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(Received 2 November 2021; accepted 3 January 2022; published 11 January 2022)

A family of deformed black branes is employed to examine the confinement/deconfinement phase
transition in AdS/QCD. The holographic entanglement entropy (HEE) plays the role of the order parameter
driving the confinement/deconfinement phase transition. The binding energy of quark-antiquark bound
states and the critical length that makes a null variation of the HEE, together with the critical temperature
separating the deconfined quark-gluon plasma to the confined hadronic phase, are discussed in the
deformed black brane background, matching current experimental hadronic data.
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I. INTRODUCTION

The deconfinement phase transition, above which quark
bound states occupy a deconfined phase and one may
observe individual quarks, has been not completely
grounded onto the QCD framework yet. Despite current
experimental data, a thorough theory that unfolds QCD at
arbitrary energy ranges is far beyond existing analytical
methods, although lattice QCD can reasonably scrutinize
nonperturbative issues. At the QCD ultraviolet regime,
asymptotic freedom permits using perturbative techniques
that may yield QCD to match low-energy experimental data
[1]. Nevertheless, QCD underlies the quarks and gluons
paradigm, whereas experimental data at low energies
reckons bound states constituting hadrons. Besides, QCD
is endowed with an inherent nonlinearity due to self-
interactions among gluonic degrees of freedom. At the
strong coupling regime, perturbative techniques do not
encompass all possible scenarios [2]. Although the QCD
setup based on the perturbative expansion in αsðQ2Þ cannot
be applied for the description of physical processes at small
Q2, where the running strong coupling constant has order
Oð1Þ, one can still apply the largeNc QCD as a perturbative
technique. In particle collision processes at high energy,
color electric flux tubes link quarks (q) to antiquarks (q̄),
which can also shred apart into either baryons andmesons or
gluons and quarks altogether [3]. Contemporary progresses,
mainly in AdS/QCD, have shed new light on hadronic
constituents [4–10]. Since QCD is strongly coupled at the

low-temperature regime, perturbative techniques at low-
temperature regime approaching the deconfinement phase
transitions have been developed. From the gravity dual side,
deconfinement phase transitions correspond to the transition
between an AdS5-Schwarzschild black brane and a pure
AdS5 spacetime. The influential Refs. [11–13] verified and
demonstrated the correspondence with the temperature-
dependence in chiral perturbation theory (ChPT). The
effective expansion parameter is given by R ¼ T2

12F2, where
F is the leptonic decay constant, which is roughly 100MeV.
It is clear that for the typical value of the critical temperature
Tc ¼ 155 MeV, the expansion parameter reads R ≊ 0.2,
which is reasonably small to perform the perturbative
expansion up to and including the confinement/deconfine-
ment phase. Other important developments were presented
in Refs. [14,15]. Also, nonperturbative methods can inves-
tigate the deconfinement phase transition, addressing its
temperature and its order parameter as well [16]. Besides, an
appropriate setup also includes determining the screening
range of the qq̄ potential, as well as their binding energy.
Gauge/gravity duality is an effective nonperturbative

procedure that implements the correspondence between a
d-dimensional strongly coupled quantum Yang–Mills
theory and weakly coupled gravitational configurations
in dþ 1 dimensions [17,18]. The dual gravity scenario can
successfully emulate QCD phenomenology, in the AdS/
QCD approach. In this scenario, entanglement entropy
(EE) can be also computed in several contexts to study
observables in QCD [19]. The EE quantifies the correla-
tions between subsystems in some larger network described
by quantum mechanics. For two subsystems, split apart by
a surface, the EE is proportional to the surface area and may
also be controlled by an ultraviolet cutoff regulating
correlations at short distances [20]. The holographic EE
(HEE) is a very relevant instrument to scrutinize several
aspects of AdS=CFT, particularly AdS/QCD and its
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phenomenology [21]. Entangled quantum fields in QCD
can be studied from the weakly coupled dual gravitational
systems [22,23]. Reference [24] used the HEE to probe a
deconfinement phase transition at the zero temperature
regime. Phase transitions involving the finite temperature
case were implemented in Refs. [25,26]. Extended aniso-
tropic black hole solutions on fluid branes were inves-
tigated from the point of view of the HEE [27,28], being
employed to analyze hot hadronic media [29,30].
In this work, the HEE underlying AdS/QCD will be

explored as an order parameter controlling the deconfine-
ment phase transition, in a deformed black brane scenario.
Several aspects of the deconfinement phase transition will
be addressed and discussed. The qq̄ binding energy, the
deconfinement phase transition critical temperature at
which a transition from hadronic matter to quark-gluon
plasma occurs, and the critical length that comprises the
separation between a quark and an antiquark in a qq̄ system
will be analyzed in the light of the AdS/QCD hard and soft
wall models and current experimental data as well. The
parameter that defines a family of deformed black branes
will be shown to lie in a range that is stricter than the bound
obtained by the shear viscosity-to-entropy density ratio.
This range will be derived when considering the HEE and
the critical temperature at which the deconfinement phase
transition occurs, matching current experimental data in
QCD. This paper is organized as follows: Sec. II is devoted
to presenting a 1-parameter family of deformed black
branes, and associated thermodynamical quantities.
The shear viscosity-to-entropy density ratio determines
the range of the deformed black brane parameter and the
holographic Weyl anomaly is discussed. In Sec. III, the
confinement/deconfinement phase transition in the QCD
dual gauge theory at the AdS boundary is explored. The
HEE is presented and addressed as the order parameter
controlling the confinement/deconfinement phase transi-
tion. The binding energy of the qq̄ bound state and the
critical length that makes a null variation of the HEE,
together with the critical temperature separating the decon-
fined quark-gluon plasma to the confined hadronic phase,
are analyzed in the deformed black brane setup, matching
current experimental hadronic data. Reciprocally, QCD
phenomenology drives a more strict range for the deformed
black brane parameter. Section IV is dedicated for further
discussion, concluding remarks, and perspectives of the
relevant results here obtained.

II. DEFORMED BLACK BRANES

A family of deformed black branes was derived and
discussed in Ref. [31], using AdS=CFT and the ADM and
Hamiltonian constraints. Deformed black branes generalize
the standard AdS5–Schwarzschild black brane and play a
prominent role in gauge/gravity duality. The deformed
black brane has metric given by

ds2 ¼ R2

z2

�
−NðzÞdt2 þ δijdxidxj þ

1

CðzÞ dz
2

�
; ð1Þ

where

NðzÞ ¼ 1 −
z4

z40
þ ðβ − 1Þ z

6

z60
; ð2Þ

CðzÞ ¼
�
1 −

z4

z40

�� 2 − 3z4

z4
0

2 − ð4β − 1Þ z4z4
0

�
: ð3Þ

with event horizon at z0. The standard AdS5–
Schwarzschild metric is recovered whenever β → 1. For
fitting the deformed black brane to the slope of standard
Regge trajectories in QCD, a conformal factor ecz

2=2 is
usually accounted for in (1), with c ∼ 0.9 GeV2. When
Eqs. (1), (2), (3) are regarded, the Gubser–Klebanov–
Polyakov–Witten relation [17,32] yields the partition func-
tion associated with the dual theory at the boundary [31],

Z ∼
R4

16πG5

ð3β2 − 15β þ 11Þ: ð4Þ

The Hawking temperature at the deformed black brane
horizon [31],

T ¼ R
πz0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
β − 2

3 − 4β

s
; ð5Þ

diverges at β → 0.75, and attains imaginary values in the
range β ∈ ð−∞; 0.75Þ ∪ ð2;þ∞Þ, yielding the allowed
open range β ∈ ð0.75; 2Þ for the deformation parameter.
The free energy, the entropy density, the pressure, and the
energy density can be immediately derived from the
partition function (41), and are respectively given by [31]

F ¼ π3V
16G5

ð3β2 − 15β þ 11Þ
�
4β − 3

β − 2

�
2

T4; ð6Þ

s ¼ −
R3

4G5

ð3β2 − 15β þ 11Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4β − 3

β − 2

s
; ð7Þ

P ¼ −
π3

16G5

ð3β2 − 15β þ 11Þ
�
4β − 3

β − 2

�
2

T4; ð8Þ

ϵ ¼ 5π3

16G5

ð3β2 − 15β þ 11Þ
�
4β − 3

β − 2

�
2

T4: ð9Þ

Regarding a perfect fluid, Eqs. (8), (9) evaluated at the
boundary implies the trace of the energy-momentum tensor
to read
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gμνTμν ¼ −
π3

2G5

ð3β2 − 15β þ 11Þ
�
4β − 3

β − 2

�
2

T4: ð10Þ

The shear viscosity-to-entropy density ratio can be also
derived,

η

s
¼ 1

4π

�
1

3β2 − 15β þ 11

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
4β − 3

β − 2

s
: ð11Þ

Figure 1 illustrates the profile of η=s as a function of β.
Since the range 0.9 ≤ β < 1 is clearly forbidden, as it

implies that ηs < 0, the deformation parameter can therefore
lie in the range

β ∈ ð0.75; 0.9Þ ∪ ð1; 2�: ð12Þ

The saturation η
s ¼ 1

4π implies β ¼ 1, recovering the
Kovtun–Son–Starinets (KSS) seminal result for the
AdS5–Schwarzschild black brane. Reference [31] showed
that the existence of a real Killing event horizon implies a
narrower range bound, β ∈ ð0.75; 0.9Þ ∪ ð1; 1.234� [33].
Besides, the holographic Weyl anomaly can be emulated
for the deformed black brane, for a and c being central
charges of the conformal gauge field theory, as

16π2hTμ
μiCFT ¼ c

�
RμναβRμναβ − 2RμνRμν þ

R2

3

�

− aðRμναβRμναβ − 4RμνRμν þ R2Þ; ð13Þ

involving the Riemann tensor and its contractions. Running
the calculations for the deformed black brane background
(1), (2), (3), one obtains the expansion

hTμ
μiCFT¼N2

�
400

3
þ320

3
ðβ−1Þz

4

z40
þ80ðβ−1Þz

6

z60

�
ð14Þ

up toOðz8Þ, near the boundary, whereN2 ¼ πL3

2G5
. Therefore,

considering either β → 1 or z → 0, the holographic Weyl

anomaly associated with the AdS5–Schwarzschild black
brane can be recovered [31].

III. HOLOGRAPHIC ENTANGLEMENT ENTROPY
AND DECONFINEMENT PHASE TRANSITION

The potential energy of a qq̄ system can be computed
when one takes into account Wilson loops in Yang–Mills
theory, that can be derived from the gauge connection
holonomy around a loop [34]. One can consider a loop C of
rectangular form, whose sides are the time coordinate, t,
and the distance among confined quarks, r, with r ≪ t.
The expectation value of the Wilson loop, hWðCÞi ¼
e−iðVðrÞþ2mÞt, encodes the potential energy VðrÞ associated
with the qq̄ pair, where m denotes the quark mass. The
holographic dual of the Wilson loop is the action S of a
string, whose endpoints are separated by a distance r, and
can be written as [35]

S ¼ −
1

2πα0

ZZ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgrsÞ

p
dτdσ; ð15Þ

where grs ¼ gMN
∂xM
∂ζr

∂xN
∂ζs is the induced metric on the string

world sheet, for ζ1 ¼ τ and ζ2 ¼ σ; xMðζrÞ stands for world
sheet coordinates, whereas gMN denotes the background
metric. Therefore one can identify hWðCÞi ¼ eiSðCÞ.
One can consider weakly coupled gravity in AdS5 as the

dual theory to QCD. Coordinates in AdS5 are usually
denoted by ðt; x1; x2; x3; zÞ, where z is the energy scale in
QCD. The action SðCÞ can be computed, for t ¼ τ and
x1 ¼ σ. The distance r was calculated in Ref. [36] as

r ¼ 2

Z
z⋆

0

z2e
c
2
ðz2⋆−z2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z4⋆ − z4ecðz2⋆−z2Þ
q dz; ð16Þ

where z⋆ ¼ limx1→0 z plays the role of the string turning
point. The range cz2⋆ ∈ ð0; 2Þ corresponds to r ∈ ð0;þ∞Þ.
The upper limit z⋆ ¼ ffiffiffiffiffiffiffiffi

2=c
p

was obtained in Ref. [36],
where c ≈ 0.9 GeV2. The potential energy in the
QCD-like gauge theory, up to a multiplicative constant
b
πz2⋆

, reads

VðrÞ ¼
Z

z⋆

0

2
64 1

z2

0
B@ e

cz2
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z4⋆ − z4ecðz2⋆−z2Þ
q − 1

1
CA − 1

3
75dz; ð17Þ

where b ≊ 0.941matches experimental data [10,36], yield-
ing the expected linear profile at large distances and the 1=r
regime for short distances. In fact, the large distance limit is
given by

lim
r→0

VðrÞ ¼ b

�
−
κ0
r
þ k0rþOðr3Þ

�
; ð18Þ

FIG. 1. η=s as a function of β.
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for κ0 ≊ 0.23 and k0 ≊ 0.16 GeV2, whereas the short
distance regime is governed by

lim
r→∞

VðrÞ ¼ bkr; ð19Þ

for k ≊ 0.19 GeV2.
In the deformed black brane scenario, the HEE setup can

be implemented. Any quantum field theoretical system, at
zero temperature, can be described by a pure lowest-energy
state jψi and its associated density matrix, ρ ¼ jψi ⊗ hψ j.
The quantum system can be split into two complementary
subsystems A and B, by a bipartition of the original Hilbert
space H ¼ HA ⊗ HB, when one looks at a spacelike
subregion where an observer in A accesses no degrees
of freedom in B, implying that the (reduced) density matrix
associated with A is obtained by calculating the partial trace
(tr) of the density matrix ρ, as ρA ¼ trBρ. In fact, given the
state jψ ∈i ∈ HA ⊗ HB, the state of A is the partial trace of
over the basis of subsystem B, given by

ρA ¼
XdimHB

j

ðIA ⊗ hjjBÞðjψi ⊗ hψ jÞðIA ⊗ jjiBÞ

¼ trBρ: ð20Þ

The EE of A is given by the von Neumann entropy of ρA,
namely, SA ¼ −trBðρA log ρA) and quantifies how much
information is lost when an observer is restricted to A,
being isolated from B.
It codifies entanglement in the quantum information

framework of the quantum field theory under scrutiny.
From the gravitational dual side, the HEE, hereon denoted
by SA, can be computed by the expression [19–23]

SA ¼ AREAðγAÞ
4G5

; ð21Þ

for γA denoting a codimension-2 minimal manifold, with
boundary ∂γA ¼ ∂A, in (asymptotically) AdS5, and G5 is
the bulk Newton’s coupling constant. Also, γA must be
homologous to the region A and defined on the very same
time slice as the region A. Since the HEE is divergent when
the continuum limit is taken into account, an ultraviolet
cutoff a circumvents this divergence, whose coefficient is
proportional to the area of the boundary ∂A. In this case one
can write

SA ∼
AREAð∂AÞ

a2
: ð22Þ

It is worth mentioning that the cutoff is a necessary tool
when addressing the Poincaré metric of AdS5, with
radius R,

ds2 ¼ R2

z2
ðdz2 − dt2 þ dxidxiÞ: ð23Þ

At z → 0 the metric (23) diverges, which can be circum-
vented by considering z ≥ a and making the boundary at
z ¼ a. In this setup, the HEE in the 4-dimensional
conformal field theory can be computed by Eq. (21).
Choosing γA to compute Eq. (21) is equivalent to determin-
ing the most solid entanglement entropy bound. The
relationship between the HEE and the black hole entropy
can be still established [19]. When finite temperature sets
in, dual strongly coupled plasmas can be described.
The range for the parameter β can be better refined,

employing the HEE. The deformed black brane (1), (2), (3)
has a boundary that can be split into subsystems A and B,
where B is defined by − l

2
< x1 <

l
2

and x2; x3 ∈
ð−∞;þ∞Þ, for t ∈ R [10], as illustrated by Fig. 2.
The minimal area of γA, which is proportional to the HEE

of A, is derived when the area in Eq. (21), rewritten as

AREAðγAÞ ¼
1

4G5

Z ffiffiffiffiffiffiffiffiffi
jgγA j

q
dx1dx2dx3; ð24Þ

is minimized, where gγA is the determinant of the induced
metric on γA. Therefore the HEE reads

SA ¼ A2

4G5

Z l
2

−l
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z60
z6

þ z60
z6CðzÞ z

02
s

dx1; ð25Þ

where A2 denotes the area of the 2-dimensional surface
generated by ðx2; x3Þ, whereas the notation z0 ¼ dz

dx1
is also

used. Therefore, employing Eq. (1) yields1

SA ¼ A2

4G5

Z l
2

−l
2

�z20z02ðð1 − 4βÞ z4z4
0

þ 2Þ
z4

z4
0

ð3z8z8
0

− 5z4

z4
0

þ 2Þ þ z60
z6

�1=2
dx1: ð26Þ

As the area does not explicitly depend on x1, the
Hamiltonian is a constant of motion,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2z2C2ðzÞ þ z02

p
zCðzÞR4

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z02
z2
0

ðð1 − 4βÞ z4z4
0

þ 2Þ
3z8

z8
0

− 5z4

z4
0

þ 2
þ 1

vuuut ð27Þ

that equals z3⋆, for limx1→0 z0 ¼ 0. Hence, Eq. (27) yields the
following ODE,

z02 ¼
ð2 − 3z4

z4
0

Þð1 − z4

z4
0

Þðz6⋆
z6
− 1Þ

ð1 − 4βÞ z4z4
0

þ 2
: ð28Þ

1Hereon R ¼ 1 is adopted for simplicity, however all numeri-
cal calculations that follows take it into account.
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Therefore the diametral size of the minimal surface γA,
associated with the deformed black brane setup, is given by

l ¼ 2

Z
z⋆

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z6⋆
z6

þ
ð4β − 1Þ z4z4

0

− 2

3z8

z8
0

− 5z4

z4
0

þ 2

vuuut dz: ð29Þ

When Eq. (28) is replaced into (25) one obtains the HEE,

SA ¼ A2

2G5

Z
z⋆

0

ð1 − 4βÞ z4z4
0

þ 2

z7
z0
ð3z8z8

0

− 5z4

z4
0

þ 2Þð 1
z6
− 1

z6⋆
Þ dz: ð30Þ

Figures 3–5 display the HEE in terms of l, for several
values of β, with c chosen to represent physically realistic
values that match hadronic Regge trajectories.
For the case c ¼ 0.94 GeV2, numerical data in Fig. 3 can

be interpolated by the functions, respectively for β ¼ 1.1,
β → 1, and β ¼ 0.9,

SAðlÞ ¼ −
2.9639

l
þ 70.0961þ 5.2789l; ð31aÞ

SAðlÞ ¼ −
3.9418

l
þ 71.4559þ 6.1637l; ð31bÞ

SAðlÞ ¼ −
2.1763

l
þ 68.4564þ 4.0781l: ð31cÞ

Now, for c ¼ 0.9 GeV2, the plots in Fig. 4 can be
respectively interpolated for β ¼ 1.1, β → 1, and β ¼ 0.9,

SAðlÞ ¼ −
1.7639

l
þ 68.8234þ 4.2610l; ð32aÞ

SAðlÞ ¼ −
1.5641

l
þ 65.2788þ 3.9985l; ð32bÞ

SAðlÞ ¼ −
1.5130

l
þ 63.3537þ 3.8716l: ð32cÞ

The last case to be addressed here is c ¼ 0.86 GeV2.

FIG. 3. HEE SAðlÞ in terms of l, for c ¼ 0.94 GeV2. Numeri-
cal results are plotted as orange points, for β ¼ 0.9; as black
points, for β → 1; and as blue points, for β ¼ 1.1, respectively
interpolated by the respective lines.

FIG. 4. HEE SAðlÞ in terms of l, for c ¼ 0.9 GeV2. Numerical
results are plotted as orange points, for β ¼ 0.9; as black points,
for β → 1; and as blue points, for β ¼ 1.1, respectively interpo-
lated by the respective lines.

FIG. 5. HEE SAðlÞ in terms of l, for c ≊ 0.9 GeV2. Numerical
results are plotted as orange points, for β ¼ 0.9; as black points,
for β → 1; and as blue points, for β ¼ 1.1, respectively interpo-
lated by the respective lines.

FIG. 2. HEE of the region A: a hypercylindrical-type minimal
surface, γA, on the entangling region A, with surface area
determining the HEE of the region A.
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Numerical data in Fig. 5 can be interpolated by the
respective functions, for β ¼ 1.1, β → 1, and β ¼ 0.9,

SAðlÞ ¼ −
1.6087

l
þ 65.1094þ 4.1724l; ð33aÞ

SAðlÞ ¼ −
1.4651

l
þ 63.9810þ 3.8453l; ð33bÞ

SAðlÞ ¼ −
1.3108

l
þ 61.4564þ 3.4195l: ð33cÞ

Besides, the nonconnected configuration can be set by
two disconnected manifolds

M� ¼
8<
:
0
B@

x1
x2
x3

1
CA ∈ R3jx1 ¼ �l=2; x2; x3 ∈ ð−∞;∞Þ

9=
;
ð34Þ

whose HEE reads

S
∘
A ¼ A2

2G5

Z
z⋆

0

R3z30ffiffiffiffiffiffiffiffiffiffi
CðzÞp

z3
dz

¼ A2

2G5

Z
z⋆

0

z20
z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 4βÞ z4z4

0

þ 2

z2

z2
0

ð3z8z8
0

− 5z4

z4
0

þ 2Þ

vuuut dz; ð35Þ

Introducing the difference of the HEE computed with
respect to the connected and disconnected regions,

ΔSðlÞ ≔ 2G5

A2

ðSA − S
∘
AÞ; ð36Þ

the critical length lc is defined as the critical distance such
as ΔSðlcÞ ¼ 0. Then for l ≶ lc, corresponding to ΔS ≶ 0,
Ref. [24] showed that the HEE varies as a function of the
number of colors, Nc, in the gauge theory, respectively as
∼1 (∼N2

c). Thus, there is a deconfinement first order phase
transition in the conformal field theory at the boundary,
at l ¼ lc.
In the deformed black brane setup given by the metric

(1), (2), (3), the potential energy (17) determines a stable qq̄
confined bound state. Figures 6(a)–6(c) illustrate the
variation ΔS of the HEE between the connected and the
disconnected regions, for several values of c and β.
The quantity ΔS in Eq. (36) determines a phase transition
between confined and deconfined phases. In particular,
when l > lc the system lives in a confined phase [37]. The
plots in Fig. 6(a) can be numerically determined, for
β ¼ 1.1, respectively for c ¼ 0.86 GeV2, c ¼ 0.9 GeV2,
and for c ¼ 0.94 GeV2, by

ΔSðlÞ ¼ −
0.8512

l
þ 0.4120l; ð37aÞ

ΔSðlÞ ¼ −
0.8388

l
þ 0.4539l; ð37bÞ

ΔSðlÞ ¼ −
0.8182

l
þ 0.4897l: ð37cÞ

(a)

(b)

(c)

FIG. 6. ΔSðlÞ in terms of l for three different values of c. The
continuous lines depict the case where c ¼ 0.94 GeV2 and
the dashed lines display the case where c ¼ 0.9 GeV2, whereas
the dotted lines illustrate the case where c ¼ 0.86 GeV2, for each
fixed value of β.
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Besides, the plots in Fig. 6(b) can be numerically interpo-
lated, for β → 1, respectively for c ¼ 0.86 GeV2,
c ¼ 0.9 GeV2, and for c ¼ 0.94 GeV2, by the following
expressions,

ΔSðlÞ ¼ −
0.7412

l
þ 0.5837l; ð38aÞ

ΔSðlÞ ¼ −
0.7538

l
þ 0.5220l; ð38bÞ

ΔSðlÞ ¼ −
0.7782

l
þ 0.6294l; ð38cÞ

whereas the graphics in Fig. 6(c) for β ¼ 0.9 have the
following expressions, numerically determined, respec-
tively for c ¼ 0.86 GeV2, c ¼ 0.9 GeV2, and for
c ¼ 0.94 GeV2, by

ΔSðlÞ ¼ −
0.6538

l
þ 0.8620l; ð39aÞ

ΔSðlÞ ¼ −
0.6725

l
þ 0.8024l; ð39bÞ

ΔSðlÞ ¼ −
0.7085

l
þ 0.7206l: ð39cÞ

Therefore, the values of the critical length lc, defined as
ΔSðlcÞ ¼ 0 are shown in Table I, for the respective values
of c and β.
Table I shows a phase transition that takes place when lc

has around 1 fm order of magnitude, for the physically
realistic values of c and β. These values are compatible with
the separation between a quark and an antiquark in a qq̄
system. Phenomenological values c ∼ 0.9 GeV2 have been
employed in the literature. As the plots in Fig. 6 show the
function ΔS as a function of l, one can realize that for each
fixed value of β, the higher the values of the parameter c,
the shorter the critical length lc is.
The q̄q binding energy can be also derived as

εB ≃ VðlcÞ, where the critical length lc drives the bound
state maximal size. Figure 7 displays the binding energy
with respect to lc.
Emulating previous results in the literature [10], the

binding energy here calculated lies in the range
0.868 GeV < εB ≲ 0.971 GeV, complying to the expected
range 0.5 GeV < εB < 1 GeV obtained in Ref. [38].

TABLE I. Critical length lc (fm), for several values of c and β.

c (GeV2)

β 0.86 0.90 0.94

1.1 1.4373 1.3594 1.2926
1 1.2017 1.1269 1.1119
0.9 0.9914 0.9157 0.8709

FIG. 7. Binding energy, εB, as a function of the critical length, lc. Numerical results are plotted as black points, for β ¼ 0.9; as blue
points, for β → 1; and as orange points, for β ¼ 1.1, respectively interpolated by the respective lines.

TABLE II. Critical temperatures (MeV), for several values of
c and β.

c (GeV2)

β 0.86 0.88 0.90 0.92 0.94 0.96 0.98

1.1 134.13 135.72 137.24 138.81 140.27 141.76 143.22
1 167.30 169.27 171.18 173.13 174.95 176.80 178.63
0.9 226.52 229.19 231.78 234.42 236.88 239.88 241.87

TABLE III. Values of c and corresponding values of β that
match experimental data for the critical temperature,
Tc ¼ 156.5� 1.5 MeV, from the HotQCD Collaboration [46].

c (GeV2) 0.86 0.88 0.90 0.92 0.94 0.96 0.98

β 1.031 1.035 1.038 1.043 1.048 1.052 1.057
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Numerical data in Fig. 7 can be interpolated by the
respective polynomial functions

εBðlcÞ ¼ 0.8043lc − 8.1521 × 10−3; ð40aÞ

εBðlcÞ ¼ 0.7747lc þ 2.2770 × 10−2; ð40bÞ

εBðlcÞ ¼ 3.1579l2
c − 6.2782lc þ 3.9639; ð40cÞ

within 0.1%, 0.05%, and 0.2% root-mean-square deviation,
correspondingly.
Reference [39] proved that deconfinement phase tran-

sition takes place when z0 ¼ z⋆ ¼ ffiffiffiffiffiffiffiffi
2=c

p
, for the AdS5–

Schwarzschild standard black brane [40]. In the case of the
deformed black brane (1), (2), (3), Tc can be identified to
the deconfinement phase transition critical temperature
separating the deconfined quark-gluon plasma to the
confined hadronic phase, reading

Tc ¼
1

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðβ − 2Þ
2ð3 − 4βÞ

s
: ð41Þ

From the string theory point of view, the flux tubes binding
q to q̄ break out when the potential energy exceeds the
threshold of spontaneous pair formation. The values of Tc
are shown in Table II, for β ¼ 0.9, β → 1 and β ¼ 1.1, for
several values of c that are phenomenologically compat-
ible. It is a usual procedure to analyze AdS/QCD pre-
dictions and compare them to the deconfinement
temperature range 122 MeV≲ Tc ≲ 170 MeV, as pre-
dicted in the AdS/QCD hard-wall model and lattice
QCD as well. On the other hand, the AdS/QCD soft-wall
model yields the range 190 MeV≲ Tc ≲ 200 MeV. The
value Tc ≈ 175� 15 MeV was derived from analyzing the
glueball spectrum [41], whereas some other important
aspects of the deconfinement temperature were scrutinized
in Ref. [42,43]. The two leading lattice collaborations in
this field reported the values Tc ¼ 156.5� 9 MeV and
Tc ¼ 154� 9 MeV [44]. Experimental data obtained from
the Relativistic Heavy Ion Collider (RHIC), the A Large
Ion Collider Experiment (ALICE), and the Super Proton
Synchrotron (SPS) have been discovering features of the

quark-gluon plasma, that also describes the early universe
[45]. In fact, the HotQCD Collaboration has found
Tc ¼ 156.5� 1.5 MeV [46].
Table II illustrates that the parameter c can be more

precisely estimated. The HEE is here shown to be a relevant
instrument to probe the deconfinement phase transition. The
value c ¼ 0.947 GeV2, when β → 1, represents the most
reliable value when one takes into account predictions of the
glueball spectrum phenomenology, whereas the value c ¼
0.982 GeV2 is compatible to β ≊ 0.981, in the same context.
Table III displays the values of c and their corresponding
values of β, matching experimental data from HotQCD
Collaboration [46], Besides, the values of c and their
corresponding values of β, matching the predictions by
the AdS/QCD hard wall model are shown in Table IV.
For the soft wall model, the values of c and their

corresponding values of β are shown in Table V.
However, in the context of Eq. (12), coming from the fact
that the shear viscosity-to-entropy density ratio is negative
when 0.9 ≤ β < 1, there are no physically allowed values of
β thatmatch realistic values of c inQCD such that the critical
temperature lies in the range 190 MeV≲ Tc ≲ 200 MeV,
predicted by the soft wall model. Therefore, the case relating
to the soft wall model is here illustrated in Table V as
a matter of completeness, as it has no practical realization
for being far from the strictest experimental value Tc ¼
156.5� 1.5 MeV [46].

IV. CONCLUSIONS

Deformed black branes were used in a gauge/gravitylike
duality to analyze the confinement/deconfinement phase
transition in QCD at the boundary. Reciprocally, current
experimental data regarding QCD can restrict the range of
the parameter that rules the deformed black brane, impos-
ing a stricter bound on it. The HEE was shown to play the
role of the order parameter that controls the confinement/
deconfinement phase transition. Besides, analyzing the
variation of the HEE between connected and disconnected
regions yields a critical length at which a deconfinement
first-order phase transition in the boundary QCD sets in.
The HEE for several values of β, for c ¼ 0.86 GeV2,
c ¼ 0.9 GeV2, and c ¼ 0.94 GeV2, was displayed in

TABLE IV. Values of c and corresponding range ½βMIN; βMAX� that match the AdS/QCD hard wall model.

c (GeV2) 0.86 0.88 0.90 0.92 0.94 0.96

½βMIN; βMAX� (1, 1.149] (1, 1.156] [1.001, 1.171] [1.007, 1.177] [1.011, 1.184] [1.015, 1.190]

TABLE V. Values of c and corresponding range ½βMIN; βMAX� that match the AdS/QCD soft wall model.

c (GeV2) 0.86 0.88 0.90 0.92 0.94 0.96

½βMIN; βMAX� [0.936, 0.953] [0.941, 0.956] [0.946, 0.961] [0.95, 0.967] [0.954, 0.972] [0.958, 0.976]
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Figs. 3–5, with important conclusions. Respective inter-
polation functions were displayed in Eqs. (31a)–(33c), for
each fixed value of β, the HEE was shown to increase as c
increases. Also, for each fixed value of c, the higher the
value of β, the more the HEE increases.
The critical length is shown to slightly vary as a function

of the deformed black brane parameter, for several values
of another parameter (0.86 GeV2 ≲ c≲ 0.94 GeV2) in
AdS/QCD. For lengths above the critical length, the
QCD system was shown to reside in a confined phase.
The results obtained, displayed in Table I, show a phase
transition that takes place when lc has around 1 fm order of
magnitude, for the physically realistic values of c and β.
These values are compatible with the separation between a
quark and an antiquark in a qq̄ system. Besides, the plots in
Fig. 6 show the function ΔS with respect to l. For each
fixed value of β, the higher the values of the parameter c,
the shorter the critical length lc is. Interpolation functions
are also presented. The binding energy of the quark-
antiquark bound state was also addressed, with important
results. Figure 7 shows that for β → 1 and β ¼ 0.9,
the binding energy is a linear function of the length l,
whereas the case β ¼ 1.1 can be approximated by a
quadratic function of l, for energies in the range
½0.868 GeV; 0.971 GeV�, which complies to the expected
theoretical result. However, contrary to the standard
AdS5–Schwarzschild black brane, where the binding

energy is a linear function of the length l, for the same
range of c, here in the case of the deformed black brane
there is a departure of the linear regime when β ¼ 1.1. The
critical temperature at which the deconfinement phase
transition that separates the deconfined quark-gluon plasma
to the confined hadronic phase was determined and shown
to vary with respect to the deformed black brane parameter
and c. Comparative analysis of theoretical results from the
AdS/QCD hard and soft wall models, lattice QCD, the
glueball spectrum, and experimental data at RHIC, ALICE,
and SPS has been implemented. Finally, deformed black
branes in AdS4 have been introduced in Ref. [47], in the
context of AdS/CMT. The dual CFT that describes Dirac
fluids emulating graphene can be also explored in the
context of the HEE. Other generalized black branes can be
also addressed [48,49] and studied in the context of AdS/
QCD, including entanglement in other quantum informa-
tion measures.
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