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We study holographically nonlocal observables in field theories at finite temperature and in the large d
limit. These include the Wilson loop, the entanglement entropy, as well as an extension to various dual
extremal surfaces of arbitrary codimension. The large d limit creates a localized potential in the near
horizon regime resulting in a simplification of the analysis for the nonlocal observables, while at the same
time retaining their qualitative physical properties. Moreover, we study the monotonicity of the coefficient
α of the entanglement’s area term, the so-called area theorem. We find that the difference between the UV
and IR of the α values, normalized with the thermal entropy, converges at large d to a constant value which
is obtained analytically. Therefore, the large d limit may be used as a tool for the study and (in)validation of
the renormalization group monotonicity theorems. All the expectation values of the observables under
study show rapid convergence to certain values as d increases. The extrapolation of the large d limit to low
and intermediate dimensions shows good quantitative agreement with the numerical analysis of the
observables.
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I. INTRODUCTION

The nonlocal observables have played an important role
in the study of theoretical physics over the years. The
gauge/gravity duality [1,2] has provided a solid tool for
their study at strong coupling, with several interesting
applications. Nonlocality in the context of gauge/gravity
duality is in principle associated to minimization problems
in curved space-times. These are mainly extremal surfaces,
which give rise to different nonlocal observables according
to their dimensionality. Such minimization problems are
very challenging even on flat spaces, and one would expect
that they would be unsolvable in curved space-times. Many
of them are; however in several cases the symmetry of the
space-time and the simplicity of the boundary conditions
make the problem tractable.
Wilson loop and entanglement entropy are two of these

prominent nonlocal observables. TheWilson loop exponent
is proportional to the leading contribution to the effective
potential between two static quarks and serves as an order

parameter for confinement. The entanglement entropy is
the von Neumann entropy of the reduced density matrix of
a partition of the Hilbert space. The Wilson loop corre-
sponds to a two-dimensional minimal surface hanged from
the boundary of the holographic space, while the entangle-
ment entropy corresponds to a spatially codimension one
surface. These type of surfaces can have strip boundaries
that exhibit translational invariance on the directions trans-
verse to the strip separation. When the theory is conformal
their regularized areas can be found in closed form in terms
of elementary functions. The regularization of the ultra-
violet contributions is necessary for any such observable. In
entanglement these arise from local UV physics near the
entangling surface, while for the Wilson loop they amount
to the contribution to the interquark potential of the infinite
mass of the fundamental quarks. From the minimal surface
perspective, the UV contributions are associated with the
infinite distance required to reach the boundary from
the bulk.
In the presence of scales the nonlocal observables reveal

the richer properties of the theory but do not acquire a
closed form in terms of the physical scales of the theory. At
finite temperature, as the separation of the quarks increases,
the Wilson loop undergoes a phase transition from a
connected surface to a pair of disconnected surfaces, which
become energetically favorable. The phase transition
depends on the possible scales of the theory and occurs
at an intermediate temperature, where its analytical details
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are not fully tractable. The holographic entanglement
entropy at zero temperature and even dimensions is related
to the central charge coefficient of the Euler density
contribution to the conformal anomaly, while in odd
dimensions a connection to the F theorems has been
shown [3,4]. This has motivated the proposal of several
c function candidates whose monotonicity is tighten up to
the satisfaction of the null energy conditions [5–8] with
interesting applications in holography [9–14]. Another
monotonic function along the renormalization group
(RG) flow is defined by the area theorem. For entangling
regions that cover almost the entire space-time, the entan-
glement entropy approaches the thermal entropy exhibiting
area subleading contributions. The coefficient of the area α
has been found to be decreasing along Lorentz invariant
RG flows [15,16]. The entanglement entropy as well as the
holographic functions α and c have not been expressed in
an exact closed form in the presence of scales. Moreover,
their monotonicity is guaranteed only for theories with
Lorentz symmetry and therefore it is an interesting task to
analytically obtain them and study their properties along
the different RG flows.
In our approach we study these phenomena in the limit of

a large number of dimensions d, both analytically and
numerically. We rely on the fact that the bulk geometry is
well defined at any dimension and we will assume that the
dictionary between extremal surfaces and nonlocal observ-
ables is valid at any d. Moreover, the large d expansion in
our holographic study can be seen as a conceptual and
computational tool, since all the computational limits are
smooth. Although we note that the gauge/gravity corre-
spondence is microscopically well defined only for low
dimensions and interacting conformal field theories have
been known only for d ≤ 6, there is no obstruction in
defining the geometry at large d and assuming that
holography holds there. The computation of holographic
observables at large d can be always done given the
aforementioned assumptions and the extrapolation to lower
dimensions is always conceptually and computationally
possible, since smooth limits are involved. The story carries
some distant similarities to the large-N expansion in gauge
theories. A motivation for our study is to examine whether
at large d the geometrical computations are simplified. At
the same time one may study whether certain qualitative
properties of theories at finite d are captured by the large d
expansion, and how well the quantitative ones can be
approximated by the extrapolation of the large d results.
Notice that there are several interesting developments in
general relativity at large d, which also serve as a
motivation, see for example [17–20]. Surprisingly, the
large d expansions have been proven to be both qualitative
and in many cases even quantitatively accurate for the
gravitational studies, resembling in some sense the behav-
ior of the large-N extrapolation to lower values in gauge
theories. The explanation relies partly on the fact that for

large d, the gravitational potential becomes extremely
steep, which tends to separate the dynamics of the near
horizon region and the rest of the space, while preserving
most of the characteristics of the gravitational potential. We
will see that this is the case for the holographic studies in
this paper.
The large d expansion has been already used success-

fully in the context of holography in computing the zero
temperature phase transitions of holographic mutual infor-
mation [21], in the study of the holographic momentum
relaxation and of the superconductors [22,23], and in
hydrodynamic related studies [24–26]. Here we apply
the large d expansion in holography for the computation
of nonlocal observables. The expectation value of the
observable is determined by the boundary data of the
problem, in this case the length L of the surface, and the rest
of the scales of the theory. The main difficulty lies in
expressing the area of the surface in the bulk in terms of L
and the rest of the scales in the theory. There have been
numerous interesting approaches to tackle this problem,
including mainly those of applying different type of series
on the surfaces [27–29].
In our work we study how Wilson loops and Wilson

surfaces of arbitrary codimension behave in the large d
limit in thermal theories and in theories that exhibit
confinement. We find that the analysis becomes simpler
in this limit, while all the qualitative features of the theory
concerning the observables are still captured. Moreover,
quantitative extrapolation at low d shows a good agreement
in many cases. Then we move on to study entangling
surfaces at large d. We find again that the limit reduces the
complexity of the analytical computations. In addition, we
compute the coefficient α of the so-called area theorem that
has been found to exhibit monotonicity properties along the
RG flow. We find that the difference of the UV and the IR
contributions to the function α converges in the large d limit
to a certain number, simplifying tremendously the compu-
tation. This number reveals the violation of the area
theorem in the theories under discussion, as expected,
due to the breaking of Lorentz invariance. This suggests
that the large d limit is an invaluable tool for the (in)
validation of the RG monotonicity theorems. We also study
spatial surfaces of arbitrary codimension with a similar
profile as the entangling surfaces and derive their properties
at large d. We note that all the expectation values of the
observables under study show rapid convergence to certain
values as d increases. We observe that the extrapolation of
the large d limit to low dimensions shows a good
quantitative agreement with the numerical analysis on
the observables.

II. GRAVITY BACKGROUNDS

We consider spherically symmetric black holes in
AdSdþ1 space-times. Small anti–de Sitter (AdS) black
holes exhibit similar behavior with asymptotically flat
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black holes, which are unstable. Large AdS black holes
have positive specific heat and are thermodynamically
stable. They describe the high temperature phase of the
dual field theory. For a large mass they become planar with
a translationally invariant horizon

ds2dþ1¼−
r2

R2
fðrÞdt2þR2dr2

r2fðrÞþr2dx2d−1; fðrÞ≔
�
1−

rdh
rd

�
:

ð2:1Þ

In order to avoid a conical singularity at the horizon, the
temperature must be

T ¼ drh
4πR2

: ð2:2Þ

The dual boundary theory lives on Rd. It is strongly coupled
and has temperature T.
The following complex coordinate transformation

[30,31]

t ¼ 2πiTplR2ϕpl; ϕ ¼ −2πiTpltpl; r ¼ rpl
2πTplR

;

x ¼ 2πTplRxpl; rk ¼ rh; ð2:3Þ

relates the planar black hole to the soliton solution. The
subscript pl refers to quantities associated with metric
(2.1). The soliton metric reads

ds2
solitondþ1 ¼ r2

R2

�
−dt2 þ

�
1 −

rdk
rd

�
R2dϕ2

�

þ r2dx2d−2 þ
R2

r2
�
1 − rdk

rd

� dr2: ð2:4Þ

Notice that the IR tip of the geometry is at rk, and this is the
reason that the boundary theory confines.
There are several ways to define the large d limit. A

convenient way is to keep the horizon radius rh fixed. As
we increase the number of dimensions, the potential
becomes more and more localized around the horizon of
the black hole. In the near horizon regime, the potential
develops a large gradient. For d → ∞ the observables in the
geometry are approaching closer to the zero temperature
ones. The large d expansion however has crucial
differences compared to the zero temperature results and
preserves the finite temperature properties of the theory.
The low temperature expansion corresponds to having the
black hole horizon far away from the boundary. On the
other hand, in the large d expansion the black hole horizon
can be close to the boundary and the expansion relies on the
localization of the potential around the horizon.
Moreover, notice that the limit of large d with rh fixed

leads to an effectively large temperature T. Qualitatively,

the observables in this limit will reflect upon a hotter
environment and therefore they will signal phenomena
associated with high temperature. For example, as d
increases, we expect the critical length Lc associated with
the Wilson loop phase transition to decrease. The exact
analysis of how this happens and the effect of the large d
expansion is one of the subjects of this paper.
In what follows we will study the holographic nonlocal

observables in the large d limit for the backgrounds (2.1)
and/or (2.4).

III. BASICS OF WILSON LOOPS AND LARGE d

One of the most interesting observables in strongly
coupled gauge theories is the Wilson loop, which acts as
an order parameter of confinement. It is given by the path-
ordered exponential of the gauge field traced in the
fundamental representation

WC ¼
1

N
TrP exp

�
i
I

Aμdxμ
�
: ð3:1Þ

It is a nonlocal observable where the expression above can
be integrated along any path in space. Its physical inter-
pretation is that taking an infinitely massive quark in the
fundamental representation along a loop, it will be trans-
formed by the factor (3.1). In this sense the Wilson loop
exponent is proportional to the leading contribution to the
potential between the quarks in a heavy meson state. Its
expectation value can be expressed in terms of the energy
eigenstates of the corresponding Hamiltonian, where in the
limit of large time T , the dominant contribution comes as
follows

hWCi ≃ e−VðLÞT ; T → ∞: ð3:2Þ

In gauge/gravity duality the expectation value of the Wilson
loop is given by the action of a minimal surface bounded by
the curve on the boundary of space. Its expectation value is
given by

hWCi ≃ e
ffiffi
λ

p
A; ð3:3Þ

where A is the regularized area of the minimal surface in the
curved space bounded by the boundary loop C.
The question here is how the number of dimensions

affects the Wilson loop expectation value. In holography
the action of the minimal surface with a rectangular
boundary consisting of a spatial edge of length L, which
represents the distance of the heavy static quarks along the
x direction, and the time direction of length T → ∞ is
given by

S ¼ T
2πα0

Z
dσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gttðgrrr02 þ gxxÞ

q
: ð3:4Þ

HOLOGRAPHIC OBSERVABLES AT LARGE d PHYS. REV. D 105, 026016 (2022)

026016-3



We have considered a holographic element of the form
ds2 ¼ gttdt2 þ gxxdx⃗2 þ grrdr2, where the functions
depend on the holographic coordinate r. The boundary
of space is at r ¼ ∞ where the space-time metric elements
gtt and gxx diverge. The equation of the surface in the bulk
is given by integrating with respect to the loop parameter
the following expression

r0ðσÞ2 ¼ −
gxxðgttgxx þ c2Þ

c2grr
; c2 ≔ −gttgxxjr0 ; ð3:5Þ

where r0 is the turning point of the surface in the bulk. The
latter is related to the length of the surface on the boundary.
There are several ways the large d limit may be taken. Here,
we increase the number of dimensions of the theory while
we keep rh fixed. As d increases, an increasingly larger,
more localized potential appears around the horizon of the
black hole in the bulk. For d → ∞ the solution of the
equations is expected to approach the zero temperature
minimal surface. The large d expansion however has
crucial differences compared to the zero temperature result
and preserves the properties of the finite temperature
solutions. For each value of the turning point r0,
Eq. (4.1) gives two solutions with different boundary
values, a characteristic of finite temperature two-dimen-
sional minimal surfaces.
The boundary length L of a Wilson loop corresponds to

the size of a heavy meson extended along the direction x
and is given by the integration of (3.5) as

L ¼ 2

Z
rb

r0

dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−grrc2

gxxðgttgxx þ c2Þ

s
; ð3:6Þ

where rb is the r value at the boundary of the theory. The
dimension of the space d enters in the expressions above
only through the metric elements since the surface is of
fixed dimensionality. The area of the minimal surface can
be also expressed in terms of the turning point r0.
It is always divergent due to the infinite distance of the
bulk from the boundary in holographic space-times. To
regularize the infinities, we introduce a radial cutoff rb
which is large but finite and add a counterterm Sc that
renormalizes S:

S ¼ SA − Sc; ð3:7Þ

where

SA ¼ T
πα0

Z
rb

r0

dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

gxxgrrg2tt
gttgxx þ c2

s
: ð3:8Þ

At the end we take the limit rd → ∞. Notice that the
integral above has been doubled to take into account the

whole string by incorporating the symmetry of the string.
The integral along the radial dimension depends on the
number of the dimensions through the metric functions.

A. Renormalization of infinities and their
dependence on d

The renormalization of infinities can be done in several
ways. The infinite distance from the boundary corresponds
to the infinite mass of the meson quark and antiquark. So
subtracting their masses, it is their interaction energy that
remains. In fact the counterterm Sc in (3.7) is given by the
dominant rb dependent term in the expression of the infinite
mass of the quarks given by

Sm ¼ T
πα0

Z
rb

rk

dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gttgrr

p
; ð3:9Þ

where rk is the deepest point in the bulk that a static straight
string originating from a point at the boundary can reach.
The counterterm depends only on intrinsic variables of the
cutoff surface at rb, while Sm depends also on the state of
the theory. In the presence of horizons or cigar-type
geometries, rk denotes the horizon or the position of the
tip of space, respectively. Therefore, the dependence on the
dimensions d potentially enters through the metric elements
in this expression, although this is not necessary, since the
product in the integrand can be d independent.
The independence of the UV divergence on d in certain

theories is not surprising. The divergence is related to the
way that the string approaches the boundary. It is
perpendicular to the spatial dimensions running along
the r dimension, and therefore, for symmetric spaces like
the planar AdS black holes, there should be no d depend-
ence, as indeed happens.
An alternative renormalization scheme is motivated by

the different type of boundary conditions that the string has
in the d-dimensional space-time. Let us consider a theory in
d1 > d dimensions in the presence of a number of space
filling ðd1 − 1Þ-dimensional branes. The Wilson loop in
this case can be thought of as corresponding to an open
string bounded by the loop C with Dirichlet boundary
conditions, since the string end point has complementary
Neumann boundary conditions along the space filling
d1 − 1 branes. To reduce the theory in d dimensions we
perform T dualities along the d1 − d directions, which
transform the Dirichlet boundary conditions to Neumann
ones, to end up with a Wilson loop obeying d Dirichlet
boundary conditions and d1 − d Neumann boundary
conditions.
The above discussion motivates the Legendre transform

[32,33], since < W > should be thought of as a functional
of the coordinates in d dimensions and the momenta in
d1 − d dimensions, which in our discussion here only the
radial one plays the major role. The Legendre transform is
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not diffeomorphism invariant, so we work in the Poincare-
like set of coordinates where it reads

SLeg ¼
T
πα0

Z
L=2

0

dxprr0 ¼
T
πα0

ðprrÞ
����rb
r0

; ð3:10Þ

where pr is the conjugate momentum to the r coordinate
and does not depend explicitly on x. From this one may
read the counterterm

Sc ≃
T
πα0

ðr ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gttgrr

p Þ
����
r¼rb

; ð3:11Þ

where at the boundary the term gttgrr diverges and the
expression depends only on intrinsic variables of the cutoff
surface at rb. Note that the Wilson loops in the adjoint
representations are dual to higher-dimensional branes that
have similar profiles to the strings discussed above. The
renormalization of the infinities applies in a similar manner.
Notice that from now on we will drop the overall T factor
to simplify the presentation.

IV. HOLOGRAPHIC WILSON LOOP AT LARGE d

The Wilson loop surface at zero temperature is unique
for fixed boundary conditions. At finite temperature there
are two extremal surfaces with the same boundary.
One extremal surface, Sunstable, is the unstable one that
goes deep into the holographic direction and has area
Sunstable ≥ Sstable. Sstable is the stable surface that remains
closer to the boundary. It is the one that is physically
relevant for the meson potential. In the stable surface
brunch there is one more competition of dominance among
the different solutions. Sstable is the connected surface
between the two end points, which competes in terms of
area or energy with the two disconnected straight-line
surfaces Sm. The Wilson loop phase transition takes place
when Sstable ¼ Sm, which, for a fixed length, occurs with
the increase of the temperature of the theory. This could be
interpreted as the way the meson melts down to its
constituents, since the bound state is not anymore dominant
compared to having the quarks separated.
To extract the minimal surface dependence on d, we

substitute the metric elements (2.1) in the Euler-Lagrange
equation (3.5). Writing explicitly this equation for the
holographic background under study, we get

r0ðσÞ2 ¼ −fðrÞr4
�
1 −

fðrÞr4
fðr0Þr40

�
: ð4:1Þ

In this section we set R ¼ 1. For d → ∞ the solution to the
equations approaches the zero temperature minimal sur-
face. The large d expansion of the finite temperature theory
however has crucial differences compared to the zero

temperature theory. For example, for each value of the
turning point r0, Eq. (4.1) gives two solutions with different
boundary values. Equation (3.6) gives for the boundary
length

L ¼ 2

Z
∞

r0

dr
1

r2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðrÞð r4fðrÞr4
0
fðr0Þ − 1Þ

r ≔
Z

∞

r0

drLint: ð4:2Þ

The surfaces that are close to the boundary of the space and
get deeper in the bulk as r0 decreases will have increasing
boundary distance L. On the other hand, for surfaces that
are very deep into the bulk in the near horizon regime, as r0
decreases, their boundary distance L decreases. Therefore,
Lðr0Þ is a function with a maximum point for some r0,
irrespective of the number of dimensions. The dependence
of the saddle point on the number of dimensions can be
estimated by an expansion of the derivative of the integrand
around r ∼ r0. For d > 4, the value of r0 at the maximum as
a function of d can be approximated to be

r0max ≃ 16−1=dðd − 4Þ2drh; ð4:3Þ

by setting dLint
dr0

equal to zero and obtaining the leading
contributions near the boundary. Especially, for large d, the
approximation improves rapidly and reads

r0max ≃ rh

�
1þ 2

d
log

d
4
þ 2

d2

��
log

4

d

�
2

− 4

��
: ð4:4Þ

This approximated expression captures well the qualitative
behavior of the dependence of minimal surfaces on the
number of dimensions. For low dimensions, as d increases,
the maximum of Lðr0Þ moves towards the bulk, until a
critical dimension is reached, still in the regime of low d,
where the monotonicity changes. Further increase of d
moves the maximum closer to the boundary.
This summarizes the qualitative behavior of the minimal

surfaces and how, in the large d limit, they approach the
zero temperature surfaces. This analytical treatment is
justified by the numerical analysis of the latter sections
and is summarized in Fig. 5. In the numerical sections we
elaborate more on the features of the minimal surfaces and
their dependence on the number of dimensions d presenting
the accurate analysis.
A further analytical treatment involves an expansion of

the quantities in terms of ϵ ¼ 1 − rdh=r
d
0 . Expansion of (4.2)

with respect to ϵ and integration gives

r0 ≃
ffiffiffi
π

p
L

�
2Γð7

4
Þ

3Γð5
4
Þ þ

ϵ − 1

24

�
3ðd − 1ÞΓð3þd

4
Þ

Γð5þd
4
Þ −

16Γð7
4
Þ

Γð1
4
Þ
��

:

ð4:5Þ
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On the other hand, to probe the phase transition we
compute the quantity SA − Sc − ðSm − ScÞ which eventu-
ally leads to

SA − Sm ¼ −
r0ffiffiffi
π

p
α0

�
Γð7

4
Þ

3Γð5
4
Þ þ

ϵ − 1

12

�
4Γð7

4
Þ

Γð5
4
Þ −

3Γð3þd
4
Þ

Γð1þd
4
Þ
��

þ rh
πα0

; ð4:6Þ

where from (3.9)

Sm ¼ 1

πα0

Z
rb

rh

dr: ð4:7Þ

This quantity is equal to the interaction potential between
the quark-antiquark pair, which is obtained by subtracting
from the energy the infinite quark mass (including the
thermal contribution). The equation written in this
form reveals the special properties of the d ¼ 4 case,
where the Γ functions combine and simplify considerably.
Equation (4.6) has an immediate consequence on the
melting of the meson at large d. The mass term depends
inversely proportional on d only through the horizon of the
black hole (2.2). By keeping fixed the horizon position as
we increase the dimensionality of the theory, the mass term
remains the same. The melting of the meson occurs for the
L value for which the potential becomes equal to the Sm.
Assuming that the form of the potential almost saturates for
some value of d, we expect for large d, Lc ≃ c1, which
implies that

LcT ∼ c1dþOðdÞ: ð4:8Þ

Indeed this is what we confirm with our numerical analysis
in the next section, where we also determine the subleading
terms. The assumption made on a converging form of the
potential at large enough values of d is natural, since the
gravitational potential localizes in the near horizon regime.
We can also try to determine the constant c1. By

combining Eqs. (4.6) and (4.5) we obtain

Stot¼SA−Sm¼−
1

2α0
Γð7

4
Þ

Γð5
4
ÞL
�
4Γð7

4
Þ

9Γð5
4
Þþ

rdh
rd0

Γð3þd
4
Þ

6Γð5þd
4
Þ
�
þ rh
πα0

;

ð4:9Þ

where the conformal contribution L−1 separates as we take
the large d limit. The expression that determines the critical
length is given implicitly at large d as

Lc ≃
πΓð7

4
Þ

3Γð5
4
Þrh

�
2Γð7

4
Þ

3Γð5
4
Þ þ

1

2
ffiffiffi
d

p rdh
rd0

�
: ð4:10Þ

Although it cannot be solved analytically to give LcðTÞ, we
may confirm that as d increases, the critical length

decreases, as long as we keep rh fixed, and the large d
result (4.8) holds. In particular1

LcT ≃
π2

Γð1
4
Þ4 dþ…: ð4:11Þ

Notice that the expansion resembles the low T expansion,
although here all the expressions are valid for high temper-
atures (in contrast to the low T expansion). This is why we
are allowed to determine approximately the critical length.
We will confirm, in the numerical section, that the
extrapolation to low and intermediate values of d is well
justified.

A. Large d numerics

Having presented the analytical treatment of the Wilson
Loops at large d, we now turn to compute the parameters
numerically for intermediate and large number of dimen-
sions, where the analytical calculations and particularly the
evaluation of the integrals are intractable.
We begin the numerical integration by observing the

behavior of a minimal surface of a fixed turning point in
the bulk as we change the dimensionality of the theory. The
question we ask is how the extremal surface on the
boundary will adapt as we increase the number of dimen-
sions in order to keep fixed the turning point rh=r0. Ideally,
we would like to find a quick converging behavior at large
d, as we have argued in the analytical study.
For surfaces with turning points close to the horizon of

the planar black hole, we observe that the boundary length
develops a slight initial decrease with increasing d, while
still for low d, the monotonicity changes and L increases
until a saturation point. These surfaces belong to the
unstable branch of the extremization problem. For the
physically interesting surfaces in the stable branch that do
not probe the near-horizon regime, there is again a slight
decrease of L, while for a certain value of d, L starts
increasing with d until a saturation is observed. We find that
the saturation of the boundary length L happens at values
that can be considered to be of low dimensionality,
especially for the surfaces in the stable branch. This can
be understood from the fact that the geometry closer to the
boundary becomes increasingly insensitive to the number
of dimensions as d increases, and therefore, the minimal
surfaces that probe these regimes will reach faster the
convergent length L. The overall behavior of the physical
branch of the surfaces is plotted in Fig. 1, and for the
unstable surfaces in Fig. 2, where we plot the minimal
surfaces. Moreover, in Figs. 3 and 4 we plot the boundary
length of the surfaces, corresponding to the size of meson,

1One may use the properties of Γ functions, Γð1þ zÞ ¼ zΓðzÞ
and Γð1 − zÞ ¼ π=ðsinðπzÞΓðzÞÞ, to rewrite the expressions in
equivalent forms. For example, Eq. (4.10) is written in terms of
Γð1=4Þ.
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for various fixed turning points in the stable and unstable
branch, respectively.
The purpose of the study so far is to examine the

geometric properties of the surfaces which generate the
strongly coupled physics. For this reason and for presen-
tation reasons, we do not normalize the boundary length
with the temperature of the theory in the figures.
Alternatively, the described extremal surface depend-

ence can be thought of in terms of fixed boundary length
L. A property of the minimal surfaces at finite temperature
is the existence of two solutions with different turning
point for a fixed distance L. As we increase d, we confirm
that the stable branch of our surfaces approaches the
T ¼ 0 solution, while the stable branch of the surfaces is
dominating over the unstable. Nevertheless, the unstable
branch is always present irrespective of the dimensionality
of the theory and shrinks as we increase d. This

demonstrates the effect of the localization of the gravi-
tational potential in the near horizon regime as d
increases. In Fig. 5 we plot the Lðr0Þ dependence on
the dimensions and we compare it to the T ¼ 0 surface. It
is worthy to note in the figure that low d surfaces show a
slightly different behavior initially.
The discussion so far has been focused on the way

that the minimal surfaces behave as we increase the
number of dimensions. From the physical point of view,
the interest is mainly on the way that the energy of the
surface changes with respect to its boundary distance. In
other words how the energy of a heavy meson changes as
we place the bound state in a space with more dimensions.
The main interest is on the behavior of the critical

d=2
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d=30
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d=100
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FIG. 2. The shape of the energetically nonfavorable surfaces
with r0 ¼ 1.08rh, probing regimes close to the black hole
horizon. There is still a convergence to a certain surface but it
is slower compared to the stable surfaces.
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r = 1.6 r
r = 1.4 r
r = 1.3 r
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0.85
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0.95
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FIG. 3. The boundary length for surfaces with fixed turning
point with respect to the dimension of space. The turning point is
on the stable branch of the surface and it is the one that is
physically relevant. We observe a mild nonmonotonic behavior
for low-intermediate d and a quick convergence on a certain
length L with increasing number of dimensions.

r = 1.08 r
r = 1.04 r
r = 1.02 r
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0.30

0.35

0.40
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0.50

0.55

0.60
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FIG. 4. The boundary length for surfaces with fixed turning
point on the unstable branch. These surfaces probe the regime
close to the black hole horizon. We observe a clear nonmonotonic
behavior for low-intermediate values of d and a slower con-
vergence on a certain length L as the number of dimensions
increases. This is expected since these surfaces are closer to the
localized near horizon potential.
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FIG. 1. The shape of the stable branch surfaces with fixed
turning point r0 ¼ 1.6rh. For the energetically favorable surfaces
there is a quick convergence to a certain surface, as we increase
the number of dimensions.
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temperature (or the critical length) where the meson melts
as we increase the dimensionality of space. That is the
critical distance Lc, where the energy of the connected
minimal surface becomes energetically unfavorable com-
pared to the two disconnected ones with the same
boundary conditions. This is the phase transition for
the meson.

To analyze this behavior we have to compute numerically
the integral of the energy (3.7) with respect to the integral of
the length (3.6). In practice we compute the integrals for
different turning points of the surface r0 and thenwe trade r0
with L. The critical length decreases with d monotonically,
with a quick saturation to a plateau. The saturation point is
already achieved for a ten-dimensional field theory. The
results appear in Fig. 6. To an extent, this behavior reflects
the fact that an increasing d can be seen naïvely as
corresponding to an increase of the temperature. The plateau
of Lc indicates that the gravitational potential is extremely
localized in the near horizon regime where the main
contributions to the potential come from the Sm term and
in particular of its horizon contribution. This is a main
differencewith the low temperature expansion. All this is by
normalizing the dimensionful quantities with the fixed rh.
The numerical results confirm our analytical expect-

ations (4.8) and (4.11) for large d and extend the analysis to
intermediate and low values of d. The large d lower bound
on Lc is already saturated for d ≃ 9. Comparing the critical
length Lc of a one-dimensional field theory to the large d
result, we find a modification of about 18%, while the four-
dimensional field theory result gets modified only by 4% in
the large d expansion. The applicability of the large d
expansion for this observable is tremendous.
An almost perfect fitting can be made for large d on

the critical curve (6) as LcT ≃ 0.057d − 2 × 10−5Oð1=dÞ.
The leading coefficient matches the one in the analytic
expression (4.11) and the extrapolation to lower values
works very well. For example, for rh ¼ 1 the extrapolation
to d ¼ 4 produces Lc ¼ 0.229 compared to the explicit
numerical value of 0.240. The large d expansion can be
applied reliably to lower dimensions by extrapolation.

B. Wilson surfaces of arbitrary codimension
and the large d limit

Let us generalize the analysis to Wilson surfaces of
space-time codimension d − q − 1 (from the boundary
point of view). These could be associated with certain
configurations of extended objects such as q-dimensional
branes and antibranes in the higher-dimensional boundary
theories. The relevant boundary surface S extends along q
spatial directions and the time direction, and it is separated
along another spatial direction. For q ¼ 0, the analysis
reduces to theWilson loop. TheWilson surface observables
can be computed by minimizing a (qþ 1)-dimensional
brane action in the bulk. The action in static gauge reads

2πl2SA ¼ 2T
Z

g
q
2
xx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gttðgxx þ grrr02Þ

q
dσ; ð4:12Þ

where l2 ¼ 1=ðTqþ1VqÞ is given in terms of the tension
Tqþ1 of the (qþ 1)-brane and the volume Vq of the q
spatial directions. In the limit T → ∞, the quantity SA=T is
expected to give the energy of the “brane-antibrane”

T=0

d=2d=3d=4d=5d=6d=10d=20d=30

1.2 1.4 1.6 1.8 2.0 r0

L

0.6

0.7

0.8

0.9

1.0

1.1

1.2

FIG. 5. The boundary length dependence on the turning point
for surfaces of various dimension. Surfaces that are away from
the horizon of the black hole, that is for large r0, behave as being
at the vacuum solution even for intermediate values of d. As we
increase the number of dimensions, the right branch of the curve,
which corresponds to the stable minimal surfaces, approaches
quickly the T ¼ 0 surfaces. The computational advantage of the
large d expansion lies in the weak dependence of the results on
the dimensionality and the preservation of both stable and
unstable branches for any d. In the plot we present Lðr0Þ for
d ¼ 2 to d ¼ 250. Notice the qualitatively different behavior of
d ¼ 2, 3, 4 curves that appear overlapping the red lines.

5 10 15 20 25 30 35 40
d

0.75

0.80

0.85

0.90

Lc

FIG. 6. The critical Lc, where the meson phase transition
happens, is where the connected minimal surface prefers ener-
getically to becomes disconnected with the same boundary
conditions. Notice the fast convergence to a plateau value and
that a four-dimensional field theory (d ¼ 4) is approximated very
well by the large d expansion. The form of the curve for large and
intermediate d implies that the product LcT is linear with respect
to d, confirming the analytic large d analysis (4.11).
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configuration in the boundary theory. As before, we drop an
overall factor T in the rest of this section.
The first order equation of motion is

r02 ¼ −
gxxðgttgqþ1

xx þ c2Þ
c2grr

; ð4:13Þ

where in terms of the turning point r0 we define
c2 ¼ −gttðr0Þgqþ1

xx ðr0Þ. For practical reasons the integration
can be expressed with respect to r as

2πl2SA ¼ 2

Z
gqxx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

g2ttgrrgxx
gttg

qþ1
xx þ c2

s
dr: ð4:14Þ

As before we will consider the quantity Stot ¼ SA − Sm,
where

2πl2Sm ¼ 2

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gttg

q
xxgrr

p
dr; ð4:15Þ

which is free of any UV divergences as in Eq. (4.6). The
separation length on the boundary for the surface is

L ¼ 2

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2grr

−gxxðgttgqþ1
xx þ c2Þ

s
dr: ð4:16Þ

The application of the generic formalism on the gravity
dual background gives

L ¼ 2

Z
1

0

yqþ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − wd

p

r0ð1 − wdydÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ð1−wdÞy2ðqþ2Þ

1−wdyd

q dy ð4:17Þ

and for the action

2πl2SA ¼ 2

Z
1

0

rqþ1
0

yqþ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2ðqþ2Þð1−wdÞ

1−wdyd

q dy; ð4:18Þ

where w ≔ rh=r0 and y ≔ r0=r, both of which are less or
equal to one. The above expressions are written in such a
way that we can consecutively use the binomial theorem
to get

L ¼ 2

r0

1

dmþ 1þ ð2þ qÞð2nþ 1Þ cnbm;nwdmð1 − wdÞnþ1
2;

ð4:19Þ

where

cn ≔
�
n − 1

2

n

�
¼ Γðnþ 1

2
Þffiffiffi

π
p

Γðnþ 1Þ ; bm;n ≔
�
mþ n

m

�
;

ð4:20Þ

while repeated indices are summed from zero to infinity.
The minimal action now is equal to

2πl2SA¼
2rqþ1

0

dmþ1þð2n−1Þðqþ2Þcnbm;n−1ð1−wdÞn

×wdmð1−ydmþ1þð2n−1Þðqþ2Þjy¼0Þ: ð4:21Þ

The divergence in the expansion has been isolated in the
second term in the brackets form ¼ n ¼ 0, for any value of
q. This term is the one that gives the infinity and cancels
against the renormalization term, while for m, n ≠ 0 it is
null. Therefore, Stot can be written as

2πl2Stot ¼
2rqþ1

0

dmþ 1þ ð2n − 1Þðqþ 2Þ cnbm;n−1

× ð1 − wdÞnwdm þ 2rqþ1
h

qþ 1
: ð4:22Þ

Notice the elegance of this exact finite expression when
written in this form. We highlight that the finiteness of
this expansion relies on the fact that the divergences turn out
to be isolated in single terms aswe have shown.Moreover, in
the limit q → 0 is smooth and corresponds to Wilson loop.
In the large d limit the main contribution comes from

m ¼ 0, and we can simplify significantly both expressions
(4.19) and (4.22) by reducing the number of independent
summations as

L ≃
2

r0

1

1þ ð2þ qÞð2nþ 1Þ cnð1 − wdÞnþ1
2 ð4:23Þ

and

2πl2Stot≃
2rqþ1

0

1þð2n−1Þðqþ2Þcnð1−wdÞnþ2rqþ1
h

qþ1
: ð4:24Þ

For completeness, one may confirm the validity of the
above expressions by making an even more drastic
approximation at large d, as ð1 − wdÞn ≃ 1, to obtain

r0 ≃
2cn

ð3þ qþ 2kð2þ kÞÞL ð4:25Þ

and

l2Stot≃
21þqcnc

1þq
k

ð3þqþ2kð2þqÞÞ1þqð1þq−2nð2þqÞÞπL1þq

þ rqþ1
h

πðqþ1Þ : ð4:26Þ

Notice that the last two expressions, obtained by the drastic
approximation, serve as a validation of the approximation
and can be obtained analytically in other ways.
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For q ¼ 0 the expansion is valid for the Wilson loops,
where already the first term of the summation, k ¼ n ¼ 0,
provides accuracy up to the first decimal digit. Roughly
speaking, by increasing the order of magnitude of the
summed terms by one, the accuracy is improved by one
decimal digit, compared with the expression (4.9).
We have studied the properties of the Wilson loop for a

large d dual field theory in the deconfined phase. The
Wilson loop in the confining phase has a different behavior,
which originates from the properties of the minimal
surfaces in geometries which exhibit confinement.

V. CONFINING QCD STRINGS AT LARGE d

The fluctuations of the flux tube of a meson in conformal
theory is independent of the number of dimensions.
Therefore at zero temperature and in the absence of any
scale in the theory, the Wilson loop should remain
unaffected by the number of dimensions. If a scale is
present, a temperature or a mass gap, the properties depend
on it and also on the dimensionality of the theory. In this
section we compute the holographic Wilson line for a
confining theory at large d.
The soliton solutions (2.4) exhibit confinement at long

distances and Coulombic behavior at short distances, a
qualitative behavior that matches the QCD lattice calcu-
lations. Here we discuss whether the large d behavior
preserves these features, and, while preserving them,
if there is a mechanism capable of extracting these features
in a manner simpler than the finite d holographic
computation.
The analytical manipulation of (3.11) and (3.9) leads to

the following expression for the potential

2πα0Stot ¼ cLþ 2

2
64Z ∞

r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−grrgtt

p
0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2

gxxgtt

s
− 1

1
CA

−
Z

r0

rk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g00grr

p
3
75 ≔ cLþ Kðr0Þ; ð5:1Þ

where c is given by (3.5) and is proportional to the string
tension. The discussion boils down to the behavior of the
terms in the brackets as the dimensionality increases. The
linear meson potential is recovered for large L, where
r0 ≃ rk. The terms in the brackets for the surfaces sitting at
the tip of the geometry give a constant finite contribution
KðrkÞ. Once we increase the number of dimensions, this
remains finite and converges to a constant value. The string
tension reads

σ ¼ c
2πα0

¼ r2k
2πα0

ð5:2Þ

and it is independent of the dimensionality of the theory.
Let us briefly study numerically the geometric properties

of the confining minimal surfaces at large d. Here we have
d ≥ 3 since one of the spatial dimensions ϕ has been
compactified. For a theory of fixed dimension, we compute
numerically the Wilson loop for a wide range of interquark
distances in order to probe the regime of the linear potential
and the regime of the Coulombic behavior. The Wilson line
surface has a unique solution in the solitonic geometry. We
solve the differential Eq. (3.5) in the Coulombic regime at
small distances and we present its shape in Fig. 7. The
minimal surface at large distances, r ≃ rk, is presented in
Fig. 8, where it has the characteristic behavior of an inverse
Π lying to large extend on the cutoff scale rk of the theory.
This behavior is universal as long as the dual theory
exhibits confinement and is independent of the dimension-
ality of the theory. It is the geometric feature of Wilson loop
that generates confining behavior. The two straight lines of
the inverse Π are subtracted by the infinite masses of the
quarks and one remains with a “flat” string at r ¼ rk which
leads to confinement. In summary, we observe that the
shape of the surface related to the confining Wilson loop is
approximately independent of the dimensionality of the
theory for large d, while as d increases the surfaces
converge to a certain surface.
We numerically compute the interquark potential with

respect to its distance L at various dimensions. The linear
confining potential for large L and the Coulombic potential
for small interquark distances is found irrespectively of the
dimensionality of the theory, as expected. The numerical
evaluation is shown in Fig. 9. The interquark potential
converges at large d to a given potential. The convergence
happens quickly and already for d ∼ 14, we have reached a
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FIG. 7. The shape of the surfaces with fixed turning point
r0 ¼ 1.2rk. As we increase the dimensionality of the theory, the
minimal surface converges to a minimal surface and already for
d ≥ 15, we observe no change on the surface.
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regime where further changes are not noticeable as we
increase the dimensionality. The slope of the potential
determining the string tension σ is constant, and matches
(5.2), while the constant contribution KðrkÞ has converged
to a given value already.
The large d behavior determines with good accuracy the

string tension σ while the full potential V is only slightly
modified compared to that of the lower dimensions. In

particular, for a four-dimensional confining field theory, we
find that in the Coulombic regime the physical constant
coefficient of the L−1 term in the potential differs only by
about 3%, while the constant term differs by about 30%
compared to the large d expansion. In the large L regime
the string tension is d independent, while the constant
L-independent term differs by 40%.
In summary, we see a quick convergence of our physical

quantities in the large d regime. The heavy quark physics in
the large d regime continues to capture all the qualitative
features of the low d regime, including confinement and the
Coulombic behavior. This is of course not unexpected.
Moreover, we observe that the physically interesting
quantities depend weakly on the dimensionality of the
theory. Our analysis strongly suggests that a wider appli-
cation of the large d expansion even in solitonic back-
grounds, not only in black holes, can be useful.

VI. ENTANGLEMENT ENTROPY AT LARGE d

A. Entanglement entropy at large d analytically

In this section we study a different type of extremal
surfaces, dual to the entanglement entropy. Let us apply the
coordinate transformation z ¼ 1=r to bring the boundary of
(2.1) at z ¼ 0. To keep track of dimensions of various
quantities, let us restore the radius of curvature of AdS
space. The metric then takes the form

ds2dþ1¼
R2

z2

�
−fðzÞdt2þdx2d−1þ

dz2

fðzÞ
�
; fðzÞ¼1−

zd

zdh
:

ð6:1Þ

We consider a strip subregion for the entanglement entropy
and follow the usual minimization procedure for the area.
The strip is the boundary of the entangling surface
comprising two parallel planes of spatial codimension
one, separated by a distance L along the x direction.
The minimization of the area reads

4Gðdþ1Þ
N S ¼ Rd−2

Z
dσg

d−2
2
xx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gxx þ gzzz0ðσÞ2

q
; ð6:2Þ

where Rd−2 is the (d − 2)-dimensional spatial volume

transverse to the x direction and Gðdþ1Þ
N is the Newton’s

constant in dþ 1 dimensions. The length L of the strip
extending along the x direction is obtained by the manipu-
lation of z0ðσÞ in the first order equation of motion

z0ðσÞ2 ¼ gxxðgd−1xx − c2Þ
c2gzz

; ð6:3Þ

where the constant c2 ≔ gd−1xx ðz0Þ with z0 being the turning
point of the surface. The length L is given by

d=3
d=5
d=15
d=20
d=30
d=50
d=65
d=80
d=90
d=100

−4 −2 0 2 4
x

5

10

15

20
r

FIG. 8. The surfaces with turning point at the tip of the theory,
in the plot for r ≃ ð1þ 10−6Þrk. This is the limit of large L. The
closest we approach the rk, the larger the boundary length gets.
For larger dimensions, we need to approach closer to the tip to
achieve the large interquark distances.
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FIG. 9. The quark potential for different dimensions. At smaller
distances L, the potential is of Coulomb type, while for larger
ones it becomes linear, revealing the confining nature of the
theory. We note the quick convergence to a certain stable form of
the potential plotted here in red. The convergence is achieved
already for low dimensionality, as of around d ¼ 11, where
beyond that minimal changes are observed. This is demonstrated
in the plot by the density of Vq lines in the intermediate and large
d regime. Notice that the gradient of the straight line for large L,
which corresponds to the string tension, remains unchanged for
different dimensionality. The lower dimensions are the ones with
the lower potential in the plot and the rainbow color convention is
followed as we increase the dimension of the theory.
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L ¼ 2

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gzz

gdxxgxxðz0Þ1−dð1 − g1−dxx gxxðz0Þd−1Þ
r

dz: ð6:4Þ

The minimization integrals for the background under study
become

L ¼ 2

Z
z0

0

zd−1

zd−10

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðzÞð1 − ð zz0Þ2ðd−1ÞÞ

q : ð6:5Þ

The extremal area reads

4Gðdþ1Þ
N S ¼ 2Rd−1Rd−2

Z
z0

ϵ
dz

1

zd−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðzÞð1 − ð zz0Þ2ðd−1ÞÞ

q :

ð6:6Þ

The divergence of the integrand is of the order of z1−d.
Therefore, we add and subtract the relevant term to isolate
the divergence, integrate the extra term from ϵ=z0 to 1, and
obtain the known result

4Gðdþ1Þ
N S ¼ Rd−1Rd−2

2
64 2

ðd − 2Þϵd−2 þ
2

zd−20

0
B@−

1

d − 2
þ
Z

1

0

dy
1

yd−1

0
B@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðyz0Þð1 − y2ðd−1ÞÞ
q

1
CA − 1

1
CA
3
75: ð6:7Þ

To extract the large d contributions, we write the area in the
following form

S ¼ Rd−1Rd−2

4Gðdþ1Þ
N

�
2

ðd − 2Þϵd−2 þ
L

zd−10

þ 2

zd−20

�
−

1

d − 2
þ Fðz0Þ

�	
; ð6:8Þ

where

Fðz0Þ ¼
Z

1

0

dy
1

yd−1

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2ðd−1Þ

fðz0yÞ

s
− 1

1
CA ð6:9Þ

is the finite term that depends on the turning point z0, and,
therefore, the length L of the surface. We expect the factor

Rd−1=Gðdþ1Þ
N to be proportional to a power of the number of

degrees of freedom of the boundary theory. The advantage
of the extremal area written in the form (6.8) is that we have
isolated the divergence in the first term, and we have
extracted the dependence on L, z0, and d of the rest of the
terms.
For large separations L, corresponding to surfaces that

probe the IR, z0 ≃ zh, the finite part of the area takes the
form

4Gðdþ1Þ
N Sfinite

Rd−1Rd−2 ≃
L

zd−1h

þ 2

zd−2h

�
−

1

d − 2
þ FðzhÞ

�
: ð6:10Þ

The first term is linear to L with a proportionality factor of
z1−dh . Let us consider the large d limit of the L independent
term. The factor − 1

d−2 is of orderOðd−1Þ, while FðzhÞ reads

FðzhÞ ¼
Z

1

0

dy
1

yd−1

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2ðd−1Þ

1 − yd

s
− 1

1
CA: ð6:11Þ

By factorizing the square root and taking the large d limit in
the square the integral can be done analytically and
expressed in closed form in terms of hypergeometric
functions

FðzhÞ ≃
y−d

d

�
1 − 2F1

�
−
1

2
;−1;

2

d
;−yd

	�����y¼1

y¼0

; ð6:12Þ

which can be seen that for large dimensions it just
converges to a d independent value as, giving for FðzhÞ,

FðzhÞ ≃
1

4
: ð6:13Þ

This result is essential for the area theorem which we
discuss later in the section and in the section with the
numerical analysis.
At this point it is instructive to define the relative

measure of entanglement in an excited state compared to
the vacuum state of the conformal field theory (CFT). An
appropriate definition [34] is

Sdensity ¼
S − S0
V

; ð6:14Þ

where S and S0 are the corresponding entanglement
entropies. Sdensity is finite and cutoff independent. The
short distance divergences are identical in both theories,
since the corresponding UV fixed points are the same.
Using (6.10) and the vacuum state entanglement coming
from the integration of (6.6), one may obtain Sdensity for
large L and large d to be equal to
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4Gðdþ1Þ
N Sdensity ≃ Rd−1

�
1

zd−1h

þ 2

zd−2h L

�
−

1

d − 2
þ FðzhÞ

�	
;

ð6:15Þ

where we have utilized properties of the Γ functions (6.23)
and that Vol ¼ Rd−2L. In the large L limit, the
entanglement entropy S approaches the thermal entropy

sVol ¼ Rd−1Vol=4Gðdþ1Þ
N zd−1h , since the entangling surface

covers the whole space, with subleading corrections. In this
limit it takes the form

S ≃ sVolþ αArea; ð6:16Þ

where the subleading second term contains a dimensionful
constant α which is known to obey a monotonicity theorem
along the RG flow, known as the area theorem [15,16].
The validity of the area theorem can be understood as

follows. In the CFT vacuum there are no scales beyond the
CFT cutoff and the length of the strip, so the form of the
entanglement entropy is determined by dimensional
grounds. In the excited CFTs, there is a UV contribution
that matches to the CFT vacuum one since the theories have
the same UV fixed point. Therefore, the divergent con-
tributions in α included in the numerator of (6.14) cancel
against each other. There is a variety of additional finite
terms allowed by the scales in the theory that contribute to
α. In the presence of Lorentz symmetry, it is known that the
coefficient of these terms follows a holographic c theorem
[5–8,14]. In the entropy density (6.16) defined above, the
contributions of α can be understood as the difference
αIR − αUV, and therefore, whenever the area theorem holds,
the difference has to be negative.
From (6.16), we get

Sdensity
s

≃ 1þ ðαIR − αUVÞ
4Gðdþ1Þ

N zd−1h A
Rd−1 ; ð6:17Þ

similar to [34], which upon a substitution to (6.15), and at
large d, leads to a simple dependence on the integral FðzhÞ
as αUV ¼ αIR − szhFðzhÞ. At large d the area theorem
violation boils down to the computation of the sign of
FðzhÞ. The large d expansion (6.13) shows that FðzhÞ
converges to a positive value, and therefore, at large d the
area theorem can be seen analytically that is violated

αUV ¼ αIR −
szh
4

; at large d: ð6:18Þ

The robustness of the large d expansion is tied with the
straightforward analytic proof of the area theorem viola-
tion. There is no need for numerical analysis or complicated
analytic computations. The fact that we can analytically
compute the function FðzhÞ in this limit and conclude for
the area theorem in a relatively straightforward way
demonstrates one of the benefits of the large d expansion,

and its possible applicability to other theories and other
monotonicity theorems. In Sec. VI C we will elaborate
more on the area term computation and we will provide an
alternative evaluation of the α values.
Before we conclude this section, let us also briefly

comment on the properties of the entangling surface.
The area written as (6.8) depends on L through z0; that
is, through an expression that is not of a closed form. The
entangling surface at large d is given by the Euler-Lagrange
equation (6.2)

z02ðσÞ ¼ fðzðσÞÞ
�
z2ðd−1Þ0

z2ðd−1Þ
− 1

�
: ð6:19Þ

The differential equation has two opposite sign solutions for
the derivative z0ðσÞ, corresponding to symmetric branches of
the string solution with respect to the point x ¼ σ ¼ 0. The
derivative of z divergeswhen the surface becomes transverse
to the boundary for x ¼ �L=2, whereL is given by (6.5). At
large d, even for intermediate distances from the boundary,
one gets a temperature-independent approximation as
zðσÞ ∼ z0d1=dðσ=z0 þ c1Þ1=d, where c1 is the integration
constant. The constant may be determined by symmetry, as
c1 ≃ 1=d, since zð0Þ ¼ z0. The boundary length L given by
the solution zðL=2Þ ¼ 0 is found to be inversely propor-
tional to the dimension as

L
2
∼
z0
d

ð6:20Þ

for large d. Equation (6.20) is not unexpected, and agrees
with the entanglement entropy for the straight strip at zero
temperature. There the integral (6.5) is analytically
doable [5]

LT¼0

2
¼ Γðdþ1

2d Þ
Γð 1

2dÞ
: ð6:21Þ

The large d limit of this expression for surfaces with any
turning point, since there is no horizon scale in the theory,
gives

LT¼0

2
≃
π

2

z0
d
; ð6:22Þ

where we have used the expansions of the Γ functions:

Γ
�
dþ1

2d

�
¼ ffiffiffi

π
p þ

ffiffiffi
π

p
2d

∂
∂z logΓðzÞ

����
z¼1=2

þOðd−2Þ; ð6:23Þ

Γ
�
1

2d

�
¼ −γ þ 2dþ 6γ2 þ π2

24d
þOðd−2Þ; ð6:24Þ

where γ is the Euler’s constant. Therefore, for large d, the
expectation is that the extremal surfaces follow an inverse
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dimension rule which we study below numerically for the
whole range of values of d.

B. Numerical analysis at low, intermediate, and large d

With the entanglement entropy computed analytically at
large d, and certain L limits, we now compute the integrals
for the whole range of dimensions. The intermediate and
low d regimes are not analytically tractable, while at the
large d regime the numerics confirm the analytic results.
Let us look at the solutions of Eq. (6.19) as we vary the

dimensionality. It has two opposite sign solutions for z0ðσÞ,
corresponding to symmetric branches of the surface with
respect to x ¼ σ ¼ 0. We are shooting from the turning
point of the surface toward the boundary. The boundary
points x ¼ �L=2, where L is given by (6.5), are the points
where the derivative z0 diverges, since the surface becomes
transverse to the boundary. We are fixing the tuning point
z0 and we are looking at the solution at different dimen-
sions. As we increase the number of dimensions, the
extremal surface requires smaller boundary distance to
probe the same point in the bulk. For low dimensions we
see noticeable changes of the surface as we vary d.
For higher dimensions the dependence on d becomes
weaker. Such a representative set of solutions are plotted
in Fig. 10.
The boundary length L decreases with the dimension-

ality, while the dimensionless quantity LT remains con-
stant. The inverse d law has been derived for surfaces that
have turning points close to the boundary (6.21) and was
further supported by the large d expansion of the analytic

vacuum solution. We notice that the function LðdÞ for
intermediate dimensions and surfaces that probe the near
horizon regime exhibits similar behavior. In particular, in
the large d approximation,

LT ¼ c1
4π

þ c2
d
4π

þ c3
d2

4π
; ð6:25Þ

the numerical coefficients c2 and c3 turn out to be of order
10−4 and 10−6, practically negligible, while c1 is of order 1,
as expected.
The entangling integrals are of higher dimensionality

and therefore depend stronger on the dimensionality of the
theory compared to the two-dimensional Wilson loop
surfaces, as it can be seen from our numerical analysis.
However, we still observe that the large d expansion
already captures the qualitative characteristics of the
extremal surfaces in the low d regime as shown in Fig. 11.
Let us now turn our discussion to the entanglement

entropy. We look at the simpler case of entangling surfaces
that probe the horizon of the black hole. For these type of
surfaces, we have shown that the finite part of the
entanglement entropy is proportional to L as (6.10)

Gðdþ1Þ
N zd−1h

Rd−1Rd−2 Sfinite ≃ Lþ 2zh

�
−

1

d − 2
þ FðzhÞ

�
: ð6:26Þ

Expressed in the above form the linear behavior in L is d
independent, and the dependence on dimensionality comes
nontrivially via the FðzhÞ function. The analytical expres-
sion (6.13) of the FðzhÞ at large d shows convergence to
1=4. The numerical analysis presented in Fig. 12 confirms
the analytical expansion for large d. In fact the integral

d=3
d=4
d=10
d=15
d=30
d=40

−0.6 −0.4 −0.2 0.2 0.4 0.60.60

0.65

0.70

0.75

0.80

0.85

0.90
r

x

FIG. 10. The shape of the entangling surfaces with fixed
turning point z0 ¼ 0.9zh for d ¼ 3 to d ¼ 40. The legend
contains only few representative values of all dimensions plotted,
to make the color correspondence obvious. As the dimensionality
increases, the extremal surface requires smaller boundary dis-
tance to reach a fixed radial location in the bulk. At higher
dimensions, depicted with red, we note an increased density of
surfaces, reflecting their weaker dependence on the number of
dimensions, due to the localization of the gravitational potential
in the near horizon regime.

Numerical
c
d

50 100 150 200 250
d0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

L

FIG. 11. The length L of the extremal surfaces with turning
point z0 ¼ 0.9zh as the dimensionality of the theory increases.
For values of d ∼ 30 and above, we observe an exact fitting for
L ∼ 1

d, while even for lower dimensions we get approximately a
similar behavior with an accurate fitting. In the figure we present
the numerical evaluation of LðdÞ to show its matching with the
inverse dimension law c1=d, which is fitted. The plot begins for
intermediate values d ¼ 15 up to the large d limit.
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approaches quickly its stable d independent value and then
it depends weakly on d:

Fd¼4ðzhÞ
Fd→∞ðzhÞ

≃0.67;
Fd¼5ðzhÞ
Fd→∞ðzhÞ

≃0.86;
Fd¼15ðzhÞ
Fd→∞ðzhÞ

≃0.95;

ð6:27Þ

which performs very well even as a quantitative extrapo-
lation. Moreover, it suggests that the large d expansion is a
useful tool for the search and study of monotonicity
theorems.
We also solve (6.9) for entangling integrals (6.7) that

probe away from the horizon of the black hole for a general
L. The results are presented in Fig. 13. For large L we
find that FðLTÞ always converges to a certain value,

independent of the dimensionality of the theory. For large
L and d, Fðz0Þ approaches 1=4. For large d, FðLTÞ jumps
quicker for even intermediate values of LT to the plateau
∼1=4. In general in the large d regime the integrals
converge to a ceratin curve reflecting the narrowing of
the gravitational potential around the black hole horizon.
This is clearly evident in the computation of the entangle-
ment entropy with respect to the boundary distance L,
presented in Fig. 14. As the dimension increases the
entanglement converges fast to a certain form, which is
described by a simpler function of L.
As a final remark we note that the entanglement entropy

being an area of a codimension one surface depends
stronger on d than the Wilson loop. Nevertheless, for large
d, its dependence on the length strip L still approaches a
certain form and further increase of d does not cause further
change. This is the regime that the gravitational potential is
strongly localized in the near horizon. To make a quanti-
tative comparison, the entanglement entropy of a strip of
length L ≃ 2 gets modified by 30% compared to the same
strip, say for example in d ¼ 25. This extrapolation can be
considered as a well accepted one.
In the next section we generalize our computation to

spacelike surfaces of codimension q, which include the
entangling ones for q ¼ d − 1 and we express the expect-
ation values in closed form of infinite converging series in
terms of q and d. We also take the large d limit to show
analytically that the series converge to certain values and
that FðzhÞ ≃ 1=4.

C. Spacelike surfaces of codimension q

In this section we generalize our results for spacelike
bulk surfaces of spatial codimension d − q. The boundary
conditions are of a slab spatial volume of dimension q,

10 20 30 40 50 60
d

0.05

0.10

0.15

0.20

0.25

F(zh)

FIG. 12. The dependence of the function FðzhÞ on the number
of dimensions of the theory. The dashed line is the analytical large
d limit of (6.13). FðzhÞ approaches quickly the plateau value for
intermediate dimensionality. The color gradient corresponds to
increasing d and demonstrates convergence to 1=4.

d=3d=4d=5d=6d=7d=10d=15d=30d=50

0.5 1.0 1.5 2.0 2.5 3.0 L T

0.1

0.2

0.3

F(z0)

−0.1

−0.2

FIG. 13. The dependence of the function Fðz0Þ on the dimen-
sionality of the theory. Every single curve Fðz0Þ is made for
surfaces with the same range of turning points from the near
horizon regime to the near boundary regime, while the dimension
d is kept fixed. The coloring labels the function Fðz0Þ at different
dimensions. As d increases, Fðz0Þ is modified at a slower rate as
can be seen by the plotted red curves.

d=3d=4d=5d=6d=7d=10d=15d=30d=50

1 2 3 4 5 6 L

2

2

4

SEE

−

4−

FIG. 14. The entanglement entropy for different dimensions.
The cutoff has been subtracted and we keep only the finite part.
The entanglement is plotted for all dimensions for a fixed range of
the radial coordinates. The increase of d does lead to a certain
converging form for the entanglement entropy. In the legend we
present some representative values of the dimensions. The plot is
done for d ¼ 3 to d ¼ 50.
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separated along the x direction. For the special case of
q ¼ d − 1, we get the entangling surface. The area for the
generic surface reads

S ¼ Rq−1
Z

dσg
q−1
2
xx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gxx þ gzzz0ðσÞ2

q
; ð6:28Þ

where Rq−1 is the (q − 1)-dimensional spatial volume of
the dimensions transverse to the x direction. This area will
be proportional to the entanglement entropy in lower-
dimensional boundary theories, once we compactify the
directions transverse to the slab. The first order equation of
motion reads

z0ðσÞ2 ¼ gxxðgqxx − c2Þ
c2gzz

; ð6:29Þ

where the constant c2 ≔ gqxxðz0Þ with z0 being the turning
point of the surface. The boundary length of the surface is
then given as

L ¼ 2

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2gzz

gxxðgqxx − c2Þ

s
dz; ð6:30Þ

while the extremal area

S ¼ Rq−1
Z

dzg
q−1
2
xx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gzzg

q
xx

gqxx − c2

s
: ð6:31Þ

Applying our generic analysis on the background under
study, we get

L ¼ 2z0

Z
1

0

yqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − wdydÞð1 − y2qÞ

p dy; ð6:32Þ

and for the area

S¼2Rq−1Rq 1

zq−10

Z
1

0

dy
1

yq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−wdydÞð1−y2qÞ

p ; ð6:33Þ

where w ≔ z0
zh
. The divergence is of the order of yq and we

isolate the relevant term by adding and subtracting the term
responsible for the divergence. To extract the large d
contributions, we write the area in the following form

S¼Rq−1Rq

�
L

zd−10

þ 2

ðq−1Þϵq−1þ
2

zq−10

�
Fðz0Þ−

1

q−1

�	
;

ð6:34Þ

where

Fðz0Þ ¼
Z

1

0

dy
1

yq

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2q

1 − wdyd

s
− 1

1
CA: ð6:35Þ

The expressions cannot be obtained in closed form in
terms of elementary functions. Instead they can be written
in terms of an infinite converging series. The length is
equal to

L ¼ 2z0
Γðnþ 1

2
Þ

Γðnþ 1Þ
Γðdnþ1

2q þ 1
2
Þ

ð1þ dnÞΓð1þ dn
2qÞ
�
z0
zh

�
nd
; ð6:36Þ

where we have applied the binomial series once and then
we have integrated the expression. Then the area requires a
more careful consideration, due to infinities. Let us con-
centrate on the term Fðz0Þ given by (6.35). By applying the
binomial expansion we get

Fðz0Þ ¼
Z

1

0

dy

"
1

yq

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2q

q
− 1

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2q

q X∞
n¼1

cnwndynd−q
	
; ð6:37Þ

where we have separated the first term of the sum in order
to group the potential infinities. The integrals then can be
performed analytically to get

Fðz0Þ¼
1

q−1
þ

ffiffiffi
π

p
Γð1

2
ð1q−1ÞÞ

2Γð 1
2qÞ

þ
ffiffiffi
π

p
4q

X∞
n¼1

cn
Γð1−qþdn

2q Þ
Γð1þdn

2q þ1Þw
dn;

ð6:38Þ

for q ≠ 1. Therefore the extremal surface (6.34) of spatial
codimension d − q has been written in terms of infinite
converging series.
Notice that the entangling surface is a special case of this

expression for q ¼ d − 1. It is interesting to apply for this
case the limit d → ∞ in (6.38). By applying the limits
carefully and considering the leading contributions of the
sum for low values of n and w → 1, which is equivalent to
z0 → zh, we obtain

Fðz0Þ ≃
1

4
wd; at large d; ð6:39Þ

which reproduces the right result FðzhÞ ≃ 1=4, following
the earlier numerical treatment of Fig. 12 and the analytical
one with the hypergeometric functions (6.13).
As an extra remark, we note that our current analysis

focuses on the study of entangling regions with
slab geometry which is interesting. The large-d analysis
of different type of surfaces is interesting in its own right.
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For different shapes of entangling surfaces the asymptotic
form of the observables is qualitatively different for even
and odd d. This is evident even in the zero temperature limit
where the entanglement entropy of a sphere of radius L
takes the form [5,34]

S ¼ Rd−1VolðSd−2Þ
4Gðdþ1Þ

N

 Xðd−kÞ=2
i¼1

pi

�
L
ϵ

�
d−2i

þ p0

þ p̃0 log

�
L
ϵ

�
þ…

�
; ð6:40Þ

where p̃0 is zero when d is odd, and k ¼ 2ð1Þ for even
(odd) d. Assuming that the asymptotic expansion com-
mutes with the large d expansion, the leading polynomial
terms of (6.40) admit a common limit for large d,
independently of the parity. However there are terms, like
the logarithmic one, that appear only in even or odd
dimensions. For generic entangling surfaces, in order to
keep track of all terms at large d that depend on the parity of
d, we can express the corresponding surface integral in
terms of infinite converging series, obtaining an expression
like (6.38). Notice that essentially we need to take into
account subleading terms in the large d expansion.
The infinite series provide information on how the
large d limit is sensitive on the parity of d. It would be
interesting to investigate these issues further as part of
future work.

VII. CONCLUSIONS

In this paper we have considered minimal surfaces of
arbitrary codimension in AdS spaces of arbitrary dimen-
sionality. Our analysis includes Wilson loops as well as
entangling surfaces and the study of the monotonicity of the
area theorem. We have considered the limit of large number
of dimensions d, both analytically and numerically. We rely
on the fact that the bulk geometry is well defined at any
dimension and we assume that the holographic dictionary
between extremal surfaces and nonlocal operators is valid
at any d. Additionally, we show that the large d expansion
in our holographic study can be used both as a conceptual
and a computational tool, since all the computational limits
are smooth. We find that the large d analysis captures all the
qualitative holographic features of the low d analysis.
Moreover, the quantitative analysis of the observables is
in good agreement with the low d analysis, despite the
desirable simplifications in this limit. We also observe
convergence of our results to certain values, hinting at
certain universal behaviors in this regime. This partly relies
on the fact that for large d, the gravitational potential
becomes extremely steep, localized in the near horizon
regime with a steep gradient, which tends to separate the
dynamics of the near horizon regime and the rest of the

space. At the same time, it preserves the generic and
holographic characteristics of the gravitational potential
since a horizon is present.
Moreover, all the expectation values of the observables

under study show rapid convergence to certain values as d
increases. Therefore, in practice, the large d limit is a limit
of finite intermediate-low dimensions. In particular, the
convergence of the observables to their large d limit values
has been already achieved for dimensions around d ¼ 10 to
d ¼ 20. The extrapolation of the large d limit to low
dimensions shows a good quantitative agreement with the
numerical analysis on the observables. In particular, the
extrapolation leads to precision that is a few percent off to
about 30% off at most, as compared to the exact numerical
analysis. To some extend this reminds the behavior of
certain observables and their dependence on large N limit,
for example [35], although the mechanisms involved are
very are different. It is worthy to mention that similar
quantitative precision and dependency on the dimension-
ality have been observed in different holographic studies,
for example the phase transition of the mutual information
at zero temperature [21]. This suggests that the large d
expansion can in general be considered as a useful tool in
holography.
In addition, we were able to study analytically the

area theorem and to demonstrate that it is violated in the
large d limit in our theories. The violation relies on a
function that converges at large d to a certain value that can
be computed analytically. The violation itself is not a
surprise since the theory is in the thermal deconfining phase
with broken Lorentz invariance and the monotonicity
theorems are known to be difficult to satisfy in such
cases [7,34]. However, the fact that the computation in
the limit of large dimensions is tractable analytically and
conclusive consists a significant advantage. This suggests
that the large d limit as an invaluable tool for the
search, study, and (in)validation of the RG monotonicity
theorems.
We have also generalized our analysis to arbitrary

codimension Wilson loop surfaces and spacelike surfaces
expressing our results in closed form of infinite converging
series that depend on the dimensionality of the space
and the codimension of the surfaces. We have taken
there the large d limit to show how these expressions
simplify.
Our studies can be extended in several ways. One could

perform explicit computations of several other observables
related to the minimization of the string and brane actions.
We expect that the generic features found here will carry on
to all such observables in a similar way. Such computations
would further establish the use of the large d limit as a
holographic tool. In the same spirit one could also try to
construct the Einstein equations from Wilson loop or
entanglement entropy relations and study the bulk
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reconstruction in the large d limit. It would be also very
interesting to examine the effect of the large d limit in
(marginally) deformed theories, with broken global sym-
metries. For example, the anisotropic axion backreacted
theories of [8,36] and their observables [37] could be
considerably simplified at large dimensions. In this limit
the dual backgrounds could be derived analytically and
perturbatively irrespective of the magnitude of the aniso-
tropic deformation, which otherwise is not possible.

ACKNOWLEDGMENTS

We would like to thank N. Irges for useful discussions.
The research work of D. G. is supported by Ministry of
Science and Technology of Taiwan (MOST) by the Young
Scholar Columbus Fellowship Grant No. 110-2636-M-110-
007. The research work of N. P. is supported by the Hellenic
Foundation for Research and Innovation (H. F. R. I.)
and the General Secretariat for Research and Technology
(G. S. R. T.), under Grant Agreement No. 2344.

[1] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and
Y. Oz, Large n field theories, string theory and gravity, Phys.
Rep. 323, 183 (2000).

[2] J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal,
and U. A. Wiedemann, Gauge/String Duality, Hot QCD
and Heavy Ion Collisions (Cambridge University Press,
Cambridge, England, 2014).

[3] J. L. Cardy, Is there a c-theorem in four dimensions? Phys.
Lett. B 215, 749 (1988).

[4] S. Giombi and I. R. Klebanov, Interpolating between a and
F, J. High Energy Phys. 03 (2015) 117.

[5] S. Ryu and T. Takayanagi, Aspects of holographic entan-
glement entropy, J. High Energy Phys. 08 (2006) 045.

[6] R. C. Myers and A. Sinha, Holographic c-theorems in
arbitrary dimensions, J. High Energy Phys. 01 (2011) 125.

[7] C.-S. Chu and D. Giataganas, c-theorem for anisotropic RG
flows from holographic entanglement entropy, Phys. Rev. D
101, 046007 (2020).

[8] D. Giataganas, U. Gürsoy, and J. F. Pedraza, Strongly-
Coupled Anisotropic Gauge Theories and Holography,
Phys. Rev. Lett. 121, 121601 (2018).

[9] M. Baggioli and D. Giataganas, Detecting topological
quantum phase transitions via the c-function, Phys. Rev.
D 103, 026009 (2021).

[10] S. Cremonini, L. Li, K. Ritchie, and Y. Tang, Constraining
nonrelativistic RG flows with holography, Phys. Rev. D
103, 046006 (2021).

[11] C.Hoyos, N. Jokela, J. M. Penín, A. V. Ramallo, and J. Tarrío,
Risking your NEC, J. High Energy Phys. 10 (2021) 112.

[12] C. Cartwright and M. Kaminski, Inverted c-functions in
thermal states, arXiv:2107.12409.

[13] I. Y. Aref’eva, A. Patrushev, and P. Slepov, Holographic
entanglement entropy in anisotropic background with con-
finement-deconfinement phase transition, J. High Energy
Phys. 07 (2020) 043.

[14] S. Cremonini and X. Dong, Constraints on renormalization
group flows from holographic entanglement entropy, Phys.
Rev. D 89, 065041 (2014).

[15] H. Casini and M. Huerta, On the RG running of the
entanglement entropy of a circle, Phys. Rev. D 85,
125016 (2012).

[16] H. Casini, E. Teste, and G. Torroba, Relative entropy and the
RG flow, J. High Energy Phys. 03 (2017) 089.

[17] R. Emparan, R. Suzuki, and K. Tanabe, The large D limit of
general relativity, J. High Energy Phys. 06 (2013) 009.

[18] R. Emparan, D. Grumiller, and K. Tanabe, Large-D
Gravity and Low-D Strings, Phys. Rev. Lett. 110, 251102
(2013).

[19] R. Emparan and K. Tanabe, Universal quasinormal modes
of large D black holes, Phys. Rev. D 89, 064028 (2014).

[20] Y. Dandekar, A. De, S. Mazumdar, S. Minwalla, and A.
Saha, The large D black hole membrane paradigm at first
subleading order, J. High Energy Phys. 12 (2016) 113.

[21] S. Colin-Ellerin, V. E. Hubeny, B. E. Niehoff, and J. Sorce,
Large-d phase transitions in holographic mutual informa-
tion, J. High Energy Phys. 04 (2020) 173.

[22] T. Andrade, S. A. Gentle, and B. Withers, Drude in D major,
J. High Energy Phys. 06 (2016) 134.

[23] A. M. García-García and A. Romero-Bermúdez, Conduc-
tivity and entanglement entropy of high dimensional holo-
graphic superconductors, J. High Energy Phys. 09 (2015)
033.

[24] M. Rozali, E. Sabag, and A. Yarom, Holographic turbulence
in a large number of dimensions, J. High Energy Phys. 04
(2018) 065.

[25] J. Casalderrey-Solana, C. P. Herzog, and B. Meiring, Holo-
graphic Bjorken flow at large-D, J. High Energy Phys. 01
(2019) 181.

[26] T. Andrade, C. Pantelidou, and B. Withers, Large D
holography with metric deformations, J. High Energy Phys.
09 (2018) 138.

[27] A. Brandhuber, N. Itzhaki, J. Sonnenschein, and S.
Yankielowicz, Wilson loops in the large N limit at finite
temperature, Phys. Lett. B 434, 36 (1998).

[28] W. Fischler and S. Kundu, Strongly coupled gauge theories:
High and low temperature behavior of non-local observ-
ables, J. High Energy Phys. 05 (2013) 098.

[29] J. Erdmenger and N. Miekley, Non-local observables at
finite temperature in AdS=CFT, J. High Energy Phys. 03
(2018) 034.

[30] G. T. Horowitz and R. C. Myers, The AdS=CFT correspon-
dence and a new positive energy conjecture for general
relativity, Phys. Rev. D 59, 026005 (1998).

[31] V. E. Hubeny, D. Marolf, and M. Rangamani, Hawking
radiation from AdS black holes, Classical Quantum Gravity
27, 095018 (2010).

GIATAGANAS, PAPPAS, and TOUMBAS PHYS. REV. D 105, 026016 (2022)

026016-18

https://doi.org/10.1016/S0370-1573(99)00083-6
https://doi.org/10.1016/S0370-1573(99)00083-6
https://doi.org/10.1016/0370-2693(88)90054-8
https://doi.org/10.1016/0370-2693(88)90054-8
https://doi.org/10.1007/JHEP03(2015)117
https://doi.org/10.1088/1126-6708/2006/08/045
https://doi.org/10.1007/JHEP01(2011)125
https://doi.org/10.1103/PhysRevD.101.046007
https://doi.org/10.1103/PhysRevD.101.046007
https://doi.org/10.1103/PhysRevLett.121.121601
https://doi.org/10.1103/PhysRevD.103.026009
https://doi.org/10.1103/PhysRevD.103.026009
https://doi.org/10.1103/PhysRevD.103.046006
https://doi.org/10.1103/PhysRevD.103.046006
https://doi.org/10.1007/JHEP10(2021)112
https://arXiv.org/abs/2107.12409
https://doi.org/10.1007/JHEP07(2020)043
https://doi.org/10.1007/JHEP07(2020)043
https://doi.org/10.1103/PhysRevD.89.065041
https://doi.org/10.1103/PhysRevD.89.065041
https://doi.org/10.1103/PhysRevD.85.125016
https://doi.org/10.1103/PhysRevD.85.125016
https://doi.org/10.1007/JHEP03(2017)089
https://doi.org/10.1007/JHEP06(2013)009
https://doi.org/10.1103/PhysRevLett.110.251102
https://doi.org/10.1103/PhysRevLett.110.251102
https://doi.org/10.1103/PhysRevD.89.064028
https://doi.org/10.1007/JHEP12(2016)113
https://doi.org/10.1007/JHEP04(2020)173
https://doi.org/10.1007/JHEP06(2016)134
https://doi.org/10.1007/JHEP09(2015)033
https://doi.org/10.1007/JHEP09(2015)033
https://doi.org/10.1007/JHEP04(2018)065
https://doi.org/10.1007/JHEP04(2018)065
https://doi.org/10.1007/JHEP01(2019)181
https://doi.org/10.1007/JHEP01(2019)181
https://doi.org/10.1007/JHEP09(2018)138
https://doi.org/10.1007/JHEP09(2018)138
https://doi.org/10.1016/S0370-2693(98)00730-8
https://doi.org/10.1007/JHEP05(2013)098
https://doi.org/10.1007/JHEP03(2018)034
https://doi.org/10.1007/JHEP03(2018)034
https://doi.org/10.1103/PhysRevD.59.026005
https://doi.org/10.1088/0264-9381/27/9/095018
https://doi.org/10.1088/0264-9381/27/9/095018


[32] N. Drukker, D. J. Gross, and H. Ooguri, Wilson loops and
minimal surfaces, Phys. Rev. D 60, 125006 (1999).

[33] C.-S. Chu and D. Giataganas, UV-divergences of Wilson
loops for gauge/gravity duality, J. High Energy Phys. 12
(2008) 103.

[34] N. I. Gushterov, A. O’Bannon, and R. Rodgers, On holo-
graphic entanglement density, J. High Energy Phys. 10
(2017) 137.

[35] G. S. Bali, F. Bursa, L. Castagnini, S. Collins, L. Del
Debbio, B. Lucini et al., Mesons in large-N QCD, J. High
Energy Phys. 06 (2013) 071.

[36] D. Mateos and D. Trancanelli, The Anisotropic N ¼ 4
Super Yang-Mills Plasma and Its Instabilities, Phys. Rev.
Lett. 107, 101601 (2011).

[37] D. Giataganas, Probing strongly coupled anisotropic
plasma, J. High Energy Phys. 07 (2012) 031.

HOLOGRAPHIC OBSERVABLES AT LARGE d PHYS. REV. D 105, 026016 (2022)

026016-19

https://doi.org/10.1103/PhysRevD.60.125006
https://doi.org/10.1088/1126-6708/2008/12/103
https://doi.org/10.1088/1126-6708/2008/12/103
https://doi.org/10.1007/JHEP10(2017)137
https://doi.org/10.1007/JHEP10(2017)137
https://doi.org/10.1007/JHEP06(2013)071
https://doi.org/10.1007/JHEP06(2013)071
https://doi.org/10.1103/PhysRevLett.107.101601
https://doi.org/10.1103/PhysRevLett.107.101601
https://doi.org/10.1007/JHEP07(2012)031

