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We study the Wishart-Sachdev-Ye-Kitaev (WSYK) model consisting of two q̂-body Sachdev-Ye-Kitaev
(SYK) models with general complex couplings, one the Hermitian conjugate of the other, living in off-
diagonal blocks of a larger WSYK Hamiltonian. The spectrum is positive with a hard edge at zero energy.
We employ diagrammatic and combinatorial techniques to compute analytically the low-order moments of
the Hamiltonian. In the limit of large number N of Majoranas, we have found striking similarities with the
moments of the weight function of the Al-Salam-Chihara Q-Laguerre polynomials. For q̂ ¼ 3, 4, the
Q-Laguerre prediction, with Q ¼ Qðq̂; NÞ also computed analytically, agrees well with exact diagonal-
ization results for 30 < N ≤ 34while we observe some deviations for q̂ ¼ 2. The most salient feature of the
spectral density is that, for odd q̂, low-energy excitations grow as a stretched exponential, with a functional
form different from that of the supersymmetric SYK model. For q̂ ¼ 4, a detailed analysis of level statistics
reveals quantum chaotic dynamics even for time scales substantially shorter than the Heisenberg time.
More specifically, the spacing ratios in the bulk of the spectrum and the microscopic spectral density and
the number variance close to the hard edge are very well approximated by that of an ensemble of random
matrices that, depending on N, belong to the chiral or superconducting universality classes. In particular,
we report the first realization of level statistics belonging to the chiral Gaussian Unitary Ensemble
universality class, which completes the tenfold-way classification in the SYK model.
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I. INTRODUCTION

The Sachdev-Ye-Kitaev (SYK) model [1–7], a model of
N Majorana, or Dirac, fermions in zero spatial dimensions
with q-body infinite range interactions, is attracting a lot of
attention in different research fields because, despite being
analytically tractable, it can still reveal intriguing features
of both strongly correlated systems and, through the use of
holographic dualities, quantum gravity in near-AdS2 back-
grounds [8,9].
An example of this is Kitaev’s analytical calculation [1]

showing that, in the strong-coupling low-temperature limit,
the Lyapunov exponent [10] of the SYK model saturates a
universal bound on quantum chaos [11]. This is an
expected feature [11] of field theories that have a gravity

dual. Indeed, in the SYK case, the holographic dual in this
infrared limit has been identified as Jackiw-Teitelboim (JT)
gravity [8,9,12].
It is also possible to compute analytically the spectral

density, and, therefore, the free energy and other thermo-
dynamic properties of the SYK model by using different
techniques. In the strong-coupling, low-temperature limit,
the density can be obtained by an exact evaluation [13,14]
of the path integral of the Schwarzian action that captures
the spontaneous and explicit breaking of conformal sym-
metry to SLð2; RÞ symmetry. This exact density shows an
exponential growth close to the ground state, which is the
expected result for quantum black holes as well [15,16].
The free energy has also been computed numerically, either
from the solution of the large-N Schwinger-Dyson equa-
tions or by exact diagonalization, and analytically, in the
large-q, large-N limit, or by the combined use of dia-
grammatic and combinatorial tools [1,12,16–21].
These techniques have also been applied to many

generalizations of the SYK model, including supersym-
metric SYKs [22–26] that can reproduce the tenfold way
[27] of random matrix theory, higher dimensional SYKs
[28], one-body deformations leading to a quantum-chaos
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transition [29], and two-site SYKs dual to traversable
[30–32] and Euclidean [33] wormholes. However, despite
their power and versatility, it was not yet possible to use
them to solve the SYK model for all temperatures or
coupling strengths.
At least for the spectral density, such an exact

calculation is possible [34,35] but only for q ∝
ffiffiffiffi
N

p
.

The procedure involves an explicit evaluation of the
moments of the Hamiltonian by diagrammatic techni-
ques. It turns out that the moments are given by a sum
over the number of crossings of perfect-matching dia-
grams. Surprisingly, this sum can be evaluated explicitly
and compactly by using the Touchard-Riordan formula
[36,37] introduced in the context of combinatorial analy-
sis. The resulting expression was later identified [38]
with that of the moments of the weight function of
Q-Hermite polynomials, which allows computing the
spectral density exactly. For the more physically relevant
case of q ¼ 4, these combinatorial techniques, though
only approximate, still provide a quantitatively correct
description of the spectral density [17,18,21,39–41] with
Q a function of q and N that is evaluated analytically.
Still based on the role of perfect matchings and the
mapping to the Q-Hermite weight function, it has been
possible to obtain analytical expressions for supersym-
metric [13,24,42], sparse [43], and complex SYK models
with a finite chemical potential [44]. Moreover, it has
been used to relate [45] a variant of the SYK model to a
Uð1Þ pure gauge theory in a hypercube proposed by
Parisi [46] as a toy model of spin glasses.
In this paper, we introduce a generalized SYK model,

termed Wishart [47]-Sachdev-Ye-Kitaev (WSYK) model,
which can be represented by a matrix with two off-diagonal
blocks, one the Hermitian conjugate of the other. In each of
these blocks lives an SYKmodel with q̂Majorana fermions
and random complex couplings.
We will show that, unlike previous results, the spectral

density in the scaling limit q̂ ∝
ffiffiffiffi
N

p
[34,35] cannot be

evaluated exactly because the combinatorial analysis is
based only on a subset of perfect matchings. However, by
identifying this subset as the set of permutations, we can
establish an approximate mapping to the weight function
of the Al-Salam-Chihara Q-Laguerre polynomials [48–51],
a variant of the Q-Laguerre polynomials [49,50,52]. For
a fixed q̂ ≥ 2, the resulting spectral density, which is
qualitatively different from the one in the Q-Hermite
case, is in fair agreement with exact diagonalization
results in the range of N we can explore numerically.
Moreover, we will identify a range of parameters where
the WSYK model shares typical features expected in a
field theory with a holographic dual such as an expo-
nential growth of low energy excitations. The global
symmetries of this generalized SYK model belong to
the chiral and superconducting universality classes
according to the random matrix classification [27,53].

Level statistics and the microscopic spectral density,
which are believed to be universal, show good agreement
with the random matrix predictions. Deviations from the
random matrix results, for fixed N and q̂ ¼ 4, are smaller
than in the standard q ¼ 3 supersymmetric SYK model
[22–24]. Our work includes the first observation of the
chiral Gaussian Unitary Ensemble (chGUE) universality
class in the context of the SYK model. Although it is
possible to realize complex-fermion SYK models [23]
with global symmetries consistent with those of chGUE,
the number of zero modes of those models scales with
system size and, thus, in the thermodynamic limit, one
obtains GUE correlations.
Finally, we note that Iyoda et al. [54] studied a related

Wishart extension of the complex-fermion Sachdev-Ye-
Kitaev model with q̂ ¼ 2 and found it to be integrable as it
can be mapped to the Richardson-Gaudin model, which is
known to be solved by the Bethe ansatz.

II. THE WISHART-SACHDEV-YE-KITAEV
MODEL

We start with the definition of the SYK Hamiltonian that
describes q-body random interactions among N Majorana
fermions,

H ¼ iqðq−1Þ=2
XN

i1<…<iq¼1

Ji1���iqγi1 � � � γiq ≡ iqðq−1Þ=2
X
a

JaΓa;

ð1Þ
where N and q are even integers, a is a multi-index
accounting for all q indices i1;…; iq ¼ 1;…; N, Ji1���iq ≡
Ja is a totally antisymmetric tensor with independent real
Gaussian entries with zero mean, i.e.,

hJai ¼ 0 and hJaJbi ¼ hJ2iδa;b; ð2Þ

γi are Majorana fermions satisfying the Clifford algebra
fγi; γjg ¼ 2δij and, therefore, represented by 2N=2-dimen-
sional (Hermitian) Dirac γ-matrices, and Γa ¼ γi1 � � � γiq is a
product of q γ-matrices with all indices i1;…; iq mutually
different, satisfying

Γ2
a ¼ iqðq−1Þ1 and ΓaΓb ¼ ð−1Þqþja∩bjΓbΓa; ð3Þ

with 1 the 2N=2-dimensional identity and ja ∩ bj the
number of γ-matrices that Γa and Γb have in common.
Several restrictions inH can be relaxed. Let us consider a

set of M independent non-Hermitian q̂-body charges Lμ

(with q̂ allowed to be odd):

Lμ ¼
XN

i1;…;iq̂¼1

lμ;i1���iq̂γi1 � � � γiq̂ ≡
X
a

lμ;aΓa; ð4Þ
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where the lμ;i1���iq̂ ≡ lμ;a are antisymmetric (in a) inde-
pendent complex Gaussian random variables (the exact
variances are specified below). From the charges Lμ, we
can define a Hermitian and positive-definite Hamiltonian,
which we dub the Wishart-Sachdev-Ye-Kitaev (WSYK)
Hamiltonian:

W ¼
XM
μ¼1

L†
μLμ ¼ iq̂ðq̂−1Þ

X
a;a0

�XM
μ¼1

l�
μ;a0lμ;a

�
Γa0Γa; ð5Þ

where the factor iq̂ðq̂−1Þ arises from bringing Γ†
a0 back to Γa0

by commuting all the (Hermitian) γ-matrices in Γ†
a0 . Note

that while all γ-matrices in a single Γa are different (owing
to the antisymmetry of lμ;a), there could be overlaps
between the γ-matrices in Γa and those in Γa0 (which
follows from the fact that the tensor Ka0a ¼

P
μ l

�
μ;a0lμ;a is

not totally antisymmetric). Setting q̂ ¼ q=2, the positive-
definite Hamiltonian W describes q-body interactions like
the original Hamiltonian H. Note that, for M ¼ 1, the
eigenvalues ofW are exactly the squares of the eigenvalues
of the off-diagonal block Hamiltonian

H ¼
�

0 L

L† 0

�
; ð6Þ

which has a natural chiral structure.
We now address the exact distribution of the random

couplings lμ;a. We decompose lμ;a ¼ lð1Þ
μ;a þ iklð2Þ

μ;a, 0 ≤
k ≤ 1. The real, lð1Þ

μ;a, and imaginary, lð2Þ
μ;a, parts of lμ;a are

independent and identically distributed Gaussian random
variables with

hlð1Þ
μ;ai ¼ hlð2Þ

μ;ai ¼ 0 and

hlð1Þ
μ;al

ð1Þ
μ0;a0 i ¼ hlð2Þ

μ;al
ð2Þ
μ0;a0 i ¼

1

2
hl2iδμ;μ0δa;a0 : ð7Þ

It then follows that hlμ;ai ¼ hl�
μ;ai ¼ 0,

hl�
μ0;a0lμ;ai ¼

1þ k2

2
hl2iδμ0;μδa0;a; and

hlμ0;a0lμ;ai ¼ hl�
μ0;a0l

�
μ;ai ¼

1 − k2

2
hl2iδμ0;μδa0;a: ð8Þ

We name the three special cases k ¼ 0, k ¼ 1, and 0 <
k < 1 the linear, circular, and elliptic WSYK models,
respectively (borrowing the nomenclature of standard
random matrix theory, after the shapes of the support of
the random variables lμ;a seen as random matrices).
Note that only for the M ¼ 1 linear WSYK model the

eigenvalues of W are the squares of the eigenvalues of L.
When the charge is non-Hermitian, there is no relation

between the eigenvalues of L and its singular values (the
eigenvalues of W ¼ L†L), apart from some general
inequalities. The same is true if there are M > 1 indepen-
dent (noncommuting) charges, irrespective of their
Hermiticity. As a result, to compute the correct spectral
density in those cases, one cannot rely on the known
combinatorial expansion of the standard SYK moments
(see Appendix A for a review). The WSYK moments have
to be computed afresh and a new combinatorial interpre-
tation has to be given.
In this paper, we focus on the circular WSYK model.

The M ¼ 1 linear WSYK model coincides with the
N ¼ 1 supersymmetric SYK model and is reviewed in
Appendix B.1 We compute the spectral density of the
M ¼ 1 circular WSYK model in Secs. III–V (with simple
asymptotic formulas for different regimes derived in
Appendix C) and also study its microscopic spectral
density and level statistics in Sec. VI. We propose an
ansatz for the spectral density of theM > 1 circular WSYK
model in Appendix D. The elliptic WSYK model is more
complicated so we leave it for future work.

III. MOMENTS OF THE CIRCULAR
WSYK MODEL

Our aim is to derive the spectral density of the circular
WSYK model using the method of moments. Let us briefly
mention how this computation is carried out for the
standard SYK model [18,19], referring the reader to
Appendix A for a detailed review. One starts by an exact
computation of the first few moments, which can be given a
combinatorial interpretation in terms of perfect matchings.
Arbitrarily high moments cannot be computed exactly in
general, but one can find approximations to varying degrees
of accuracy and exact results when q ∝

ffiffiffiffi
N

p
. In particular,

with this scaling, the moments can be expressed as a sum
over the number of crossings of perfect matchings and,
hence, identified with the moments of the weight function
of the Q-Hermite polynomials [38].
Let us apply this program to the circular WSYK model.

Because the random variables lμ;a are Gaussian, the
moments hTrWpi are evaluated by Wick contraction,
i.e., by summing over all possible pair contractions of
the indices a, a0, b, b0, etc. In contrast to the standard
SYK model, the odd moments are nonvanishing and, more
importantly, the non-Hermitian couplings suppress
certain Wick contractions. For example, by performing
all allowed contractions, the second moment of W is
explicitly found to be

1Only in the linear model do the operators Lμ have the
interpretation of a supercharge generating supersymmetry. For
the other cases, we still use the nomenclature charge to
emphasize their role as the building block of the positive-definite
Hamiltonian W.
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hTrW2i ¼
X
μ;ν

X
a;b;c;d

hl�
μ;alμ;bl�

ν;clν;diTrðΓaΓbΓcΓdÞ

¼ hl2i2
X
μ;ν

X
a;b

½δμμδννTrðΓaΓaΓbΓbÞ

þ 0 · TrðΓaΓbΓaΓbÞ þ δμνδνμTrðΓaΓbΓbΓaÞ�

¼ 2N=2

�
hl2i

�
N
q̂

��
2

ðM2 þMÞ; ð9Þ

where the second term in the Wick expansion is identically
zero because of Eq. (8) with k ¼ 1 and we used Eq. (3) to
evaluate the traces.
As for the standard SYK model, we can introduce a

combinatorial diagrammatic notation to simplify the rep-
resentation and evaluation of the moments. First, we note
that to avoid dealing with allowed and forbidden perfect-
matching diagrams we can switch to an expansion in terms
of permutation diagrams [51,55–58].2 Indeed, at pth order,
the set of Γ-matrices in the trace TrðΓa1

Γa2
� � �Γa2p

Þ is
naturally bipartite: half of the Γ-matrices (more precisely,
the even-numbered ones, fΓa2j

g, j ¼ 1;…; p) come from
insertions of matrices Lμ, the other half (fΓa2j−1

g) from

insertions of L†
μ, two odd-numbered (or two even-num-

bered) Γ-matrices cannot be coupled [according to Eq. (8)
with k ¼ 1], and each odd-numbered Γ-matrix is coupled to
one and only one even-numbered one. We can, therefore,
identify each Wick contraction with a permutation σ ∈ Sp

such that if σðjÞ ¼ k, with j; k ¼ 1;…; p, then a2j−1 is
contracted with a2k, leading to a factor hl�

μ;a2j−1
lμ;a2k

i. The
permutation diagram corresponding to σ ∈ Sp is then given
by a set of p dots, labeled j ¼ 1;…; p, with edges
connecting all pairs of dots ðj; σðjÞÞ; if j ≤ σðjÞ the edge
is drawn above the dots, if j > σðjÞ it is drawn below. For
example, the two allowed contractions in Eq. (9) are
represented diagrammatically as follows (we omit the
labeling of the dots):

ð10Þ

and

ð11Þ

Note that each dot comes also equipped with an index
μj related to which channel Lμ it belongs. Each closed
loop in the diagram then contributes with a factor M.
Equations (10) and (11) thus give a factor of M2 and M,
respectively, in agreement with Eq. (9).
In full generality, the (normalized) moments of the

circular WSYK model can be written as a sum over
permutations σ ∈ Sp,

1

σpL

hTrWpi
Tr1

¼
X
σ∈Sp

tðσÞMcycðσÞ; ð12Þ

where σL ¼ hl2iðNq̂Þ is the energy scale of the WSYK

model, Tr1 ¼ 2N=2, the weight tðσÞ gives the normalized
trace of each diagram σ, and cycðσÞ is the number of cycles
in the permutation σ (number of closed loops in the
respective diagram).
For example, the first four moments of W are easily

written down and organized in terms of permutation
diagrams:

hTrW0i ¼ 2N=2; ð13Þ

ð14Þ

ð15Þ

2It was noted in Ref. [42] that the momentsN ¼ 2 supersymmetric SYKmodel also admit an expansion in terms of permutations, but
the connection to the Q-Laguerre polynomials was not made.
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ð16Þ

ð17Þ

Below each diagram we wrote (i) a factor of M for each closed loop and (ii) the weight tðσÞ coming from the trace of
Γ-matrices. Different diagrams can correspond to the same trace because of the latter’s cyclic property.
The first nontrivial diagram, t3, arises in the thirdmoment ofW (sixth order inL andL†) and it is explicitly given by [19,39]:

ð18Þ
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To evaluate the trace, we have to first commute Γa with the product ΓbΓc and then commute Γb with Γc,
using Eq. (3). Diagram t3 also arises in the standard SYK model at sixth order in an expansion in powers of H;
for its perfect-matching representation and a detailed account on how to compute it, see Appendix A. However, the nontrivial
diagram

t2ðq̂; NÞ ¼ 2−N=2

�
N
q̂

�
−2X

a;b

TrðΓaΓbΓaΓbÞ ¼
�
N
q̂

�
−1X̂q

s¼0

ð−1Þq̂þs

�
q̂
s

��
N − q̂
q̂ − s

�
; ð19Þ

that arises at fourth order in an expansion in powers of H [see Eqs. (A1) and (A4)] does not arise at fourth order in an
expansion in powers of L and L†. This is also true for higher orders: no diagrams related to t2 (e.g., its powers) arise, as
t2 is a forbidden contraction when k ¼ 1 (i.e., it corresponds to a perfect matching that is not a permutation). In the
context of the standard SYK model, the first nontrivial diagram (i.e., the single-crossing diagram, in that case t2) has the
combinatorial interpretation of the deformation parameter Q. For the circular WSYK model, we thus anticipate that it is
diagram t3 that assumes this role.
Another nontrivial diagram, t4, appears in the fourth moment. It cannot be reduced to a power of the lower-order diagram

t3 and it is evaluated analogously to before [39]:

ð20Þ

To arrive at the explicit expression, we performed inde-
pendent commutations of Γb and Γc over the product ΓaΓd,
using again Eq. (3).
In principle, one can compute tðσÞ exactly for every

diagram and for all p by explicitly computing traces.
However, the computations quickly become intractable.
Alternatively, when q̂ ∝

ffiffiffiffi
N

p
and M ¼ 1, the weights tðσÞ

can be computed exactly.

IV. ANALYTIC SPECTRAL DENSITY OF THE
CIRCULAR WSYK MODEL WITH M = 1

When q̂ ∝
ffiffiffiffi
N

p
, the weight tðσÞ is fully characterized

by the numbers of commutations required to bring the Γ-
matrices to a trivial ordering. The number of commutations
in a trace corresponds to the number of crossings in the
corresponding perfect-matching, and not permutation, dia-
gram. In this scaling limit, it is possible to show [34,35]
that, for a perfect matching π with crossðπÞ crossings,
tðπÞ ¼ QcrossðπÞ, where Q ¼ ð−1Þq̂ expð−2αÞ, α ¼ q̂2=N is
N independent and N → ∞. To use this exact scaling-limit
result, the sum in Eq. (12) would have to be performed over
a subset of perfect matchings. Unfortunately, such a
restricted sum cannot be performed in closed form.
Instead, we noticed that if we approximate the number
of commutations in the trace by the number of crossings in
the permutation diagram, the sum in Eq. (12) is feasible and
the moments correspond to the moments of the weight

function of certain Q-Laguerre polynomials, where −1 <
Qðq̂; NÞ < 1 becomes independent of N in the scaling
limit. When q̂ is fixed and finite, the same combinatorial
arguments still hold to order 1=N [39]. Hence, for any q̂, we
can compute the spectral density to leading and next-to-
leading order in 1=N.
For fixed q̂ and in the limit N → ∞, there are, to leading

order in 1=N, no γ-matrices common to different
Γ-matrices and, thus, the commutations of the latter can
be ignored, i.e., tðσÞ ¼ 1 for all σ ∈ Sp. The leading-order
moments simply count the number of allowed diagrams at
each order, which for permutations σ ∈ Sp are

1

σpL

hTrWpi
Tr1

¼ p!: ð21Þ

These are the moments of the exponential distribution and,
hence, to leading order, the spectral density of the M ¼ 1
circular WSYK model is ϱðEÞ ¼ expð−EÞ.
To next-to-leading order, we take the commutations of

Γ-matrices into account but ignore correlations between
different commutations. Therefore, we completely charac-
terize a diagram σ simply by its number of crossings,
crossðσÞ. Some additional care is required when counting
crossings diagrammatically, compared to the perfect-
matching case: crossðσÞ is the number of pairs of edges
above the line of dots that cross or touch ,
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plus the number of pairs of edges below the line of dots that
cross [55].3 The elementary single-crossing dia-
gram is t3ðq̂; NÞ and, as for the standard SYK model, we
approximate more complicated diagrams with crossðσÞ
crossings by ascribing a factor t3 to each crossing, i.e.,

we approximate tðσÞ ¼ tcrossðσÞ3 .4 As an example, we have
t4 ≈ t23. As mentioned before, this identification does not
become exact when q̂ ∝

ffiffiffiffi
N

p
.

Summing over all diagrams, we arrive at

1

σpL

hTrWpi
Tr1

¼
X
σ∈Sp

tcrossðσÞ3 ; ð22Þ

which are recognized as the moments of the orthogonality
weight function of the Al-Salam-Chihara Q-Laguerre
polynomials [51] with Q ¼ t3ðq̂; NÞ and y ¼ 1:

ϱQLðE;QÞ ¼ ðQ;QÞ2∞ð−Q;QÞ2∞
ð−Q2;Q2Þ2∞

2

πE0L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − E=E0L

E=E0L

s

×
Y∞
k¼1

1 − 4ð1−2E=E0LÞ2
2þQkþQ−k�

1 − 2ð1−2E=E0LÞ
QkþQ−k

�
2
; ð23Þ

supported on 0 ≤ E ≤ E0L, where the (dimensionless)
spectral edge of the WSYK model is

E0L ¼ 4

1 −Q
; ð24Þ

and ða;QÞ∞ ¼Q∞
k¼0 ð1 − aQkÞ is the Q-Pochhammer

symbol. Note that the spectral density is of the form of
a single-channel Marchenko-Pastur distribution [60,61],

ϱMPðEÞ ¼
2

πE0L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − E=E0L

E=E0L

s
; ð25Þ

times a Q-dependant multiplicative correction.5

Let us briefly comment on the nature of the Q-Laguerre
approximation. It is exact to linear order in Q or, alter-
natively, to next-to-leading order in 1=N. The first cor-
rection is diagram t4 that appears in the fourth moment.
In the scaling limit q̂2 ¼ αN, we have the exact results

Q ¼ t3 ¼ − exp½−6α� and t4 ¼ exp½−8α� [34,35]; the
Q-Laguerre approximation is, instead, t4≈Q2¼ exp½−12α�;
higher-order corrections proceed similarly. We thus see that,
contrary to standard SYK case for which the Q-Hermite
spectral density becomes exact in the scaling limit, the Q-
Laguerre density is only an approximation of the trueWSYK
density both for fixed q̂ and in the scaling limit q̂ ∝

ffiffiffiffi
N

p
. Its

accuracy has to be checkedon a case-by-case basis,whichwe
do for q̂ ¼ 2, 3, 4 and N ≤ 34 in Sec. V.
Notwithstanding the preceding considerations, it is

important to emphasize that the Q-Laguerre mapping
has two key features necessary to accurately predict the
WSYK spectral density; namely, it accounts for the correct
number of diagrams and it correctly identifies the defor-
mation parameter as Q ¼ t3 (i.e., the minimal number of
commutations in a trace is three). The other natural
candidates for describing the spectral density (Q-Hermite
and random matrix theory) do not possess either of these
properties.
It is also important to note that the Q-Laguerre density

(23) is not equal to the Q-Hermite density after the change
of variables E → E2, as it is the case for the linear WSYK
model (equivalently, the supersymmetric SYK model), see
Appendix B. First, Q depends exclusively on the sym-
metries of the model (i.e., Hermiticity) and appropriate
combinatorics are required to obtain its correct value: Q ¼
t2 [Eq. (19)] for the linear WSYK model, while Q ¼ t3
[Eq. (18)] for the circular WSYK model. In particular, the
spectral edge, E0L, of both models is formally the same [see
Eqs. (24) and (B2)] but it is evaluated at different Q.
Second, even if we put in the correct value of Q by hand,
forQ > 0 the multiplicative corrections are different for the
circular and linear WSYK models, as is clear by inspection
of Eqs. (23) and (B1), respectively. Specifically, as Q → 1,
in the circular model ϱðEÞ → exp ð−EÞ, while in the linear
model ϱðEÞ → ð1= ffiffiffiffiffiffiffiffiffi

2πE
p Þ exp ð−E=2Þ. On the other hand,

as Q → 0 (the random-matrix limit) both spectral densities
go to the Marchenko-Pastur distribution. Indeed, the
relevant diagrams for random matrix theory are noncross-
ing and because all noncrossing perfect matchings are also
noncrossing permutations, the allowed diagrams for the
Gaussian and Wishart-Laguerre ensembles coincide.
To conclude this section, we note that the Q-Laguerre

density (23) has a simple asymptotic form in the bulk (i.e.,
for 0 ≪ E ≪ E0L), close to the hard edge E ≈ 0, and near
the soft edge E ≈ E0L. These asymptotic formulas are
obtained in the large-N limit after a Poisson resummation
of the Q-Laguerre spectral density; see Appendix C for
their derivation.
The asymptotic densities depend on the sign of Q. For a

finite but large enoughN (the limit we are mostly interested
in), Q ¼ t3ðq̂; NÞ is positive for even q̂ and negative for
odd q̂.
For positive Q (even q̂), the asymptotic bulk density is

given by

3This is the reason why the permutation σð1; 2; 3Þ ¼ ð2; 3; 1Þ
has a crossing despite no edges actually crossing in its diagram,
see Eq. (18).

4The number of permutations in Sp with k crossings can be
explicitly computed for arbitrary ðp; kÞ and is tabulated as
sequence A263776 in the Online Encyclopedia of Integer
Sequences (OEIS) [59].

5The Marchenko-Pastur distribution depends itself on Q
through its endpoint. In the random-matrix limit, Q → 0, the
endpoint becomes E0L → 4.
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ϱðbulkÞQ>0 ðE;QÞ

¼ C00
Q exp

�
2arcsin2ð1 − 2E

E0L
Þ − arccos2ð 2EE0L

− 1Þ
logQ

�
; ð26Þ

where the constant C00
Q is

C00
Q ¼ ðQ;QÞ2∞ð−Q;QÞ2∞

ð−Q2;Q2Þ2∞
exp ½π2=ð4 logQÞ�

ð1þ exp½π2= logQ�Þ2
2

πE0L
:

ð27Þ

Near the hard edge, E ≈ 0, the asymptotic density is

ϱðhardÞQ>0 ðE;QÞ ¼ C00
Q exp

�
−

π2

2 logQ

�
coth

"
−

2π

logQ

ffiffiffiffiffiffiffiffi
E
E0L

s #
;

ð28Þ

which has the expected 1=
ffiffiffiffi
E

p
divergence. Intriguingly,

unlike the standard and supersymmetric SYK models, the
spectral density in this low energy region does not increase
exponentially. As was mentioned previously, a density of
low-energy excitations proportional to exp½γ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E − E0

p �,
with γ > 0 and E0 the ground-state energy, is typical of
both quantum black holes [16] and nuclear matter [18,62].
Its absence in the WSYK model, for Qðq̂; NÞ > 0, is a

strong indication that no gravity dual interpretation exists in
this range of parameters. We shall see shortly that for
Qðq̂; NÞ < 0 the situation is different.
Near the soft edge E ≈ E0L corresponding to the high-

energy region, the asymptotic density is found to be

ϱðsoftÞQ>0 ðE;QÞ ¼ C00
Q exp

�
π2

2 logQ

�
2 sinh

"
−

4π

logQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

E
E0L

s #
:

ð29Þ

Note that, apart from some multiplicative constants, this is
the same density found near the edges of the standard SYK
model. This is not surprising as, far away from the origin,
the positive-definiteness of the spectrum is irrelevant and
one does not expect the density to be very sensitive to the
exact distribution of matrix elements of the Hamiltonian.
Since E is smaller than, or comparable to, E0L, there is no
exponential growth of excitations in this region which in
any case would not be expected to be related to gravity
systems as holographic relations in the context of the SYK
model are restricted to the low-energy, strong-coupling
region.
For negative Q (odd q̂), the bulk spectral density instead

reads as:

ϱðbulkÞQ<0 ¼ C0
jQj cosh

�
π

log jQj
				 arcsin

�
1 −

2E
E0L

�				
�
× exp

�
2arcsin2ð1 − 2E

E0L
Þ − 1

2
arccos2ð1 − 2E

E0L
Þ − 1

2
arccos2ð 2EE0L

− 1Þ
log jQj

�
;

ð30Þ

where the global constant is

C0
jQj ¼

ðQ;QÞ2∞ð−Q;QÞ2∞
ð−Q2;Q2Þ2∞

exp

�
π2

4 log jQj
�

2

πE0L
: ð31Þ

The spectral density close to the hard edge at E ¼ 0 is

ϱðhardÞQ<0 ¼ C0
jQj coth

"
−

π

log jQj

ffiffiffiffiffiffiffiffi
E
E0L

s #
exp

"
−

2π

log jQj

ffiffiffiffiffiffiffiffi
E
E0L

s #
cosh

"
π2

2 log jQj

 
1 −

4

π

ffiffiffiffiffiffiffiffi
E
E0L

s !#
; ð32Þ

which shows, besides the 1=
ffiffiffiffi
E

p
divergence at the origin, a

stretched exponential growth in the triple scaling limit [17]
corresponding to low-energy excitations slightly above the
ground-state E ¼ 0. Interestingly, this is precisely one of
the expected features of a field theory with a gravity dual.
We note that the functional form is different from the result
for the supersymmetric SYK model [13,24,25] whose
spectrum also has a hard edge at zero energy. As was
mentioned previously, the supersymmetric SYK is reduced

in the low-energy limit to a super-Schwarzian action shared
by JT super-gravity [63]. It would be worthwhile, espe-
cially following the recently proposed classification
scheme of JT supergravity [64,65] to explore whether
the above spectral density, and the spectral correlations
studied in next section, are related to another flavor of JT
gravity.
Finally, the negative-Q soft-edge asymptotic density is

given by
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ϱðsoftÞQ<0 ¼ C0
jQj tanh

"
−

π

log jQj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

E
E0L

s #

× exp

"
−

2π

log jQj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

E
E0L

s #

× cosh

"
π2

2 log jQj

 
1 −

4

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

E
E0L

s !#
: ð33Þ

In this limit, the comments made for the positive Q also
apply here.

In Fig. 1, we compare these simple asymptotic formulas,
Eqs. (26)–(33), with the Q-Laguerre weight function,
Eq. (23), for both positive and negativeQ. We see excellent
agreement in the respective domains of applicability, even
for q̂ ¼ 2 and relatively small N ¼ 36 (Q ≈ 0.45). As N
increases, the bulk asymptotic formula describes the
density very well almost all the way down to the soft
edge. However, it does not, of course, capture the 1=

ffiffiffiffi
E

p
divergence close to the origin. For odd q̂ ¼ 3, the asymp-
totic formulas are also very accurate, but the asymptotic
limit is only attained for much larger values of N (e.g.,
Q ≈ −0.54 for N ¼ 96). This confirms the validity of the

FIG. 1. Comparison of the asymptotic spectral densities (orange curves) for the bulk, hard edge, and soft edge with the Q-Laguerre
density (blue curve), in the respective domains of applicability. (Left) Densities for Q > 0, namely, Q ¼ t3ðq̂ ¼ 2; N ¼ 36Þ. (Right)
Densities for Q < 0, namely, Q ¼ t3ðq̂ ¼ 3; N ¼ 96Þ.
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analytical calculation and, for negative Q, the possible
existence of a holographic duality.

V. NUMERICAL SPECTRAL DENSITY OF THE
CIRCULAR WSYK MODEL FOR FIXED q̂

In this section, we study the accuracy of the Q-Laguerre
approximation for the range of parameters accessible to

numerical exact diagonalization, i.e., for a fixed q̂ ¼
2; 3; 4… that does not scale with N.
For q̂ ¼ 3; 4;… and N ≤ 34, Q ¼ t3ðq̂; NÞ is very close

to 0 (e.g., we have Q ¼ t3ðq̂ ¼ 3; N ¼ 28Þ ≈ −0.024 and
Q ¼ t3ðq̂ ¼ 4; N ¼ 28Þ ≈ −0.008), see Fig. 2. Hence,
deviations from plain random matrix theory are small. In
Fig. 3, we compare the Q-Laguerre prediction (23) against
numerical results obtained from exact diagonalization of
the circular WSYK Hamiltonian (5). As can be seen in the
center and right panels of Fig. 3, for these small values of
Q, the Q-Laguerre density is almost indistinguishable from
the random matrix result, the Marchenko-Pastur distribu-
tion, Eq. (25). For q̂ ¼ 3 a modest deviation from random
matrix behavior can be seen for N ¼ 34 in the tail of the
spectrum, and there is qualitative agreement with the
numerical results.
For q̂ ¼ 2, we have access to a much larger range of

values of Q ¼ Qð2; NÞ (for instance, Q ¼ t3ðq̂ ¼ 2;
N ¼ 28Þ ≈ 0.326), see Fig. 2. In this case, one can clearly
distinguish theQ-Laguerre density from the random matrix
one across the entire spectrum, see the left panel of Fig. 3.
In the right half of the spectrum, E≳ 2, we observe an

excellent agreement with the analytical Q-Laguerre pre-
diction, which in this case is clearly different from both the
Q-Hermite and the Marchenko-Pastur distribution, see

FIG. 2. Dependence of the deformation parameter Q on the
number of Majoranas N for q̂ ¼ 2, 3, 4.

FIG. 3. Spectral density of the circular (k ¼ 1) WSYK model withM ¼ 1 and N ¼ 28, 34 Majorana fermions for q̂ ¼ 2, 3, and 4. The
orange (shaded) histograms are obtained by exact diagonalization of the WSYK Hamiltonian (5) for different disorder realizations
totaling at least 219 eigenvalues. The blue (full) and gray (dot-dashed) curves correspond to the Q-Laguerre [Eq. (23)] with Q ¼
t3ðq̂; 28Þ andMarchenko-Pastur [Eq. (25)] predictions, respectively. We see the spectral density approaching plain randommatrix results
as q̂ increases withN fixed. Insets: zoom on the hard edge for q̂ ¼ 2. We see excellent agreement with both random matrix theory andQ-
Laguerre near the hard edge.
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Figs. 3 and 4. In particular, the Q-Laguerre density
decays as exp½−E=E0L�, while the Q-Hermite density as
exp½−E=2E0L� (after the change of variables E → E2), and
the Marchenko-Pastur distribution decays

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − E=E0L

p
.

Therefore, in this region of the spectrum, all three dis-
tributions can be clearly distinguished. We stress that the
comparison is completely determined by the analytical
expression with no fitting parameters. In particular, the
endpoint E0L is fixed in each case: E0L ¼ 4=ð1 − t3ðq̂; NÞÞ
for Q-Laguerre, E0L ¼ 4=ð1 − t2ðq̂; NÞÞ for Q-Hermite,
and E0L ¼ 4 for Marchenko-Pastur. The tail of the spec-
trum is best seen on a logarithmic scale, see Fig. 4. As
mentioned before, to the right of the mid-spectrum bump,
there is excellent agreement between the Q-Laguerre
prediction and the numerical results. As N grows, this
agreement increasingly extends all the way down to the soft
edge at E ¼ E0L. Moreover, Q ¼ t3ðq̂; NÞ also increases
and we start to see deviations from random matrix theory. It
is also clearly visible that the numerical results are not well
described by the Q-Hermite density after the change of
variables E → E2 (conversely, the square roots of the
eigenvalues of the circular WSYK do not follow the
Q-Hermite density of the standard SYK model).
For smaller values of the energy, still for the q̂ ¼ 2 case,

we observe a bump around the middle of the spectrum. The
bump shifts slightly to lower energies as N increases (not
shown). Within the range of N that we can reach numeri-
cally, it is unclear whether it is a finite-size effect that will
go away in the large-N limit or if it has another origin. In
any case, it is not predicted by the Q-Laguerre, Q-Hermite,
or random matrix analytical expressions. The bump is
much milder for q̂ ¼ 3 (but visible when N ¼ 34) and it is
not observed for q̂ ¼ 4 in the available range of N. A
qualitatively similar nonmonotonic behavior was observed
[23] in a SYK model with Dirac fermions and also two
q̂ ¼ 2 blocks.
Near the hard edge (E ¼ 0), and sufficiently away from

the bump, see the insets in the left panels of Fig. 3, the

divergence of the spectral density is well-described by the
Q-Laguerre density which, in this range of parameters,
agrees with the Marchenko-Pastur distribution. The pres-
ence of the bump, together with the singularity at E ¼ 0
and the limited range ofN for whichQ is negative, makes it
difficult to test the exponential growth, once the divergence
is factored out, that characterizes the Q-Laguerre spectral
density, Eq. (32), in this region.
In Fig. 4, there appears to be a discrepancy between

numerics and the Q-Laguerre density at the soft (right)
edge, which is more pronounced for smaller N. However, it
is an artifact of the combination of the logarithmic scale
(which amplifies small deviations), finite sampling, and
relatively small values of N. Indeed, we know that the edge
(largest eigenvalue), Emax, which depends on the disorder
realization, is itself a random variable whose distribution
only becomes sharply peaked around its mean, E0L, for

FIG. 4. Spectral density (with 1=
ffiffiffiffi
E

p
divergence factored out) of the circular (k ¼ 1) WSYK model withM ¼ 1 and q̂ ¼ 2 (q ¼ 4) for

N ¼ 16, 24, and 32 Majorana fermions. The orange (shaded) histograms are obtained by exact diagonalization of the WSYK
Hamiltonian (5) for different disorder realizations totaling 218 eigenvalues. The blue (full), black (dashed), and gray (dot-dashed) curves
correspond to theQ-Laguerre [Eq. (23)] withQ ¼ t3ð2; NÞ,Q-Hermite [Eq. (B1)] withQ ¼ t2ð2; NÞ, and Marchenko-Pastur [Eq. (25)]
predictions, respectively.

FIG. 5. Spectral edge of the circular WSYK model (5) with
M ¼ 1 and q̂ ¼ 2 (q ¼ 4) as a function of the number of
Majoranas N. The black dots correspond to the ensemble-
averaged largest eigenvalue of W obtained from exact dia-
gonalization (8192 disorder realizations for N ¼ 16–24, 2048
realizations for N ¼ 26, 28, and 1472 realizations for N ¼ 30),
while the full line gives the Q-Laguerre prediction (24) with
Q ¼ t3ð2; NÞ.
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sufficiently large N. Therefore, the spectral density beyond
the edge is, in reality, the distribution of the largest
eigenvalues. Strictly speaking, we note that not only the
largest eigenvalue contributes to the tail of the spectral
density because, due to ensemble-ensemble fluctuations, it
may occur that a few of the largest eigenvalues of one
disorder realization are larger than the largest of another
disorder realization. In order to illustrate explicitly that the
discrepancy in the tail of the distribution is an artifact of the
combination of a soft edge and ensemble average, we
compare the largest eigenvalue of W averaged over many
disorder realizations with the Q-Laguerre prediction.
Results depicted in Fig. 5 show a very good agreement
between this quantity and the analytical prediction,
Eq. (24), for 16 ≤ N ≤ 30.
We get further numerical evidence corroborating the

applicability of our analytic results to systems with fixed
q̂ ¼ 2 by evaluating some low-order moments. In Fig. 6,
we plot the second, third, and fourth moments as a function
of the number of Majoranas N. As expected, there is
excellent agreement between the moments obtained from
exact diagonalization and the exact moments, Eqs. (15)–(17).
The fourth moment is the first where there are permutation
diagrams with more than one crossing and we can, therefore,
compare the Q-Laguerre approximation against the exact
result. As seen in the inset, the relative deviation between the
two expressions is always below 2%, a value that is attained
for the small values of N considered here, and then decreases
as N increases.
In summary, we observe a good agreement between

the Q-Laguerre density and moments with numerical
results obtained by exact diagonalization of W. The
approximation of uncorrelated commutations and the
replacement of perfect-matching crossings by permutation
crossings are, therefore, well justified, at least for q̂ ¼ 3,
4 and the values of N that are numerically accessible.
We again emphasize that the good agreement between
numerical and analytic predictions relies crucially on the
value of Q ¼ t3ðq̂; NÞ, which could not have been

obtained starting from the Q-Hermite (perfect-matching)
combinatorics.

VI. MICROSCOPIC SPECTRAL DENSITY AND
LEVEL STATISTICS OF THE WSYK MODEL

In this section, we investigate the spectral density in the
so-called microscopic limit corresponding to the smallest
eigenvalues close to the hard edge of the spectrum at E ¼ 0.
In the context of random matrix theory [27,53], this
microscopic spectral density is universal [66], namely, it
does not depend on the details of the Hamiltonian but only
on symmetries such as the time-reversal invariance.
Explicit analytic expressions for each universality class
are known by using the orthogonal polynomial or the
supersymmetry method [67–69]. In the former, the micro-
scopic density can be expressed in terms of the asymptotic
limit of the Laguerre kernel that also describes the bulk
spectral density. Previously, we have shown that the
spectral density of the WSYK is well approximated by
the weight function of the Al-Salam-Chihara Q-Laguerre
polynomials [48] which are a variant of Q-Laguerre
polynomials [52]. It is tempting to speculate that the
microscopic limit of the WSYK model will be given
precisely by the random matrix results but replacing the
Laguerre withQ-Laguerre polynomials. However, there are
no reasons at all to believe that this is the case. For instance,
for supersymmetric SYK models, the microscopic spectral
density for some values of N is similar to the chiral random
matrix prediction while the average spectral density is still
given [24] by the Q-Hermite result. We recall that, in
contrast to standard random matrix theory, the relation
between the average spectral density and the Q-Laguerre
polynomials is not through the spectral kernel of random
matrix theory—which is expressed as a sum over the order
of the orthogonal polynomials squared, with the sum, in
turn, evaluated by the Christoffel-Darboux formula [70,71].
In our case, the moments of the spectral density are those of
just the weight of the Al-Salam-Chihara Q-Laguerre

FIG. 6. Low-order (normalized) moments of the circular (k ¼ 1) WSYK model (5) withM ¼ 1 and q̂ ¼ 2 (q ¼ 4) as a function of the
number of Majoranas N. The black dots are obtained from ensemble-averaged exact diagonalization (8192 disorder realizations for
N ¼ 16–24, 2048 realizations for N ¼ 26, 28, and 1472 realizations for N ¼ 30), while the full blue lines give the exact analytic
expressions, Eqs. (15)–(17). For the fourth moment, the Q-Laguerre approximation is also plotted (dashed orange line), while the inset
shows the relative deviation between the exact analytic prediction and theQ-Laguerre approximation. The relative deviation is maximal
for the values of N currently accessible, yet it is only around 2%.
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polynomials, which is, in principle, not directly related to
the polynomials themselves.
With these considerations in mind, in Fig. 7 (left), we

depict results for the microscopic spectral density for
different values of N. We diagonalize numerically the
WSYK Hamiltonian (5) for k ¼ 1, M ¼ 1, and q̂ ¼ 4.
As was expected, since the global symmetries of the
WSYK model depend on N, the results of the microscopic
spectral density depend on N as well.
The Bott periodicity [72] observed in the standard SYK

model is also applicable here but for the chiral and
superconducting random matrix ensembles [53,67,73].
For instance, for N mod 8 ¼ 0, time-reversal symmetry
is preserved and the result is close to the CI universality
class in the tenfold-way classification [27]. Likewise, time-
reversal symmetry is broken for N mod 8 ¼ 2, 6 so it
belongs to the chGUE universality class. ForN mod 8 ¼ 4,
the universality class is that of the chiral Gaussian
Symplectic Ensemble (chGSE) corresponding to systems
with time-reversal invariance but no rotational invariance
because of, for instance, spin-orbit coupling. We note that,
unlike the standard supersymmetric SYK model [23,25],
where the supercharge equivalent has an odd and fixed
number of Majoranas, the WSYK reproduces the chGUE
universality class. This is important for any gravity inter-
pretation where, at least for oriented surfaces, time reversal
symmetry is broken in the gravity dual [74].
Overall, the agreement with the random matrix theory

prediction observed in Fig. 7 is excellent with very small
deviations even for relatively small values of N. It would be
very interesting to obtain an explicit analytical calculation
of the microscopic density by combining diagrammatic
and combinatorial techniques. We speculate that some
Q-deformation of the standard random matrix results could
reproduce the small deviations from the random matrix
predictions as a function of Qðq̂; NÞ.
As a further probe of the symmetries of the model, and

the nature of the quantum dynamics, we carry out an
analysis of level statistics. We first investigate an ultra-
short-range correlator, the adjacent gap ratio, [75–77] that
probes the quantum dynamics for times scales much larger
than the Heisenberg time. It is defined as,

ri ¼
minðδi; δiþ1Þ
maxðδi; δiþ1Þ

; ð34Þ

where δi ¼ Ei − Ei−1 and the spectrum is assumed to be
ordered. Its average value is sensitive to the symmetry of
the system and the type of quantum dynamics. For an
integrable system, hriP ≈ 0.38, while for a quantum chaotic
system, it is given by the random matrix prediction that
depends on the symmetry class, hriRMT ≈ 0.5307, 0.5996,
0.674, for the orthogonal, unitary, and symplectic sym-
metry classes, respectively [78]. The advantage of hri, or its
distribution function, is that it is not necessary to unfold the

spectrum, i.e., to rescale it such that the mean level spacing
is the same for all energies. Although the main focus of the
paper is the region E ∼ 0 where, as shown for the micro-
scopic spectral density, the impact of the nonstandard
symmetry classes is stronger, we compute the average
adjacent gap ratio over the full spectrum and for at least
2 × 104 disorder realizations for each N.
The results are extremely close to the random matrix

predictions: hri ≈ 0.5307, 0.5995, 0.673 for N ¼ 20, 22,
24, respectively. We note that these values are not affected
by the chiral symmetries that determine the precise random
matrix universality class as the average is taken over the
whole spectrum and the symmetries only have effect for
E ≈ 0. We also see that, indeed, the symmetries of the
WSYK model for those N are fully consistent with those
found in the microscopic spectral density calculation. This
excellent agreement with random matrix theory is also a
strong indication that dynamics is quantum chaotic for
sufficiently long times.
In order to test the limits of applicability of the random

matrix results in the region E ≈ 0 where global symmetries
are important, we investigate the number variance, a long-
range correlator that probes the quantum dynamics for
shorter times than the adjacent gap ratio:

Σ2ðLÞ ¼ hÑ2ðLÞi − hÑðLÞi2: ð35Þ

It is just the variance of the number of levels Ñ in an energy
interval of width L (in units of the mean level spacing).
For integrable systems, a linear growth is expected,
while a signature of quantum chaos [79] is a slow
logarithmic growth for L ≫ 1. The results depicted in
Fig. 7 (right) show a very good agreement with the random
matrix prediction for the different universality classes.
Deviations are only observed at relatively large energy
separations, measured in units of the mean level spacing,
corresponding to times substantially shorter than the
Heisenberg time. As N increases, the agreement with the
random matrix results persists until even larger energy
separations.
The numerical evaluation of the number variance was

carried out by exact diagonalization of the Hamiltonian W
for more than 2 × 104 disorder realizations. Such a large
number of disorder realizations is necessary as spectral
averaging is not possible since the effect of global sym-
metries is restricted to the region very close to the hard edge
at zero energy. For the spectral analysis, the singularity at
zero energy was first removed by a smooth transformation.
The resulting spectra were unfolded by a low-degree
polynomial.
We also carried out a similar spectral analysis for q̂ ¼ 2,

3. For q̂ ¼ 3, the results are qualitatively similar to those
shown above for q̂ ¼ 4 though, as expected because the
number of Majoranas is smaller, deviations from the
random matrix prediction are observed for shorter energy
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FIG. 7. (Left) The microscopic spectral density corresponding to the first few eigenvalues closest to E ¼ 0 for different N and q̂ ¼ 4.
We observe a good agreement with the predictions of random matrix theory for the different universality classes. In the context of
random matrix theory, this observable is universal [66], namely, it does not depend on the details of the Hamiltonian but only on its
global symmetries. In order to compute this microscopic spectral density, it was necessary to extract the smooth divergent part of the
average spectral density ∝ 1=Eα, with α ∼ 1=2 obtained from a single-parameter fit. The universal microscopic density can then be seen
in the distribution of EαϱðEÞ close to E ¼ 0. We do not understand well the origin of the small deviations from the chGSE prediction for
E=Δ < 1. (Right) Number variance for different N and q̂ ¼ 4. We observe an excellent agreement with the random matrix predictions
for the different universality classes even for comparatively large eigenvalues separations ≥ 10. The range of the agreement increases
with N. This is an indication that the dynamics is quantum chaotic even for times shorter than the Heisenberg time.
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separations. However, for q̂ ¼ 2, spectral correlations close
to the hard edge are qualitatively different which suggests
that the dynamics are not quantum chaotic in this region. In
the bulk of the spectrum, short range spectral correlations
are consistent with those of a quantum chaotic system
though large deviations are still observed for larger sepa-
rations. This is expected as the dynamics of each separate
chiral block in the linear case is integrable with spectral
correlations given by Poisson statistics. Although the bump
observed in the spectral density is not in principle related to
spectral correlations, it is intriguing that both unexpected
features occur in the same range of parameters.
Unfortunately, we could not find an analytical expression

for either the microscopic spectral density or the number
variance. We speculate that a Q-deformed random matrix
ensemble, like those studied in Refs. [80,81], has the
potential to describe the deviations from the random matrix
results but we could not find a suitable calculation scheme
based on the combinatorial and diagrammatic techniques
employed for the calculation of the spectral density.

VII. OUTLOOK AND CONCLUSIONS

We enumerate a few problems that are a natural
continuation of this research. We have not exhausted all
the universality classes that can be obtained from the
Wishart prescription. More generally, only a relatively
small subset of the 38 universality classes [82,83] of
non-Hermitian Hamiltonians has been studied in the con-
text of SYK models. It would be interesting to find out
whether a similar classification applies to non-Hermitian
SYK models [84] and, in each case, to identify the
combinatorial problem, the relevant Touchard-Riordan
expression, and the explicit form of the spectral density.
A distinctive feature of the WSYK is the existence of a

microscopic spectral density close to the hard edge of the
spectrum whose features are close to the random matrix
prediction. However, especially for smaller q̂ and not too
large N, we expect deviations from this universal result. We
could not find them analytically but we believe that the
combinatorial techniques are versatile enough to provide a
viable approach to this problem. It would be necessary to
identify a novel scaling limit in the evaluation of the
moments that likely leads to some deformation of the
universal random matrix results.
We have not addressed the possible existence and

properties of the gravity dual. As was mentioned earlier,
for the supersymmetric SYK, it has been shown [25] that
the low-energy effective action is given by a super-
Schwarzian, also related to a supersymmetric extension
of JT gravity [63]. Although the WSYK has similarities
with the supersymmetric SYK, there are important
differences. The charge Lμ is non-Hermitian so the eigen-
values of the Hamiltonian are not the squares of the charge
ones. Also, no exact zero eigenvalues exist, albeit the
ground-state tends to zero as N → ∞ and there is a

proliferation of low-lying excitations. Moreover, the aver-
age spectral density is different from that of the super-
symmetric case, although it shares the exponential increase
for low-energy excitations typical of a field theory with a
gravity dual. It would be interesting to find out the effective
Schwarzian for the WSYK, relate it to some flavor of
(super-) JT gravity and also to give a gravity interpretation
of the universal microscopic spectral density that may be
related to features deep in the quantum regime where the
discreteness of the spectrum is important.
Other problems that deserve further attention are the

study of elliptic WSYK models where the coupling k of
the imaginary part is 0 < k < 1. Combinatorially, it
involves a mix of perfect matchings and permutations
that may be related to other flavor of Q-polynomials.
More generally, it would be interesting to investigate
whether there is a general relation between the weight of
Q-polynomials and combinatorial problems related to the
moments of random Hamiltonians of strongly interacting
systems.
In conclusion, we have investigated a Wishart extension

of the SYK model consisting of the product of two
Hermitian conjugate SYK matrices, each with complex
random couplings. By using combinatorial and diagram-
matic techniques, we have computed analytically the low-
order moments of the spectral density and have found
striking similarities with those of the weight function of Al-
Salam-Chihara Q-Laguerre polynomials [48,51], a type of
Q-Laguerre polynomials [52]. Based on these similarities,
we have carried out a parameter-free comparison between
the spectral density of the WSYKmodel computed numeri-
cally and this Q-Laguerre weight function where Qðq̂; NÞ
has been computed analytically. For q̂ ¼ 3, 4, and suffi-
ciently large N, we have found good agreement between
numerical and analytical results. For q̂ ¼ 4, we have also
reported that the short-range and long-range spectral
correlations of the model are in good agreement with the
random matrix prediction even for relatively large eigen-
values separations. This is an indication of quantum chaotic
dynamics even for time scales much shorter than the
Heisenberg time. Depending on N, the universality class
corresponds to that of superconducting or chiral random
matrix ensembles. In particular, we found chGUE corre-
lations for q̂ ¼ 4 and N mod 8 ¼ 2, 6. This was the only
remaining symmetry class of the tenfold-way classification
whose level statistics had not been realized in the
SYK model.
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APPENDIX A: REVIEW OF THE
COMBINATORIAL APPROACH TO

THE STANDARD SYK MODEL

In this Appendix, we review the computation of the
spectral density of the standard SYK model (1) using the
method of moments, following Refs. [17–19,40].
Because the random variables Ja are Gaussian, the odd

moments of the SYK Hamiltonian vanish, while the even
moments, hTrH2pi, are evaluated by Wick contraction, i.e.,
by summing over all possible pair contractions of the
indices a, b, c, etc. For instance, the first nontrivial moment
(the fourth) can be explicitly evaluated as:

hTrH4i ¼
X
a;b;c;d

hJaJbJcJdiTrðΓaΓbΓcΓdÞ

¼ hJ2i2
X
a;b

½TrðΓaΓaΓbΓbÞ þ TrðΓaΓbΓaΓbÞ

þ TrðΓaΓbΓbΓaÞ�

¼ 2N=2hJ2i2
�
N
q

�
2
�
2þ 2−N=2

�
N
q

�
−2

×
X
a;b

TrðΓaΓbΓaΓbÞ
�
: ðA1Þ

We can represent graphically the two terms inside square
brackets in the last line of Eq. (A1) by introducing a
diagrammatic notation for the Γ-matrices and their con-
tractions,

ðA2Þ

After correctly normalizing Tr by 2−N=2 and
P

a by ðNqÞ−1,
we obviously have (we omit the labels of the dots and edges
throughout)

ðA3Þ

while the last term in Eq. (A1) can be represented and
evaluated as [19]

ðA4Þ

To evaluate t2 we have to commute Γa with Γb. Let Γa and
Γb have s γ-matrices in common, i.e., s ¼ ja ∩ bj for fixed
a and b. We can then express the sum over a and b as a sum
over the q indices in b and over s by allowing for all
possible combinations of indices inside a and b: out of the
N possible γ-matrices, we fix the q distinct γ-matrices in Γb

in all ðNqÞ possible ways, choose the s indices in a that
coincide with the q indices in b in all ðqsÞ ways, and allow
for the ðN−q

q−sÞ distinct combinations of the remaining (q − s)
γ-matrices in Γa to be any of the (N − q) γ-matrices still
available. The commutation of Γa and Γb gives a phase
ð−1Þqþs according to Eq. (3). This procedure yields exactly
the factors in Eq. (A4).
The diagrammatic representation of higher-order

moments can also be immediately written down. The
2pth moment htrH2pi will have 2p dots ordered on a line
corresponding to the 2p insertions of Γ-matrices in the
trace. We then connect the 2p dots by p edges in all
possible ways as required by Wick’s Theorem. Each
diagram thus obtained corresponds to a perfect matching
π. The set of all perfect matchings of 2p elements is

denoted byM2p and has ð2p − 1Þ!! elements. We can write
the moments of the SYK model as a sum over perfect
matchings π ∈ M2p,

1

σ2pH

hTrH2pi
Tr1

¼
X

π∈M2p

tðπÞ; ðA5Þ

where σH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hJ2iðNqÞ

q
is the energy scale of the SYK

model and the weight tðπÞ is the contribution of the trace
associated to the diagram of π.
With this diagrammatic notation, the first few moments

of H are explicitly found to be:

hTrH0i ¼ 2N=2; ðA6Þ

ðA7Þ
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ðA8Þ

ðA9Þ

where below each diagram we wrote its value. Note that different diagrams can yield the same value because of the cyclic
property of the trace. In the evaluation of the sixth moment, two new diagrams arise, t3 and t03. We can see that the diagram
t03 corresponds to two copies of t2 glued together—i.e., with fixed b, one can independently commute Γa and Γc with Γb—
and, therefore, we find

ðA10Þ

On the other hand, the diagram t3 cannot be reduced to a product of independent lower-order diagrams. It is instead given
by [19,39]:

ðA11Þ

The computation of this diagram is as follows. We have to
first commute Γa with the product ΓbΓc and then commute
Γb with Γc. Let Γb and Γc have s factors in common and Γa

have r factors in common with the product ΓbΓc, of which
(r −m) are in common with both Γb and Γc. The sum over

a, b, and c can then be expressed as a sum over the q
indices in b—which yields a factor ðNqÞ—and over s, r, and
m. Now, with all indices in b fixed we proceed as before.
First, we fix the indices in c, choosing the s indices in
common with b out of the q possible values and the
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remaining (q − s) indices in c from the unused (N − q)
γ-matrices. Then, we fix the indices in a, choosing the
(r −m) indices in common with both b and c out of the s
indices common to b and c, the m indices in common with
only one of b or c from the 2ðq − sÞ indices that b and c do
not share, and the remaining (q − r) indices in a from the
spare ðN − 2qþ sÞ γ-matrices. Finally, the commutation of
Γa with ΓbΓc gives a factor ð−1Þ2qþm, while the commu-
tation of Γb with Γc gives a factor ð−1Þqþs.
In principle, one can compute tðπÞ exactly for every

diagram and for all p as done for t2 and t3 in Eqs. (A4) and
(A11), respectively. However, the computations quickly
become intractable (e.g., there are 7!! ¼ 105 diagrams at
the next order involving up to six independent commuta-
tions of Γ-matrices). Alternatively, one can, with certain
approximations, give a simple combinatorial interpretation
to the weight tðπÞ of each diagram at leading and next-to-
leading order in 1=N. The latter becomes exact when q ∝ffiffiffiffi
N

p
[34,35].

To leading order in 1=N and fixed q, different Γ-matrices
have no common γ-matrices. We thus ignore the commu-
tations of the Γ-matrices altogether and replace all the
traces by 1. We then simply count the number of allowed
diagrams (i.e., pair contractions) at each order. Now, these
are exactly the moments of the normal distribution,

1

σ2pH

hTrH2pi
Tr1

¼ ð2p − 1Þ!!; ðA12Þ

and, therefore, to first-order in 1=N, the spectral density of
the SYK model is Gaussian.
To next-to-leading order—or exactly when q ∝

ffiffiffiffi
N

p
—

we take the commutations of Γ-matrices into account but
ignore their correlations. The number of required commu-
tations in a trace equals the number of crossings in the
corresponding perfect-matching diagram. Since the trace
with a single permutation was evaluated in Eq. (A4) and
corresponds to diagram t2, a diagram π with crossðπÞ
crossings is approximately given by tcrossðπÞ2 .6,7 By summing
over all diagrams, the moments are given by

1

σ2pH

hTrH2pi
Tr1

¼
X

π∈M2p

tcrossðπÞ2 : ðA13Þ

The sum on the right-hand side of Eq. (A13) can be
evaluated by the Touchard-Riordan formula [36].

Alternatively, it can be recognized as the 2pth moment
of the orthogonality weight of the Q-Hermite polynomials
with Q ¼ t2ðq;NÞ [38]:

ϱQHðE;QÞ ¼ ðQ;QÞ∞ð−Q;QÞ2∞
2

πE0H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − E2=E2

0H

q

×
Y∞
k¼1

�
1 −

4E2=E2
0H

2þQk þQ−k

�
; ðA14Þ

supported on −E0H ≤ E ≤ E0H, where E0H is the (dimen-
sionless) ground-state energy of the SYK model given by

E0H ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffi
1 −Q

p ; ðA15Þ

and ða;QÞ∞ ¼Q∞
k¼0 ð1 − aQkÞ is the Q-Pochhammer

symbol. Note that the spectral density is of the form of
the Wigner semicircle distribution times a Q-dependant
multiplicative correction.

APPENDIX B: SPECTRAL DENSITY OF THE
LINEAR WSYK MODEL WITH M = 1

In this Appendix, we consider the M ¼ 1 linear
WSYK model, defined in Eq. (5), which is equivalent
to the N ¼ 1 supersymmetric SYK model. Its spectral
density can be trivially obtained from the standard SYK
model by a change of variables. Indeed, because the
couplings are real we have W ¼ L2 and, hence, the
eigenvalues of W are the squares of the eigenvalues of L.
Effecting the change of variables E → E2 and multiplying
by the associated Jacobian 1=

ffiffiffiffi
E

p
, we obtain the follow-

ing spectral density, which has to be evaluated at Q ¼
t2ðq̂; NÞ (recall that each Γ-matrix now only has q̂ ¼ q=2
γ-matrices):

ϱðE;QÞ ¼ 1ffiffiffiffi
E

p ϱQHð
ffiffiffiffi
E

p
;QÞ

¼ ðQ;QÞ∞ð−Q;QÞ2∞
2

πE0L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − E=E0L

E=E0L

s

×
Y∞
k¼1

�
1 −

4E=E0L

2þQk þQ−k

�
; ðB1Þ

supported on 0 ≤ E ≤ E0L, where the (dimensionless)
spectral edge of the WSYK model is

E0L ¼ E2
0H ¼ 4

1 −Q
: ðB2Þ

As would be expected, the spectral density assumes the
form of the single-channel Marchenko-Pastur distribution
times the Q-Hermite multiplicative correction.

6The number of crossings of a perfect matching corresponds
precisely to the number of crossings of lines in its diagram. This
is no longer true for permutation diagrams.

7The number of perfect matchings in M2p with k crossings
can be explicitly computed for arbitrary ðp; kÞ and is tabulated as
sequence A067311 in the Online Encyclopedia of Integer
Sequences (OEIS) [85].

LUCAS SÁ and ANTONIO M. GARCÍA-GARCÍA PHYS. REV. D 105, 026005 (2022)

026005-18



APPENDIX C: SIMPLE ASYMPTOTIC
FORMULAS FOR THE WSYK

SPECTRAL DENSITY

In this Appendix, we derive the simple asymptotic for-
mulas presented in the main text for the Q-Laguerre density
(23) in the different regimes, namely, the bulk, 0 ≪ E ≪
E0L, the hard edge, E → 0, and the soft edge, E → E0L,

Eqs. (26)–(33). The same calculation was done for
the standard and supersymmetric SYK models in
Refs. [17,18] and [24], respectively. The computation has
to be performed separately for positive and negative Q. For
large enoughN—the limit we aremostly interested in—Q ¼
t3ðq̂; NÞ is positive (resp. negative) for even (resp. odd) q̂.
Positive Q (even q̂) We start by rewriting Eq. (23) as

log ϱQLðE;QÞ ¼ logCQ þ 1

2
log

�
1 − E=E0L

E=E0L

�
þ
Xþ∞

k¼0

log

"
1 − 4ð1−2E=E0LÞ2

ðQk=2þQ−k=2Þ2�
1 − 2ð1−2E=E0LÞ

QkþQ−k

�
2

#

¼ logCQ þ 1

2

Xþ∞

k¼−∞
log

�
1 −

ð1 − 2E=E0LÞ2
cosh2ðk logQ=2Þ

�
−
Xþ∞

k¼−∞
log

�
1 −

1 − 2E=E0L

cosh ðk logQÞ
�
; ðC1Þ

with

CQ ¼ ðQ;QÞ2∞ð−Q;QÞ2∞
ð−Q2;Q2Þ2∞

2

πE0L
: ðC2Þ

Performing a Poisson resummation, we have

log ϱQLðE;QÞ ¼ logCQ þ
Xþ∞

n¼−∞

Z
∞

0

dx cos ð2πnxÞ log
�
1 −

ð1 − 2E=E0LÞ2
cosh2ðx logQ=2Þ

�

−
Xþ∞

n¼−∞

Z
∞

0

dx cos ð2πnxÞ log
�
1 −

1 − 2E=E0L

cosh ðx logQÞ
�
: ðC3Þ

Both integrals can be evaluated analytically [86], yielding

log ϱQLðE;QÞ ¼ logCQ −
1

2

Xþ∞

n¼−∞

1 − cosh ½ 4πnlogQ arcsin ð1 − 2E
E0L

Þ� − 2 coshð π2n
logQÞ þ 2 cosh ½ 2πnlogQ arccos ð 2EE0L

− 1Þ�
n sinhð2π2nlogQÞ

: ðC4Þ

We evaluate the n ¼ 0 term in the sum by taking the limit of the summand as n → 0. Then, using the fact that the summand
is an even function of n, we can rewrite the spectral density as:

ϱQLðE;QÞ ¼ C0
Q exp

�
2arcsin2ð1 − 2E

E0L
Þ − arccos2ð 2EE0L

− 1Þ
logQ

�

× exp

�
−
X∞
n¼1

1 − cosh ½ 4πnlogQ arcsin ð1 − 2E
E0
Þ� − 2 coshð π2n

logQÞ þ 2 cosh ½ 2πnlogQ arccos ð2EE0
− 1Þ�

n sinhð2π2nlogQÞ

�
; ðC5Þ

where C0
Q ¼ CQ exp½π2=ð4 logQÞ�.

Up to this point, the computation is exact and Eqs. (23) and (C5) are equivalent. For large N, we have Q → 1− and
we can replace the hyperbolic functions by single exponents, i.e., coshðx= logQÞ ≈ ð1=2Þ expð−jxj= logQÞ and
sinhðx= logQÞ ≈ −ð1=2Þ expð−jxj= logQÞ. In this limit, and using the Taylor expansion of logð1 − xÞ, Eq. (C5) reads as

ϱQLðE;QÞ ≈ C00
Q exp

�
2arcsin2ð1 − 2E

E0L
Þ − arccos2ð 2EE0L

− 1Þ
logQ

�
1 − exp ½ 4π

logQ arccos jð1 − 2E
E0L

Þj�
ð1 − exp ½ 2π

logQ arccos ð1 − 2E
E0L

Þ�Þ2 ; ðC6Þ

with
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C00
Q ¼ C0

Q

ð1þ exp½π2= logQ�Þ2 ¼
CQ exp ½π2=ð4 logQÞ�
ð1þ exp½π2= logQ�Þ2 :

ðC7Þ

Equation (C6) approximates the Q-Laguerre spectral den-
sity (23) extremely well, even for relatively small system
sizes. For instance, the two expressions are within 0.5% of
one another throughout their support for q̂ ¼ 2 and
N ¼ 16, i.e., Q ¼ t3ð2; 16Þ, while their relative deviation
is below 10−10% for Q ¼ t3ð2; 40Þ.
We can further simplify Eq. (C6), depending on the value

of E=E0L. For E well inside the bulk, 0 ≪ E ≪ E0L, we
can safely ignore the second term in Eq. (C6) and we obtain
the asymptotic formula for the bulk density:

ϱðbulkÞQ>0 ðE;QÞ

¼ C00
Q exp

�
2arcsin2ð1 − 2E

E0L
Þ − arccos2ð 2EE0L

− 1Þ
logQ

�
: ðC8Þ

Close to the hard edge, E ¼ 0, we have to
expand arcsin x ≈ π=2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − xÞp

around x ¼ 1 and
arccos x ≈ π −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ xÞp

around x ¼ −1. Inserting these

expansions in Eq. (C6), we obtain the asymptotic hard-edge
density,

ϱðhardÞQ>0 ðE;QÞ ¼ C00
Q exp

�
−

π2

2 logQ

�
coth

"
−

2π

logQ

ffiffiffiffiffiffiffiffi
E
E0L

s #
:

ðC9Þ
Finally, near the soft edge, E ¼ E0L, we have to

expand arcsinx≈−π=2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ xÞp

around x ¼ −1 and
arccos x ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − xÞp

around x ¼ 1. Inserting these expan-
sions in Eq. (C6), we obtain the asymptotic soft-edge
density:

ϱðsoftÞQ>0 ðE;QÞ ¼C00
Q exp

�
π2

2 logQ

�
2sinh

"
−

4π

logQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

E
E0L

s #
:

ðC10Þ
Negative Q (odd q̂) We now turn to negative Q. The

computation proceeds similarly to positive Q, but one
has to treat separately the product factors with even and odd
k in the Q-Laguerre spectral density. For negative Q, Q ¼
−jQj and we can rewrite Eq. (23) as

log ϱQLðE;QÞ ¼ logCQ þ 1

2

Xþ∞

k¼−∞
log

"
1 − 4ð1−2E=E0LÞ2

ðjQjkþjQj−kÞ2

ð1 − 2ð1−2E=E0LÞ
jQj2kþjQj−2kÞ

2

#
þ 1

2

Xþ∞

k¼−∞
log

"
1þ 4ð1−2E=E0LÞ2

ðjQjk−1=2−jQj−kþ1=2Þ2

ð1þ 2ð1−2E=E0LÞ
jQj2k−1þjQj−2kþ1Þ2

#

¼ logCQ þ 1

2

Xþ∞

k¼−∞
log

�
1 −

ð1 − 2E=E0LÞ2
cosh2ðk log jQjÞ

�
þ 1

2

Xþ∞

k¼−∞
log

�
1þ ð1 − 2E=E0LÞ2

sinh2ððk − 1=2Þ log jQjÞ
�

−
Xþ∞

k¼−∞
log

�
1 −

1 − 2E=E0L

cosh ð2k log jQjÞ
�
−
Xþ∞

k¼−∞
log

�
1þ 1 − 2E=E0L

cosh ðð2k − 1Þ log jQjÞ
�
; ðC11Þ

where CQ is again given by Eq. (C2). As before, we perform a Poisson resummation, obtaining:

log ϱQLðE;QÞ ¼ logCQ þ
Xþ∞

n¼−∞

Z
∞

0

dx cos ð2πnxÞ log
�
1 −

ð1 − 2E=E0LÞ2
cosh2ðx log jQjÞ

�

þ
Xþ∞

n¼−∞
n≠0

ð−1Þn
Z

∞

0

dx cos ð2πnxÞ log
�
1þ ð1 − 2E=E0LÞ2

sinh2ðx log jQjÞ
�
þ
Z

∞

0

dx log

�
1þ ð1 − 2E=E0LÞ2

sinh2ðx log jQjÞ
�

− 2
Xþ∞

n¼−∞

Z
∞

0

dx cos ð2πnxÞ log
�
1 −

1 − 2E=E0L

cosh ð2x log jQjÞ
�

− 2
Xþ∞

n¼−∞
ð−1Þn

Z
∞

0

dx cos ð2πnxÞ log
�
1þ 1 − 2E=E0L

cosh ð2x log jQjÞ
�
: ðC12Þ

The first, fourth, and fifth integrals were already performed for positiveQ,8 while the second and third can also be evaluated
analytically [24]. We also isolated the n ¼ 0 term from the second integral, as its values cannot be obtained from the
general-n result as the limit n → 0. Performing the integrations, the spectral density is exactly rewritten as:

8Note that the change of variables x → 2x can be effected by changing n → n=2 in the result of the integration.
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ϱQLðE;QÞ ¼ C0
jQj exp

�
2arcsin2ð1 − 2E

E0L
Þ − 1

2
arccos2ð1 − 2E

E0L
Þ − 1

2
arccos2ð 2EE0L

− 1Þ − πj arcsin ð1 − 2E
E0L

Þj
log jQj

�

× exp

�
−
X∞
n¼1

1 − cosh ½ 2πn
log jQj arcsin ð1 − 2E

E0
Þ� − 2 coshð π2n

2 log jQjÞ þ 2 cosh ½ πn
log jQj arccos ð2EE0

− 1Þ�
n sinhð π2n

log jQjÞ

�

× exp

�
2
X∞
n¼1

ð−1Þn
coshð π2n

2 log jQjÞ − cosh ½ πn
log jQj arccos ð1 − 2E

E0
Þ�

n sinhð π2n
log jQjÞ

�

× exp

�X∞
n¼1

ð−1Þn
n

�
1 − exp



2πn

log jQj
				 arcsin

�
1 −

2E
E0L

�				
���

; ðC13Þ

with C0
jQj ¼ CQ exp½π2=ð4 log jQjÞ�. Next, in the large-N limit, we again replace the hyperbolic functions by single

exponents and use the Taylor expansion of logð1 − xÞ to approximate the Q-Laguerre density by

ϱQLðE;QÞ ≈ C0
jQj cosh

�
π

log jQj
				 arcsin

�
1 −

2E
E0L

�				
�

× exp

�
2arcsin2ð1 − 2E

E0L
Þ − 1

2
arccos2ð1 − 2E

E0L
Þ − 1

2
arccos2ð 2EE0L

− 1Þ
log jQj

�

×
1 − exp ½ 2π

log jQj arccos j1 − 2E
E0L

j�
ð1 − exp ½ π

log jQj arccos ð1 − 2E
E0L

Þ�Þ2ð1 − exp ½ π
log jQj arccos ð 2EE0L

− 1Þ�Þ2 : ðC14Þ

This approximate formula once again describes extremely well the Q-Laguerre density. For example, for q̂ ¼ 3 and
N ¼ 64, Eqs. (23) and (C14) are within 0.01% of one another.
Finally, we give the negative-Q asymptotic spectral densities for the bulk, hard edge, and soft edge. As before, the bulk

spectral density is well approximated by dropping the last term in Eq. (C14):

ϱðbulkÞQ<0 ¼ C0
jQj cosh

�
π

log jQj
				 arcsin

�
1 −

2E
E0L

�				
�
× exp

�
2arcsin2ð1 − 2E

E0L
Þ − 1

2
arccos2ð1 − 2E

E0L
Þ − 1

2
arccos2ð 2EE0L

− 1Þ
log jQj

�
: ðC15Þ

Expanding the arcsin and arccos around E ≈ 0 and E ≈ E0L, we obtain the hard- and soft-edge asymptotic densities,
respectively:

ϱðhardÞQ<0 ¼ C0
jQj coth

"
−

π

log jQj

ffiffiffiffiffiffiffiffi
E
E0L

s #
exp

"
−

2π

log jQj

ffiffiffiffiffiffiffiffi
E
E0L

s #
cosh

"
π2

2 log jQj

 
1 −

4

π

ffiffiffiffiffiffiffiffi
E
E0L

s !#
; ðC16Þ

ϱðsoftÞQ<0 ¼ C0
jQj tanh

"
−

π

log jQj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

E
E0L

s #
exp

"
−

2π

log jQj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

E
E0L

s #

× cosh

"
π2

2 log jQj

 
1 −

4

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

E
E0L

s !#
: ðC17Þ

APPENDIX D: ANSATZ FOR THE SPECTRAL
DENSITY OF THE CIRCULAR WSYK MODEL

WITH M > 1

In this Appendix, we consider the circular WSYK model
with M > 1. Proceeding as before, we will first give the
leading-order spectral density in the strict limit N → ∞

with fixed q̂. Contrary to the M ¼ 1 case, we were not
able to find a density that is exact to next-to-leading order,
as we did not find the Q-orthogonal polynomials whose
moments exactly reproduce the moments of our model.
Nevertheless, we propose an ansatz in terms of generalized
Al-Salam-Chihara Q-Laguerre polynomials that describes
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the numerical results for large M (i.e., scaling with N) to
very high accuracy.
The leading-order moments (ignoring commutations) are

obtained by setting, in Eq. (12), tðσÞ ¼ 1 for all σ ∈ Sp,

1

σpL

hTrWpi
Tr1

¼
X
σ∈Sp

McycðσÞ ¼
Xp
k¼1

cðp; kÞMk; ðD1Þ

where we recall that cycðσÞ is the number of cycles in the
permutation σ (number of closed loops in the respective
diagram) and we rewrote the sum in terms of the number of
permutations ofp elements with k cycles, which is known as
the unsigned Stirling number of the first kind, cðp; kÞ.9 Now,
it is known that cðp; kÞ are also the coefficients of the poly-
nomial MðMþ 1ÞðMþ 2Þ � � � ðMþp− 1Þ ¼ ðMþp− 1Þ!=
ðM− 1Þ!, expanded in increasing powers of M, i.e.,
MðMþ1ÞðMþ2Þ���ðMþp−1Þ¼Pp

k¼1cðp;kÞMk. Thus,
we conclude that the traces of W are given by

1

σpL

hTrWpi
Tr1

¼ ðM þ p − 1Þ!
ðM − 1Þ! ðD2Þ

and are immediately identified as the moments of a χ2

distribution with 2M degrees of freedom. To leading
order in the limit N → ∞ we thus find the spectral density
of the M > 1 circular WSYK model to be given by
ϱðEÞ ¼ EM−1 expð−EÞ=ðM − 1Þ!.
Let us now address the next-to-leading-order, where we

consider only uncorrelated commutations. In Sec. IV,
we saw that the relevant orthogonal polynomials for the
M ¼ 1 circular WSYK model are the Al-Salam-Chihara
Q-Laguerre polynomials. Furthermore, in random matrix
theory, the relevant (classical) orthogonal polynomials for
the multichannel Wishart-Laguerre ensemble are the gen-

eralized Laguerre polynomials LðαÞ
n ðxÞ. It is, therefore,

natural to conjecture that the relevant orthogonal poly-
nomials for the circular WSYK model with M > 1 are the
generalized Al-Salam-Chihara ðQ; yÞ-Laguerre polyno-

mials LðαÞ
n ðx;Q; yÞ, recently introduced in Ref. [88].

These polynomials are orthonormal with respect to the
weight function

ϱðαÞQLðE;Q;yÞ¼ ðQ;QÞ∞ðQαþ1;QÞ∞
ð−Q2=y;Q2Þ∞ð−Q2ðαþ1Þy;Q2Þ∞

1−Q
2πE

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEþ−EÞðE−E−Þ

p

×
Y∞
k¼1

1− 4v2ðEÞ
ð1þQkÞð1þQ−kÞ�

1− 2vðEÞ
Qk=

ffiffi
y

p þQ−k ffiffiyp
��

1− 2vðEÞ
Qkþα ffiffiyp þQ−k−α=

ffiffi
y

p
�;

ðD3Þ

supported on E− < E < Eþ, where −1 ≤ Q ≤ 1 as before,
y ≥ 1, α is a positive integer, the left and right edges are

E� ¼ ð ffiffiffi
y

p � 1Þ2
1 −Q

; ðD4Þ

and vðEÞ is the recentered and rescaled energy,

vðEÞ ¼ Ē − E
ΔE=2

; ðD5Þ

with

Ē ¼ Eþ þ E−

2
¼ yþ 1

1 −Q
and ΔE ¼ Eþ − E− ¼ 4

ffiffiffi
y

p
1 −Q

:

ðD6Þ

If we set y ¼ 1 and α ¼ 0, we recover the spectral density
(23) with Eþ ¼ E0L and E− ¼ 0. The spectral density (D3)
is of the form of the multichannel Marchenko-Pastur
distribution times a multiplicative correction. The combi-
natorial interpretation of its pth moment, μp, was found in
Ref. [88] to be

μp ¼
X
σ∈Sp

βrecðσÞywexðσÞQcrossðσÞ; ðD7Þ

where β ¼ ½αþ 1�Q ≔ ð1 −Qαþ1Þ=ð1 −QÞ is the Q-ana-
log of the integer αþ 1, recðσÞ is the number of records in
the permutation σ (in terms of diagrams, the number of
edges drawn above the dots with no other edges on top),
and wexðσÞ is its number of weak excedances (the total
number of edges drawn above the dots). The lowest
moments explicitly read as

μ1 ¼ βy; ðD8Þ

μ2 ¼ β2y2 þ βy; ðD9Þ

μ3 ¼ β3y2 þ β2y2ð2þQÞ þ βyð1þ yÞ; ðD10Þ

μ4 ¼ β4y4 þ β3y3ð3þ 2QþQ2Þ
þ β2y2ðð3þ 2yÞð1þQÞ þQ2Þ
þ βyð1þ ð3þQÞyþ y2Þ: ðD11Þ

It remains to determine Q, y, and α in terms of the
physical parameters t3 and M (under the approximation of
uncorrelated commutations). As mentioned before, we
were not able to derive the correct parameters, but propose
an ansatz that describes the numerical results for largeM to
very high accuracy. We propose that

α ¼ M − 1 ⇔ β ¼ ½M�Q and y ¼ M
½M�Q

; ðD12Þ9The unsigned Stirling numbers of the first kind are tabulated
as sequence A130534 in the OEIS [87].
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while Q should be the solution of the equation

Q ¼ t3
½M�Q

: ðD13Þ

Conversely, we can use Eqs. (D12) and (D13) to specify the
physical parameters M and t3 as

M ¼ βy and t3 ¼ βQ: ðD14Þ

This ansatz for ðQ; y; αÞ has several desirable features:
(i) it reproduces exactly the two lowest moments (with no
crossings); (ii) in the random matrix limit (Q → 0), it
recovers the M-channel Marchenko-Pastur distribution,
since y → M and β → 1; (iii) in the limit Q → 1, we have
α → M − 1 and y → 1 and, because of the combinatorial
interpretation of the moments in this limit [89],

μp ¼
X
σ∈Sp

ywexðσÞðαþ 1ÞcycðσÞ; ðD15Þ

M counts the number of cycles in each permutation, in
agreement with our leading-order result, Eq. (D1); and
(iv) when M ¼ 1, we find Q → t3, y → 1, and α → 0,
such that we recover the results of Sec. IV. Note that our
ansatz is not the only one with these properties. It is also
important to note that the third and fourth moments of the
weight of generalized ðQ; yÞ-Laguerre polynomials, given
by Eqs. (D10) and (D11), do not match exactly the
(normalized) moments of W obtained by approximating
t4 ≈ t23 and inserting the ansatz (D14) into Eqs. (16) and
(17). However, in the caseM ¼ N, the two expressions are
within around 1% of each other and the relative deviation
decreases with increasingN, see Fig. 8. This result justifies,
a posteriori, the validity of the approximations and our

FIG. 8. Relative deviation between the exact analytical pre-
diction for the third and fourth moments ofW, Eqs. (16) and (17),
and the generalized ðQ; yÞ-Laguerre ansatz, Eqs. (D10), (D11),
(D12), and (D13), as a function of N, for q̂ ¼ 2 (q ¼ 4) and
M ¼ N. The relative deviation is maximal (yet very small, below
1%) for the numerically accessible system sizes and decreases
with increasing N.

FIG. 9. Spectral density of the circular WSYK model with q̂ ¼ 2 (q ¼ 4) for small,M ¼ 2, and large,M ¼ N, number of charges and
three different number of Majoranas, N ¼ 16, 24, and 32. The orange (shaded) histograms are obtained from numerical exact
diagonalization of the Hamiltonian (5). The blue (full) curves correspond to the generalized Al-Salam-Chihara ðQ; yÞ-Laguerre weight
[Eq. (D3)] with parameter ansatz (D12) and (D13), while the black (dashed) curve is given by the multichannel Marchenko-Pastur
distribution.

Q-LAGUERRE SPECTRAL DENSITY AND QUANTUM CHAOS … PHYS. REV. D 105, 026005 (2022)

026005-23



ansatz, for largeM. For smallerM, e.g.,M ¼ 2, the relative
deviation plateaus at a finite value for large N and the value
of this plateau in turn decreases as M increases (for
instance, for M ¼ 5 it is already below 2%). It is not clear
to us, at this point, the reason why our ansatz is effective
only for largeM. Our results also indicate that largeM here
means scaling with N. Indeed, we see a decrease of the
relative deviation with N not only forM ¼ N but also, e.g.,
for M ¼ ffiffiffiffi

N
p

. On the other hand, even for fixed M ¼ 60—
which is larger than the M ¼ N for the numerically-
accessible N—we see the plateau of nonvanishing relative
deviation (although at a very small value).
Figure 9 shows the spectral density of the circular

WSYK model with q̂ ¼ 2 (q ¼ 4) and different N, for

M ¼ 2 and M ¼ N. As expected from the previous
discussion, there is excellent quantitative agreement
between the numerical exact diagonalization results and
the generalized ðQ; yÞ-Laguerre ansatz, for large M ¼ N.
(It also shows that, once again, the Marchenko-Pastur
distribution does not give the correct density). For small
and fixed M ¼ 2, while there are noticeable deviations,
our ansatz still captures the main qualitative features of
the spectral density (much better than standard random
matrix theory, in any case). Finally, to further highlight
the very accurate description our ansatz gives of the
numerical results for M ¼ N, we plot, in Fig. 10, the
second and third moments and the left and right (soft)
spectral edges of W.
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