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We initiate a study into the eikonal exponentiation of the amplitude in impact-parameter space
when spinning particles are involved in the scattering. Considering the gravitational scattering of two
spin-1=2 particles, we demonstrate that the leading eikonal exhibits exponentiation up toOðG2Þ in the limit
where the spacetime dimension D → 4. We find this to hold for general spin orientations. The
exponentiation of the leading eikonal including spin is understood through the unitarity properties at
leading order in ℏ of momentum-space amplitudes, allowing the extension of our arguments to arbitrary-
spin scattering.
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I. INTRODUCTION

The application of scattering amplitude and quantum-
field theoretic techniques to classical systems has expanded
rapidly in recent years, largely motivated by describ-
ing the inspiral phase of compact binary coalescence.
The dynamics of spinless inspiraling black holes have
been fully understood up to the third post-Minkowskian
(PM) order [1–11], and results for conservative effects at
4PM have emerged [12] (see Refs. [13,14] for analog-
ous results obtained in the purely classical setting of
Ref. [15]).
Alongside this progress, the understanding of the

relation between classical and quantum spin has itself
seen substantial development [16–25]. Scattering dyna-
mics are understood for arbitrary spin at 1PM order
[17,19,20,22,25], while progress at higher PM orders
presently lays at 2PM and quadratic order in spin
[23,26,27]. Results at the 2PM order quartic in the spin
of each scattering particle exist in the aligned-spin setup
[17]. Progress in this direction is restricted by the lack of a
unique gravitational Compton amplitude for a massive
particle with spin s > 5=2 [16,22,28], with the s ¼ 5=2
Compton amplitude being fixed only recently [29].
Additionally to the description of point particles, tidal

effects—both with and without spin—are also describable
using a quantum-field-theoretic approach [30–34].

Phenomenological predictions have been made acces-
sible to amplitudes-based techniques thanks to various
formalisms bridging the gap between quantum field theory
and classical physics [1,18,23,25,35–45]. One such path to
classical observables makes use of the eikonal phase,
related to the classical portion of the scattering amplitude
in impact-parameter space [7–9,46–48]. The exponential of
the eikonal phase relates the scattering amplitude in impact-
parameter space to several classical observables at all
orders in Newton’s constant G, such as the scattering angle
[9,47], linear impulse, and spin kick [23].1

Despite the ubiquitous application of the eikonal phase
with spin to the derivation of classical observables from
scattering amplitudes [17,19,21,23,25,34], the exponenti-
ation properties of the gravitational impact-parameter
space amplitude in this setup have not been investigated.2

In this note, we take first steps toward filling this gap.
Computing the scattering of two spin-1=2 particles up to
OðG2Þ, we do indeed find a relation in impact-parameter
space between the square of the leading eikonal phase [the
eikonal phase at OðGÞ] and the super-classical divergences
of the one-loop amplitude in the limit where the spacetime
dimension D → 4. This relation is suggestive of the
exponentiation of the eikonal phase even in the presence
of massive spinning matter. We understand this exponen-
tiation through the unitarity properties of the amplitude,
which are simplified for spinning amplitudes at leading
order in ℏ.
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1The relationship between classical observables and the
exponentiated spinning eikonal phase in Ref. [23] is conjectural
at OðG3Þ and above.

2Studies of the eikonal including spin exist in nongravitational
contexts; see, e.g., Refs. [49–51]. We further expand on these by
considering arbitrary spin in Sec. IV.
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We begin in Sec. II by introducing the eikonal phase. In
Sec. III, we calculate the leading eikonal for the scattering
of two spin-1=2 particles, and relate the square of the
eikonal to the super-classical divergences of the one-loop
spin-1=2 × spin-1=2 amplitude. In Sec. IV, we analyze the
leading-in-ℏ unitarity relations of amplitudes containing
first spin-1=2, then spin-s particles, and make a connection
to the exponentiation of the leading eikonal phase. We
conclude in Sec. V.

II. THE EIKONAL PHASE

We begin with a brief introduction to the eikonal phase
and its relation to the impact-parameter space amplitude.
For more details, see, e.g., Refs. [8,9,46,48,52,53].
The eikonal phase at OðGnÞ is related to the (D − 2)-

dimensional Fourier transform of the 2 → 2 amplitude at
the same order. This latter quantity is

M̃nðbÞ ¼
1

4m1m2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p
Z

dD−2q
ð2πÞD−2 e

iq·bMnðqÞ; ð1Þ

where σ ≡ v1 · v2 is the product of the four-velocities
of each particle, which have masses m1;2. The impact
parameter b is in the direction orthogonal to the asymptotic
center-of-mass three-momentum. Restricting the integrand
of Eq. (1) to the classical portion of the amplitude, this
equation then defines the nPM eikonal phase,

1

ℏ
δnðbÞ ¼ M̃cl:

n ðbÞ; ð2Þ

with the entire eikonal phase being the sum of all nPM
phases, δðbÞ≡P

n δnðbÞ.
The exponentiation of the eikonal phase, in concert with

a quantum remainder Δ, describes the all-order, impact-
parameter space, spinless amplitude [9,53]:

1þ iM̃ðbÞ ¼ ½1þ iΔðbÞ�ei
ℏδðbÞ: ð3Þ

We have absorbed factors of 2 into Δ and δ relative to
Refs. [9,53]. The quantum remainder encapsulates all
portions of the amplitude with a quantum ℏ scaling. The
exponential of the eikonal phase, when expanded in powers
of G, contains the parts of the amplitude with a classical ℏ
scaling. Moreover, products of nPM eikonal phases pro-
duce the so-called “super-classical” portions of the ampli-
tude, which are singular as ℏ → 0.
Of particular relevance for our analysis here, expanding

Eq. (3), the leading eikonal phase δ1ðbÞ and its square are
given by the tree-level and superclassical one-loop ampli-
tude as

i
ℏ
δ1ðbÞ≡ iM̃cl:

1 ðbÞ ð4Þ

1

2ℏ2
½iδ1ðbÞ�2 ¼ iM̃sc:

2 ðbÞ: ð5Þ

While the first of these is the definition of the leading
eikonal, the second is dictated by the exponentiation of the
eikonal. Equation (5) has been verified for spinless scatter-
ing in general relativity and N ¼ 8 supergravity [52,53].
Our purpose here is to check whether it holds for the
gravitational scattering of spinning particles. In fact, we
should expect Eq. (5) to be modified when spin is involved
so as to not produce spin structures outside the solution
space of the one-loop amplitude. This point will be
elucidated below.
We set ℏ ¼ 1 in the remainder of this note, but we

classify the classicality of terms in impact-parameter space
by counting powers of angular momentum. The impact
parameter is related to the orbital angular momentum
through jbj ¼ jJj=jpj, for p the asymptotic center-of-mass
three-momentum. Also, a spin vector scales with one power
of the orbital angular momentum [23]. Thus, classical terms
at OðGÞ scale as jJj4−D, while at OðG2Þ the classical
scaling is jJj7−2D. Terms with a quantum scaling have fewer
powers of the angular momentum.

III. THE LEADING EIKONAL WITH SPIN

In this section we investigate, by direct computation,
the exponentiation properties of the leading eikonal for
spin-1=2 × spin-1=2 scattering up to OðG2Þ. We begin by
deriving the leading eikonal with spin from the tree-level
2 → 2 amplitude. Then, we provide a prescription for
squaring the leading eikonal such that the square does
not contain spin structures not in the solution space of
spin-1=2 × spin-1=2 scattering. Finally, we relate the
square of the leading eikonal to the OðG2Þ super-classi-
calities in impact-parameter space.

A. Deriving the leading eikonal

As discussed above, the leading eikonal is related to the
tree-level amplitude for 2 → 2 scattering, depicted in Fig. 1.
We work with heavy spin-1=2 states with masses mi and
four-velocities vμi , which carry momenta pμ

i ¼ miv
μ
i þ kμi

where kμi are residualmomenta scalingwithℏ in the classical
limit [26]. For the tree-level amplitudewe need the Feynman
rules for the three-point vertex and the graviton propagator:

FIG. 1. The 2 → 2 diagram encoding classical effects at tree
level.
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ð6aÞ

ð6bÞ

where σμν ¼ i
2
½γμ; γν�, κ ¼ ffiffiffiffiffiffiffiffiffiffiffi

32πG
p

and

Pμν;αβ ≡ 1

2

�
ημαηνβ þ ημβηνα −

2

D − 2
ημνηαβ

�
; ð6cÞ

for spacetime dimension D ¼ 4 − 2ε. Contracting Eq. (6a)
with a graviton polarization, it becomes equivalent to the
first two terms of the three-point spin exponential in
Ref. [17]. For a detailed discussion on the relation between
spinning heavy states and the spin exponential at three
points, see Ref. [22].
With these in hand, and setting pμ

i ¼ miv
μ
i , the tree-level

amplitude is

M1=2×1=2
1 ¼ −

16πm2
1m

2
2G

q2

��
2σ2 −

2

D − 2

�
U1U2

þ 2iσ
m2

1m2

E1U2 þ
2iσ
m1m2

2

U1E2

þ 2σ2 − 1

m1m2

ðq · S1q · S2 − q2S1 · S2Þ

þ 2σ

m2
1m

2
2

q2p2 · S1p1 · S2

�
: ð7Þ

We have kept for now ultralocal terms with a classical ℏ
scaling. The amplitude is normalized such that the spinors

are dimensionless and satisfy the normalization condition
ūvðpÞuvðpÞ ¼ 1. The subscript v on the spinors denotes
heavy spinors with velocity vμ. The spin vector is defined in
terms of the heavy spinors through

Sμi ¼
1

2
ūviγ5γ

μuvi : ð8Þ

It was shown in Ref. [22] that this definition of the spin
vector coincides with the matrix element of the Pauli-
Lubanski pseudovector with heavy on-shell spinors.
Notably, this definition of the spin vector automatically
satisfies the spin-supplementary condition (SSC) for
classical momenta, pμSμ ¼ mvμSμ ¼ 0. This can be seen
through the definition of the heavy spinors in terms of the
Dirac spinors in Eq. (15). We treat the spin and all spinor/
gamma-matrix identities in four dimensions. Finally, we
have employed the shorthand notation

U i ¼ ūviuvi ; Ei ¼ ϵμναβp
μ
1p

ν
2q

αSβi : ð9Þ

The leading eikonal is related to this amplitude in the
center-of-mass frame through the two-dimensional Fourier
transform Eq. (1). Taking the initial momenta to be
incoming, the center-of-mass kinematics amount to [23,54]

pμ
1 ¼ ðE1;pÞ; pμ

2 ¼ ðE2;−pÞ; qμ ¼ ð0;qÞ; p · q ¼ q2

2
;

Sμ1 ¼
�
p · S1

m1

;S1 þ
p · S1

m1ðE1 þm1Þ
p

�
; Sμ2 ¼

�
−
p · S2

m2

;S2 þ
p · S2

m2ðE2 þm2Þ
p

�
: ð10Þ

These explicit kinematics make it clear that the SSC is
satisfied for each spin vector. We have introduced the rest-
frame spin vectors for each particle Si. Substituting this into

the amplitude, using U i ¼ 1þOðℏÞ, and dropping all ultra-
local terms (these termsyieldDiracdeltas in impact-parameter
space, and as such do not describe long-range interactions),
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M1=2×1=2
1 ¼ 16πm2

1m
2
2G

q2

��
2σ2 −

2

D − 2

�
þ 2Eσ
m2

1m2

iðp × qÞ · S1 þ
2Eσ
m2

1m2

iðp × qÞ · S2 þ
2σ2 − 1

m1m2

q · S1q · S2

�
; ð11Þ

whereE ¼ E1 þ E2 is the total energy. Finally, having the amplitude in the center-of-mass frame,we can find the leading eikonal
through the Fourier transform in Eq. (1):

iδ1 ¼ iM̃1=2×1=2
1 ¼ iπ2−D=2Gm1m2ffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2 − 1
p

��
2σ2 −

2

D − 2

�
ΓðD=2 − 2Þ

bD−4 −
4Eσ
m1m2

ΓðD=2 − 1Þ
bD−2 ðp × bÞ · a1

−
4Eσ
m1m2

ΓðD=2 − 1Þ
bD−2 ðp × bÞ · a2 þ 2ð2σ2 − 1ÞΓðD=2 − 1Þ

bD−2

�
Πij − ðD − 2Þb

ibj

b2

�
ai1a

j
2

�
; ð12Þ

where ai ≡ Si=mi. The projectorΠij onto the plane orthogonal to p is defined in Eq. (A4). In order to obtain the spin-monopole
term of the leading eikonal (which is in agreement with Ref. [52]) we had to use U i ¼ 1þOðℏÞ. Implicit in this is that the
polarizations of the spin-1=2 particles are unchanged in the scattering.
For convenience later on, let us introduce the notation XA, labeling a specific spin-structure portion of the quantity X.

The values of A and the corresponding spin structures are

A ¼ ð0Þ → 1; A ¼ ð1; 1Þ → ðp × qÞ · S1; A ¼ ð1; 2Þ → ðp × qÞ · S2;

A ¼ ð2; 1Þ → q · S1q · S2; A ¼ ð2; 2Þ → q2S1 · S2; A ¼ ð2; 3Þ → q2p · S1p · S2:

This notation was first employed in Ref. [23].
Before moving on, we remark that the leading eikonal in Eq. (12) produces the known aligned-spin scattering angle when

D → 4 [55].

B. Squaring the spinning eikonal

Directly squaring Eq. (12) produces spin structures that are outside the solution space of a spin-1=2 × spin-1=2
amplitude. Specifically, such an amplitude can only contain effects up to linear order in the spin of each particle, while
squaring Eq. (12) will yield terms of the schematic form S21; S

2
2; S1S

2
2; S

2
1S2, and S

2
1S

2
2. If the square of the leading eikonal is

to be comparable to a one-loop, spin-1=2 × spin-1=2 amplitude, these terms must be removed from the square.
One way to remove these structures is to redefine how the eikonal is squared. At leading order in ℏ, the external

polarizations are independent of the transfer momentum,3 and are therefore inert under the Fourier transform Eq. (1). We
can thus evaluate the leading eikonal with external polarizations present. With polarizations, we define the square of the
eikonal (with polarization labels s) as

½δ1ðb; s → sÞ�2 → δ1ðb; s → s0Þ ⊗ δ1ðb; s0 → sÞ≡X
s0
δ1ðb; s → s0Þδ1ðb; s0 → sÞ: ð13Þ

Again, all external states involved in this product depend only on the incoming momenta. There must be a polarization sum
for each spinning particle involved in the scattering, though for brevity we have only explicitly shown one sum.
Specializing to the spin-1=2 case, as we have expressed the eikonal in terms of the rest frame spin, we will restore the rest

frame heavy spinors to Eq. (12) instead of the relativistic heavy spinors. For spin-monopole factors, this amounts to
restoring ξ̄svξ

s0
v ¼ δss

0
, where the ξsv are heavy spinors in the rest frame (equivalent to rest-frame Dirac spinors). For spin

contributions, the expressions in Eq. (10) for the covariant spin demonstrate that the rest frame spin vector is simply the
spatial component of the covariant spin when the particle is at rest. Then, in the Weyl representation, Eq. (8) becomes

Sss0 ¼ 1

2
ξ̄svγ5γ

iξs
0
v ¼ 1

2
ξ̄sv

�
0 σ⃗

σ⃗ 0

�
ξs

0
v : ð14Þ

Here, σ⃗ is the Pauli-matrix three-vector.

3We have used this implicitly in Sec. III when we wrote Ui ¼ 1þOðℏÞ. This is simply a consequence of infinitesimally boosting the
final-state spinors to have the incoming momenta.
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The polarization sum in Eq. (13) now makes spin
structures outside the solution space of spin-1=2 ×
spin-1=2 scattering subleading in ℏ. Let us work this out
explicitly for spin-1=2 particles. Heavy spinors are related
to standard Dirac spinors (normalized such that
ūðpÞuðpÞ ¼ 1) simply through [26,56]

uvðp; sÞ ¼
1þ =v
2

uðp; sÞ; ð15Þ

for momentum pμ ¼ mvμ þ lμ, where v2 ¼ 1 and l ∼ ℏ.
This allows us to easily evaluate the polarization sum for
heavy spinors:

X
s

uvðp; sÞūvðp; sÞ ¼
1þ =v
2

�X
s

uðp; sÞūðp; sÞ
�
1þ=v
2

¼ 1þ =v
2

=pþm
2m

1þ=v
2

¼ 1þ=v
2

þOðℏ2Þ:
ð16Þ

We have used here the on-shell condition v · l ¼ −l2=2m.
Notably, the polarization sum up to this order is entirely
independent of the residual momentum lμ. By definition,
the rest frame spinors are the p → mð1; 0⃗Þ limit of the
relativistic spinors. We thus find the completeness relation

X
s

ξsvξ̄
s
v ¼

1þ γ0

2
: ð17Þ

Considering now a term in the square that is quadratic in the
spin of, say, particle 1,

X
s0
Si;ss0
1 Sj;s0s

1 ¼ 1

4
ξ̄sv1

�
0 σi

σi 0

�
1þ γ0

2

�
0 σj

σj 0

�
ξsv1

¼ 1

8
ξ̄sv1

�
σiσj σiσj

σiσj σiσj

�
ξsv1 : ð18Þ

The product of sigma matrices is σiσj ¼ δij þ iϵijkσl. Since
we have converted two powers of the spin in a term with
superclassical scaling to terms with one or no powers of the
spin, the result of this reduction is contributions that have a
classical or quantum scaling, and can be ignored for our
purposes. The fact that 1

2
ð1þ γ0Þξsv ¼ ξsv

4 means that all
other structures that are linear in the spin of each spin-1=2
particle are unaffected by the polarization sum.
We have shown here the squaring procedure for the

spin-1=2 × spin-1=2 case. For particles with other spins
one must employ the polarization sum accordingly. In the

case of scalar-scalar scattering, the polarization sum is
trivial and Eq. (13) reduces to a regular product.

C. The leading eikonal at one loop

In the spinless case it is well understood that the
exponentiation of the leading eikonal generates the domi-
nant portions of higher-loop amplitudes in the classical
limit [9,46,48,53]. Practically, at one-loop order, this means
that Eq. (5) relates the square of the leading eikonal to the
leading contributions from the box and cross-box diagrams;
see Fig. 2. Let us establish whether a similar relation holds
when spin is included. In order to investigate this, we now
compute the leading box and cross-box contributions to the
2 → 2 amplitude for the scattering of two spin-1=2 particles
atOðG2Þ. Upon tensor reducing higher-rank loop integrals,
we find that the super-classical portion of the amplitude can
be written as

iMsc:
2 ¼ iMsc:

2 ðI□ þ I⊠Þ; ð19Þ

where I□;⊠ are the scalar integrals corresponding to the
topologies in Fig. 2. The sum of their values is given in
Appendix B. Here, iMsc: is the remaining integrand after
tensor reduction of the integrals, and as such is independent
of the loop momentum. Also, we have dropped the
superscript labelling the spins of the scattering particles,
understanding that two spin-1=2 particles are scattered in
this section. For clarity, let us consider Eq. (19) at each
order in spin independently. In the proceeding subsections,
we use the square of the leading eikonal to mean Eq. (13).
All amplitudes computed below agree with the super-
classical pieces computed in Ref. [26] in the limit D → 4.

1. Spin monopole

Expressed directly in the center-of-mass frame, the spin-
monopole portion is

iMsc:;ð0Þ
2 ¼ −

π3−D=2G2m3
1m

3
2

2D−7
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p
�
2σ2 −

2

D − 2

�
2

×
ΓðD=2 − 2Þ2Γð3 −D=2Þ

ΓðD − 4Þ ðq2ÞD=2−3: ð20Þ

FIG. 2. The box and cross-box topologies. These diagrams
yield the dominant contributions to the one-loop amplitude in the
classical limit.

4This is simply the Dirac equation in the rest frame. Alter-
natively, it can be seen from the definition of the heavy spinor in
Eq. (15).
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This portion is already known to exponentiate in impact-
parameter space; see, e.g., Ref. [52]. Nevertheless, for com-
pleteness, we present the Fourier transform of this portion:

iM̃sc:;ð0Þ
2 ¼−

π4−DG2m2
1m

2
2

2ðσ2−1Þ
�
2σ2−

2

D−2

�
2ΓðD=2−2Þ2

b2D−8 ;

ð21Þ

in agreement with the spin-monopole portion of 1
2
ðiδ1Þ2.

2. Linear in spin

Moving on, the spin-dipole portion of the amplitude in
the center-of-mass frame is

iMsc:;ð1;1Þ
2 ¼−

π3−D=2G2m1m2
2

2D−8
ffiffiffiffiffiffiffiffiffiffiffiffi
σ2−1

p Eσ

�
2σ2−

2

D−2

�

×
ΓðD=2−2Þ2Γð3−D=2Þ

ΓðD−4Þ iðp×qÞ ·S1ðq2ÞD=2−3:

ð22Þ

In impact-parameter space,

iM̃sc:;ð1;1Þ
2 ¼ 4π4−DG2m1m2

ðσ2 − 1Þ
ΓðD=2 − 2ÞΓðD=2 − 1Þ

b2D−6

× Eσ

�
2σ2 −

2

D − 2

�
ðp × bÞ · a1: ð23Þ

This agrees precisely with the spin-dipole portion of
1
2
ðiδ1Þ2, namely 1

2
ðiδð0Þ1 Þ ⊗ ðiδð1;1Þ1 Þ þ 1

2
ðiδð1;1Þ1 Þ ⊗ ðiδð0Þ1 Þ.

The analogous result holds for the spin of the other particle
by swapping the labels 1 ↔ 2.

3. Quadratic in spin

Finally, we consider the quadratic-in-spin portion of the
amplitude. It will be clearer to divide our analysis further,
studying each spin structure independently.
Consider first the q · S1q · S2 portion of the amplitude.

This is

iMsc:;ð2;1Þ
2 ¼ −

π3−D=2G2m2
1m

2
2

2D−7
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p ΓðD=2 − 2Þ2Γð3 −D=2Þ
ΓðD − 4Þ q · S1q · S2ðq2ÞD=2−3 4ðD − 3Þσ4 þ ð8 − 3DÞσ2 þ 1

ðD − 3Þ : ð24Þ

As before, we convert this to impact-parameter space in order to compare with the square of the leading eikonal. The Fourier
transform in this case will contain all quadratic-in-spin structures, not just the (2,1) structure. Keeping all resulting
structures, the Fourier transform is

iM̃sc:;ð2;1Þ
2 þ iM̃sc:;ð2;1→2Þ

2 þ iM̃sc:;ð2;1→3Þ
2

¼ −
2π4−DG2m2

1m
2
2

ðσ2 − 1Þ
ΓðD=2 − 2ÞΓðD=2 − 1Þ

b2D−6

�
−2

b · a1b · a2
b2

þ Πijai1a
j
2

D − 3

�
½4ðD − 3Þσ4 þ ð8 − 3DÞσ2 þ 1�: ð25Þ

The second term in the large round brackets contains the spill-over into the (2,2) and (2,3) portions of the impact-parameter
space amplitude.

Focusing on the first term in the large round brackets for now, this is to be compared with the (2,1) spin structure from the
square of the leading eikonal:

�
1

2
ðiδ1Þ2

�ð2;1Þ
¼ 2π4−DG2m2

1m
2
2

ðσ2 − 1Þ
ΓðD=2 − 2ÞΓðD=2 − 1Þ

b2D−4 b · a1b · a2

×

�
ðD − 2Þð2σ2 − 1Þ

�
2σ2 −

2

D − 2

�
þ ðD − 4Þ4σ2ðσ2 − 1Þ

�
: ð26Þ

Simplifying, we find that the (2,1) portion of Eq. (25) is in agreement with Eq. (26):

iM̃ð2;1Þ
2 ¼

�
1

2
ðiδ1Þ2

�ð2;1Þ
: ð27Þ

Next, we investigate the q2S1 · S2 terms. We find the leading part of the amplitude to be

iMsc:;ð2;2Þ
2 ¼ π3−D=2G2m2

1m
2
2

2D−7
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p ΓðD=2 − 2Þ2Γð3 −D=2Þ
ΓðD − 4Þ S1 · S2ðq2ÞD=2−2 4ðD − 2Þσ4 þ ð4 − 3DÞσ2 þ 1

ðD − 2Þ : ð28Þ
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In impact-parameter space we must combine the Fourier transform of this with the contribution iM̃ð2;1→2Þ
2 from the

transform of the (2,1) spin structure:

iM̃sc:;ð2;2Þ
2 þ iM̃sc:;ð2;1→2Þ

2 ¼ −
2π4−DG2m2

1m
2
2

ðσ2 − 1Þ
ΓðD=2 − 2ÞΓðD=2 − 1Þ

b2D−6 a1 · a2

×

�
4ðD − 2Þσ4 þ ð4 − 3DÞσ2 þ 1

ðD − 2Þ ðD − 4Þ þ 4ðD − 3Þσ4 þ ð8 − 3DÞσ2 þ 1

ðD − 3Þ
�
: ð29Þ

Note that the direct contribution iM̃ð2;2Þ
2 is finite in the limitD → 4, in contrast to all other terms in impact-parameter space

derived so far. This is a consequence of the additional factor of q2 coming from the spin structure.
To scrutinize the potential exponential structure of the leading eikonal, Eq. (29) is to be compared against ½1

2
ðiδ1Þ2�ð2;2Þ.

This structure is

�
1

2
ðiδ1Þ2

�ð2;2Þ
¼−

2π4−DG2m2
1m

2
2

ðσ2−1Þ
ΓðD=2−2ÞΓðD=2−1Þ

b2D−6 a1 ·a2

�
ð2σ2−1Þ

�
2σ2−

2

D−2

�
þ4σ2ðσ2−1ÞðD−4Þ

�
: ð30Þ

In general spacetime dimensions Eqs. (29) and (30) are not equivalent. However, they are related in the limit D → 4:

lim
D→4

ðiM̃sc:;ð2;2Þ
2 þ iM̃sc:;ð2;1→2Þ

2 Þ ¼ lim
D→4

�
1

2
ðiδ1Þ2

�ð2;2Þ
; ð31Þ

up to terms that vanish in this limit. We will return to a discussion of this limit at the end of this section, and in our
conclusions.
The final structure to investigate is the q2p · S1p · S2 portion of the amplitude. In the center-of-mass frame this is

iMsc:;ð2;3Þ
2 ¼ π3−D=2G2m2

1m
2
2

2D−7
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p ΓðD=2 − 2Þ2Γð3 −D=2Þ
ΓðD − 4Þ ðq2ÞD=2−2 p · S1p · S2

p2

×

�
−σ

4ðD − 2ÞðD − 3Þσ4 þ ð−4D2 þ 19D − 20Þσ2 þ 2D − 7

ðD − 3ÞðD − 2Þ þ ðσ − 1Þ 4ðD − 2Þσ4 þ ð4 − 3DÞσ2 þ 1

D − 2

�
:

ð32Þ

When converting this to impact-parameter space, we must again account for the correction from the Fourier transform of the
(2,1) spin structure. All-in-all we find

iM̃sc:;ð2;3Þ
2 þ iM̃sc:;ð2;1→3Þ

2 ¼ −
2π4−DG2m2

1m
2
2

ðσ2 − 1Þ
ΓðD=2 − 2ÞΓðD=2 − 1Þ

b2D−6
p · a1p · a2

p2

×

�
ðD − 4Þ

�
−σ

4ðD − 2ÞðD − 3Þσ4 þ ð−4D2 þ 19D − 20Þσ2 þ 2D − 7

ðD − 3ÞðD − 2Þ

þ ðσ − 1Þ 4ðD − 2Þσ4 þ ð4 − 3DÞσ2 þ 1

D − 2

�
−
4ðD − 3Þσ4 þ ð8 − 3DÞσ2 þ 1

ðD − 3Þ
�
: ð33Þ

The overall q2 associated with this spin structure again makes it so that the direct contribution iM̃sc:;ð2;3Þ
2 is finite forD → 4.

Comparing to the appropriate portion of the square of the leading eikonal,

�
1

2
ðiδ1Þ2

�ð2;3Þ
¼2π4−DG2m2

1m
2
2

ðσ2−1Þ
ΓðD=2−2ÞΓðD=2−1Þ

b2D−6
p ·a1p ·a2

p2

�
ð2σ2−1Þ

�
2σ2−

2

D−2

�
þðD−4Þ4σ2ðσ2−1Þ

�
; ð34Þ

once again we find a mismatch in general dimensions—and once again a relation between the two quantities exists in the
D → 4 limit:
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lim
D→4

ðiM̃sc:;ð2;3Þ
2 þ iM̃sc:;ð2;1→3Þ

2 Þ ¼ lim
D→4

�
1

2
ðiδ1Þ2

�ð2;3Þ
: ð35Þ

Let us summarize what we have seen here, labeling the
entire amplitude in impact-parameter space as iχ2 ≡ iM̃sc:

2

We found the following relations between the different spin
structures of iχ2 and the square of the leading eikonal:

iχð0Þ2 ¼
�
1

2
ðiδ1Þ2

�ð0Þ
; ð36aÞ

iχð1;iÞ2 ¼
�
1

2
ðiδ1Þ2

�ð1;iÞ
; iχð2;1Þ2 ¼

�
1

2
ðiδ1Þ2

�ð2;1Þ
; ð36bÞ

lim
D→4

iχð2;2Þ2 ¼ lim
D→4

�
1

2
ðiδ1Þ2

�ð2;2Þ
; ð36cÞ

lim
D→4

iχð2;3Þ2 ¼ lim
D→4

�
1

2
ðiδ1Þ2

�ð2;3Þ
: ð36dÞ

We have thus found evidence for the exponentiation of the
leading eikonal, with the caveat that the exponentiation
takes place only in the limit whereD → 4. The equalities in
the last two lines of Eq. (36) hold for the divergent and
finite parts in the limit D → 4, and disagree on terms that
vanish in this limit. We remark again that we have relied on
the four-dimensional Clifford algebra and Dirac spinors
throughout our calculation. In light of this, despite finding
an exponential structure in the ð1; iÞ and (2,1) spin
structures for general D, the second line of Eq. (36) should
also be understood to hold in the limit D → 4.

IV. LEADING EIKONAL EXPONENTIATION
FROM UNITARITY

In this section we show that the observed relationship
Eq. (36) is guaranteed by unitarity at leading order in ℏ. We
will see that the prescription for squaring the eikonal in
Eq. (13) is eminently compatible with unitarity in momen-
tum space. We will begin by studying the scattering of two
spin-1=2 particles, before extending our analysis to arbi-
trary spin using massive on-shell variables [22,28].
An analysis of the connection between unitarity and the

eikonal exponentiation was first presented in the spinless

case in Ref. [39].5 Reference [9] later applied similar ideas
at the two-loop level to also account for radiation reaction
effects. See also Ref. [57].

A. spin-1=2 × spin-1=2 scattering

To begin, we write the S matrix as

S ¼ 1þ iT : ð37Þ

Requiring that the S matrix be unitary imposes that T
satisfies 2ImðT Þ ¼ T T †. Noticing that T ∼OðGÞ for 2 →
2 scattering, expanding both sides of this condition toOðGÞ
tells us that the tree-level amplitude must be real. Going
further to OðG2Þ relates the imaginary part of the one-loop
amplitude to the product of two tree-level amplitudes:

2ImðT 2Þ ¼ T 1T 1; ð38Þ

where we have used the realness of T 1.
We can convert this to an amplitude by taking the

expectation value in external states appropriate for 2 → 2
scattering of spin-1=2 particles:

2ð2πÞDδðp1 þ p2 − p0
1 − p0

2ÞIm½MðqÞ�
¼ hp0

1; p
0
2; s

0
1; s

0
2jT 1T 1jp1; p2; s1; s2i; ð39Þ

where q is the momentum transfer, q ¼ p1 − p0
1. We have

included labels for the polarizations of the external states.
As was mentioned in Sec. III, in order to generate the
spinless part of the leading eikonal one needs that the
polarizations of the scattered particles are unchanged by the
scattering. Thus we set s01;2 ¼ s1;2. The completeness
relation for spinors,

1 ¼
Z

dD−1k1
ð2πÞD−12Ek1

dD−1k2
ð2πÞD−12Ek2

×
X
sk
1
;sk
2

jk1; k2; sk1; sk2ihk1; k2; sk1; sk2j; ð40Þ

where the k superscripts on the polarizations indicate
intermediate polarizations, converts the right-hand side
of this expression to a product of amplitudes:

2δðp1 þ p2 − p0
1 − p0

2ÞIm½M2ðqÞ� ¼
Z

dD−1k1
ð2πÞD−12Ek1

dD−1k2
ð2πÞD−12Ek2

ð2πÞDδðp1 þ p2 − k1 − k2Þδðk1 þ k2 − p0
1 − p0

2Þ

×
X
sk
1
;sk
2

M1ðk1; sk1; k2; sk2 → p0
1; s1;p

0
2; s2ÞM1ðp1; s1;p2; s2 → k1; sk1; k2; s

k
2Þ: ð41Þ

5I thank Poul Henrik Damgaard for pointing out this initial exploration of the connection between unitarity and the eikonal
exponentiation, and for discussions on this connection.
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Both amplitudes in the cut are on shell. We can drop the
delta function on the left-hand side, and one of the delta
functions on the right-hand side. In the former case we
understand that the omitted delta function imposes

p0
1 þ p0

2 ¼ p1 þ p2, and in the latter case it impo-
ses p0

1 þ p0
2 ¼ k1 þ k2, which is subsequently fixed to

p1 þ p2 by the remaining delta function. We are left
with

2Im½M2ðqÞ� ¼
Z

dD−1k1
ð2πÞD−12Ek1

dD−1k2
ð2πÞD−12Ek2

ð2πÞDδðp1 þ p2 − k1 − k2Þ

×
X
sk
1
;sk
2

M1ðk1; sk1; k2; sk2 → p0
1; s1;p

0
2; s2ÞM1ðp1; s1;p2; s2 → k1; sk1; k2; s

k
2Þ: ð42Þ

The integrand of Eq. (42) already looks very similar to
the squaring of the leading eikonal in Eq. (13). Before we
can make the connection, though, we must address the
fact that the external states in the cut amplitudes depend
on the transfer momenta q1 ¼ p1 − k1 ¼ k2 − p2 and
q2 ¼ k1 − p0

1 ¼ p0
2 − k2, where q1 þ q2 ¼ q. We circum-

vented this issue in Sec. III by boosting the final-state
spinors to have momentum equal to the initial-state spinors,
yielding U i ¼ 1þOðℏÞ. However, one of the amplitudes
in the cut in Eq. (42) now has initial momenta that depend
on the transfer momentum q1. The completeness relation
for heavy spinors allows us to relegate this dependence to
subleading orders in ℏ:

X
sk
1

uv1ðk1; sk1Þūv1ðk1; sk1Þ ¼
1þ =v1

2
þOðℏ2Þ

¼
X
sk
1

uv1ðp1; sk1Þūv1ðp1; sk1Þ

þOðℏ2Þ; ð43Þ

and analogously for the polarization sum of the other
particle. Boosting now the final-state spinors with momenta
p0
1;2 to have momenta p1;2, we can describe all on-shell

states in Eq. (42) with spinors with no dependence on the
integration momenta. Thus we can write

2Im½M2ðqÞ� ¼
Z

dD−1k1
ð2πÞD−12Ek1

dD−1k2
ð2πÞD−12Ek2

ð2πÞDδðp1 þ p2 − k1 − k2Þ

×Mcl:
1 ðp1; s1;p2; s2 → k1; sk1; k2; s

k
2Þ ⊗ Mcl:

1 ðk1; sk1; k2; sk2 → p0
1; s1;p

0
2; s2Þ þOðℏÞ; ð44Þ

where the product ⊗ is precisely that in Eq. (13). The
superscript cl. indicates that we also truncate the amplitudes
to their classical portions and drop ultralocal terms.
All that remains to obtain Eq. (36) is to Fourier transform

Eq. (44). This can be done in an identical fashion to
Sec. VI. 2 in Ref. [9], only setting k ¼ 0 (we work at one-
loop order) and hence replacing the five-point amplitudes
there simply with ourMcl

1 . We have included details of this
transform—adapted to our problem—in Appendix C.
Applying Eq. (C7) to each term in the polarization sum
in Eq. (44) gives

Im½M̃2ðb; s1 → s1; s2 → s2Þ� ¼
1

2
δ1ðb; s1 → sk1; s2 → sk2Þ

⊗ δ1ðb; sk1 → s1; sk2 → s2Þ
þOðℏÞ: ð45Þ

At leading order in ℏ, the left-hand side of Eq. (45) is by
definition the contribution from the super-classical portion
of the one-loop amplitude in impact-parameter space,
which we have shown by direct computation in Sec. III
to be purely imaginary. Hence,

Im½M̃sc:
2 ðbÞ� ¼ −iM̃sc:

2 ðbÞ

¼ 1

2
δ1ðb; s1 → sk1; s2 → sk2Þ

⊗ δ1ðb; sk1 → s1; sk2 → s2Þ; ð46Þ
which is precisely Eq. (36). We have implicitly used the
four-dimensional Clifford algebra when truncating the
amplitudes in the cut to Mcl. Thus, the result of this
analysis is to be thought of in the limit D → 4.
So much for the spin-1=2 × spin-1=2 case. Let us extend

this analysis to arbitrary spin.

B. Arbitrary-spin scattering

Equation (42) already appears scalable to arbitrary-spin
scattering. There is only one sticking point: we must be able
to express the polarizations of arbitrary-spin states in terms
of momenta that are independent of the integration
momenta. We can achieve this explicitly rather easily by
making use of the heavy on-shell spinors of Ref. [22].
Given that we will employ the spinor-helicity formalism,
our arguments in this subsection are also restricted to the
limit D → 4.
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As touched on in the introduction, the gravitational
Compton amplitude for matter with spin s ≥ 2 needs addi-
tional contact terms to render it well-defined. However,
these contact terms will not affect the factorization proper-
ties of the amplitude when a matter propagator is taken on
shell. The unitarity technique we used in the previous
subsection, and which we will now apply to higher spins,
cuts the two matter lines. The arguments made in this
subsection for arbitrary spins are therefore unaffected by
the contact terms needed to fix the spin s ≥ 2 Compton
amplitude.
To avoid overcluttering with notation, let us consider the

scattering of a spin-s and a spin-0 particle. Up to ultralocal
terms, the tree-level amplitude contributing to the leading
eikonal for such a process can be written in terms of three-
point amplitudes [17,19,22]

Ms×0
1 ðp1;I;p2→ðp0

1ÞI
0
;p0

2Þ¼
X
h¼�

Ms⊢ðp1;I→ðp0
1ÞI

0
;−qhÞ

×
i
q2

M0⊢ðp2→p0
2;q

−hÞ; ð47Þ

where I and I0 are massive little group indices and h is the
helicity of the exchanged graviton. When referring to a spin
s particle, we will understand I and I0 to represent a set of
2s little group indices. The key point in this case is that the
spin-s three-point amplitude can be expressed in terms of
the spin-1=2 amplitude in heavy on-shell variables as [22]

Ms⊢ðp1;I → ðp0
1ÞI

0
;−qhÞ

¼ ð−1Þ2s κ

m1

pμ
1p

ν
1ε

h
μν½h10I0v1 jαðM̂1=2

⊢ ð−qhÞÞαβj1v1;Iiβ�⊙2s;

ð48aÞ

where ⊙ is the symmetrized tensor product [17] and

ðM̂1=2
⊢ ð−qhÞÞαβ ≡

�
I − h

q · S1
m1

�
α

β

þOðℏ2Þ: ð48bÞ

The Oðℏ2Þ corrections arise when the initial residual
momentum is not zero, as is the case for the amplitude
in the cut with initial momenta k1;2. The spin vector here is
defined through the Pauli-Lubanski pseudovector; the
matrix element of this spin vector coincides with Eq. (8)
[19,22]. We have again normalized the external states to be
dimensionless.
The momentum described by heavy on-shell variables is

always proportional only to the velocity of the heavy
particle [22]. More specifically,

mjpI
viα½pvIj _α¼pvα _α; wherepμ

v¼
�
1−

k2

4m2

�
mvμ≡mkvμ;

ð49Þ

where the factor of m on the left hand side of the first
relation is just our normalization of the spinors. A conse-
quence of this is that two heavy spinors describing particles
of the same mass and velocity and whose momentum
differs only by k0 − k ≪ m satisfy the on-shell condition

hp0J
v pvKi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mkmk0

p
m

δJK ¼ δJK þOðℏÞ: ð50Þ

Therefore, we must fix I0 ¼ I in order for Eq. (48) to
possess a spin-monopole contribution, analogously to the
spin-1=2 case. We must keep in mind, then, that the raised
and lowered I indices are not summed over in the
following, as we consider the external polarizations to
be fixed.
Equation (49) is key to expressing the external states in

terms of only the initial momentum. It tells us that the
dependence of the heavy external states on infinitesimal
momenta is simply encoded in a multiplicative factor, so we
can write

jpI
vi ¼

ffiffiffiffiffiffi
mk

m

r
jvIi ¼ jvIi þOðℏÞ: ð51Þ

Let us now make the external spinors explicit in the spin-s×
spin-0 integrand analogous to Eq. (42). This integrand is

ðδI0k IkÞ⊙2sMs×0
1 ðp1;I; p2 → kIk1 ; k2ÞMs×0

1 ðk1;I0k ; k2 → ðp0
1ÞI; p0

2Þ ¼ ðδI0k IkÞ⊙2s
X
h1;h2

Ms⊢ðp1;I → kIk1 ;−q
h1
1 Þ

×
i
q21

M0⊢ðp2 → k2; q
−h1
1 ÞMs⊢ðk1;I0k → ðp0

1ÞI;−qh22 Þ

×
i
q22

M0⊢ðk2 → p0
2; q

−h2
2 Þ: ð52Þ

The two graviton momenta satisfy q1 þ q2 ¼ p1 − p0
1 ¼ q. The spinor structure is contained in the product of spin-s three-

point amplitudes. Looking closer at this,
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ðδI0k IkÞ⊙2sMs⊢ðp1;I → kIk1 ;−q
h1
1 ÞMs⊢ðk1;I0k → ðp0

1ÞI;−qh22 Þ
∼ ðδI0k IkÞ⊙2s½hkIkv1 jαðM̂1=2

⊢ ð−qh11 ÞÞαβj1v1;Iiβ�⊙2s½h10Iv1 jγðM̂1=2
⊢ ð−qh22 ÞÞγδjkv1;I0kiδ�

⊙2s ð53Þ

¼ ðδI0k IkÞ⊙2s½h1Ikv1 jαðM̂1=2
⊢ ð−qh11 ÞÞαβj1v1;Iiβ�⊙2s½h1Iv1 jγðM̂1=2

⊢ ð−qh22 ÞÞγδj1v1;I0kiδ�
⊙2s þOðℏÞ; ð54Þ

where the ∼ indicates we are ignoring for now the non-
spinor portion of Eq. (48). In the last line we have used
Eq. (51) to remove the q1;2 dependence of the spinors. The
completeness relation for the heavy on-shell spinors
j1v1;Ikiδh1Ikv1 jα ¼ Iδα,

6 combined with ðq1 ·S1Þγαðq2 ·S1Þαβ∝
ðq1 ·q2Þγβ− iðq1μq2νσμνÞγβ¼OðℏÞ ensures that we do not
have more than one power of the spin between a pair of
spinors.
Having expressed all external states independently of the

momenta of integration, and truncated to classical, local
terms, we can indeed write the analog to Eq. (44) for
higher-spin scattering. The remainder proceeds identically
to the spin-1=2 case, suggesting the exponentiation of the
leading eikonal up to OðG2Þ for the scattering of an
arbitrary-spin particle and a scalar particle.
To summarize, we have seen that the exponential

structure of the leading eikonal including spin up to
OðG2Þ is a consequence of the unitarity of the S matrix
at leading order in ℏ.

V. CONCLUSION

The eikonal phase plays a crucial role in deriving
observables from scattering amplitudes, including when
spin is present. Nevertheless, up until now, the exponen-
tiation properties of the eikonal upon including spin have
not been analyzed in a gravitational or high-spin context.
We have initiated a study in this direction, focusing initially
on the leading eikonal for spin-1=2 × spin-1=2 scattering
up to one-loop order. Defining the square of the leading
eikonal through Eq. (13), our results demonstrate that the
super-classical amplitude at one-loop order is indeed
related to the leading eikonal in a way that suggests
exponentiation. Two of the four classical spin structures
satisfy this relation in arbitrary spacetime dimensions. It is
interesting to note that the two that do not are those
containing an overall q2, and hence do not enter the
leading eikonal independently of other structures.
However, the usage of the four-dimensional Clifford
algebra in the manipulation of gamma matrices means that
the exponentiation demonstrated herein should be consid-
ered in the limit D → 4. The spin structures proportional to
q2 at one-loop satisfy the exponential relation to the leading

eikonal only in this limit; the relation is violated in general
dimensions by terms that vanish when D → 4.
Further to this direct calculation, we have demonstrated

that the suggested exponentiation of the leading eikonal is
in fact a consequence of unitarity. In contrast to the spinless
case, in which this relation is more immediate, in the
spinning case it is a consequence of the interplay between
the completeness relation for spinors and the classical limit.
Handling the classical limit in this context was easily
managed by appealing to heavy particle states. Our
prescription for squaring the leading eikonal relies on a
polarization sum for finite-spin particles. An analysis
employing the spin-coherent states of Ref. [25] may present
a path to generalizing this squaring to the infinite-spin limit,
and removing the reliance on polarization sums altogether.
Several other extensions to this work come to mind.

First, the arguments in Sec. IV appear to be extendable to
higher loop orders, which would yield a more direct path to
verifying the exponentiation of the leading eikonal, as
opposed to computing the leading super-classicalities at
each order explicitly. Such a streamlined approach would
be particularly advantageous for the leading eikonal for
higher-spin scattering. AboveOðG2Þ and for spin s ≥ 2 one
must take care to properly account for the additional
contact terms needed for the Compton amplitude when
applying this unitarity technique.
In this note we have focused only on the leading eikonal,

though the expression in Eq. (3) depends on an exponen-
tiation of contributions at all loop orders. Studying the
exponentiation of subleading eikonal phases with spin is
thus crucial to understanding whether Eq. (3)—with the
appropriately modified multiplication of eikonal phases—
remains valid when spin is involved. Along this line, the
combination of the eikonal with spin provides a powerful
means for the computation of full (i.e., conservative-plus-
radiative) higher-PM dynamics at low spins [8,9].
Yet another direction would investigate the exponentia-

tion of spin structures in general spacetime dimensions,
which would require an analysis of spin in D ≠ 4. Such an
investigation, along with understanding the exponentiation
properties of the subleading eikonal, could shed light on
why two of the four classical spin structures appear to only
exponentiate in D → 4. A treatment of spin in general
dimensions may be sufficient to restore this exponentiation
away from D → 4. Another possibility is that the non-
exponentiation in general D is a consequence of the short-
range nature of these two spin structures at tree-level,

6Recall that we have normalized our spinors to be dimension-
less. Otherwise, the right-hand side of this relation would be
multiplied by m1.
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meaning that exponentiation in general D may only be
attainable for subleading eikonal phases.
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APPENDIX A: FOURIER TRANSFORMS

In the main text we have made use of Fourier transforms
to convert momentum space amplitudes to impact-param-
eter space. The rank-0 transform is

Z
ddq
ð2πÞd e

ib·qðq2Þν ¼ 22ν

πd=2
Γðνþ d=2Þ

Γð−νÞ
1

ðb2Þνþd=2 : ðA1Þ

The rank-1 and 2 transforms were also necessary for
Fourier transforming spin effects. We find these by differ-
entiating the rank-0 transform with respect to the impact
parameter:

Z
ddq
ð2πÞde

ib·qqiðq2Þν¼−i
∂
∂bi

Z
ddq
ð2πÞde

ib·qðq2Þν

¼ i
22νþ1

πd=2
Γðνþd=2þ1Þ

Γð−νÞ
bi

ðb2Þνþd=2þ1
;

ðA2Þ
Z

ddq
ð2πÞd e

ib·qqiqjðq2Þν ¼−
∂2

∂bi∂bj

Z
ddq
ð2πÞd e

ib·qðq2Þν

¼ 22νþ1

πd=2
Γðνþd=2þ 1Þ

Γð−νÞ
1

ðb2Þνþd=2þ1

×

�
Πij− 2

�
νþ 1þd

2

�
bibj

b2

�
:

ðA3Þ

We have introduced the projector

Πij ≡ δij −
pipj

p2
; ðA4Þ

which projects onto the plane orthogonal to the incoming
center-of-mass three-momentum.

APPENDIX B: LOOP INTEGRALS

We use the values for D-dimensional one-loop integrals
in the soft region determined in Ref. [39]. In particular, we
have needed the box and cross-box integrals, defined as

I□¼
Z

dDl
ð2πÞD

1

l2ðlþqÞ2½ðp1þ lÞ2−m2
1�½ðp2− lÞ2−m2

2�
;

ðB1Þ

I⊠¼
Z

dDl
ð2πÞD

1

l2ðlþqÞ2½ðp1− l−qÞ2−m2
1�½ðp2− lÞ2−m2

2�
:

ðB2Þ

Our results depended only on the sum of these two, which
is given in Ref. [39] to be

I□ þ I⊠ ¼ −
π1−D=2

2Dþ1m1m2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p

×
ΓðD=2 − 2Þ2Γð3 −D=2Þ

ΓðD − 4Þ ð−q2ÞD=2−3: ðB3Þ

We remark that we have used the mostly-minus metric, in
contrast to Ref. [39], where the mostly-plus metric was
employed.

APPENDIX C: FOURIER TRANSFORMING
UNITARITY

For completeness’ sake, we show here explicitly the
adaptation to our setup of the manipulation employed in
Sec. 6.2 of Ref. [9], taking the unitarity cut in momentum
space to a product of eikonal phases in impact-paramter
space. The argument is independent of whether spin is
involved in the scattering process, so we omit polarization
labels for brevity. Nevertheless, with an eye to Fourier
transforming products of amplitudes with different
polarization labels, we do not require the two amplitudes
in the cut to be equal. Our starting point is the convolution
of two amplitudes in momentum space by a unitarity
cut:

AðqÞ ¼
Z

dD−1k1
ð2πÞD−12Ek1

dD−1k2
ð2πÞD−12Ek2

ð2πÞD

× δðp1 þ p2 − k1 − k2ÞMðk1; k2 → p0
1; p

0
2Þ

×M0ðp1; p2 → k1; k2Þ: ðC1Þ

The momenta carried by the internal graviton legs are
q1 ¼ p1 − k1 ¼ k2 − p2 and q2 ¼ k1 − p0

1 ¼ p0
2 − k2,

and are related to the total momentum transfer through
q1 þ q2 ¼ q. Both q1;2 scale with ℏ in the classical
limit.
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Now, as was done in Ref. [9], it is convenient to parametrize our momenta in terms of one-dimensional longitudinal
components and (D − 2)-dimensional transverse components, the latter ofwhich are proportional to the transfermomentumq:

pμ
1 ¼ ðE1;p⊥; pLÞ; pμ

2 ¼ ðE2;−p⊥;−pLÞ; kμ1;2 ¼ ðEk1;2 ;k
⊥
1;2; k

L
1;2Þ: ðC2Þ

The next step is to integrate out the longitudinal components using the delta function. To do so, we split the delta function in
terms of energy, transverse, and longitudinal components:

δðp1 þ p2 − k1 − k2Þ ¼ δðp0
1 þ p0

2 − k01 − k02Þδðp⊥
1 þ p⊥

2 − k⊥1 − k⊥2 ÞδðpL
1 þ pL

2 − kL1 − kL2 Þ
¼ δðE1 þ E2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk⊥

1 Þ2 þ ðkL1 Þ2 þm2
1

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk⊥

2 Þ2 þ ðkL2 Þ2 þm2
2

q
Þδðk⊥

1 þ k⊥
2 ÞδðkL1 þ kL2 Þ: ðC3Þ

Integrating over the longitudinal delta function sets kL2 ¼ −kL1 . To integrate over the energy delta function, we rewrite

δðE1 þ E2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk⊥

1 Þ2 þ ðkL1 Þ2 þm2
1

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk⊥

2 Þ2 þ ðkL1 Þ2 þm2
2

q
Þ ¼ Ek1Ek2

jk�1ðEk2 þ Ek1Þj
½δðkL1 − k�1Þ þ δðkL1 − k�2Þ�; ðC4Þ

where k�1;2 are the roots of the argument of the delta function on the left-hand side, and satisfy k�1 ¼ −k�2. By definition of the
transverse direction,wehavep⊥ ∝ q. Furthermore, sincek1;2 are related top1;2 by the addition/subtractionofmomenta scaling
with ℏ, we can safely write jk⊥

1 j ¼ jp⊥ − q⊥
1 j ≪ jpj and jk⊥

2 j ¼ j − p⊥ þ q⊥
1 j ≪ jpj, where these inequalities hold

component-wise. Therefore, we find k�1 ¼ −k�2 ¼ jpj þOðℏÞ. Since the transfer momenta obey jq1;2j ≪ jpj in the classical
limit, the solution k�2 is outside the domain of the problem, andwe can ignore the second delta function on the right-hand side of
Eq. (C4). Integrating over the energy delta function thus gives

AðqÞ ¼
Z

dD−2k1
ð2πÞD−2

dD−2k2
ð2πÞD−2

ð2πÞD−2δðk⊥
1 þ k⊥

2 Þ
4pjEk2 þ Ek1 j

Mðk1; k2 → p0
1; p

0
2ÞM0ðp1; p2 → k1; k2Þ: ðC5Þ

By energy conservation we must have Ek1 þ Ek2 ¼ E, the total energy of the scattering. The denominator of the integrand is

thus 4pE ¼ 4m1m2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p
.

At this point, we can change the variables of integration using k1 ¼ q2 þ p0
1, k2 ¼ q1 þ p2, and the fact that p0

1 and p2

are constant:

AðqÞ ¼ 1

4m1m2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 − 1

p
Z

dD−2q1
ð2πÞD−2

dD−2q2
ð2πÞD−2 ð2πÞD−2δðq⊥

1 þ q⊥
2 − qÞMðk1; k2 → p0

1; p
0
2ÞM0ðp1; p2 → k1; k2Þ: ðC6Þ

In the delta function here we have used p0⊥
1 ¼ p⊥ − q. Fourier transforming both sides,

ÃðbÞ¼ 1

ð4m1m2

ffiffiffiffiffiffiffiffiffiffiffiffi
σ2−1

p
Þ2
Z

dD−2q
ð2πÞD−2

dD−2q1
ð2πÞD−2

dD−2q2
ð2πÞD−2e

iq·bð2πÞD−2δðq⊥
1 þq⊥

2 −qÞMðk1;k2→p0
1;p

0
2ÞM0ðp1;p2→k1;k2Þ

¼
�

1

4m1m2

ffiffiffiffiffiffiffiffiffiffiffiffi
σ2−1

p
Z

dD−2q1
ð2πÞD−2e

iq⊥
1
·bMðp1;p2→k1;k2Þ

��
1

4m1m2

ffiffiffiffiffiffiffiffiffiffiffiffi
σ2−1

p
Z

dD−2q2
ð2πÞD−2e

iq⊥
2
·bM0ðk1;k2→p0

1;p
0
2Þ
�

¼M̃M̃0: ðC7Þ

We have refrained from labeling either side of this equation as an eikonal phase, as one only obtains an eikonal phase upon
performing a polarization sum. We have left both 2 → 2 amplitudes arbitrary; the crucial point is that the initial and final
momenta of each differ by a transfer momentum of OðℏÞ.
This calculation has adapted the approach of Ref. [9] to the one-loop computation of relevance to us. It shows that the

convolution of two 2 → 2 amplitudes in momentum space becomes a product in impact-parameter space.
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