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We introduce the use of reinforcement-learning (RL) techniques to the conformal-bootstrap program.
We demonstrate that suitable soft Actor-Critic RL algorithms can perform efficient, relatively cheap high-
dimensional searches in the space of scaling dimensions and OPE-squared coefficients that produce
sensible results for tens of CFT data from a single crossing equation. In this paper we test this approach in
well-known 2D CFTs, with particular focus on the Ising and tricritical Ising models and the free
compactified boson CFT. We present results of as high as 36-dimensional searches, whose sole input is the
expected number of operators per spin in a truncation of the conformal-block decomposition of the crossing
equations. Our study of 2D CFTs uses only the global soð2; 2Þ part of the conformal algebra, and our
methods are equally applicable to higher-dimensional CFTs. When combined with other, already available,
numerical and analytical methods, we expect our approach to yield an exciting new window into the
nonperturbative structure of arbitrary (unitary or nonunitary) CFTs.
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I. INTRODUCTION

The nonperturbative formulation of a generic quantum
field theory (QFT) and the analytic, or numerical, solution
of its dynamics remains an extremely challenging con-
ceptual and computational problem with important theo-
retical and experimental implications.
The problem becomes more tractable in conformal field

theories (CFTs): a special class of QFTs that describe
typically the short and large-distance behaviors of generic
QFTs. Most notably, in a unitary, relativistic CFT in D
spacetime dimensions, the local structure of the theory is
characterized by a set of discrete data: the scaling dimen-
sions Δi of local conformal primary operators Oi and their
operator product expansion (OPE) coefficients Ck

ij. Once
these data are known, the generic correlation function of
any local operator in the theory can be determined.
Unitarity implies certain well-known constraints on these

data. For example, a conformal primary operator with
scaling dimensionΔ and spin smust satisfy the inequalities

Δ ≥
D − 2

2
; for s ¼ 0 ð1:1Þ

Δ ≥ sþD − 2; for s > 0: ð1:2Þ

The equality Δ ¼ sþD − 2 occurs only for conserved
currents.
More elaborate, and powerful, constraints on the CFT

data arise from crossing symmetry: the property that a
correlation function is the same irrespective of the
channel used in its OPE decomposition. These constraints
(consistency conditions) form the basis of the conformal
bootstrap approach. Since the 1970s (see e.g., [1]) it was
hoped that by solving the conformal bootstrap equations,
one would be able to solve CFTs nonperturbatively, with-
out the need for a Lagrangian formulation. For many years
the complexity of the conformal bootstrap equations, and
the fact that they admit an infinite set of solutions for an
infinite set of unknowns, did not allow the program to
evolve beyond a limited set of cases in 2D conformal field
theory.

A. Brief background on the modern
conformal bootstrap

Significant progress was instigated in 2008 by the
seminal paper [2], which shifted the focus away from
the search of exact solutions of the conformal bootstrap
equations and toward the following approach: Make an
assumption about the spectrum of the CFT and ask if the
bootstrap equations can be satisfied; if the equations
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cannot be satisfied, then this assumption can be success-
fully eliminated. With suitable truncations on the infinite-
dimensional CFT spectrum, this programme can be
implemented numerically, and powerful linear and semi-
definite programming methods1 have been employed
in recent years to obtain many significant results in this
direction. It is impossible to list here all the results and
different applications of this approach. For a concise
review, and orientation to the relevant literature, we refer
the reader to [4–6].
The assumptions that drive this approach are selected

blindly; in the words of [7], the bootstrap computations
in this context are performed in an “oracle mode.”
Nevertheless, suitable assumptions not only carve out
significant parts of the space of potential CFTs, but one
interestingly finds in many cases that known theories lie at
cusps of the boundary of allowed possibilities. Even
more efficiently, sometimes one discovers that the allowed
region is an isolated “island.” When this happens, the
oracle-mode can be used to compute remarkably well
scaling dimensions and OPE coefficients. A beautiful
application of this method is encountered in the 3D
Ising model [8]. Theories at the boundary of the allowed
and disallowed regions are obviously special from this
perspective and have been the primary target of standard
applications of the conformal bootstrap. Efficient computa-
tional methods, like the extremal functional method [9], can
be used to enhance the arsenal of the conformal bootstrap in
this context.
Nevertheless, some obvious shortcomings of this

approach include:
(a) For theories inside the allowed region one cannot, in

general, tell how far they are located away from the
boundary.

(b) With generic assumptions in oracle mode it is hard to
identify and solve specific pre-selected CFTs, such as
one’s favorite gauge (conformal field) theory, that may
not lie on the boundary of allowed and disallowed
regions of the search.

(c) Higher-dimensional searches that would facilitate the
study of more general classes of CFTs are computa-
tionally expensive and difficult to implement with the
existing techniques. Typically, with current standard
techniques one is restricted to searches of a couple of
parameters.

To address some of these problems Ref. [7] recently
introduced the navigator-function method, which replaces
the binary information of the oracle mode with continuous
information from an optimized continuous, differentiable
function, called the navigator function. The navigator func-
tion is positive in the disallowed region, negative in the
allowed region, zero at the boundary and, in principle, it is

defined globally on the space of parameters. By minimizing
theNavigator function one can flow fromadisallowed region
to an allowed region and thus map out islands in parameter
space, e.g., by finding one feasible point inside the island or
by finding an island’s extremal points. The algorithms of [7]
employ the same well-developed semidefinite programming
tools of SDPB that were previously used to determine OPE
coefficients as a maximization problem. Notable precursors
of the navigator-function method are the optimization
methods proposed in [10].
Another notable approach to the conformal bootstrap,

with the potential to address the above issues, was proposed
earlier on by Gliozzi in [11]; see also [12–15] for further
work in this direction. In [11] the conformal-block expan-
sion of the crossing equations was arbitrarily truncated and
Taylor-expanded in cross-ratio space. A specific assumption
was made about the spectrum of operators that enter the
truncated conformal-block expansions. Viewing the result-
ing crossing equations as an overconstrained system of
linear equations for the unknown OPE-squared coefficients,
and demanding the existence of nontrivial solutions, yields
conditions on the allowed scaling dimensions, which are
phrased as vanishing determinants. This method can be
used, in principle, to study a wider class of CFTs, including
nonunitary CFTs, which are beyond the reach of the above-
mentioned SDPB approaches. It requires, however, that the
CFTis “truncable,”which is not an a priori obvious property
of a givenCFT (see [12] for an example that is not truncable).
In [14], the Gliozzi approach was reformulated as a
minimization problem, which improves important aspects
of the method. The approach to the conformal bootstrap
that we introduce in this paper is similar in spirit to the
reformulation of [14].
Both of the above approaches, and the one we introduce

below, are phrased as optimization problems. A distinctive
feature of what we do is that instead of minimizing directly
the quantity of interest, we optimize a neural network (NN)
that predicts a probability distribution, which is then
sampled to make the actual predictions. This approach
has several advantages. In direct optimization function, one
needs to compute partial derivatives, which can become
expensive in high-dimensional searches.2 In contrast, we
use fixed optimization algorithms for the NNs, independent
of the details and complexity of the specific problem.
Moreover, when one optimizes the function of interest
directly, one has to first pick a point in state-space to
initialize the process, and then the derivatives guide the
search toward the closest minimum. In order to flow to the
minimum, one has to pick a small enough learning rate, but
that inevitably restricts the flow to the closest minimum,
even if it is not the global one. Our approach is efficient at
trying to find the global minimum, because the learning rate

1A commonly used package is the semidefinite program solver
(SDPB) [3].

2In [7] this problem is avoided with a general SDP gradient
formula and the efficient use of a quasi-Newton method.
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varies and it probes minima at varying distances from the
original starting point. The price we have to pay for these
advantages is that our computations become less “exact,”
i.e., less direct and more statistical.

B. A novel study of truncations based
on artificial intelligence

In the present work we study truncated crossing
equations as an optimization problem and develop meth-
ods to find approximate numerical solutions taking
advantage of recent developments in machine learning
(ML) and the wider availability of associated techniques.
Similar to [11,14], our approach is more akin to the
original philosophy of the 1970s, which aimed at a direct
solution of the conformal bootstrap equations. We will
explain momentarily how we set up and implement a
multidimensional search of approximate solutions and
how this search benefits from artificial intelligence-
techniques.

1. Introductory comments on ML terminology

Designing architectures and algorithms which one day
could surpass human performance has been a long-running
goal in the field of ML. Although a significant part
of the theoretical (statistical and probabilistic) groundwork
had been laid down for more than half a century, ML has
only recently started to truly flourish. Decades ago
algorithms which beat professional chess players had
already been designed, but these approaches involved
codes that were rigid and nondynamic, meaning that
once written their knowledge would be capped. In contrast,
all of the modern developments in having machines
learn how to solve problems include dynamic programming
and a statistical approach to learning. The latter has
only become practically feasible of late with the rapid
development of and easier access to powerful central
processing units (CPUs) and graphics processing units
(GPUs).
The three best-known categories of ML algorithms are:

supervised, unsupervised and reinforcement learning. In
supervised learning some of the data are tagged and contain
both the input and desired output. The algorithm trains on
the tagged data and learns how to produce a sensible output
from any input. Typical applications of supervised learning
are classification and regression problems. In unsupervised
learning there are no externally provided tagged data for
training; the algorithm recognizes on its own structure in a
given set of data. In reinforcement learning (RL) [16]—or
deep reinforcement learning (DRL), that employs deep
neural networks (DNNs) in the learning steps of the
“agent”—one knows the goals but does not know how
to achieve them. The algorithm interacts with a dynamic
environment and receives feedback based on its perfor-
mance that guides it toward the desired result.

In recent years, ML has had a rising number of
applications in high energy physics.3 In this paper, we
will initiate a study of the conformal-bootstrap program
using RL techniques. This is the first study of conformal
field theory of this kind.4

2. RL setup in the conformal bootstrap

Ultimately, a successful RL algorithm should be able to
identify a proper CFT, by converging to a configuration of
CFT data that satisfy the crossing equations within a
prescribed accuracy. It should similarly be able to exclude
improper CFTs by failing to converge to a configuration
that satisfies the crossing equations within the prescribed
accuracy.
The basic scenario of our approach includes the follow-

ing ingredients:
(i) Consider a specific four-point function with oper-

ators that have fixed symmetry properties, scaling
dimensions and spins. If the scaling dimensions of
the external operators are unknown, one can include
them, as unknown variables, into the search.

(ii) The crossing equations are truncated with a specific
assumption about the number of operators per spin
that appear in each channel. We call this assumption
the spin-partition of the truncated conformal-block
expansion. For example, if the truncation of the
conformal block expansion in a given channel is
assumed to include only operators of integer spin, and
we truncate at maximum spin 3, then the spin-
partition specifies the number of operators at spin
0, 1, 2 and 3. The spin-partition, which is an input to
the RL algorithm, specifies the dimensionality of the
vector of unknown scaling dimensions and OPE-
squared coefficients ðΔ⃗; C⃗Þ, thatwe aim to determine.

(iii) We assume that the conformal blocks are known
analytically, or numerically, [4–6]. The crossing
equations, which are functions of the cross-ratios
(see Sec. II A for details), are reduced to a set of
algebraic equations for the unknown scaling dimen-
sions and OPE-squared coefficients ðΔ⃗; C⃗Þ. The
reduction can be achieved by Taylor expanding
the conformal blocks around a particular point (as
in standard applications of the numerical conformal
bootstrap), or by evaluating the conformal blocks on
a set of different points in cross-ratio space. We will

3See [17] for a compendium of reviews ranging from the more
experimental to the more computational aspects, and [18] for a
summary of applications to string theory. RL implementations
have appeared in the context of string theory even more recently
in [19]. See also [20] for a nice introduction to deep learning from
a physics-motivated viewpoint.

4An alternative ML approach toward certain aspects of CFT,
using supervised learning, appeared in [21]. The methodology,
focus and scope of [21] are very different from the one that we
introduce below.
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implement the latter approach in this paper. Natu-
rally, the number of algebraic crossing equations
obtained in this manner should be larger than the
number of unknowns. In compact vector form, the
reduced algebraic crossing equations are

E⃗ðΔ⃗; C⃗Þ ¼ 0: ð1:3Þ

Since we truncate the crossing equations, it is not
guaranteed (or expected) that Eqs. (1.3) have an
exact solution. Our aim is to find approximate
solutions to (1.3) that minimize E⃗. Approximate
solutions are expected to flow toward exact solutions
of the exact crossing equations as one adds more and
more operators to the truncation.

(iv) One can specify the width of the search either
individually for each unknown scaling dimension
and OPE-squared coefficient, or collectively. For
example, one can set a common upper cutoff, Δmax,
on the unknown scaling dimensions. Clearly, be-
cause of the unitarity constraints, (1.1)–(1.2), if the
maximum spin in the spin-partition is smax, then
Δmax ≥ smax þD − 2.

(v) With these specifications in mind, we set up a soft
actor-critic RL algorithm, [22], that performs a
multidimensional search on the vector space of
the unknown scaling dimensions and OPE-squared
coefficients ðΔ⃗; C⃗Þ and returns configurations that
minimize the norm of the crossing-equation vector
E⃗. The operation and key components of the RL
algorithm will be discussed in Sec. III.

C. Overview and discussion of results

Our main goal in this paper is to show that suitable RL
algorithms can be applied to the conformal-bootstrap
program to efficiently perform multidimensional searches,
and (when appropriately guided) to detect and solve
arbitrary CFTs. We aim primarily at a proof-of-concept
demonstration of the approach with less emphasis on
maximizing the accuracy of the results, which we will
consider in future work. In that vein, we want to test RL
algorithms against results that can be obtained independ-
ently using analytic methods.
We choose to analyse 2D CFTs, as in this case it is

straightforward to write exact conformal blocks for oper-
ators of arbitrary spin. Throughout our computations, we
will only use the global soð2; 2Þ part of the 2D conformal
algebra, without making any reference to the Virasoro
algebra, which is a special feature of two dimensions.
Consequently, every tool that we set up in this paper is
directly generalizable and applicable to higher-dimensional
CFTs, which will be treated elsewhere. For concreteness,
we will focus separately on the two leading unitary minimal

models (the Ising and tricritical Ising model) and the free
boson CFT on a circle.

1. Key results

We highlight the following results:
(i) In all the cases we analysed, the algorithm was able

to detect the CFT whose spin-partition we used as
input. This is extremely promising. It suggests that
reinforcement learning has a great potential as a
tool in conformal-bootstrap studies of generic pre-
selected CFTs. Our approach is not limited to special
theories, e.g., CFTs on cusps of parameter spaces, or
CFTs with enhanced symmetries.

(ii) Even with a relatively small upper cutoff on the
scaling dimensions our algorithm produces sensible
numerical results that satisfy the truncated crossing
equations at good accuracy. The details depend on
the theory and the four-point function that we are
analysing. For instance, for simple CFTs like the 2D
Ising model, a run with only 5 quasiprimary oper-
ators yields scaling dimensions and OPE-squared
coefficients comparable with their analytic values
within the order of 1%. In the free compactified
boson CFT we obtain sensible results even with 4
quasiprimary operators and cutoff Δmax ¼ 2. As one
might expect, the results of our RL algorithm are
generically more accurate for lower scaling dimen-
sions, and less accurate for quasiprimaries close to
the cutoff when compared with the analytic answers.

(iii) We can probe the dependence of CFTs on closely
spaced discrete parameters, or continuous parame-
ters like exactly marginal couplings. We present
examples of such a study in the context of the 2D
free boson on a circle. In that case, the continuous
parameter is the radius of the circle. Being appli-
cable in such scenarios, our method could readily be
combined with analytic results in convenient param-
eter regimes (e.g., at weak-coupling points) to solve
the theory at generic points by adiabatically chang-
ing the parameters.

(iv) We can perform efficient high-dimensional searches;
our current algorithm can do direct searches with
tens of operators. In the context of the 2D compac-
tified boson CFT, we present results of a run with 36
parameters. We can, in principle, go to even higher
spins and scaling dimensions with multiple sequen-
tial runs that start with a smaller number of operators
and gradually introduce more.

2. Numerical uncertainties

An important aspect of our approach, which is not
addressed in detail in the preliminary investigations of this
paper, has to do with the systematic treatment of errors. As
emphasized at the beginning of this subsection, the main
goal of the present work is to establish that our algorithm
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detects the intended CFT and produces sensible numbers.
We achieve this goal by comparing said numbers with the
available exact analytic results. A preliminary discussion of
errors and uncertainties, and how they can be incorporated
systematically in the future, is relegated to the concluding
Sec. VI. In the rest of this subsection, we flesh out an
important aspect of our approximations that affects the
implementation of our approach.
As already noted, the truncated crossing equations that

we are trying to solve do not admit, in general, any exact
solutions. Therefore, our main task is to find configurations
that minimize the violation of the truncated equations.
What is the minimal violation of the truncated equations
that we should be aiming for? This is not a priori known
and the answer can depend strongly on the specifics of the
CFT, the four-point function that we are considering, the
type of truncation that we are implementing on the
spectrum and the way we reduce the crossing equations
as functions in cross-ratio space to a number of algebraic
equations. The answer to this question has obvious prac-
tical implications. Most notably, it determines when a run
should be terminated and affects the decision of whether a
given output should be accepted as a solution to an actual
CFT, or whether it should be rejected as a false minimum.
In Sec. II C we define a measure of relative accuracy A

[see Eqs. (2.18), (2.19)] that quantifies a % violation of the
truncated crossing equations. A has a minimum value Amin
for searches in a compact subspace of parameter space. It is
expected that Amin → 0 as we incorporate more and more
operators, but it is not obvious, in general, how to
determine Amin as a function of all the factors that were
listed in the previous paragraph. If there is a regime, where
the analytic solution is known,Amin can be estimated with a
direct RL-algorithm run in the vicinity of the known
solution. This estimate can then be used as a guide in
other regimes of parameters where the analytic solution is
not known.
We have empirically found that in all computations

performed for this paper a solution has been properly
identified for values of A below 0.1% irrespective of the
spin truncation. Once A is below this empirical threshold
andA stops improving and the agent has visibly converged
to a configuration, we terminate the run and record the
result. We have implemented this triple selection rule in all
the runs that are reported in this paper.
To obtain further evidence for the acceptance, or rejec-

tion, of a configuration one can study the dependence of the
best A obtained by the algorithm as more and more
operators are included. Once a configuration has been
accepted as a valid approximation to the exact problem, one
can define individual uncertainties for each CFT datum that
is being computed. We present preliminary results of
statistical errors in specific examples in Sec. V. We discuss
general uncertainties and their sources further in the
concluding Sec. VI.

D. Outline

The rest of this paper is organized as follows. In Sec. II
we present a brief review of useful basic CFT properties
and set up our notation. We introduce the truncation
scheme that we use, the associated spin partitions and a
measure of accuracy that plays a key role in the numerical
computations of the main text. In Sec. III we summarize the
main features of continuous action space reinforcement
learning. We describe the key components of the soft actor-
critic algorithm and outline three practical modes of
implementation. Sections IV and V are the central sections
of the paper. In Sec. IV we present an RL study of four-
point functions of the spin and energy-density operators in
the 2D Ising and tricritical Ising models. In Sec. V we study
four-point functions of primary operators in the momen-
tum/winding sector of the compactified boson CFT and
four-point functions of the conserved Uð1Þ current. We
discuss the dependence of the results on the scaling
dimension cutoff Δmax and the exactly marginal coupling
of the theory. We conclude in Sec. VI with a brief synopsis
of the main results and an outlook on future directions.
A shorter version of this paper, summarizing the key

approaches and results, can be found in [23].

II. CFT PREREQUISITES AND NOTATION

In what follows we assume some familiarity with the
basic concepts of conformal field theory. For a review of
conformal field theory we refer the reader to the standard
textbook [24] and the recent overviews in [4–6], which
summarize the more modern perspective on CFTs above
two dimensions. Sec. II A provides a general overview of
useful properties for CFTs in any spacetime dimension. In
Secs II B and II C we specialize the discussion to 2D CFTs,
which will be the main focus of the computations in
this paper.

A. Generalities

The soðD; 2Þ conformal algebra of a CFT inD spacetime
dimensions organizes the spectrum of local operators/states
of the theory in corresponding representations. A primary
operator Oi has scaling dimension Δi and spin (under the
SOðDÞ Lorentz group) si. Notice that the case D ¼ 2 is
special, since the soð2; 2Þ part of the conformal algebra
extends to the infinite-dimensional Virasoro algebra. It is,
therefore, customary in 2D CFTs to refer to the operators
that are highest-weights in Virasoro representations as
primaries, while operators that are highest-weights in
representations of the global part soð2; 2Þ are called
quasiprimary. Since we will be using only the soð2; 2Þ
structure of 2D CFTs, the reader should anticipate a clear
distinction between primary and quasiprimary operators in
the context of our applications.
A central object in the analysis of CFTs is the operator

product expansion (OPE), which allows one to recast the
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product of two conformal primaries Oi, Oj as a sum over
single conformal primaries and their descendants

Oiðx1ÞOjðx2Þ ¼
X
k

Ck
ijf̂

k
ijðx1; x2; ∂x2ÞOkðx2Þ: ð2:1Þ

The OPE coefficients Ck
ij are c-numbers that are closely

connected to the three-point function coefficients Cijk of
the conformal primaries Oi, Oj, Ok. For example, the two-
and three-point functions of three conformal primary scalar
operators are given by the expressions

hOiðx1ÞOjðx2Þi ¼
gij

jx12j2Δ
; for Δi ¼ Δj ≡ Δ; ð2:2Þ

hOiðx1ÞOjðx2ÞOkðx3Þi ¼
Cijk

jx12jΔij;k jx23jΔjk;i jx13jΔik;j
; ð2:3Þ

with Δij;k ≡ Δi þ Δj − Δk and xij ¼ xi − xj. In this case,
Cijk ¼

P
k C

m
ijgmk. The conformal symmetry forces the

two-point functions in (2.2) to vanish if Δi ≠ Δj and fixes
the spacetime dependence of both the two- and three-point
functions. For spinning operators the expressions in (2.2),
(2.3) generalize to include the tensor structure of the spins.
The quantity f̂kij in the sum (2.1) is a differential operator
that incorporates the contributions of all the conformal
descendants in the conformal multiplet of Ok. Its form is
fixed by conformal symmetry.
The OPE (2.1) can be used to reduce a generic n-point

function to a sum of products of three-point functions.
Hence, the full dynamical content of local correlation
functions in a CFT can be captured by the knowledge of
two- and three-point functions. Equivalently, the solution of
the local structure of a CFT entails the computation of the
full spectrum of scaling dimensions Δi at each spin si and
of the corresponding OPE coefficients Ck

ij.
5

Four-point functions hOi1ðx1ÞOi2ðx2ÞOi3ðx3ÞOi4ðx4Þi
provide a powerful demonstration of this reduction.
Unlike (2.2), (2.3), conformal symmetry does not com-
pletely fix the spacetime dependence of four-point func-
tions. Solely from the viewpoint of conformal symmetries
we can write

hOi1ðx1ÞOi2ðx2ÞOi3ðx3ÞOi4ðx4Þ ¼ KðΔi; xiÞgðu; vÞ; ð2:4Þ

where the factor KðΔi; xiÞ has a fixed form (that will be
written explicitly in two dimensions below), and gðu; vÞ is
a—typically complicated—theory-specific function of the
cross-ratios

u ¼ x212x
2
34

x213x
2
24

; v ¼ x214x
2
23

x213x
2
24

; ð2:5Þ

which are invariant under conformal transformations. The
OPE expansion (2.1) of the products Oi1Oi2 and Oi3Oi4
allows us to recast (2.4) as

hOi1ðx1ÞOi2ðx2ÞOi3ðx3ÞOi4ðx4Þ
¼ KðΔi; xiÞ

X
k1;k2

Ck1
i1i2

gk1k2C
k2
i3i4

gði1i2i3i4ÞOk
ðu; vÞ; ð2:6Þ

where gði1i2i3i4ÞOk
ðu; vÞ is the conformal block that captures

the contribution of intermediate operators Ok1 , Ok2 with
equal scaling dimension Δk. The conformal blocks are
theory-independent and, as already mentioned earlier, in
many cases are either known analytically in closed form, or
can be determined using convenient relations. Specific
expressions for two-dimensional conformal blocks will be
given momentarily.
It is customary (in the context of the so-called conformal

frame) to reexpress the cross-ratios in terms of two
variables z; z̄ as

u ¼ zz̄; v ¼ ð1 − zÞð1 − z̄Þ: ð2:7Þ

In Euclidean CFT z and z̄ are complex conjugate.
It is also customary to work in a basis of conformal

primaries that diagonalizes the two-point functions (2.2).
This is a convenient choice in general, but it can be subtle in
conformal manifolds for degenerate protected operators
because of operator-mixing effects. In what follows we
denote the OPE-squared sum at fixed scaling dimension
Δk as

Ck
i1i2i3i4

≡ X
k1;k2jΔk1

¼Δk2
¼Δk

Ck1
i1i2

gk1k2C
k2
i3i4

: ð2:8Þ

In the absence of degeneracies in the spectrum of
operators that run in this sum, the sum (2.8) comprises
a single term. This is not, however, the only possibility
and in some of the applications of the main text we will
encounter cases where degeneracies do exist. Our algo-
rithm tries to determine the full coefficients Ck

i1i2i3i4
, hence

if there are degeneracies it will not be able to resolve them
to determine the individual contributions that make up the
sum in (2.8).
Obviously, the OPE expansion in (2.6) is not unique.

Instead of using the OPEs Oi1Oi2 and Oi3Oi4 one can use
the OPEs Oi3Oi2 and Oi1Oi4 to obtain a different looking,
but equivalent, expansion of the four-point function. These
two approaches yield respectively the so-called s- and

5Another special feature of CFTs is the operator/state corre-
spondence. We will frequently use it to interchange language
between states and operators.
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t-channel expansions of the four-point function.6 To dis-
tinguish the OPE-squared coefficients in each channel,
we will denote the s-channel coefficients as sCk

i1i2i3i4
and

the t-channel coefficients as tCk
i1i2i3i4

. The t-channel can be
obtained from the s-channel by exchanging the insertions
1 ↔ 3 and equivalently the cross-ratios u ↔ v, or z ↔
1 − z and z̄ ↔ 1 − z̄. The equality of the two expansions
leads to the crossing symmetry constraints

X
k

sCk
i1i2i3i4

gði1i2i3i4ÞΔk
ðu; vÞ

−
X
k0

tCk0
i1i2i3i4

hðΔi; u; vÞgði3i2i1i4ÞΔk
ðv; uÞ ¼ 0; ð2:9Þ

where the factor hðΔi; u; vÞ accounts for the contribution of
the prefactor K.
In general, the operators that appear in the s-channel

k-sum are different from the operators that appear in the
t-channel k0-sum. Moreover, note that the crossing
equations (2.9) have to be satisfied as functions of u, v
at any values of u, v. This imposes stringent constraints on
the CFT data of scaling dimensions and OPE coefficients.
We will set up an RL algorithm that solves these
equations—yielding the CFT data—using an assumption
about the rough structure of the spin-dependence of the
spectrum of operators that appear in the OPE of each
channel.

B. Crossing equations in 2D CFTs

It will be useful for our purposes to spell out the above
results in the more specific case of two-dimensional
CFTs.
The analysis of the crossing equations (2.9) requires

explicit knowledge of the conformal blocks gði1i2i3i4ÞΔk
ðu; vÞ.

Over the years significant progress in the computation of
conformal blocks (see [5] for a guide to the literature) has
provided important input in the development of the
conformal-bootstrap program. In even-dimensional CFTs
the conformal blocks in four-point functions of scalar
operators are known analytically in closed form. In two-
dimensional CFTs, in particular, they are also known
analytically for any four-point function of spinless or
spinning conformal primary operator [25]. The latter is
one of the basic reasons why we will focus on 2D CFTs.
We stress again that the aforementioned conformal blocks
in two dimensions are conformal blocks for the global

soð2; 2Þ part of the Virasoro algebra. In this paper we will
not be using Virasoro conformal blocks.7

Concretely, consider four quasiprimary operators in a
(Euclidean) 2D CFT denoted asOi (i ¼ 1, 2, 3, 4) with left-
and right-moving conformal weights ðhi; h̄iÞ. The corre-
sponding scaling dimensions and spins of these operators
are Δi ¼ hi þ h̄i and si ¼ hi − h̄i. We insert the operators
at four distinct spacetime points denoted in complex
coordinates as ðzi; z̄iÞ. The s-channel conformal-block
expansion of the four-point function of these operators is

hO1ðz1; z̄1ÞO2ðz2; z̄2ÞO3ðz3; z̄3ÞO4ðz4; z̄4Þi

¼ 1

zh1þh2
12 zh3þh4

34

1

z̄h̄1þh̄2
12 z̄h̄3þh̄4

34

×

�
z24
z14

�
h12
�
z̄24
z̄14

�
h̄12
�
z14
z13

�
h34
�
z̄14
z̄13

�
h̄34

×
X
O;O0

CO
12gOO0CO0

34g
1234
h;h̄

ðz; z̄Þ; ð2:10Þ

where zij ¼ zi − zj,

g1234
h;h̄

ðz; z̄Þ ¼ zhz̄h̄2F1ðh − h12; hþ h34; 2h; zÞ
× 2F1ðh̄ − h̄12; h̄þ h̄34; 2h̄; z̄Þ ð2:11Þ

and

z ¼ z12z34
z13z24

; z̄ ¼ z̄12z̄34
z̄13z̄24

ð2:12Þ

the complex parameters z; z̄ that express the cross-ratios u,
v in (2.7). We are also using the notation hij ¼ hi − hj,
while 2F1ða; b; c; zÞ is the ordinary hypergeometric func-
tion. Adapting (2.8), we also set

X
O;O0jΔO¼ΔO0¼hþh̄

CO
12gOO0CO0

34 ≡ sCh;h̄ ð2:13Þ

suppressing the reference to the operators Oi.
In the above notation the crossing equations (2.9) take

the form

6It is also possible to consider the (13)–(24) OPEs that yield
the u-channel expansion. We will not consider the u-channel
expansion in this paper. We note that the s, t and u channel
expansions do not converge simultaneously at all cross-ratio
values. For further comments we refer the reader to the
review [5].

7In two dimensions it would have been more efficient, in
general, to work with the full Virasoro blocks. However, this
would be problematic for us for two reasons. First, the general
Virasoro conformal blocks are not known in closed analytic form
(see, however, [26] for useful expansions of these quantities).
Second—and more important—this would limit the direct
applicability of our approach to the special features of two-
dimensional CFTs.
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X
h;h̄

sCh;h̄g
ð1234Þ
h;h̄

ðz; z̄Þ

¼ ð−1Þðh41þh̄41Þ zh1þh2

ðz − 1Þh2þh3

z̄h̄1þh̄2

ðz̄ − 1Þh̄2þh̄3

×
X
h0;h̄0

tCh0;h̄0g
ð3214Þ
h0;h̄0 ð1 − z; 1 − z̄Þ: ð2:14Þ

At this point it is useful to make the following observations.
First, when one sums over the conformal block of a

spinning quasiprimary operator (i.e., an operator with
conformal weights ðh; h̄Þ and h ≠ h̄) in either channel,
one is also summing over a quasiprimary with conformal
weights ðh̄; hÞ. When we exchange h and h̄, the spin
s → −s, and the corresponding OPE-squared coefficients
Ch;h̄ and Ch̄;h are not in general equal. However, when the
external operators are spinless, the OPE-squared coeffi-
cients are equal, Ch;h̄ ¼ Ch̄;h, and we can collect together
the ðh; h̄Þ and ðh̄; hÞ contributions to form a single
conformal block of the form

g̃ð1234Þ
h;h̄

ðz; z̄Þ ¼ 1

1þ δh;h̄
½zhz̄h̄2F1ðh − h12; hþ h34; 2h; zÞ

× 2F1ðh̄ − h̄12; h̄þ h̄34; 2h̄; z̄Þ þ ðz ↔ z̄Þ�:
ð2:15Þ

In this manner, we can restrict the sums in (2.14) to only run
over operators with h ≥ h̄, hence reducing by half the
number of intermediate quasiprimary operators that we
need to consider in the ensuing application of the RL
algorithm.
Second, it is useful to single-out the contribution of the

identity operator, when this is present in a given channel, by
setting C0;0g

ð1234Þ
0;0 ðz; z̄Þ ¼ g12g34. This explicit nonvanish-

ing constant in (2.14) will prevent, in general, the RL
algorithm from converging to the trivial solution where all
sCh;h̄ and tCh0;h̄0 are set to zero.

C. Truncations, spin-partitions and measures
of accuracy

We view the exact crossing equations (2.14) as nonlinear
equations for the unknown positive8 conformal scaling
dimensions Δ ¼ hþ h̄ and the corresponding OPE-
squared coefficients Ch;h̄ in both channels. The spin s ¼
h − h̄ of the intermediate operators and the conformal
weights ðhi; h̄iÞ (i ¼ 1, 2, 3, 4) of the external operators are
assumed to be given. However, in their current form, the
exact crossing equations (2.14) are impractical both for
analytic and numerical methods. As already mentioned in
Sec. I B 2, we need to implement a truncation.

For numerical methods the first obvious obstacle is the
appearance of a typically infinite number of contributions
to the conformal-block expansion. We address this problem
by truncating the spectrum of intermediate quasiprimary
operators, by setting some upper cutoff Δmax on the scaling
dimensions. The convergence properties of the conformal-
block expansion [27] imply that one does not have to
consider very large values of Δmax for sensible numerical
results, but the precise value of an optimal Δmax is not easy
to determine a priori and is, in general, theory-dependent.
We will later make the surprising observation that in some
examples values of Δmax as low as 2 can already yield good
approximations.9

A second issue has to do with the continuous dependence
of the exact crossing equations (2.14) on the cross-ratio
parameters z; z̄. In this paper, we follow the approach of
[28] and evaluate the truncated crossing equations at a finite
discrete set of points in the z-plane. We have noticed
experimentally that the sampling of z-points suggested in
Sec. 3.1 of [28] works well also in our computations. In
general, if the number of unknown scaling dimensions and
OPE-squared coefficients is, in total, Nunknown, we choose
Nz z-points (with Nz > Nunknown) to evaluate the truncated
crossing equations.
With these specifications, the exact crossing equa-

tions (2.14) have been reduced to a finite set of nonlinear
algebraic equations, where the scaling dimensions of all
contributing intermediate quasiprimary operators are
bounded from above by Δmax. This necessarily also puts
an upper bound on the allowed spin s of these operators,
since jsj ≤ Δ ≤ Δmax.

10 However, despite the above con-
siderable simplifications, the problem remains intractable:
there is still a vast space of possibilities that an algorithm
can explore associated with the freedom to choose any
number of quasiprimaries at each spin. This final issue can
be fixed by introducing a spin-partition.
The spin-partition is a sequence of positive integers that

specifies the number of quasiprimaries per spin contribut-
ing to the conformal-block expansions of the truncated
crossing equations. The spin-partition is an input to the RL
algorithm that we set up in the next section. It fixes the
dimensionality Nunknown of the vector space of parameters

ðΔ⃗; C⃗Þwhere the search takes place. Wewill be listing spin-
partitions using the template of Table I.
We have thus arrived at a framework of truncated

equations

8The positivity of the conformal weights h; h̄ follows from
well-known unitarity constraints in two dimensions.

9It may be that such behavior is correlated with the fact that
a CFT is easily truncable, in the sense of [11]. In general,
however, truncability is not a prerequisite for the application of
our method.

10Truncations on the spin of the conformal-block expansion
and suitable discretizations in cross-ratio space are also common-
place in standard applications of the numerical conformal
bootstrap.
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E⃗ðΔ⃗; C⃗Þ ¼ 0; ð2:16Þ

where the dimension of the vector ðΔ⃗; C⃗Þ is Nunknown

and the dimension of the vector E⃗ is Nz. Each entry Ei

ði ¼ 1;…; NzÞ of the vector E⃗ contains the evaluation of
the truncated version of Eq. (2.14) at one of the points
ðzi; z̄iÞ in our z-sampling

Ei ¼
Xtrunc
h;h̄

sCh;h̄g
ð1234Þ
h;h̄

ðzi; z̄iÞ

− ð−1Þðh41þh̄41Þzh1þh2
i z̄h̄1þh̄2

i ðzi − 1Þ−h2−h3ðz̄i − 1Þ−h̄2−h̄3

×
Xtrunc
h0;h̄0

tCh0;h̄0g
ð3214Þ
h0;h̄0 ð1− zi; 1− z̄iÞ; ð2:17Þ

where
P

trunc denotes the truncated sum over intermediate
operators.
This framework is very similar to the starting point of the

approach [11,14]. Notice, however, that the truncation in
the scheme of [11,14] is arbitrary, whereas here it comes
with a further assumption that the unknown scaling
dimensions are inside a specific window of scaling dimen-
sions. This detail is an important distinction between our
approach/implementation and those of [11,14]. In particu-
lar, our approach entails a probabilistic search in specified
parameter windows.
In general, (2.16) is not expected to have any exact

solutions. Accordingly, as we explain in the next section,
our RL algorithm is designed to minimize the Euclidean
norm of E⃗ and determine configurations of CFT data that
satisfy the truncated crossing equations with the best
possible accuracy. Although the Euclidean norm kE⃗k is
an important quantity of the computation, it is not straight-
forward to judge whether its raw value at an optimal
configuration is actually small or large. For that reason, we
find it useful to define a “relative measure of accuracy”, A,
defined in the context of (2.17) as

A ¼ kE⃗k
Eabs

ð2:18Þ

with

Eabs ¼
XNz

i¼1

�Xtrunc
h;h̄

jsCh;h̄g
ð1234Þ
h;h̄

ðzi; z̄iÞj

þ jzh1þh2
i z̄h̄1þh̄2

i ðzi − 1Þ−h2−h3ðz̄i − 1Þ−h̄2−h̄3 j

×
Xtrunc
h0;h̄0

jtCh0;h̄0g
ð3214Þ
h0;h̄0 ð1 − zi; 1 − z̄iÞj

�
: ð2:19Þ

The quantityA is guaranteed to be a number between 0 and
1. Its value gives a % measure of the accuracy at which we
have been able to satisfy the truncated equations (2.16), and
this can in turn be compared more straightforwardly
between different computations.

III. CONTINUOUS ACTION SPACE
REINFORCEMENT LEARNING

In many physical settings it is very common to have
access to large amounts of data (e.g., collider physics),
where supervised/unsupervised ML techniques find direct
application. However, in scenarios often found in theoreti-
cal physics this is not usually the case. This is where RL
comes in handy because the learning agent is able to
generate its own data.
Reinforcement learning, in brief, is an algorithm con-

sisting of two parts with equal importance. The first is the
so-called “agent,” which is the brain of the algorithm. The
second is the “environment”: what the agent interacts with.
The basic setup of the algorithm is the process of the agent
making decisions as it explores the provided environment,
while the environment gives feedback on the agent’s
actions. One wants the agent to explore the environment
toward finding an ideal solution, while exploiting the best
solution it finds (explore-exploit dilemma). One also has to
find a suitable algorithm for how the agent (the neural
network) “learns” and retains its experiences.
There exists a considerable amount of previous work on

DRL algorithms, which have been applied to a large variety
of problems, both theoretical and real-world. There are
examples of agents which can beat video games, drive cars,
guide robots, solve mathematical equations and—possibly
the most famous one—AlphaGo, which beat professional
Go champions using a combination of supervised learning
and DRL [29], and the improved AlphaGo Zero, which
relied completely on DRL [30].
Such algorithms can be split into two main sets and can

be distinguished by whether the actions (defined by
numbers) taken by the agent are discrete or continuous.
Algorithms such as deep Q-learning [31] or actor-critic
methods [32] use a discrete action space (convenient when

TABLE I. A depiction of the spin-partition for a truncated
spectrum of integer-valued spins in a four-point function of
spinless operators where the conformal-block expansions can
be phrased in terms of only positive spins. In this example, we have
chosen to use the same number of maximum spin in both s and t
channels. The non-negative integers ai, bi specify the number of
operators with the corresponding spin, in the corresponding
channel. For such a spin-partition the total number of unknowns
in our problem isNunknown ¼ 2

P
n
i¼0ðai þ biÞ. For each unknown

scaling dimension there is a corresponding unknownOPE-squared
coefficient, hence the factor of 2 in this expression for Nunknown.

Spin 0 1 2 � � � n − 1 n

s-channel a0 a1 a2 � � � an−1 an
t-channel b0 b1 b2 � � � bn−1 bn
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one can take only a finite amount of actions), while
algorithms such as the soft actor-critic method [22] and
the deep deterministic policy gradient method [33] were
developed for when the actions can take any real value.
In this paper we are making use of the soft actor-critic

algorithm and implementing it using the PyTorch package
for PYTHON 3.7, but one could have equivalently chosen the
deep deterministic policy gradient or any of the other
machine learning libraries (TensorFlow etc.). We will not
go into the details of the aforementioned algorithms, since
these can be found in the original papers (with pseudo code),
and there exist plenty of additional online resources show-
casing their implementation. Furthermore, we will treat the
learning algorithm itself as a black box, i.e., we will not be
interested in its study, although one can adjust the hyper-
parameters for the learning following [22]. We are mostly
interested in the environment the agent will get to explore.

A. Soft actor-critic algorithm

Although we will not be providing the full details of the
agent implementation, it is still useful to give a short
overview of what actually happens inside the brain of the
algorithm.
The algorithm itself is an iterative process, where the

iteration is over “steps” taken by the agent. These steps can
also be grouped into “episodes.” An episode is concluded
when the last step results in a terminal state. The steps and
terminal states are more important when talking about the
environment, and they will be discussed in more detail in
the following subsection. In every iterative step of the
algorithm there are a number of processes executed by the
code. In order, these include:
(1) Choose action: Since our agent is designed to comeup

with scaling dimensions and OPE-squared coeffi-
cients for given CFT spin-partitions, each action will
directly correspond to an unknown (such as a scaling
dimension or OPE-squared coefficient). The actions
themselves can take continuous values. The agent
takes an action by predicting values for the unknowns.

(2) Implement the action in the environment: We shall
explain the implementation of the environment in
detail in the next subsection. For now we shall say
that the values of the predictions by the agent are fed
into the environment code.

(3) Observe the environment: In this step the constraints
are calculated by the environment (such as the crossing
equations or additional constraints) and are fed back to
the agent as observations (it is what the agent “sees”).

(4) Obtain reward: The algorithm for the environment
comes up with a quantitative judgment (discussed in
the next section) on how well the agent did with its
prediction of the parameters. This is then fed back to
the agent.

(5) Check if final state: The environment simply checks
if the agent managed to predict something which has

a better reward than the previous best. This tells the
agent to try and find better solutions.

(6) Update memory buffer: In the algorithm we use
previous agent experiences (i.e., previous steps)
that are stored in what is called an experience replay
buffer: a multidimensional array containing all the
information fed to the agent from previous iterations.
This is very important for the next step. In the current
step the current information is stored in the array.

(7) Update neural networks (learn): A random set of
samples is taken from the previously mentioned
memory buffer and this data is used as training data
to update the weights of the neural networks of the
learning algorithm. In the optimization step of the
weights we use the ADAM optimizer [34]. Once the
networks have been fed forward and backpropagated,
their structures (weights) will adjust to better suit the
data. Hence in the next iteration theywill try to predict
results which better satisfy the constraints. It is
important to note that the networks do not actually
predict the values themselves but a probability dis-
tribution which is then sampled for the predictions;
this is where the explore-exploit dilemma enters.

We display the details of the NNs that we used for our
searches in Table II.

B. Environment

Here we summarize some of the most salient features of
the environment implementation. The latter guides the
agent’s learning on how to predict the CFT data. Since
implementations of RL agents can be easily adapted for use
in a large variety of problems, setting the environment
becomes the most important part of the implementation.
The environment must provide an interface that the agent
can interact with, calculate the constraints, come up with a
quantitative notion of success and define a terminal state.
The environment in which our agent “moves” is the space

of parameters ðΔ⃗; C⃗Þ. Every value for the scaling dimen-
sions/OPE-squared coefficients defines a different theory.
For our purposes, a point ðΔ⃗; C⃗Þ in parameter space is judged
based on how well it satisfies the numerical constraints of
truncated crossing equations E⃗ðΔ⃗; C⃗Þ ¼ 0, (2.16).

TABLE II. Hyperparameter values for the NNs used in our
calculations, presented in the format of [22].

NN Hyperparameter Value

Learning rates 0.0005
γ (discount factor) 0.99
Replay buffer size 100000
Batch size 64
τ (smoothing coefficient) 0.001
Layer 1 size 128
Layer 2 size 64
Reward scale 0.005
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The agent’s predictions feed into these numerical con-
straints. Since we have truncated the equations and are
numerically approximating the values (and the number of
constraints is larger than the number of unknowns) it is
unlikely that there will be a solution that exactly satisfies all
constraints in (2.16). In fact, one ends up with deviations
from zero for each constraint, which then have to be
minimized so that the constraints are satisfied to as good
a numerical approximation as possible. These deviations
are individual numbers that form the observations of
the agent.
One can now straightforwardly define the reward func-

tion. Clearly, the agent should be encouraged to pick values
for the parameters which minimize all the constraints. The
simplest choice for such a reward is

R ≔ −kE⃗k ð3:1Þ

The use of the Euclidean norm of the vector E⃗ is natural
(but not unique) as it quantifies the distance from the origin
where the truncated equations (2.16) are satisfied exactly.
The negative sign punishes larger distances away from the
origin more than smaller ones. It would be interesting in the
future to further explore how the efficiency of the algorithm
depends on the choice of reward and to examine other
options, e.g., the possibility of different weights in the
definition of the Euclidean norm.
The very last section of the environment checks for final

states. In our case this is simply a flag checking if the
current solution is better than the current best from previous
runs. If, indeed, it is, then the code overwrites the previous
best, and supplies the flag to the agent. The agent needs to
know whether or not the step led to a final state, as this
directly feeds into the approximation of the probability
distribution.
We summarize these steps in Alg. 1, where A stands for

an action by the agent and R� for the current best reward.

C. Three modes of running the algorithm

The RL algorithm can be implemented in several differ-
ent ways depending on the scope and focus of the search. In
this subsection, we outline three different modes that were
employed in producing the results of Secs. IV and V. In
summary, these are

(i) Mode 1. Specify the spin-partition and Δmax and
search for scaling dimensions within the unitarity
bound and Δmax. For OPE-squared coefficients there
are very few constraints, e.g., they may only be
restricted by unitarity to be positive.

(ii) Mode 2. There is a specific expectation for the
scaling dimensions, for which the search is con-
tained within a narrow window. There are no
expectations for the OPE-squared coefficients,
where the search is initially as wide as in mode 1.

(iii) Mode 3. Both scaling dimensions and OPE-squared
coefficients are within a specified, known narrow
window. This mode could be implemented as a
supplementary run after a mode 1 or mode 2 run, or
it could be relevant in cases where we are verifying
an analytic solution in the context of the truncated
crossing equations, or in cases where the solution is
known in some regime of parameters and we are
changing these parameters adiabatically.

Clearly, the range of the search becomes more narrow as
we go from mode 1 to mode 3. The computational time is
expected to be larger, in general, in mode 1.
Our algorithm gives the user two key dials that can be

tuned at will at the beginning, or multiple times in the
middle of a run. The first is a lower bound for each
parameter (we will call it the “floor”). The second dial is a
separate size for the search window of each parameter, in
each action of the agent (we will call this dial the “guess-
size”). As a rule of thumb, the initial window should at first
be set large enough to minimize the probability of the agent
getting trapped at a local minimum. Once the presence of a
potential global minimum has been established, one can
then start to hone in by gradually reducing its size. We next
provide a more detailed description of each mode.

1. Mode 1

Since this mode involves the widest search windows, a
blind search may be hindered by the existence of multiple
false vacua, or may lead to an approximate solution that
represents a CFT that is not of immediate interest. As a
result, this mode can be assisted by additional preparation
that partially restricts the search. For example, one could
start with a rough preliminary exploration of the minima of
kE⃗k using Mathematica, or obtain a rough estimate of
some of the scaling dimensions using the approach of [11].
This preparation can help significantly facilitate the sub-
sequent search.
To commence the search we initially run the algorithm in

“guessing mode” where the RL agent only tries to improve
on its own guess in the current cycle. This allows for the

Algorithm 1. Basic Reinforcement-Learning Routine.

Input: A, R�
Output: individual constraints, R, R�
Env calculate constraints using A;
Env calculate R;
Env check if R > R�;
Agent observe individual constraints;
Agent store memory in buffer;
Agent learn;
if R > R� then
j overwrite previous best reward R� ¼ R;

end
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random exploration of configuration space and generates
some initial profiles of CFT data.
Then, we enter the “normal mode,” where the agent

initially takes the final state from the guessing mode and
tries to find small corrections so as to better satisfy the
constraints. Once it finds such a correction, it replaces the
final state and proceeds with a new correction iteratively.
Here one can set specific values for the floor and guess-
sizes. It helps to set the guess-size at a magnitude
comparable to the expected order of parameter change
as the agent hits the next final state. In most cases, the user
can easily detect this size by observing how the agent
generates configurations in real time.
The algorithm continues the search ad infinitum and the

crucial question is when to stop and record the result. We
have observed in the context of different theories that in
actual solutions the agent reaches in reasonable time (of the
order of an hour on a modern laptop) a value of the relative
measure of accuracy A below 0.5%. In addition, when the
search window is set near actual solutions the agent keeps
reducing A significantly below the threshold of 0.5% with
an apparent convergence on the values of the parameters

ðΔ⃗; C⃗Þ. Based on this observation, we have always aimed
for runs that drop A below 0.1%.

2. Mode 2

In this mode we conduct, from the beginning, a narrow
search in scaling dimensions. We have found that the
following protocol produces good results.
We set the floor of the scaling dimensions to the expected

values and the corresponding guess-sizes to 0. This freezes
the scaling dimensions and reduces the dimensionality of the
search by half, since we are conducting a search by varying
only theOPE-squared coefficients.After exiting theguessing
mode, we conduct the search for the optimal OPE-squared
coefficients using the same procedure as in mode 1.
Once the relative accuracyA drops to the order of 1%, we

unfreeze the scaling dimensions by reducing their floor and
opening their guess-size. The size of the search window
around the expected values of the scaling dimensions can be
controlled freely by the user. If the agent is already in the
vicinity of a solution, the scaling dimensions will not move
significantly once unfrozen, and the full set of parameters

ðΔ⃗; C⃗Þ will now be adjusted by the agent to reduce A even
further. We continue the search until we achieve an accept-
ably small value of A and observe an apparent convergence
following the general procedure outlined in mode 1.
During this process it may happen that some scaling

dimensions are driven toward the boundary of the pre-
scribed window of search. In that case, the user can slightly
increase the corresponding window to explore whether the
approximate solution lies nearby. As long as the agent
keeps improving the accuracyA, the window can be kept in
place. If there is, however, a stage in the run where the

agent stops improving at an unacceptably high A, and the
adjustment of guess-sizes does not help, then this can be
viewed as a strong signal that a solution does not exist in
the prescribed windows.

3. Mode 3

In this case, we are conducting a narrow search in all
components of the parameters ðΔ⃗; C⃗Þ. We can run the
algorithm as in mode 2 without the initial run to approxi-
mate the configuration of the OPE-squared coefficients,
since this is already approximately known.

4. Enlarging the spin-partition

After having obtained results for a given spin-partition
one can implement a shortcut for subsequent searches with
an enlarged spin-partition (e.g., when Δmax is increased).
Instead of rerunning the algorithm for all parameters, it is

Algorithm 2. Reinforcement-Learning CFT Data Search.

Input: spin partition, floor, guess-size
Output: ðΔ⃗; C⃗Þ
initialize Agent (memory buffer þ NN weights);
initialize file for overall best reward R�;
while running guessing mode do

j Agent choose action;
j Env calculate constraints;
j Env calculate R;
j Env check if R > R�;
j Agent observe current state;
j Agent store memory in buffer;
j Agent learn;
j if R > R� then
j j overwrite previous best result, R� ¼ R;
j end

end
while not accurate enough do

j reinitialize Agent (memory buffer þ NN weights);
j while running normal mode do
j j Agent choose action;
j j Env calculate constraints;
j j Env calculate R;
j j Env check if R > R�;
j j Agent observe current state;
j j Agent store memory in buffer;
j j Agent learn;
j j if R > R� then
j j j overwrite previous best result, R� ¼ R;
j j end
j j if Agent trapped then
j j j break normal mode loop;
j j end
j end

end
if adding new parameters then

j rerun above code first freezing then unfreezing;
end
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more economical to instead implement a strategy akin to
that of mode 2:

(i) Perform the search with the least number of param-
eters using the steps outlined previously.

(ii) Freeze these parameters.
(iii) Start adding the new dynamical parameters to the set

of frozen ones to approximately find the new global
minimum.

(iv) Unfreeze all parameters and let the agent determine
how these new parameters change the old ones to
find a better solution.

This type of implementation opens up the exciting
possibility of reconstructing considerable amounts of CFT
data without a full, specific, a priori given spin-partition.

5. Comments on user input

To summarize, our overall approach is sketched in
Algorithm 2. It should be apparent from the description
of the above three modes that, although the RL algorithm is
set up to run independently without the input of an external
user, in actual runs user intervention can help in signifi-
cantly speeding up the search. A suitable real-time adjust-
ment of the guess-size for individual parameters helps the
agent focus faster around a region of potential interest. In
the future, this is an aspect of the algorithm we would like
to improve—or better automate—in order to facilitate more
efficient parallel runs. At this stage, the mode with the
minimal user input is mode 3, which involves the smallest
search windows.

IV. APPLICATION I: MINIMAL MODELS

We now pass on to explicit applications of our algorithm,
starting with minimal models. The unitary minimal models
are, in the appropriate sense, the simplest possible 2D CFTs
and benchmarks of the original conformal bootstrap pro-
gram from the 1970s. Here we revisit them from the
perspective of the global part of the Virasoro algebra,
completely disregarding the Virasoro enhancement of the
soð2; 2Þ conformal algebras.
In this section we search for approximate solutions to the

crossing equations that we listed in Sec. II B, which
describe minimal models. The consistency of the crossing
equations in this well-known class of 2D CFTs was
understood analytically early on. It is therefore a good
starting point to verify that our method recovers known
facts about these theories correctly. We focus on the two
leading representatives in the series of unitary minimal
models, the Ising and tricritical Ising models.

A. Analytic solution

We next briefly recall some of the salient features of the
Ising and tricritical Ising models (see [24] for a compre-
hensive review).

1. Ising model

The Ising model, Mð4; 3Þ, is the simplest model in the
unitary minimal series Mðpþ 1; pÞ. It has central charge
c ¼ 1

2
and it is equivalent to the CFT of a free Majorana

fermion. Besides the identity operator I, its spectrum
contains two more primary operators: the spin operator
σ with conformal weights ðh; h̄Þ ¼ ð 1

16
; 1
16
Þ, and the energy-

density operator (also called thermal operator) ε with
conformal weights ðh; h̄Þ ¼ ð1

2
; 1
2
Þ. The corresponding

OPEs are

σ × σ ¼ ½I� þ ½ε� ð4:1Þ

σ × ε ¼ ½σ� ð4:2Þ

ε × ε ¼ ½I�; ð4:3Þ

where ½O� denotes the Virasoro conformal family of the
primary O. In what follows, we will study the four-point
functions

hσðz1; z̄1Þσðz2; z̄2Þσðz3; z̄3Þσðz4; z̄4Þi; ð4:4Þ

hεðz1; z̄1Þεðz2; z̄2Þεðz3; z̄3Þεðz4; z̄4Þi: ð4:5Þ

The conformal-block decomposition of these correlation
functions contains, according to the first and third OPEs in
(4.1), (4.3), the quasiprimaries in the Virasoro conformal
family of the identity and energy-density operators. By
definition, a quasiprimary state (in the holomorphic sector)
is annihilated by the L1 ¼ 1

2πi

H
dzz2TðzÞ conformal gen-

erator. Equivalently, the OPE between the energy-momen-
tum tensor TðzÞ and a quasiprimary should have no z−3

pole. It is straightforward to construct these quasiprimaries
by acting on the primary state with the Virasoro raising
operators L−k, (k ≥ 1) but one needs to take into account
the structure of the Virasoro algebra and the presence of
null states in the corresponding Verma modules. States of
the form L−1jstatei are, by definition, descendants in the
sense of the soð2; 2Þ global part of the conformal algebra.
For example, by focusing on the holomorphic part of the

theory, we obtain at the first few levels the following
quasiprimaries in the Virasoro conformal families of the
identity and energy-density operators.11 In the conformal
family of the identity, the states

L−2j0i;
�
L2
−2 −

3

10
L−1L−3

�
j0i;

�
L−2L−3 −

1

2
L−1L2

−2 −
1

6
L−1L−4

�
j0i ð4:6Þ

11This computation is greatly facilitated by the Mathematica
package FEYNCALC9.3.1 [35].
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are the only quasiprimaries up to level 5. In the conformal
family of the energy-density, the states

jεi;
�
L−3 −

4

9
L−1L−2

�
jεi;

�
L−4 þ

10

27
L2
−2 −

5

9
L−1L−3

�
jεi;

�
L−5 −

2

3
L−1L−4 þ

5

24
L2
−1L−3 −

1

40
L5
−1

�
jεi ð4:7Þ

are the only quasiprimaries up to level 5. A potential
quasiprimary at level 2 does not exist, because it is one of
the characteristic null states of the Ising model.
When combined with the antiholomorphic sector, these

results yield the spin-partitions that will be employed in the
analysis of Sec. IV B 1 below.

2. Tricritical Ising model

The tricritical Ising model, Mð5; 4Þ, is the next minimal
model in the unitary series.12 It has central charge c ¼ 7

10
,

and besides the identity operator, its conformal primary
spectrum comprises three energy-density operators

ε with ðh; h̄Þ ¼
�
1

10
;
1

10

�
;

ε0 with ðh; h̄Þ ¼
�
3

5
;
3

5

�
;

ε00 with ðh; h̄Þ ¼
�
3

2
;
3

2

�
;

and two spin operators

σ with ðh; h̄Þ ¼
�
3

80
;
3

80

�
;

σ0 with ðh; h̄Þ ¼
�
7

16
;
7

16

�
:

The OPEs of these operators are listed in Table 7.4 of [24].
We will be interested in four-point functions of the
tricritical Ising model that resemble those of the Ising
model, and the way our algorithm differentiates between
the two CFTs. We will therefore focus on the primary
operators σ0 and ε00, which satisfy

σ0 × σ0 ¼ ½I� þ ½ε00�; ε00 × ε00 ¼ ½I�: ð4:8Þ

Notice the similarity with the OPEs (4.1), (4.3).
Accordingly, in the next subsection we will study the
four-point functions

hσ0ðz1; z̄1Þσ0ðz2; z̄2Þσ0ðz3; z̄3Þσ0ðz4; z̄4Þi; ð4:9Þ

hε00ðz1; z̄1Þε00ðz2; z̄2Þε00ðz3; z̄3Þε00ðz4; z̄4Þi: ð4:10Þ

Similar to the case of the Ising-model primary ε, we find
that the conformal family of ε00 in the tricritical Ising model
contains the following quasiprimary states, up to level 4 in
the holomorphic sector:

�
L−2−

3

8
L2
−1

�
jε00i;

�
L2
−2þ

43

2240
L4
−1−

15

56
L2
−1L−2

�
jε00i;

�
L−4þ

31

672
L4
−1−

5

28
L2
−1L−2

�
jε00i: ð4:11Þ

To obtain this result we had to use that the Verma module of
the state jε00i contains the following null state at level 3 (in
the holomorphic sector):

�
L−3 −

4

7
L−1L−2 þ

4

35
L3
−1

�
jε00i: ð4:12Þ

B. Reinforcement-learning results

The above analytic data can now be compared with those
obtained from our RL algorithms. This exercise is helpful
in checking the efficiency of our code before proceeding to
the more complicated example of the c ¼ 1 compactified
boson CFT.

1. hσσσσi in Ising model

The exact crossing equation for the four-point function
(4.4) in the Ising model is

X0

h≥h̄

Ch;h̄ðjz− 1j2Δσ g̃ðσσσσÞ
h;h̄

ðz; z̄Þ− jzj2Δσ g̃ðσσσσÞ
h;h̄

ð1− z;1− z̄ÞÞ

þ jz− 1j2Δσ − jzj2Δσ ¼ 0: ð4:13Þ

As this correlator involves four identical spinless operators,
both channels, s and t, exchange the same intermediate
operators with even spin. In the last two terms we have
singled out the contribution of the identity operator and
hence the sum

P0
does not contain it.

Using the crossing equation (4.13) to determine our
reward function, we performed the following computation
with the RL algorithm. We set Δσ ¼ 1

8
, for the external spin

operator σ, and searched in mode 2 for solutions with the
spin-partition of Table III, which is informed by the
analytic solution with a cutoffΔmax ¼ 6.5. A more agnostic
search in mode 1, with more limited information about the
initial profile of the scaling dimensions, is also feasible.
Such runs are presented in the next Sec. V. Here, the mode-
2 runs are computing independently the OPE-squared

12One of the beautiful features of the tricritical Ising model is
that it is secretly endowed with supersymmetry [36], but this
feature will not play any role in our analysis.
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coefficients and confirm the analytic values of the scaling
dimensions that were used to initiate the runs. In the
implementation of the algorithm we enforced the unitarity
constraint that the OPE-squared coefficients are positive.
This is a search in a 10-dimensional space of unknowns (5

for the scaling dimensions and 5 for the corresponding OPE-
squared coefficients). The results of a run with 29 crossing
equations—that is, (4.13) evaluated at 29 different points on
the z-plane—appear in Table IV. This particular run took
approximately 12 hours on a modern laptop machine to
yield the relative accuracy A ¼ 3.31618 × 10−6.13 When
unfrozen, the scaling dimensionswere allowed to vary with a
guess-size 0.1. It is worth noting that the agent started the run
with a random profile of OPE-squared coefficients (some of
whichwere orders ofmagnitude away from those of the Ising
model) and gradually converged to the results of Table IV.
We observe that the relative accuracy at which we can

satisfy the truncated crossing equations is impressively
strong, even with a very rough truncation of only 5
quasiprimary operators. When compared against the ana-
lytic expectations, the numerical results for the scaling
dimensions agree at the order of 1%. For the OPE-squared
coefficients, the agreement is equally impressive for the
two lower-lying operators ε and L−2 with scaling dimen-
sions 1 and 2 respectively, but (as might be expected)

becomes worse for the higher scaling dimension operators
at Δ ¼ 4, 6 that lie closer to Δmax.
Notice that the exact unitarity bound for the spin-2, 4 and

6 operators requires their scaling dimensions satisfying
Δ ≥ 2, 4 and 6 respectively. Since we have truncated the
crossing equations, we do not expect the results to obey the
strict unitarity bounds, and, as a result, we have allowed
the agent to explore solutions with a small violation of these
bounds.

2. hσ0σ0σ0σ0i in tricritical Ising model

Similarly, in the tricritical Ising model we study the four-
point function (4.9) whose crossing equation is

X0

h≥h̄

Ch;h̄ðjz − 1j2Δσ0 g̃ðσ
0σ0σ0σ0Þ

h;h̄
ðz; z̄Þ

− z2Δσ0 g̃ðσ
0σ0σ0σ0Þ

h;h̄
ð1 − z; 1 − z̄ÞÞ

þ jz − 1j2Δσ0 − jzj2Δσ0 ¼ 0: ð4:14Þ

Once again, the sum over h; h̄ does not include the
contribution of the identity operator, which has been
singled out in the last two terms of the equation. In this
case we ran the RL algorithm in mode 2 by setting Δσ0 ¼ 7

8

for the external operator σ0, and using the spin-partition of
Table V informed by the analytic solution of the tricritical
Ising model with Δmax ¼ 6.5.
It may be instructive to compare this spin-partition

with the corresponding spin-partition for the Ising model
in Table III. The only difference is 3 versus 1 spin-2
quasiprimary operators. In the analytic solution there is
another difference, which is not apparent in Table V. At
spin-6 the tricritical Ising model has 2 degenerate quasi-
primary states

�
L3
−2 þ

10

7
L−6 −

1

2
L−1L−2L−3

�
j0i;

�
L2
−3 þ

92

63
L−6 −

4

9
L−1L−2L−3

�
j0i; ð4:15Þ

instead of just one, whose contribution combines as a single
term in the crossing equations. The degeneracies are,
therefore, invisible to the spin-partition and consequently
not detectable from our analysis.
In this context, we performed a search in a 14-dimensional

space of scaling dimensions and OPE-squared coefficients.

TABLE III. A spin-partition informed by the conformal
block decomposition of the four-point function
hσðz1; z̄1Þσðz2; z̄2Þσðz3; z̄3Þσðz4; z̄4Þi in the Ising model with
Δmax ¼ 6.5.

Spin 0 1 2 3 4 5 6

2 … 1 … 1 … 1

TABLE IV. Analytic and numerical solutions for scaling
dimensions and OPE-squared coefficients in the conformal-
block decomposition of the four-point function
hσðz1; z̄1Þσðz2; z̄2Þσðz3; z̄3Þσðz4; z̄4Þi for Δσ ¼ 1

8
and the spin-

partition of Table III with Δmax ¼ 6.5. The numerical results were
obtained with a mode-2 run of the RL algorithm.

Δσ ¼ 1
8

Spin Analytic Δ RL Δ Analytic C RL C

0 4 3.9331603 2.44141 × 10−4 3.657538 × 10−4

0 1 0.9881525 0.25 0.25254947
2 2 1.9802496 0.015625 0.015717817
4 4 3.9497 2.19727 × 10−4 2.4715587 × 10−4

6 6 5.971367 1.36239 × 10−5 0.54007314×10−5

A ¼ 3.31618 × 10−6

TABLE V. A spin-partition informed by the conformal-
block decomposition of the four-point function
hσ0ðz1; z̄1Þσ0ðz2; z̄2Þσ0ðz3; z̄3Þσ0ðz4; z̄4Þi in the tricritical Ising
model with Δmax ¼ 6.5.

Spin 0 1 2 3 4 5 6

2 … 3 … 1 … 1

13After submission to PRD, we found that replacing the
MPMATH numerical PYTHON library with SciPy reduces the
running time to just 30 minutes with similar results to those of
Table IV.
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The RL algorithm was run with 29 different points on the z-
plane. The results that appear in Table VI were obtained after
a run that lasted approximately 8 hours and yielded a
configuration with relative accuracyA ¼ 0.000705966 (sig-
nificantly larger than that in Table IV for the Ising model).
The comparison between the numerical and analytic

results follows a pattern similar to that in the Ising model.
The agent has clearly located the CFT data of the tricritical
Ising model, and the agreement with the analytic results is
better for the low-lying operators at spin-0 and spin-2 with
expected scaling dimensions 3 and 2 respectively.

3. 4-point functions with the identity as the single
Virasoro conformal block

Several minimal models have 4-point functions of
a single conformal primary with the identity as the
only Virasoro conformal block. In the Ising model,
Mð4; 3Þ, this feature appears in the four-point function
hεðz1; z̄1Þεðz2; z̄2Þεðz3; z̄3Þεðz4; z̄4Þi, in the tricritical Ising
model, Mð5; 4Þ, in the four-point function
hε00ðz1; z̄1Þε00ðz2; z̄2Þε00ðz3; z̄3Þε00ðz4; z̄4Þi, in the three-state
Potts model, Mð6; 5Þ, in the four-point function
hYðz1; z̄1ÞYðz2; z̄2ÞYðz3; z̄3ÞYðz4; z̄4Þi etc. The operators
ε; ε00; Y are all spinless with different scaling dimensions:
1,3,6, respectively. In this subsection, we compare the first
two cases: hεεεεi in the Ising model, and hε00ε00ε00ε00i in the
tricritical Ising model.
In all these cases the crossing equations are similar,

X0

h≥h̄

Ch;h̄ðjz − 1j2ΔO g̃ðOOOOÞ
h;h̄

ðz; z̄Þ

− z2ΔO g̃ðOOOOÞ
h;h̄

ð1 − z; 1 − z̄ÞÞ
þ jz − 1j2ΔO − jzj2ΔO ¼ 0; ð4:16Þ

and the spin-partition is the same.O is the spinless external
operator and ΔO its scaling dimension.
Using the spin-partition of Table VII, which contains the

expected number of quasiprimary operators in the identity
Virasoro block up to scaling dimension 6.5, we varied the
scaling dimensionΔO of the external operator and searched
for solutions to the crossing equations (4.16). Our main
purpose in this subsectionwas to verify the expected analytic
solutions of the Ising and tricritical Isingmodels and that the
algorithm could distinguish solutions with different external
scaling dimensions but the same spin-partition. For these
purposes a mode-3 run was deemed sufficient.
The results of Table VIII were obtained with O ¼ ε.

Indeed, they verify quite clearly the expected structure of
the Ising model. The run reported in Table VIII took only
2 hours to reach the relative accuracy A ¼ 0.000862723 in
mode 3.
A similar mode-3 run with O ¼ ε00 produced the results

of Table IX with a comparable relative accuracy A ¼
0.000668002. The general features of the expected structure
of the tricritical Ising model are present, but some of the
numbers (depicted inmagenta inTable IX) exhibit significant
discrepancies with the analytic results. A possibly related
feature in the analytic solution is the presence of sizeable
OPE-squared coefficients at higher scaling dimensions. In
order to probe this feature further, we repeated the compu-
tation with a higher cutoff, Δmax ¼ 8.5, which involves a
spin-partition with 8 different operators. The resulting
16-dimensional search in mode 3 produced the numbers
listed in Table X, which exhibit a definite improvement
compared to the previous Δmax ¼ 6.5 run. For the conven-
ience of the reader we have highlighted with a magenta color
the corresponding numbers in Tables IX and X.

TABLE VI. Analytic and numerical solutions for scaling
dimensions and OPE-squared coefficients in the conformal-
block decomposition of the four-point function
hσ0ðz1; z̄1Þσ0ðz2; z̄2Þσ0ðz3; z̄3Þσ0ðz4; z̄4Þi for Δσ ¼ 7

8
and the spin-

partition of Table V with Δmax ¼ 6.5. The numerical results were
obtained with a mode-2 run of the RL algorithm.

Δσ0 ¼ 7
8

Spin Analytic Δ RL Δ Analytic C RL C

0 4 3.8950076 0.299072 0.63403654
0 3 2.9969018 0.285171 0.29550505
2 2 1.97196 0.546875 0.6054145
2 6 5.97496 0.0238323 0.041339442
2 5 5.0424104 0.0270531 0.040516548
4 4 4.051943 0.0435791 0.06928008
6 6 5.9997706 0.00589177 0.0047707544

A ¼ 0.000705966

TABLE VII. A spin-partition for the conformal block contri-
bution of the identity operator with Δmax ¼ 6.

Spin 0 1 2 3 4 5 6

1 … 2 … 1 … 1

TABLE VIII. Analytic and numerical solutions for
scaling dimensions and OPE-squared coefficients in the con-
formal block decomposition of the four-point function
hεðz1; z̄1Þεðz2; z̄2Þεðz3; z̄3Þεðz4; z̄4Þi for Δε ¼ 1 and the spin-
partition of Table VII with Δmax ¼ 6.5. The numerical results
were obtained with a mode-3 run of the RL algorithm.

Δε ¼ 1

Spin Analytic Δ RL Δ Analytic C RL C

0 4 4.0683885 1 1.0427935
2 2 1.9544389 1 1.1926383
2 6 5.926708 0.1 0.1150967
4 4 3.904911 0.1 0.20634486
6 6 5.9300733 0.0238095 0.022085898

A ¼ 0.000862723
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In the above computations we fixed the scaling dimen-
sion of the external operator and tried to determine the
remaining data. It would be interesting to perform a more
general computation, where the scaling dimension of the
external operator is one of the unknowns of the search. In
mode 1, this search should be able to identify, solely from
the input of the spin-partition, different solutions corre-
sponding to the data of each CFT in the minimal series. We
do not perform this computation here, but present results of
a very similar computation in Sec. V B 2 in the case of the
compactified boson CFT.

V. APPLICATION II: c= 1 COMPACTIFIED BOSON

With an eye toward more general applications, it is
important to explore the performance of our approach
beyond the restricted class of rational conformal field
theories, of which minimal models are a special case.
In this section, we study the c ¼ 1 compactified boson
CFT. This is a free scalar CFT. Free CFTs are the benchmark
of the Lagrangian QFT approach and the basis of perturba-
tive methods in quantum field theory, readily solved by
traditional methods and an entry-level litmus test for the
generalization of our method to more challenging settings.

The reader should appreciate that by rediscovering the
compactified boson CFT as a solution to the crossing
equations, one would be able to solve it without the use
of the standard Lagrangianmethods, e.g., they would be able
to determine correlation functions without using Wick’s
theorem. Despite its simplicity, the free scalar CFT has a rich
spectrum of primary operators with momentum and winding
around the target circle and scaling dimensions that depend
nontrivially on an exactly marginal coupling—the radius of
the circle. This is therefore an interesting toy model where
our methods can be used to compute nontrivial CFT data
across a continuous family of CFTs connected by exactly
marginal deformations, namely across a conformalmanifold.
Conformal manifolds are ubiquitous in four-dimensional
supersymmetric QFTs, e.g., in 4D N ¼ 4 SYM theory,
whichwould be one of the natural subsequent applications of
the RL approach presented here.
We study two examples of four-point functions in the

compactified boson CFT: four-point functions of vertex
operators with momentum or winding, and four-point
functions of the conserved Uð1Þ current. We discover that
even with a very small cutoff, as low as Δmax ¼ 2, the
algorithm can detect correctly the 2D compactified boson
CFT and returns rather accurate approximate values for
scaling dimensions and OPE-squared coefficients.

A. Analytic solution

Before delving into the results of the RL exercise, it is
useful to recall briefly the analytic solution of the 2D S1

scalar theory that we want to rediscover from a conformal
bootstrap/RL perspective.
Consider the 2D CFT of a compact boson X with

radius R:

S ¼ 1

4π

Z
d2z∂X∂̄X; X ≃ X þ 2πR: ð5:1Þ

Since this is a free theory, it is straightforward to analyti-
cally compute all its data. Let us summarize some of the
pertinent details following closely the conventions of [37]
with α0 ¼ 2.
The basic conformal primaries of the theory are the Uð1Þ

currents

jðzÞ ¼ i
2
∂XðzÞ; j̄ðz̄Þ ¼ i

2
∂Xðz̄Þ ð5:2Þ

and the vertex operators14

Vp;p̄ðz; z̄Þ ¼ eipXðzÞþip̄ X̄ðz̄Þ; p¼ n
R
þwR

2
; p̄¼ n

R
−
wR
2

;

ð5:3Þ

TABLE X. A Δmax ¼ 8.5 version of Table IX.

Δε00 ¼ 3

Spin Analytic Δ RL Δ Analytic C RL C

0 4 4.505229 41.3265 40.726093
0 8 7.9896655 13.2704 13.0988035
2 2 2.3935893 6.42857 5.4763665
2 6 7.1316943 23.4184 21.824356
4 4 4.362866 3.64286 4.9283843
4 8 7.9502306 5.89678 6.0844507
6 6 6.0996165 1.23387 2.7852516
8 8 8.006613 0.251744 0.0013012796

A ¼ 0.000771919

TABLE IX. Analytic and numerical solutions for
scaling dimensions and OPE-squared coefficients in the con-
formal block decomposition of the four-point function
hε00ðz1; z̄1Þε00ðz2; z̄2Þε00ðz3; z̄3Þε00ðz4; z̄4Þi for Δε00 ¼ 3 and the
spin-partition of Table VII with Δmax ¼ 6.5. The numerical
results were obtained with a mode-3 run of the RL algorithm.

Δε00 ¼ 3

Spin Analytic Δ RL Δ Analytic C RL C

0 4 5.3342843 41.3265 43.009876
2 2 2.586108 6.42857 6.317041
2 6 5.900023 23.4184 23.202938
4 4 4.8769903 3.64286 16.4788
6 6 6.0306115 1.23387 1.7063767

A ¼ 0.000668002

14All the operators appearing below should be understood as
being normal ordered.
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where n and w are the integer momentum and winding
quantum numbers of the corresponding states. j, j̄ have
respectively conformal scaling dimensions ðh; h̄Þ ¼
ð1; 0Þ; ð0; 1Þ, while Vp;p̄ has ðh; h̄Þ ¼ ðp2

2
; p̄

2

2
Þ. The spin of

an operator is s ¼ h − h̄. As a result, the vertex operatorVp;p̄

has spin s ¼ 1
2
ðp2 − p̄2Þ ¼ nw. Corresponding states with

only momentum, or only winding, are spinless.
The remaining spectrum of operators can be organized

using the Virasoro algebra, but since we only want to use
the global soð2; 2Þ part of the 2D conformal algebra, we
need to also identify all the quasiprimary operators. All
quasiprimaries of the theory can be obtained by combining
any quasiprimary operator from the left-moving (holomor-
phic) sector with any quasiprimary operator from the right-
moving (antiholomorphic) sector. There are no factors with
mixed holomorphic-antiholomorphic derivatives in an
operator because of the equations of motion ∂∂̄X ¼ 0.
Hence, let us focus momentarily on the holomorphic sector.
As already noted in our minimal-model discussion, a

quasiprimary state (in the holomorphic sector) is annihi-
lated by the L1 ¼ 1

2πi

H
dzz2TðzÞ conformal generator. This

requires that the OPE between the energy-momentum
tensor TðzÞ and a quasiprimary should have no z−3 pole.
The general vertex operator with holomorphic momentum
p has the form

Om1;…;mr;p ≡
Yr
a¼1

ð∂aXÞmaeipX: ð5:4Þ

A straightforward computation shows that the z−3 pole in
the OPE TðzÞOm1;…;mr;pð0Þ is

½TðzÞOm1;…;mr;pð0Þ�3
¼

Xr

a¼2

ða − 1ÞaOm1;…;ma−1þ1;ma−1;maþ1;…;mr;pð0Þ: ð5:5Þ

A generic quasiprimary is a linear combination of operators
of the form (5.4) with the same conformal dimension.
Equation (5.5) can be used to determine the numerical
coefficients in these combinations. For example, the qua-
siprimaries with up to six derivatives are

�
ð∂XÞ2 þ ip∂2X

�
eipX;

�
ð∂XÞ3 þ 3

2
ip∂X∂2X −

p2

4
∂3X

�
eipX;

h
ð∂XÞ4 þ 2ipð∂XÞ2∂2X − p2ð∂2XÞ2

i
eipX;

�
∂X∂3X þ ip

12
∂4X −

3

2
ð∂2XÞ2

�
eipX;

�
ð∂XÞ5 þ 5ip

2
ð∂XÞ3∂2X −

p2

4

�
ð∂XÞ2∂3X þ ip∂2X∂3X þ 6∂Xð∂2XÞ2

��
eipX;

�
ð∂XÞ2∂3X −

3

2
∂Xð∂2XÞ2 þ p

4

�
5i
6
∂X∂4X −

1

24
∂5X − i∂2X∂3X

��
eipX;

�
ð∂XÞ6 þ 3ipð∂XÞ4∂2X − 3p2

�
ð∂XÞ2ð∂2XÞ2 þ ip

3
ð∂2XÞ3

��
eipX;

�
ð∂XÞ3∂3X −

3

2

�
ð∂XÞ2ð∂2XÞ2 þ ip

3
ð∂2XÞ3

�
þ 3ip

2

�
∂X∂2X∂3X − ð∂2XÞ3 þ ip

12
ð∂3XÞ2

��
eipX;

�
∂X∂5X þ ip

30
∂6X − 10∂2X∂4X þ 10ð∂3XÞ2

�
eipX;

�
ð∂XÞ3∂3X −

3

2
ð∂XÞ2ð∂2XÞ2 þ 3p2

8
ð∂3XÞ2 − p2

3
∂2X∂4X þ ip

3
ð∂XÞ2∂4X −

ip
2
∂X∂2X∂3X

�
eipX: ð5:6Þ

Putting together the holomorphic and antiholomorphic
parts, general quasiprimaries can be obtained as linear
combinations of the operators

Ofmag;fm̄āg;p;p̄ ≡
Yr
a¼1

ð∂aXÞma

Ȳr
ā¼1

ð∂ āX̄Þm̄āeipXþip̄ X̄: ð5:7Þ

The conformal dimensions of these operators are

h ¼ lþ 1

2
p2 ¼ lþ 1

2

�
n
R
þ wR

2

�
2

; ð5:8Þ

h̄ ¼ l̄þ 1

2
p̄2 ¼ l̄þ 1

2

�
n
R
−
wR
2

�
2

; ð5:9Þ

where l ¼ P
r
a¼1 ama, l̄ ¼ P

r̄
ā¼1 ām̄ā and p; p̄ are

expressed in terms of the momentum and winding quantum
numbers.
The two- and three-point functions involving the above

quasiprimaries can be computed straightforwardly using
Wick contractions. Explicit results, that will be compared
against those from the RL output, will be listed in the next
subsection.

KÁNTOR, NIARCHOS, and PAPAGEORGAKIS PHYS. REV. D 105, 025018 (2022)

025018-18



B. Reinforcement-learning results

Wewill now attempt to rediscover the S1 theory from the
conformal-bootstrap perspective. We consider two kinds of
four-point functions. The first one is the four-point function
of four spinless conformal primaries with arbitrary, but
fixed, scaling dimension. The zero-spin assumption is not
necessary; we only make it here for convenience and
illustration purposes. We further assume that these oper-
ators are charged under a conserved Uð1Þ symmetry. We
denote them as Vp and parametrize their scaling dimension
Δp by the real variable p using the relation

Δp ≡ p2: ð5:10Þ

We emphasize that this equation should be viewed as the
definition of the real number p. At this point we do not
specify how p relates to the Uð1Þ charge of Vp and hence
(5.10) is not a dynamical statement about the scaling
dimension Δp in terms of some other quantum number.
Keeping the above in mind, we consider the four-point

function

hVpðz1; z̄1ÞVpðz2; z̄2ÞV̄pðz3; z̄3ÞV̄pðz4; z̄4Þi; ð5:11Þ

where V̄p denotes the complex conjugate of Vp. Since Vp

and V̄p have opposite Uð1Þ charge, the four-point function
(5.11) is neutral under the assumed global Uð1Þ symmetry.
Vp is expected to capture the primary vertex operator

Vp;pðz; z̄Þ ¼ eipðXðzÞþX̄ðz̄ÞÞ with p ¼ p̄ ¼ n
R and winding

w ¼ 0, or the T-dual Vp;−pðz; z̄Þ ¼ eipðXðzÞ−X̄ðz̄ÞÞ with p ¼
p̄ ¼ w

R and momentum n ¼ 0. Only a minimal part of this
information will be incorporated indirectly into the algo-
rithm via the spin-partition. Using this partial information,
the agent will have to uncover that Vp is indeed part of the
S1 theory and that p is related to the Uð1Þ charge.
The second kind of four-point function that we will

consider is the correlator of the conserved spin-1 operator j,

hjðz1Þjðz2Þjðz3Þjðz4Þi: ð5:12Þ

We next display the results of the RL algorithm for
each case.

1. Momentum/winding sector

The crossing equation for the four-point function (5.11)
can be written as

X
h≥h̄

sCh;h̄jz−1j2Δp g̃ðVVV̄ V̄Þ
h;h̄

ðz;z̄Þ

−
X0

h0≥h̄0
tCh0;h̄0 jzj2Δp g̃ðV̄VVV̄Þ

h;h̄
ð1−z;1− z̄Þ− jzj2Δp ¼0: ð5:13Þ

In the t-channel block decomposition we have separated the
contribution of the identity operator and have used the
normalization convention hVpV̄pi ¼ 1.
Let us fix for concreteness the scaling dimension Δp of

Vp to some specific value, e.g., Δp ¼ 0.1. This value is
deliberately small to allow for spin-partitions with rela-
tively small cutoff Δmax. In Table XI we collect four spin-
partitions that will be used to study the truncated version of
the crossing equations (5.13). These spin-partitions are
inspired by the analytic solution of the S1 theory when
imposing the cutoff Δmax ¼ 2, 3.5, 4.5, 5.5, respectively, in
the OPEs of the s- and t-channels. In each of these spin-
partitions the number of unknowns (scaling dimensions
plus OPE-squared coefficients) that we are solving for is 8,
16, 26, 36.
In Tables XII–XIV we have collected the expected

analytic results of the S1 theory for Vp ¼ Vp;�p and jpj ¼ffiffiffiffiffiffiffi
0.1

p
together with the best results of the runs we

performed. In contrast to Sec. IV, where we presented
results based mainly on mode-2 and mode-3 runs (guided
by partial prior information about the CFT data in the
initialization of the code), in this section we present results
of genuine mode-1 runs based only on the information
provided by the spin-partition.
One of the first observations in Table XII is that already

in the simplest case of Δmax ¼ 2 the RL algorithm predicts
the corresponding CFT data to very good accuracy. The run
reported in Table XII for Δmax ¼ 2 used 30 z-points and
took approximately 2 hours to yield the relative accuracy
A ¼ 0.000197442. The results for the higher cutoffs, that
incorporate further operators with higher conformal scaling
dimensions (and spin), were obtained by building on the
Δmax ¼ 2 data with the use of the incremental mode-1
procedure of Sec. III C 4.
The results at Δmax ¼ 3.5 in Table XII exhibit a notice-

able decrease in A (which translates to a smaller violation
of the truncated-reduced crossing equations) and agreement
between the numerical and analytic results for the low-
lying spectrum, which is comparable with the Δmax ¼ 2

TABLE XI. Spin-partitions for the conformal-block
decomposition of the four-point function hVpðz1; z̄1Þ×
Vpðz2; z̄2ÞV̄pðz3; z̄3ÞV̄pðz4; z̄4Þi at four different values of the
cutoff Δmax.

Spin 0 1 2 3 4 5

Δmax ¼ 2 s-channel 1 … … … … …
t-channel 1 1 1 … … …

Δmax ¼ 3.5 s-channel 1 … 1 1 … …
t-channel 1 2 1 1 … …

Δmax ¼ 4.5 s-channel 2 … 1 1 1 …
t-channel 2 2 2 1 1 …

Δmax ¼ 5.5 s-channel 2 1 1 1 1 1
t-channel 2 3 2 2 1 1
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run. Notice that there are two deliberate features compli-
cating the Δmax ¼ 3.5 run. First, the fact that the spin-3
operator is absent in the s-channel was not an input. The
agent had to discover this feature (as it does), but this
complicates the search. Interestingly, although the spin-3
operator is absent in the exact conformal decomposition,
the agent manages to identify its scaling dimension with

remarkable accuracy. Apparently, this is not an accident;
similar results are obtained in the higher cutoff runs of
Tables XIII–XIV. Second, in the runs of Table XII we are
not using any information about the signs of the OPE-
squared coefficients. As a result, some of the OPE-squared
coefficients obtained in the Δmax ¼ 3.5 run have the wrong
sign in the t-channel. Once again, this complicates the

TABLE XII. Analytic and numerical solutions for scaling dimensions and OPE-squared coefficients for Δp ¼ 0.1
and spin-partitions with Δmax ¼ 2, 3.5 and 30 z-points respectively. The numerical results were obtained using the
mode described in Sec. III C 4.

Δmax ¼ 2

Channel Spin Analytic Δ RL Δ Analytic C RL C

s 0 0.4 0.38694087 1 0.99479413
t 0 2 2.1108415 0.01 0.010378244

1 1 0.9485743 −0.1 −0.10135128
2 2 2.1295118 0.005 0.004827103

A ¼ 0.000197442

Δmax ¼ 3.5

Channel Spin Analytic Δ RL Δ Analytic C RL C

s 0 0.4 0.39011472 1 0.999143

t

2 2.4 2.2029796 3.57143 × 10−3 2.2229333 × 10−3

3 3.4 3.203875 0 4.971186 × 10−7

0 2 2.1141205 0.01 0.008170344
1 1 0.95283717 −0.1 −0.09884554
1 3 2.8024354 −5 × 10−4 9.701283 × 10−4

2 2 2.1266346 0.005 0.003557264
3 3 2.8005629 −1.66667 × 10−4 4.3958283 × 10−4

A ¼ 0.00000225745

TABLE XIII. Analytic and numerical solutions for scaling dimensions and OPE-squared coefficients forΔp ¼ 0.1
and spin-partitions with Δmax ¼ 4.5 and 49 z-points. The numerical results were obtained using a mode-2 run on top
of the mode described in Sec. III C 4.

Δmax ¼ 4.5

Channel Spin Analytic Δ RL Δ Analytic C RL C

s 0 0.4 0.4185128 1 0.98406625
0 4.4 4.229518 1.27551 × 10−5 −5.3023865 × 10−5

2 2.4 2.4269097 3.57143 × 10−3 4.041962 × 10−3

3 3.4 3.2022634 0 −1.0026526 × 10−3

4 4.4 4.574162 1.96039 × 10−3 2.7667696 × 10−4

t 0 2 2.0097528 0.01 0.0025764485
0 4 3.8530886 2.5 × 10−5 4.1462967 × 10−4

1 1 0.9313935 −0.1 −0.10908633
1 3 2.9478629 −5 × 10−4 −7.262531 × 10−3

2 2 2.0496795 0.005 0.013589153
2 4 3.8056073 1.66667 × 10−5 6.19941 × 10−5

3 3 2.9541698 −1.66667 × 10−4 −4.592793 × 10−3

4 4 4.0146556 4.16667 × 10−6 4.924626 × 10−3

A ¼ 0.0000206548
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search and prevents the agent from improving the agree-
ment between the numerical and analytic results.
The data reported in Tables XIII–XIV are based on

multidimensional searches with an even larger number of
operators (13 and 18 respectively). To increase the accuracy
(namely, reduce the value of A) we used the results of the
incremental mode-1 procedure of Sec. III C 4 to initialize
an additional, subsequent mode-2 run with 49 z-points. The
mode-2 run began with a search on the OPE-squared
coefficients alone, while the scaling dimensions were kept
fixed at the values obtained from the prior mode-1 search.
At a second stage of the run, the scaling dimensions were
unfrozen and the agent was allowed to search in the
complete space of scaling dimensions and OPE-squared
coefficients to find the results reported in Tables XIII–XIV.
In theΔmax ¼ 4.5 run we kept the signs of the OPE-squared
coefficients free (as in Table XII). With the exception of the
OPE-squared coefficients for the second spin-0 operator in
the s-channel, the agent managed to predict the correct
signs. To illustrate what happens when we input the correct
signs, we performed the more complicated Δmax ¼ 5.5 run
by fixing the signs of the OPE-squared coefficients at their
expected analytic values. The combined mode-1 and mode-
2 runs at Δmax ¼ 4.5 took approximately 2 days and the
runs at Δmax ¼ 5.5 4 days.
Comparing the numerical and analytic results in

Tables XIII–XIV we observe that the agent has performed
impressively well for the scaling dimensions (even for the

odd-spin operators that do not contribute to the s-channel in
the exact result). It performed decently for the OPE-squared
coefficients of the low-lying Δmax ¼ 2 operators, but
poorly for many of the remaining, numerically smaller
coefficients. From the single runs reported in Tables XIII–
XIV we can immediately deduce that the algorithm works,
because it managed to minimize the violation of the
truncated crossing equations and identified CFT data with
a very low value of A. To obtain a better understanding of
the values predicted by the algorithm, and record a more
solid result, one needs (at the very least) to perform
multiple runs and determine the statistical variation of
the obtained results. We expect the smallest statistical
variations for the low-lying scaling dimensions and the
corresponding OPE-squared coefficients. It would also be
interesting to explore further how these data are affected by
the choice of the z-sampling and the precise form of the
reward function. As a preliminary check, we examined a
derivative expansion of the crossing equations around the
fully symmetric point u ¼ v ¼ 1 (see Ref. [14]), using the
quoted scaling dimensions in Table XIV as an input.
Truncating to the appropriate order we solved the resulting
linear system to obtain the corresponding OPE-squared
coefficients. Interestingly, we observed numerical values
comparable to the ones obtained in Table XIV with the use
of the RL algorithm.
As an illustration, we performed a preliminary analysis

of the statistical errors with multiple runs for the Δmax ¼ 2,

TABLE XIV. Analytic and numerical solutions for scaling dimensions and OPE-squared coefficients forΔp ¼ 0.1
and spin-partitions with Δmax ¼ 5.5 and 49 z-points. The numerical results were obtained using a mode-2 run on top
of the mode described in Sec. III C 4.

Δmax ¼ 5.5

Channel Spin Analytic Δ RL Δ Analytic C RL C

s 0 0.4 0.40006787 1 1.0057276
0 4.4 4.336432 1.27551 × 10−5 0.43016876 × 10−5

1 5.4 5.307818 0 −2.2633198 × 10−4

2 2.4 2.4060674 3.57143 × 10−3 5.486169 × 10−3

3 3.4 3.446559 0 −0.4480493 × 10−5

4 4.4 4.410344 1.96039 × 10−3 0.27796367 × 10−3

5 5.4 5.3354797 0 −9.976282 × 10−5

t 0 2 2.001293 0.01 0.0056684865
0 4 4.0166564 2.5 × 10−5 4.8836926 × 10−4

1 1 1.040068 −0.1 −0.085237
1 3 3.0494268 −5 × 10−4 −2.271628 × 10−2

1 5 4.9848695 −8.33333 × 10−7 −9.268466 × 10−4

2 2 2.00707 0.005 0.0018059064
2 4 4.045016 1.66667 × 10−5 7.282457 × 10−4

3 3 3.0331514 −1.66667 × 10−4 −2.894943 × 10−4

3 5 4.9544168 −4.16667 × 10−7 −3.3044117 × 10−3

4 4 3.9395354 4.16667 × 10−6 6.668457 × 10−4

5 5 5.0390368 −8.33333 × 10−8 −4.3607014 × 10−4

A ¼ 0.0000321653
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Δp ¼ 0.1 case by completing 12 runs with 20 z-points in
about 2 hours each. The results, collected in Table XV,
provide a more complete picture of the final output of the
computation. We note that the errors in Table XV do not
include systematic errors associated with the truncation or
the choice of the z-points.
Finally, we performed the following exercise. Using the

fixed spin-partition for Δmax ¼ 2 from Table XI, we varied
Δp from 0.1 to 0.6 with a step of 0.1. As Δp increases so do
the scaling dimensions in the s-channel. As a result, in the
s-channel we increase appropriately the upper cutoff in the
search and the fixed spin-partition is no longer that of
Δmax ¼ 2. At the same time, the t-channel scaling dimen-
sions remain within theΔmax ¼ 2window. In Fig. 1 we plot
the scaling dimension Δs of the lowest scalar in the s-
channel OPE of Vp as a function of Δp. The slope of the
best-fit line, Δs ¼ −0.0127þ 3.99345Δp, is 0.16% close
to the analytically expected value of Δs ¼ 4Δp, although
the relative accuracy A of the corresponding search
increases for higher Δp, as can be seen from Fig. 2.
This result suggests that the fixed spin-partition in the
top entry of Table XI is inadequate as we increase the
scaling dimension of the external operators and that more
operators need to be included for large external scaling

dimensions in both channels. It would be useful to develop
a better understanding of the optimal use of cutoffs and
search windows in such situations.
One can also infer some additional information from

Fig. 1. Had one been agnostic about the CFT, Fig. 1 would
provide evidence that the variable p is proportional to the
Uð1Þ charge of the operator Vp, since the scalar appearing
in the OPE VpVp has twice the Uð1Þ charge of Vp (the
Uð1Þ charge is additive) and the scaling dimension Δs is
found to be Δs ¼ ð2pÞ2. A sharper argument along
these lines could be obtained by studying the four-point
function hVp1

Vp2
V̄p1

V̄p2
i for a generic pair of p1, p2. The

four-point function hjjVpV̄pi would also yield related
information.
At this point, it is interesting to ask whether the RL

results allow us to conclusively determine that the CFT in
question has a one-dimensional conformal manifold
(namely an exactly marginal operator). The uncharged,
spinless operator of scaling dimension 2 that appears in the
t-channel is an obvious candidate that indicates the exist-
ence of a one-dimensional conformal manifold. Moreover,
if there is some additional information that the spectrum of
the CFT is discrete, the fact that we can solve the crossing
equations for a continuous set of scaling dimensions Δp for
the operators Vp, signals the fact that the theory has an

TABLE XV. Analytic and numerical solutions from 12 runs for the mean and standard deviations of the scaling
dimensions and OPE-squared coefficients for Δp ¼ 0.1, spin-partitions with Δmax ¼ 2 and 20 z-points. The
numerical results were obtained in mode 1.

Δmax ¼ 2

Channel Spin Analytic Δ RL Δ Analytic C RL C

s 0 0.4 0.389413� 0.00862039 1 0.995461� 0.00335572
t 0 2 1.96776� 0.116733 0.01 0.0115139� 0.00359425

1 1 0.96145� 0.0408496 −0.1 −0.101801� 0.00435701
2 2 2.06592� 0.17467 0.005 0.00497925� 0.00156548

A ¼ 0.000298727� 0.0000960205

FIG. 1. A plot of the numerically obtained values of Δs for the
lowest scalar in the s channel as a function of Δp. The solid line is
the line of best fit.

FIG. 2. A plot of the relative accuracy A for the runs leading to
Fig. 1 as a function of Δp.
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exactly marginal deformation and that the scaling dimen-
sion of Vp can be used as a proxy for the value of the
exactly marginal coupling.

2. Spin-1 correlation functions

A characteristic feature of the S1 theory is the existence
of a conserved holomorphic (and separately an antiholo-
morphic) Uð1Þ current jðzÞ, under which many of the
operators of the theory are charged. In this subsection, we
study the four-point function of this current, (5.12). The
holomorphic current jðzÞ has spin 1 and (since it is
conserved) scaling dimension Δj ¼ 1. Keeping its scaling
dimension Δj free for the moment, we find that the four-
point function (5.12) yields the crossing equation

X0

h≥h̄

Ch;h̄ððz − 1Þ2ΔjgðjjjjÞ
h;h̄

ðz; z̄Þ − z2ΔjgðjjjjÞ
h;h̄

ð1 − z; 1 − z̄ÞÞ

þ 1

16
ððz − 1Þ2 − z2Þ ¼ 0: ð5:14Þ

The 1=16 factor in the last term, capturing the contribution
of the identity, originates from the normalization condi-
tion hjji ¼ 1

4
.

The quasiprimaries that one needs in (5.14) come from
the jðz1Þjðz2Þ OPE of the S1 theory and can be straight-
forwardly obtained following the discussion around (5.4),
by isolating contributions of the type ∂mX∂nX and setting
p → 0. These read

ð∂XÞ2; ∂X∂3X −
3

2
ð∂2XÞ2;

∂X∂5X − 10∂2X∂4X þ 10ð∂3XÞ2;
1

21
∂X∂7X − ∂2X∂6X þ 5∂3X∂5X −

25

6
ð∂4XÞ2; ð5:15Þ

and lead to the spin-partition of Table XVI with Δmax ¼ 8.
With this spin-partition we ran the RL algorithm 10 times

in mode 1 using 16 z-points. Each run lasted approximately
two hours. In this case, we kept the conformal scaling
dimension of the external operator j as one of the
unknowns to be determined by the agent. Overall, this
was a 9-dimensional search. The results, collected in
Table XVII, include statistical errors and exhibit the relative
accuracy A ¼ ð2.13657� 0.0819217Þ × 10−4. It is very
rewarding to see that the agent determined the scaling
dimension of the conserved Uð1Þ current to excellent
accuracy just from the knowledge of the spin partition,
and reproduced sensibly the low-lying spectrum and OPE
data of the quasiprimary operators that appear in the OPE of
the current with itself. For comparison, we also performed a
single, independent mode-2 run with 16 z-points, where
the scaling dimension of the current was fixed from the

TABLE XVI. A spin-partition inspired by the conformal-block
decomposition of the four-point function hjðz1Þjðz2Þjðz3Þjðz4Þi
with Δmax ¼ 8.

Spin 0 1 2 3 4 5 6 7 8

… … 1 … 1 … 1 …- 1

TABLE XVII. Analytic and numerical solutions from 10 runs for the mean and standard deviation of scaling
dimensions and OPE-squared coefficients in the conformal-block decomposition of the four-point function
hjðz1Þjðz2Þjðz3Þjðz4Þi. Δj is also an unknown and the spin-partition is that of Table XVI. The numerical results
were obtained with 16 z-points and a mode-1 run of the RL algorithm.

Δj ¼ 0.993577� 0.00528402

Spin Analytic Δ RL Δ Analytic C RL C

2 2 2.01688� 0.0242115 2 1.94164� 0.0426005
4 4 3.96686� 0.0419861 1.2 1.15899� 0.0351261
6 6 5.95325� 0.0438046 0.23809524 0.22054� 0.00729978
8 8 7.97585� 0.0767531 0.03263403 0.0240609� 0.00121834

A ¼ 0.000213657� 0.00000819217

TABLE XVIII. Analytic and numerical solutions for scaling
dimensions and OPE-squared coefficients in the conformal-block
decomposition of the four-point function hjðz1Þjðz2Þjðz3Þjðz4Þi
for Δj ¼ 1 and the spin-partition of Table XVI. The numerical
results were obtained with 16 z-points and a mode-2 run of the
RL algorithm.

Δj ¼ 1

Spin Analytic Δ RL Δ Analytic C RL C

2 2 2.0080483 2 1.9766322
4 4 4.0273294 1.2 1.1675011
6 6 6.014957 0.23809524 0.21928822
8 8 8.0047245 0.03263403 0.023595015

A ¼ 0.00018822
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beginning at the analytic value Δj ¼ 1. The results, at
relative accuracy A ¼ 0.00018822, are summarized in
Table XVIII. They are nicely consistent with the mode-1
results of Table XVII.

VI. CONCLUSIONS AND OUTLOOK

In this paper we introduced the use of reinforcement-
learning techniques into the conformal bootstrap program.
We tested an RL soft actor-critic algorithm in the context of
several 2D CFTs and showed that the algorithm can
perform efficient multidimensional searches in the space
of scaling dimensions and OPE-squared coefficients. The
basic input of our approach is a spin-partition and a window
of scaling dimensions, where the search is concentrated.
We demonstrated in concrete examples that this minimal
input is enough to guide the algorithm toward a CFT of
interest and that the obtained numerical values can be
sensible even in very rough truncations with only a handful
of operators. Our algorithm can be straightforwardly
applied to any CFT of arbitrary spacetime dimension.
This opens up the very exciting possibility of new non-
perturbative results in conformal field theory in a wide
range of directions, some of which we plan to explore in the
near future.
We view the approach introduced here as largely

complementary to the more standard ones that have already
been developed to-date in the context of the numerical
conformal bootstrap. We believe that our method is com-
paratively stronger in performing efficient multidimen-
sional searches in arbitrary, a priori selected (unitary or
nonunitary) CFTs. Since it is based on statistical and
probabilistic techniques, it can be weaker in accuracy, on
detecting rigorous bounds and on conclusively rejecting
CFT data as inconsistent. The latter is the context where
standard numerical conformal-bootstrap approaches have
excelled over the last decade. Eventually, one would like to
combine all available analytic and numerical methods at
their disposal to build a powerful multipurpose toolbox.
We envisage the most efficient application of our

approach in contexts where a CFT can be solved in a
parametrically convenient regime (e.g., in a weakly coupled
large-N regime or a weakly coupled regime on a conformal
manifold). Then, one can use the information of the
perturbative solution to set up a well-informed spin-
partition, that can in turn be applied adiabatically to a
search with gradually changing parameters. By using a
gradual update of the CFT data, one should be able to
implement the RL algorithm step-by-step and track them
from a weak- to a strong-coupling regime. This is a
concrete context, where one can try to leverage all available
analytic and numerical information. For example, in super-
conformal field theories, our approach can benefit from
many recent developments that use the superconformal
structure of the theory in an essential way.

Although our results provide a proof of principle for the
usefulness of RL techniques to this class of problems, there
are several aspects of our approach that require further
investigation and development. The most urgent is to
systematically understand how to incorporate reliable
errors in our computations. The primary source of error
is of an analytic nature and originates from the truncation of
the conformal-block expansions. The convergence proper-
ties of these expansions, [27], imply that there is a
sufficiently high Δmax above which the error will be
negligible. It is unclear, however, how to identify this
optimal Δmax in a generic theory and for generic four-point
functions. Hence, one might initially need to perform a
case-by-case analysis in order to explore how our results
are affected by an increasing Δmax.
Another source of error, which is sometimes more

significant than the error due to the Δmax truncation, comes
from the way we reduce the functional dependence of the
crossing equations on the cross-ratios to a discrete set of
algebraic equations. In this paper we have chosen to
implement this reduction by evaluating the crossing equa-
tions on a finite set of cross-ratio values. We noticed
experimentally that the sampling of z-points suggested in
Sec. 3.1 of [28] works well in our computations. However,
we lack a good understanding of whether this is the optimal
sampling, or how the calculations are affected by the
number of z-points selected. An error can consequently
be associated with these effects by varying the sampling (in
form and size). Alternatively, one can explore more
standard reductions based on Taylor-expansions of the
conformal blocks around some point in z-space. It would
be interesting to repeat the computations of this paper with
this alternative approach and compare results.
Other errors have to do with the statistical nature of our

approach and the fact that we do not a priori know the
minimal possible violation of the truncated crossing equa-
tions for a given truncation and reduction. In this paper we
quantified this violation with a relative measure of accuracy
A and performed runs of the RL algorithm up to the point
where the improvement of A was saturated. An important
additional measure of error for each CFT datum is a
statistical error obtained by performing the same type of
run many times, which we sampled in the case of the c ¼ 1

compactified boson CFT on S1 for the simplest case of
Δmax ¼ 2 in the momentum sector and for Δmax ¼ 8 in the
four-point function of the conserved Uð1Þ current. The
evaluation of this type of error would benefit from a fully
parallelizable algorithm. As we noted in Sec. III C, current
implementations of the algorithm benefit from the judicious
caretaking of the user, which obstructs the full paralleliz-
ability of the code. It would be useful to improve this aspect
in future work.
In this paper we did not make systematic use of the

constraints of global symmetries or of the full constraints of
unitarity on the OPE-squared coefficients. As we observed
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in Sec. V B 1, multidimensional searches can benefit
significantly from prior information on the signs of the
OPE-squared coefficients. Without such information the
agent is allowed to explore cancellations between different
conformal blocks that sidetrack the search by increasing the
statistical error on certain OPE-squared coefficients, espe-
cially so for those at higher scaling dimensions that come
naturally with suppressed numerical values.
Finally, we treated the learning algorithm itself as a black

box, using the off-the shelf soft actor-critic algorithm
of [22]. It would be interesting to explore what efficiency
and speed gains one can achieve by tuning hyperparameters
or choosing the deep deterministic policy gradient

method [33]. We also chose the simplest definition for
the reward function (3.1). The choice of an appropriate
reward function is crucial in achieving better results for RL
algorithms and this is an area that also deserves further
investigation.
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