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We investigate the conjecture on the upper bound of the Lyapunov exponent for the chaotic motion of a
charged particle around a Kerr-Newman black hole. The Lyapunov exponent is closely associated with the
maximum of the effective potential with respect to the particle. We show that when the angular momenta of
the black hole and particle are considered, the Lyapunov exponent can exceed the conjectured upper bound.
This is because the angular momenta change the effective potential and increase the magnitude of the
chaotic behavior of the particle. Furthermore, the location of the maximum is also related to the value of the
Lyapunov exponent and the extremal and nonextremal states of the black hole.
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I. INTRODUCTION

The anti-de Sitter/conformal field theory (AdS/CFT)
correspondence [1] is one of the most remarkable discov-
eries in quantum gravity. The AdS/CFT correspondence
first proposed by Maldacena was obtained from the limit of
an N D3-branes system. This system is described by the
D3-brane solution of type IIB supergravity theory from the
viewpoint of gravity. Supergravity is the low-energy
effective theory of type IIB string theory, which is valid
in the large-N limit. In the near-horizon region, this geo-
metry becomes AdS5 × S5. This region corresponds to the
weak coupling region of supergravity. From the viewpoint
of quantum field theories, the effective theory on N
D3-branes is described by N ¼ 4 UðNÞ supersymmetric
Yang-Mills theory. The weak coupling region on the
gravity side corresponds to the strong coupling region
on the field theory side. We can calculate the physical
quantities of strongly coupled field theories from weakly
coupled gravity theories according to the AdS/CFT duality
[2,3]. For example, the correlation functions of a scalar
primary operator in a CFT are encoded in the scatterings
of a dual scalar field in AdS spacetime. In the AdS/CFT
correspondence, a CFT with a finite temperature is asso-
ciated with gravity with an AdS black hole [3,4]. Here, the
Hawking temperature is coincident with that of the CFT.
In classical systems, when trajectories of dynamics sen-

sitively depend on the initial conditions, the system is
called chaotic, and this phenomenon is called the butterfly
effect. In chaotic systems, close trajectories exponentially
diverge. The sensitivity of classical systems to the initial con-
dition is measured by the Lyapunov exponent. When the

Lyapunov exponent is positive, the system is chaotic. A
chaotic quantum system is characterized by the quantity [5]

CðtÞ ¼ −h½WðtÞ; Vð0Þ�2iβ; ð1:1Þ

where V and W are Hermitian operators, and h� � �iβ ¼
Tr e−βH=Z is the thermal expectation value. β is the inverse
temperature, β ¼ 1=T.1 The quantity CðtÞ includes the out-
of-time-ordered correlators such as hVð0ÞWðtÞVð0ÞWðtÞiβ.
For early times, the behavior of the quantity CðtÞ in chaotic
systems is typically described by CðtÞ ∼ e2λLt. We can
interpret λL as the Lyapunov exponent in quantum systems.
In fact, in the semiclassical limit, ℏ ≪ 1, the Lyapunov
exponent λL measures the sensitivity of the systems to the
initial conditions. This definition of the quantum Lyapunov
exponent is well defined when the collusion time td and
scrambling time ts are sufficiently separated, where td ∼ β
and ts ∼ 1

λL
log 1

ℏ.
Recently, Maldacena, Shenker, and Stanford conjectured

that the Lyapunov exponent λL is upper bounded in thermal
quantum systems [6]. They derived the bound by consid-
ering shock waves near the horizon of a black hole via the
AdS/CFT correspondence [7,8]. According to the conjec-
tured bound, the maximum value of the Lyapunov exponent
is proportional to the temperature of the system. This bound
has been studied intensively in the Sachdev-Ye-Kitaev
(SYK) model [9–11], which is the one-dimensional fer-
mionic model with random couplings [12–14]. The SYK
model was also studied via the AdS/CFT correspondence
[15–17]. For example, the Lyapunov exponent in the SYK
model can be calculated for the Jackiw-Teitelboim gravity
[16,18,19].
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The Lyapunov exponent has also been extensively
investigated from the viewpoint of black hole systems
with a probe particle [20–36] (see also [37–47]) and of the
AdS/CFT correspondence [48–55]. According to the AdS/
CFT duality, a probe particle near the event horizon of a
black hole is dual to some operator on the field theory side.
The authors of [56] studied the bound on the Lyapunov
exponent of such a probe particle. They assumed a static
and spherically symmetric black hole and introduced
external forces such as the electrostatic force and the scalar
force. The effective potential of the particle around the local
maximum is described by the inverse harmonic potential,
which causes the butterfly effect (e.g., see [50,57–59]).
They calculated the maximum value of the Lyapunov
exponent of the probe particle. In these cases, they found
that the maximum value coincides with the upper bound
given by Maldacena et al. They also considered the particle
with higher spin forces as the external force. In that case,
they found that the bound on the Lyapunov exponent can be
violated. In [60], the Lyapunov exponents were calculated
for many concrete black holes, e.g., asymptotically flat,
AdS, and de Sitter (dS) Reissner-Nordström (RN) black
holes. The authors of [60] found that for an asymptotically
dS black hole, the bound is satisfied only for the near-
horizon region. In other words, the bound is violated for the
dS black hole if the local maximum is located away from
the horizon. In [61], the Lyapunov exponent for a particle
around a black hole with quasitopological electromagnet-
ism was considered. The violation of the bound was also
found.
In this work, we investigate the bound of the Lyapunov

exponent on the particle motion in Kerr-Newman (KN)
black holes. The Lyapunov exponent was expected to be
bounded under the surface gravity in black hole systems,
but the system with an electromagnetic field could exceed
the bound beyond the surface gravity [56]. Here, we
consider the KN black hole and a particle with an angular
momentum to introduce the centrifugal force. Hence, we
generalize the analysis of the Lyapunov exponent to black
hole systems with centrifugal force as an effective force.
Furthermore, the investigated system includes the angular
momenta of the black hole and particle and therefore has a
richer structure and is more complicated than those of
previous studies such as [56,60,61], which motivated our
work. We show that the angular momenta of the KN black
hole and particle play a significant role in the violation of
the bound. This implies that the change in the gravitational
potential owing to the effective force can affect the chaotic
behavior of the system. The angular momentum of the
black hole also makes a huge difference in the case of RN
black holes because its value becomes a constraint on the
location of the maximum in the gravitational potential.
The remainder of this paper is organized as follows: In

Sec. II, we review the physics of the KN black hole, the
chaotic behavior of the inverse harmonic oscillators, and

the bound on the Lyapunov exponent. In particular, we
review that the upper bound of the Lyapunov exponent is
given by the surface gravity in the black hole systems. In
Sec. III, we consider the motion of a charged particle
around a KN black hole. We calculate the effective
potential of the particle, and using this, we obtain the
upper bound on the Lyapunov exponent of the particle. In
Sec. IV, we evaluate the bound on the Lyapunov exponent.
This section consists of three subsections, in which we
consider the KN, Kerr, and RN black holes, respectively.
We also consider the near-horizon region in each sub-
section. Finally, in Sec. V, we summarize our conclusions.

II. REVIEW

A. The Kerr-Newman black hole

The KN black hole is the solution to the Einstein-
Maxwell theory of gravity. It demonstrates a black hole
with spinning angular momentum and electric charge. In
Boyer-Lindquist coordinates, the metric is given as

ds2 ¼ −
Δ
ρ2

ðdt − asin2θdϕÞ2

þ sin2θ
ρ2

ðadt − ðr2 þ a2ÞdϕÞ2 þ ρ2

Δ
dr2 þ ρ2dθ2;

ð2:1Þ

where Δ ¼ r2 − 2Mrþ a2 þQ2 and ρ2 ¼ r2 þ a2 cos2 θ.
Here,M andQ are the mass and electric charge of the black
hole, respectively. The angular momentum of the KN black
hole is denoted by J, and the spin parameter is defined as
a ¼ J=M. The gauge potential is

A ¼ Qr
ρ2

dt −
aQrsin2θ

ρ2
dϕ: ð2:2Þ

The locations of the horizons are given by

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ða2 þQ2Þ

q
; ð2:3Þ

where rþ is the event horizon, and r− is the Cauchy
horizon. At the outer horizon, the angular velocity, surface
area, and surface gravity are

Ωþ ¼ a
r2þ þ a2

; κ ¼
rþð1 − a2

r2þ
Þ

2ðr2þ þ a2Þ ; Aþ ¼ 4πðr2þ þ a2Þ:

ð2:4Þ

The surface gravity is crucial in our analysis of the
Lyapunov exponent, which will be introduced in the
following section.
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B. Inverse harmonic oscillators and the bound
on the Lyapunov exponent

Inverse harmonic oscillators are known to be associated
with the butterfly effect in chaos. The Lyapunov exponent
is a quantity that measures the sensitivity of a dynamic
system to the initial condition. Recently, the bound on the
Lyapunov exponent was proposed by Maldacena, Shenker,
and Stanford [6] via the AdS/CFT correspondence. Here,
we briefly review the Lyapunov exponent in inverse
harmonic oscillators and the bound on the Lyapunov
exponent.
The effective motion of a particle around a black hole is

described by the inverse harmonic oscillator. The equation
of motion for the inverse harmonic oscillator is given by

mẍ − kx ¼ 0; ð2:5Þ

wherem is the mass of a particle and k > 0. The solution to
Eq. (2.5) is given by

xðtÞ ¼ C1e−ωt þ C2eωt; ð2:6Þ

where C1 and C2 are integration constants, and
ω ¼ ffiffiffiffiffiffiffiffiffi

k=m
p

. In classical chaotic systems, the divergence
of close trajectories increases exponentially,

∂xðtÞ
∂xð0Þ ¼ fxðtÞ; pð0ÞgPB ∼ eλt; ð2:7Þ

where f� � �gPB is the Poisson bracket, and λ is the Lyapunov
exponent, which measures the sensitivity to the initial con-
dition. The Lyapunov exponent of this system is given by

λ ¼ ω ¼
ffiffiffiffi
k
m

r
: ð2:8Þ

In thermal quantum chaotic systems, the Lyapunov
exponent is conjectured to be bounded. The Lyapunov
exponent λL in a quantum system is defined using out-of-
time-ordered correlators, which is expected as a quantum

version of the classical Lyapunov exponent defined in
Eq. (2.7). The bound is given by

λL ≤
2πT
ℏ

; ð2:9Þ

where T is the temperature of the system. This bound was
originally derived by AdS/CFT correspondence [6]. We
note that (2.9) is the bound for quantum systems without
gravity.
We apply the bound (2.9) to a system of a particle around

a black hole according to the perspective of holography.
The temperature of the system is given by the Hawking
temperature TBH, and we obtain

λ ≤
2πTBH

ℏ
¼ κ; ð2:10Þ

where κ is the surface gravity of the black hole. In
particular, if the system is chaotic (i.e., λ > 0), we can
square both sides of Eq. (2.10):

λ2 ≤ κ2: ð2:11Þ
In the next section, we consider the motion of a probe
particle around a KN black hole in four dimensions. The
inverse harmonic potential will appear as an effective
potential for the radial direction of the particle. Then
Eq. (2.8) provides a maximum value of the Lyapunov
exponent. We simply refer to this maximum value as the
Lyapunov exponent λ in the rest of this paper.

III. THE LYAPUNOV EXPONENT OF THE
PARTICLE WITH THE STATIC GAUGE

We consider the motion of a probe particle around a KN
black hole with the static gauge. When the particle is at a
local maximum of an effective potential, the motion of the
particle is described by an inverse harmonic oscillator.
We start with the Polyakov-type action, which is

identical to the Nambu-Goto-type action. The action of a
particle with charge q and mass m in the curved space is
given by

S ¼
Z

ds

�
1

2eðXðsÞÞ gμνðXðsÞÞ
_XμðsÞ _XνðsÞ − eðXðsÞÞ

2
m2 − qAμðXðsÞÞ _XμðsÞ

�
; ð3:1Þ

where e is an auxiliary field, and s parametrizes the geodesic of the particle. The last term on the right-hand side is the
interaction term between the particle and the electromagnetic force. We work on a static gauge, X0 ¼ s. Then the action in
the KN metric (2.1) is

S ¼
Z

ds

�
1

2e

�
−

1

ρ2
ðΔ − a2sin2θÞ þ ρ2

Δ
_r2 þ ρ2 _θ2 þ 2asin2θ

ρ2
ðΔ − ðr2 þ a2ÞÞ _ϕ

þ sin2θ
ρ2

ððr2 þ a2Þ2 − Δa2sin2θÞ _ϕ2

�
−
e
2
m2 − q

Qr
ρ2

þ q
aQrsin2θ

ρ2
_ϕ

�
: ð3:2Þ
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We focus on equatorial motion of the particle. Assuming θ ¼ π=2, we find that

S ¼
Z

ds

�
1

2e

�
−

1

r2
ðΔ − a2Þ þ r2

Δ
_r2 þ 2a

r2
ðΔ − ðr2 þ a2ÞÞ _ϕ

þ 1

r2
ððr2 þ a2Þ − Δa2Þ _ϕ2

�
−
e
2
m2 − q

Q
r
þ q

aQ
r

_ϕ

�
: ð3:3Þ

The action (3.3) depends on _ϕ, but not on ϕ. The action is invariant under translation for ϕ. In order to obtain an effective
action, we calculate an angular momentum:

L ¼ ∂L
∂ _ϕ ¼ a

er2
ðΔ − ðr2 þ a2ÞÞ þ 1

er2
ððr2 þ a2Þ2 − Δa2Þ _ϕþ q

aQ
r

; ð3:4Þ

where the Lagrangian is defined as S ¼ R
dsL. Furthermore, to erase the auxiliary field e from the Lagrangian, we use the

equation of motion for e,

−
1

r2
ðΔ − a2Þ þ 2a

r2
ðΔ − ðr2 þ a2ÞÞ _ϕþ 1

r2
ððr2 þ a2Þ2 − Δa2Þ _ϕ2 þ r2

Δ
_r2 ¼ −e2m2: ð3:5Þ

Using Eqs. (3.4) and (3.5), we obtain the effective Lagrangian,

Leff ¼ L − L _ϕ

¼ e

�
−
m2

2
−
1

2

ðaqQ − LrÞ2
ðr2 þ a2Þ2 − Δa2

�
−

1

2e

�
Δ − a2

r2
−
r2

Δ
þ a2ðΔ − ðr2 þ a2ÞÞ2
r2ððr2 þ a2Þ2 − Δa2Þ

�

−
aðaqQ − LrÞðΔ − ðr2 þ a2ÞÞ

rððr2 þ a2Þ2 − Δa2Þ −
qQ
r

ð3:6Þ

with

e ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − ððr2 þ a2Þ2 − Δa2Þ_r2

αðrÞ

s
; ð3:7Þ

where

αðrÞ ¼ Δ½m2ððr2 þ a2Þ2 − Δa2Þ þ ðaqQ − LrÞ2�: ð3:8Þ

Here αðrÞ is positive when r > rþ.
We focus on the motion around the local maximum of a

potential around the local maximum; the initial velocity of
the particle is quite slow. Thus, the motion of the particle is
described by the nonrelativistic limit for the r-direction by
taking _r ≪ 1. Then, we find the effective Lagrangian for
the nonrelativistic particle from Eq. (3.6):

Leff ¼
1

2
KðrÞ_r2 − VeffðrÞ þOð_r4Þ; ð3:9Þ

where

KðrÞ ¼ r
ffiffiffiffiffiffiffiffiffi
αðrÞp
Δ2

; ð3:10Þ

and

VeffðrÞ ¼
1

ðr2 þ a2Þ2 − Δa2

× ðr
ffiffiffiffiffiffiffiffiffi
αðrÞ

p
− aLΔþ ðr2 þ a2ÞðqQrþ aLÞÞ:

ð3:11Þ
Let us consider the motion of the particle around the

local maximum. The position of the local extrema r0 is
obtained by solving V 0

effðrÞ ¼ 0. We expand the effective
Lagrangian (3.9) around r ¼ r0. With a small perturbation
rðsÞ ¼ r0 þ ϵðsÞ, the effective Lagrangian becomes

Leff ¼
1

2
Kðr0Þð_ϵ2 þ λ2ϵ2Þ; ð3:12Þ

where we neglect constant terms and higher-order terms.
Especially, the coefficient of ϵ2 is the Lyapunov exponent:

λ2 ¼ −
V 00
effðr0Þ
Kðr0Þ

; ð3:13Þ

where the second derivative of the effective potential is
given by
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V 00
effðrÞ ¼

1

4ððr2 þ a2Þ2 − Δa2Þα3=2 ð24qQrα3=2 − rα02 þ 2αðrα00 þ 2α0ÞÞ ð3:14Þ

−
8rða2 þ r2Þ − 2a2Δ0

ððr2 þ a2Þ2 − Δa2Þ2
�
a2qQ − aLΔ0 þ 2aLrþ 3qQr2 þ rα0

2
ffiffiffi
α

p þ ffiffiffi
α

p �

−
2ðða2 þ r2ÞðaLþ qQrÞ − aLΔþ r

ffiffiffi
α

p Þ
ððr2 þ a2Þ2 − Δa2Þ3

× ðða2 þ 6r2Þðða2 þ r2Þ2 − a2ΔÞ − ða2Δ0 − 4rða2 þ r2ÞÞ2Þ: ð3:15Þ

Note that when V 00
effðr0Þ < 0, i.e., λ2 > 0, the extremum

associated with r0 is the local maximum. Then, the
effective Lagrangian (3.12) describes the inverse harmonic
oscillator, which describes a chaotic system.
Because the position of the local maximum is deter-

mined by the equation V 0
effðrÞ ¼ 0, the Lyapunov exponent

depends on the parameters of the black hole and particle.
However, analytically solving V 0

effðrÞ ¼ 0 is difficult in
general; therefore, we perform numerical calculation in the
next section.

IV. ANALYSIS OF THE LYAPUNOV EXPONENT

Let us analyze the bound (2.11) for the KN black hole
and its two limits: the Kerr and RN black holes. We now
note that the existence of a and L is important because these
parameters contribute to the Lyapunov exponent nontri-
vially. We complete the analysis of each type of black hole
to observe the conditions under which the Lyapunov
exponent can violate the bound.

A. The Kerr-Newman black hole

First, we consider the most general case: the KN black
hole. To find the position of the local maximum, we solve
the equation V 0

effðrÞ ¼ 0 numerically. We can rewrite the
bound (2.11) as

0 ≤ κ2 − λ2: ð4:1Þ

Thus the sign of κ2 − λ2 is important. We investigate
whether the Lyapunov exponent satisfies the bound or not.

1. The extremal cases

We consider the extremal KN black hole. Because the
Hawking temperature for the extremal black hole is zero,
the bound is simply given by

0 ≤ κ2 − λ2 ¼ −λ2: ð4:2Þ

As mentioned in the previous section, when there is a local
maximum of the effective potential, λ2 > 0, the bound is
violated. Thus, an important point is the existence of the

local maximum; the bound is violated if and only if there is
a local maximum.
We perform numerical calculation to find the position of

the local maximum. We focus on the angular momenta, a
and L, and the charge of the black hole, Q. For the
numerical calculation, we set

M ¼ 1; m ¼ 1; q ¼ 10: ð4:3Þ

Existence of the local maximum depends on the parame-
ters. We show the effective potential for L ¼ −10 and L ¼
10 in Fig. 1. For example, we see that for a ¼ Q ¼ ffiffiffiffiffiffiffiffi

1=2
p

,
we have a local maximum for L ¼ −10, but not for L ¼ 10.
For these parameters, the local maximum exists
when L < ð3 ffiffiffiffiffi

51
p

− 20Þ=2 ≃ 0.712.
The value of κ2 − λ2 obtained by inserting the numerical

results of the positions of the local maxima into Eq. (3.13)
is shown in Fig. 2 for the given charge and angular
momentum of the black hole. We see from Fig. 2 that
for a large negative value of L, the Lyapunov exponent
becomes large, indicating that the system becomes more
chaotic. For all cases, we find that local maxima exist, and
we observe the violation of the bound.
Next, we consider the bound on the Lyapunov exponent

in the near-horizon region. We can easily see from
Eq. (3.13) that the Lyapunov exponent becomes zero if
the local maximum is at the horizon, r0 ¼ rþ. Hence, for
the extremal black hole, the near-horizon region corre-
sponds to the vicinity of the boundary of the bound. In this
region, we can perform algebraic analysis.
To analyze the region, we should find the limits of the

parameters corresponding to r0 → rþ. Supposing r0 ¼ rþ,
we obtain V 0

effðr0Þ ¼ 0 as follows:

a2qQ − 2aLrþ − qQr2þ

þ rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ða2 þ r2þÞ2 þ ðaqQ − LrþÞ2

q
¼ 0: ð4:4Þ

Note that the equation is valid for some finite value of the
parameters. If the parameters are infinite, we should treat
the near-horizon limit carefully.2

2In fact, we will encounter this situation later.
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Introducing a positive small parameter ϵð> 0Þ as
r0 ¼ rþ þ ϵ, we expand the Lyapunov exponent around
ϵ ¼ 0. This gives

λ2 ¼ −
2ðða2 þ r2þÞðrþζ þ ξ2Þ − ξχ − 4ξ2r2þÞ

ξ2rþða2 þ r2þÞ3
ϵ3 þOðϵ4Þ;

ð4:5Þ

where we define

ξ2 ¼ a4m2 þ 2a2m2r2þ þ a2q2Q2 − 2aLqQrþ
þ L2r2þ þm2r4þ; ð4:6Þ

χ ¼ a3Lþ 2a2qQrþ − 2aLr2þ − qQr3þ; ð4:7Þ

ζ ¼ 2a2m2rþ − aLqQþ L2rþ þ 2m2r3þ: ð4:8Þ

The Lyapunov exponent depends on the distance between
the local maximum and the outer horizon. In particular,
when the local maximum is close to the outer horizon, the
square of the Lyapunov exponent is proportional to ϵ3.
Whether the bound is violated or not depends on the
parameters.

2. The nonextremal cases

We consider the nonextremal KN black hole. The bound
allows a positive Lyapunov exponent. For the nonextremal
KN black hole, the square of the bound is given by

λ2 ≤ κ2 ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 − a2 −Q2
p

2M2 þ 2M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 −Q2

p
−Q2

�2

¼ ðrþ − r−Þ2
4ðr2þ þ a2Þ2 : ð4:9Þ

a=Q= 1 /2

a= 1 /5 , Q= 4 /5

a= 4 /5 , Q= 1 /5

a=- Q= 1 /2

–40 –30 –20 –10 0 10 20 L

–0.06

–0.05

–0.04

–0.03

–0.02

–0.01

0.00

2– 2

FIG. 2. Numerical analysis of κ2 − λ2 for the extremal Kerr-Newman black hole. The parameters corresponding to each color are as
follows: The black line represents a ¼ Q ¼ ffiffiffiffiffiffiffiffi

1=2
p

. The blue line represents a ¼ ffiffiffiffiffiffiffiffi
1=5

p
,Q ¼ ffiffiffiffiffiffiffiffi

4=5
p

. The red line represents a ¼ ffiffiffiffiffiffiffiffi
4=5

p
,

Q ¼ ffiffiffiffiffiffiffiffi
1=5

p
. The green line represents a ¼ −Q ¼ ffiffiffiffiffiffiffiffi

1=2
p

. The broken line represents the bound. We find the violation of the bound for
all parameter choices.

a=Q= 1 /2

a= 1 /5 , Q= 4 /5

a= 4 /5 , Q= 1 /5

a=- Q= 1 /2
2 4 6 8 10

r

–4

–2

2

4

6

Veff

(a)

a=Q= 1 /2

a= 1 /5 , Q= 4 /5

a= 4 /5 , Q= 1 /5

a=- Q= 1 /2
2 4 6 8 10 r

2

4

6

8

10

12
Veff

(b)

FIG. 1. Effective potential of a particle with (a) L ¼ −10 and (b) L ¼ 10 for the extremal Kerr-Newman black hole.
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To perform the numerical calculation, we set the parameters
as in Eq. (4.3). The numerical results are shown in Fig. 3 for
the given black hole parameters. We see that the bound is
violated except for a ¼ Q ¼ ffiffiffiffiffiffiffiffiffiffi

1=10
p

(the green line). For
a ¼ −Q ¼ ffiffiffiffiffiffiffiffi

2=5
p

(the purple line), the effective potential
does not have a local maximum for small L. The violation

is observed when the parameters of the black hole are close
to the extreme.
Let us consider the case in which the local maximum is

near the horizon. For the nonextremal KN black hole,
V 0
effðr0 → rþÞ is divergent. To investigate in more detail,

we expand V 0
effðrþ þ ϵÞ around ϵ ¼ 0 to obtain

V 0
effðrþ þ ϵÞ ¼ rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrþ − r−Þðm2ða2 þ r2þÞ2 þ ðaqQ − LrþÞ2Þ

p
2ða2 þ r2þÞ2

ϵ−1=2

þ a4qQ − 2a3Lrþ þ a2qQrþðrþ − r−Þ þ aLr2þðr− − 3rþÞ − qQr4þ
ða2 þ r2þÞ3

þOðϵ1=2Þ: ð4:10Þ

The first term on the right-hand side is nonzero, except for
the extremal limit.
To find the near-horizon limit, we assume

q ¼ Lrþ
aQ

: ð4:11Þ

Then V 0
effðrþ þ ϵÞ ¼ 0 provides

L ¼ ma
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ − r−

p
2

ffiffiffi
ϵ

p þOðϵ1=2Þ: ð4:12Þ

Therefore, in the large-L limit (where q is also correspond-
ingly large), the local maximum approaches the horizon.

Expanding the Lyapunov exponent with Eqs. (4.11)
and (4.12) around ϵ ¼ 0, we obtain

κ2 − λ2 ¼ ðrþ − r−Þ2ða2ð3rþ þ r−Þ þ 4r3þÞ
4ða2 þ r2þÞ4

ϵþOðϵ2Þ:

ð4:13Þ

Thus, the bound is satisfied in the near-horizon limit
because the coefficient of the leading term on the right-
hand side is positive definite.

B. Q → 0 limit: The Kerr black hole

In the previous subsection, we discussed the bound for
the KN black hole and found the violation. In this

a= 2 /5 , Q= 2 /5

a= 1 /10 , Q= 4 /5

a= 4 /5 , Q= 1 /10

a= 1 /10 , Q= 1 /10

a=–Q= 2 /5

–50 0 50 L

–0.03

– 0.02

–0.01

0.00

0.01

0.02

0.03

κ 2– 2

FIG. 3. Numerical analysis of κ2 − λ2 for the nonextremal Kerr-Newman black hole. The parameters corresponding to each color are
as follows: The black line represents a ¼ Q ¼ ffiffiffiffiffiffiffiffi

2=5
p

. The blue line represents a ¼ ffiffiffiffiffiffiffiffiffiffi
1=10

p
, Q ¼ ffiffiffiffiffiffiffiffi

4=5
p

. The red line represents
a ¼ ffiffiffiffiffiffiffiffi

4=5
p

, Q ¼ ffiffiffiffiffiffiffiffiffiffi
1=10

p
. The green line represents a ¼ Q ¼ ffiffiffiffiffiffiffiffiffiffi

1=10
p

. The purple line represents a ¼ −Q ¼ ffiffiffiffiffiffiffiffi
2=5

p
. The broken line

represents the bound. We find the violation of the bound, except for the case of a ¼ Q ¼ ffiffiffiffiffiffiffiffiffiffi
1=10

p
.
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subsection, we focus on the black hole angular momentum.
To identify the effect of the angular momentum, we take the
limit of Q → 0.

1. The extremal cases

We numerically analyze the bound of the Kerr black
hole. To consider the Kerr black hole, we set the charge of
the black hole as Q ¼ 0; the charge q becomes irrelevant.
The Hawking temperature is zero for the extremal black
hole; thus, the bound is given by

0 ≤ κ2 − λ2 ¼ −λ2: ð4:14Þ

In the same way as for the extremal KN black hole, the
bound is violated when there is a local maximum in the
effective potential.
For the extremal Kerr black hole, the parameter asso-

ciated with the angular momentum of the black hole is
given by

a ¼ �M: ð4:15Þ

In the effective potential (3.11) with Q ¼ 0, a appears in
the combinations a2 or aL; thus, a ¼ þM with L corre-
sponds to a ¼ −M with −L. This implies that the relevant
parameter is just L. Because the choice of the mass
parameters, M and m, is just normalization, our numerical
analysis for the extremal Kerr black hole is physically
sufficient.
The numerical result is shown in Fig. 4. There is a local

maximum for L < −22
ffiffiffi
3

p
=9. We see from Fig. 4 that the

bound is violated when the local maximum exists. When
the angular momentum L becomes a large negative value,
the Lyapunov exponent becomes large, meaning that the
system becomes more chaotic.
Let us consider the near-horizon limit of the local

maximum. We expand V 0
effðrþ þ ϵÞ around ϵ ¼ 0 to obtain

V 0
effðrþ þ ϵÞ ¼ L2 − 2L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ 4m2r2þ

p
þ 4m2r2þ

4rp2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ 4m2r2þ

p
þ L
4r3þ

ϵþOðϵ2Þ: ð4:16Þ

Solving V 0
effðrþ þ ϵÞ ¼ 0 for small ϵ, we find that

L ¼ 2mffiffiffi
3

p
�
rþ þ 2

3
ϵ

�
þOðϵ2Þ: ð4:17Þ

To distinguish between the local maximum and minimum,
we calculate the second derivative of the effective potential
(3.15). This gives

V 00
effðrþ þ ϵÞ ¼ m

2
ffiffiffi
3

p
r2þ

þOðϵÞ > 0; ð4:18Þ

so that the solution (4.33) corresponds to the local mini-
mum. Thus there are no near-horizon limits of local
maxima.

2. The nonextremal cases

We numerically analyze the bound for the nonextremal
Kerr black hole. Unlike the extremal case, the nonextremal
Kerr black hole has a finite Hawking temperature. The
bound is given by

λ2 ≤ κ2 ¼ ðrþ − r−Þ2
4r2þðrþ þ r−Þ2

: ð4:19Þ

The numerical results for a ¼ −
ffiffiffiffiffiffiffiffi
4=5

p
,

ffiffiffiffiffiffiffiffi
1=2

p
,

ffiffiffiffiffiffiffiffi
4=5

p
, andffiffiffiffiffiffiffiffiffiffi

9=10
p

are shown in Fig. 5. We see the violation of the
bound for a ¼ −

ffiffiffiffiffiffiffiffi
4=5

p
,

ffiffiffiffiffiffiffiffi
4=5

p
, and

ffiffiffiffiffiffiffiffiffiffi
9=10

p
. We find the

violation when the parameters of the black hole are close
to extremal, which is the same as in the case of the
nonextremal KN black hole.
Let us investigate the near-horizon region. As before, we

expand V 0
effðrþ þ ϵÞ around ϵ ¼ 0:

V 0
effðrþ þ ϵÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrþ − r−ÞðL2 þm2ðrþ þ r−Þ2Þ

p
2ðrþ þ r−Þ2

ϵ−1=2

−
Lr−ð3rþ þ r−Þffiffiffiffiffiffiffiffiffiffi
rþr−

p ðrþ þ r−Þ3
þOðϵ1=2Þ: ð4:20Þ

For a small ϵ, we can easily see that there are no real
solutions to V 0

effðrþ þ ϵÞ ¼ 0when L is real. Therefore, the
local extrema for the nonextremal Kerr black hole cannot
approach the event horizon rþ.

C. J → 0 limit: The Reissner-Nordström black hole

We investigate the bound for the RN black hole. For the
RN black hole, the effective potential becomes simple;
therefore, we can algebraically analyze the bound of the

a=1

–9 –8 - 7 –6 –5
L

–0.025

–0.020

–0.015

–0.010

–0.005

κ 2– 2

FIG. 4. Numerical analysis of κ2 − λ2 for the extremal Kerr
black hole with a ¼ M ¼ 1. A local maximum exists for
L < −22

ffiffiffi
3

p
=9. We see that the bound is violated.
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Lyapunov exponent. The bound for the RN black hole
without the angular momentum of the probe particle was
studied in [56,60,61]. Here we include the effect of the
angular momentum L.

1. The extremal cases

As examined in [56], the effective potential for the
extremal RN black hole without the angular momentum of
the particle does not have local maxima. However, we show
here that the effective potential with the angular momentum
has a local maximum.
For the extremal RN black hole, we can suppose that

Q ¼ rþ without loss of generality because the effective
potential has only the combination qQ. According to
V 0
effðr0Þ ¼ 0, the position of the local extremum of the

effective potential satisfies

q ¼ L2ð2rþ − r0Þ þm2rþr20
rþr0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þm2r20

p ; ð4:21Þ

where r0 is the position of the local extremum. Because the
square of the Lyapunov exponent is proportional to
V 00
effðr0Þ, the local extremum is the local maximum when

λ2 < 0. When L ¼ 0, the dependence of r0 is removed from
Eq. (4.21), which implies the nonexistence of extrema. In
other words, the local extremum is located at infinity.
We also consider the position of the local extremum for

large L. In this limit, we have

q
L
¼ 2rþ − r0

rþr0
: ð4:22Þ

Thus we obtain r0 ¼ 2rþ for L → ∞.

The Lyapunov exponent defined in Eq. (3.13) is given by

λ2 ¼ L2ðr0 − rþÞ3ðm2r20ð3rþ − r0Þ þ 2L2rþÞ
r60ðL2 þm2r20Þ

: ð4:23Þ

From Eq. (4.23), we see that the bound λ2 ≤ 0 is violated
when

L ≠ 0 for rþ < r0 ≤ 3rþ ð4:24Þ

or

L2 >
m2r20ðr0 − 3rþÞ

2rþ
for r0 > 3rþ: ð4:25Þ

For the extremal RN black hole, we also observe the
violation. In this parameter region, the local maximum
exists, which implies the violation. For the other parameter
region, there are no local maxima.
Next, we consider the near-horizon limit of the position

of the local maximum. To find the near-horizon limit,
assuming r0 ¼ rþ þ ϵ, we expand (4.21) around ϵ ¼ 0:

q¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2þm2r2þ

p
Q

−
2L2

Qrþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2þm2r2þ

p ϵþOðϵ2Þ: ð4:26Þ

This implies that when the product of the charges q
and Q is slightly smaller than qQ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þm2r2þ

p
, the

local maximum is placed near the event horizon.
Equation (4.24) implies that the bound is locally violated
if L ≠ 0.

a= 1 /2 a= 4 /5

a= 9 /10

a=- 4 /5

–15 –10 –5 0 5 10 15 L

–0.02

–0.01

0.00

0.02

0.03

0.04

2– 2

FIG. 5. Numerical analysis of κ2 − λ2 for the nonextremal Kerr black hole. The parameters corresponding to each color are as follows:
The black lines represent a ¼ ffiffiffiffiffiffiffiffi

1=2
p

. The blue lines represent a ¼ ffiffiffiffiffiffiffiffi
4=5

p
. The red lines represent a ¼ ffiffiffiffiffiffiffiffiffiffi

9=10
p

. The green lines represent
a ¼ −

ffiffiffiffiffiffiffiffi
4=5

p
. The broken line represents the bound. We find the violation of the bound for a ¼ −

ffiffiffiffiffiffiffiffi
4=5

p
,

ffiffiffiffiffiffiffiffi
4=5

p
, and

ffiffiffiffiffiffiffiffiffiffi
9=10

p
.
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2. The nonextremal cases

The position of the local extremum for the nonextremal RN black hole obeys

q ¼ L2ð−2r20 þ 3r0ðr− þ rþÞ − 4r−rþÞ þm2r20ðr0ðr− þ rþÞ − 2r−rþÞ
2Qr0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0 − r−Þðr0 − rþÞðL2 þm2r20Þ

p ; ð4:27Þ

where r0 is the position of the local extremum. In the large-L limit, we obtain

q
L
¼ −2r20 þ 3r0ðr− þ rþÞ − 4r−rþ

2Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr0 − r−Þðr0 − rþÞ

p : ð4:28Þ

Thus we find

r0 ¼
1

4
ð3ðr− þ rþÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9r2− − 14r−rþ þ 9r2þ

q
Þ ð4:29Þ

for L → ∞. In particular, we see that r0 ¼ 3rþ=2 in the limit of the Schwarzschild black hole, r− → 0, which coincides with
Eq. (47) in [56].
κ2 − λ2 of the nonextremal RN black hole is given by

κ2 − λ2 ¼ L4uþ 2L2m2r20vþm4r60ðr40 − r4þÞðrþ − r−Þ2
4r60r

4þðL2 þm2r20Þ2
; ð4:30Þ

where we define u and v as follows:

u ¼ r60ðrþ − r−Þ2 − 4r30r
4þðr− þ rþÞ þ 3r20r

4þðr2− þ 6r−rþ þ r2þÞ − 12r0r−r5þðr− þ rþÞ þ 8r2−r6þ; ð4:31Þ

v ¼ r60ðrþ − r−Þ2 þ 2r40r
4þ − 6r30r

4þðr− þ rþÞ þ 3r20r
4þðr2− þ 6r−rþ þ r2þÞ − 10r0r−r5þðr− þ rþÞ þ 6r2−r6þ: ð4:32Þ

To investigate the bound, we introduce a positive parameter δ defined byM2 ¼ Q2 þ δ2. Using this parameter, the Cauchy
horizon r− is represented as

r− ¼ rþ − 2δ: ð4:33Þ

The limit δ → 0 corresponds to the extremal limit, and the limit δ → rþ=2 corresponds to the Schwarzschild black hole.
Let us consider the near-extremal region. Inserting (4.33) into (4.30), we expand around δ ¼ 0:

κ2 − λ2 ¼ −
L2ðr0 − rþÞ3ðm2r20ð3rþ − r0Þ þ 2L2rþÞ

r60ðL2 þm2r20Þ

þ 2L2ðr0 − rþÞ2ðL2ðr0 − 4rþÞ þ 3m2r20ðr0 − 2rþÞÞ
r60ðL2 þm2r20Þ2

δþOðδ2Þ: ð4:34Þ

The leading terms coincide with Eq. (4.23). Thus, the bound for the near-extremal RN black hole is violated when Eqs.
(4.24) or (4.25) is satisfied.
We also consider the Schwarzschild limit. Inserting (4.33) into (4.30), we expand around δ ¼ rþ=2,

κ2 − λ2 ¼ μ

r40r
2þðL2 þm2r20Þ2

þ ν

r50r
3þðL2 þm2r20Þ2

ðδ − rþ=2Þ þOððδ − rþ=2Þ2Þ; ð4:35Þ

where we define

μ ¼ L4ðr40 − 4r0r3þ þ 3r4þÞ þ 2L2m2r20ðr40 þ 2r20r
2þ − 6r0r3þ þ 3r4þÞ þm4r40ðr40 − r4þÞ; ð4:36Þ

ν ¼ L4ðr50 þ 2r20r
3þ − 9r0r4þ þ 6r5þÞ þ 2L2m2r20ðr50 þ 3r20r

3þ − 9r0r4þ þ 5r5þÞ þm4r50ðr40 − r4þÞ: ð4:37Þ

NAOTO KAN and BOGEUN GWAK PHYS. REV. D 105, 026006 (2022)

026006-10



We can easily show that μ > 0. Therefore the bound is
satisfied for the near-Schwarzschild region.We conclude that
the bound for the nonextremal RN black hole is violated
when the parameters of the black hole approach the extreme.
We consider the near horizon. Similarly, according to

Eq. (4.27), we find

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrþ − r−ÞðL2 þm2r2þÞ

p
2Q

ϵ−1=2

þ ðL2ð8r− − 5rþÞ þm2r2þð2r− þ rþÞÞ
4Qrþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrþ − r−ÞðL2 þm2r2þÞ

p ϵ1=2: ð4:38Þ

In the limit q → ∞, the local maximum is close to the
horizon, where the angular momentum L is finite.
We analyze the bound for the near-horizon region using

Eq. (4.30),

κ2 − λ2 ¼ m2ðrþ − r−Þ2
r3þðL2 þm2r2þÞ

ϵþOðϵ2Þ: ð4:39Þ

Because the coefficient of the leading term is positive, the
bound for the near horizon is satisfied even if L ≠ 0.
Our results show that the value of the Lyapunov

exponent can be beyond the conjectured bound, suggesting
the possibility of modifying the bound to another form.
One simple possibility is λ ≤ C0κ, where for simplicity, we
assume C0 is a parameter-independent constant. However,
this modification does not work. To see this, we focus
on the near-extremal region, for which the modification
becomes λ ≤ C0κ ∼ C0δ. Aswe have seen in e.g., Eq. (4.34),
the leading termof theLyapunovexponent isOðδ0Þ. Thus the
modification is negligible, and the modified bound can be
violated in the near-extremal region. Another possibility for
modification is λ ≤ κ þ C1, where C1 is also a parameter-
independent constant. This modification does not work

either: for example, in the case of an extremal RN black
hole (4.23) is roughly given by λ ∼ L2 for large L, which
implies that the modified bound, λ ≤ κ þ C1, is violated for
large L.
In this section, we analyzed the bound on the Lyapunov

exponent. The results of this analysis are summarized in
Table I. When the position of the local maximum is located
at a general point, depending on the parameters, the bound
can be violated. When the position of the local maximum is
located near the event horizon, we can analyze the bound
algebraically. In this situation, the KN, Kerr, and RN black
holes show quite different results from each other.

V. CONCLUSIONS

We investigated the Lyapunov exponent for a probe
particle around a KN black hole. The effect of the angular
momentum of the particle was considered in the equation of
motion. With the static gauge, we calculated the effective
potential. The Lyapunov exponent of the particle is con-
jectured to be upper bounded by the surface gravity [6].
Applying the bound on the Lyapunov exponent to the
motion of the particle, we found violation of the bound in
several cases of the KN black hole: the Kerr black hole, the
RN black hole, and the near-horizon limit. Our results are
summarized in Table I.
In the motion of the particle, the effective potential near

the local maximum can be approximated by the inverse
harmonic oscillator. The inverse harmonic oscillator exhib-
its chaos, and the Lyapunov exponent of the system is
proportional to the second derivative of the effective
potential at the local maximum. Thus, the Lyapunov
exponent depends on the parameters, such as the charges
and angular momenta of the black hole and the particle. In
particular, we found that the behavior of the Lyapunov
exponent changed significantly owing to the contribution of
the angular momenta. In this study, the behaviors are
categorized into three cases depending on the type of black
hole: the KN black hole, which has a finite charge and
angular momentum; the Kerr black hole, which is the
Q → 0 limit of the KN black hole; and the RN black hole,
which is the a → 0 limit of the KN black hole, whereQ and
a are the charge and angular momentum of the black hole,
respectively. For the general cases in which the local
maximum is located at an arbitrary place, we investigated
the behaviors of the Lyapunov exponent with various
parameter sets of the black hole and the particle. The
location of the local maximum is closely associated with
the Lyapunov exponent. Because the effective potential
depends on the parameters, the existence of the local
maximum also depends on the parameters. We found that
a local maximum can exist (and the bound can be violated)
for particular sets of parameters. For the near-horizon cases
where the local maximum is located near the event horizon,
the results are remarkable. In particular, we can perform

TABLE I. Summary of results.“Far from the horizon” means
that the local maximum is located at a general point. “Near-
horizon” means that the local maximum is located near the event
horizon. “Event horizon” means that the local maximum is
located at the event horizon. “○” indicates that the bound is
satisfied for any parameter regions of the black hole and particle.
“×” indicates that we found a violation of the upper bound of the
Lyapunov exponent that depends on the parameters. “−” in-
dicates that the local maximum cannot be close to the near
horizon.

Bound
Far from

the horizon Near-horizon Event horizon

Extremal KN × × ○

Nonextremal KN × ○ ○

Extremal Kerr × − −
Nonextremal Kerr × − −
Extremal RN × × ○

Nonextremal RN × ○ ○
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algebraic analysis for these cases. In the case of the KN
black hole, the bound can be violated because the second
derivative of the effective potential can be positive. In
contrast, for the cases of the Kerr and RN black holes, the
bound is satisfied except for the extremal RN black hole.
For the extremal RN black hole, the bound is violated if and
only if the angular momentum of the particle is finite.
Therefore, we see that the angular momenta of the black
hole and particle play an important role in exceeding the
bound. When the local maximum is exactly located at the
event horizon, the results change. For the KN and RN black
holes, the Lyapunov exponent coincides with the surface
gravity. For the Kerr black hole, the local maximum cannot
be located at the event horizon.
In this study, we focus on the KN black hole, which is an

asymptotically flat black hole without the cosmological

constant. It is natural to wonder how angular momentum
affects the bound on the Lyapunov exponent when the
cosmological constant is nonzero. In particular, if the
cosmological constant is negative, the relationship between
the Lyapunov exponent and its bound can be studied in the
AdS/CFT correspondence.
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