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Soft thermodynamics of gravitational shock wave
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The gravitational shock waves have provided crucial insights into entanglement structures of black holes
in the AdS/CFT correspondence. Recent progress on the soft hair physics suggests that these developments
from holography may also be applicable to geometries beyond negatively curved spacetime. In this work,
we derive a simple thermodynamic relation which relates the gravitational shock wave to a microscopic
area deformation. Our treatment is based on the covariant phase space formalism and is applicable to any
Killing horizon in generic static spacetime which is governed by arbitrary covariant theory of gravity.
The central idea is to probe the gravitational shock wave, which shifts the horizon in the u direction, by
the Noether charge constructed from a vector field which shifts the horizon in the » direction. As an
application, we illustrate its use for the Gauss-Bonnet gravity. We also derive a simplified form of the
gravitational scattering unitary matrix and show that its leading-order contribution is nothing but the

exponential of the horizon area: U = exp(iArea).

DOI: 10.1103/PhysRevD.105.026003

I. INTRODUCTION

Recent developments at the interface between quantum
gravity and quantum information theory in the AdS/CFT
correspondence have provided useful tools to address
conceptual puzzles concerning quantum aspects of black
holes on less ambiguous settings [1-9]. At the heart of all of
this progress is the improved understanding on how the
structure of quantum entanglement changes dynamically
under the gravitational backreaction from the infalling and
outgoing matter [10-27]. The gravitational shock wave
geometries [28-36] provide a particularly useful family of
analytically tractable models of the gravitational back-
reaction that can be induced by infalling massless particles,
or equivalently, perturbations on the boundary by light
operators.

Despite extensive studies in the past decades and recent
revivals in the AdS/CFT correspondence, the quantum
origin of the gravitational shock waves still remains elusive.
The gravitational shock waves in the black hole background
are often interpreted as low-energy excitations which con-
stitute the microscopic degrees of freedom of the quantum
black hole. It is, however, unclear how the gravitational
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shock waves are ever quantized and account for the finite
value of Bekenstein-Hawking entropy in a concrete manner.
Also, if one hopes to study geometries beyond the AdS/CFT
correspondence (e.g., asymptotically flat spaces or systems
without the spatial infinity as in the de Sitter space),
additional technical and conceptual subtleties often hinder
naive application of holographic intuitions.' Hence, as a first
step, it is desirable to develop a universal framework to
characterize the gravitational shock waves through some
microscopic lens in a way applicable to geometries beyond
the AdS/CFT correspondence as well.

Recent rapid progress on the soft hair of black holes in
an asymptotically flat space provide useful hints toward
such a goal with series of interesting derivations of the
Bekenstein-Hawking entropy [39-44].% It has been also
pointed out that the linearized gravitational shock waves
can be realized as Bondi-Metzner-Sachs (BMS) super-
translations via certain choices of parameters [55-57].
Furthermore, some general expressions of thermodynamic
relations for soft charges have been derived for the
Schwarzschild black hole and several other geometries [58].

While these developments may provide a further insight
into quantum aspects of the gravitational shock waves, it
remains unclear how the soft charges may be measured in a

'For instance, the absence of the spatial infinity may suggest
that the structure of quantum entanglement in the de Sitter space
differs crucially from that of the AdS space or the asymptotically
flat space. See [37,38] for other studies of entanglement structure
in the de Sitter space.

See [45-54] for samples of earlier works and relevant
developments.
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concrete setting. In addition, the derived thermodynamic
relations, associated with soft charges, are in rather abstract
forms without concrete physical interpretations. As such,
the implications of the soft hair physics on conceptual
puzzles of quantum black holes still remain vague, in
comparison with concrete developments within the frame-
work of the AdS/CFT correspondence. What is currently
missing is an effort to tie these two developments. Hence,
deriving a microscopic thermodynamic characterization of
the gravitational shock waves on a unified footing may be
the necessary first step.

In this paper, we derive the microscopic thermodynamic
relations which are localized on the near horizon region and
are sensitive to the gravitational shock wave in a concrete
form. Our treatment is applicable to arbitrary gravitational
shock waves at a bifurcating horizon in generic static
spacetime (including AdS, dS, and asymptotically flat
spaces), and is valid for arbitrary covariant theory of gravity
which may be beyond general relativity (e.g., higher-
derivative gravity theories). Furthermore, our thermody-
namic relation provides a concrete physical interpretation of
the gravitational shock waves, or soft charges. In particular,
we derive a simple formula which relates the horizon area
deformation induced by two intersecting gravitational shock
waves to the incoming and outgoing energy sources. We will
then find that the soft charge associated with the gravita-
tional shock waves is nothing but the horizon area in the
presence of two intersecting gravitational shock waves.

Our main technical machinery is the covariant phase
space formalism, namely Wald’s Noether charge method. It
turns out that the original treatment by Wald, which focuses
on contributions at the linear order of field variations, is not
sufficient to probe the gravitational shock wave. For this
reason, we will extend the Noether charge method to
include variations of the matter fields at arbitrary order.
This refinement enables us to obtain the microscopic
thermodynamic relations [as in Eq. (7)] which directly
associate the area deformation to the energy-momentum
tensor variation. One benefit of the covariant phase space
formalism is that it is applicable to arbitrary covariant
theory of gravity. As an application, we demonstrate that, in
the Gauss-Bonnet gravity [59-62], the gravitational shock
wave equations indeed follow from the microscopic
thermodynamic relation with much simplified calculations.

Our result also suggests a concrete framework to physi-
cally characterize (or, even measure) soft charges via out-of-
time order correlation (OTOC) functions. The leading-
order (in 1/Gy) behaviors of OTOCs are dominated by
the gravitational scattering unitary matrix which typically
takes the following form: U = exp [i[[d€2;d€2%P o, (£2)
F(Q, Q)P (Q,)]. Here f(Q4,Q,) is the Green’s function
for the shock wave equation, and P;, and P, account for the
incoming and outgoing energy fluxes. Our thermodynamic
characterization enables us to rewrite the above scattering
matrix into a simple form:

U = exp(iArea) (1)

up to some multiplicative factor in the phase. Here “Area”
represents the horizon area in the presence of two intersect-
ing gravitational shock waves due to P;, and P, Thus, the
phase factor of the scattering matrix is proportional to the
horizon area (or equivalently, the soft charge of an infalling
matter measured by an outgoing matter).

A. Main result

Here we present a summary of our main result. We study
a bifurcating Killing horizon in generic static spacetime of
the following form:

ds? = 2F (u, v)dudv + G(u, v)h;jdx'dx’,
T =2T,,dudv + T, dudu + T ,,dvdv + T;;dx'dx’ (2)

where u =0 and v =0 corresponds to the bifurcating
horizons. We assume that the timelike vector 0, =
k(—ud, + v9,) is a Killing vector of the spacetime. The
gravitational shock wave can be generated by shifting this
spacetime as [see Fig. 1]

b=v+0(u)a(x) (3)

where 6(u) is a step function and x collectively denotes
angular profiles. At the leading order, the metric variation can
be computed by considering the horizon translation vector :

59/41/ = e(u)cﬁzgﬂw a= (Z(X)a“ (4)
where L, is the Lie derivative with respect to a. To satisfy the
Einstein equation, an additional energy-momentum tensor
needs to be introduced:

T = 70) (x)6(u). (5)

For general relativity [ie., L(® =L (R—2A)], Sfetsos

derived the shock wave equation of motion which relates

U v

FIG. 1. Gravitational shock wave at ¥ = 0, moving in the v
direction. The shaded region experiences metric variations.
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the shift profile a(x) and the energy-momentum profile
T(P)(x) via a certain differential equation [32]. In this paper,
we will work on arbitrary covariant theory of gravity (i.e.,
arbitrary covariant Lagrangian L(¢)) which may be beyond
general relativity.

We will investigate the shock wave geometry by using the
covariant phase space formalism [63-68]° and derive a micro-
scopic thermodynamic formula which captures low-energy
excitations on the Killing horizon. The standard method
utilizes the timelike Killing vector £() = 9, to construct the
Noether charge Q; and relate the horizon area (at u = v = 0)
to the ADM thermodynamic parameters at asymptotic infinity.
It turns out, however, that the area variation due to the
gravitational shock wave vanishes at u — 0, and hence non-
trivial thermodynamic relations cannot be derived.

In this paper, we study the gravitational shock wave by
using the Noether charge Q ) constructed from another
horizon translation vector ﬁ in the u direction:

B :ﬂ(x)au' (6)

In particular, we probe the gravitational shock wave, which
was generated by the shift v — v + a(x) in the v direction,
by another shift u — u + f(x) in the u direction. For
general relativity, this enables us to derive the following
microscopic thermodynamic relation:

Area(f(x),a(x)) —Area(0,0) = / V=9p(x)T?) (x)dx (7)

up to a multiplicative factor. Here Area(f(x), a(x)) corre-
sponds to the total area of the sphere at u = f(x) and
v = a(x). For a generic covariant Lagrangian L(%), the area
term would correspond to the Wald’s geometric entropy.
This thermodynamic relation can be rewritten as

Eshockﬂ(x) =0 (8)

such that Eg.4 =0 corresponds to the shock wave
equation of motion for a(x) and 7(")(x).

We will also study the gravitational scattering unitary
matrix:

U = exp |:i//dgldQZPout(Ql)f(Ql’QZ)Pin(QZ) - 09

Let us assume that P, and P;, induce the shifts a(x) and
B(x). Then, for general relativity, the above thermodynamic
characterization enables us to rewrite {/ as follows:

U = exp(i(Area(a(x), f(x)) — Area(0,0))) (10)

3See [69] for a review.

up to a multiplicative factor for the area. Hence, the
scattering matrix is the exponential of the horizon area
(or equivalently, the soft charge).

B. Relation to previous works

The microscopic relation between the area deformation and
the gravitational shock wave for the Schwarzschild black
hole, for the case with 7#* = 0 (i.e., a “sourceless” shock
wave), was initially communicated to us from Yoni BenTov.*
Our contribution is to include the energy-momentum tensor
and extend this observation to a bifurcate Killing horizon in
generic static spacetime for arbitrary covariant theory of
gravity. The covariant phase space formalism has been
recently applied to the Jackiw-Teitelboim (JT) gravity which
is a tractable model of the gravitational backreaction [70].

In an asymptotically flat space, Hawking, Perry, and
Strominger have identified a concrete way of generating the
gravitational shock wave from BMS supertranslation and
superrotation on the boundary of the asymptotic flat space-
time [57]. Namely they provided a generic formula to prove
the shock wave can be created by a supertranslation, by
using the Noether charge constructed from a superrotation.
This result was further investigated and extended, see
[58,71-73] for instance. It is worth clarifying our contri-
butions and novelties in comparison with these previous
works. First, previous works study the linearized shock
wave near the horizon whereas our treatment applies to the
shock wave which runs exactly on the horizon as well.
Second, our thermodynamic relation is cast in a concrete
form. The shock waves described by these relations can be
considered low-energy excitations, which span the black
hole microstates. So these thermodynamic relations give
useful hints to the Hilbert space of a black hole.

Third, as already noted above, our treatment applies to
any bifurcate Killing horizon in generic static spacetime for
arbitrary covariant theory of gravity.

It should be noted that, while our primary motivation
stems from quantum aspects of black holes, the treatments
in the present paper are entirely classical. Also, our treat-
ment is localized near the horizon and does not consider
asymptotic infinity or boundaries. As such, we do not
discuss BMS transformations in a direct manner.

C. Organization

The paper is organized as follows. In Sec. II, we present a
review of Wald’s Noether charge method. In Sec. III, we
will make certain refinements to the Wald’s entropy
formula so that it is valid up to higher order of matter
field variations. In Sec. IV, we present a review of
gravitational shock wave in general relativity on a bifurcate
Killing horizon in generic static spacetime. In Sec. V, we
investigate the variations of the metric due to horizon

*BenTov told us that he learned it from Alexei Kitaev.
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translations. In Sec. VI, we derive a microscopic thermo-
dynamic relation on the horizon. In Sec. VII, we apply our
formalism to general relativity and demonstrate that the
shock wave equations of motion indeed follow from the
area deformation. In Sec. VIII, we apply our formalism to
the Gauss-Bonnet gravity. In Sec. IX, we briefly discuss the
gravitational scattering matrix. Fianlly, in Sec. X, we
conclude with discussions.

II. REVIEW OF THE NOETHER CHARGE
METHOD

In this section, we present a self-contained review of the
Noether charge method in the presence of matter fields.
Readers who are familiar with the method may skip to the
next section.

A. Variation of Lagrangian

Bold letters are used to represent differential forms.
Consider the following diffeomorphism covariant
Lagrangian d-form on a d-dimensional manifold”:

L =L©O LM (11)

where L(%) is the gravitational Lagrangian d-form and
L™) is the matter Lagrangian d-form. Here we assumed
that the Lagrangian can be separated into two parts L()
and L™ ° At the linear order in 0g,» 6¢, the variations can
be expressed as

5L(G) — E(G)/‘”(‘jg}w + de© (g,w, 59;41/)’

1
5L(M) = EeTﬂy(sglw + E 5¢ + d® (gﬂzn ¢’ 5¢) (12)

where ¢ collectively denotes all the matter fields. Here €
denotes the volume form € = d%x,/=g and @©), @™) are
called symplectic potentials.” These variations lead to
equations of motion:

The diffeomorphism covariance condition is LL(y) =

More precisely, we assume that L(©) consists of terms which
do not involve matter fields ¢p and their covariant derivatives
V, ...V, ¢ whereas L ™) consists of terms which do not involve
Riemann tensors R,,., and their covariant derivatives
Vi -V, Rypeq- As such, Riemann tensors R ., do not directly
couple to matter fields (e.g., terms like R¢> do not appear) in the
Lagrangian. Such matter fields are often said to be minimally
coupled to gravity. Gravitational shock waves with nonminimal
couplmgs have been studied in [74].

’Since the matter Lagrangian does not involve Ramd and its
covariant derivatives, the matter symplectic potential @) can be
constructed so that it does not depend on &g, . See Sec. I of Iyer
and Wald for details [67].

1
E(@)w 4 €T =0, E¢®) =0 (13)

where the energy-momentum tensor is defined by8

2 6(/=gL™)
T = (v59 )L (4
V'] )

Field configurations {g,,.¢} which satisfy equations of
motion Eq. (13) are called on shell.

Now consider variations under an infinitesimal diffeo-
morphism by an arbitrary vector field £. According to
Eq. (12), the total on-shell variation can be expressed by

5L =5L 45 LM =d0\" +d0 {g,,.¢} onshell
(15)
where ©.” =0(9)(g,,.5:7,,) and ©" =0 (g,,,.$.5:4)

with ngﬂy = L:g,, and 3545 = L¢. Here L denotes the Lie
derivative with respect to £. It is worth emphasizing that the
variation 3§L is induced by a diffeomorphism 35 acting on
each field g,,, ¢.

The variation 5§L can be expressed in another form due
to the diffeomorphism covariance. The covariance of the
gravity and matter Lagrangians implies

6: L@ = £ LE,  §LM = £, LM (16)

where EéL(G),LéL("’” are the Lie derivatives of

L@ LM We have
5§L =L:L© =d(é-L9),
LM = LM = d(g- L) (17)

where we made use of the Cartan’s magic formula’

LA=E-dA+d(E-A)  Aabitrary.  (18)

Note that §;L (9, §,L™) must be total derivatives accord-
ing to Eq. (17).
The Euler-Lagrange derivative is defined by

6L OL oL oL
%—%—8 7+aﬂaym+

s 00,4
Here & - A indicates insertion of £ into the first argument of A.
It is also called the interior product and denoted as z:A.
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B. Wald’s entropy formula
Wald introduced the following Noether current (d — 1)-form

Jewaa =07 =& LO 4@ —¢. LM, (19)
One can verify

dJewaa =0 {g, ¢} on shell. (20)

Here we used g to denote the metric tensor g, for brevity

of notation. One can actually show that Jewyuq Iis
|

83 waia = 0@ (L:g)] — & LG +

exact due to the fact that J; wyq is closed for all £ [65]. As
such, the Noether charge (d — 2)-form Qg w4 can be con-
structed'”

{g,¢} onshell.
(1)

3Q¢ waa suchthat Je: waq = dQe wad

Let us now fix £ and consider the variation of the Noether
current Eq. (19) at the linear orders of &g, , 6¢:

SO (Lygp)] - &- LM

= 5[0 (Leg)] — £ dOO)(Sg) + 5[O@M)(Legp)] — & - dOM (5¢)) (22)

where we used the on-shell conditions Eq. (13) in the second line. Let us define the symplectic currents Q(%)(g, 5g, L:g),

QM (g.59, Leg. ¢.5¢. Leh) by

Q9 (g,89. Leg) = 5[09) (g, Lg)] — L[OC) (g, 89)].

QM) (g,8g, L:9, b, ¢, Lep) = 5[OM

By using the Cartan’s formula Eq. (18), we obtain

g, b. L)) — L[OM) (g, . 56)). (23)

e waa = Q9 (89, Leg) + d(&- 09 (39)) + QM (Sg. Leg. 5¢. L) + d(& - OM (5¢))  {g.¢} on shell.  (24)

Finally we shall focus on variations dg, 6¢p which satisfy the linearized equations of motion. This allows us to replace
Jewaa and its variation 6J ¢ waq With the Noether charge dQ; waq and its variation 6dQ; wa4- Hence, by focusing on on-

shell variations, we obtain

8dQe waa = Q9 (89, Leg) + d(&- OC)(5g)) + QM (g, L9, 5, Legp) + d(&- OM(5¢))

The above expression can be further simplified when & is
a Killing vector:

L:g,, = 0. (26)
Let us further assume a similar relation for the matter field:
L:gp =0. (27)

Then at the linear order in g and 6¢, we have
Q9 (g, L:g)=0,

QM) (8g,L:9,6¢.Lop)=0. (28)

Hence we arrive at the well-celebrated result of Wald:

8dQ¢wag = d(§- 0'9)(39)) +d(¢- O™ (5¢)),
&:Killing vector, L:¢p = 0, {8g.6¢} on shell. (29)

{89,6¢} on shell.  (25)

C. Example: General relativity

We illustrate the covariant phase space formalism and the
Noether charge by looking at general relativity with scalar
fields. The Lagrangian is given by

L© le(R—2A), L(M>:—%€(V”¢)(V”¢). (30)

T l6n

The equations of motion are

EGw — —LeG"”,

(¢) — U
6n E eV, Vig (31)

where G = R — %Rg”” + Ag". The symplectic poten-
tials are given by

A systematic algorithm to construct the Noether charge
Q; waa can be found in Iyer and Wald [67].
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1
9((;,;). = €gave 7= 99" (V§8gen = Vebasn),
abe 167 : '
O = —€upe (V)5 (32)
and the energy-momentum tensor is
=V ¢vl/¢ g/w a¢va¢ (33)
For variations by diffeomorphism, we have
1
Ol = Caane 7 (Vo Ve +V, Vgl —2049,). (34)

To compute the Noether current, it is useful to make use
of the following relation:
vevdfe - vdvege = _Rﬂadﬁéa =

G) ag

We can then rewrite 65

R (39)

1
e«figz = €dabe Tor (veveéd - Vevdfe + 2Rad§a) (36)

and obtain

Jewaldgpe = €dabe To— (V VeEd -V, Viage + 2R, 1E7)

1
- —edabcé:d(R - 2A) - edabchege‘

167 (37)

By using the Einstein equation

1 1
T;w = g (R/,w - Eg/w(R - ZA)) (38)

we arrive at

Jg,WaldabC edahc (V veffd Vevdfe)- (39)

SL(M)

5§L [:5 ?
I

‘Cﬁg;u/

5L<M SL
+ Letp

+ Lep

Hence the expression of J:wyq is written entirely with
the metric and does not contain A, ¢ or T,, explicitly.
Finally we obtain the Noether charge

eabcdvcéd- (40)

1
Q:waldyp = ~lon
III. TWO REFINEMENTS TO
WALD’S ENTROPY FORMULA

The original Noether charge method is not particularly
suitable for studying the gravitational shock wave
geometries. In this section, we will make two refinements
to the Wald’s entropy formula.

First, we will derive an alternative expression of the
Noether current J;gelq, Which differs from the Wald’s
construction Jswyqg, by evaluating the Lie derivative of
the matter Lagrangian £§L(M ) explicitly and relating it to
the energy-momentum tensor 7,,. Our construction of the
Noether charge Qg f¢q is particularly useful for studying
the gravitational backreaction as it relates the energy-
momentum tensor variation directly to the metric variation.

Second, we will extend the linear order analysis by Wald
to the higher-order matter field variations 8¢ while keeping
the metric variation &g at the linear order. This is due to the
fact that contributions from the linear order variation 5¢
vanish for the gravitational shock wave geometries, and
hence the linear order variation of 7 is induced by the
higher-order variation of ¢. Our construction of the Noether
current Q; fejq €nables us to evaluate its variation 6Qg fie1q
under the matter field variation 6¢p at any order in a
systematic manner.

A. Matter current

Our derivation deviates from Wald’s where we evaluate
the Lie derivative £§L(M) of the matter Lagrangian in
Eq. (17). Diffeomorphism variation of the matter
Lagrangian can be explicitly evaluated as follows:

SLM) )
— +dO
5¢ + a9,

()
()
+dO)

Viéy
e /w 6¢

= d¥x,/—gT"V wéy) + £§¢

M)
+d®)"
o9

= d%%\/=gV,(T"¢&,) — A% /=g(V,T")E, + LHE@) + a0

= —e(V,T")E, + d9x9,(/—gT*¢,) + dO."

(41)
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where we made use of the metric compatibility

vnfgm/ =0, ‘Cégﬂb = vﬂ‘fl/ =+ vbgﬂ (42)

the evaluation of the integral by parts, and the on-shell
condition of matter fields. Let us define the matter current
(d — 1)-form by

M M _ M }
Ja(f.fiz:ld =J é,fiildﬂv —g(d*'x) o J é’ﬁzﬂd” =-TM¢,.
(43)

Here (d%"'x), is a (d — 1)-form that does nor contain
dx*."" We then obtain

LLM =—¢(V,T)&, —dIn+dOM  ponshell.
(45)
Recall that £:L (M) can be expressed as a total derivative,

according to Eq. (17). Thus, from Eq. (45), we can deduce
the conservation of the energy-momentum tensor:

Vv, " =0 ¢ on shell. (46)

Then, the Lie derivative of the matter Lagrangian £§L<M )
can be expressed as

LLM = —qJl + a0  ponshell.  (47)

Also, the Lie derivative of the gravity Lagrangian is given
by

ggL(G) - dJ.%ild + d(-)i,@ {g, ¢} on shell. (48)

0J e fiela = 5[@(6)(£§9)] —&-5LO 4 5J.(fl,‘f/{12:1d
510 (L.g)] — & - dOO) (5g) + 5J%ild —¢-EOmgg,
5109 (Leg)] — L0 (59)] + d(& - 01 (59)) + 8Ty = £~ EOWeg,

Here it is worth emphasizing that LéL(G) #* d@((:G) and

£§L(M) + d@éM) due to the matter current.
We define the Noether current (d — 1)-form by

Je fied = @ng) —-&-LO + J%‘):ld- (49)
One can verify that J;: 4 is closed when {g, ¢} are on shell:

dJ: fiela = d@éG) —d(&-L9)+ dJEfl,l;li)eld
= dG).»(:G> - ﬁéL(G) + dJ%ild
=0. (50)

Then one can construct the Noether charge Qg fja:

{g,¢} on shell.
(51)

3Q¢fieia such that  J; feig = dQg el

Note that our definition J¢ geyq differs from Wald’s J; wai
since, instead of (-)f;w> —-£- L™ we have used J%éld.
We will compare two constructions in Sec. I[II C

B. Higher-order matter variation

Until this point, our derivation of the Noether current
Eq. (49) is an exact calculation which does not rely on
perturbative analysis.12 The remaining task is to evaluate
the variation of the Noether current Eq. (49) under 6g,,,, 5¢.

We will focus on the linear order metric variation dg,,
while we do not impose such restriction on the matter field
variation d¢. We then obtain

1
= 30 (Leg)] - L]0/ (39)] + d(¢ - 0 (3)) + 8T phy +5 (¢ €) 0, (52)
YExplicitly, we have
(a4-Pyx) ! dx¥ AL AdxP (44)

) | 6#1 s Hplpti---Vd

where € is the Levi-Civita symbol. Here JéM) should be understood as the Hodge dual of the 1-form current.
2Recall that it suffices to use the linearized variation formula Eq. (12) to evaluate the Lie derivative.
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where we used E(© = —LeT# By using the gravity part
of the symplectic current Q%) (5g, L:9) = 5[0 (Lq)]-
L:[0'9(5g)], we obtain"’

5J§,field =Q(0) (9. 'Céjg) +d(¢- 0 (69))

1
+5J£?1.¥i)eld +§(§'€)T’w59ﬂv {g.¢} onshell. (53)

It is worth emphasizing again that Eq. (53) is valid up to the
linear order in 6g,, and up to any order in 6¢. Note that the
matter field variation 6¢) enters through the matter current

variation 6J %ild. Finally we shall focus on variations g, 6¢

which satisfy the equations of motion up to the linear order
in g and up to any desired order in 5¢.
Finally, we arrive at

8dQ¢ isa = Q9 (89, L:9) +d(&- 0 (59)) + 5J%.):1d

1
+§(<§-€)T"”5gﬂb {8g,6¢} on shell. (54)

We will use this formula to derive the microscopic
thermodynamic relation.

The above expression can be further simplified when & is
a Killing vector of the spacetime:

L:gu, = 0. (55)

Then we have Q@) (&g, L:g) = 0 in the linear order in g.
When ¢ is a Killing vector, the matter current is
conserved:

V00 = -V (T0E) = ~(V,T)E, - TWY,E,

1
= —ETM/(V”&/ + vl/é/l) =0 (56)
or equivalently
It = 0. (57)

Thus, we can construct the matter charge (d — 2)-form
Q%im such that

M (M
J((:,ﬁ)eld = dQ:,fiild' (58)
Hence we arrive at the following expression:

BIn fact, we do not need the on-shell condition for the matter
fields ¢ for this equation to hold. We would need it to make sure

dJ%il 4 = 0 so that the matter charge Q%Ld can be constructed.

1
8dQ; saq = d(§ - O(9)(39)) + 5dQLhy + 5 (& €)TH5g,,.

£:Killing vector, {8g, 5¢} on shell (59)

which is valid up to linear order in §g and any order in 5¢.

C. Comparison

Let us explicitly compare two possible constructions of
the matter current

M M
J«(f,\’\zald = ®«<§ )(¢’ Lep)—¢- L),

M M _ M ”
Jé.,ﬁlld =J a(f.fiildﬂ\/ —g(dd IX)/,U where J é.fiildﬂ =-T"¢,.

(60)
To begin, we compare their total derivatives:
I Ng = A0 — d(g - L)
=-EP L - %GT””EégW (61)

and

dJé],‘f{n)ald = _ddx\/ _gvu(Tm/év)
= —€((VMT”U)§D + Tlll/v(”fy))

1
= (W18 5T ). (62
Their difference indeed vanishes for matter fields on shell:

dY g~ A =B Lop—e(V, T™)E, =0 ¢onshell.
(63)
Hence both J g@ald and J%ild lead to valid constructions of

the Noether charge Q: waa and Qg fieid-
Next, let us look at the scalar field Lagrangian

1
L catar = —Eeg"”vﬂqﬁvygb, (64)

We have
10, = < @),

1

=— <Vﬂ¢vv¢§y _ Efﬂva(ﬁva(/’)) \/—_g(dd_IX)ﬂ,

1

Iia = - ((V%)a«ﬁ - Eé”Vade“d)) Nt

= - <§yvy¢vﬂ¢ - ;gﬂv(lqsva(ﬁ) \/__g(dd—lx)”‘
(65)
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Hence, we have

= Jg@ald' (66)

For the electromagnetic Lagrangian

(
J & field

1

LEM = _ZGFIWFMD (67)

we have

a 1 aff
T/w = F/thy - Zg/wFa/}F , (68)
G)fzbc) (A 5A> = e/mchlméAm (69)
a 6LEM a
B = 200 = oy, e, (70)
and

M v _
3y = -Te,/=g(d% %),
1
- (FﬂF - Zg/‘”FaﬁF“/f) E/=9(d4x),,

1
Jg\/{\;ald == <F'm£§Aa - Zf”Fap’F“ﬂ> V=g(d¥1x),
1
) (FW” o+ P (EA,) = 1 EF >

X \/=g(d'x), (71)

where we used the Cartan’s magic formula for the Lie
derivative. Hence we obtain

I = T80 = RV (&A,)y=g(d4 ), (72)

which, by imposing on-shell conditions V, F** =0,
becomes

J%ild _Jg@ald =V, (Fr&'A,)y/=g(d*'x), (A, onshell).

(73)

Note that two definitions of the matter current for the
electromagnetic field differ by a total derivative. Thus we
can write

(M) (A
J.»:.ﬁeld - J.»:.Wald = ng ) (74)
|
F G,
Lu=7%-  Th=-35h
G, . G,
F;j—ZGcS;, Fjjj—z 5;,

which leads to the following difference of two construc-
tions:

Q.f,ﬁeld - Qé,Wald = QéA) (75)

Here it is worth emphasizing that the charge difference

QéA) is linear in the vector field &, and thus vanishes
as £ — 0.

In fact, by following Iyer and Wald (Lemma 3.1 in [67]),
one can show that, for an arbitrary matter Lagrangian,
(@ J; ( ﬁ)eld and J; ( “Zald differ only by a total derivative.
(b) The charge dlfference Q vanishes as & — 0.
For our application to the grav1tational shock wave geom-
etries, terms which vanish as £ — 0 do not contribute to the
surface integral of the Noether charge. As such, our
construction of the Noether charge Q; fieiq bears the same
geometrical meaning as the Wald’s construction Qg wyq-

IV. GRAVITATIONAL SHOCK WAVE IN
GENERAL RELATIVITY

Having reviewed and refined the Noether charge for-
mula, let us shift the gear a bit. In this section, we present a
brief review of gravitational shock wave geometries in
general gravity by following the works by Dray, 't Hooft,
and Sfetsos [29,32] who derived the gravitational shock
wave equations of motion from the Einstein equation.

Consider the following family of d-dimensional static
spacetime, expressed in the Kruskal-type coordinate and its
corresponding energy-momentum tensor:

ds? =2F (u,v)dudv+ G(u,v)h;;dx'dx/,
T=2T,,dudv+T,,dudu+T,,dvdv+T;dx'dx. (76)

Following Sfetsos [32], we assume that the metric and
matter fields satisfy the following conditions:

G,v = F,v = TW =0 (” = 0)’ (77)

G, =F,=T, =0 (v=0). (78)

The above conditions follow from the assumption that the
timelike vector 0, is a Killing vector of the spacetime as we
will see in the next subsection. Nonvanishing Christoffel
symbols are

r,=Fe  ppo _Guy
v T F ij — 2F ijs
1
Iy = Eh Whuj + hyj = ) (79)
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Let us shift this spacetime by
v—= 0 =uv+0(u)a(x) (80)

where x represents x/ collectively and @(u) is a step
function. The resulting metric and energy-momentum
tensor are

ds* = 2F (u, v + Oa)du(dv + Oa ;dx")
+ G(u, v + a) h;jdx' dx’ (81)

and

T =2T,,(u, v+ 0a,x)du(dv + Oa ;dx')
+ T (u, v + Oa, x)du?
+ T, (u, v + Oa, x)(dv + Oa ;dx")?
+ T;;(u, v+ Oa, x)dx'dx’. (82)

Note that the shifted metric and the shifted energy-
momentum tensor still satisfy the Einstein equation except
atu = 0 where an additional source of the energy-momentum
tensor is needed. Consider the extra contribution to the
energy-momentum tensor from a massless particle, located
at u = 0 and moving with the speed of light in the v direction:

7 = 7P) g2 — 4p W F25(x)8(u)du? (83)

where p(¥) is the momentum of the particle;
T(P)vv = 4p()5(1)5(x)."* The Einstein equation is satisfied
if Eq. (77) holds and the following equation holds:

d-2G,,

Ap,a(x) ———

= ()
> F a(x) = 32zp'"'GFs(x).  (84)

Here the Laplacian is defined as A, = # O/ hhii 0;. We will

derive this equation by using the Noether charge method later. 15

V. HORIZON TRANSLATION VECTOR

In this section, we investigate the symmetry properties of
the spacetime. The gravitational shock wave solutions
require certain consistency conditions on the fields
9uw» Ty as we reviewed in the previous section. These
conditions actually follow from the existence of the time-
like Killing vector £(") = 9, as we shall show in this section.
We will also study the effect of a vector field ﬁ which
introduces the horizon translation. In later sections, we will

“Our choice of T(P)7? = 4p(")§(1)8(x) differs from Sfetsos’s
by a factor of (—1) due to the sign difference in the Einstein
equation.

"“We note that Eq. (78) is not necessary to derive Eq. (84). We
will however assume both Eq. (77) and Eq. (78) in this paper
since we are interested in static spacetime.

use the horizon translation vector ,B to construct the Noether
charge which is sensitive to the gravitational shock wave.
Note that the argument in this and the next section holds not
only for general relativity but also for generic covariant
theories of gravity.

A. Timelike vector

In this subsection, we verify that Eq. (77) and Eq. (78)
follow from the fact that the timelike &) = 9, vector is a
Killing vector.

A vector field ¢ is a Killing vector if L¢g,, = 0. Let us
begin by computing L:g,, for the metric given in Eq. (76).
Looking at (u,v) = (u,v), we have

'Cégm; = fa (aaguv) + (auéa)gav + (avéa)gua
= éuF,u =+ ngv + (augu + ai}gv)F‘ (85)

Looking at (u,v) = (i, ), we have

Legij = £9(0agi;) + (0:€%)gaj + (0;6") gia
= &G i+ E'G ,h;j + E(Org;;)
+ (9:E") g1 + (9;€5) gin. (86)

Looking at (u,v) = (u, i), we have

Efgui = gu (aagui) + (814§u)gai + (aiéu)gua
= (augj)gji + (aigv)guv' (87)

Looking at (u,v) = (v, i), we have

'Cigvi = ga(aagvi) + <8v§a)gai + (81'5”)91)11
= (avgj)gji + (aifu)guv' (88)

Consider the following timelike vector field:
&N = k(—ud, + v0,) (89)
where « represents the surface gravity. One can verify

Lo Guvs L gij = 0, u—0orv—0 (90)

and L0 gyis Lew g0 = 0, suggesting that £ asymptotically
becomes a Killing vector on the horizon atu = 0and v = 0
due to Egs. (77) and (78). Furthermore, we see that the

norm of £ vanishes on the horizon, and &¥ =0 at
(u,v) = (0,0)."® Hence, u = 0 and v = 0 hypersurfaces

'“The norm is given by 2&g,,&" =—2k2uvF —0 for u, v — 0
where we assumed F(u, v) is not divergent at u = 0 or v = 0. For
nonstatic black holes, such as the Kerr black hole, g,, in the
Kruskal-like coordinate contains a term proportional to (uv)~!.
As such, u =0 or »=0 hypersurfaces are not horizons
with respect to the timelike Killing vector 9,.
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are Killing horizons of £(). In static black holes such as the

Schwarzschild black hole, &) corresponds exactly to the
timelike Killing vector ,."”

B. Horizon translation

Next, consider the following horizon translation vector
field:

= p(x)d, (91)

where f(x) is an arbitrary function of x’. With direct
calculations, one finds

ﬁ[}guv = ﬂ(x)(auF)’ ‘Cﬁgij = ﬂ(x)hij(auG)’

Namely, at the limit of » — 0, we have
Ef}guvvﬁ/}gij’ﬁf}gui - 07 Eﬁgvi = (81/}<X))F740 (93)

In the next section, we will use this horizon shift vector ﬁ to
construct the Noether charge and derive the microscopic
thermodynamic relations as in Eq. (7). It is worth
recalling that, in the original treatment by Wald, the
vector field ¢ in the Noether charge Q, was chosen to be a
Killing vector. This was crucial in the derivation of Wald’s
Noether charge relation since the presymplectic form
Q©)(g,8g, L:g) vanishes when & is a Killing vector. In
the above calculation, we found that the horizon shift vector ,B
is not a Killing vector at v = 0 [unless (x) does not depend
on x]. Nevertheless, the presymplectic form Q(6) (9,89, E,;g)
vanishes at v = 0 as we shall see in Sec. VIC.

VI. MICROSCOPIC THERMODYNAMICS
ON HORIZON

In this section, we will derive microscopic thermo-
dynamic relations which are localized on the horizon.

A. Noether charge from shifted vector

Let us briefly recall the setup. The original static
spacetime was given by Eq. (76) which is reprinted below

ds? =2F (u,v)dudv+G(u,v)h;;dx'dx/,
T=2T,,dudv+T,,dudu+T,,dvdv+T;dx'dx’. (94)

The shifted metric and the energy-momentum tensor are
given by Eqgs. (81) and (82) which are obtained by

" As for T, we were not able to verify £:T,, = 0 from the
conditions 7', =0 (x =0)and T, = 0 (v = 0) in Egs. (77) and
(78). Note, however, that we did not need to impose L:¢ = 0 or
LT, = 0 in deriving the Noether charge relation in Sec. IIL

u

u \\_/ U
@) /\ ®

FIG. 2. (a) The timelike Killing vector §<’>. (b) The shifted
timelike vector y.

the substitution v — ¥ = v + O(u)a(x). It is worth noting
that, at the leading order in a(x), the metric variation is
given by
59;41/ = H(M)E&Quw a= a(x)au (95)
which can be verified from results in Sec. V. In addition,
there is an extra source of the energy-momentum tensor
Tf,f{) at u = 0 as in Eq. (83). See Fig. 3 for summary.
Let us specify how the integral of the Noether charge is
taken. We will consider an integral of the Noether charge
relation Eq. (54) over the (d — 1)-dimensional surface A at
v = 0 that connects two (d — 2)-dimensional boundaries
2,4 and Xy [see Fig. 2(b) or Fig. 3]:
Zy={(u.0)=(0_.0)}, Zg={(u.,v)=(p(x).0)}. (96)
Here O0_ means that u approaches zero from below. For
our purpose of deriving the shock wave equations of

motion, it actually suffices to choose X, as any boundary
with u < 0.

FIG. 3. The Noether charge integral. A redline represents the
gravitational shock wave running at u = 0. Blue lines represent
the null-shifted timelike vector. The shaded region (u > 0)
experiences the metric variations dg,,, and the energy-momentum
variations 67, which result from the shift v — v + 6(u)a(x). In

addition, at u = 0, the variation 5Tf£> from the shock wave is
introduced.

026003-11



SHUWEI LIU and BENI YOSHIDA

PHYS. REV. D 105, 026003 (2022)

Finally, let us construct the Noether charge. As a vector
field, we shall take the shifted timelike vector

1 =&Y+ &b = k((f(x) ), +v0,)  (97)

in order to construct the Noether charge. It is essential to
observe

¥=0 at3 (98)

which will be useful in simplifying the thermodynamic
relation.

B. Thermodynamic relation

Our central formula is Eq. (54) which is reprinted below:
5dQ;(,ﬁeld =Q(0) (59, E;(Q) + d()(‘ 09 (59)>
1
+8IM 50060139, {59.54} onshell.
(99)

Integrating it on the » = 0 surface generates
5/ dQ, fied = /Q(G) (69.L,9) + / d(y -9 (5g))
A A A

+6 /A dQ%le. (100)

Two comments follow. First, the last term J(y-
€)T"5g,, vanishes since the integral is along the vector
field y and thus [, (y - €) = 0. Second, we have introduced
the matter charge Q)%ild. Here it is useful to note that,

while ,B is not a Killing vector of the spacetime, one can still
construct the matter charge on the » = 0 surface since

1 .
vﬂ (J)(,ﬁeld#) = _ETW([’)(g;w) = _Tm(‘cj(gvi) =0 (U = O)

(101)

Then, by using Stokes’s theorem, we obtain

/ (5Q, s — 3Q, — - 06 (5)) + / QO (3,,)

4 A

- / (6Q, 0 — QL — 1 0 (3)). (102)
B

Below, we will further simplify this expression by using the
properties of the shifted vector field y.
Let us evaluate each term in Eq. (102) at £, and Xp.
First, we observe
20969 =0 atT,, T, (103)
by noting that y = 0 at X3 and 6g = 0 at £,. Second, we
observe

5Q)(,ﬁeld =0 at ZA (104)

since 0g =0 at X,. Third, we can construct the matter
charge Q)%)eld as an integral over v = 0 surface in the u
direction:

M u M u v _
Q;((,fil,ld E/_ J;((,fi)eld = —/_ ™ u\/_g(dd lx)ﬂ

o0

_/u Tvv){v\/:“g(dd—lx>v_

(105)

Due to the constraint 7% = 0 at v = 0 in Eq. (78), we
have

M " v -
5 =~ [T )ma@ ), (106
There are two potential contributions to the variation §7".
The first contribution is due to the metric shift which is
explicitly given by
ST =T"(u,v+ a) — T"(u, v), u>0. (107)
It turns out that this contribution is subleading in a. Recall
that the timelike vector &) is the symmetry of the
spacetime. We then have
LT = —ud,T" + v0,T" = 2T = 0. (108)
Let us Taylor expand 7" for small u and v. Then we find
that only the terms of the form uv“*? are allowed. This
suggests that T%" is ~v> at most, and hence ST" is
~va + . Integrating it along » =0 only generates a
contribution of O(a?). The second contribution comes
from the shock wave. Considering 67" = 4p(")5(u)5(x)
at v = 0, we find

QML =0 atZ, (109)

and

Q= - [ 4 Fotuatn(pa) - )
X _g<dd_lx)v
= (d9-2x),,\/GapWFs(x)kB(x) at Ty, (110)

Note that \/E is the volume element intrinsic on the
(d — 2)-dimensional surface (u,v) = (0,0). Hence, we
obtain

u=p(x)
[ Q=@ [ @9 GgL9=0. (1)
B u
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C. Presymplectic form

The remaining task is to evaluate the presymplectic form
Q) (59, L,g). Here we will show that

u=p()
/ Q) (59, L,9) = 0.
u=0_

(112)

Since the timelike vector &) is the symmetry of the
original spacetime, we have Q() (g, Leo g) ~0, and

QO (39, L£,9) ~ kQ') (59, L) (113)

where ~ denotes that we evaluate the differential form on
the v = 0 surface. Recalling g = 0(u)L;g at the linear
order in a(x), we arrive at

u=p(x) u=p(x)
[ a0 = [ a0t L. (19
u=0 u=0

Let us recall that the wvariation of the gravity
Lagrangian is given by SL(© = E©@"sg,, + dO(sg).
Using the equations of motion and taking § = L, we
obtain

1
ﬁﬁL(G) = —EET”I’E/}QW + d@,} (115)

Taking another variation L,, integrating it and using
Cartan’s formula, we have

1
/ LaLyL) = ) / La(€T" Lygy,) + / dL; 0y

1 .
= —2/d(a'€T””£ﬁgﬂp)+/d£&®ﬁ

L,
= —5 (0( . eTl‘”E/;g,w) + [,;l@/;

1
= —Ea(x)\/—gT"”Eﬁgﬂy(dd‘lx)v + L£:0;

= —a(x)y/=gT" L}g,(d*'x), + L20) = L;0;,

Similarly, we have

1
/ EﬁE&L(G) = —Eﬁ()C)\/—gTﬂyﬁagﬂy(dd_IX)u + Eﬁ@&
(117)

Since L; and L; commute, we have fﬁl;ﬁ&L(G) =
fﬁ&[l/;,L(G). Hence we obtain'®

QO(g, Lag, Lyg) = L:O) — L0, (118)

1
== Eﬂ(X) vV _gTﬂyﬁﬁgﬂy(dd_lx)u' (1 19)
By integrating Q) (g, L,9. L;g9) on the v = 0 surface, we
obtain

u=p()
/ Q) (Lo, £39) =0 (120)

=0

since the term with (d-!x), does not contribute to the
integral.

"For general relativity, we have checked that £,© 52 L;0;~0
via brute force calculation.

(116)

|

This enables us to obtain the following simple constraint
that governs microscopic thermodynamics of gravitational
shock waves on the horizon:

M
6 [ Q= [ Q=0 (21)
Ty Ty
This is the central result of this paper.
As we will see in the next section, the first

term corresponds to the area deformation under two shifts
u — u+ p(x) and v > v+ a(x). The second term corre-
sponds to the matter charge variation due to the gravita-
tional shock wave, probed by the horizon translation vector
field f.

While the formula itself is remarkably simple (and might
look unsurprising), the underlying reason behind the
simplicity of the formula is rather nontrivial. Here it is
useful to recall the generic relation concerning the Noether
charge from Eq. (54) with on-shell {5g, ¢}, as reprinted
below:

8dQ, s — 6dQ' 1Ly = Q9 (9. L,9)
+d(r-09(59)) -y - EOm5g,,.
(122)
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In the original analysis due to Wald, the vector field y was
chosen to be the timelike Killing vector. As a result, we
have £, g = 0 everywhere in the spacetime and & = 0 at the
bifurcation surface which would eliminate the contributions
from three terms on the right-hand side. In our treatment,
however, £ is not a Killing vector, and £# 0 at the
bifurcation surface. Still, the contributions from three terms
vanish due to careful choice of our vector field £ and the
interval for the integral.

Finally, it is worth emphasizing that, if the original
unshifted timelike vector &7 were used, we would
not have any interesting thermodynamic relation since

5Q%2=,1d = 0Q¢fiea = 0. This is related to the fact that

the area variation by v — v + a(x) vanishes at the bifurcate
surface as we shall explicitly see in the next section.

VII. SHOCK WAVE FROM AREA MINIMIZATION

In this section, we derive the gravitational shock wave
equations of motion in general relativity by using the
microscopic thermodynamic relation on the horizon.

A. Area variation

We have evaluated the matter charge 5Q)%>eld in the
previous section. Here we evaluate 6Q, feq at Xp. For
general relativity with scalar fields, the Noether charge is
given by]9

1
Q;(.fielda == —eabcvb)( ¢ (123)

167
where a = a; - - - a4_, collectively denotes (d — 2) indices.
Recall that y is held fixed in variations. Also y = 0 at Xp.
Hence we have

1 i
6Q){,ﬁelda = T3 <5€abc>vac at ZB . ( 124)

167

Nontrivial contributions come from b, ¢ = u, v. We thus
have

k1

- 8rF (dd_zx)uv5 G at Zp

0Qy field = (125)

where (d972x),,1/G is the volume element intrinsic on the
(d — 2)-dimensional surface Xp.

It is worth relating the variation of the Noether charge
explicitly to the area deformation (Fig. 4). Let Area(f, a)
denote the total area of the hypersphere at (u, v) = ($,a) in
the original unperturbed metric ds>. The Noether charge
integral gives

PFor scalar fields, we have Q, field = Q, waia- The difference
between Q, fielq and Q, waqa generically vanishes as y — 0. See
Sec. III for discussions.

Area(s, a) ;

FIG. 4. The area deformation in the original unperturbed
geometry.

F

=— é% (Area(f}, a) — Area(0,0))

1
/ 0Q, field = —SL— (Area(p, a) — Area(p,0))
T T

(126)

where we have used Area(f,0) = Area(0,0), since
(u,v) = (p,0) is still on the horizon. Hence the Noether
charge variation is proportional to the increase of the area of
the bifurcating horizon by two null shifts u — u 4 f and
v = v+ a. Note that @ comes from the shift by the
gravitational shock wave while f is set by the shift in
the vector field y.

One comment follows. If we used the timelike Killing
vector £ instead of the shifted one y, we would have the
contribution proportional to Area(0, a) — Area(0, 0) which
vanishes since (u, v) = (0, a) is still on the horizon. Hence
the Noether charge relation would be trivial.

B. Intrinsic metric

The remaining task is to evaluate the intrinsic metric on
3. A spacetime point on Xz can be expressed as

X1(y) = (B(5). a(y).¥) (127)

where a(y) results from the metric variation. The intrinsic
metric on Xp is given by

do® = ds’|(,, o —x(z) = Gy (V)dy'dy’  (128)

where

19).GN0). &
oyt Oyl

Gij(¥) = gu(X(y)) (129)

We shall Taylor expand G;;(y) for small a, . Looking at
u,v) = (u,v), we have the following contribution to

Gii(¥):
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op o 0°F (u,
(XG5 = (F0.0) + 700 apr.)
op o0
Xa_fi%;’ (130)

Looking at (u,v)
bution to G;;(¥):

= (i, j), we have the following contri-

8/
2 N i
do* ~2F(0,0) jd d/+<

= do? + 2F(0,0) a—ﬂ

where do? represents the unperturbed intrinsic metric when
(a.f) = (0,0):
do? = G(0,0)h,»jdyidyf. (133)

To summarize, we have obtained the variation of the
intrinsic metric:
5g,/ = 2F@,aalﬂ + G,Lwaﬁh,-j (134)

where F and G, are evaluated at u = v = 0.
Recall that the first order variation of the determinant is

1 -
5\/5 - E \/ag”(sg,]

Hence the variation of the determinant at X5 is given by

(135)

5v/G = \f 2F(&a)(d,;f) + (d = 2)G ,,ap). (136)
Note GV =g/ = h—F] at  u=v=0. Observe
0,(p(@a)/R) = (9,6)(@a)Vh + po,(Da)V/h). After
integrating by parts, we obtain

5\/7 \/_ ZFﬁ Ah a) (d - 2)G,m)aﬂ)' (137)

Note that total derivatives do not contribute to the surface
integral of the Noether charge.

Finally, we derive the shock wave equations of motion.
Using the expression of deformed area density Eq. (137),
we obtain

8Q, fied = —(d*?x),, KS\/_ZGF( —2FB(A,,a)
+(d_2) ,uvaﬁ> (138)

= . 0*G(u, v
9;;(X())dy'dy’ = (G(O, 0) + W“ﬂ 1. )
X hyj(V)dy'dy’. (131)
We observe that the leading correction to G; ( y) is at the

order of afi. In the expansion of Eq. (130) the term

P da.
Buaz ﬂ(?\"(?y/

negligible. Then we find

is at the order of &%, and hence is

uv)

(Ndvidy!

02 G(u,v)

dy'dy’ h,(3)dy dy’ 132
Vot s ap ij(9)dy'dy (132)

|
then the constraint Eq. (121) leads to

_\/_8_2G—F( 2F (A, 0) +

= /GapIFs(x)xp

We can arrange it into the following form:

(d - 2)G,uva)ﬁ

(139)

<(Ahifa) -4 ; - GF

—322GFp

) ) /G =0
(140)
Hence we recover the shock wave equation of motion

d=2G,,

Ah (X(X) ) F

a(x) = 32zpWGFs(x).  (141)

VIII. GAUSS-BONNET GRAVITY

The microscopic thermodynamic relation can be gener-
alized to arbitrary covariant theory of gravity. The gravi-
tational shock wave equations in the Gauss-Bonnet gravity
have been previously studied for a certain black hole
solution in [20] while exhaustive studies have been
presented in [75,76] with rather involved calculations. In
this section, we present a simpler derivation of the
gravitational shock wave equations of motion in the
Gauss-Bonnet gravity based on the Noether charge method.

A. Noether charge in Gauss-Bonnet gravity

The Lagrangian d-form of the Gauss-Bonnet gravity is

1 A
L 6o (168 16

161 167 (RupcaR™* — 4R, R™ + R2)> .

(142)
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This yields the Noether charge (d — 2)-form [67]

/1
Q)(a = —€uqe (16 v 8

+ 4V[f)(d]Ref + Rdefhv]f)(h)) .

— (RVy°
(143)

We shall focus on a family of the metric of Eq. (76). The
main task is to evaluate the variation 6Q, under (u,v) =
($.0) = (B, a) at Zp. It suffices to compute the contribu-
tion to Q,,, from (d,e) = (u,v) in Eq. (143)"";

_(dd_zx)uv \/éi

(1 +24H) VI,

8
H= Rﬂygﬂy - 4Ruvgm} - 2Ruuvugm} (144)
and its variation 6Q,
— (d92x),,,( 5\/ 1 + 24H) V!
- (dd‘zx)w\/38—2/1(5H)V[”;(”]. (145)
Vs

To evaluate H, we need the following nonvanishing

Ricci tensors:
_ pld-2) G.uv
=R; " - (T) hij
(146)
and the following Riemann tensor:

F,uv
F
(147)

F
Rum}u 01) uu -0 r‘;u +F?argu rﬁargu = 817?.14:

Putting all these together, we obtain the following simple
result

(d-2)
G

_ pld-2) i
H=R; "¢’ = (148)
where R(“=2) is the scalar curvature computed from #; e

As for O0H, the following observation simplifies the
calculation. Let us focus on the variation of the first term
R, ¢" in H:

6(Rug") = 6(Ryu)g" + Ruo(g™).  (149)

By utilizing the following relation

PNote there is a factor of 2 which comes from the contribution

of (d,e) = (v, u).

5RP/MI/ - V,15F V 5F

A’

(150)

8(R,,)g" can be expressed as a total derivative. In a similar
manner, we can show the following:

6H =R,,69" —4R,,69"" —2R" ,,,69"" + (total derivative).
(151)

Note that total derivatives do not contribute to the surface
integral of the Noether charge. By dropping these terms, we
obtain

5H = RYsG. (152)

Using 6VG = %\/Egifag,-j = —%x/Gg,»jégi/, the total

variation Eq. (145) can be expressed as

/T

(dd_z )ub ﬁ 5gl]

1 R B
x <§g,~j<1+2ﬂ G >-2m§f ”). (153)

Finally, by making use of Eq. (134) and integrating by
parts, one can obtain the gravitational shock wave equa-
tions of motion in the Gauss-Bonnet gravity.

0Qy fiela =

B. Isotropic space

So far, our discussions are applicable to generic
static spacetime in the Gauss-Bonnet gravity. By
specializing in isotropic spaces, one obtains a further
simplified expression of 6Q,. Let us consider the following
metric:

ds* = 2F (u, v)dudv + rh;;dx'dx’ (154)

where the metric of /;; depends on k = 1,0, —1 and looks
like

k =1 — de Sitter (sphere),
k = 0 — flat space,

k = —1 — anti-de Sitter (hyperbolic). (155)

We then have
R = (d=3)khy;. RU2 =k(d—3)(d-2). (156)

Plugging these into Eq. (153), we obtain

1 k(d—3)(d—4
8Q, fied = —(d*2x),, ngrgm (1 + 2/1(,,3()>
H
X (_Q’Fﬁ(Ahija) + (d_ 2)G,m)aﬁ) (157)
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where r=ry is the horizon

dgp =2 k(d—SrZ (d—4)

radius. By setting

, we see that the Noether charge variation

H
8Q, fiela is rescaled by a factor of (1 + 2455). This recovers
the result from [20]

d-2G
(1+2263) (Ahi/_a(x) —T%a(x)) =3272p"GF5(x).

(158)

IX. MEASURING SHOCK WAVES

In this section, we present a brief discussion on the
connection between OTOCs and the thermodynamic rela-
tion. Here we shall focus on the cases where the infalling
and outgoing matters consist of scalar fields for simplicity
of discussion.

So far, we have studied geometries with single gravita-
tional shock waves running in the v direction and derived
the thermodynamic relations by using shifted vector fields
in the u direction. A naturally arising question concerns
geometries with two intersecting gravitational shock waves
running in the # and » directions. Such geometries can be
generated by using shifts a(x) and f#(x) in the v and u
coordinates respectively, and have been explicitly consid-
ered by Kiem, Verlinde, and Verlinde [77]. Readers might
wonder if similar analyses based on the covariant phase
space formalism would reveal thermodynamic relations for
two gravitational shock waves. Unfortunately, the horizon
area deformation induced by two gravitational shock waves
are the second-order contributions, and as such, naive
application of the covariant phase space formalism does
not appear to give rise to nontrivial thermodynamic
relations.”!

Nevertheless, the microscopic thermodynamic relation
can be generalized to geometries with two shock waves in a
straightforward manner. This is due to the fact that, in a
geometry with two shock waves, each shock wave needs to
satisfy the corresponding gravitational equation of motion,
which is identical to the one with a single shock wave [77].
Then the effective Lagrangian for two shock waves can be
constructed as follows:

Liws = Ateala(x).(x)) = [ al)7(x) = [ p)70) (0
(159)

up to a multiplicative factor for the area term.”> Here
T (x) and T")(x) are energy-momentum tensor profiles

'we expect that a careful analysis, similar to the one given in
this paper for higher-order matter field variations, will enable us
to treat higher-order metric variations in a controlled matter.

“The effective Lagrangian similar to Eq. (159) was derived by
’t Hooft [78] for the Schwarzschild black hole.

running in the u and v directions respectively. By taking the
variation of the Lagrangian, we indeed recover equations of
motion for a(x) and f(x):

5Ls oc u

(30!?)6)]( = Eshock(ﬂ(x)’ T< >(X)),

5Ls ock v

5ﬂ€x) - Eshock(a(x)’ T< )(x)) (160)

Here one may interpret a(x) and (x) as scalar fields which
live on the bifurcating sphere, and the Area(a(x), f(x)) as
interacting massive scalar fields. Then, 7*)(x) and T*) (x)
can be interpreted as source terms coupled with fields a(x)
and f(x).

Let us now turn our attention to the problem of measuring
gravitational shock waves. Recall that the gravitational
shock waves can be probed by out-of-time order correlation
(OTOC) functions of the form (V(0)W(7)V(0)W(t)) within
the AdS/CFT correspondence. When the time separation
between two perturbations V(0) and W () is larger than the
scrambling time, two gravitational shock waves will inter-
sect with each other near the black hole horizon. It can then
be approximated that two shock waves are running on the
black hole horizon and intersect with each other. Such an
approximation would be valid if the values of u, v at the
intersecting location are smaller than the effective shifts a, f.

At the heart of the calculation of OTOCs is the
gravitational scattering unitary matrix. In his pioneering
work, 't Hooft [78] derived the following scattering unitary
matrix for the Schwarzschild black hole (often called the
horizon S-matrix)23:

U=exp [i [ dudepai@ir@ara@)| (o)

where f(Q,, Q,) is the Green’s function for the shock wave
equation.”” Here P;, and P, account for the incoming and
outgoing energy flux. One can cast the above scattering
matrix in an illuminating form which makes the relation to
the soft thermodynamics more explicit. Here we consider
the limit where two shock waves collide near the horizon.
Note that one can identify P, (Q;) and P;,(Q,) as T (x)
and T)(x) respectively. Then, one obtains

alx) = / 49 (1. Q) Py(D,).

Bx) = / 40 f( Q1. D)Po(@). (162)

Recalling that the equations of motion for a(x) and f(x)
read

BSee [79] also.
Quantum mechanical aspects of the scattering matrix have
been further studied in recent years; see [80-82] for instance.
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sArea(a(x), f(x)) = / () T (x),

sArea(a(x).fx) = [ AT, (163
one can rewrite the above expression as follows:
U = exp(i(Area(a(x), p(x)) — Area(0,0))) (164)

up to a multiplicative factor for the area. Since Area(0, 0) is
a constant, one may express the scattering unitary matrix
simply as
U = exp(i - Area(a(x), f(x)).) (165)
This expression suggests that, at the leading order, the
decorrelation of OTOCs is given by the area deformation.*
It is worth emphasizing that this expression of the
scattering unitary matrix can be generalized to any bifur-
cating horizon in generic static spacetime in arbitrary
covariant theory of glravity.26 The above expression of
the scattering matrix can be viewed as a concrete method of
measuring the soft charge, which is realized as the
gravitational shock wave. We hope to further expand this
observation in the future.

“Direct measurement of OTOCs in many-body quantum
systems is challenging with inverse time-evolution, but an alter-
native formulation of OTOC:s using entanglement does not require
inverse time evolution. Various experimental protocols for meas-
uring OTOC:s in controlled quantum simulators have been proposed
[83-87], with concrete experimental demonstrations [88-91]. It is
still premature to envision measurement of OTOCsS in gravitational
systems, but at the conceptual level, the smoothness of the black
hole horizon for an infalling observer is an indirect evidence of
decorrelation of OTOCs; see [26,72] for details.

*While OTOCs are concepts primarily studied within the
framework of the AdS/CFT correspondence, they can be
generically defined as correlation functions of matter fields
which were initially located away from the horizon. Hence,
we speculate that our observation may be generalized to asymp-
totically flat spaces as well as the de-Sitter horizon.

Also note that matter contents render rich additional structures
in the scattering matrix, see the table in [78] for instance. It
will be interesting to extend our analysis to the cases where the
infalling and outgoing matters are not scalar fields.

X. OUTLOOK

In this work, we have derived a simple microscopic
thermodynamic relation for the gravitational shock waves
by providing a generic framework to construct the Noether
charge for them.

We anticipate that our formalism can be applied to a
wide variety of geometries in order to study the effect of the
gravitational backreaction. One interesting future problem is
to apply a similar method to stationary black holes where
thermodynamic treatment involves angular momentum [36].

We did not follow the standard treatment of the
soft hair physics in characterizing the gravitational shock
waves. Instead, we opted to work on the gravitational
shock wave solutions on a more generic setting. It would
be interesting to translate our results to the language of the
soft hair physics and study the consequence of the
finiteness of the black hole entropy. Also, it is an
interesting future problem to generalize the expression
of the gravitational scattering matrix so that it would be
applicable to generic soft charges which may be beyond
the gravitational shock waves. Developing a generic
framework for measurement of soft charges is also an
interesting problem.
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