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We remark that the recent exact six-loop and seven-loop computations of renormalization group
functions for theOðNÞ-symmetric four dimensional ϕ4 quantum field theory show hints that the associated
large-order behavior is dominated by instantons rather than renormalons. This is consistent with a long-
standing conjecture that renormalization group functions in the minimal subtraction (MS) renormalization
scheme are not sensitive to renormalons.
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I. INTRODUCTION

In quantum field theory (QFT) the two main sources of
divergence of perturbation theory are identified as semi-
classical “instantons” (more generally, “saddles”) [1,2] or
Feynman diagrammatic “renormalons” [3,4]. The diver-
gence associated with instantons is typically combinatorial
in nature [5,6], related to the factorial proliferation of
Feynman diagrams with the perturbative order. The diver-
gence associated with renormalons is typically related to
the momentum dependence of certain classes of iterated
diagrammatic structures, such as bubble chains, for exam-
ple, and is closely related to the renormalization group and
the operator product expansion [7–11]. These divergences
of perturbation theory appear as singularities in the Borel
plane of the corresponding Borel transform of the pertur-
bative expansion of the quantity that is being computed.
The dominant large-order growth of the perturbative
coefficients corresponds to the dominant nonperturbative
effects and to the Borel singularity(ies) closest to the origin
of the Borel plane. The generic form of the leading large-
order (k → ∞) growth of the perturbative coefficients ck
has the canonical power-times-factorial form [6],

ck ∼ SakΓðkþ 1þ bÞ; k → ∞: ð1Þ

The three parameters a, b, and S have the following
physical significance:

1

a
↔ location of the leading Borel singularity; ð2Þ

b ↔ nature of the leading Borel singularity; ð3Þ

S ↔ strength of the leading Borel singularity: ð4Þ

While these correspondences are well understood in quan-
tum mechanics, matrix models, and certain special quan-
tum field theories, it is much more difficult to make
high-order perturbative computations of Green’s function
or renormalization group (RG) functions in nontrivial
QFTs. For example, the beta functions in QED [12] and
QCD [13] are currently known to five-loop order, as is the
QED anomalous magnetic moment of the electron [14,15],
each of which constitutes a heroic tour de force compu-
tation. The anomalous magnetic moment of the muon is a
question of great current interest [16].
Recently, there has been dramatic progress in the under-

standing of QFT perturbative amplitudes [17–20], leading
to new methods for high-order computations. For example,
following the five-loop analysis of ϕ4 theory in the early
1980s [21–23], the six-loop [24] and seven-loop [25]
computations of the beta function and anomalous dimen-
sions [in the minimal subtraction (MS) scheme] have been
done in quick succession in recent years. These computa-
tions have been inspired and enabled by deep ideas from
graph theory, number theory, and Hopf algebras [26–28].
Here, we ask the following simple question:

Do the exact results of [24,25] contain enough pertur-
bative data to be able to see hints of large-order growth
and associated nonperturbative effects in ϕ4 theory in
four dimensions and to distinguish between instanton or
renormalon effects?

We suggest that the answer is “yes” and that the results
so far appear to favor the instanton description. The idea is
extremely simple: The results of [24,25] include the full N
dependence for the OðNÞ-symmetric ϕ4 model, and the
instanton and renormalon predictions for the N dependence
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of the large-order growth parameters a, b, and S appearing
in (1) are very different.
The instanton analysis [1,29–31] predicts that the lead-

ing large-order growth of the coefficients βk of the beta
function is

instantons∶ βinstk ∼ð−1ÞkSinstΓ
�
kþ4þN

2

�
; k→∞: ð5Þ

As is conventional [24], we have absorbed a factor of the
single-instanton action (which is independent of N) into the
coupling.1 The overall constant Sinst is known as a function
of N, but this does not enter our argument here.
The renormalon analysis [7,8,32–35] leads to the follow-

ing quite different prediction:

renormalons∶ βrenk ∼Sren

�
β2ðNÞ
2

�
k
Γ
�
kþ1þ 2β3ðNÞ

ðβ2ðNÞÞ2
�
;

k→∞; ð7Þ

where β2ðNÞ ¼ Nþ8
3

and β3ðNÞ ¼ 3Nþ14
3

are the first two
nontrivial beta function coefficients. We can summarize
these different predictions for the large-order growth
parameters a and b in (1) as

ainstðNÞ ¼ −1; binstðNÞ ¼ 3þ N
2
; ð8Þ

arenðNÞ ¼ ðN þ 8Þ
6

; brenðNÞ ¼ 6ð3N þ 14Þ
ðN þ 8Þ2 : ð9Þ

We note that there is an old conjecture that the renorm-
alization group functions in the MS scheme are not
sensitive to renormalons—see the discussion in [31] and
comments in [34].

It is possible to selectively probe the large-order growth
parameters a and b in (1) as follows. For coefficients with
this factorial-times-power large-order growth, the ratio-of-
ratios ckþ1ck−1=c2k should tend to 1 at large order as
follows2:

ckþ1ck−1
c2k

∼ 1þO

�
1

k

�
; k → ∞: ð10Þ

The subleading Oð1kÞ correction term is directly sensitive to
the factorial growth and the associated large-order growth
parameter b (the a dependence clearly cancels),

ðkþ bÞ
�
ckþ1ck−1

c2k
− 1

�
∼ 1þO

�
1

k

�
; k → ∞: ð11Þ

If the parameter b has been determined, the simple ratio
ckþ1=ck can be used to determine the other large-order
growth parameter, a,

1

a
1

ðkþ 1þ bÞ
�
ckþ1

ck

�
∼ 1þO

�
1

k

�
; k → ∞: ð12Þ

Therefore, the combinations of coefficients on the lhs of
(10), (11), and (12) should each tend to 1 at large
perturbative order k.

II. PERTURBATIVE EXPANSION OF THE
BETA FUNCTION

To fix notation, we list the first few terms of the
perturbative RG beta function, computed in the MS
renormalization scheme [24,25]. The first few terms for
the beta function expansion are

βðg; N; ϵÞ ≔
X∞
k¼0

βkðNÞgk ð13Þ

¼ −2ϵgþ
�
8þ N
3

�
g2 −

�
14þ 3N

3

�
g3 þ

��
88ζð3Þ

9
þ 370

27

�
þ
�
20ζð3Þ

9
þ 461

108

�
N þ 11N2

72

�
g4

−
��

24581

486
þ 4664ζð3Þ

81
þ 2480ζð5Þ

27
−
176π4

1215

�
þ
�
10057

486
þ 1528ζð3Þ

81
þ 2200ζð5Þ

81
−
62π4

1215

�
N

þ
�
395

243
þ 14ζð3Þ

9
þ 80ζð5Þ

81
−

π4

243

�
N2 −

5N3

3888

�
g5 þ…: ð14Þ

The terms to six-loop are in [24] and to seven-loop in [25].

2This is a common indicator [36,37].

1Thus, the Lagrangian for the OðNÞ-symmetric field ϕ in D ¼ 4 − 2ϵ dimensions is

L ¼ 1

2
m2Z1ϕ

2 þ 1

2
Z2ð∂ϕÞ2 þ 16π2

4!
Z4gμ2ϵϕ4: ð6Þ
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An approximation to the beta function based on the primitive diagrams (those without subdivergences) has been
computed to 11-loop order [24,38,39] (presented here in four dimensions, where ϵ ¼ 0),

βprimitiveðg; NÞ ¼ 1

3
g2ð8þ NÞ − 0 · g3 þ g4ð11.7534þ 2.67124NÞ − g5ð95.2437þ 28.1635N þ 1.02413N2Þ

þ g6ð1226.29þ 438.768N þ 33.1118N2Þ − g7ð16490.3þ 6872.79N þ 751.561N2 þ 16.0652N3Þ
þ g8ð240539:þ 113676.0N þ 16034.7N2 þ 672.775N3 þ 2.59286N4Þ − g9ð3.73942 × 106

þ 1.96561 × 106N þ 335648.0N2 þ 20839.2N3 þ 337.374N4Þ þ g10ð6.14646 × 107

þ 3.54108 × 107N þ 7.03792 × 106N2 þ 572454.0N3 þ 16798.5N4 þ 88.9656N5Þ
− g11ð1.06184 × 109 þ 6.6272 × 108N þ 1.49249 × 108N2 þ 1.48812 × 107N3 þ 634038.0N4

þ 8689.46N5 þ 9.51934N6Þ þ g12ð1.92531 × 1010 þ 1.28903 × 1010N þ 3.22426 × 109N2

þ 3.77652 × 108N3 þ 2.09798 × 107N4 þ 481120.0N5 þ 2820.02N6Þ: ð15Þ

The primitive diagrams constitute the dominant fraction of
diagrams at large order, and their contribution to the RG
functions is scheme independent [24].
We use the results of [24,25] and (15) to study the

coefficient combinations in (10), (11), and (12) using
the instanton and renormalon predictions in (8) and (9)
for the large-order growth parameters a and b, including
their N dependence. We first define

δkðNÞ ≔ βkþ1ðNÞβk−1ðNÞ
β2kðNÞ : ð16Þ

If the beta function coefficients βkðNÞ follow the large-
order growth in (1), then δkðNÞ should tend to 1, indepen-
dent of the values of the large-order growth parameters a, b,
and S in (1).3 Figure 1 plots δkðNÞ as a function of
perturbative order k, for N ¼ 1; 2;…; 5. This figure sug-
gests that both the exact coefficients to seven-loop order
and the (approximate) primitive graph results to 11-loop
order are consistent with the form of the large-order growth
in (1).
To probe this more precisely, we define the ratio of

successive beta function coefficients, normalized as in (12),

Rinst
k ðNÞ ≔ 1

ainstðNÞðkþ 1þ binstðNÞÞ
βkþ1ðNÞ
βkðNÞ

¼ −1
ðkþ 4þ N

2
Þ
βkþ1ðNÞ
βkðNÞ ; ð17Þ

Rren
k ðNÞ ≔ 1

arenðNÞðkþ 1þ brenðNÞÞ
βkþ1ðNÞ
βkðNÞ

¼ 6

ðN þ 8Þðkþ 1þ 6ð3Nþ14Þ
ðNþ8Þ2 Þ

βkþ1ðNÞ
βkðNÞ : ð18Þ

For consistency, each of these should tend to 1 at large
perturbative order k. From Fig. 2, we see that the instanton
parameters ainstðNÞ and binstðNÞ in (8) are clearly favored
over the renormalon parameters in (9), both because of the
sign of a and because of the N dependence.
Finally, we probe the large-order growth parameter b by

plotting the large-order growth of the following combina-
tions, normalized as in (11):

Δinst
k ðNÞ ≔

�
kþ 3þ N

2

��
βkþ1ðNÞβk−1ðNÞ

β2kðNÞ − 1

�
; ð19Þ

Δren
k ðNÞ ≔

�
kþ 6ð3N þ 14Þ

ðN þ 8Þ2
��

βkþ1ðNÞβk−1ðNÞ
β2kðNÞ − 1

�
:

ð20Þ

FIG. 1. Plots of the ratio δkðNÞ defined in (16) as a function of
the perturbative order k, for N ¼ 1; 2;…; 5. The dashed hori-
zontal line δk ¼ 1 is the predicted large k limit. The blue curves
use the exact seven-loop beta function coefficients βkðNÞ in (14)
from [24,25], while the red curves use the approximate 11-loop
primitive graph beta function coefficients [39] in (15).

3Clearly, N cannot be too large or the formal perturbative
expansion must be reorganized.
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Again, for consistency, each of these should tend to 1. Figure 3 slightly favors the instanton parameters over the renormalon
ones, but the difference is not as conclusive as in Fig. 2.

III. EPSILON EXPANSION: CRITICAL COUPLING AND CORRECTION TO SCALING EXPONENT

Given the perturbative expansion (13) of the beta function, we use straightforward series inversion to compute the epsilon
expansion of the critical coupling, defined via [2],

βðgcritðϵ; NÞ; N; ϵÞ ¼ 0: ð21Þ

The first few terms are

gcritðϵ; NÞ ≔
X∞
k¼1

gkðNÞϵk ð22Þ

¼ 6ϵ

Nþ8
þ36ð3Nþ14Þϵ2

ðNþ8Þ3 þ3ϵ3ð−96ζð3ÞðNþ8Þð5Nþ22Þþ11NðNð10−3NÞþ160Þþ4544Þ
ðNþ8Þ5 þ…: ð23Þ

FIG. 2. Left: plots of the ratioRinst
k ðNÞ defined in (17), based on the instanton large-order growth parameters in (8), as a function of the

perturbative order k, for N ¼ 1; 2;…; 5. The blue curves use the exact seven-loop beta function coefficients βkðNÞ in (14) from [24,25],
while the red curves use the approximate 11-loop primitive graph beta function coefficients [39] in (15). The dashed horizontal line
Rk ¼ 1 is the predicted large k limit. Right: plots of the ratio Rren

k ðNÞ defined in (18), based on the renormalon large-order growth
parameters in (9). The color coding is the same as in the left panel.

FIG. 3. Left: plots of the ratio Δinst
k ðNÞ defined in (19), based on the instanton large-order growth parameters in (8), as a function of the

perturbative order k, for N ¼ 1; 2;…; 5. The blue curves use the exact seven-loop beta function coefficients βkðNÞ in (14) from [24,25],
while the red curves use the approximate 11-loop primitive graph beta function coefficients [39] in (15). The dashed horizontal line
Δk ¼ 1 is the predicted large k limit. Right: plots of the ratio Δren

k ðNÞ defined in (20), based on the renormalon large-order growth
parameters in (9). The color coding is the same as in the left panel.
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The epsilon expansion inherits a related factorial diver-
gence from the perturbative results computed for the RG
functions in dimension D ¼ 4 − 2ϵ,

gkðNÞ ∼
�
−

2

β2ðNÞ
�

k
Γ
�
kþ N

2
þ 4

�
; k → ∞: ð24Þ

The large-order behavior of gkðNÞ is controlled by the same
offset as for the beta function coefficients βkðNÞ, but the
“action” is rescaled by 2=β2ðNÞ, as can be seen from the
first term in (14). We have adopted the instanton large-order
growth parameters, since these are favored by the beta
function analysis above.
The correction to the scaling exponent is defined as [2]

ωðϵ; NÞ≡
�
d
dg

βðg; N; ϵÞ
�
g¼gcritðϵ;NÞ

: ð25Þ

Thus, the epsilon expansion of ωðϵ; NÞ is obtained by series
composition. The first few terms are

ωðϵ; NÞ ≔
X∞
k¼1

ωkðNÞϵk ð26Þ

¼ 2ϵ −
12ð3N þ 14Þϵ2

ðN þ 8Þ2 þ ϵ3
�
192ζð3Þð5N þ 22Þ

ðN þ 8Þ3 þ 2ðNðNð33N þ 538Þ þ 4288Þ þ 9568Þ
ðN þ 8Þ4

�
þ…: ð27Þ

The large-order behavior of coefficients ωkðNÞ in (26) is
more complicated because it is influenced by two series, the
perturbative series of βðg; N; ϵÞ and the epsilon expansion
of gcritðϵ; NÞ, each of which has large-order behavior of the
form (1) but with different parameters a and b. The
derivative of the beta function causes a shift in the offset
parameter b, while the a parameter of the critical coupling

dominates over that of the beta function. The leading large-
order behavior is (see also [24])

ωkðNÞ∼
�
−
2

β2

�
kþN

2
þ6

Γ
�
kþN

2
þ6

�
þ…; k→∞; ð28Þ

FIG. 4. Plot of the ratio δðωÞk ðNÞ defined in (29) as a function of
the perturbative order k, for N ¼ 1; 2;…; 5. The dashed hori-
zontal line δk ¼ 1 is the predicted large k limit. The blue curves
use the exact seven-loop beta function coefficients βkðNÞ in (14)
from [24,25], while the red curves use the approximate 11-loop
primitive graph beta function coefficients [39] in (15).

FIG. 5. Plots of the ratio RðωÞ
k ðNÞ defined in (30) (left) and the ratio ΔðωÞ

k ðNÞ defined in (31) (right), as functions of the perturbative
order k, for N ¼ 1; 2;…; 5. The dashed horizontal linesRk ¼ 1 and Δk ¼ 1 are the predicted large k limit. The blue curves use the exact
seven-loop beta function coefficients βkðNÞ in (14) from [24,25], while the red curves use the approximate 11-loop primitive graph beta
function coefficients [39] in (15).
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assuming that the large-order behavior of the beta function
is controlled by instanton arguments.
To compare this prediction (28) with the perturbative

results of [24,25], we form the corresponding combinations
of coefficients on the left-hand sides of (10), (11), and (12),
analogous to the expressions (16), (17), and (19) for the
beta function coefficients,

δðωÞk ðNÞ ≔ ωkþ1ðNÞωk−1ðNÞ
ω2
kðNÞ ; ð29Þ

RðωÞ
k ðNÞ ≔ −ðN þ 8Þ

6ðkþ 6þ N
2
Þ
ωkþ1ðNÞ
ωkðNÞ ; ð30Þ

ΔðωÞ
k ðNÞ ≔

�
kþ 5þ N

2

��
ωkþ1ðNÞωk−1ðNÞ

ω2
kðNÞ − 1

�
: ð31Þ

If the epsilon expansion coefficients ωkðNÞ in (27) follow
the large-order growth in (28), then these combinations
should each tend to 1, for all N. Figures 4 and 5 show good
agreement between the predicted large-order behavior (28)
and the perturbative results of [24,25], similar to the large-
order behavior of the beta function coefficients.

IV. QUANTUM MECHANICAL MODEL

It is a simple but instructive exercise to compare these
results for the four dimensional OðNÞ-symmetric ϕ4 QFT
with its one dimensional counterpart, the OðNÞ-symmetric
quartic anharmonic oscillator, whose large-order growth for
energy levels was analyzed in [41]. The ground state energy
has a perturbative expansion,

Eðλ; NÞ ¼
X∞
k¼0

EkðNÞλk; ð32Þ

where E0ðNÞ ¼ N
2
, and the leading large-order growth is

[41]

EkðNÞ ∼ −
6N=2

πΓðN
2
Þ ð−3Þ

kΓ
�
kþ N

2

�
; k → ∞: ð33Þ

The exact perturbative coefficients EkðNÞ can be gen-
erated recursively from an algorithm in Appendix A of
[41]. We have computed the first 20, and we define the
corresponding combinations from (10), (11), and (12),

δðEÞk ðNÞ ≔ Ekþ1ðNÞEk−1ðNÞ
E2
kðNÞ ; ð34Þ

FIG. 6. Plots of the ratio δðEÞk ðNÞ defined in (34) for the OðNÞ-
symmetric QM anharmonic oscillator, as a function of perturba-
tive order k, and for N ¼ 1; 2;…; 5. The blue curves are derived
from the exact first seven coefficients EkðNÞ, while the red curves
continue to 20th order. Compare with plots of the corresponding
combination of coefficients of the perturbative expansion of the
beta function (Fig. 1) and the epsilon expansion of the correction
to scaling exponent ω (Fig. 4).

FIG. 7. Plots of the coefficient combinations RðEÞ
k ðNÞ defined in (35), and ΔðEÞ

k ðNÞ defined in (36), for the OðNÞ-symmetric QM
anharmonic oscillator, as a function of perturbative order k, and forN ¼ 1; 2;…; 5. The blue curves are derived from the exact first seven
coefficients EkðNÞ, while the red curves continue to 20th order. Compare with plots of the corresponding combinations of coefficients of
the perturbative expansion of the beta function (Figs. 2 and 3) and the epsilon expansion of the correction to scaling exponent ω (Fig. 5).

GERALD V. DUNNE and MAX MEYNIG PHYS. REV. D 105, 025019 (2022)

025019-6



RðEÞ
k ðNÞ ≔ −1

3ðkþ N
2
Þ
Ekþ1ðNÞ
EkðNÞ ; ð35Þ

ΔðEÞ
k ðNÞ ≔

�
k − 1þ N

2

��
Ekþ1ðNÞEk−1ðNÞ

E2
kðNÞ − 1

�
: ð36Þ

These coefficient combinations should each tend to 1 at large
order, for all N. See Figs. 6 and 7, which display the
combinations derived from the first seven terms in blue
and those derived from further terms in red. We see that,
analogous to the four dimensional ϕ4 QFT discussed in the
previous sections, the first seven perturbative orders show
similar hints of tending to the correct asymptotic behavior,
and this is further improved by higher order terms. But we
note that even in this much simpler quantum mechanical
model, the true large-order behavior is approached slowly,
beingmuch clearer by 20th order than at 11th order, which is
the highest order (with approximate estimates) currently
available in the four dimensional ϕ4 QFT.

V. CONCLUSIONS

We have used the recent high perturbative order exact
results of [24,25] to probe the large-order growth of the
coefficients of the perturbative expansion of the beta
function βðg; NÞ and of the coefficients of the epsilon
expansion of the correction to scaling exponent ωðϵ; NÞ for
OðNÞ-symmetric scalar ϕ4 theory in four dimensions. We
suggest that these perturbative results are already showing

indications of the generic (factorial × power) form of large-
order growth in (1). Moreover, the associated large-order
growth parameters appear to favor an instanton interpre-
tation rather than a renormalon one, consistent with an
argument that renormalization group functions in the MS
scheme are not sensitive to renormalons [31,34]. This raises
interesting questions about the scheme dependence and the
observable dependence of renormalons. At present, the
diagrammatic understanding of the apparent suppression of
renormalons in this case is rather mysterious. It would be
interesting to understand better to what extent this is a
consequence of the MS renormalization scheme, or the
particular renormalization group functions, or both.
Nevertheless, we find it encouraging that exact perturbative
computations have matured to the point where they may be
on the verge of being able to shed direct light on such
questions. Of course, further information about higher
orders is still needed to resolve these issues more con-
clusively. We also note that somewhat related questions
have been studied recently using other methods and other
QFT models [42–46].
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