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The S-matrix formulation indicates that a consistent embedding of the de Sitter state in quantum gravity
is possible exclusively as an excited quantum state constructed on top of a valid S-matrix vacuum such as
the Minkowski vacuum. In the present paper we offer such a construction of the de Sitter state in the form of
a coherent state of gravitons. Unlike previous realizations of this idea, we focus on BRST invariance as the
guiding principle for physicality. In order to establish the universal rules of gauge consistency, we study the
BRST-invariant construction of coherent states created by classical and quantum sources in QED and in
linearized gravity. Introduction of N copies of scalar matter coupled to gravity allows us to take a special
double scaling limit, a so-called species limit, in which our construction of the de Sitter state becomes
exact. In this limit, the irrelevant quantum gravitational effects vanish, whereas the collective phenomena,
such as Gibbons-Hawking radiation, are calculable.
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I. INTRODUCTION

Classical general relativity (GR) gives no a priori
preference to any space-time metric. All solutions of GR
are equally legitimate, provided they satisfy the minimal
consistency requirements, such as a valid causal structure.
For example, there is no reason to give an advantage to the
Minkowski space-time over a de Sitter one. This prompts
the thought that, upon quantization, any valid classical
background of GR can or must serve as a legitimate
vacuum of the quantum theory.
However, the S-matrix formulation of quantum gravity,

which, in particular, is organic to string theory, gives a very
different perspective [1]. The consistency and double-
scaling arguments show that having de Sitter space as a
valid S-matrix vacuum inevitably trivializes the gravita-
tional S matrix. The reason for this is that the rigidity of the
geometry and the quantum coupling of gravitons (or closed
strings) are controlled by one and the same parameter, the
Planck mass, Mpl. This simple but profound fact lies at the
very foundation of quantum gravity.
Thus, the S matrix tells us that the only possibility for

embedding de Sitter space in quantum theory is by treating
it as an excited state constructed on top of a valid S-matrix
vacuum, such as the Minkowski vacuum [1].

Originally, such a description has been applied to de
Sitter and other cosmological space-times in [2–7]. In this
approach, sometimes referred to as “corpuscular resolu-
tion,” the nontrivial space-time geometry is treated as a
state with a high occupation number of gravitons, which is
approximately classical. The natural candidate for such a
state is a coherent state.
Coherent states are thought to represent an adequate

quantum description of classical systems. They were
introduced in quantum field theory by Glauber [8]. They
also play an important role in eliminating infrared diver-
gencies by dressing asymptotic charged states with soft
photons [9–14]. Coherent states have also been used to
formulate the quantum picture of solitons [15].
In previous formulations [4–6] of de Sitter space as a

coherent state, certain universal tendencies were observed.
The known semiclassical features of de Sitter space are
recovered as a result of time evolution of the coherent state.
For example, a famous Gibbons-Hawking radiation with
temperature set by the Hubble H emerges as a result of the
actual decay of the coherent state of gravitons. It therefore
uncovers new features that are not visible in ordinary
treatments. In particular, as a result of backreaction, the de
Sitter state gradually loses coherence and evolves into a
self-entangled state. This results in a full departure from
the classical description after the timescale of half-decay.
In pure gravity, the corresponding timescale, a so-called
quantum break-time, is tQ ∼M2

pl=H
3, and it becomes

shorter in the presence of more degrees of freedom. This
phenomenon has important implications both fundamen-
tally and observationally. For example, it limits the duration
of any de Sitter Hubble patch by tQ, thereby eliminating the
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possibility of an eternally inflating state. The significance
of this statement for the efficient beginning of inflation was
discussed in [16]. The S-matrix exclusion of the de Sitter
landscape also has important implications for the concept
of “naturalness” in particle physics [17]. In this light, it is
crucial to have a satisfactory understanding of the quantum
de Sitter state.
In the present paper we shall investigate the legitimacy of

de Sitter space as a coherent state from the point of view of
BRST symmetry (see e.g., [18]). Due to the fact that gravity
is a gauge theory, it is imperative to have a rigorous
understanding of the rules for building physical coherent
states therein. In this work, we present such a construction
within the canonical framework of BRST quantization.
This work covers the analysis for scalar electrodynamics
and linearized gravity, uncovering peculiarities of the
procedure and capitalizing on physical implications.
We give a BRST-invariant formulation of the de Sitter

coherent state in a quantum theory of massless spin-2, with
a (positive) cosmological constant source and coupling to
quantum scalar matter. We perform various consistency
analyses of scaling properties of de Sitter space obtained in
this way.
Next, we introduce the N species of scalar matter. It has

been shown [19] that this theory allows for a special
double-scaling limit with N → ∞, the so-called “species
limit,” in which the quantum gravitational processes
simplify significantly. All graviton nonlinearities, as well
as their loop contributions, vanish as 1=N. At the same
time, the collective quantum gravitational effects, such as
Gibbons-Hawking radiation, are finite and explicitly cal-
culable. We observe that the BRST-invariant coherent state
implemented in this setup correctly captures the quantum
features of de Sitter space, such as the effects of Gibbons-
Hawking particle creation.
Our results indicate that the process of treating de Sitter

space as a coherent state of gravitons built on the
Minkowski vacuum passes the essential quantum consis-
tency tests.

II. COHERENT STATES WITH GLOBAL CHARGE

In the absence of gauge symmetry, the construction of
coherent states is straightforward. They can be built around
the vacuum of the theory by the action of the field
displacement operator (see e.g., [20,21]), written in terms
of canonical degrees of freedom without invoking their
asymptotic representation. In particular, the coherent state
for a complex scalar field takes the following form:

jCi ¼ e−i
R

d3xðΦcΠ̂−ΠcΦ̂þH:c:ÞjΩi; ð1Þ

where ΦcðxÞ and ΠcðxÞ are the c-number functions of
spatial coordinates, Φ̂ and Π̂ stand for the field and
canonical conjugate momentum operators, respectively,

while jΩi denotes the vacuum (i.e., the lowest energy
eigenstate of the Hamiltonian). This state is constructed in
such a way that it satisfies the following initial conditions:

hCjΦ̂jCiðt ¼ 0Þ ¼ ΦcðxÞ; ð2Þ

hCjΠ̂jCiðt ¼ 0Þ ¼ ΠcðxÞ; ð3Þ

which follow solely from canonical commutation relations
and the absence of the tadpoles in the vacuum. In the
presence of global Uð1Þ symmetry that shifts the phase of
Φ̂, the expectation value of the corresponding charge in the
state in question is conserved and given by

hCjQ̂jCi ¼ i
Z

d3xðΠcΦc − Π�
cΦ�

cÞ≡Qc: ð4Þ

It must be pointed out that the coherent states are not the
eigenstates of the global charge operator. Rather, they are a
superposition of states with different charges. In particular,
using canonical commutation relations and taking into
account that the vacuum is a zero-charge eigenstate, one
gets

Q̂jCi ¼ QcjCi þ e−i
R

d3xðΦcΠ̂−ΠcΦ̂þH:c:Þ

× i
Z

d3x0ðΦcΠ̂þ ΠcΦ̂ − H:c:ÞjΩi: ð5Þ

The presence of the second term is the reason the state is
not an eigenstate ofQ. This will have peculiar ramifications
for gauge theories.

III. QUANTUM ELECTRODYNAMICS

Upon gauging the Uð1Þ symmetry, the construction of
coherent states needs to be revised, on account of the
consistency requirement to be imposed on physical states.
Our starting point is the BRST-invariant formulation of
scalar electrodynamics,

L ¼ −
1

4
F̂2
μν þ jDμΦ̂j2 −m2jΦ̂j2 − ∂μB̂Â

μ þ 1

2
ξB̂2

þ ∂μ ˆ̄c∂μĉ; ð6Þ

with F̂μν ≡ ∂μÂν − ∂νÂμ and DμΦ̂≡ ∂μΦ̂ − igÂμΦ̂ as
usual and ĉ; ˆ̄c being Fadeev-Popov ghosts that are anti-
commuting Lorentz scalars. Throughout this work, the
repeated covariant space-time indices are contracted by the
Minkowski metric ημν ¼ diagð1;−1;−1;−1Þ. The theory is
invariant under the celebrated BRST transformations

δÂμ ¼ θ∂μĉ; δ ˆ̄c ¼ θB̂; δĉ ¼ δB̂ ¼ 0;

δΦ ¼ igθĉ Φ̂; δΦ† ¼ −igθĉΦ̂†; ð7Þ
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where θ is a Grassmann number that serves as a parameter
of transformation. The conserved charge associated with
this symmetry, which is of utmost importance for the
construction of the physical Hilbert space, takes the
following form:

Q̂B ¼
Z

d3x½ĉðgρ̂ − ∂jÊjÞ þ B̂Π̂c̄ þ ∂jðĉ ÊjÞ�; ð8Þ

with ρ̂≡ iðΦ̂ Π̂−Π̂†Φ̂†Þ representing the Uð1Þ charge
density, Êj ≡ F̂0j being the electric field operator, and
Π̂c denoting the conjugate momentum of the corresponding
ghost field.
As it is well known, there are consistency requirements

on physical states in gauge theories. For example, Gauss’
law informs us that charges must be dressed with a
corresponding gauge field configuration [22–24], as no
naked charges can exist in nature. Within the adopted
framework for quantization, the physical states carry
vanishing BRST charge, together with vanishing ghost
number. Although the photon states are effortless to
construct, by means of the field displacement operator
that satisfies Gauss’ law, the dressing fields are somewhat
more peculiar to incorporate.
The pure gauge field coherent state, devoid of ghosts,

can be constructed as

jAi ¼ e−if̂A jΩi; ð9Þ

with

f̂A ≡
Z

d3xðAc
jÊj − Ec

jÂj þ Ac
0B̂ − BcÂ0Þ; ð10Þ

and the quantities carrying the label “c” being the c-number
functions that specify the initial field configuration.
In particular, initial conditions for one-point expectation
values simply follow from canonical commutation relations
and are given by

hAjÂμjAi¼Ac
μ; hAjÊjjAi¼Ec

j; hAjB̂jAi¼Bc; ð11Þ

with other fields having vanishing initial expectation
values. Taking into consideration that the proper vacuum
must be annihilated by the BRST charge, the physicality
condition Q̂BjAi ¼ 0 leads to the following constraint:

Z
d3xð−ĉ∂jEc

j þ Π̂c̄Bc þ ∂jðĉEc
jÞÞjΩi ¼ 0: ð12Þ

For the derivation of this exact expression, we have taken
advantage of e−if̂A being the field displacement operator at
the initial time (which in turn follows from the Baker-
Cambell-Hausdorff formula and equal-time commutation
relations) and the conservation of Q̂B. The last (boundary)

term of (12) vanishes not only for localized electric field
configurations but for more general ones as well. We see
this by employing the momentum-space decomposition of
the ghost operator ĉ, when relevant. The consistency
condition (12) is straightforwardly satisfied for

∂jEc
j ¼ 0; Bc ¼ 0: ð13Þ

In other words, the electric field must satisfy charge-free
Gauss law. The introduction of nontrivialBc seems possible
but leads to unnecessary complications and will not be
considered in this work.
Moving on to the dressing field, a naive attempt for

converting an electrically charged coherent state (1) into a
physical one would consist of dressing it with an appro-
priate coherent gauge field. In other words, one could
consider the charged coherent states to be of the form

jAi ⊗ jCi: ð14Þ

The inadequacy of this proposal can be straightforwardly
demonstrated by showing that

Q̂BfjAi ⊗ jCig ¼ Q̂Be
−i
R

d3xðAc
j Êj−Ec

j ÂjþAc
0
B̂−BcÂ0Þ

× e−i
R

d3xðΦcΠ̂−ΠcΦ̂þH:c:ÞjΩi ≠ 0; ð15Þ

as long as Φc and Πc are nonvanishing. The inability to
dress the scalar coherent state with a coherent electromag-
netic configuration is connected to the fact that the former
is not an eigenstate of Uð1Þ charge; see e.g., (5). Therefore,
the matter states cannot be made BRST invariant by
dressing them with coherent gauge field configurations.
Instead, we begin the construction with the invariant
operators.
The idea of defining gauge-invariant matter degrees of

freedom goes back to Dirac [22] (see also [23]), who found
that the operator undergoing merely a phase rotation under
gauge transformations can be combined with the gauge
field in the following invariant fashion:

Φ̂g ¼ Φ̂ · exp

�
−ig

1

∇2
∂jÂj

�
; ð16Þ

Π̂g ¼ Π̂ · exp

�
þig

1

∇2
∂jÂj

�
; ð17Þ

with the subscript “g” indicating the gauge invariance.
Similar nonlocal operators expð−ig 1

□
∂μAμÞ were used for

maintaining gauge invariance in the case of anomalous
symmetries [25].
It is important to notice that these operators satisfy

canonical commutation relations,

½Φ̂gðt; xÞ; Π̂gðt; yÞ� ¼ iδð3Þðx − yÞ: ð18Þ
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Moreover, it is straightforward to show explicitly that due
to the outlined gauge-invariant construction,

½Q̂B; Φ̂gðxÞ� ¼ ½Q̂B; Π̂gðxÞ� ¼ 0: ð19Þ

Based on this observation, we can construct dressed
coherent states for matter fields in analogy with (1), albeit
with Φ̂g and Π̂g. In other words, the coherent state

jCgi ¼ e−i
R

d3xðΦcΠ̂g−ΠcΦ̂gþH:c:ÞjΩi ð20Þ

satisfies the physicality conditions for arbitrary ΦcðxÞ and
ΠcðxÞ. As for connection with the classical field configu-
rations, it is straightforward to show that, at the initial
moment,

hCgjΦ̂gjCgiðt¼0Þ¼Φc; hCgjΠ̂gjCgiðt¼0Þ¼Πc; ð21Þ

∂jhCgjÊjjCgiðt ¼ 0Þ ¼ igðΦcΠc − Π�
cΦ�

cÞ; ð22Þ

hCgjÂμjCgiðt ¼ 0Þ ¼ 0: ð23Þ

The state can be further supplemented with the coherent
photon configuration using the gauge field displacement
operator discussed above. Putting all the ingredients
together, a physical coherent state that corresponds to a
certain classical charge distribution and accounts for the
dressing field, as well as for the additional electromagnetic
field, is given by

jCg; Ai ¼ e−i
R

d3xðΦcΠ̂g−ΠcΦ̂gþH:c:Þ

× e−i
R

d3xðAc
j Êj−Ec

j ÂjþAc
0
B̂ÞjΩi: ð24Þ

It must be stressed that the order in which the exponentials
appear in this definition of the coherent state is necessary
for reproducing (21). The consistency of this state requires
the transversality of Ec

j ; thus (22) will be maintained, the
only modification being the generation of the nonvanishing
expectation value for Âμ.
The dynamics can be readily obtained from Heisenberg’s

equations, which follow from the Hamiltonian of the
system

Ĥ ¼
Z

d3x

�
1

2
Ê2
j þ

1

4
F̂2
ij þ jΠ̂j2 þ jDjΦ̂j2 þm2jΦ̂j2

þ B̂∂jÂj −
ξ

2
B̂2 þ ∂jðÂ0Êj − B̂ÂjÞ

þ Â0ð−∂jÊj þ igðΦ̂ Π̂−Φ̂†Π̂†ÞÞ

þ Π̂cΠ̂c̄ þ ∂j ˆ̄c∂jĉ

�
: ð25Þ

Heisenberg’s operator equations for the gauge sector lead
to the following set of equations for one-point functions:

∂0hÂ0i ¼ ∂jhÂji − ξhB̂i; ð26Þ

∂0hÂji ¼ hÊji þ ∂jhÂ0i; ð27Þ

∂0hÊji − ∂ihF̂iji − ∂jhB̂i ¼ ighΦ̂†D̂jΦ̂ − H:c:i; ð28Þ

∂0hB̂i ¼ −∂jhÊji þ ighΦ̂ Π̂−Π̂†Φ̂†i; ð29Þ

with h…i denoting the expectation value of the enclosed
Heisenberg picture operator in the coherent state (24).
These equations represent quantum extensions of classical
equations of motion that follow from (6). The nonlinear
terms of (28) and (29), once evaluated over a coherent state,
will contain both classical and quantum contributions. The
latter can be quantified by

Sj ≡ ihΦ̂†D̂jΦ̂ − ðD̂jΦ̂Þ†Φ̂i − J̄j; ð30Þ

S0 ≡ ihΦ̂ Π̂−Π̂†Φ̂†i − ρ̄; ð31Þ

where J̄μ has been defined as the current constructed
merely out of one-point functions, i.e.,

ð−iÞJ̄j ≡ hΦ̂†ið∂jhΦ̂i − ighAjihΦ̂iÞ − H:c:; ð32Þ

ð−iÞρ̄≡ hΦ̂ihΠ̂i − hΠ̂†ihΦ̂†i: ð33Þ

As a result, Eqs. (28) and (29) become

∂0hÊji − ∂ihF̂iji − ∂jhB̂i ¼ gJ̄j þ gSj; ð34Þ

∂0hB̂i ¼ −∂jhÊji þ gρ̄þ gS0: ð35Þ

In the absence of S0 and Sj, these are classical equations of
motions for the theory at hand. The computation of these
quantum terms requires knowledge of two-point and three-
point functions; however, we could instead follow [21] by
evaluating them explicitly in the coherent state up to a
desirable order in ℏ and g. The explicit form of the equation
for the scalar field will be useful when discussing the
particle production and will be given when relevant. For
now, let us keep in mind that the coherent state sets the
stage by providing initial conditions for (26), (27), (34),
(35) and for the scalar field.

IV. CLASSICAL CHARGES

In this section we discuss the possibility of introducing
fundamentally classical sources as electromagnetic analogs
of the cosmological constant (we borrow this analogy from
[26]). We proceed by adding the following term to the
Lagrangian:

ΔL ¼ −ÂμJ
μ
cl; with ∂μJ

μ
cl ¼ 0; ð36Þ
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where Jμcl is a four-vector of predetermined c-number
functions. Its presence does not alter the BRST trans-
formation properties (7), under which the Lagrangian
density is invariant up to a total derivative,

δðLþ ΔLÞ ¼ −∂μðθĉJμclÞ: ð37Þ

As a result, the Noether charge needs to be amended
correspondingly, resulting in

Q̂J
B ¼ Q̂B þ

Z
d3xĉJ0cl; ð38Þ

with Q̂B denoting the BRST charge in the absence of the
classical source, given by (15).
In the classical limit, the presence of Jcl would source

classical electromagnetic field configuration. One might be
tempted to associate this state to a vacuum of the theory.
However, due to the fact that such a state is expected
to precipitate particle production, the vacuum treatment
is legitimate only in the limit of zero backreaction [1].
In gravity, where the existence of a valid S-matrix vacuum
is vital, the analogous issue has profound consequences for
a positive cosmological constant. Namely, it demands that
de Sitter space be treated as a coherent state built around the
Minkowski vacuum. For the theory at hand, this corre-
sponds to constructing the coherent state around the
vacuum of the Hamiltonian (25).1

Due to the fact that Q̂J
B commutes with the total

Hamiltonian

ĤJ ¼ Ĥ þ
Z

d3xÂμJ
μ
cl; ð39Þ

we construct a coherent state of the electromagnetic field
which satisfies

Q̂J
BjJi ¼ 0: ð40Þ

As per the arguments given above, we use the vacuum jΩi
of Ĥ as the basis. It is straightforward to show that the state

jJi ¼ e−i
R

d3xðAc
j Êj−Ec

j ÂjþAc
0
B̂ÞjΩi ð41Þ

constructed in analogy with the pure photon state, satisfies
the required constraint (40) if

Z
d3x½ĉð−∂jEc

j þ J0clÞ þ ∂jðĉEc
jÞ�jΩi ¼ 0: ð42Þ

This straightforwardly entails Gauss’ law,

∂jEc
j ¼ J0cl; ð43Þ

as long as the boundary term of (42) vanishes. The latter is
trivially satisfied by localized classical sources, while its
applicability to more general cases will be considered in the
next section.
It must be stressed that jΩi, being the vacuum of Ĥ, is

annihilated by Q̂B and not by Q̂J
B. Consequently, the

physicality condition it satisfies is not preserved by the
Hamiltonian flow generated by ĤJ.
Next, we ask if the coherent state jJi has a consistent

dynamics. The evolution of one-point expectation values is
governed by equations similar to the ones derived in the
previous section, albeit with additional classical sources on
the right-hand sides of (28) and (29). The process of interest
is the Schwinger pair production of ΦΦ† and the sub-
sequent backreaction on the one-point function of the
electric field. It is straightforward to see that to the leading
order, the evolution of the quantum terms is determined by
the time dependence of the tree-level mode functions for
the scalar field, which in turn is governed by the electro-
magnetic background field. Moreover, the origin of the
latter is immaterial for the former since the tree-level scalar
mode functions are only sensitive to the classical back-
ground of the vector field. Therefore, as long as charges are
lighter than the pair-creation threshold value, the
Schwinger pair production will begin, and the backreaction
on the electromagnetic field background will be governed
by (26)–(29) supplemented with the external source. The
process will continue until the produced particles decrease
the electric field below the Schwinger threshold.

V. INFINITELY HOMOGENEOUS
CLASSICAL SOURCE

Let us finish the discussion of quantum electrody-
namics (QED) by focusing on a homogeneous constant
source filling the entire space. This represents the closest
electromagnetic analog of gravity with a cosmological
constant [26].
The toy model consists of the scalar electrodynamics

supplemented with a homogeneous external current
Jμcl ¼ δμ0ρ ¼ const. The coherent electromagnetic state
(41) sourced by this current must satisfy the physicality
condition (42). As we saw, this condition straightforwardly
leads to Gauss’ law for the electric field configuration Ec

j

parametrizing the coherent state produced by localized
classical sources, for which the boundary term of (42)
vanishes trivially. Let us now assess what happens for the
homogeneous charge distribution.
The electric field produced by a constant charge is a

linear function of coordinates. Such a field grows
unbounded towards infinity. In the presence of any sort
of dynamical charges in the theory, the field will be
subjected to a discharge. It is therefore clear that a classical

1In different contexts, the coherent state of the electromagnetic
field of classical charges has been discussed previously (see, e.g.,
[27,28]).
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solution of a linearly growing field cannot be sustained in
quantum theory. Nevertheless, it is useful to consider a
regularized version of the story with an imposed spherical
boundary which is gradually taken to infinity.
According to Gauss’ law (43), Ec

j no longer vanishes on
the boundary as it is given by

Ec
j ¼

ρ

3
xj; ð44Þ

in fact, this quantity diverges at large distances. We can
nevertheless demonstrate that the above-mentioned boun-
dary term vanishes. For this, it suffices to notice that,
without loss of generality, at any given moment in time the
ghost field can be expanded into creation-annihilation
operators

ĉðx; t0Þ ¼
Z

d3k
ð2πÞ3

1ffiffiffiffiffi
2k

p ðâkeik⃗·x⃗ þ b̂†ke
−ik⃗·x⃗Þ: ð45Þ

If we further take into account that the vacuum is
annihilated by âk, we get the following equivalence:

Z
d3x∂jðĉEc

jÞjΩi ¼ 0 ⇔
Z

d3x∂jðe−ik⃗·x⃗xjÞ ¼ 0: ð46Þ

It is straightforward to see that the latter simplifies to

∂
∂kj ðkjδ

ð3ÞðkÞÞ ¼ 0; ð47Þ

which holds as one of the properties of Dirac’s delta
function. Therefore, the coherent state of the electromag-
netic field, produced by the external source in question, is
consistent with the physicality conditions of BRST
quantization. It must be stressed that this does not
fully prove the legitimacy of the construction since the
exact classicality of the source can lead to other incon-
sistencies such as unboundedness of the Hamiltonian from
below. We set aside such issues and instead discuss the
dynamical aspects of the constructed BRST-invariant
coherent state.
Simplifying the construction, we take Ac

μ ¼ 0 in (41),
which corresponds to hÂμi ¼ 0 at the initial time, leaving
us with the following coherent state:

jρi ¼ ei
R

d3xðEc
j ÂjÞjΩi: ð48Þ

Next we are interested in computing the leading quantum
corrections to the dynamics of one-point expectation
values for the gauge sector, resulting from the quantum
pair creation of scalar particles. As was demonstrated
explicitly in [21], the relevant dynamics follows from
(26)–(29) (albeit with an additional classical source) by
retaining only the expectation values of bilinear operators

in S. For the setup in question, the equations take the
following form:

∂0hÂ0i ¼ ∂jhÂji − ξhB̂i; ð49Þ

∂0hÊji−∂ihF̂iji−∂jhB̂i¼ ighρjΦ̂†Dcl
j Φ̂−H:c:jρi; ð50Þ

∂0hB̂i þ ∂jhÊji − ρ ¼ ighρjΦ̂ Π̂−H:c:jρi; ð51Þ

where Dcl
μ ≡ ∂μ − igAcl

μ . The terms on the right-hand side
of (50) and (51) are already quantum since two-point
functions are of order ℏ at leading order. Therefore, we
need to find the relevant correlators at tree level. The
required dynamics of Φ̂ follows from solving the semi-
classical equation

ðDcl
μD

μ
cl þm2ÞΦ̂ðx; tÞ ¼ 0; ð52Þ

with the classical electromagnetic configuration for our
setup given by Acl

j ¼ 1
3
ρtxj, Acl

0 ¼ 1
2
ρt2, and Bcl ¼ 0. This

equation needs to be solved with appropriate initial
conditions, which for our coherent state correspond to

hρjΦ̂ðx; 0ÞΦ̂ðy; 0Þjρi ¼ hΩjΦ̂ðx; 0ÞΦ̂ðy; 0ÞjΩi: ð53Þ

In other words, even though the dynamics is given by the
background-dependent equation of motion, the initial
conditions for the mode functions are the ones in the
Minkowski vacuum. See [20,21] for the discussion of this
point and implications for perturbative dynamics.
The time dependence of the background field appearing

in (52) will facilitate the particle production as expected.
In the process, the one-point function of the scalar field

will remain zero, with nontrivial dynamics showing up in
the two-point correlation function. The latter will backreact
on the dynamics of the one-point functions of the gauge
sector as per (50) and (51). Obviously, there will be
divergences among the quantum terms, an obvious one
emerging due to the appearance of the equal-point two-
point function, which can be renormalized using standard
prescriptions. The leftover finite quantum correction will
amount to the physical backreaction.
There is a finite radius at which the field strength will

cross the Schwinger pair-creation threshold. Beyond it, the
efficient production of charges will take place until the
background electric field is sufficiently reduced. This
crossover radius can be estimated as

R ∼
m2

gρ
: ð54Þ

This radius marks the boundary of validity of the semi-
classical approximation. Beyond it, a uniform charge
distribution undergoes rapid quantum breaking.
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VI. LINEAR GRAVITY

Next wewould like to understand the ramifications of the
BRST constraint for gravitational systems, specifically for
the de Sitter space. We primarily work within linearized
gravity, followed by the introduction of interactions with
matter perturbatively.
The original construction of the de Sitter coherent state

[4,6] was based on a correspondence between the classical
de Sitter metric of linear Einstein theory and the source-free
solution of massive Fierz-Pauli theory. This classical
correspondence was established earlier in [26]. The idea
[4,6] was to map the de Sitter space sourced by the
cosmological constant on the solution of Fierz-Pauli theory,
with subsequent quantum resolution of the latter. This
allowed one to construct de Sitter space as a quantum state
of high occupation number of nearly on-shell Fierz-Pauli
gravitons on Minkowski space, accomplishing a first
necessary step towards realization of the de Sitter state
in the S-matrix formulation of quantum gravity. In this
framework, processes such as Gibbons-Hawking particle
creation are represented with the S-matrix process of decay
of the graviton coherent state. At finite Mpl, this leads to
backreactions, such as loss of coherence. In this approach,
the consistency of Hilbert space is guaranteed by gauge
invariance of Fierz-Pauli gravitons. This invariance is due
to additional polarizations of a massive graviton (as
compared to the massless case), which play the role of
Stückelberg fields that maintain the gauge invariance of the
graviton state. Such invariance, of course, is not experi-
enced by the states of massless Einstein gravitons.
Therefore, construction of a consistent de Sitter coherent
state directly in linear Einstein theory requires additional
measures. Such measures will be developed in the present
work in the form of BRST invariance of the state.
Our starting point is the BRST-invariant formulation of

the theory of a free spin-2 field in Minkowski space,

L ¼ 1

2
ð∂αĥμνÞ2 −

1

2
ð∂αĥÞ2 þ ∂αĥ∂μĥ

μα − ∂μĥ
μα∂νĥ

ν
α

− ∂μB̂ν

�
ĥμν −

1

2
ημνĥ

�
þ 1

2
ξB̂2

μ þ ∂α
ˆ̄Cμ∂αĈμ; ð55Þ

which is the linearized version of the framework developed
in [29]. It follows from Einstein’s theory of gravity in the
limit of infinite Planck’s mass. Here ĥμν, Ĉμ, and B̂μ are the
massless spin-2 (graviton) field, the Fadeev-Popov ghost
vectors, and an auxiliary vector, respectively, and ξ is the
gauge fixing parameter. The theory at hand is invariant
under the BRST transformation

δĥμν ¼ θð∂μĈν þ ∂νĈμÞ; ð56Þ

δ ˆ̄Cμ ¼ θB̂μ; ð57Þ

where θ is a Grassmann variable, with the rest of the fields
transforming trivially.
In analogy with the previous section, the construction of

states is performedwithin the canonical Hamiltonian frame-
work. Following the ADM formalism, we supplement the
Lagrangian (55)with boundary terms appropriate for remov-
ing the time derivatives of ĥ00 and ĥ0j, making them
manifestlynondynamicalwithvanishingconjugatemomenta.
As a result, the conjugate momentum of ĥij reduces to

π̂ij ¼ ∂0hij − δij∂0hkk þ 2δij∂khk0 − ∂ihj0 − ∂jhi0: ð58Þ

Its BRST transformation property follows from (56) and is
given by

δπ̂ij ¼ 2θð∇2δij − ∂i∂jÞĈ0: ð59Þ
Following in the footsteps of our QED consideration, we

construct the physical states in a BRST-invariant fashion.
A pure-graviton coherent state, free of ghosts, can be
built as

jhi ¼ e−i
R

d3xðhcijπ̂ij−πcijĥijþBc
μΠ̂μ−Πμ

cB̂μÞjΩi; ð60Þ

Πμ ≡ −h0μ þ 1

2
η0μh

with c-number functions setting the initial expectation
values of the corresponding operators and jΩi denoting
the Minkowski vacuum. In analogy with QED, from the
beginning, we take Bc

μ ¼ 0, as its presence introduces an
unnecessary complication in the BRST condition which is
easily satisfied otherwise. Imposing BRST invariance we
immediately obtain

Q̂Bjhi ¼ e−i
R

d3xðhcijπ̂ij−πcijĥij−Πμ
cB̂μÞ

×
Z

d3xð−2hcijð∇2δij − ∂i∂jÞĈ0 þ 2πcij∂iĈjÞjΩi:

ð61Þ

The consistency of the state requires the above expression
to vanish. Upon integrating the second line by parts, we
obtain the relations reminiscent of the classical constraints
of linear gravity,

ð∇2δij − ∂i∂jÞhcij ¼ 0 and ∂iπ
c
ij ¼ 0; ð62Þ

which need to be satisfied by the physical configuration
along with the following boundary conditions:

Z
d3x∂iðπcijĈjÞjΩi ¼ 0; ð63Þ

Z
d3x∂ið½∂jĈ0 − Ĉ0∂j�ðδijhckk − hcijÞÞjΩi ¼ 0: ð64Þ
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Notice that hc0μ is unrestricted, due to the fact that the
corresponding operators represent Lagrange multipliers,
similar to A0 in electrodynamics. A further parallel can be
drawn with QED, by pointing out that (62) represents the
gravitational counterpart to the charge-free Gauss’ law,
while (63) and (64) are equivalent to the boundary term of
(12) and are automatically satisfied for configurations that
vanish on the boundary.
Having demonstrated how to construct physical

coherent states of gravitons over the Minkowski vacuum
in a source-free theory at hand (55), we would like to begin
introducing sources. As it has already been mentioned, the
case of particular interest is the cosmological constant. It is
a classical source of gravity that is incorporated in a linear
theory by adding the following term to the Lagrangian:

ΔL ¼ −λĥ: ð65Þ
Obviously, this addition does not alter the expressions

for the canonical momenta. Nevertheless, since it is
invariant under (56) only up to a total derivative, it gives
the additional contribution to the Noether charge,

Q̂λ
B ¼ Q̂B þ

Z
d3x2λĈ0: ð66Þ

This is the charge with respect to which we must define the
physical Hilbert space since it commutes with the
Hamiltonian of the system in the presence of the cosmo-
logical constant. That is, ½Ĥ; Q̂λ

B� ¼ 0 while ½Ĥ; Q̂B� ≠ 0.
Here Q̂B is the BRST charge in the absence of the
cosmological constant, in complete analogy with our
consideration of classical charges in QED. Notice that
we have not provided the explicit expression for Q̂B
because it is not a necessity.
A classical solution of the linearized equation with a

cosmological constant source is given by [26]

hij ¼ −
λ

6
ðt2δij þ xixjÞ; h00 ¼ h0j ¼ 0; ð67Þ

which, for λ > 0, represents the short-scale approximation of
the de Sitter space-time in closed slicing. In fact, switching
to the dimensionless metric gμν ¼ ημν þ hμν=Mpl, it is
straightforward to see that (67) follows from the latter in
the Mpl → ∞ limit while λ is held fixed, as does (55)
supplemented with (65) from the fully nonlinear Einstein-
Hilbert actionwith thecosmological constant. Itmust benoted
that in this limit the curvature of the space-time vanishes,

H2 ≃
λ

Mpl
→ 0: ð68Þ

This is equivalent to taking theHubble radius to infinity. Thus,
Eq. (67) is a good approximation of the de Sitter space-time
only at deeply subhorizon scales.

As already commented, in the original proposal [4,6], the
quantum resolution of the metric (67) as a multigraviton
coherent state on Minkowski space was achieved via
representing the Einstein graviton as a component of the
Fierz-Pauli field. The gauge invariance of the latter served
as assurance for the consistency of such a state. Here we
take a different path.
The question we ask is whether the de Sitter background

(67) can be represented as a BRST-invariant coherent state
of gravitons built over the Minkowski vacuum. Let us begin
by noticing that, due to the presence of the cosmological
constant, the Minkowski vacuum jΩi is no longer annihi-
lated by the full BRST charge given by (66) but only by Q̂B,
which no longer commutes with the Hamiltonian. A similar
observation was made for quantum electrodynamics in the
presence of classical charges. There, it was nevertheless
possible to construct a BRST-invariant coherent state over
the vacuum of the theory free of external classical sources.
To demonstrate the same for linear gravity, we move
forward by constructing the coherent state corresponding
to (67) at t ¼ 0 as

jhi ¼ e−i
R

d3xðhcijπ̂ijþ1
2
hckkB̂0ÞjΩi; with hcij ¼ −

λ

6
xixj: ð69Þ

It is straightforward to see that in the presence of
the cosmological constant, the first equation of (62) is
modified to

ð∇2δij − ∂i∂jÞhcij − λ ¼ 0: ð70Þ

This is a direct consequence of the above-mentioned
point about jΩi not being annihilated by Q̂λ

B. The constraint
)70 ) is readily satisfied by (67). The boundary conditions

(63) and (64) persist without modification, the first of
which is trivially satisfied for the configuration at hand.
The demonstration for the second one, on the other hand,
requires expansion of Ĉ0ðx; tÞ in ladder operators, as was
done for electrodynamics in the previous section. It is
nevertheless straightforward to show that it holds.

VII. SCALAR MATTER COUPLED TO GRAVITY

As the next step, we introduce coupling of the graviton to
a scalar field. Truncating the theory of a scalar field coupled
to Einstein gravity at the first nontrivial order in M−1

pl
expansion, we arrive at

L ¼ Lϕ þ Lh −
1

2Mpl
ĥμνT̂

μν þOðM−2
pl Þ; ð71Þ

where Lϕ is a Lagrangian of the scalar field in the
absence of gravity, Lh is given by (55) describing the free
propagation of the graviton (albeit with additional non-
linear gauge fixing and ghost parts [29]), and T̂μν stands for
the energy-momentum tensor of the first two terms of (71).
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The graviton contribution to Tμν warrants the modification
of the graviton’s BRST transformation property (56) to
include the “non-Abelian” correction. However, the latter
will not contribute to the effects of order M−1

pl that we are
after, as will become clear shortly. The transformation
property of the scalar field is given by

δϕ̂ ¼ θ

Mpl
Ĉμ∂μϕ̂; ð72Þ

which takes the following form when rewritten in terms of
canonical variables,

δϕ̂ ¼ θ

Mpl
ðΠ̂ϕĈ0 − ∂jϕ̂ĈjÞ þOðM−2

pl Þ; ð73Þ

assuming a canonical kinetic term for the scalar. (The
generalization is straightforward and will not be pur-
sued here.)
In analogy with electrodynamics, the BRST-invariant

dressing of the scalar coherent state amounts to replacing
the scalar field operators by their invariant counterparts. For
example, what serves as the invariant version of ϕ̂ðxμÞ is
simply ϕ̂ðxμ þ ϵμÞ, with ϵ being a function of the graviton
field that transforms as

δϵμ ¼ −
θ

Mpl
Cμ: ð74Þ

The explicit form of such ϵ is straightforward to find to the
first nontrivial order in M−1

pl , and it is given by

ϵ0 ¼ −
1

4Mpl

1

∇2
π̂kk þOðM−2

pl Þ; ð75Þ

ϵj ¼
1

Mpl

1

∇2
∂i

�
ĥij −

1

2
δijĥkk

�
þOðM−2

pl Þ: ð76Þ

The transformation properties can be readily verified using
(56) and (59). Therefore, a coherent state of the scalar field
that satisfies the physicality condition of being annihilated
by the BRST charge can be constructed as

jCi ¼ ei
R

d3xΠc
ϕðxÞϕ̂ðxμþϵμÞjΩi; ð77Þ

with Πc
ϕðxÞ being an arbitrary function of the spatial

coordinates and x0 appearing in the argument of ϕ̂ setting
the initial time (which we take to be at x0 ¼ 0). Notice that
this state is not the most general one. In fact, the initial
expectation value of ϕ̂ vanishes. On the other hand, the
configuration at hand possesses nonzero kinetic energy.
To be more specific, up to corrections of order M−2

pl , the
nontrivial initial conditions for one-point expectation val-
ues are as follows:

hCjΠ̂ϕjCiðt ¼ 0Þ ¼ Πc
ϕ þOðM−2

pl Þ; ð78Þ

∇2hCjĥijjCiðt ¼ 0Þ ¼ δij
8Mpl

Πc
ϕ
2 þOðM−2

pl Þ: ð79Þ

Notice that (79) is precisely the equation one would expect
in the Newtonian limit, for arbitrary Πc

ϕðxÞ, while having
ϕcðxÞ ¼ 0. The generalization of this argument for the
BRST-invariant dressing of Π̂ϕ is straightforward, but the
expression is cumbersome and will not be recited here.

VIII. NONLINEARITIES AND HUBBLE SCALE

So far we have discussed the de Sitter solution (67) and
its coherent state realization in the massless spin-2 theory
with a constant source. This theory, both at the classical and
quantum levels, represents a fully self-consistent limit of
Einstein gravity,

Mpl → ∞; λ ¼ finite: ð80Þ

In this limit all nonlinearities vanish. Correspondingly, the
solution (67), as well as its coherent state representation
(69), is exact.
This is fully consistent with the fact that the Hubble scale

(68) is vanishing, even though the cosmological constant
source λ is nonzero. Correspondingly, the effects of de
Sitter space are experienced neither by the graviton nor by
the external particles coupled to it. For example, consider
the scalar with energy momentum tensor Tμν coupled to ĥμν
in (71). This scalar, while interacting with the coherent state
of gravitons (69), effectively sees the following classical
metric:

gμν ¼ ημν þ
hμν
Mpl

þOðM−2
pl Þ; ð81Þ

where the classical field hμν is given by (67). Obviously,
because of the limit (80), this is just a flat Minkowski
metric.
Let us now assume that Mpl is taken to be finite. This

choice, of course, makes H nonzero. In the coordinates in
question, a significant departure from the Minkowski
geometry is felt immediately near the Hubble radius and
beyond. At much shorter radii, on the other hand, the probe
scalar starts experiencing the nontrivial metric after a finite
time. This happens when hμν becomes of orderMpl. As it is
clear from the solution (67), the required timescale for such
a growth near the origin is given by the Hubble
time, t ∼H−1.
Obviously, the same applies to all nonlinear self-

interactions of the graviton. As it is well known, at tree
level these interactions can be obtained by consistently
coupling the graviton to its own energy momentum tensor,
order by order in the 1=Mpl expansion. The result fully
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coincides with the expansion of the Einstein-Hilbert action
on the Minkowski background. At nth order, the nonlinear
couplings exhibit the following power scaling with Mpl,

hn

Mn
pl
∂h∂h: ð82Þ

The notation is of course highly schematic but suffices for
making an important point. As we can see, just as in the
case of a probe scalar, the nonlinearities become important
after the Hubble time. Of course, neither the classical
solution (67) nor the corresponding quantum coherent state
(69) is fit for adequately describing physics beyond this
time. However, such long timescales are beyond the scope
of the present work.
Our main point is that the BRST-invariant coherent state

of gravitons (69) in linear theory of massless spin-2
correctly captures the correlation between nonlinearities
and the Hubble time. This is a consistency check of the
presented description.
Another consistency check is how the quantum depletion

of the graviton coherent state captures the Gibbons-
Hawking particle creation in de Sitter space. This is what
we consider next.

IX. GIBBONS-HAWKING RADIATION
IN LINEAR GRAVITY

The de Sitter space-time exhibits Gibbons-Hawking
particle creation [30]. In a semiclassical treatment of de
Sitter space, this effect is described as a vacuum process.
The coherent state picture offers a different way of looking
at the origin of this radiation. In this description, de Sitter
space is not a vacuum but rather an excited coherent state,
constructed on top of the S-matrix vacuum of Minkowski
space. Therefore, particle creation represents a process of
quantum decay of the graviton coherent state into different
quanta. The rate of the decay [4,6],

Γ ∼H; ð83Þ

and the power of the emitted radiation,

P ∼H2; ð84Þ

are in agreement with Gibbons-Hawking radiation of
temperature H. As argued in [4,6], due to backreaction,
this decay inevitably leads to a loss of coherence and
generation of entanglement. This results in a complete
departure from the classical picture after a half-decay. This
timescale is called quantum break-time.
Can glimpses of the above process be captured by the

coherent state (69) of linearized theory? The effect can be
read in two different ways. The first way is by analyzing the
equation for the probe scalar in the background metric (81),
with the solution (67). Of course, this must be understood

as the leading-order result in the expansion in 1=Mpl.
During the computation, the scale Mpl must be kept finite.
The limit (80) can be taken afterwards.
This approximation gives the particle creation rate (83)

and the emission power (84). This indicates that the state
produces, on average, one particle of energy ∼H per time
t ∼H−1. Since we are not going beyond this time, the
computation is informative, at least order-of-magnitude
wise.
The above also indicates that within the exact validity of

linear theory, the particle production vanishes since H
vanishes in the limit (80). Remarkably, there is a way to
capture a nonzero particle-creation rate even in this limit.
It has been shown in [19] that by taking a so-called

“species limit,” one can ensure that the linear gravity
represents an exact description of full quantum theory
while simultaneously maintaining the collective phenom-
ena, such as particle creation in de Sitter space. This setup
is ready-made for our purposes. Therefore, below, we shall
follow the construction of [19] and implement our de Sitter
coherent state (69) within this framework. This allows
us to extract the Gibbons-Hawking particle-creation proc-
ess in a BRST-invariant coherent state description of de
Sitter space.
The idea of the species limit is the following. Instead of a

single (massless) scalar, let us introduce N copies of them,
ϕj, where j ¼ 1; 2;…; N is the species index. For definite-
ness, we assume no self-interactions for scalars.
The introduction of species has the effect of lowering the

gravitational cutoff Λgr [31,32] to

Λgr ¼
Mplffiffiffiffi
N

p : ð85Þ

Now, the species limit is defined as

Mpl → ∞; N → ∞; Λgr ¼ finite: ð86Þ

This limit is somewhat analogous to ’t Hooft’s planar limit
in SUðNÞ QCD [33], in the following sense. The quantum
gravitational coupling, which at any finite energy scale q is
defined as

αgr ≡ q2

M2
pl

; ð87Þ

vanishes in the limit (86) as 1=N. Correspondingly, all
quantum gravitational processes in which αgr is not
accompanied by N vanish. In a certain sense, this gives
a greater simplification than the ’t Hooft limit in QCD. This
is due to the fact that the graviton, unlike gluons in QCD,
carries no species index.
At loop level, this implies vanishing of all loop con-

tributions except the renormalization of the graviton kinetic
term, which is resummable. Of course, all nonlinear self-
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interactions of the graviton vanish. The resulting theory is
linearized gravity coupled to N scalar species,

L ¼ Lϕ þ Lh −
1

2Mpl
ĥμν

XN
j¼1

T̂μν
j : ð88Þ

Notice the limit (86) ensures that the above form provides
an exact description of any state in which the occupation
number of quanta increases slower than N. Of course, the
coupling of the graviton to each particular species is zero,
but the collective effect is nonvanishing. Therefore, the
coupling between the graviton and species must be kept in
the Lagrangian, even in the species limit.
Next, we add a constant source λ and keep it nonzero and

finite while simultaneously taking the species limit (86).
The resulting state represents a linearized de Sitter coherent
state (69) interacting withN particle species. The difference
from the case of a single scalar is that the rate of particle
creation is enhanced by the factor N,

Γ ∼HN: ð89Þ

Of course, in the present limit, Γ diverges due to the infinite
Hubble volume. Despite this, the particle production rate
per unit volume, which is given by

Γ
V
∼H4N ¼

�
λ

Λgr

�
2

; ð90Þ

is finite.
From the quantum corpuscular point of view, the rate

(89) has a clear physical meaning. Particle creation comes
from rescattering of the constituent gravitons into the
scalar species. Consider, for example, a scattering of two
gravitons into a pair of scalars. The rate of the process is
given by

Γ ∼Hα2grN2
grN; ð91Þ

where αgr ¼ H2=M2
pl is the coupling between the coherent

state gravitons and scalars and Ngr ¼ M2
pl=H

2 is the
occupation number of gravitons in the coherent state per
Hubble volume. The two exactly compensate each other,
αgrNgr ¼ 1. What remains is the enhancement by an
infinite factor N. The resulting particle-creation rate per
unit volume (90) is finite.
We see that the species limit (86) allows for the

computation of the Gibbons-Hawking radiation from the
graviton coherent state (69). In this limit, the effect is finite,
despite the fact that the Gibbons-Hawking temperature is
zero and the Hubble time is infinite. This is a particular
manifestation of a general phenomenon that species mag-
nify the effects of quantum gravity.

As another check of consistency of our coherent state
description, notice that the backreaction on the coherent
state from particle creation vanishes despite the finite
production rate per unit volume. This is due to the fact
that in the limit (86), the mean number density of the
constituents is infinite, and their frequencies (∼H) are zero.
This results in infinite quantum break-time since, in the
species regime, the latter scales as [1,19]

tQ ∼
M2

pl

H3N
∼
Λ2
gr

H3
; ð92Þ

which, in the present case, is infinite. The timescale for the
half-decay of the coherent state is of the same order. This
aspect is also correctly captured by linear theory.

X. SUMMARY

The S-matrix formulation of quantum gravity
excludes de Sitter vacua [1]. The only remaining option
for realizing de Sitter space in quantum gravity is by
representing it as an excited state on top of a valid
S-matrix vacuum, such as the Minkowski vacuum.
Since the state must be close to classical, the natural
candidate is a coherent state.
This approach, originally adopted in [4–6], offers a

microscopic understanding of known de Sitter phenomena.
At the same time, it reveals the new effects that are not
visible in the ordinary semiclassical treatment. Processes
such as Gibbons-Hawking radiation, which in the ordinary
picture are viewed as vacuum processes, are described
as the actual decay of the graviton coherent state in the
S-matrix picture. This makes it clear that at finite Mpl, de
Sitter space is subjected to backreaction. This backreaction
limits the duration of the classical de Sitter phase by its
quantum break-time, tQ. For finite values ofMpl andH, this
time is finite, thereby eliminating the possibility of eternal
de Sitter cosmology. This has important consequences both
for cosmology and for particle physics.
The above gives fundamental importance to understand-

ing the viability of consistent formulation of the de Sitter
coherent state. In the present paper we have offered a
BRST-invariant construction of such a state.
However, we approached the issue through the lens of a

broader question, that of a BRST-invariant formulation of
states produced by classical sources in quantum gauge
theories. In this work, we focused on Abelian gauge
theories such as QED and linear Einstein gravity.
First, starting with quantum electrodynamics, we dis-

cussed the coherent state description of the charged scalar
field configuration. We showed that, in order to comply
with physicality constraints, charges must be dressed in a
special way. Namely, the nonasymptotic coherent state of
the charged scalar field cannot be made BRST invariant by
dressing it with the coherent state of the electromagnetic

DE SITTER SPACE AS A BRST INVARIANT COHERENT … PHYS. REV. D 105, 025022 (2022)

025022-11



field, even though coherent states of photons on their own
are fully consistent with the BRST condition. Instead, we
built matter coherent states out of gauge-invariant operators
à la Dirac [22]. Next, we studied the coherent state of
photons produced in the presence of external classical
charges.
An interesting toy example that shares certain qualitative

properties with de Sitter space in gravity can be set up by
introducing classical and quantum charges simultaneously.
The role of the cosmological constant is played by the
uniform source of constant charge density. In the absence of
dynamical quantum charges, such a source of infinite extent
produces a linearly growing (in space-time coordinates)
electric field or, equivalently, a quadratically growing
vector potential Aμ. This is similar to the graviton field
produced by the cosmological constant in linearized
Einstein gravity.
Introduction of quantum charges with finite couplings

to corresponding gauge fields (photon in QED, graviton
in Einstein) tames the unbounded growth in both cases.
In QED this happens through Schwinger pair creation,
which reduces the electric field below the threshold.
In gravity, the growth is tamed by coupling of the graviton
to itself and to other species, which becomes important
on the Hubble scale. In addition, Gibbons-Hawking par-
ticle creation shares some similarity with the Schwinger
discharge.
In gravity, we found that the de Sitter space can be

constructed as a BRST-invariant coherent state of gravitons
on top of Minkowski space within Gaussian theory of the

massless spin-2 field. We also introduced gravitating scalar
matter and showed how to dress its coherent state pertur-
batively in M−1

pl .
The introduction of N species of scalars allowed us to

implement our coherent state construction in the species
limit (86), which promotes the linear gravity coupled to the
N species into an exact description. The only quantum
gravitational effects surviving in this limit are the collective
phenomena in which the powers of 1=M2

pl are compensated
by corresponding powers of N. An important example
of a nonzero collective effect surviving in the species limit
is Gibbons-Hawking radiation. Correspondingly, the spe-
cies limit allowed us to observe that the BRST-invariant
coherent state, describing de Sitter space in linearized
gravity, exhibits features of full nonlinear de Sitter space.
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Note added in the proof.—After submission of this work, it
was brought to our attention that the gauge invariant
observable ϕðxþ εÞ, discussed in Section VII, has been
previously studied in a different context [34,35].
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