂μ½Ga
μν�½Gb

vρ�½Gc
ρα�, fabc∂μ½Ga

μν�½G̃b
vρ�½G̃c

ρα�, 7 1 24

fabc∂μ½G̃a
μν�½Gb

vρ�½G̃c
ρα�, fabc∂μ½G̃a

μν�½G̃b
vρ�½Gc

ρα�
1þ− dabcðE⃗a · E⃗bÞB⃗c

6 1 15

1−− dabcðE⃗a · E⃗bÞE⃗c
6 1 15

2þþ Ea
i E

a
j − Ba

i B
a
j − trace 4 2 4

2−þ Ea
i B

a
j þ Ba

i E
a
j − trace 4 2 4

2þ− dabcS½Ei
aðE⃗b × B⃗cÞj� 6 2 16

2−− dabcS½Bi
aðE⃗b × B⃗cÞj� 6 2 16

3þ− dabcS½Bi
aB

j
bB

k
c� 6 3 15

3−− dabcS½Ei
aE

j
bE

k
c� 6 3 15
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− z3e−ð3As−pΦÞ∂z

�
1

z3
e3As−pΦ∂zSn

�

þ 1

z2
e2Ase−cr:m:ΦM2

S;5Sn ¼ m2
S;nSn: ð74Þ

Via the substitution

Sn → z
3
2e−

1
2
ð3As−pΦÞSn; ð75Þ

the equation can be brought into Schrödinger-like equation

−S00
n þ VSSn ¼ m2

G;nSn; ð76Þ

with the 5-dimensional effective Schrödinger potential

VS ¼ 3A00
s þ 3

z2 − pΦ00

2
þ ½3A0

s − 3
z − pΦ0�2
4

þ 1

z2
e2Ase−cr:m:ΦM2

S;5: ð77Þ

The equation of motion for the vector glueballs VM is
given as

− ze−ðAs−pΦÞ∂z

�
1

z
eAs−pΦ∂zVn

�

þ 1

z2
e2Ase−cr:m:ΦM2

V;5Vn ¼ m2
V;nVn: ð78Þ

Via the substitution

Vn → z
1
2e−

1
2
ðAs−pΦÞVn; ð79Þ

the equation can be brought into Schrödinger-like equation

−V 00
n þ VVVn ¼ m2

V;nVn; ð80Þ

with the 5-dimensional effective Schrödinger potential

VV ¼ A00
s þ 1

z2 − pΦ00

2
þ ½A0

s − 1
z − pΦ0�2
4

þ 1

z2
e2Ase−cr:m:ΦM2

V;5: ð81Þ

The equation of motion for the spin-2 glueballs T̃ MN is
given as

− z3e−ð3As−pΦÞ∂z

�
1

z3
e3As−pΦ∂zT̃ n

�

þ 1

z2
e2Ase−cr:m:ΦM2

T̃ ;5
T̃ n ¼ m2

T̃ ;n
T̃ n: ð82Þ

Via the substitution

T̃ n → z
3
2e−

1
2
ð3As−pΦÞT̃ n; ð83Þ

the equation can be brought into Schrödinger-like equation

−T̃ 00
n þ V T̃ T̃ n ¼ m2

T̃ ;n
T̃ n; ð84Þ

with the 5-dimensional effective Schrödinger potential

V T̃ ¼ 3A00
s þ 3

z2 − pΦ00

2
þ ½3A0

s − 3
z − pΦ0�2
4

þ 1

z2
e2Ase−cr:m:ΦM2

T̃ ;5
: ð85Þ

According to Ref. [74], the equation of motion for the
high spin glueballs HM1M2���MS

, the spin S of which are
larger than 2, is given as

− z2S−1e−½ð2S−1ÞAs−pΦ�∂z

�
1

z2S−1
eð2S−1ÞAs−pΦ∂zHn

�

þ 1

z2
e2Ase−cr:m:ΦM2

H;5Hn ¼ m2
H;nHn; ð86Þ

where S⩾ 3. Via the substitution

Hn → z
2S−1
2 e−

1
2
½ð2S−1ÞAs−pΦ�Hn; ð87Þ

the equation can be brought into Schrödinger-like equation

−H00
n þ VHHn ¼ m2

H;nHn; ð88Þ

with the 5-dimensional effective Schrödinger potential

VH ¼ ð2S − 1ÞA00
s þ 2S−1

z2 − pΦ00

2

þ ½ð2S − 1ÞA0
s − 2S−1

z − pΦ0�2
4

þ 1

z2
e2Ase−cr:m:ΦM2

H;5: ð89Þ

C. Numerical results of glueballs/oddballs spectra

We calculate the glueballs spectra using five different
holographic models defined in the last section. We list the
parameters used for calculating the glueballs spectra below.

1. Model I and II

In model I and model II, the value of the parameter is
a ¼ 0.4822 GeV2. First, we do not consider the distinction
between glueballs (oddballs) with different P-parity and do
not introduce z dependent modified 5-dimensional masses,
that means p ¼ 1 for even and odd parity, and cr:m: ¼ 0.
Then we calculate the glueballs/oddballs mass spectra in
model I and II, which is denoted by “Model I, II(O)” in
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Table II. We find the calculation results of the masses of
glueballs/oddballs, of which the 5D mass square M2

5 in
Table I are large, are much heavier than the lattice data. That
is why we introduce a z-dependent modified 5-dimensional
mass of glueball/oddball fields in Eq. (68). The value of the
constant cr:m: in Eq. (68) is 0.4245, which means

M2
5ðzÞ ¼ e−0.4245ΦM2

5; model I; and II: ð90Þ

Here we briefly introduce how to determine the values of
these two parameters. There are totally 24 glueballs/odd-
balls states in Table II. We first choose the lattice results for
N ¼ 13 glueballs/oddballs states:

0þþ; 0�þþ; 2þþ; 2�þþ; 0−þ; 0�−þ;

2−þ; 2�−þ; 1þ−; 2þ−; 3þ−; 1−−; 2−−: ð91Þ

For the mass of every state, there are more than one lattice
result. We average these lattice results for every state and

then we use the least-squares method to optimize the model
parameters a and cr:m: For details, we minimize the quantity

χ2ða; cr:m:Þ ¼
XN
n¼1

½mi;latt −mi;hologða; cr:m:Þ�2
σi

2
; ð92Þ

wheremi;latt is the averaged lattice result for the ith glueball/
oddball state and σi is the standard deviation of the errors of
mi;latt.mi;hologða; cr:m:Þ is the calculated result for this state in
the holographic model I and II when the value of a and cr:m:
are fixed. Here we sum for all theN ¼ 13 selected glueballs/
oddballs states listed in Eq. (91). After fixing the parameters,
we calculate the masses for other 11 states as the predictions
of the holographic models.
Following the procedure in Ref. [147], we then analyze

the covariance of the parameters a and cr:m: The uncer-
tainties in a is

TABLE II. The glueballs and oddballs mass spectra in the dynamical soft-wall model I and II without making a distinction between
glueballs (oddballs) with different P-parity and introducing z dependent modified 5-dimensional masses, compared with results from
lattice QCD and QCD sum rule. The units of all the data in the table are GeV. The lattice data in the column “LQCD1,” column
“LQCD2,” column “LQCD3,” and column “LQCD4” are taken from Ref. [9], Ref [4], Ref [5], and Ref. [2] respectively. The QCD sum
rule results are taken from Refs. [22,27,31,32]. Here we also list the data predicted by the single pole (SP) and dipole (DP) Regge model
[51]: using the SP Regge model, the predicted mass for 2þþ glueball is 1.747 GeV; using the DP Regge model, the predicted masses for
2þþ glueball and 3−− oddball are 1.758 GeV and 3.001 GeV respectively.

JPC LQCD1 LQCD2 LQCD3 LQCD4 QCDSR Model I, II(O)

0þþ 1.653(26) 1.475(30)(65) 1.710(50)(80) 1.730 (50) (80) 1.50� 0.19 1.876
0�þþ 2.842(40) 2.755(70)(120) … 2.670 (180)(130) 2.0–2.1 2.541
0��þþ … 3.370(100)(150) … … … 3.062
0���þþ … 3.990(210)(180) … … … 3.506
2þþ 2.376(32) 2.150(30)(100) 2.390(30)(120) 2.400 (25) (120) 2.0� 0.1 7.895
2�þþ 3.30(5) 2.880(100)(130) … … 2.2–2.3 8.506
0−þ 2.561(40) 2.250(60)(100) 2.560(35)(120) 2.590 (40) (130) 2.05� 0.19 1.876
0�−þ 3.54(8) 3.370(150)(150) … 3.640 (60) (180) 2.1–2.3 2.541
1−þ 4.12(8) … … … … 18.484
1�−þ 4.16(8) … … … … 19.137
1��−þ 4.20(9) … … … … 19.752
2−þ 3.07(6) 2.780(50)(130) 3.040(40)(150) 3.100 (30) (150) … 7.895
2�−þ 3.97(7) 3.480(140)(160) … 3.890 (40) (190) … 8.506
0þ− … … 4.780(60)(230) 4.740 (70) (230) 9.2þ1.3

−1.4 25.155
1þ− 2.944(42) 2.670(65)(120) 2.980(30)(140) 2.940 (30) (140) 2.87þ0.17

−0.20 14.713
1�þ− 3.80(6) … … … … 15.356
2þ− 4.24(8) … 4.230(50)(200) 4.140 (50) (200) 2.85þ0.16

−0.20 15.195
6.06� 0.13

3þ− 3.53(8) 3.270(90)(150) 3.600(40)(170) 3.550 (40) (170) 2.78þ0.18
−0.23 14.744

3�þ− … 3.630(140)(160) … … … 15.388
0−− … … … … 6.8þ1.1

−1.2 25.155
1−− 4.03(7) 3.240(330)(150) 3.830(40)(190) 3.850 (50) (190) 3.29þ1.49

−0.32 14.713
2−− 3.92(9) 3.660(130)(170) 4.010(45)(200) 3.930 (40) (190) 3.16þ0.33

−0.23 15.195
2�−− … 3.740(200)(170) … … … 15.839
3−− … 4.330(260)(200) 4.200(45)(200) 4.130 (90) (200) 3.47þ?

−0.50 14.744
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δa ¼
XN
i¼1

∂a
∂mi;latt

δmi;latt; ð93Þ

where δmi;latt is the uncertainties in the lattice data mi;latt.
Similarly, the uncertainties in cr:m: is

δcr:m: ¼
XN
i¼1

∂cr:m:

∂mi;latt
δmi;latt: ð94Þ

So the covariance of the parameters a and cr:m: is

σ2params ¼
� hδaδai hδaδcr:m:i
hδcr:m:δai hδcr:m:δcr:m:i

�

¼
0
@
P

N
i¼1

∂a
∂mi;latt

∂a
∂mi;latt

σ2i
P

N
i¼1

∂a
∂mi;latt

∂cr:m:∂mi;latt
σ2iP

N
i¼1

∂a
∂mi;latt

∂cr:m:∂mi;latt
σ2i

P
N
i¼1

∂cr:m:∂mi;latt

∂cr:m:∂mi;latt
σ2i

1
A; ð95Þ

where the symbol “hi” represents an ensemble average and
the equation

hδmi;lattδmi;latti ¼ δijσ
2
i ð96Þ

is used. The symbol δij in Eq. (96) is the Kronecker delta.
Equation (96) is valid since we assume that the errors
δmi;latt are statistically uncorrelated.
The numerical result is

σ2params ¼
�
2.0050 GeV4 1.9844 GeV2

1.9844 GeV2 3.1267

�
× 10−4: ð97Þ

By using a similar method, we can calculate the covari-
ance of the holographic results for the glueballs/oddballs
spectra. The holographic results for the glueballs/oddballs
spectra and the standard deviations of their errors are denoted
by “Model I, II” in Table III.
Note that the 5-dimensional field Φ and ϕ are different,

the relationship between them is Eq. (8):

ϕ ¼
ffiffiffi
8

3

r
Φ:

TABLE III. The glueballs and oddballs mass spectra in the dynamical soft-wall model, compared with results from lattice QCD and
QCD sum rule. The units of all the data in the table are GeV. The lattice data is taken from Refs. [2,4,5,9]. The QCD sum rule results are
taken from Refs. [22,27,31,32]. The data in the column labeled by EHM is the result of an effective holographic model from Ref. [109]
by using the glueball fluctuations method. Here we also list the data predicted by the SP and DP Regge model [51]: using the SP Regge
model, the predicted mass for 2þþ glueball is 1.747 GeV; using the DP Regge model, the predicted masses for 2þþ glueball and 3−−

oddball are 1.758 GeV and 3.001 GeV respectively.

JPC LQCD1-4 QCDSR EHM Model I, II Model III, IV(1) Model III, IV(2) Model V

0þþ 1.475(30)(65)–1.730(50)(80) 1.50� 0.19 1.475 1.876(28) 1.545(20) 1.593 1.954(28)
0�þþ 2.670 (180)(130)–2.842(40) 2.0–2.1 2.755 2.541(37) 2.539(32) 2.618 2.498(35)
0��þþ 3.370(100)(150) … 3.376 3.062(45) 3.211(41) 3.311 2.944(42)
0���þþ 3.990(210)(180) … 3.891 3.506(51) 3.760(48) 3.877 3.330(47)
2þþ 2.150(30)(100)–2.400(25)(120) 2.0� 0.1 2.180 2.689(28) 2.459(26) 2.203 2.755(27)
2�þþ 2.880(100)(130)–3.30(5) 2.2–2.3 2.899 3.208(29) 3.088(25) 3.006 3.195(26)
0−þ 2.250(60)(100)–2.590(40)(130) 2.05� 0.19 … 2.323(34) 2.527(32) 2.606 2.268(32)
0�−þ 3.370(150)(150)–3.640(60)(180) 2.1–2.3 … 2.932(43) 3.217(41) 3.317 2.798(40)
1−þ 4.12(8) … … 3.637(36) 3.920(36) 3.588 3.566(34)
1�−þ 4.16(8) … … 4.126(37) 4.479(36) 4.221 3.990(33)
1��−þ 4.20(9) … … 4.538(41) 4.943(39) 4.730 4.353(35)
2−þ 2.780(50)(130)–3.100(30)(150) … … 3.216(29) 3.306(26) 3.161 3.166(27)
2�−þ 3.480(140)(160)–3.97(7) … … 3.658(33) 3.737(34) 3.703 3.558(29)
0þ− 4.740 (70) (230)–4.780(60)(230) 9.2þ1.3

−1.4 … 3.428(41) 3.632(45) 3.165 3.420(40)
1þ− 2.670(65)(120)–2.980(30)(140) 2.87þ0.17

−0.20 … 3.216(35) 3.336(38) 2.954 3.212(34)
1�þ− 3.80(6) … … 3.735(34) 3.926(33) 3.652 3.655(31)
2þ− 4.140 (50) (200)–4.24(8) 2.85þ0.16

−0.20 , … 3.131(37) 3.209(41) 2.786 3.147(35)
6.06� 0.13 …

3þ− 3.270(90)(150)–3.600(40)(170) 2.78þ0.18
−0.23 … 3.007(37) 3.025(44) 2.572 3.047(36)

3�þ− 3.630(140)(160) … … 3.555(34) 3.668(34) 3.369 3.510(31)
0−− … 6.8þ1.1

−1.2 … 3.890(38) 4.249(38) 3.907 3.795(36)
1−− 3.240(330)(150)–4.03(7) 3.29þ1.49

−0.32 … 3.508(34) 3.746(34) 3.441 3.446(32)
2−− 3.660(130)(170)–4.010(45)(200) 3.16þ0.33

−0.23 … 3.621(34) 3.903(33) 3.619 3.539(32)
2�−− 3.740(200)(170) … … 4.093(37) 4.426(35) 4.211 3.951(32)
3−− 4.130(90)(200)–4.330(260)(200) 3.47þ?

−0.50 … 3.700(34) 4.017(33) 3.765 3.600(32)
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2. Model III and IV

In model III and model IV, the value of the parameter is
b ¼ 1.5360 GeV2. The value of the constant cr:m: in
Eq. (68) is 0.4593, which means

M5ðzÞ2 ¼ e−0.4593ΦM2
5; model III and IV: ð98Þ

The covariance of the parameters b and cr:m: is

σ2params ¼
� hδbδbi hδbδcr:m:i
hδcr:m:δbi hδcr:m:δcr:m:i

�

¼
�
15.3217 GeV4 6.1579 GeV2

6.1579 GeV2 4.0296

�
× 10−4: ð99Þ

The method to calculate the value of the parameters b, cr:m:

and the covariance of the parameters σ2params are similar to
that in subsubsection IV C 1.
The holographic results for the glueballs/oddballs spec-

tra and the standard deviations of their errors are denoted by
“Model III, IV(1)” in Table III.
In Ref. [146], the authors also use model III to calculate

the glueballs spectra. There they use the parameters b ¼
2
ffiffi
6

p
3
GeV2 [148] and cr:m: ¼ 2

3
. We also calculate the glue-

balls spectra using these values of parameters and list the
results denoted by Model III, IV(2) in the Table III.

3. Model V

InmodelV, thevalueof the parameter isd ¼ 0.2463 GeV2.
The value of the constant cr:m: in Eq. (68) is 0.3576, which
means

M5ðzÞ2 ¼ e−0.3576ΦM2
5; model V: ð100Þ

The covariance of the parameters d and cr:m: is

σ2params ¼
� hδdδdi hδdδcr:m:i
hδcr:m:δdi hδcr:m:δcr:m:i

�

¼
�
0.4898 GeV4 0.9016 GeV2

0.9016 GeV2 2.4450

�
× 10−4: ð101Þ

Themethod to calculate thevalueof the parametersd,cr:m: and
the covariance of the parameters σ2params are similar to that in
Sec. IV C 1.
The holographic results for the glueballs/oddballs spec-

tra and the standard deviations of their errors are denoted by
“Model V” in Table III.
The corresponding results for glueballs and oddballs

spectra are also shown in Fig. 2 and Fig. 3, respectively.

4. Compare results with lattice QCD, QCD sum rule and
pp high energy scattering

We summarize our holographic results of glueballs/odd-
balls spectra and then compare them with the results from
lattice simulation and QCD sum rule in Table III. We also list
the result of an effective holographic model, which is taken
from [109] and is consistent with the data from lattice QCD,
where the authors treat the scalar and tensor fluctuations in
the gravity-dilaton action as the 5-dimensional fields that
dual to scalar and tensor glueballs respectively, i.e., the
glueball fluctuations method as we mentioned at the begin-
ning of Sec. IV. To explicitly see the difference between
results from holographic QCD models and those from lattice
simulation, we also list results in Fig. 2 for C-parity even
glueballs, and in Fig. 3 for C-parity odd oddballs.
In the framework of holography, the states JPC with the

same angular momentum J and the same C-parity corre-
sponds to different operators, however, the dimensions of
which are the same. Thus, they have the same dimension and
5-dimensional mass, and the mass splitting for different
P-parity states is realized by e−pΦ in Eq. (65). The states JPC

with the same angular momentum J and the same P-parity
but different C-parity have different operators, the dimen-
sions of which are also different. Thus, they have different
5-dimensional masses, which naturally induces the mass
splitting for different C-parity states. From the results in
Table III, Figs. 2, and 3, we can see that with only 2
parameters, the model predictions on glueballs/oddballs
spectra in general are in good agreement with lattice results
except three oddballs states 0þ−, 2þ−, and 3−−. Here we also
would like to mention that the data predicted by the single
pole (SP) and dipole (DP) Regge model [51] to fit the high
energy pp scattering: using the SP Regge model, the
predicted mass for 2þþ glueball is 1.747 GeV; using the
DP Regge model, the predicted masses for 2þþ glueball and
3−− oddball are 1.758 GeV and 3.001 GeV, respectively.
These predicted values are a little bit lower than the results
predicted from holography but still in reasonable regions. It
might indicate that the mass 1.747 GeV/1.758 GeV 2þþ
glueball and mass 3.001 GeV 3−− oddball are hybrid
glueball/oddball states mixing with quark states.

V. EQUATION OF STATE

Thermodynamic properties of the Yang-Mills theory has
been investigated in the holographic frame [63,65]. Here,
with parameters used to calculate the glueballs/oddballs
spectra listed in Table III, we check the corresponding
thermodynamic properties of the system in our holographic
models.

A. Model I and II

In model I and model II, the value of the parameters are
a ¼ 0.4822 GeV2, and the 5-dimensional Newtown constant
G5 ¼ 1. Then we numerically calculate the thermodynamic
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properties in model I and model II. In model II, we utilize the
numerical method in Refs. [133,149] to investigate the
thermodynamic properties. The results are different for these
twomodels, aswe emphasized in Sec. III C 1. Thedeconfined
temperature Tc ¼ 480.956 MeV for model I with inputting
AEðzÞ and Tc ¼ 465.924 MeV for model II with inputting
VϕðϕÞ.We plot the thermodynamical quantities in Fig. 4. The

red pointswith error bar are lattice simulation ofSUð3ÞYang-
Mills results in Ref. [150].
It is noticed that even though model I and model II can

describe glueballs/oddballs spectra, the corresponding
thermodynamic properties shown in Fig. 4 are not in good
agreement with lattice results [150] for the pure gluon
system. From the asymptotic analysis of the dilaton field at

FIG. 2. The mass spectra of JPC (C ¼ 1) glueballs in the dynamical soft-wall model, compared with lattice data. This figure are split
into five panels, that are divided by black solid lines. From left to right, the mass data in these panels belong to 0þþ states, 2þþ states,
0−þ states, 1−þ states, and 2−þ states respectively. In every panel, the black dashed line split it into two parts. The left one contains lattice
data taken from Refs. [2,4,5,9]. The steel blue lines, goldenrod lines, olive drab lines, orange red lines are lattice data taken from Ref. [9],
Ref [4], Ref [5], and Ref [2] respectively. The minimal value and maximal value of a set of discrete data that belongs to the same glueball
state decide the positions of lower and upper bound of the bar in the figure respectively. The data in the right part are calculated in our
holographic models. The medium purple lines, sienna lines, sky blue lines, and magenta lines are results from Model I, II, Model III, IV
(1), Model III, IV(2), and Model V, respectively.
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UV boundary Eq. (27) in Sec. III A, we can see that the
leading order of the 5-dimensional dilaton field is a term
proportional to z, and the subleading order is a term
proportional to z3. So we expect the thermodynamic
properties of model I and II behaves more like quark

matter. We fix the value of the parameter a and tune the
value of G5 ¼ 1 to G5 ¼ 0.42 to meet the degrees of
freedom of quark matter. In this case, the critical temper-
atures remain unchanged. It is found that the equation of
state calculated in model I and II are qualitatively consistent

FIG. 3. The mass spectra of JPC (C ¼ −1) oddballs in the dynamical soft-wall model, compared with lattice data. This figure are split
into eight panels, that are divided by black solid lines. From left to right, the mass data in these panels belong to 0þ− states, 1þ− states,
2þ− states, 3þ− states, 0−− states, 1−− states, 2−− states, and 3−− states respectively. In every panel, the black dashed line split it into two
parts. The left one contains lattice data taken from Refs. [2,4,5,9]. The steel blue lines, goldenrod lines, olive drab lines, orange red lines
are lattice data taken from Ref. [9], Ref. [4], Ref. [5], and Ref. [2], respectively. The minimal value and maximal value of a set of discrete
data that belongs to the same oddball state decide the positions of lower and upper bound of the bar in the figure, respectively. The data in
the right part are calculated in our holographic models. The medium purple lines, sienna lines, sky blue lines, and magenta lines are
results from Model I, II, Model III, IV(1), Model III, IV(2), and Model V, respectively.
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with the 2þ 1 flavors lattice results in Ref. [151]. We plot
the equation of state in Fig. 5. The red points with error bar
are lattice simulations of SUð3Þ equation of state taken
from Ref. [150] for pure gluon system. The purple points
with error bar are lattice simulations of Nf ¼ 2þ 1 QCD
equation of state taken from Ref. [151].

B. Model III and IV

We also check the corresponding thermodynamic proper-
ties of model III and model IV. In model IIII, we use two sets
of values of the parameters. The parameters A are
b ¼ 1.5360 GeV2, and the 5-dimensional Newtown con-

stant G5 ¼ 1.35; the parameters B are b ¼ 2
ffiffi
6

p
3

GeV2 as in
[146], as we mention in Sec. IVC 2, the 5-dimensional
Newtown constant G5 ¼ 1.35. Again, we employ the
numerical method in Refs. [133,149] to investigate the
thermodynamic properties in model IV. We fix the values
of the characteristic energy scale [152] of the EMD systemΛ
and the 5-dimensional Newtown constant G5: Λ ¼ 1 GeV,
and G5 ¼ 1.35. Then we numerically calculate the equation
of state for these two models respectively. The results are
actually different for the two models, as we emphasized in
Sec. III C 2. In model III, the deconfined temperature Tc ¼
343.455 MeV for parametersA with b ¼ 1.5360 GeV2 and

Tc ¼ 354.131 MeV for parameters B with b ¼ 2
ffiffi
6

p
3

GeV2.

The deconfined temperature Tc ¼ 269.371 MeV in model
IV with Λ ¼ 1 GeV. We plot the equation of state in Fig. 6.
The red points with error bar are lattice simulation of SUð3Þ
equation of state for pure gluon system in Ref. [150].
We can see from Fig. 6 that the lines for parameters A

and parameters B in model III are totally the samewith each
other. That is not surprising because all the quantities are
dimensionless in this plot.

C. Model V

In model V, we use the parameters d ¼ 0.2463 GeV2, and
the 5-dimensional Newtown constant G5 ¼ 10

11
. Then we

numerically calculate the equation of state. The deconfined
temperature Tc ¼ 522.489 MeV. We plot the equation of
state in Fig. 7. The red points with error bar are lattice
simulation of SUð3Þ equation of state from Ref. [150].
If we fix the value of the parameter d and tune the value

of G5 to G5 ¼ 0.39, the critical temperature remains
unchanged. However, the equation of state in model V
will be qualitatively consistent with the 2þ 1 flavors lattice
results, which is taken from Ref. [151]. We plot the
equation of state in Fig. 8. The red points with error bar
are lattice simulations of SUð3Þ equation of state taken
from Ref. [150]. The purple points with error bar are lattice
simulations of Nf ¼ 2þ 1 QCD equation of state taken
from Ref. [151].

FIG. 4. The results of equation of state from model I and model II with a ¼ 0.4822 GeV2 and G5 ¼ 1. The results of the entropy
density over cubic temperature (upper left panel), the pressure over quartic temperature (upper right panel), the energy density over
quartic temperature (lower left panel) and the trace anomaly over quartic temperature (lower right panel) as functions of the scaled
temperature T=Tc in model I and model II, respectively. The blue line is the result for model I with inputting AEðzÞ, the orange line is
result for model II with inputting VϕðϕÞ. The red points are SUð3Þ lattice data taken from Ref. [150].
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The equation of state calculated in the Einstein-Maxwell-
dilaton model in the holographic frame can be compared
not only with the lattice results for the pure gluon system,
but also with the lattice results for the 2þ 1 flavor system
[133,149,153]. As the conclusion of this section, we now
explain why we compare some of our holographic results
with those from lattice simulation of Nf ¼ 2þ 1 QCD
equation of state.
We start from the probe limit. The total action of 5-

dimensional holographic QCD model including glueball/
oddball excitations is

Sstotal ¼ Ssb þ Ssg; ð102Þ

where Ssb is the action for the background in the string
frame, and Ssg is the action describing the glueballs in the
string frame. In principle, we should consider the whole
action and derive the EOMs, in which the fields Φ, Aμ, As,
and fðzÞ are coupled with the matter fields. Thus, not only
the background affects the EOMs of the matter fields, but
also the matter fields provide back-reaction on the back-
ground. However, solving the fully coupled EOMs are
very difficult and we are still struggling to do that. So an
approximation called the probe limit is widely adopted in

the literature. In the probe limit, we first neglect the
coupling between the background and the matter part, and
then we solve the EOMs of the background. After deriving
the background, we can solve the EOMs of the matter
fields that live on the background. In this procedure, we
neglect the backreaction provided by the matter field on
the background, as we do in this work. Thus, in the probe
limit, the thermodynamic properties are entirely deter-
mined by the background. Correspondingly the dilaton
field can be solved self-consistently, then from AdS=CFT
dictionary, one can read the particle information of the
dilaton field.
Because we neglect the back-reaction, which means the

effect of the matter fields cannot be contained in the
background naturally, we input different VϕðϕÞ (or AE,
or ϕ) to produce different background solutions that are
used to mimic different 4-dimensional field theories, such
as pure gluon system, or Nf ¼ 2þ 1 QCD. To mimic
different 4-dimensional field theories, the key point is to
choose the appropriate value of dimension Δϕ. We will
explain this in the following.
Considering the flavored QCD, to describe the meson

sector, the typical 5-dimensional action in bottom-up
holographic QCD can be written as [72]

FIG. 5. The results of equation of state from model I and model II with a ¼ 0.4822 GeV2 andG5 ¼ 0.42. Upper left panel: the ratio of
entropy density over cubic temperature as function of scaled temperature T=Tc. Upper right panel: the ratio of pressure over quartic
temperature as function of scaled temperature T=Tc. Lower left panel: the energy density over quartic temperature as function of scaled
temperature T=Tc. Lower right panel: the trace anomaly over quartic temperature as function of scaled temperature T=Tc. The blue line
is for model I with inputting AEðzÞ. The orange line is for model II with inputting VϕðϕÞ. The red points are SUð3Þ lattice data taken
from Ref. [150], and the purple points are Nf ¼ 2þ 1 lattice data taken from Ref. [151].
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SM ¼ 1

k

Z
d5x

ffiffiffi
g

p
e−ΦðzÞTr

�
jDXj2 −m2

5ðzÞjXj2

− λjXj4 − 1

4g25
ðF2

L þ F2
RÞ
�
; ð103Þ

where DMX ¼ ∂MX − iAM
L X þ iXAM

R , FMN
L;R ¼ ∂MAN

L;R−
∂NAM

L;R − i½AM
L;R; A

N
L;R�, AM

L ¼ Aa;M
L taL, AM

R ¼ Aa;M
R taR, taL

and taR are the generators of SUðNfÞL and SUðNfÞR
respectively, and ΦðzÞ is the dilaton field. The dimension
of the scalar field X is ΔX ¼ 3. This leads to the bulk scalar
VEV has the following behavior in the UV region:

χðz ∼ 0Þ ¼ mqζzþ
σ

ζ
z3 þ � � � : ð104Þ

According to the AdS=CFT dictionary, mq is the current
quark mass, σ is the chiral condensate, and ζ is a normali-
zation constant.
In the fully coupled consideration, where the back-

reaction is taken into account, the asymptotic behavior
of χðzÞ guarantees the appearance of the term proportional

to z in the UV asymptotic expansion of Φ. This is true
because Φ and χ are coupled together in the fully coupled
consideration.
Now we get an important conclusion: to describe the

flavored QCD, there should be a term proportional to z in
the UVasymptotic expansion ofΦ. But please keep in mind
that here we adopt the probe limit and use the background
without backreaction to mimic the flavored QCD. Thus,
taking the profile ΔΦ ¼ 3 is a natural way to produce the
term proportional to z.
In conclusion, we adopt the probe limit in the work.

Although we solve the background without considering the
back-reaction of the matter field, we can still use the
background to mimic different 4-dimensional field theo-
ries. To mimic the flavored QCD, we should take the profile
ΔΦ ¼ 3. Of course, we can choose another different value
of ΔΦ to mimic the pure gluon system, which is ΔΦ ¼ 2 in
this work.

VI. CONCLUSION AND DISCUSSION

In this work, we study scalar, vector, and tensor glueballs/
oddballs spectra in the frameworkof 5-dimensional dynamical

FIG. 6. The results of equation of state from model III and model IV. Upper left panel: the ratio of entropy density over cubic
temperature as function of scaled temperature T=Tc. Upper right panel: the ratio of pressure over quartic temperature as function of
scaled temperature T=Tc. Lower left panel: the energy density over quartic temperature as function of scaled temperature T=Tc. Lower
right panel: The trace anomaly over quartic temperature as function of scaled temperature T=Tc. The blue line is for parameters A:

b ¼ 1.5360 GeV2, and G5 ¼ 1.35 in model III, in which we input ϕðzÞ. The green line is for parameters B: b ¼ 2
ffiffi
6

p
3

GeV2, and
G5 ¼ 1.35 in model III. The orange line is for model IV, in which we input VϕðϕÞ and the parameters are Λ ¼ 1 GeV, and G5 ¼ 1.35.
The red points is SUð3Þ lattice data taken from Ref. [150] for pure gluon system. The positions of the blue line and the green line are
totally the same in each panel.
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holographic QCD model, where the metric structure is
deformed self-consistently by the dilaton field. In the frame-
work of holography, the states JPC with the same angular
momentum J and the same C-parity corresponds to different
operators, however, the dimensions of which are the same.
Thus, the corresponding 5-dimensional masses of these states
are also the same, and the mass splitting for different P-parity
states is realized by e−pΦ in Eq. (65). The states JPC with the
same angularmomentumJ and the sameP-parity but different
C-parity have different operators, the dimensions of which are
also different. Thus, theyhavedifferent 5-dimensionalmasses,
which naturally induces the mass splitting for different
C-parity states.
From the results in Table III, Figs. 2, and 3, we can see

that with only two parameters, the model predictions on
glueballs/oddballs spectra in general are in good agreement
with lattice results except three oddballs states 0þ−, 2þ−

and 3−−. Here we also would like to mention that the data
predicted by the SP and DP Regge model [51] to fit the high
energy pp scattering: using the SP Regge model, the
predicted mass for 2þþ glueball is 1.747 GeV; using the DP
Regge model, the predicted masses for 2þþ glueball and
3−− oddball are 1.758 GeV and 3.001 GeV respectively.
These predicted values are a little bit lower than the results

predicted from holography but still in reasonable regions. It
might indicate that the mass 1.747 GeV=1.758 GeV 2þþ

glueball and mass 3.001 GeV 3−− oddball are hybrid
glueball/oddball states mixing with quark states.
From the results of glueballs/oddballs spectra at zero

temperature and zero density and the equation of state at
finite temperature, we obtain the following conclusions.
(1) For the same set of vacuum solutions to the Einstein
field equations and the equation of motion of the dilaton
field ϕðzÞ, inputting the function AEðzÞ and inputting the
dilaton potential VϕðϕÞ give the different equation of state
indeed. (2) The model with quadratic dilaton field ϕðzÞ can
simultaneously describe glueballs/oddballs spectra as well
as the equation of state of pure gluon system. The model
with quadratic AEðzÞ can describe glueballs/oddballs spec-
tra, but its corresponding equation of state behaves more
like Nf ¼ 2þ 1 quark matter. These are consistent with the
dimension analysis at ultraviolet (UV) boundary. Our
results suggest that the dilaton field taking the simple
quadratic form can be regarded as a candidate of dual
theory for pure gluodynamics. Even though it is still
difficult to find the dual theory of full QCD, the possible
existence of dual theory of pure gluodynamics would be
quite encouraging.

FIG. 7. The results of equation of state from model V. Upper left panel: the ratio of entropy density over cubic temperature as function of
scaled temperature T=Tc. Upper right panel: the ratio of pressure over quartic temperature as function of scaled temperature T=Tc. Lower
left panel: the energy density over quartic temperature as function of scaled temperature T=Tc. Lower right panel: the trace anomaly over
quartic temperature as function of scaled temperature T=Tc. The blue line is for model V, in which we input ϕðzÞ and the parameters are
d ¼ 0.2463 GeV2, and G5 ¼ 10

11
. The red points are SUð3Þ lattice data taken from Ref. [150] for pure gluon system.
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