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The gravitational shock waves have provided crucial insights into entanglement structures of black holes
in the AdS=CFT correspondence. Recent progress on the soft hair physics suggests that these developments
from holography may also be applicable to geometries beyond negatively curved spacetime. In this work,
we derive a simple thermodynamic relation which relates the gravitational shock wave to a microscopic
area deformation. Our treatment is based on the covariant phase space formalism and is applicable to any
Killing horizon in generic static spacetime which is governed by arbitrary covariant theory of gravity.
The central idea is to probe the gravitational shock wave, which shifts the horizon in the u direction, by
the Noether charge constructed from a vector field which shifts the horizon in the v direction. As an
application, we illustrate its use for the Gauss-Bonnet gravity. We also derive a simplified form of the
gravitational scattering unitary matrix and show that its leading-order contribution is nothing but the
exponential of the horizon area: U ¼ expðiAreaÞ.
DOI: 10.1103/PhysRevD.105.026003

I. INTRODUCTION

Recent developments at the interface between quantum
gravity and quantum information theory in the AdS=CFT
correspondence have provided useful tools to address
conceptual puzzles concerning quantum aspects of black
holes on less ambiguous settings [1–9]. At the heart of all of
this progress is the improved understanding on how the
structure of quantum entanglement changes dynamically
under the gravitational backreaction from the infalling and
outgoing matter [10–27]. The gravitational shock wave
geometries [28–36] provide a particularly useful family of
analytically tractable models of the gravitational back-
reaction that can be induced by infalling massless particles,
or equivalently, perturbations on the boundary by light
operators.
Despite extensive studies in the past decades and recent

revivals in the AdS=CFT correspondence, the quantum
origin of the gravitational shock waves still remains elusive.
The gravitational shock waves in the black hole background
are often interpreted as low-energy excitations which con-
stitute the microscopic degrees of freedom of the quantum
black hole. It is, however, unclear how the gravitational

shock waves are ever quantized and account for the finite
value of Bekenstein-Hawking entropy in a concrete manner.
Also, if one hopes to study geometries beyond theAdS=CFT
correspondence (e.g., asymptotically flat spaces or systems
without the spatial infinity as in the de Sitter space),
additional technical and conceptual subtleties often hinder
naive application of holographic intuitions.1 Hence, as a first
step, it is desirable to develop a universal framework to
characterize the gravitational shock waves through some
microscopic lens in a way applicable to geometries beyond
the AdS=CFT correspondence as well.
Recent rapid progress on the soft hair of black holes in

an asymptotically flat space provide useful hints toward
such a goal with series of interesting derivations of the
Bekenstein-Hawking entropy [39–44].2 It has been also
pointed out that the linearized gravitational shock waves
can be realized as Bondi-Metzner-Sachs (BMS) super-
translations via certain choices of parameters [55–57].
Furthermore, some general expressions of thermodynamic
relations for soft charges have been derived for the
Schwarzschild black hole and several other geometries [58].
While these developments may provide a further insight

into quantum aspects of the gravitational shock waves, it
remains unclear how the soft charges may be measured in a
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1For instance, the absence of the spatial infinity may suggest
that the structure of quantum entanglement in the de Sitter space
differs crucially from that of the AdS space or the asymptotically
flat space. See [37,38] for other studies of entanglement structure
in the de Sitter space.

2See [45–54] for samples of earlier works and relevant
developments.
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concrete setting. In addition, the derived thermodynamic
relations, associated with soft charges, are in rather abstract
forms without concrete physical interpretations. As such,
the implications of the soft hair physics on conceptual
puzzles of quantum black holes still remain vague, in
comparison with concrete developments within the frame-
work of the AdS=CFT correspondence. What is currently
missing is an effort to tie these two developments. Hence,
deriving a microscopic thermodynamic characterization of
the gravitational shock waves on a unified footing may be
the necessary first step.
In this paper, we derive the microscopic thermodynamic

relations which are localized on the near horizon region and
are sensitive to the gravitational shock wave in a concrete
form. Our treatment is applicable to arbitrary gravitational
shock waves at a bifurcating horizon in generic static
spacetime (including AdS, dS, and asymptotically flat
spaces), and is valid for arbitrary covariant theory of gravity
which may be beyond general relativity (e.g., higher-
derivative gravity theories). Furthermore, our thermody-
namic relation provides a concrete physical interpretation of
the gravitational shock waves, or soft charges. In particular,
we derive a simple formula which relates the horizon area
deformation induced by two intersecting gravitational shock
waves to the incoming and outgoing energy sources.Wewill
then find that the soft charge associated with the gravita-
tional shock waves is nothing but the horizon area in the
presence of two intersecting gravitational shock waves.
Our main technical machinery is the covariant phase

space formalism, namely Wald’s Noether charge method. It
turns out that the original treatment byWald, which focuses
on contributions at the linear order of field variations, is not
sufficient to probe the gravitational shock wave. For this
reason, we will extend the Noether charge method to
include variations of the matter fields at arbitrary order.
This refinement enables us to obtain the microscopic
thermodynamic relations [as in Eq. (7)] which directly
associate the area deformation to the energy-momentum
tensor variation. One benefit of the covariant phase space
formalism is that it is applicable to arbitrary covariant
theory of gravity. As an application, we demonstrate that, in
the Gauss-Bonnet gravity [59–62], the gravitational shock
wave equations indeed follow from the microscopic
thermodynamic relation with much simplified calculations.
Our result also suggests a concrete framework to physi-

cally characterize (or, evenmeasure) soft charges via out-of-
time order correlation (OTOC) functions. The leading-
order (in 1=GN) behaviors of OTOCs are dominated by
the gravitational scattering unitary matrix which typically
takes the following form: U ¼ exp ½i∬ dΩ1dΩ2PoutðΩ1Þ
fðΩ1;Ω2ÞPinðΩ2Þ�. Here fðΩ1;Ω2Þ is the Green’s function
for the shockwave equation, andPin andPout account for the
incoming and outgoing energy fluxes. Our thermodynamic
characterization enables us to rewrite the above scattering
matrix into a simple form:

U ¼ expðiAreaÞ ð1Þ

up to some multiplicative factor in the phase. Here “Area”
represents the horizon area in the presence of two intersect-
ing gravitational shock waves due to Pin and Pout. Thus, the
phase factor of the scattering matrix is proportional to the
horizon area (or equivalently, the soft charge of an infalling
matter measured by an outgoing matter).

A. Main result

Here we present a summary of our main result. We study
a bifurcating Killing horizon in generic static spacetime of
the following form:

ds2 ¼ 2Fðu; vÞdudvþGðu; vÞhijdxidxj;
T ¼ 2Tuvdudvþ Tuududuþ Tvvdvdvþ Tijdxidxj ð2Þ

where u ¼ 0 and v ¼ 0 corresponds to the bifurcating
horizons. We assume that the timelike vector ∂t ¼
κð−u∂u þ v∂vÞ is a Killing vector of the spacetime. The
gravitational shock wave can be generated by shifting this
spacetime as [see Fig. 1]

ṽ ¼ vþ θðuÞαðxÞ ð3Þ
where θðuÞ is a step function and x collectively denotes
angular profiles. At the leading order, themetric variation can
be computed by considering the horizon translation vector α̂:

δgμν ¼ θðuÞLα̂gμν; α̂≡ αðxÞ∂v ð4Þ

whereLα̂ is the Lie derivativewith respect to α̂. To satisfy the
Einstein equation, an additional energy-momentum tensor
needs to be introduced:

TðpÞvv ¼ TðpÞðxÞδðuÞ: ð5Þ

For general relativity [i.e., LðGÞ ¼ 1
16π ðR − 2ΛÞ], Sfetsos

derived the shock wave equation of motion which relates

FIG. 1. Gravitational shock wave at u ¼ 0, moving in the v
direction. The shaded region experiences metric variations.
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the shift profile αðxÞ and the energy-momentum profile
TðpÞðxÞ via a certain differential equation [32]. In this paper,
we will work on arbitrary covariant theory of gravity (i.e.,
arbitrary covariant Lagrangian LðGÞ) which may be beyond
general relativity.
We will investigate the shock wave geometry by using the

covariant phase space formalism [63–68]3 and derive a micro-
scopic thermodynamic formula which captures low-energy
excitations on the Killing horizon. The standard method
utilizes the timelike Killing vector ξðtÞ ¼ ∂t to construct the
Noether chargeQξ and relate the horizon area (at u ¼ v ¼ 0)
to the ADM thermodynamic parameters at asymptotic infinity.
It turns out, however, that the area variation due to the
gravitational shock wave vanishes at u → 0, and hence non-
trivial thermodynamic relations cannot be derived.
In this paper, we study the gravitational shock wave by

using the Noether charge Qβ̂ constructed from another
horizon translation vector β̂ in the u direction:

β̂ ¼ βðxÞ∂u: ð6Þ

In particular, we probe the gravitational shock wave, which
was generated by the shift v → vþ αðxÞ in the v direction,
by another shift u → uþ βðxÞ in the u direction. For
general relativity, this enables us to derive the following
microscopic thermodynamic relation:

AreaðβðxÞ;αðxÞÞ−Areað0;0Þ¼
Z ffiffiffiffiffiffi

−g
p

βðxÞTðpÞðxÞdx ð7Þ

up to a multiplicative factor. Here AreaðβðxÞ; αðxÞÞ corre-
sponds to the total area of the sphere at u ¼ βðxÞ and
v ¼ αðxÞ. For a generic covariant LagrangianLðGÞ, the area
term would correspond to the Wald’s geometric entropy.
This thermodynamic relation can be rewritten as

EshockβðxÞ ¼ 0 ð8Þ

such that Eshock ¼ 0 corresponds to the shock wave
equation of motion for αðxÞ and TðpÞðxÞ.
We will also study the gravitational scattering unitary

matrix:

U ¼ exp
�
i
ZZ

dΩ1dΩ2PoutðΩ1ÞfðΩ1;Ω2ÞPinðΩ2Þ
�
: ð9Þ

Let us assume that Pout and Pin induce the shifts αðxÞ and
βðxÞ. Then, for general relativity, the above thermodynamic
characterization enables us to rewrite U as follows:

U ¼ expðiðAreaðαðxÞ; βðxÞÞ − Areað0; 0ÞÞÞ ð10Þ

up to a multiplicative factor for the area. Hence, the
scattering matrix is the exponential of the horizon area
(or equivalently, the soft charge).

B. Relation to previous works

Themicroscopic relationbetween the area deformation and
the gravitational shock wave for the Schwarzschild black
hole, for the case with Tμν ¼ 0 (i.e., a “sourceless” shock
wave), was initially communicated to us from Yoni BenTov.4

Our contribution is to include the energy-momentum tensor
and extend this observation to a bifurcate Killing horizon in
generic static spacetime for arbitrary covariant theory of
gravity. The covariant phase space formalism has been
recently applied to the Jackiw-Teitelboim (JT) gravity which
is a tractable model of the gravitational backreaction [70].
In an asymptotically flat space, Hawking, Perry, and

Strominger have identified a concrete way of generating the
gravitational shock wave from BMS supertranslation and
superrotation on the boundary of the asymptotic flat space-
time [57]. Namely they provided a generic formula to prove
the shock wave can be created by a supertranslation, by
using the Noether charge constructed from a superrotation.
This result was further investigated and extended, see
[58,71–73] for instance. It is worth clarifying our contri-
butions and novelties in comparison with these previous
works. First, previous works study the linearized shock
wave near the horizon whereas our treatment applies to the
shock wave which runs exactly on the horizon as well.
Second, our thermodynamic relation is cast in a concrete
form. The shock waves described by these relations can be
considered low-energy excitations, which span the black
hole microstates. So these thermodynamic relations give
useful hints to the Hilbert space of a black hole.
Third, as already noted above, our treatment applies to

any bifurcate Killing horizon in generic static spacetime for
arbitrary covariant theory of gravity.
It should be noted that, while our primary motivation

stems from quantum aspects of black holes, the treatments
in the present paper are entirely classical. Also, our treat-
ment is localized near the horizon and does not consider
asymptotic infinity or boundaries. As such, we do not
discuss BMS transformations in a direct manner.

C. Organization

The paper is organized as follows. In Sec. II, we present a
review of Wald’s Noether charge method. In Sec. III, we
will make certain refinements to the Wald’s entropy
formula so that it is valid up to higher order of matter
field variations. In Sec. IV, we present a review of
gravitational shock wave in general relativity on a bifurcate
Killing horizon in generic static spacetime. In Sec. V, we
investigate the variations of the metric due to horizon

3See [69] for a review. 4BenTov told us that he learned it from Alexei Kitaev.
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translations. In Sec. VI, we derive a microscopic thermo-
dynamic relation on the horizon. In Sec. VII, we apply our
formalism to general relativity and demonstrate that the
shock wave equations of motion indeed follow from the
area deformation. In Sec. VIII, we apply our formalism to
the Gauss-Bonnet gravity. In Sec. IX, we briefly discuss the
gravitational scattering matrix. Fianlly, in Sec. X, we
conclude with discussions.

II. REVIEW OF THE NOETHER CHARGE
METHOD

In this section, we present a self-contained review of the
Noether charge method in the presence of matter fields.
Readers who are familiar with the method may skip to the
next section.

A. Variation of Lagrangian

Bold letters are used to represent differential forms.
Consider the following diffeomorphism covariant
Lagrangian d-form on a d-dimensional manifold5:

L ¼ LðGÞ þLðMÞ ð11Þ

where LðGÞ is the gravitational Lagrangian d-form and
LðMÞ is the matter Lagrangian d-form. Here we assumed
that the Lagrangian can be separated into two parts LðGÞ

andLðMÞ.6 At the linear order in δgμν; δϕ, the variations can
be expressed as

δLðGÞ ¼ EðGÞμνδgμν þ dΘðGÞðgμν; δgμνÞ;

δLðMÞ ¼ 1

2
ϵTμνδgμν þEðϕÞδϕþ dΘðMÞðgμν;ϕ; δϕÞ ð12Þ

where ϕ collectively denotes all the matter fields. Here ϵ
denotes the volume form ϵ ¼ ddx

ffiffiffiffiffiffi−gp
and ΘðGÞ;ΘðMÞ are

called symplectic potentials.7 These variations lead to
equations of motion:

EðGÞμν þ 1

2
ϵTμν ¼ 0; EðϕÞ ¼ 0 ð13Þ

where the energy-momentum tensor is defined by8

Tμν ≡ 2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp
LðMÞÞ

δgμν
; LðMÞ ¼ ϵLðMÞ: ð14Þ

Field configurations fgμν;ϕg which satisfy equations of
motion Eq. (13) are called on shell.
Now consider variations under an infinitesimal diffeo-

morphism by an arbitrary vector field ξ. According to
Eq. (12), the total on-shell variation can be expressed by

δ̂ξL¼ δ̂ξLðGÞþ δ̂ξLðMÞ ¼dΘðGÞ
ξ þdΘðMÞ

ξ fgμν;ϕgon shell
ð15Þ

whereΘðGÞ
ξ ≡ΘðGÞðgμν; δ̂ξgμνÞ andΘðMÞ

ξ ≡ΘðMÞðgμν;ϕ; δ̂ξϕÞ
with δ̂ξgμν ≡ Lξgμν and δ̂ξϕ≡ Lξϕ. HereLξ denotes the Lie
derivative with respect to ξ. It is worth emphasizing that the
variation δ̂ξL is induced by a diffeomorphism δ̂ξ acting on
each field gμν;ϕ.
The variation δ̂ξL can be expressed in another form due

to the diffeomorphism covariance. The covariance of the
gravity and matter Lagrangians implies

δ̂ξLðGÞ ¼ LξLðGÞ; δ̂ξLðMÞ ¼ LξLðMÞ ð16Þ

where LξLðGÞ;LξLðMÞ are the Lie derivatives of
LðGÞ;LðMÞ. We have

δ̂ξLðGÞ ¼ LξLðGÞ ¼ dðξ ·LðGÞÞ;
δ̂ξLðMÞ ¼ LξLðMÞ ¼ dðξ ·LðMÞÞ ð17Þ

where we made use of the Cartan’s magic formula9

LξΛ ¼ ξ · dΛþ dðξ · ΛÞ Λ∶arbitrary: ð18Þ

Note that δ̂ξLðGÞ; δ̂ξLðMÞ must be total derivatives accord-
ing to Eq. (17).

5The diffeomorphism covariance condition is LξLðψÞ ¼
∂L
∂ψ Lξψ .

6More precisely, we assume that LðGÞ consists of terms which
do not involve matter fields ϕ and their covariant derivatives
∇μ1…∇μmϕ whereas LðMÞ consists of terms which do not involve
Riemann tensors Rabcd and their covariant derivatives
∇μ1…∇μmRabcd. As such, Riemann tensors Rabcd do not directly
couple to matter fields (e.g., terms like Rϕ2 do not appear) in the
Lagrangian. Such matter fields are often said to be minimally
coupled to gravity. Gravitational shock waves with nonminimal
couplings have been studied in [74].

7Since the matter Lagrangian does not involve Rabcd and its
covariant derivatives, the matter symplectic potential ΘðMÞ can be
constructed so that it does not depend on δgμν. See Sec. III of Iyer
and Wald for details [67].

8The Euler-Lagrange derivative is defined by

δL
δϕ

¼ ∂L
∂ϕ − ∂μ

∂L
∂∂μϕ

þ ∂μ∂ν
∂L

∂∂μ∂νϕ
þ � � � :

9Here ξ · Λ indicates insertion of ξ into the first argument of Λ.
It is also called the interior product and denoted as ιξΛ.
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B. Wald’s entropy formula

Wald introduced the followingNoether current (d − 1)-form

Jξ;Wald ≡ΘðGÞ
ξ − ξ ·LðGÞ þΘðMÞ

ξ − ξ ·LðMÞ: ð19Þ
One can verify

dJξ;Wald ¼ 0 fg;ϕg on shell: ð20Þ

Here we used g to denote the metric tensor gμν for brevity
of notation. One can actually show that Jξ;Wald is

exact due to the fact that Jξ;Wald is closed for all ξ [65]. As
such, the Noether charge (d − 2)-form Qξ;Wald can be con-
structed10

∃Qξ;Wald such that Jξ;Wald¼dQξ;Wald fg;ϕg on shell:
ð21Þ

Let us now fix ξ and consider the variation of the Noether
current Eq. (19) at the linear orders of δgμν; δϕ:

δJξ;Wald ¼ δ½ΘðGÞðLξgÞ� − ξ · δLðGÞ þ δ½ΘðMÞðLξϕÞ� − ξ · δLðMÞ

¼ δ½ΘðGÞðLξgÞ� − ξ · dΘðGÞðδgÞ þ δ½ΘðMÞðLξϕÞ� − ξ · dΘðMÞðδϕÞ ð22Þ

where we used the on-shell conditions Eq. (13) in the second line. Let us define the symplectic currents ΩðGÞðg; δg;LξgÞ,
ΩðMÞðg; δg;Lξg;ϕ; δϕ;LξϕÞ by

ΩðGÞðg; δg;LξgÞ≡ δ½ΘðGÞðg;LξgÞ� − Lξ½ΘðGÞðg; δgÞ�;
ΩðMÞðg; δg;Lξg;ϕ; δϕ;LξϕÞ≡ δ½ΘðMÞðg;ϕ;LξϕÞ� − Lξ½ΘðMÞðg;ϕ; δϕÞ�: ð23Þ

By using the Cartan’s formula Eq. (18), we obtain

δJξ;Wald ¼ ΩðGÞðδg;LξgÞ þ dðξ ·ΘðGÞðδgÞÞ þΩðMÞðδg;Lξg; δϕ;LξϕÞ þ dðξ ·ΘðMÞðδϕÞÞ fg;ϕg on shell: ð24Þ

Finally we shall focus on variations δg; δϕ which satisfy the linearized equations of motion. This allows us to replace
Jξ;Wald and its variation δJξ;Wald with the Noether charge dQξ;Wald and its variation δdQξ;Wald. Hence, by focusing on on-
shell variations, we obtain

δdQξ;Wald ¼ ΩðGÞðδg;LξgÞ þ dðξ ·ΘðGÞðδgÞÞ þΩðMÞðδg;Lξg; δϕ;LξϕÞ þ dðξ ·ΘðMÞðδϕÞÞ fδg; δϕg on shell: ð25Þ

The above expression can be further simplified when ξ is
a Killing vector:

Lξgμν ¼ 0: ð26Þ

Let us further assume a similar relation for the matter field:

Lξϕ ¼ 0: ð27Þ

Then at the linear order in δg and δϕ, we have

ΩðGÞðδg;LξgÞ¼0; ΩðMÞðδg;Lξg;δϕ;LξϕÞ¼0: ð28Þ

Hence we arrive at the well-celebrated result of Wald:

δdQξ;Wald ¼ dðξ ·ΘðGÞðδgÞÞ þ dðξ ·ΘðMÞðδϕÞÞ;
ξ∶Killing vector;Lξϕ¼ 0;fδg;δϕg on shell: ð29Þ

C. Example: General relativity

We illustrate the covariant phase space formalism and the
Noether charge by looking at general relativity with scalar
fields. The Lagrangian is given by

LðGÞ ¼ 1

16π
ϵðR−2ΛÞ; LðMÞ ¼−

1

2
ϵð∇μϕÞð∇μϕÞ: ð30Þ

The equations of motion are

EðGÞμν ¼ −
1

16π
ϵGμν; EðϕÞ ¼ ϵ∇μ∇μϕ ð31Þ

where Gμν ≡ Rμν − 1
2
Rgμν þ Λgμν. The symplectic poten-

tials are given by

10A systematic algorithm to construct the Noether charge
Qξ;Wald can be found in Iyer and Wald [67].
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ΘðGÞ
abc ¼ ϵdabc

1

16π
gdegfhð∇fδgeh −∇eδgfhÞ;

ΘðMÞ
abc ¼ −ϵdabcð∇dϕÞδϕ ð32Þ

and the energy-momentum tensor is

Tμν ¼ ∇μϕ∇νϕ −
1

2
gμν∇αϕ∇αϕ: ð33Þ

For variations by diffeomorphism, we have

Θξ
ðGÞ
abc ¼ ϵdabc

1

16π
ð∇e∇dξe þ∇e∇eξd − 2∇d∇eξ

eÞ: ð34Þ

To compute the Noether current, it is useful to make use
of the following relation:

∇e∇dξe −∇d∇eξ
e ¼ −Rβ

α
d
βξ

α ¼ Rα
dξα: ð35Þ

We can then rewrite ΘðGÞ
ξ as

Θξ
ðGÞ
abc ¼ ϵdabc

1

16π
ð∇e∇eξd −∇e∇dξe þ 2Rα

dξαÞ ð36Þ

and obtain

Jξ;Waldabc ¼ ϵdabc
1

16π
ð∇e∇eξd −∇e∇dξe þ 2Rα

dξαÞ

−
1

16π
ϵdabcξdðR − 2ΛÞ − ϵdabcTdeξe: ð37Þ

By using the Einstein equation

Tμν ¼
1

8π

�
Rμν −

1

2
gμνðR − 2ΛÞ

�
ð38Þ

we arrive at

Jξ;Waldabc ¼ ϵdabc
1

16π
ð∇e∇eξd −∇e∇dξeÞ: ð39Þ

Hence the expression of Jξ;Wald is written entirely with
the metric and does not contain Λ, ϕ or Tμν explicitly.
Finally we obtain the Noether charge

Qξ;Waldab ¼ −
1

16π
ϵabcd∇cξd: ð40Þ

III. TWO REFINEMENTS TO
WALD’S ENTROPY FORMULA

The original Noether charge method is not particularly
suitable for studying the gravitational shock wave
geometries. In this section, we will make two refinements
to the Wald’s entropy formula.
First, we will derive an alternative expression of the

Noether current Jξ;field, which differs from the Wald’s
construction Jξ;Wald, by evaluating the Lie derivative of
the matter Lagrangian LξLðMÞ explicitly and relating it to
the energy-momentum tensor Tμν. Our construction of the
Noether charge Qξ;field is particularly useful for studying
the gravitational backreaction as it relates the energy-
momentum tensor variation directly to the metric variation.
Second, we will extend the linear order analysis by Wald

to the higher-order matter field variations δϕ while keeping
the metric variation δg at the linear order. This is due to the
fact that contributions from the linear order variation δϕ
vanish for the gravitational shock wave geometries, and
hence the linear order variation of Tμν is induced by the
higher-order variation of ϕ. Our construction of the Noether
current Qξ;field enables us to evaluate its variation δQξ;field

under the matter field variation δϕ at any order in a
systematic manner.

A. Matter current

Our derivation deviates from Wald’s where we evaluate
the Lie derivative LξLðMÞ of the matter Lagrangian in
Eq. (17). Diffeomorphism variation of the matter
Lagrangian can be explicitly evaluated as follows:

δ̂ξLðMÞ ¼ LξLðMÞ ¼ Lξgμν
δLðMÞ

δgμν
þ Lξϕ

δLðMÞ

δϕ
þ dΘðMÞ

ξ

¼ 2∇ðμξνÞ
δLðMÞ

δgμν
þ Lξϕ

δLðMÞ

δϕ
þ dΘðMÞ

ξ

¼ ddx
ffiffiffiffiffiffi
−g

p
Tμν∇ðμξνÞ þ Lξϕ

δLðMÞ

δϕ
þ dΘðMÞ

ξ

¼ ddx
ffiffiffiffiffiffi
−g

p ∇μðTμνξνÞ − ddx
ffiffiffiffiffiffi
−g

p ð∇μTμνÞξν þ LξϕEðϕÞ þ dΘðMÞ
ξ

¼ −ϵð∇μTμνÞξν þ ddx∂μð
ffiffiffiffiffiffi
−g

p
TμνξνÞ þ dΘðMÞ

ξ ð41Þ
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where we made use of the metric compatibility

∇ξgμν ¼ 0; Lξgμν ¼ ∇μξν þ∇νξμ ð42Þ

the evaluation of the integral by parts, and the on-shell
condition of matter fields. Let us define the matter current
(d − 1)-form by

JðMÞ
ξ;field ≡ JðMÞ

ξ;field
μ ffiffiffiffiffiffi

−g
p ðdd−1xÞμ; JðMÞ

ξ;field
μ ≡ −Tμνξν:

ð43Þ

Here ðdd−1xÞμ is a (d − 1)-form that does not contain
dxμ.11 We then obtain

LξLðMÞ ¼−ϵð∇μTμνÞξν−dJðMÞ
ξ;fieldþdΘðMÞ

ξ ϕ on shell:

ð45Þ

Recall that LξLðMÞ can be expressed as a total derivative,
according to Eq. (17). Thus, from Eq. (45), we can deduce
the conservation of the energy-momentum tensor:

∇μTμν ¼ 0 ϕ on shell: ð46Þ

Then, the Lie derivative of the matter Lagrangian LξLðMÞ

can be expressed as

LξLðMÞ ¼ −dJðMÞ
ξ;field þ dΘðMÞ

ξ ϕ on shell: ð47Þ

Also, the Lie derivative of the gravity Lagrangian is given
by

LξLðGÞ ¼ dJðMÞ
ξ;field þ dΘðGÞ

ξ fg;ϕg on shell: ð48Þ

Here it is worth emphasizing that LξLðGÞ ≠ dΘðGÞ
ξ and

LξLðMÞ ≠ dΘðMÞ
ξ due to the matter current.

We define the Noether current (d − 1)-form by

Jξ;field ≡ΘðGÞ
ξ − ξ ·LðGÞ þ JðMÞ

ξ;field: ð49Þ

One can verify that Jξ;field is closed when fg;ϕg are on shell:

dJξ;field ¼ dΘðGÞ
ξ − dðξ ·LðGÞÞ þ dJðMÞ

ξ;field

¼ dΘðGÞ
ξ − LξLðGÞ þ dJðMÞ

ξ;field

¼ 0: ð50Þ

Then one can construct the Noether charge Qξ;field:

∃Qξ;field such that Jξ;field ¼ dQξ;field fg;ϕg on shell:

ð51Þ

Note that our definition Jξ;field differs from Wald’s Jξ;Wald

since, instead of ΘðMÞ
ξ − ξ ·LðMÞ, we have used JðMÞ

ξ;field.
We will compare two constructions in Sec. III C

B. Higher-order matter variation

Until this point, our derivation of the Noether current
Eq. (49) is an exact calculation which does not rely on
perturbative analysis.12 The remaining task is to evaluate
the variation of the Noether current Eq. (49) under δgμν; δϕ.
We will focus on the linear order metric variation δgμν

while we do not impose such restriction on the matter field
variation δϕ. We then obtain

δJξ;field ¼ δ½ΘðGÞðLξgÞ� − ξ · δLðGÞ þ δJðMÞ
ξ;field

¼ δ½ΘðGÞðLξgÞ� − ξ · dΘðGÞðδgÞ þ δJðMÞ
ξ;field − ξ ·EðGÞμνδgμν

¼ δ½ΘðGÞðLξgÞ� − Lξ½ΘðGÞðδgÞ� þ dðξ ·ΘðGÞðδgÞÞ þ δJðMÞ
ξ;field − ξ · EðGÞμνδgμν

¼ δ½ΘðGÞðLξgÞ� − Lξ½ΘðGÞðδgÞ� þ dðξ ·ΘðGÞðδgÞÞ þ δJðMÞ
ξ;field þ

1

2
ðξ · ϵÞTμνδgμν ð52Þ

11Explicitly, we have

ðdd−pxÞμ1…μp
¼ 1

p!ðn−pÞ!ϵμ1…μpνpþ1…νddx
νpþ1 ∧…∧dxνd ð44Þ

where ϵ is the Levi-Civita symbol. Here JðMÞ
ξ should be understood as the Hodge dual of the 1-form current.

12Recall that it suffices to use the linearized variation formula Eq. (12) to evaluate the Lie derivative.
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where we used EðGÞμν ¼ − 1
2
ϵTμν. By using the gravity part

of the symplectic current ΩðGÞðδg;LξgÞ≡ δ½ΘðGÞðLξgÞ�−
Lξ½ΘðGÞðδgÞ�, we obtain13

δJξ;field¼ΩðGÞðδg;LξgÞþdðξ ·ΘðGÞðδgÞÞ

þδJðMÞ
ξ;fieldþ

1

2
ðξ ·ϵÞTμνδgμν fg;ϕg on shell: ð53Þ

It is worth emphasizing again that Eq. (53) is valid up to the
linear order in δgμν and up to any order in δϕ. Note that the
matter field variation δϕ enters through the matter current

variation δJðMÞ
ξ;field. Finally we shall focus on variations δg; δϕ

which satisfy the equations of motion up to the linear order
in δg and up to any desired order in δϕ.
Finally, we arrive at

δdQξ;field¼ΩðGÞðδg;LξgÞþdðξ ·ΘðGÞðδgÞÞþδJðMÞ
ξ;field

þ1

2
ðξ ·ϵÞTμνδgμν fδg;δϕg on shell: ð54Þ

We will use this formula to derive the microscopic
thermodynamic relation.
The above expression can be further simplified when ξ is

a Killing vector of the spacetime:

Lξgμν ¼ 0: ð55Þ

Then we have ΩðGÞðδg;LξgÞ ¼ 0 in the linear order in δg.
When ξ is a Killing vector, the matter current is

conserved:

∇μJ
ðMÞ
ξ;field

μ ¼ −∇μðTμνξνÞ ¼ −ð∇μTμνÞξν − Tμν∇μξν

¼ −
1

2
Tμνð∇μξν þ∇νξμÞ ¼ 0 ð56Þ

or equivalently

dJðMÞ
ξ;field ¼ 0: ð57Þ

Thus, we can construct the matter charge (d − 2)-form

QðMÞ
ξ;field such that

JðMÞ
ξ;field ¼ dQðMÞ

ξ;field: ð58Þ

Hence we arrive at the following expression:

δdQξ;field ¼ dðξ ·ΘðGÞðδgÞÞ þ δdQðMÞ
ξ;field þ

1

2
ðξ · ϵÞTμνδgμν;

ξ∶Killing vector; fδg; δϕg on shell ð59Þ

which is valid up to linear order in δg and any order in δϕ.

C. Comparison

Let us explicitly compare two possible constructions of
the matter current

JðMÞ
ξ;Wald ≡ΘðMÞ

ξ ðϕ;LξϕÞ − ξ ·LðMÞ;

JðMÞ
ξ;field ≡ JðMÞ

ξ;field
μ ffiffiffiffiffiffi

−g
p ðdd−1xÞμ; where JðMÞ

ξ;field
μ ≡ −Tμνξν:

ð60Þ

To begin, we compare their total derivatives:

dJðMÞ
ξ;Wald ¼ dΘðMÞ

ξ − dðξ ·LðMÞÞ

¼ −EðϕÞLξϕ −
1

2
ϵTμνLξgμν ð61Þ

and

dJðMÞ
ξ;field ¼ −ddx

ffiffiffiffiffiffi
−g

p ∇μðTμνξνÞ
¼ −ϵðð∇μTμνÞξν þ Tμν∇ðμξνÞÞ

¼ −ϵ
�
ð∇μTμνÞξν þ

1

2
TμνLξgμν

�
: ð62Þ

Their difference indeed vanishes for matter fields on shell:

dJðMÞ
ξ;field−dJðMÞ

ξ;Wald¼EðϕÞLξϕ−ϵð∇μTμνÞξν¼0 ϕ on shell:

ð63Þ

Hence both JðMÞ
ξ;Wald and JðMÞ

ξ;field lead to valid constructions of
the Noether charge Qξ;Wald and Qξ;field.
Next, let us look at the scalar field Lagrangian

Lscalar ¼ −
1

2
ϵgμν∇μϕ∇νϕ: ð64Þ

We have

JðMÞ
ξ;field ¼ −Tμνξν

ffiffiffiffiffiffi
−g

p ðdd−1xÞμ
¼ −

�
∇μϕ∇νϕξν −

1

2
ξμ∇αϕ∇αϕ

� ffiffiffiffiffiffi
−g

p ðdd−1xÞμ;

JðMÞ
ξ;Wald ¼ −

�
ð∇μϕÞLξϕ −

1

2
ξμ∇αϕ∇αϕ

� ffiffiffiffiffiffi
−g

p ðdd−1xÞμ

¼ −
�
ξν∇νϕ∇μϕ −

1

2
ξμ∇αϕ∇αϕ

� ffiffiffiffiffiffi
−g

p ðdd−1xÞμ:

ð65Þ

13In fact, we do not need the on-shell condition for the matter
fields ϕ for this equation to hold. We would need it to make sure
dJðMÞ

ξ;field ¼ 0 so that the matter charge QðMÞ
ξ;field can be constructed.
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Hence, we have

JðMÞ
ξ;field ¼ JðMÞ

ξ;Wald: ð66Þ
For the electromagnetic Lagrangian

LEM ¼ −
1

4
ϵFμνFμν ð67Þ

we have

Tμν ¼ FμαFν
α −

1

4
gμνFαβFαβ; ð68Þ

ΘðMÞ
abc ðA; δAÞ ¼ −ϵμabcFμαδAα; ð69Þ

EðAÞ;α ¼ δLEM

δAα
¼ ϵ∇μFμα; ð70Þ

and

JðMÞ
ξ;field ¼ −Tμνξν

ffiffiffiffiffiffi
−g

p ðdd−1xÞμ
¼ −

�
Fμ
αFνα −

1

4
gμνFαβFαβ

�
ξν

ffiffiffiffiffiffi
−g

p ðdd−1xÞμ;

JðMÞ
ξ;Wald ¼ −

�
FμαLξAα −

1

4
ξμFαβFαβ

� ffiffiffiffiffiffi
−g

p ðdd−1xÞμ

¼ −
�
FμαξνFνα þ Fμα∇αðξνAνÞ −

1

4
ξμFαβFαβ

�

×
ffiffiffiffiffiffi
−g

p ðdd−1xÞμ ð71Þ
where we used the Cartan’s magic formula for the Lie
derivative. Hence we obtain

JðMÞ
ξ;field − JðMÞ

ξ;Wald ¼ Fμα∇αðξνAνÞ
ffiffiffiffiffiffi
−g

p ðdd−1xÞμ ð72Þ
which, by imposing on-shell conditions ∇αFμα ¼ 0,
becomes

JðMÞ
ξ;field−JðMÞ

ξ;Wald¼∇αðFμαξνAνÞ
ffiffiffiffiffiffi
−g

p ðdd−1xÞμ ðAν on shellÞ:
ð73Þ

Note that two definitions of the matter current for the
electromagnetic field differ by a total derivative. Thus we
can write

JðMÞ
ξ;field − JðMÞ

ξ;Wald ¼ dQðΔÞ
ξ ð74Þ

which leads to the following difference of two construc-
tions:

Qξ;field −Qξ;Wald ¼ QðΔÞ
ξ : ð75Þ

Here it is worth emphasizing that the charge difference

QðΔÞ
ξ is linear in the vector field ξ, and thus vanishes

as ξ → 0.
In fact, by following Iyer and Wald (Lemma 3.1 in [67]),

one can show that, for an arbitrary matter Lagrangian,
(a) JðMÞ

ξ;field and JðMÞ
ξ;Wald differ only by a total derivative.

(b) The charge difference QðΔÞ
ξ vanishes as ξ → 0.

For our application to the gravitational shock wave geom-
etries, terms which vanish as ξ → 0 do not contribute to the
surface integral of the Noether charge. As such, our
construction of the Noether charge Qξ;field bears the same
geometrical meaning as the Wald’s construction Qξ;Wald.

IV. GRAVITATIONAL SHOCK WAVE IN
GENERAL RELATIVITY

Having reviewed and refined the Noether charge for-
mula, let us shift the gear a bit. In this section, we present a
brief review of gravitational shock wave geometries in
general gravity by following the works by Dray, ’t Hooft,
and Sfetsos [29,32] who derived the gravitational shock
wave equations of motion from the Einstein equation.
Consider the following family of d-dimensional static

spacetime, expressed in the Kruskal-type coordinate and its
corresponding energy-momentum tensor:

ds2¼2Fðu;vÞdudvþGðu;vÞhijdxidxj;
T¼2TuvdudvþTuududuþTvvdvdvþTijdxidxj: ð76Þ

Following Sfetsos [32], we assume that the metric and
matter fields satisfy the following conditions:

G;v ¼ F;v ¼ Tvv ¼ 0 ðu ¼ 0Þ; ð77Þ

G;u ¼ F;u ¼ Tuu ¼ 0 ðv ¼ 0Þ: ð78Þ

The above conditions follow from the assumption that the
timelike vector ∂t is a Killing vector of the spacetime as we
will see in the next subsection. Nonvanishing Christoffel
symbols are

Γu
uu ¼

F;u

F
; Γu

ij ¼ −
G;v

2F
hij; Γv

vv ¼
F;v

F
; Γv

ij ¼ −
G;u

2F
hij;

Γi
uj ¼

G;u

2G
δij; Γi

vj ¼
G;v

2G
δij; Γi

jk ¼
1

2
hilðhlk;j þ hlj;k − hjk;lÞ: ð79Þ
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Let us shift this spacetime by

v → ṽ ¼ vþ θðuÞαðxÞ ð80Þ

where x represents xj collectively and θðuÞ is a step
function. The resulting metric and energy-momentum
tensor are

ds̃2 ¼ 2Fðu; vþ θαÞduðdvþ θα;idxiÞ
þ Gðu; vþ θαÞhijdxidxj ð81Þ

and

T̃ ¼ 2Tuvðu; vþ θα; xÞduðdvþ θα;idxiÞ
þ Tuuðu; vþ θα; xÞdu2
þ Tvvðu; vþ θα; xÞðdvþ θα;idxiÞ2
þ Tijðu; vþ θα; xÞdxidxj: ð82Þ

Note that the shifted metric and the shifted energy-
momentum tensor still satisfy the Einstein equation except
atu ¼ 0where an additional source of the energy-momentum
tensor is needed. Consider the extra contribution to the
energy-momentum tensor from a massless particle, located
at u ¼ 0 andmovingwith the speed of light in the v direction:

TðPÞ ¼ TðPÞ
uu du2 ¼ 4pðvÞF2δðxÞδðuÞdu2 ð83Þ

where pðvÞ is the momentum of the particle;
TðPÞ;vv ¼ 4pðvÞδðuÞδðxÞ.14 The Einstein equation is satisfied
if Eq. (77) holds and the following equation holds:

ΔhijαðxÞ −
d − 2

2

G;uv

F
αðxÞ ¼ 32πpðvÞGFδðxÞ: ð84Þ

Here theLaplacian is defined asΔhij ≡ 1ffiffi
h

p ∂i

ffiffiffi
h

p
hij∂j.Wewill

derive this equationbyusing theNoether chargemethod later.15

V. HORIZON TRANSLATION VECTOR

In this section, we investigate the symmetry properties of
the spacetime. The gravitational shock wave solutions
require certain consistency conditions on the fields
gμν; Tμν as we reviewed in the previous section. These
conditions actually follow from the existence of the time-
like Killing vector ξðtÞ ¼ ∂t as we shall show in this section.
We will also study the effect of a vector field β̂ which
introduces the horizon translation. In later sections, we will

use the horizon translation vector β̂ to construct the Noether
charge which is sensitive to the gravitational shock wave.
Note that the argument in this and the next section holds not
only for general relativity but also for generic covariant
theories of gravity.

A. Timelike vector

In this subsection, we verify that Eq. (77) and Eq. (78)
follow from the fact that the timelike ξðtÞ ¼ ∂t vector is a
Killing vector.
A vector field ξ is a Killing vector if Lξgμν ¼ 0. Let us

begin by computing Lξgμν for the metric given in Eq. (76).
Looking at ðμ; νÞ ¼ ðu; vÞ, we have

Lξguv ¼ ξað∂aguvÞ þ ð∂uξ
aÞgav þ ð∂vξ

aÞgua
¼ ξuF;u þ ξvF;v þ ð∂uξ

u þ ∂vξ
vÞF: ð85Þ

Looking at ðμ; νÞ ¼ ði; jÞ, we have

Lξgij ¼ ξað∂agijÞ þ ð∂iξ
aÞgaj þ ð∂jξ

aÞgia
¼ ξuG;uhij þ ξvG;vhij þ ξkð∂kgijÞ
þ ð∂iξ

kÞgkj þ ð∂jξ
kÞgik: ð86Þ

Looking at ðμ; νÞ ¼ ðu; iÞ, we have

Lξgui ¼ ξað∂aguiÞ þ ð∂uξ
aÞgai þ ð∂iξ

aÞgua
¼ ð∂uξ

jÞgji þ ð∂iξ
vÞguv: ð87Þ

Looking at ðμ; νÞ ¼ ðv; iÞ, we have

Lξgvi ¼ ξað∂agviÞ þ ð∂vξ
aÞgai þ ð∂iξ

aÞgva
¼ ð∂vξ

jÞgji þ ð∂iξ
uÞguv: ð88Þ

Consider the following timelike vector field:

ξðtÞ ≡ κð−u∂u þ v∂vÞ ð89Þ

where κ represents the surface gravity. One can verify

LξðtÞguv;LξðtÞgij → 0; u → 0 or v → 0 ð90Þ

and LξðtÞgui, LξðtÞgvi ¼ 0, suggesting that ξðtÞ asymptotically
becomes a Killing vector on the horizon at u ¼ 0 and v ¼ 0
due to Eqs. (77) and (78). Furthermore, we see that the
norm of ξðtÞ vanishes on the horizon, and ξðtÞ ¼ 0 at
ðu; vÞ ¼ ð0; 0Þ.16 Hence, u ¼ 0 and v ¼ 0 hypersurfaces

14Our choice of TðPÞ;vv ¼ 4pðvÞδðuÞδðxÞ differs from Sfetsos’s
by a factor of (−1) due to the sign difference in the Einstein
equation.

15We note that Eq. (78) is not necessary to derive Eq. (84). We
will however assume both Eq. (77) and Eq. (78) in this paper
since we are interested in static spacetime.

16The norm is given by 2ξuguvξv¼−2κ2uvF→0 for u; v → 0
where we assumed Fðu; vÞ is not divergent at u ¼ 0 or v ¼ 0. For
nonstatic black holes, such as the Kerr black hole, guv in the
Kruskal-like coordinate contains a term proportional to ðuvÞ−1.
As such, u ¼ 0 or v ¼ 0 hypersurfaces are not horizons
with respect to the timelike Killing vector ∂t.
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are Killing horizons of ξðtÞ. In static black holes such as the
Schwarzschild black hole, ξðtÞ corresponds exactly to the
timelike Killing vector ∂t.

17

B. Horizon translation

Next, consider the following horizon translation vector
field:

β̂≡ βðxÞ∂u ð91Þ

where βðxÞ is an arbitrary function of xi. With direct
calculations, one finds

Lβ̂guv ¼ βðxÞð∂uFÞ; Lβ̂gij ¼ βðxÞhijð∂uGÞ;
Lβ̂gvi ¼ ð∂iβðxÞÞF; Lβ̂gui ¼ 0: ð92Þ

Namely, at the limit of v → 0, we have

Lβ̂guv;Lβ̂gij;Lβ̂gui→0; Lβ̂gvi¼ð∂iβðxÞÞF→0: ð93Þ

In the next section,wewill use this horizon shift vector β̂ to
construct the Noether charge and derive the microscopic
thermodynamic relations as in Eq. (7). It is worth
recalling that, in the original treatment by Wald, the
vector field ξ in the Noether charge Qξ was chosen to be a
Killing vector. This was crucial in the derivation of Wald’s
Noether charge relation since the presymplectic form
ΩðGÞðg; δg;LξgÞ vanishes when ξ is a Killing vector. In
the above calculation,we found that the horizon shift vector β̂
is not a Killing vector at v ¼ 0 [unless βðxÞ does not depend
on x]. Nevertheless, the presymplectic formΩðGÞðg; δg;Lβ̂gÞ
vanishes at v ¼ 0 as we shall see in Sec. VI C.

VI. MICROSCOPIC THERMODYNAMICS
ON HORIZON

In this section, we will derive microscopic thermo-
dynamic relations which are localized on the horizon.

A. Noether charge from shifted vector

Let us briefly recall the setup. The original static
spacetime was given by Eq. (76) which is reprinted below

ds2¼2Fðu;vÞdudvþGðu;vÞhijdxidxj;
T¼2TuvdudvþTuududuþTvvdvdvþTijdxidxj: ð94Þ

The shifted metric and the energy-momentum tensor are
given by Eqs. (81) and (82) which are obtained by

the substitution v → ṽ ¼ vþ θðuÞαðxÞ. It is worth noting
that, at the leading order in αðxÞ, the metric variation is
given by

δgμν ¼ θðuÞLα̂gμν; α̂≡ αðxÞ∂v ð95Þ

which can be verified from results in Sec. V. In addition,
there is an extra source of the energy-momentum tensor

TðPÞ
uu at u ¼ 0 as in Eq. (83). See Fig. 3 for summary.
Let us specify how the integral of the Noether charge is

taken. We will consider an integral of the Noether charge
relation Eq. (54) over the (d − 1)-dimensional surface Λ at
v ¼ 0 that connects two (d − 2)-dimensional boundaries
ΣA and ΣB [see Fig. 2(b) or Fig. 3]:

ΣA¼fðu;vÞ¼ð0−;0Þg; ΣB¼fðu;vÞ¼ðβðxÞ;0Þg: ð96Þ

Here 0− means that u approaches zero from below. For
our purpose of deriving the shock wave equations of
motion, it actually suffices to choose ΣA as any boundary
with u < 0.

(a) (b)

FIG. 2. (a) The timelike Killing vector ξðtÞ. (b) The shifted
timelike vector χ.

FIG. 3. The Noether charge integral. A redline represents the
gravitational shock wave running at u ¼ 0. Blue lines represent
the null-shifted timelike vector. The shaded region (u > 0)
experiences the metric variations δgμν and the energy-momentum
variations δTμν which result from the shift v → vþ θðuÞαðxÞ. In
addition, at u ¼ 0, the variation δTðPÞ

uu from the shock wave is
introduced.

17As for Tμν, we were not able to verify LξTμν ¼ 0 from the
conditions Tvv ¼ 0 (u ¼ 0) and Tuu ¼ 0 (v ¼ 0) in Eqs. (77) and
(78). Note, however, that we did not need to impose Lξϕ ¼ 0 or
LξTμν ¼ 0 in deriving the Noether charge relation in Sec. III.
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Finally, let us construct the Noether charge. As a vector
field, we shall take the shifted timelike vector

χ ≡ ξðtÞ þ κβ̂ ¼ κððβðxÞ − uÞ∂u þ v∂vÞ ð97Þ
in order to construct the Noether charge. It is essential to
observe

χ ¼ 0 at ΣB ð98Þ
which will be useful in simplifying the thermodynamic
relation.

B. Thermodynamic relation

Our central formula is Eq. (54) which is reprinted below:

δdQχ;field¼ΩðGÞðδg;LχgÞþdðχ ·ΘðGÞðδgÞÞ

þδJðMÞ
χ;fieldþ

1

2
ðχ ·ϵÞTμνδgμν fδg;δϕg on shell:

ð99Þ
Integrating it on the v ¼ 0 surface generates

δ

Z
Λ
dQχ;field ¼

Z
Λ
ΩðGÞðδg;LχgÞ þ

Z
Λ
dðχ ·ΘðGÞðδgÞÞ

þ δ

Z
Λ
dQðMÞ

χ;field: ð100Þ

Two comments follow. First, the last term 1
2
ðχ ·

ϵÞTμνδgμν vanishes since the integral is along the vector
field χ and thus

R
Λðχ · ϵÞ ¼ 0. Second, we have introduced

the matter charge QðMÞ
χ;field. Here it is useful to note that,

while β̂ is not a Killing vector of the spacetime, one can still
construct the matter charge on the v ¼ 0 surface since

∇μðJχ;fieldμÞ¼−
1

2
TμνðLχgμνÞ¼−TviðLχgviÞ¼0 ðv¼0Þ:

ð101Þ

Then, by using Stokes’s theorem, we obtain
Z
ΣA

ðδQχ;field − δQðMÞ
χ;field − χ ·ΘðGÞðδgÞÞ þ

Z
Λ
ΩðGÞðδg;LχgÞ

¼
Z
ΣB

ðδQχ;field − δQðMÞ
χ;field − χ ·ΘðGÞðδgÞÞ: ð102Þ

Below, we will further simplify this expression by using the
properties of the shifted vector field χ.
Let us evaluate each term in Eq. (102) at ΣA and ΣB.

First, we observe

χ ·ΘðGÞðδgÞ ¼ 0 at ΣA;ΣB ð103Þ
by noting that χ ¼ 0 at ΣB and δg ¼ 0 at ΣA. Second, we
observe

δQχ;field ¼ 0 at ΣA ð104Þ

since δg ¼ 0 at ΣA. Third, we can construct the matter

charge QðMÞ
χ;field as an integral over v ¼ 0 surface in the u

direction:

QðMÞ
χ;field ≡

Z
u

−∞
JðMÞ
χ;field ¼ −

Z
u

−∞
Tμνχν

ffiffiffiffiffiffi
−g

p ðdd−1xÞμ

¼ −
Z

u

−∞
Tvvχv

ffiffiffiffiffiffi
−g

p ðdd−1xÞv: ð105Þ

Due to the constraint Tvv ¼ 0 at v ¼ 0 in Eq. (78), we
have

δQðMÞ
χ;field ¼ −

Z
u

−∞
ðδTvvÞχv

ffiffiffiffiffiffi
−g

p ðdd−1xÞv: ð106Þ

There are two potential contributions to the variation δTvv.
The first contribution is due to the metric shift which is
explicitly given by

δTvv ¼ Tvvðu; vþ αÞ − Tvvðu; vÞ; u > 0: ð107Þ

It turns out that this contribution is subleading in α. Recall
that the timelike vector ξðtÞ is the symmetry of the
spacetime. We then have

LξðtÞT
vv ¼ −u∂uTvv þ v∂vTvv − 2Tvv ¼ 0: ð108Þ

Let us Taylor expand Tvv for small u and v. Then we find
that only the terms of the form uavaþ2 are allowed. This
suggests that Tvv is ∼v2 at most, and hence δTvv is
∼vαþ α2. Integrating it along v ¼ 0 only generates a
contribution of Oðα2Þ. The second contribution comes
from the shock wave. Considering δTvv ¼ 4pðvÞδðuÞδðxÞ
at v ¼ 0, we find

δQðMÞ
χ;field ¼ 0 at ΣA ð109Þ

and

δQðMÞ
χ;field ¼ −

Z
u¼βðxÞ

−∞
4pðvÞFδðuÞδðxÞκðβðxÞ − uÞ

×
ffiffiffiffiffiffi
−g

p ðdd−1xÞv
¼ ðdd−2xÞuv

ffiffiffi
G

p
4pðvÞFδðxÞκβðxÞ at ΣB: ð110Þ

Note that
ffiffiffi
G

p
is the volume element intrinsic on the

(d − 2)-dimensional surface ðu; vÞ ¼ ð0; 0Þ. Hence, we
obtain

δ

Z
ΣB

ðQχ;field−QðMÞ
χ;fieldÞ−

Z
u¼βðxÞ

u¼0−

ΩðGÞðδg;LχgÞ¼0: ð111Þ
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C. Presymplectic form

The remaining task is to evaluate the presymplectic form
ΩðGÞðδg;LχgÞ. Here we will show that

Z
u¼βðxÞ

u¼0−

ΩðGÞðδg;LχgÞ ¼ 0: ð112Þ

Since the timelike vector ξðtÞ is the symmetry of the
original spacetime, we have ΩðGÞðδg;LξðtÞgÞ ≃ 0, and

ΩðGÞðδg;LχgÞ ≃ κΩðGÞðδg;Lβ̂gÞ ð113Þ
where ≃ denotes that we evaluate the differential form on
the v ¼ 0 surface. Recalling δg ¼ θðuÞLα̂g at the linear
order in αðxÞ, we arrive at

Z
u¼βðxÞ

u¼0−

ΩðGÞðδg;LχgÞ¼ κ

Z
u¼βðxÞ

u¼0

ΩðGÞðLα̂g;Lβ̂gÞ: ð114Þ

Let us recall that the variation of the gravity
Lagrangian is given by δLðGÞ ¼ EðGÞμνδgμν þ dΘðδgÞ.
Using the equations of motion and taking δ ¼ Lβ̂, we
obtain

Lβ̂L
ðGÞ ¼ −

1

2
ϵTμνLβ̂gμν þ dΘβ̂: ð115Þ

Taking another variation Lα̂, integrating it and using
Cartan’s formula, we have

Z
Lα̂Lβ̂L

ðGÞ ¼ −
1

2

Z
Lα̂ðϵTμνLβ̂gμνÞ þ

Z
dLα̂Θβ̂

¼ −
1

2

Z
dðα̂ · ϵTμνLβ̂gμνÞ þ

Z
dLα̂Θβ̂

¼ −
1

2
ðα̂ · ϵTμνLβ̂gμνÞ þ Lα̂Θβ̂

¼ −
1

2
αðxÞ ffiffiffiffiffiffi

−g
p

TμνLβ̂gμνðdd−1xÞv þ Lα̂Θβ̂

≃ −αðxÞ ffiffiffiffiffiffi
−g

p
TviLβ̂gviðdd−1xÞv þ Lα̂Θβ̂ ¼ Lα̂Θβ̂: ð116Þ

Similarly, we have

Z
Lβ̂Lα̂LðGÞ ¼ −

1

2
βðxÞ ffiffiffiffiffiffi

−g
p

TμνLα̂gμνðdd−1xÞu þ Lβ̂Θα̂:

ð117Þ

Since Lα̂ and Lβ̂ commute, we have
R
Lβ̂Lα̂LðGÞ ¼R

Lα̂Lβ̂L
ðGÞ. Hence we obtain18

ΩðGÞðg;Lα̂g;Lβ̂gÞ≡ Lα̂Θβ̂ − Lβ̂Θα̂ ð118Þ

≃ −
1

2
βðxÞ ffiffiffiffiffiffi

−g
p

TμνLα̂gμνðdd−1xÞu: ð119Þ

By integrating ΩðGÞðg;Lα̂g;Lβ̂gÞ on the v ¼ 0 surface, we
obtain

Z
u¼βðxÞ

u¼0

ΩðGÞðLα̂g;Lβ̂gÞ ¼ 0 ð120Þ

since the term with ðdd−1xÞu does not contribute to the
integral.

This enables us to obtain the following simple constraint
that governs microscopic thermodynamics of gravitational
shock waves on the horizon:

δ

Z
ΣB

Qχ;field − δ

Z
ΣB

QðMÞ
χ;field ¼ 0: ð121Þ

This is the central result of this paper.
As we will see in the next section, the first

term corresponds to the area deformation under two shifts
u → uþ βðxÞ and v → vþ αðxÞ. The second term corre-
sponds to the matter charge variation due to the gravita-
tional shock wave, probed by the horizon translation vector
field β̂.
While the formula itself is remarkably simple (and might

look unsurprising), the underlying reason behind the
simplicity of the formula is rather nontrivial. Here it is
useful to recall the generic relation concerning the Noether
charge from Eq. (54) with on-shell fδg; δϕg, as reprinted
below:

δdQχ;field − δdQðMÞ
χ;field ¼ΩðGÞðδg;LχgÞ

þ dðχ ·ΘðGÞðδgÞÞ− χ ·EðGÞμνδgμν:

ð122Þ
18For general relativity, we have checked thatLα̂Θβ̂≃Lβ̂Θα̂≃0

via brute force calculation.
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In the original analysis due to Wald, the vector field χ was
chosen to be the timelike Killing vector. As a result, we
have Lχg ¼ 0 everywhere in the spacetime and ξ ¼ 0 at the
bifurcation surface which would eliminate the contributions
from three terms on the right-hand side. In our treatment,
however, ξ is not a Killing vector, and ξ ≠ 0 at the
bifurcation surface. Still, the contributions from three terms
vanish due to careful choice of our vector field ξ and the
interval for the integral.
Finally, it is worth emphasizing that, if the original

unshifted timelike vector ξðtÞ were used, we would
not have any interesting thermodynamic relation since

δQðMÞ
ξ;field ¼ δQξ;field ¼ 0. This is related to the fact that

the area variation by v → vþ αðxÞ vanishes at the bifurcate
surface as we shall explicitly see in the next section.

VII. SHOCK WAVE FROM AREA MINIMIZATION

In this section, we derive the gravitational shock wave
equations of motion in general relativity by using the
microscopic thermodynamic relation on the horizon.

A. Area variation

We have evaluated the matter charge δQðMÞ
χ;field in the

previous section. Here we evaluate δQχ;field at ΣB. For
general relativity with scalar fields, the Noether charge is
given by19

Qχ;fielda ¼ −
1

16π
ϵabc∇bχc ð123Þ

where a ¼ a1 � � � ad−2 collectively denotes (d − 2) indices.
Recall that χ is held fixed in variations. Also χ ¼ 0 at ΣB.
Hence we have

δQχ;fielda ¼ −
1

16π
ðδϵabcÞ∇bχc at ΣB: ð124Þ

Nontrivial contributions come from b; c ¼ u, v. We thus
have

δQχ;field ¼ −
κ

8π

1

F
ðdd−2xÞuvδ

ffiffiffi
G

p
at ΣB ð125Þ

where (dd−2xÞuv
ffiffiffi
G

p
is the volume element intrinsic on the

(d − 2)-dimensional surface ΣB.
It is worth relating the variation of the Noether charge

explicitly to the area deformation (Fig. 4). Let Areaðβ; αÞ
denote the total area of the hypersphere at ðu; vÞ ¼ ðβ; αÞ in
the original unperturbed metric ds2. The Noether charge
integral gives

Z
ΣB

δQχ;field ¼ −
κ

8π

1

F
ðAreaðβ;αÞ − Areaðβ; 0ÞÞ

¼ −
κ

8π

1

F
ðAreaðβ;αÞ − Areað0; 0ÞÞ ð126Þ

where we have used Areaðβ; 0Þ ¼ Areað0; 0Þ, since
ðu; vÞ ¼ ðβ; 0Þ is still on the horizon. Hence the Noether
charge variation is proportional to the increase of the area of
the bifurcating horizon by two null shifts u → uþ β and
v → vþ α. Note that α comes from the shift by the
gravitational shock wave while β is set by the shift in
the vector field χ.
One comment follows. If we used the timelike Killing

vector ξ instead of the shifted one χ, we would have the
contribution proportional to Areað0; αÞ − Areað0; 0Þ which
vanishes since ðu; vÞ ¼ ð0; αÞ is still on the horizon. Hence
the Noether charge relation would be trivial.

B. Intrinsic metric

The remaining task is to evaluate the intrinsic metric on
ΣB. A spacetime point on ΣB can be expressed as

Xμðy⃗Þ≡ ðβðy⃗Þ; αðy⃗Þ; y⃗Þ ð127Þ

where αðy⃗Þ results from the metric variation. The intrinsic
metric on ΣB is given by

dσ2 ≡ ds2jðu;v;xÞ¼Xðy⃗Þ ≡ Gijðy⃗Þdyidyj ð128Þ

where

Gijðy⃗Þ ¼ gμνðXðy⃗ÞÞ
∂Xμ

∂yi
∂Xν

∂yj : ð129Þ

We shall Taylor expand Gijðy⃗Þ for small α, β. Looking at
ðμ; νÞ ¼ ðu; vÞ, we have the following contribution to
Gijðy⃗Þ:

FIG. 4. The area deformation in the original unperturbed
geometry.

19For scalar fields, we have Qχ;field ¼ Qχ;Wald. The difference
between Qχ;field and Qχ;Wald generically vanishes as χ → 0. See
Sec. III for discussions.
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guvðXðy⃗ÞÞ
∂β
∂yi

∂α
∂yj ¼

�
Fð0; 0Þ þ ∂2Fðu; vÞ

∂u∂v αβ þ � � �
�

×
∂β
∂yi

∂α
∂yj : ð130Þ

Looking at ðμ; νÞ ¼ ði; jÞ, we have the following contri-
bution to Gijðy⃗Þ:

gijðXðy⃗ÞÞdyidyj ¼
�
Gð0; 0Þ þ ∂2Gðu; vÞ

∂u∂v αβ þ � � �
�

× hijðy⃗Þdyidyj: ð131Þ

We observe that the leading correction to Gijðy⃗Þ is at the
order of αβ. In the expansion of Eq. (130), the term
∂2Fðu;vÞ
∂u∂v αβ ∂β

∂yi
∂α
∂yj is at the order of α2β2, and hence is

negligible. Then we find

dσ2 ≈ 2Fð0; 0Þ ∂β∂yi
∂α
∂yj dy

idyj þ
�
Gð0; 0Þ þ ∂2Gðu; vÞ

∂u∂v αβ

�
hijðy⃗Þdyidyj

¼ dσ2� þ 2Fð0; 0Þ ∂β∂yi
∂α
∂yj dy

idyj þ ∂2Gðu; vÞ
∂u∂v αβhijðy⃗Þdyidyj ð132Þ

where dσ2� represents the unperturbed intrinsic metric when
ðα; βÞ ¼ ð0; 0Þ:

dσ2� ¼ Gð0; 0Þhijdyidyj: ð133Þ

To summarize, we have obtained the variation of the
intrinsic metric:

δGij ¼ 2F∂iα∂jβ þ G;uvαβhij ð134Þ

where F and G;uv are evaluated at u ¼ v ¼ 0.
Recall that the first order variation of the determinant is

δ
ffiffiffi
G

p
¼ 1

2

ffiffiffi
G

p
GijδGij: ð135Þ

Hence the variation of the determinant at ΣB is given by

δ
ffiffiffi
G

p
¼

ffiffiffi
G

p 1

2G
ð2Fð∂jαÞð∂jβÞ þ ðd − 2ÞG;uvαβÞ: ð136Þ

Note Gij ¼ gij ¼ hij
F at u ¼ v ¼ 0. Observe

∂jðβð∂jαÞ ffiffiffi
h

p Þ ¼ ð∂jβÞð∂jαÞ ffiffiffi
h

p þ β∂jðð∂jαÞ ffiffiffi
h

p Þ. After
integrating by parts, we obtain

δ
ffiffiffi
G

p
¼

ffiffiffi
G

p 1

2G
ð−2FβðΔhijαÞ þ ðd − 2ÞG;uvαβÞ: ð137Þ

Note that total derivatives do not contribute to the surface
integral of the Noether charge.
Finally, we derive the shock wave equations of motion.

Using the expression of deformed area density Eq. (137),
we obtain

δQχ;field ¼ −ðdd−2xÞuv
κ

ffiffiffi
G

p
8π

1

2GF
ð−2FβðΔhijαÞ

þ ðd − 2ÞG;uvαβÞ ð138Þ

then the constraint Eq. (121) leads to

−
ffiffiffi
G

p κ

8π

1

2GF
ð−2FðΔhijαÞ þ ðd − 2ÞG;uvαÞβ

¼
ffiffiffi
G

p
4pðvÞFδðxÞκβ: ð139Þ

We can arrange it into the following form:

�
ðΔhijαÞ −

ðd − 2Þ
2

G;uv

F
α − 32πGFpðvÞδðxÞ

�
βκ

ffiffiffi
G

p
¼ 0:

ð140Þ

Hence we recover the shock wave equation of motion

ΔhijαðxÞ −
d − 2

2

G;uv

F
αðxÞ ¼ 32πpðvÞGFδðxÞ: ð141Þ

VIII. GAUSS-BONNET GRAVITY

The microscopic thermodynamic relation can be gener-
alized to arbitrary covariant theory of gravity. The gravi-
tational shock wave equations in the Gauss-Bonnet gravity
have been previously studied for a certain black hole
solution in [20] while exhaustive studies have been
presented in [75,76] with rather involved calculations. In
this section, we present a simpler derivation of the
gravitational shock wave equations of motion in the
Gauss-Bonnet gravity based on the Noether charge method.

A. Noether charge in Gauss-Bonnet gravity

The Lagrangian d-form of the Gauss-Bonnet gravity is

L ¼ ϵa1���ad

�
1

16π
Rþ λ

16π
ðRabcdRabcd − 4RabRab þ R2Þ

�
:

ð142Þ
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This yields the Noether charge (d − 2)-form [67]

Qχa ¼ −ϵade
�

1

16π
∇dχe þ λ

8π
ðR∇dχe

þ 4∇½fχd�Re
f þ Rdefh∇fχhÞ

�
: ð143Þ

We shall focus on a family of the metric of Eq. (76). The
main task is to evaluate the variation δQχ under ðu; vÞ ¼
ðβ; 0Þ → ðβ; αÞ at ΣB. It suffices to compute the contribu-
tion to Qχa from ðd; eÞ ¼ ðu; vÞ in Eq. (143)20:

−ðdd−2xÞuv
ffiffiffi
G

p 1

8π
ð1þ 2λHÞ∇½uχv�;

H ≡ Rμνgμν − 4Ruvguv − 2Ru
uvuguv ð144Þ

and its variation δQχa:

− ðdd−2xÞuvðδ
ffiffiffi
G

p
Þ 1

8π
ð1þ 2λHÞ∇½uχv�

− ðdd−2xÞuv
ffiffiffi
G

p 1

8π
2λðδHÞ∇½uχv�: ð145Þ

To evaluate H, we need the following nonvanishing
Ricci tensors:

Ruv ¼
�
−
F;uv

F
−
d− 2

2

G;uv

G

�
Rij ¼ Rðd−2Þ

ij −
�
G;uv

F

�
hij

ð146Þ

and the following Riemann tensor:

Ru
uvu¼∂vΓu

uu−∂uΓu
vuþΓu

vαΓα
uu−Γu

uαΓα
vu¼∂v

F;u

F
≃
F;uv

F
:

ð147Þ

Putting all these together, we obtain the following simple
result

H ¼ Rðd−2Þ
ij gij ¼ Rðd−2Þ

G
ð148Þ

where Rðd−2Þ is the scalar curvature computed from hij.
As for δH, the following observation simplifies the

calculation. Let us focus on the variation of the first term
Rμνgμν in H:

δðRμνgμνÞ ¼ δðRμνÞgμν þ RμνδðgμνÞ: ð149Þ

By utilizing the following relation

δRρ
μλν ¼ ∇λδΓ

ρ
νμ −∇νδΓ

ρ
λμ; ð150Þ

δðRμνÞgμν can be expressed as a total derivative. In a similar
manner, we can show the following:

δH¼Rμνδgμν−4Ruvδguv−2Ru
uvuδguvþðtotal derivativeÞ:

ð151Þ

Note that total derivatives do not contribute to the surface
integral of the Noether charge. By dropping these terms, we
obtain

δH ¼ Rðd−2Þ
ij δGij: ð152Þ

Using δ
ffiffiffi
G

p ¼ 1
2

ffiffiffi
G

p
GijδGij ¼ − 1

2

ffiffiffi
G

p
GijδGij, the total

variation Eq. (145) can be expressed as

δQχ;field ¼ ðdd−2xÞuv
κ

ffiffiffi
G

p
8πF

δGij

×

�
1

2
Gij

�
1þ 2λ

Rðd−2Þ

G

�
− 2λRðd−2Þ

ij

�
: ð153Þ

Finally, by making use of Eq. (134) and integrating by
parts, one can obtain the gravitational shock wave equa-
tions of motion in the Gauss-Bonnet gravity.

B. Isotropic space

So far, our discussions are applicable to generic
static spacetime in the Gauss-Bonnet gravity. By
specializing in isotropic spaces, one obtains a further
simplified expression of δQχ . Let us consider the following
metric:

ds2 ¼ 2Fðu; vÞdudvþ r2Hhijdx
idxj ð154Þ

where the metric of hij depends on k ¼ 1; 0;−1 and looks
like

k ¼ 1 → de Sitter ðsphereÞ;
k ¼ 0 → flat space;

k ¼ −1 → anti-de Sitter ðhyperbolicÞ: ð155Þ

We then have

Rðd−2Þ
ij ¼ðd−3Þkhij; Rðd−2Þ ¼kðd−3Þðd−2Þ: ð156Þ

Plugging these into Eq. (153), we obtain

δQχ;field ¼ −ðdd−2xÞuv
κ

ffiffiffi
G

p
8π

1

2GF

�
1þ 2λ

kðd− 3Þðd− 4Þ
r2H

�

× ð−2FβðΔhijαÞ þ ðd− 2ÞG;uvαβÞ ð157Þ
20Note there is a factor of 2 which comes from the contribution

of ðd; eÞ ¼ ðv; uÞ.
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where r ¼ rH is the horizon radius. By setting
λGB ≡ λ kðd−3Þðd−4Þ

r2H
, we see that the Noether charge variation

δQχ;field is rescaled by a factor of ð1þ 2λGBÞ. This recovers
the result from [20]

ð1þ2λGBÞ
�
ΔhijαðxÞ−

d−2

2

G;uv

F
αðxÞ

�
¼32πpðvÞGFδðxÞ:

ð158Þ

IX. MEASURING SHOCK WAVES

In this section, we present a brief discussion on the
connection between OTOCs and the thermodynamic rela-
tion. Here we shall focus on the cases where the infalling
and outgoing matters consist of scalar fields for simplicity
of discussion.
So far, we have studied geometries with single gravita-

tional shock waves running in the v direction and derived
the thermodynamic relations by using shifted vector fields
in the u direction. A naturally arising question concerns
geometries with two intersecting gravitational shock waves
running in the u and v directions. Such geometries can be
generated by using shifts αðxÞ and βðxÞ in the v and u
coordinates respectively, and have been explicitly consid-
ered by Kiem, Verlinde, and Verlinde [77]. Readers might
wonder if similar analyses based on the covariant phase
space formalism would reveal thermodynamic relations for
two gravitational shock waves. Unfortunately, the horizon
area deformation induced by two gravitational shock waves
are the second-order contributions, and as such, naive
application of the covariant phase space formalism does
not appear to give rise to nontrivial thermodynamic
relations.21

Nevertheless, the microscopic thermodynamic relation
can be generalized to geometries with two shock waves in a
straightforward manner. This is due to the fact that, in a
geometry with two shock waves, each shock wave needs to
satisfy the corresponding gravitational equation of motion,
which is identical to the one with a single shock wave [77].
Then the effective Lagrangian for two shock waves can be
constructed as follows:

Lshock¼AreaðαðxÞ;βðxÞÞ−
Z

αðxÞTðuÞðxÞ−
Z

βðxÞTðvÞðxÞ

ð159Þ

up to a multiplicative factor for the area term.22 Here
TðuÞðxÞ and TðvÞðxÞ are energy-momentum tensor profiles

running in the u and v directions respectively. By taking the
variation of the Lagrangian, we indeed recover equations of
motion for αðxÞ and βðxÞ:

δLshock

δαðxÞ ¼ EshockðβðxÞ; TðuÞðxÞÞ;
δLshock

δβðxÞ ¼ EshockðαðxÞ; TðvÞðxÞÞ: ð160Þ

Here one may interpret αðxÞ and βðxÞ as scalar fields which
live on the bifurcating sphere, and the AreaðαðxÞ; βðxÞÞ as
interacting massive scalar fields. Then, TðuÞðxÞ and TðvÞðxÞ
can be interpreted as source terms coupled with fields αðxÞ
and βðxÞ.
Let us now turn our attention to the problem of measuring

gravitational shock waves. Recall that the gravitational
shock waves can be probed by out-of-time order correlation
(OTOC) functions of the form hVð0ÞWðtÞVð0ÞWðtÞiwithin
the AdS=CFT correspondence. When the time separation
between two perturbations Vð0Þ andWðtÞ is larger than the
scrambling time, two gravitational shock waves will inter-
sect with each other near the black hole horizon. It can then
be approximated that two shock waves are running on the
black hole horizon and intersect with each other. Such an
approximation would be valid if the values of u, v at the
intersecting location are smaller than the effective shifts α, β.
At the heart of the calculation of OTOCs is the

gravitational scattering unitary matrix. In his pioneering
work, ’t Hooft [78] derived the following scattering unitary
matrix for the Schwarzschild black hole (often called the
horizon S-matrix)23:

U¼ exp

�
i
ZZ

dΩ1dΩ2PoutðΩ1ÞfðΩ1;Ω2ÞPinðΩ2Þ
�

ð161Þ

where fðΩ1;Ω2Þ is the Green’s function for the shock wave
equation.24 Here Pin and Pout account for the incoming and
outgoing energy flux. One can cast the above scattering
matrix in an illuminating form which makes the relation to
the soft thermodynamics more explicit. Here we consider
the limit where two shock waves collide near the horizon.
Note that one can identify PoutðΩ1Þ and PinðΩ2Þ as TðuÞðxÞ
and TðvÞðxÞ respectively. Then, one obtains

αðxÞ ¼
Z

dΩ2fðΩ1;Ω2ÞPinðΩ2Þ;

βðxÞ ¼
Z

dΩ1fðΩ1;Ω2ÞPoutðΩ1Þ: ð162Þ

Recalling that the equations of motion for αðxÞ and βðxÞ
read21We expect that a careful analysis, similar to the one given in

this paper for higher-order matter field variations, will enable us
to treat higher-order metric variations in a controlled matter.

22The effective Lagrangian similar to Eq. (159) was derived by
’t Hooft [78] for the Schwarzschild black hole.

23See [79] also.
24Quantum mechanical aspects of the scattering matrix have

been further studied in recent years; see [80–82] for instance.
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δAreaðαðxÞ; βðxÞÞ ¼
Z

αðxÞTðuÞðxÞ;

δAreaðαðxÞ; βðxÞÞ ¼
Z

βðxÞTðvÞðxÞ; ð163Þ

one can rewrite the above expression as follows:

U ¼ expðiðAreaðαðxÞ; βðxÞÞ − Areað0; 0ÞÞÞ ð164Þ

up to a multiplicative factor for the area. Since Areað0; 0Þ is
a constant, one may express the scattering unitary matrix
simply as

U ¼ expði · AreaðαðxÞ; βðxÞÞ:Þ ð165Þ

This expression suggests that, at the leading order, the
decorrelation of OTOCs is given by the area deformation.25

It is worth emphasizing that this expression of the
scattering unitary matrix can be generalized to any bifur-
cating horizon in generic static spacetime in arbitrary
covariant theory of gravity.26 The above expression of
the scattering matrix can be viewed as a concrete method of
measuring the soft charge, which is realized as the
gravitational shock wave. We hope to further expand this
observation in the future.

Alsonote thatmatter contents render rich additional structures
in the scattering matrix, see the table in [78] for instance. It
will be interesting to extendour analysis to the caseswhere the
infalling and outgoing matters are not scalar fields.

X. OUTLOOK

In this work, we have derived a simple microscopic
thermodynamic relation for the gravitational shock waves
by providing a generic framework to construct the Noether
charge for them.
We anticipate that our formalism can be applied to a

wide variety of geometries in order to study the effect of the
gravitational backreaction. One interesting future problem is
to apply a similar method to stationary black holes where
thermodynamic treatment involves angular momentum [36].
We did not follow the standard treatment of the

soft hair physics in characterizing the gravitational shock
waves. Instead, we opted to work on the gravitational
shock wave solutions on a more generic setting. It would
be interesting to translate our results to the language of the
soft hair physics and study the consequence of the
finiteness of the black hole entropy. Also, it is an
interesting future problem to generalize the expression
of the gravitational scattering matrix so that it would be
applicable to generic soft charges which may be beyond
the gravitational shock waves. Developing a generic
framework for measurement of soft charges is also an
interesting problem.
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