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We consider N ¼ 2 supersymmetric SU(2) gauge theory with Nf ¼ 4 massive hypermultiplets. The
duality group of this theory contains transformations acting on the UV coupling τUV as well as on the
running coupling τ. We establish that subgroups of the duality group act separately on τUV and τ, while a
larger group acts simultaneously on τUV and τ. For special choices of the masses, we find that the duality
groups can be identified with congruence subgroups of SLð2;ZÞ. We demonstrate that in such cases, the
order parameters are instances of bimodular forms with arguments τ and τUV. Since the UV duality group of
the theory contains the triality group of outer automorphisms of the flavor symmetry SO(8), the duality
action gives rise to an orbit of mass configurations. Consequently, the corresponding order parameters
combine to vector-valued bimodular forms with SLð2;ZÞ acting simultaneously on the two couplings.
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I. INTRODUCTION

The N ¼ 2 supersymmetric Yang-Mills field theory
with gauge group SU(2) and Nf ¼ 4 fundamental hyper-
multiplets is distinguished for various reasons [1],
including

(i) The theory is superconformal up to mass terms for
the hypermultiplets, and is a benchmark for four-
dimensional superconformal field theories (SCFTs)
with N ¼ 2 supersymmetry [2–5].

(ii) The theory is a building block for other four-
dimensional N ¼ 2 SCFTs and the 2d=4d corre-
spondence [6,7].

(iii) The theory exhibits an intriguing electric-magnetic
duality group including triality [1]. This duality
group acts on the UV coupling τUV and running
coupling constant τ, and contains elements which act
simultaneously on the two couplings as well as
separately.

(iv) The theory is a “parent” theory from which the
asymptotically free N ¼ 2, SU(2) theories with
Nf ≤ 3 hypermultiplets can be obtained by decou-
pling one or more hypermultiplets [1,8].

The focus of the present paper is on point iii. We analyze
duality groups for the couplings τUV and τ of the Nf ¼ 4

theory as function of the masses. To this end, explicit
expressions for the order parameter u ¼ hTrϕ2i, with ϕ the
complex scalar of the vector multiplet, are determined as
function of both τUV and τ. We identify several loci in the
space of masses where u transforms as a modular form for
both τUV and τ. This extends our recent work [9] on
theories with Nf ≤ 3 to Nf ¼ 4. In [9], we determined
fundamental domains for the running coupling τ for the
asymptotically free theories by analyzing in detail the order
parameter u as function of the effective coupling τ ∈ H. We
have demonstrated that for generic masses this function has
branch points, with the consequence that the fundamental
domain for τ is in general not of the form ΓnH for a
congruence subgroup Γ ⊂ SLð2;ZÞ. Only for specific
values of the masses, such as those giving rise to
Argyres-Douglas (AD) points, the order parameter is
(weakly) holomorphic as function of τ, and the fundamen-
tal domain is that of a congruence subgroup. In this paper,
we find that these features are present as well for the
Nf ¼ 4 theory, but with an additional dependence on τUV.
At special modular loci, some properties of the Nf ¼ 4

order parameters are similar to that of the N ¼ 2� SU(2)
theory, i.e., the superconformal theory with a single adjoint
hypermultiplet. The N ¼ 2� order parameter transforms as
a modular form under the group Γð2Þ × Γð2Þ with the first
factor acting on τ and the second on τUV, while it also
transforms as a modular form under simultaneous SLð2;ZÞ
transformations of τ and τUV [10–12]. It was later clarified
that uðτ; τUVÞ is an example of a meromorphic bimodular
form [13]. Such functions have appeared, although spo-
radically, in the mathematical literature [14–16].
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The SU(2) Nf ¼ 4 theory exhibits a richer structure: It
has four mass parameters that give rise to seven singular
vacua on the u plane. For special choices of the masses,
the u planes contain any of the three SU(2) Argyres-
Douglas superconformal points ðA1; A2Þ, ðA1; A3Þ, and
ðA1; D4Þ, while in the massless case there is a non-
Abelian Coulomb point with a five quaternionic-dimen-
sional Higgs branch [2,17]. For generic masses, the
singularities are roots of a sextic polynomial, for which
there is no known expression. The flavor symmetry
SO(8) becomes the universal cover Spinð8Þ in the
quantum theory. It has a triality group OutðSpinð8ÞÞ of
outer automorphisms, which is isomorphic to the sym-
metric group S3 on three letters. The full symmetry group
of the Nf ¼ 4 curve is then the semidirect product
Spinð8Þ⋊φSLð2;ZÞ, which is induced by the group
homomorphism φ∶ SLð2;ZÞ → OutðSpinð8ÞÞ. As the
triality group is of order jS3j ¼ 6, the orbits of the group
action on mass space C4 generally have six elements.
However, there are specific mass configurations with
enhanced global symmetry that are invariant under
subgroups of the triality group, for which the orbits
collapse, either to three elements or to a single element.
We study four such configurations in detail, and show

that their order parameters, periods, and discriminants are
bimodular forms for subgroups of SLð2;ZÞ. For the triality
invariant case ðm1; m2; m3; m4Þ ¼ ðm;m; 0; 0Þ we find that
the order parameter is a bimodular form of weight (0,2)
with Γð2Þ acting on both τ and τUV individually, while it is
also bimodular for SLð2;ZÞ acting on τ and τUV simulta-
neously. If all four hypermultiplets are rather given an equal
mass, the triality orbit has three elements. The u planes for
these three mass configurations are modular curves for the
three subgroups of SLð2;ZÞ conjugate to Γ0ð4Þ. The order
parameters, periods, and discriminants are permuted by
triality, and can thus be organized into vectors to form one-
parameter families of vector-valued bimodular forms for
SLð2;ZÞ. We further give some examples of exact expres-
sions for order parameters of more complicated theories
with two independent mass parameters. These theories then
include both AD points and branch cuts.
The outline of the paper is as follows. In Sec. II we

discuss the symmetries of the Nf ¼ 4 SW curve, and
study the action of the triality group on the mass space.
Specific mass configurations with enhanced global sym-
metry are then studied in Sec. III, where we also provide
a definition of bimodular forms and vector-valued bimod-
ular forms most suited for our analyses. Appendix A
contains relevant properties of congruence subgroups and
modular forms. In Appendix B, we study the possible
singularity spectrum of the Nf ¼ 4 theory. In
Appendix C we obtain similar results for the Nf ¼ 4

curve constructed from the qq characters of the Nf ¼ 4

theory. Appendix D finally provides expressions for the
limits to the asymptotically free theories.

II. FOUR FLAVORS AND TRIALITY

The one-loop beta function of N ¼ 2 supersymmetric
Yang-Mills theory with Nf ≤ 4 hypermultiplets in the

fundamental representation is βNf
ðgYMÞ ¼− g3YM

16π2
ð4−NfÞ.

The gauge coupling gYM is combined with the theta angle θ
in the Lagrangian as τ ¼ θ

π þ 8πi
g2YM

. This complexified gauge

coupling can be considered as the expectation value of a
background chiral superfield. In the renormalization
scheme where the superpotential remains a holomorphic
function of all chiral superfields, the one-loop running
coupling at the energy scale E can be expressed as [18]

τðEÞ ¼ τUV −
4 − Nf

2πi
log

E
ΛUV

: ð2:1Þ

It is one-loop exact in the holomorphic scheme, and thus for
Nf < 4 the combination

Λ4−Nf

Nf
≔ Λ4−Nf

UV e2πiτUV ð2:2Þ

of the scale ΛUV and the coupling τUV is invariant to all
orders in perturbation theory. This complexified dynamical
scaleΛNf

sets the overall scale of the theory. ForNf ¼ 4 on
the other hand, there is a distinguished dimensionless
parameter τUV, on which the theory depends nontrivially.
To shorten the notation, we will also set τ0 ≔ τUV and
q0 ≔ e2πiτ0 in the following.

A. The curve

The low-energy physics of N ¼ 2 SYM with
Nf ¼ 4 massive hypermultiplets has been determined
in [1,10,12,19–21]. Similar to the asymptotically free
(Nf ≤ 3) cases, the physics is encoded in an elliptic curve
which depends holomorphically on the Coulomb branch
parameter u ∈ B4. This coordinate u parametrizes the
Coulomb branch B4 of the Nf ¼ 4 theory. Let us first
define the symmetric mass combinations

⟦mk
1⟧ ¼

X4
i¼1

mk
i ; ⟦m2

1m
2
2⟧ ¼

X
i<j

m2
i m

2
j

⟦m4
1m

2
2⟧ ¼

X
i≠j

m4
i m

2
j ; ⟦m2

1m
2
2m

2
3⟧ ¼

X
i<j<k

m2
i m

2
jm

2
k;

PfðmÞ ¼ m1m2m3m4: ð2:3Þ

The Nf ¼ 4 curve for generic masses is then [1]

y2 ¼ W1W2W3 þ AðW1T1ðe2 − e3Þ þW2T2ðe3 − e1Þ
þW3T3ðe1 − e2ÞÞ − A2N; ð2:4Þ

where
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Wi ¼ x − eiu − e2i R;

A ¼ ðe1 − e2Þðe2 − e3Þðe3 − e1Þ;

R ¼ 1

2
⟦m2

1⟧;

T1 ¼
1

12
⟦m2

1m
2
2⟧ −

1

24
⟦m4

1⟧;

T2;3 ¼∓ 1

2
PfðmÞ − 1

24
⟦m2

1m
2
2⟧þ

1

48
⟦m4

1⟧;

N ¼ 3

16
⟦m2

1m
2
2m

2
3⟧ −

1

96
⟦m4

1m
2
2⟧þ

1

96
⟦m6

1⟧; ð2:5Þ

and the half periods

e1 ¼
1

3
ðϑ43 þ ϑ44Þ; e2 ¼ −

1

3
ðϑ42 þ ϑ43Þ;

e3 ¼
1

3
ðϑ42 − ϑ44Þ ð2:6Þ

are functions of τ0 ¼ τUV, with e1 þ e2 þ e3 ¼ 0. The
Jacobi theta functions ϑi are defined in Appendix A.
Since the rhs of (2.4) is a cubic polynomial in x, it is
indeed an elliptic curve. We obtain the low-energy theory
with Nf ¼ 3 flavors by taking the limit τ0 → i∞
(or, equivalently, q0 → 0) and m4 → ∞ while holding

Λ3 ¼ 64q
1
2

0m4 fixed. The order parameters are then related
as [1]

uNf¼4 þ
1

4
e1⟦m2

1⟧ → uNf¼3: ð2:7Þ

See Appendix D for the corresponding curves.
Let us study the singularity structure of the Coulomb

branch. For generic masses m ¼ ðm1; m2; m3; m4Þ, there
are six distinct strong coupling singularities. By tuning the
mass, some of those singularities can collide. If we weight
each singularity by the number of massless hypermultiplets
at that point, the total weighted number of singularities on
the u plane is thus always 6. Denote by kl the weight of the
lth singularity, and by kðmÞ ¼ ðk1; k2;…Þ the vector of
those weights. In Table I, we list a selection of specifically
symmetric mass configurations. One notices that certain

a priori unrelated cases have the same weight vector k and
global symmetries, such as the cases fB; C; Dg and
fE; F; Gg. This will be explained in the next subsection.
It is also clear that kðmÞ gives a partition of 6, the total
number of singularities on B4. As there are pð6Þ ¼ 11 such
partitions, it is a natural question whether all of those 11
partitions are realized as kðmÞ for a mass m. We study this
question in Appendix B.

B. Triality

Let us study the symmetries of the Nf ¼ 4 curve (2.4)
with mass m ¼ ðm1; m2; m3; m4Þ. Scale invariance, the
Uð1ÞR R symmetry, and the SLð2;ZÞ symmetry acting
on τ0 are explicitly broken by the masses. There is a
remnant scale invariance on the Coulomb branch, which
manifests itself in the J -invariant B4 × C4 × H → C of the
curve being a quasihomogeneous rational function of
degree 0 and type (2, 1, 0),

J ðs2u; sm; τ0Þ ¼ J ðu;m; τ0Þ; s ∈ C�: ð2:8Þ

The Nf ¼ 4 theory has an SO(8) flavor symmetry, which
becomes the universal double-cover Spinð8Þ in the quan-
tum theory. In particular, there exists a short exact sequence

1 → Z2 → Spinð8Þ → SOð8Þ → 1 ð2:9Þ

of Lie groups. The cover Spinð8Þ has an order 6 group
OutðSpinð8ÞÞ of outer automorphisms, which is isomorphic
to S3 [22,23].1

This group of outer automorphisms acts on the Nf ¼ 4

theory as follows. The states with ðnm; neÞ ¼ ð0; 1Þ are the
elementary hypermultiplets, which transform in the funda-
mental vector representation of Spinð8Þ. The magnetic

TABLE I. List of some mass cases with enhanced flavor symmetry in Nf ¼ 4, with μ ≠ m. The vector kðmÞ lists
the multiplicities of all singularities on the Coulomb branch B4 with mass m.

Name m kðmÞ Global symmetry

A ðm;m; 0; 0Þ (2, 2, 2) SUð2Þ × SUð2Þ × SUð2Þ × Uð1Þ
B ðm;m;m;mÞ (4, 1, 1) SUð4Þ × Uð1Þ
C ð2m; 0; 0; 0Þ (4, 1, 1) SUð4Þ × Uð1Þ
D ðm;m;m;−mÞ (4, 1, 1) SUð4Þ × Uð1Þ
E ðm;m; μ; μÞ (2, 2, 1, 1) SUð2Þ × SUð2Þ × Uð1Þ × Uð1Þ
F ðmþ μ; m − μ; 0; 0Þ (2, 2, 1, 1) SUð2Þ × SUð2Þ × Uð1Þ × Uð1Þ
G ðm;m; μ;−μÞ (2, 2, 1, 1) SUð2Þ × SUð2Þ × Uð1Þ × Uð1Þ

1For any Lie group G, there are three associated groups.
AutðGÞ is the Lie group consisting of all automorphisms of G
(i.e., group isomorphisms G → G), InnðGÞ is a normal subgroup
of AutðGÞ consisting of inner automorphisms given by αgðhÞ ≔
ghg−1 for any g ∈ G, and OutðGÞ ¼ AutðGÞ=InnðGÞ is the
quotient group. The automorphism group of Spinð8Þ is
AutðSOð8ÞÞ ¼ PSOð8Þ⋊S3 [22].
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monopole (1,0) transforms as one spinor representation,
and the dyon (1,1) transforms as the conjugate spinor
representation [1]. By an accidental isomorphism, these
three representations are all eight-dimensional and irreduc-
ible, and they are permuted by the outer automorphism
group OutðSpinð8ÞÞ ≅ S3. It is generated by

T ¼

0BBB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

1CCCA; S ¼ 1

2

0BBB@
1 1 1 1

1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

1CCCA;

ð2:10Þ

which act on the column vectorm ∈ M ≔ C4 from the left
[1,24,25]. The map T exchanges the two spinors keeping
the vector fixed, while S exchanges the vector with the
spinor, keeping the conjugate spinor fixed. This is depicted
in Fig. 1.
The generators (2.10) satisfy the algebra

T 2 ¼ S2 ¼ ðST Þ3 ¼ ST 2S ¼ 1; ð2:11Þ

which is a presentation of the symmetric group S3. Since
T TT ¼ STS ¼ 1 but det T ¼ detS ¼ −1, the matrices T
and S generate a subgroup

T ¼ hT ;Si ð2:12Þ

of the orthogonal group Oð4;CÞ, isomorphic to S3.
2 As a

consequence, they leave the inner product ⟦m2
1⟧ (2.3)

invariant.
The flavor symmetry mixes with the SLð2;ZÞ symmetry

acting on the UV coupling τ0 in an interesting way. To
see this, notice that the reduction Z → Z2 modulo 2
induces a homomorphism SLð2;ZÞ → SLð2;Z=2ZÞ.
Since SLð2;Z=2ZÞ ≅ S3 are isomorphic, by transitivity
we have a group homomorphism:

φ∶ SLð2;ZÞ → OutðSpinð8ÞÞ: ð2:13Þ

The full symmetry group of the Nf ¼ 4 theory is the
semidirect product [1]3

T ≔ Spinð8Þ⋊φSLð2;ZÞ: ð2:14Þ

The group ðT; •Þ consists of elements ðA; γÞ ∈ Spinð8Þ×
SLð2;ZÞ, with group operation

ðA; γÞ • ðÃ; γ̃Þ ≔ ðAφðγÞðÃÞ; γ∘γ̃Þ: ð2:15Þ

The action of (2.10) is thus accompanied with an action of
SLð2;ZÞ on τ and τ0. From (2.11) we find that T 2 and
ST 2S leave any mass configuration invariant. This implies
that the theory should also be invariant under the simulta-
neous action of T2 and ST2S on the two couplings. These
two matrices in SLð2;ZÞ generate the principal congruence
subgroup Γð2Þ. From this it is also clear that

SLð2;ZÞ=Γð2Þ ¼ fI; T; S; TS; ST; TSTg ≅ S3; ð2:16Þ

which is another way to see that the group of outer
isomorphisms is S3 [25]. This action is depicted in
Fig. 2. The subgroup Γð2Þ is the kernel of the above group
homomorphism SLð2;ZÞ → SLð2;Z=2ZÞ, such that it is in
fact a normal subgroup Γð2Þ ⊲ SLð2;ZÞ.
The moduli spaces of the cases A–G of Table I are

related by T in the following way. We have that
mA;mC;mF are invariant under T . Case A is invariant
under both T and S. The S transformation relates cases B
and C, as well as E and F, while leaving cases D and G
invariant. We depict the relation among cases B, C, and D
in Fig. 3. For the cases E, F, and G, there is an analogous
diagram. An instance of these relations is that the weights
of the singular structure on the Coulomb branch are
invariant under those spaces that are related by triality,

FIG. 1. Dynkin diagram of d4 ¼ LieðSpinð8ÞÞ. The group
T ≅ S3 of outer isomorphisms acts by permutations on the
three conjugacy classes of irreducible representations v, s, and s̄
attached to the nodes of the diagram. The 28-dimensional adjoint
representation is left invariant by T .

FIG. 2. Action of SLð2;ZÞ on SLð2;ZÞ=Γð2Þ ≅ S3.

2They actually form a subgroup ofOð4;QÞ, but act onm ∈ C4.

3Recall that for two groups G and H, a group homomorphism
φ∶ G → AutðHÞ defines a semidirect product H⋊φG ⊂ H × G
with the multiplication ðh1; g1Þðh2; g2Þ ≔ ðh1φðg1Þðh2Þ; g1g2Þ.
For ðh; gÞ ∈ H⋊φG, the inverse is found as ðφðg−1Þðh−1Þ; g−1Þ.
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kðT mÞ ¼ kðmÞ: ð2:17Þ

Using the action of the SO(8) flavor group, a large range
of masses with equivalent duality diagrams can be reached.
For example, the mass m ¼ ð2m; 0; 0; 0Þ is related to m ¼
ð0; 0; 0; 2mÞ by an SO(8) rotation. The first one is invariant
under T while the second one is not. The orbit under T and
S for the case m ¼ mB ¼ ð2m; 0; 0; 0Þ is, as we have just
discussed, given by Fig. 3, while that of m ¼ ð0; 0; 0; 2mÞ
is given in Fig. 4. We see that it is of order six, and includes
different relative signs compared to mA and mD. On closer
inspection, we note that the mass vectors come in pairs
differing by an overall sign, which is an element of SO(8).
Thus identifying the mass vectors related by SO(8) in
diagram 4, we find that it is equivalent to diagram 3.

C. Group action

The action

T ×M → M ðg;mÞ ⟼ g ·m ð2:18Þ

of the triality group T on mass space M can be studied in
great detail. It is easy to check that the action is faithful,4

but neither free5 nor transitive.6

Up to conjugation, S3 ≅ T has four subgroups. They are
the trivial group Z1, the symmetric group S2 ≅ Z2, the
alternating group A3 ≅ Z3, and S3 itself. They have order 1,
2, 3, and 6, respectively. All three proper subgroups are
Abelian. For a given m, triality thus not always acts by the
full S3 but rather by a subgroup. For every m ∈ M we can
study the orbit T ·m ¼ fg ·mjg ∈ T g. The sets of orbits
of M then give a partition of M under the action (2.18).
First, notice that since T is a finite group, all elements

have finite order. In particular, T 2 ¼ S2 ¼ ðT ST Þ2 ¼ 1
and ðST Þ3 ¼ ðT SÞ3 ¼ 1. The stabilizer subgroup of a
mass m ∈ M is defined as T m ¼ fg ∈ T jg ·m ¼ mg. By
the orbit-stabilizer theorem

jT ·mj ¼ jT j=jT mj; ð2:19Þ

it suffices to study the fixed-point equations in order to
identify the stabilizer subgroups fZ1; S2; A3; S3g with the
subgroups of T . It is straightforward to identify the fixed-
point loci

LT ¼ fm ∈ M jm4 ¼ 0g;
LS ¼ fm ∈ M jm1 ¼ m2 þm3 þm4g;

LST S ¼ fm ∈ M jm1 ¼ m2 þm3 −m4g;
LST ¼ LT S ¼ fm ∈ M jm1 ¼ m2 þm3 and m4 ¼ 0g;

ð2:20Þ

where Lg ¼ fm ∈ M jg ·m ¼ mg. For m in precisely one
of LT , LS, or LST S, one finds that jT ·mj ¼ 3. From
(2.19) it then follows that jT mj ¼ 2, such thatT m ≅ S2. In
fact, since T , S, and ST S are all order 2 elements of T ,
the stabilizer groups T m for m in either of the three loci
are precisely the three order 2 conjugate subgroups
of T ≅ S3.

7

The intersection

L1 ¼ LT ∩ LS ¼ fm ∈ M jm1 ¼ m2 þm3 and m4 ¼ 0g
ð2:21Þ

is the locus of triality invariant masses, T ·m ¼ m. Thus,
according to (2.19) we have jT mj ¼ 6 for such masses,
such that indeed T m ¼ T . For the last locus in (2.20), we
see immediately that LST ¼ LT S ¼ LT ∩ LS contains
precisely the invariant masses. Therefore, if m is kept
fixed by either T S or ST then it is also fixed by both T and
S and therefore by all of T . Since ST and T S are the only
elements of T of order 3, there is actually no mass m such
that T ·m has two elements, and so there is no stabilizer

FIG. 3. Relation among mB ¼ ðm;m;m;mÞ,
mC ¼ ð2m; 0; 0; 0Þ, and mD ¼ ðm;m;m;−mÞ.

FIG. 4. Orbit of the mass vector m ¼ ð0; 0; 0; 2mÞ under T and
S.

4For every g ≠ h ∈ T there exists an m ∈ M such that
g ·m ≠ h ·m.

5A group action is free if it has no fixed points, but m ¼ 0 is a
fixed point for any g ∈ T .

6For each pair m; m̃ ∈ M there exists g ∈ T such that a
g ·m ¼ m̃. A counterexample would be m ¼ 0 and m̃ ≠ 0.

7If we represent S3 in cycle notation of permutations of
f1; 2; 3g, the three order 2 conjugate subgroups of S3 are
fðÞ; ð1; 2Þg, fðÞ; ð1; 3Þg, and fðÞ; ð2; 3Þg.
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subgroup isomorphic to A3. By case analysis, it is also easy
to prove that the set T ·m has one, three, or six elements.
Let us summarize. If m ∈ L1, it is invariant under T . If

m is in any of LT , LS , or LST S, it could be in the
intersection of any two of them. These intersections are
however all equal to L1, which is of course because any two
elements of fT ;S;ST Sg generate T . This is depicted
in Fig. 5.
If m is then an element of

L3 ¼ LT ∪ LS ∪ LST SnL1; ð2:22Þ

then the stabilizer group ofm is isomorphic to S2. Ifm does
not lie in either L1 or L3, then there is no remaining
symmetry. It lies in

L6 ¼ MnL1 ∪ L3; ð2:23Þ

and its stabilizer group is trivial.

III. ORDER PARAMETERS AND
BIMODULAR FORMS

For the Nf ¼ 4 SW theory, there are other curves than
the one introduced by Seiberg and Witten [6,12,20,26–31].
In this paper, we focus on the modularity of the original SW
curve (2.4). In Appendix C we show that similar results
hold for the curve constructed from the qq characters of the
theory. The Nf ¼ 4 SW curve however has the advantage
over the qq curve in that it depends explicitly on τ0, and one
can study modular transformations of τ0. We proceed by
studying the mass configurations with the largest flavor
symmetry groups, A, B, C, and D. In all these cases, u is a
weight (0,2) bimodular form, which we define below, for a
triple of groups related to the duality group of the
decoupling theory where the mass of the hypermultiplets
is infinitely large, and the stabilizer group of the mass under
the triality action. Since case A is triality invariant, u in that
case transforms under the full SLð2;ZÞ group. The other

cases B, C, and D are permuted by triality, and furnish a
vector-valued bimodular form.
The massless case wherem0 ¼ ð0; 0; 0; 0Þ is very simple,

as jðτÞ ¼ J ðu; 0; τ0Þ ¼ jðτ0Þ, and therefore

τðuÞ ¼ τ0 ð3:1Þ

is constant over the whole Coulomb branch B4 ∋ u. In
other words, the coupling τ is fixed and thus does not run,
which is a consequence of the massless Nf ¼ 4 theory
being exactly superconformal. There are six singularities,
which all sit at the origin u ¼ 0 and form the non-Abelian
Coulomb point with a five quaternionic-dimensional Higgs
branch [2].
Let us recall a method for finding explicit expressions for

the Coulomb branch parameter u. This was recently
discussed in detail in [9]. The J invariant of the SW curve
(2.4) is a rational function J ðu;m; τ0Þ in u, the masses
m ¼ ðm1; m2; m3; m4Þ, and eiðτ0Þ. While in general it is not
possible to solve J ðuðτÞ;m; τ0Þ ¼ jðτÞ for uðτÞ analyti-
cally, for specific masses we can rather solve J ðu;m; τ0Þ ¼
RðλÞ for u, where

RðpÞ ¼ 28
ð1þ ðp − 1ÞpÞ3

ðp − 1Þ2p2
ð3:2Þ

is the unique rational function with the property that

RðλÞ ¼ j. Here, λ ≔ ϑ4
2

ϑ4
3

is the modular lambda function

[a Hauptmodul for Γð2Þ] with ϑi the Jacobi theta functions
(A5), and j is the modular j function (A12). The reason
for this is that in certain mass configurations, the sextic
equation constructed from the rational function J ðu;m; τ0Þ
defines a field extension of CðSLð2;ZÞÞ with intermediate
field CðΓð2ÞÞ, such that the sextic equation factors over
CðΓð2ÞÞ into products of lower degree polynomials [9].8

A. Case A

For the mass mA ¼ ðm;m; 0; 0Þ, this allows to express
u as a rational function in Jacobi theta functions of τ0
and τ. There are in fact six solutions to the correspon-
dence J ðuðτÞ;m; τ0Þ ¼ jðτÞ. A consistent way of choosing
which solution to use, which we will employ throughout,
is to take the one that has the right decoupling limit
when decoupling the massive hypermultiplets, i.e., the
one that decouples to the order parameter of massless
Nf ¼ 2, Eq. (D6).
In view of the more complicated mass cases, we can

further simplify the rather lengthy expression. The depend-

ence on τ is in fact only through λ ¼ ϑ4
2

ϑ4
3

. This is not quite

FIG. 5. The loci (2.20) with nontrivial stabilizer groups on the
subspace m2 ¼ m3 ¼ 0 in M . They all mutually intersect in the
locus L1 of triality invariant masses.

8It is true in Nf ¼ 0, 1, 2, 3, 4 that gk is a polynomial in u of
degree k, such that ðg32 − 27g23Þj − 123g32 is indeed a sextic
polynomial in u.
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true for τ0, for which u has weight 2 [12]. This weight
factor can be extracted by eliminating ϑ4ðτ0Þ through the
Jacobi identity (A7) and ϑ2ðτ0Þ through the definition of
λðτ0Þ. This gives

uAðτ; τ0Þ ¼ −
m2

3
ϑ3ðτ0Þ4

λðτ0Þ2 þ 2ðλðτÞ − 1Þλðτ0Þ − λðτÞ
λðτ0Þ − λðτÞ :

ð3:3Þ
The simple mass dependence of uA is a consequence of the
scaling symmetry (2.8). The second prefactor ϑ3ðτ0Þ4 gives
the weight 2. The remaining quotient is written in a
manifestly invariant fashion. Let us denote by Γτ (Γτ0) a
group acting by linear fractional transformations on τ (τ0).
As ϑ3ðτ0Þ4 is a modular form of weight 2 and λðτ0Þ a
modular function (of weight 0) for Γð2Þτ0, one can easily
see that uAðτ; τ0Þ is a weight 2 modular form for Γð2Þτ0 for
fixed τ, and a modular function for Γð2Þτ for fixed τ0. We
thus have that

uAðγ1τ; γ2τ0Þ ¼ ðc2τ0 þ d2Þ2uAðτ; τ0Þ;

γi ¼
�
ai bi
ci di

�
∈ Γð2Þ ð3:4Þ

for i ¼ 1, 2. We call uA modular for Γð2Þτ × Γð2Þτ0, where
the occurrence of two groups indicates that they act on both
variables τ and τ0 separately.
The mass mA is invariant under the triality group (2.12).

As triality acts on τ and τ0 together, this suggests that uA
transforms under a simultaneous transformation of
SLð2;ZÞ. Indeed, if one acts simultaneously on τ and τ0
with SLð2;ZÞ, it is easy to check from T∶ λ ↦ λ

λ−1 and
S∶ λ ↦ 1 − λ that uAðτ; τ0Þ transforms as

uAðγτ; γτ0Þ ¼ ðcτ0 þ dÞ2uAðτ; τ0Þ;

γ ¼
�
a b

c d

�
∈ SLð2;ZÞ: ð3:5Þ

We call uA modular for SLð2;ZÞðτ;τ0Þ, where the notation
indicates that the single group SLð2;ZÞ acts on both τ and τ0
simultaneously. The two transformations (3.4) and (3.5) are
characteristic properties for functions known as “bimodular
forms” [14–16]. For our application to Nf ¼ 4 supersym-
metric quantum chromodynamics (SQCD), we will adopt
the following definition in this paper:
Definition 1 (Bimodular form). Let ðΓ1;Γ2;ΓÞ be a

triple of subgroups of SLð2;RÞ commensurable with
SLð2;ZÞ.9 A two-variable meromorphic function
F∶ H × H → C is called a bimodular form of weight

ðk1; k2Þ for the triple ðΓ1;Γ2;ΓÞ if it satisfies both con-
ditions 1 and 2:

(i) Condition 1: For all γi ¼ ðaici
bi
di
Þ ∈ Γi, i ¼ 1, 2, F

transforms as

Fðγ1τ1; γ2τ2Þ ¼ χðγ1; γ2Þðc1τ1 þ d1Þk1
× ðc2τ2 þ d2Þk2Fðτ1; τ2Þ; ð3:6Þ

for a certain multiplier χ∶ Γ1 × Γ2 → C�. We call
this the separate transformation of F under ðΓ1;Γ2Þ,
and denote it by ðΓ1Þτ1 × ðΓ2Þτ2.

(ii) Condition 2: For all γ ¼ ðac bdÞ ∈ Γ, F transforms as

Fðγτ1; γτ2Þ ¼ ϕðγÞðcτ1 þ dÞk1ðcτ2 þ dÞk2Fðτ1; τ2Þ;
ð3:7Þ

for a multiplier ϕ∶ Γ → C�. We call this the simul-
taneous transformation of F under Γ, and denote it
by Γðτ1;τ2Þ.

Note that condition 2 follows from condition 1 if Γ
is the intersection of Γ1 and Γ2, Γ ¼ Γ1 ∩ Γ2 with
ϕðγÞ ¼ χðγ; γÞ, γ ∈ Γ.
This definition contains the main aspects of other

definitions of bimodular forms in the literature [13–16].
The definition above for the triple ðΓ1;Γ2;Γ1 ∩ Γ2Þ

is equivalent to the definition in [15]. For the triple
ðΓ1;Γ1; SLð2;ZÞÞ, our definition is equivalent to the one
of [13]. Finally, for k1 ¼ k2 and the triple ðΓ1;Γ1;ΓÞ, our
definition is equivalent with [16]. Finally, the definition of
Stienstra and Zagier [14], as cited in [15], does require
condition 2 without requiring condition 1.
From definition 1, we find that uA∶ H × H → C in (3.3)

is a bimodular form of weight (0,2) for the triple

ðΓð2Þ;Γð2Þ; SLð2;ZÞÞ; ð3:8Þ

with trivial multipliers χ and ϕ. In fact, m ↦ uA is a one-
parameter family of such bimodular forms.
The function (3.3) can be easily expanded in either

q ¼ e2πiτ or q0 ¼ e2πiτ0. When expanding uA around
q0 ¼ 0, every coefficient is a modular function for
Γð2Þτ. If we denote the vector space of holomorphic
modular forms of weight k for Γ ⊆ SLð2;ZÞ by MkðΓÞ,
then uA ∈ M0ðΓð2ÞÞ⟦q

1
4

0⟧. Conversely, we have that
uA ∈ M2ðΓð2ÞÞ⟦q1

4⟧.
Recall that Γð2Þ is a genus zero congruence subgroup.

As such, its Hauptmodul λ is the single transcendental
generator of the function field of Γð2ÞnH�. Since uA is
modular in τ as well as τ0 for Γð2Þ and no larger subgroup
of SLð2;ZÞ, the transcendence of λ then implies that (3.3)
cannot be simplified further.
The Coulomb branch B4 for the mass m ¼ mA has six

singularities that come in three pairs of two. By expanding
λðτÞ around the cusps, one easily finds

9A subgroup Γ ⊂ SLð2;RÞ is commensurable with SLð2;ZÞ if
Γ ∩ SLð2;ZÞ has finite index in both SLð2;ZÞ and SLð2;RÞ.
This includes in particular all congruence subgroups of SLð2;ZÞ.
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uA

�
1

2
; τ0

�
¼ −

m2

3
ϑ3ðτ0Þ4ðλðτ0Þ − 2Þ;

uAð0; τ0Þ ¼ −
m2

3
ϑ3ðτ0Þ4ðλðτ0Þ þ 1Þ;

uAð1; τ0Þ ¼ −
m2

3
ϑ3ðτ0Þ4ð−2λðτ0Þ þ 1Þ: ð3:9Þ

Notice that the singularities are holomorphic modular
forms of weight 2 for Γð2Þτ0, and are permuted by elements
of ðSLð2;ZÞÞ=Γð2ÞÞτ0 . The reason for uAð12 ; τ0Þ ¼
uAði∞; τ0Þ is explained in Sec. III G. Since λ is a
Hauptmodul for Γð2Þ, for given τ0 ∈ Γð2ÞnH there is
exactly one τ ∈ Γð2ÞnH where u has a pole. It is where
τ approaches τ0, uAðτ0; τ0Þ ¼ ∞.
We can furthermore compute the period da

du. Actually,
da
du is

not invariant under the monodromy around ∞, but multi-
plied by −1. Instead of da

du, we may consider ðdaduÞ2, which is
monodromy invariant [9,32]. In the pure (Nf ¼ 0) SU(2)
case, it is a modular form of weight 2 for Γ0ð4Þ. The weight
is the same in Nf ¼ 4; however, it also transforms well
under fractional linear transformations of τ0. More specifi-
cally, we find that

�
da
du

�
2

A
ðτ; τ0Þ ¼

1

8m2

ϑ3ðτÞ4
ϑ3ðτ0Þ8

λðτÞ − λðτ0Þ
λðτ0Þðλðτ0Þ − 1Þ : ð3:10Þ

The normalization may be checked from the fact that da
du ∼

1ffiffiffiffi
8u

p for u → ∞, which due to (3.3) corresponds to τ → τ0.

Since ϑ43 is a modular form of weight 2 for Γð2Þ, it follows
that ðdaduÞ2A satisfies condition 1 of definition 1 with weight
ð2;−4Þ for Γð2Þτ × Γð2Þτ0. As mA is left invariant by
triality, ðdaduÞ2A must also be modular for SLð2;ZÞ. Indeed,
one easily finds that ðdaduÞ2A also satisfies condition 2, such
that it is a bimodular form of weight ð2;−4Þ for the
triple ðΓð2Þ;Γð2Þ; SLð2;ZÞÞ.
We can also compute the physical discriminant, which

for the case A reads

ΔA ¼
�
u− uA

�
1

2
; τ0

��
2

ðu− uAð0; τ0ÞÞ2ðu− uAð1; τ0ÞÞ2:

ð3:11Þ

Since the singularities (3.9) themselves are modular
forms for τ0, it is again a bimodular form. One easily
computes

ΔAðτ;τ0Þ¼m12ϑ3ðτ0Þ24
λðτÞ2ðλðτÞ−1Þ2λðτ0Þ4ðλðτ0Þ−1Þ4

ðλðτÞ−λðτ0ÞÞ6
:

ð3:12Þ

As ϑ243 is a modular form of weight 12 for Γð2Þ, this shows
that ΔA has modular weight (0,12) under Γð2Þτ × Γð2Þτ0.
With the same reasoning as above, we find that ΔA is a
bimodular form of weight (0,12) for the same triple (3.8).

B. Case B

The equal mass case mB ¼ ðm;m;m;mÞ can be treated
with the same technique as in the previous subsection. Since
Nf ¼ 4with four equal masses flows toNf ¼ 0 form → ∞,
we can express the τ dependence through the Hauptmodul

f ≔ ϑ4
2
þϑ4

3

ϑ2
2
ϑ2
3

of Γ0ð4Þ. In fact, theNf ¼ 0 order parameter (D3)

is just u
Λ2
0

¼ − 1
2
f. The order parameter uB reads

uBðτ;τ0Þ ¼−
m2

3
ϑ2ðτ0Þ2ϑ3ðτ0Þ2

2fðτ0Þ2þfðτÞfðτ0Þ− 12

fðτ0Þ−fðτÞ ;

ð3:13Þ

which thus does not involve ϑ4. Since ϑ2ðτ0Þ2ϑ3ðτ0Þ2 is a
holomorphic modular form of weight 2 for Γ0ð4Þτ0, we find
that uBðτ; τ0Þ has bimodular weight (0,2) for the separate
transformations under Γ0ð4Þτ × Γ0ð4Þτ0.
As T ∶ mB ↦ mD, there is no simultaneous action of T

on τ and τ0 leaving uB invariant. Also, since S∶ mB ↦ mC,
S does not leave uB invariant. However, a subgroupT mB

of
T leavesmB invariant: Out of the six elements ofT ,mB is
left invariant by 1 and T ST . As the action of T is
combined in (2.14) with a simultaneous action on τ and
τ0, we find that uB is expected to be invariant under a
simultaneous transformation of TST ∈ SLð2;ZÞ. However,
due to the algebra (2.11), the same holds for T2. These two
matrices generate the congruence subgroup Γ0ð2Þ of
SLð2;ZÞ. It is straightforward to check from the explicit
expression (3.13) that uB transforms with weight (0,2)
under a simultaneous transformation on τ and τ0 of
Γ0ð2Þðτ;τ0Þ. This proves that uB is an example of a bimodular
form of weight (0,2) for the triple

ðΓ0ð4Þ;Γ0ð4Þ;Γ0ð2ÞÞ: ð3:14Þ

As classified in Sec. II C, the stabilizer subgroup T mB
¼

f1; T ST g for the mass mB is isomorphic to the group
S2 ≅ Z2 of order 2. This agrees with the fact that
SLð2;ZÞ=Γ0ð2Þ ≅ S2.
The singularities are

uBð1; τ0Þ ¼ −
m2

3
ϑ2ðτ0Þ2ϑ3ðτ0Þ2ð−fðτ0ÞÞ;

uBð0; τ0Þ ¼ −
m2

3
ϑ2ðτ0Þ2ϑ3ðτ0Þ2ð2fðτ0Þ þ 6Þ;

uBð2; τ0Þ ¼ −
m2

3
ϑ2ðτ0Þ2ϑ3ðτ0Þ2ð2fðτ0Þ − 6Þ; ð3:15Þ

ASPMAN, FURRER, and MANSCHOT PHYS. REV. D 105, 025017 (2022)

025017-8



which again are holomorphic modular forms of weight 2
for Γ0ð4Þτ0. Due to the duality group Γ0ð4Þτ, we have that
uBð1; τ0Þ ¼ uBði∞; τ0Þ. This singularity has degeneracy 4,
and flows to∞ form → ∞. The singularity in the interior is
uBðτ0; τ0Þ ¼ ∞. One can also check that the singularities
(3.15) never collide: The conditions uBð1; τ0Þ ¼ uBð0; τ0Þ
or uBð1; τ0Þ ¼ uBð2; τ0Þ are equivalent to fðτ0Þ ¼ �2,
whose only solutions are the two cusps τþ0 ¼ 0 and τ−0 ¼
2 of Γð2Þ. Since the Seiberg-Witten (SW) curve is singular
for those values of τ0, the singularities do not merge for any
finite masses.
Similarly as before, one finds�
da
du

�
2

B
ðτ; τ0Þ ¼

1

8m2

ϑ2ðτÞ2ϑ3ðτÞ2
ϑ4ðτ0Þ8

ðfðτÞ − fðτ0ÞÞ: ð3:16Þ

Since f is a Hauptmodul, ϑ22ϑ
2
3 a modular form of weight 2,

and ϑ84 a modular form of weight 4 for Γ0ð4Þ, it follows that
ðdaduÞ2B is a bimodular form of weight ð2;−4Þ for the triple
(3.14). Finally, the physical discriminant reads

ΔBðτ;τ0Þ ¼m12ϑ4ðτ0Þ24
ðfðτÞ2− 4Þðfðτ0Þ2− 4Þ2

ðfðτÞ−fðτ0ÞÞ6
; ð3:17Þ

which is a bimodular form of weight (0,12) for the
triple (3.14).

C. Case C

Let us study the case where only one hypermultiplet is
massive, mC ¼ ð2m; 0; 0; 0Þ.10 Since in the limit m → ∞
we get massless Nf ¼ 3, we can express the τ dependence

through the Hauptmodul f̃ ¼ ϑ2
3
ϑ2
4

ðϑ2
3
−ϑ2

4
Þ2 of Γ0ð4Þ. The order

parameter of the massless Nf ¼ 3 theory reads u
Λ2
3

¼ − 1
64
f̃

(D8), and the functions f and f̃ are related by fð4τÞ ¼
16f̃ðτÞ þ 2 (see Appendix D). One finds for the order
parameter uC,

uCðτ; τ0Þ ¼ −
m2

3
ϑ3ðτ0Þ2ϑ4ðτ0Þ2

×
2f̃ðτ0Þ2 þ ð10f̃ðτÞ þ 1Þf̃ðτ0Þ þ 2f̃ðτÞ

f̃ðτ0Þðf̃ðτ0Þ − f̃ðτÞÞ ;

ð3:18Þ

which is independent of ϑ2ðτ0Þ. Again, the factor
ϑ3ðτ0Þ2ϑ4ðτ0Þ2 is a modular form of weight 2 for
Γ0ð4Þτ0 , and the quotient is a meromorphic modular
function of Γ0ð4Þ for both τ and τ0. Thus uC satisfies

condition 1 of definition 1 with weight (0,2) for
Γ0ð4Þτ × Γ0ð4Þτ0 .
Since T ∶ mC ↦ mC, there is a simultaneous T duality

T ∶ uCðτ þ 1; τ0 þ 1Þ ¼ uCðτ; τ0Þ; ð3:19Þ

which is straightforward to check from (3.18). As
S∶ mC ↦ mB, this exchanges the order parameters

uC

�
−
1

τ
;−

1

τ0

�
¼ τ20uBðτ; τ0Þ; ð3:20Þ

which we can also explicitly check. We can again study the
stabilizer subgroup of T mC

of T . It is the group generated
by T and ST 2S, such that uC is expected to transform
simultaneously under T and ST2S. These two matrices
generate the congruence subgroup Γ0ð2Þ of SLð2;ZÞ,
which is conjugate to Γ0ð2Þ. Thus we find that uC is a
bimodular form of weight (0,2) for the triple

ðΓ0ð4Þ;Γ0ð4Þ;Γ0ð2ÞÞ: ð3:21Þ

Lastly, we can also study�
da
du

�
2

C
ðτ; τ0Þ ¼

1

8m2

ϑ3ðτÞ2ϑ4ðτÞ2
ϑ2ðτ0Þ8

f̃ðτÞ − f̃ðτ0Þ
f̃ðτÞf̃ðτ0Þ

: ð3:22Þ

It is straightforward to check that ðdaduÞ2C is a bimodular form
of weight ð2;−4Þ for the triple (3.21). For the discriminant
ΔC there exists a similar expression to (3.17), and it is a
bimodular form of weight (0,12) for (3.21).

D. Case D

Let us finally also study the casemD ¼ ðm;m;m;−mÞ. It
is related to cases B and C as in Fig. 3. We have that
mD ∈ LS, while mB ∈ LST S and mC ∈ LT . From the SW
curve one easily finds

uDðτ;τ0Þ¼−
m2

3
iϑ2ðτ0Þ2ϑ4ðτ0Þ2

2f̂ðτ0Þ2þ f̂ðτÞf̂ðτ0Þ−12

f̂ðτ0Þ− f̂ðτÞ ;

ð3:23Þ

where

f̂ðτÞ ¼ fðτ þ 1Þ ¼ i
ϑ2ðτÞ4 − ϑ4ðτÞ4
ϑ2ðτÞ2ϑ4ðτÞ4

: ð3:24Þ

Since f is a Hauptmodul for Γ0ð4Þ, f̂ is a Hauptmodul for a
subgroup of SLð2;ZÞ conjugate to Γ0ð4Þ,

gΓ0ð4Þ ¼ TΓ0ð4ÞT−1 ¼ hT4; ST2i: ð3:25Þ

A fundamental domain for gΓ0ð4Þ is given by
10The particular normalization is chosen such that the diagram

3 holds without any prefactors.
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gΓ0ð4ÞnH ¼ F ∪ TF ∪ T2F ∪ T3F ∪ TSF ∪ T3SF ;

ð3:26Þ

with F ¼ SLð2;ZÞnH. It is straightforward to check
that uDðτ; τ0Þ transforms with weight (0,2) undergΓ0ð4Þτ × gΓ0ð4Þτ0 .
The subgroup T mD

⊂ T leaving invariant mD is gen-
erated by S and T 2. The two corresponding SLð2;ZÞ
transformations S and T2 generate the theta group gΓ0ð2Þ ≔
Γθ (A2), which is a congruence subgroup of SLð2;ZÞ with
index 3, conjugate to Γ0ð2Þ and Γ0ð2Þ. Thus we find that uD
is a bimodular form of weight (0,2) for the triple

ð gΓ0ð4Þ; gΓ0ð4Þ; gΓ0ð2ÞÞ: ð3:27Þ

The three groups fΓ0ð2Þ;Γ0ð2Þ; gΓ0ð2Þg ∋ Γ are in fact the
three groups SLð2;ZÞ ⊃ Γ ⊃ Γð2Þ with index 3 and 2
cusps, and they correspond to the three conjugate order 2
subgroups of S3.

E. Generic mass

The analysis of the A, B, C, and D theories may suggest
that the order parameter um for a generic massm transforms
with weight (0,2) under Gτ ×Gτ0 for some subgroup
G ⊆ SLð2;ZÞ. This is however not true in general, as
for generic masses there are branch points and associated
branch cuts, which spoil the modularity [9]. The discussion
in [9] forNf ≤ 3 suggests that for a fixed τ or fixed τ0, there
is a natural choice of fundamental domain F ðmÞ ⊆ H for
um, such that um∶F ðmÞ → B4 is one to one. For a generic
choice of masses, monodromies on the u plane give rise to
monodromies of F ðmÞ, but these do not generate a
congruence subgroup of SLð2;ZÞ for a generic mass.
For special cases however, F ðmÞ is equal to ΓnH for some
subgroup Γ ⊆ SLð2;ZÞ, such as when m is equal to mA,

mB,mC, ormD, for which Γ is Γð2Þ, Γ0ð4Þ, Γ0ð4Þ, or gΓ0ð4Þ.
If the mass m is such that B4 contains a superconformal
Argyres-Douglas point, Γ ⊆ SLð2;ZÞ can also be a sub-
group of index smaller than 6 [9,33]. An example of this
will be given in Sec. III F.
In the above discussed examples A–D, the duality groups

Γ1 of τ and Γ2 of τ0 are identical. We show in Sec. III F that
this is not generally true, even if uðτ; τ0Þ is modular in τ and
τ0. However, we can demonstrate that Γ1 ⊂ Γ2. A common
nonperturbative definition of the UV coupling constant is
the low-energy effective coupling τ in the limit where the
order parameter is large,

τ0 ¼ lim
u→∞

τðuÞ: ð3:28Þ

Since it is not associated with a singularity, it is neither a
cusp nor an elliptic point and therefore an arbitrary interior

point in the space of τ ∈ H. If Γ1 ⊊ Γ2 is not a proper
subgroup, then in general τ0 ∈ Γ2nH is not an element of a
choice of fundamental domain Γ1nH. However, there exists
a γ1 ∈ Γ1 with the property that γ1τ0 ∈ Γ1nH. Since
uðτ; τ0Þ has weight 0 in τ, we notice that

uðγ1τ0; τ0Þ ¼ uðτ0; τ0Þ ¼ ∞; ð3:29Þ

which is the weak coupling region in B4. If Γ2 ⊊ Γ1

however, then there exist two points τ0 ≠ τ̃0 in the
fundamental Γ1nH, which are not related by any element
γ1 ∈ Γ1. Then uðτ; τ0Þ and uðτ; τ̃0Þ are two distinct points
in B4. This contradicts the fact that the Nf ¼ 4 Coulomb
branch B4 only contains one such singularity. This shows
that indeed Γ1 ⊆ Γ2.
The weight (0,2) of u can be explained as follows.

Monodromies on the u plane act on the low-energy
effective coupling τ and by definition leave u invariant.
Thus uðτ; τ0Þ is required to have weight 0 in τ. For τ0, recall
that the order parameter relates to the prepotential F of the
theory by a logarithmic derivative with respect to the
instanton counting parameter [34–39]

u ¼ 4πiq0
∂F
∂q0 ¼ 2

∂F
∂τ0 : ð3:30Þ

As the prepotential F has weight 0 in τ0, this shows that
uðτ; τ0Þ, has weight 2 in τ0.
The other possible modular transformations are those

involving the masses, which is the action of the triality
group Spinð8Þ⋊φSLð2;ZÞ. From the above analysis, we
expect that for generic mass m the order parameter um
transforms as

T ∶ umðτ þ 1; τ0 þ 1Þ ¼ uT mðτ; τ0Þ;

S∶ um

�
−
1

τ
;−

1

τ0

�
¼ τ20uSmðτ; τ0Þ: ð3:31Þ

Due to the branch points and cuts for generic masses, these
transformations are again very subtle to perform. From
(2.11) and in particular T 2 ¼ 1, (3.31) implies

T 2∶umðτ þ 2; τ0 þ 2Þ ¼ umðτ; τ0Þ: ð3:32Þ

We can check explicitly that it is true for example for case B
as in (3.13), which is not T invariant.
As discussed in Sec. II C, the group action T ×M →

M partitions the mass spaceM ∋ m into three regions L1,
L3, and L6, where the orbits T ·m have length 1, 3, and 6.
The stabilizer subgroups of m are then subgroups of S3 of
order 6, 2, and 1, i.e., isomorphic to S3, S2, or S1 ¼ feg.
The homomorphism φ (2.13) between SLð2;ZÞ and
T ¼ OutðSpinð8ÞÞ then dictates the subgroup

φ−1½T m�; ð3:33Þ
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under which um is simultaneously invariant. The preimage
of the stabilizer subgroup under φ thus constitutes the third
component Γ of the triple ðΓ1;Γ2;ΓÞ in definition 1.

1. The case m ∈ L1

When m ∈ L1, then the stabilizer group of m has six
elements and the orbitT ·m consists ofm only. Then there
is only one function in (3.31), and um transforms with
weight (0,2) under SLð2;ZÞðτ;τ0Þ, as in condition 2 of
definition 1. An example is uA as given in (3.3), and the
transformation is checked in (3.5).

2. The case m ∈ L3

The case m ∈ L3 is most interesting, as it is not trivial
(m ∈ L1) and not generic (m ∈ L6). Namely, when the
orbit T ·m contains three elements, the stabilizer group is
isomorphic to the symmetric group S2 with two elements.
Then the three functions associated with the three elements
of the orbit T ·m form a vector that transforms under
SLð2;ZÞ. An example for this are the functions uB; uC; uD
found in Secs. III B–III D. As is clear from Fig. 3, they
are related to each other by triality. If we organize
u3 ¼ ðuB; uC; uDÞT, using (3.13), (3.18), and (3.23) one
can prove that

u3ðτ þ 1; τ0 þ 1Þ ¼

0B@ 0 0 1

0 1 0

1 0 0

1CAu3ðτ; τ0Þ;

u3ð−1=τ;−1=τ0Þ ¼ τ20

0B@ 0 1 0

1 0 0

0 0 1

1CAu3ðτ; τ0Þ: ð3:34Þ

As the matrices are in GLð3;CÞ, there exists a three-
dimensional representation SLð2;ZÞ → GLð3;CÞ. This
shows that u3ðτ; τ0Þ furnishes a vector-valued bimodular
form of weight (0,2) for SLð2;ZÞ, agreeing with the
following definition11:
Definition 2 (Vector-valued bimodular form). Let

F ¼

0BB@
F1

..

.

Fp

1CCA∶H × H → Cp ð3:35Þ

be a p-tuple of two-variable meromorphic functions,
p ∈ N. Then F is called a vector-valued bimodular form
of weight ðk1; k2Þ for Γ ⊂ SLð2;ZÞ, if

(i) each component Fj is a bimodular form of weight
ðk1; k2Þ for some triple ðΓj

1;Γ
j
2;ΓjÞ, as in definition 1,

and
(ii) there exists a p-dimensional complex representation

ρ∶ Γ → GLðp;CÞ such that

Fðγτ1; γτ2Þ ¼ ðcτ1 þ dÞk1ðcτ2 þ dÞk2ρðγÞFðτ1; τ2Þ
ð3:36Þ

for all γ ¼ ðac bdÞ ∈ Γ and all τ1; τ2 ∈ H.
Since u3 is parametrized by the mass m ∈ C, m ↦

u3ðm; τ; τ0Þ is in fact a one-parameter family of vector-
valued bimodular forms of weight (0,2) for SLð2;ZÞ. The
triality action of SLð2;ZÞ permutes the triples ðΓj

1;Γ
j
2;ΓjÞ

in an interesting way. The action of the SLð2;ZÞ generators
on u is given by (3.34). As Γj

1 ¼ Γj
2 for the cases B, C, D,

both Γj
1 and Γj

2 are conjugated by the corresponding
element of SLð2;ZÞ. An instance of this is the groupgΓ0ð4Þ (3.25), which is the set of elements of Γ0ð4Þ
conjugated by T. Similarly, we have that Γ0ð4Þ is conjugate
to Γ0ð4Þ by conjugation with S. The same is true for the

three groups Γ0ð2Þ, Γ0ð2Þ, and gΓ0ð2Þ that the cases B, C, D
simultaneously transform under, these three conjugate
subgroups are permuted under SLð2;ZÞ just as Γ0ð4Þ,
Γ0ð4Þ, and gΓ0ð4Þ are.

3. The case m ∈ L6

The remaining case is that m ∈ L6, where T ·m has six
elements. Then we can organize u6 ¼ ðum; uT m; uSm;
uT Sm; uST m; uT ST mÞT, which is a collection of six pairwise
distinct functions. By studying the action of T and S on the
vector ðm; T m;Sm;T Sm;ST m; T ST mÞT, we find the
transformations

u6ðτ þ 1; τ0 þ 1Þ ¼

0BBBBBBBB@

0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

1CCCCCCCCA
u6ðτ; τ0Þ;

u6ð−1=τ;−1=τ0Þ ¼ τ20

0BBBBBBBB@

0 0 1 0 0 0

0 0 0 0 1 0

1 0 0 0 0 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 0 1 0 0

1CCCCCCCCA
u6ðτ; τ0Þ:

ð3:37Þ

11It is customary to define vector-valued modular forms for
SLð2;ZÞ; however, vector-valued modular forms for proper
subgroups Γ of SLð2;ZÞ are familiar in rational conformal field
theories (CFTs) [40–42] and so we leave our definition more
generic.
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The vector u6 is not a vector-valued bimodular form for
SLð2;ZÞ, because the components of u6 do not transform
as modular forms under the separate action of Γj

1;2, j ¼
1;…; 6 due to the branch cuts, as discussed for the Nf ≤ 3

theories in [9]. As we demonstrate in Sec. III F, the
simultaneous action of SLð2;ZÞ on τ and τ0 is not
obstructed by the branch cuts of uðτ; τ0Þ.
The matrices in (3.34) and (3.37) are not only in

GLðn;CÞ, but they are in fact permutation matrices:
Because triality permutes the respective moduli spaces,
the order parameters are merely permuted and there are no
phases. Thus we have that

uðγτ; γτ0Þ ¼ ðcτ0 þ dÞ2PπðγÞuðτ; τ0Þ; ð3:38Þ

where PπðγÞ is the permutation matrix for the permutation
πðγÞ ∈ SjT ·mj, which can be found from the action of T
on m.
For the period ðdaduÞ2, there are similar results. For

instance, one can check that��
da
du

�
2

B
;

�
da
du

�
2

C
;

�
da
du

�
2

D

�
T

ð3:39Þ

is a vector-valued bimodular form of weight ð2;−4Þ for
SLð2;ZÞ. As u has weight (0,2), it is not obvious how the

discriminant Δ transforms since it is a polynomial in u.
However, because triality acts on the six singularities as
well, in general Δ is a vector-valued bimodular form of
weight (0,12) for SLð2;ZÞ. This can be checked explicitly
for the cases B, C, D, where Δ3 ¼ ðΔB;ΔC;ΔDÞT is a one-
parameter family of vector-valued bimodular forms of
weight (0,12) for SLð2;ZÞ.

F. Cases E, F, and G

To make the analysis in the previous section more
explicit, we can study three cases E, F, and G, with
mE ¼ ðm;m; μ; μÞ, mF ¼ ðmþ μ; m − μ; 0; 0Þ, and mG ¼
ðm;m; μ;−μÞ. These mass vectors share the same sym-
metry properties, and diagram, as B, C, and D (see Fig. 3),
i.e., that S interchanges E and F, while leaving G invariant
and T interchanges E and G while leaving F invariant.
They also give back all cases A, B, C, and D in different
limits. For example, if we send μ → 0 all three cases
become case A, while if we send μ → m we see that E
becomes B, F becomes C, and G becomes D. However, due
to the fact that we now have two masses, the theories
become more complicated. New features such as super-
conformal fixed points of AD type appear, as well as branch
points due to square roots [2,9].
The order parameters are now given by

uE ¼ ϑ3ðτ0Þ4
6ðλ − λ0Þðλλ0 − 1Þ

"
ðm2 þ μ2Þð1þ λ0Þðλ0 þ λð2þ λ0ðλ − 6þ 2λ0ÞÞÞ

þ 3ðλ2 − 1Þðλ0 − 1Þλ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 − μ2Þ2 þ 4m2μ2

λ

λ0

ðλ0 − 1Þ2
ðλ − 1Þ2

s #
;

uF ¼ ϑ3ðτ0Þ4
6ðλ − λ0Þðλðλ0 − 1Þ − λ0Þ

"
ðm2 þ μ2Þðλ0 − 2Þðλ2ðλ0 − 1Þ þ 2λ20ðλ − 1ÞÞ

þ 3ðλ − 2Þðλ0 − 1Þλ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 − μ2Þ2λ2 þ 4m2μ2λ20

λ − 1

λ0 − 1

s #
;

uG ¼ ϑ3ðτ0Þ4
6ðλ2 − λ − λ20 þ λ0Þ

"
ðm2 þ μ2Þð2λ0 − 1Þððλ0 − 1Þλ0 þ 2λ2 − 2λÞ

þ 3ð2λ − 1Þðλ0 − 1Þλ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 − μ2Þ2 þ 4m2μ2

λ

λ0

λ − 1

λ0 − 1

s #
; ð3:40Þ

where we have abbreviated λðτÞ ¼ λ, λðτ0Þ ¼ λ0. Since λ is
invariant under Γð2Þ, it naively looks like these order
parameters satisfy condition 1 in definition 1 of a bimod-
ular form, namely that they transform as bimodular forms
under the separate transformations of Γð2Þτ × Γð2Þτ0

(or possibly conjugates thereof) with weights (0,2), but
due to the presence of the square roots the story is more
subtle [9]. We do, however, find the expected behavior
under the simultaneous action of T and S for all three
cases,
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T ∶
�
uEðτ þ 1; τ0 þ 1Þ ¼ uGðτ; τ0Þ;
uFðτ þ 1; τ0 þ 1Þ ¼ uFðτ; τ0Þ;

S∶
� uEð− 1

τ ;−
1
τ0
Þ ¼ τ20uFðτ; τ0Þ;

uGð− 1
τ ;−

1
τ0
Þ ¼ τ20uGðτ; τ0Þ:

ð3:41Þ

We thus see that, even though the separate action of the
duality group on τ and τ0 becomes more subtle in the
presence of square roots, the simultaneous SLð2;ZÞ action
involving triality is still preserved for generic masses. We
can also check the limits to other theories. If we send μ → 0
we indeed find that the order parameter of all three cases
becomes uA (3.3), consistent with the limit of the mass
vector. By sending μ → m we instead find that uE → uB,
uF → uC, and uG → uD as expected.
The cusps are given by

E∶
�umi

¼ ϑ3ðτ0Þ4
3

ðm2
i ð2λ0− 1Þþm2

j≠ið2− λ0ÞÞ;
u� ¼− ϑ3ðτ0Þ4

3
ððm2þ μ2Þðλ0þ 1Þ� 6mμ

ffiffiffiffiffi
λ0

p Þ;

F∶
�umi

¼ ϑ3ðτ0Þ4
3

ðm2
i ð2λ0− 1Þ−m2

j≠iðλ0þ 1ÞÞ;
u� ¼ ϑ3ðτ0Þ4

3
ððm2þμ2Þð2− λ0Þ� 6mμ

ffiffiffiffiffi
λ0

p Þ;

G∶
�umi

¼ ϑ3ðτ0Þ4
3

ðm2
i ð2− λ0Þ−m2

j≠ið1þ λ0ÞÞ;
u� ¼ ϑ3ðτ0Þ4

3
ððm2þμ2Þð2λ0− 1Þ� 6mμi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ0ð1− λ0Þ

p Þ;
ð3:42Þ

where mi ¼ m, μ, and mj≠i then denotes the other mass.
The singularities umi

all have degeneracy 2 while u� have
degeneracy 1. There are also singularities in the interior
given by uðτ0; τ0Þ ¼ ∞ for all three cases.

1. Special points

As in the theories with 0 < Nf ≤ 3 there is a plethora of
theories in the moduli space of generic masses Nf ¼ 4

where the singularity of the fibers is of a higher type, in the
sense of Kodaira, and where mutually nonlocal dyons
become massless [2].12 These can be classified similarly as
in the asymptotically free theories by finding the values of
m and u such that g2 ¼ g3 ¼ 0.
As we have just seen, there are also theories where the

order parameter has branch points due to square roots. A
possible interpretation of the corresponding branch points
in the asymptotically free theories has been suggested in [9]
as first-order phase transitions connected to the second-
order transition that is the AD theories. This implies that we
might expect to have branch cuts whenever we have an AD

theory. It is straightforward to check that the cases A, B, C,
and D only have as superconformal fixed points m → 0,
u → 0, so that the lack of branch points in these theories is
consistent with the above claim. For the more general cases
the story changes as we have just seen for cases E, F, and G.
Let us therefore study the special points of these theories in
more detail.

2. AD points

We define the AD loci as the values of the masses for
which there exists an AD theory. This can then be
expressed as the zero loci of the polynomials:

PADE ¼ ðm2λ0 − μ2Þðμ2λ0 −m2Þ;
PADF ¼ ðm2ðλ0 − 1Þ þ μ2Þðμ2ðλ0 − 1Þ þm2Þ;
PADG ¼ ðm2ðλ0 − 1Þ − λ0μ

2Þðμ2ðλ0 − 1Þ − λ0m2Þ: ð3:43Þ

Since T∶ λ ↦ λ
λ−1 and S∶ λ ↦ 1 − λ we see that the AD

loci also satisfy triality, such that if we act on PADE with T
we get PADG (up to an overall nonzero factor which is not
important since we are looking for the roots of the
polynomial) and if we act with S we get PADF .
By tuning the mass to any of the AD values we find that

three singularities merge. Depending on which AD mass is
chosen, one of the degeneracy 2 singularities umi

merge
with one of the degeneracy 1 singularities u�. This gives
rise to a singular fiber of type III (ordðg2; g3;ΔÞ ¼
ð1; 2; 3Þ), implying that three mutually nonlocal states
are becoming massless [2]. It is now easy to find closed
expressions for u for any of the three theories, and the
square roots all disappear.13

To give an example we take case E and tune the masses

such that m ¼ μ
ffiffiffiffiffi
λ0

p
, where

ffiffiffi
λ

p ¼ ϑ2
2

ϑ2
3

is a holomorphic

modular form. The order parameter becomes

uADE ¼2μ2ϑ3ðτ0Þ4
3

ðλ0−1Þðλ0ðλ0ðf2þ8ð7þλ0ÞÞÞ−56Þ−8

λ0ð32þf2−16λ0Þ−16
;

ð3:44Þ

where f2 ¼ f2ðτÞ ¼ 16
ϑ4ðτÞ8

ϑ2ðτÞ4ϑ3ðτÞ4 is a Hauptmodul of the

index 3 congruence subgroup Γ0ð2Þ ⊂ SLð2;ZÞ. It is
straightforward to check thatuADE hasweight 0 under separate
transformations for Γ0ð2Þτ, and weight 2 under separate
transformations for Γð2Þτ0. Thus, the group of simultaneous
transformations contains Γ0ð2Þ∩Γð2Þ≅Γð2Þ. We therefore
find thatuADE is a bimodular form ofweight (0,2) for the triple

12Note however that we should not expect to find any new
types of theories, compared to the ones of Nf ≤ 3 in this moduli
space, but only types II − IV [2]. This is because an overall
scaling of the masses is not a true parameter of the theory.

13Note that for some of the values of the masses the solution we
have picked for general m and μ will become a constant function
of τ; this is because the chosen solution corresponds to the
solution for u near a singularity that merges with others to
become the AD singularity.
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ðΓ0ð2Þ;Γð2Þ;Γð2ÞÞ: ð3:45Þ

Note that this is our first example of a bimodular form
that has two different modular groups for the two couplings.
The fact that the index in SLð2;ZÞ of the modular
group of τ shrinks by the number of merged nonlocal
singularities, 2þ 1 in this case, is the expected behavior
of AD theories [9,33].
Since the two separate duality groups, Γ0ð2Þ and Γð2Þ,

are different, we cannot choose the fundamental domains
for τ and τ0 to coincide as in previous cases. Instead, we
can choose the fundamental domain for τ as a subset of that
for τ0. Equation (3.44) demonstrates that uADE has a single
pole as a function of τ ∈ H=Γ0ð2Þ for fixed τ0, while it
has two poles as function of τ0 ∈ H=Γð2Þ for fixed τ. The
two points in τ0 ∈ H=Γð2Þ are related by an element
in Γ0ð2Þ=Γð2Þ.
We can further note that the AD mass, mAD ¼ μ

ffiffiffiffiffi
λ0

p
, is

not invariant under Γð2Þτ0, due to the square root. We rather
have that mAD → −mAD under T2, which is of course
another AD point of the theory, and the order parameters of
the two theories are given by the same expression.
Furthermore, acting with S and T on τ0 sends this AD
mass to the corresponding AD masses of cases F and G,
respectively.
We also have the possibility of tuning τ0 to a specific

value such that more singularities merge. In the above
solution, if we fix τ0 ¼ 1þ i, or λ0 ¼ −1, we find that the
remaining degeneracy 2 singularity merge with the degen-
eracy 1 singularity such that we get the weight vector
k ¼ ð3; 3Þ. The relation between the masses is now m ¼ iμ
and the order parameter is actually independent of τ; the
curve is simply given by J ¼ jðτ0Þ ¼ 123. Therefore,
the coupling τðuÞ ¼ τ0 ¼ 1þ i is fixed over the whole
Coulomb branch. This is expected from the same argument
as before since we merge two sets of three nonlocal
singularities, such that the fundamental domain for τ just
shrinks to a point τ0.

3. Branch points

As previously mentioned, in the more generic cases
there will also be branch points. For the theories E, F,
and G these are given by the branch points of the square
roots in (3.40),

E∶
λ

ðλ − 1Þ2 ¼ −
λ0

ðλ0 − 1Þ2
ðm2 − μ2Þ2
4m2μ2

;

F∶
λ − 1

λ2
¼ 1 − λ0

λ0

ðm2 − μ2Þ2
4m2μ2

;

G∶ λðλ − 1Þ ¼ λ0ð1 − λ0Þ
ðm2 − μ2Þ2
4m2μ2

: ð3:46Þ

In the u plane they are given by

E∶ ubp ¼ −ϑ3ðτ0Þ4ð1þ λ0Þ
m4 − 4m2μ2 þ μ4

3ðm2 þ μ2Þ ;

F∶ ubp ¼ −ϑ3ðτ0Þ4ðλ0 − 2Þm
4 − 4m2μ2 þ μ4

3ðm2 þ μ2Þ ;

G∶ ubp ¼ ϑ3ðτ0Þ4ð2λ0 − 1Þm
4 − 4m2μ2 þ μ4

3ðm2 þ μ2Þ : ð3:47Þ

It is straightforward to see that also these points satisfy
triality.

G. Fundamental domains

In the asymptotically free theories we argued that the u
planes can be identified with fundamental domainsFNf

ðmÞ
[9]. For this we make the correspondence that the number
of singularities gives the number of rational cusps, the
number of Bogomol'nyi-Prasad-Sommerfield (BPS) states
becoming massless at each singularity gives the width of
each cusp, and the width at i∞ is given by 4 − Nf. Then, the
sum of all cusps is renormalisation group (RG) invariant. By
following the RG flow from Nf ¼ 3 to Nf < 3 we find that
gradually a singularity at strong coupling (a rational cusp)
moves to infinity and is identified with the weak coupling
region (i∞). Reversing this argument implies that for
Nf ¼ 4 there should be six rational cusps and the width
at infinity vanishes. This is consistent with the fact [1] that
u ¼ ∞ does not correspond to a cusp of the curve anymore.
Rather, it lies in the interior of H ∋ τ0.
It is found in the above subsections that depending on the

mass configuration, the fundamental domain for an order
parameter is related to the one of the underlying theory
where all massive hypermultiplets are decoupled. We can
depict those domains in an equivalent way that is more
suitable to our description. For this, one chooses an
equivalent fundamental domain with the property that the
width at i∞ is zero and the number of rational cusps is equal
to the number of singularities, with according width. For
instance, in case Awherem ¼ ðm;m; 0; 0Þ the duality group
is Γð2Þ, whose cusps in the decoupling limit (with the same
duality group) we choose as fi∞; 0; 1g. InNf ¼ 4 it is more
suitable to represent i∞ by a rational number. For this we
can use that Γð2Þ ∋ ST−2S∶ i∞ ↦ 1

2
, being a preferable

representative of the third cusp. As it necessarily also has
width 2, both F and TF can be mapped to the region τ ¼ 1

2
.

This is depicted in Fig. 6. The decoupling to massless Nf ¼
2 is illustrated in Fig. 7. The domains in this case are exactly
equivalent, Fig. 6 merely allows to extend the Nf ≤ 3

description of the cusps to Nf ¼ 4.
We stress that the decoupling limit for Nf ¼ 4, with the

order parameter a bimodular form as (3.3), is quite different
from the asymptotically free theories with Nf ≤ 3. In
the latter theories, uðτÞ is not holomorphic and modular
except for special points in mass space (complex
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codimension Nf) [9]. The decoupling of a hypermultiplet is
in these theories accompanied by a branch point moving to
infinity. In this way, a singularity merges with the weak
coupling cusp. For cases A, B, C, and D in Nf ¼ 4 on the
other hand, there is no branch point for any value of the
mass m, and in particular there is also none for m → ∞.

H. Relation to N = 2�

Let us collect some results for theN ¼ 2� theory in order
to point out the analogy to Nf ¼ 4. The N ¼ 2� theory is

obtained by perturbing maximally supersymmetric N ¼ 4

gauge theory by anN ¼ 2 invariant mass term. We have to
be careful with the redefinitions. For the N ¼ 4 theory we
have τ0 ¼ θ

2π þ 4πi
g2 and thus

a ¼
ffiffiffiffiffiffi
2u

p
; aD ¼ τa: ð3:48Þ

In this conventionwe have u ¼ a2
2
. This redefinition from the

classical formulas of the theories with fundamental matter is
necessary for both representations to feature integral electric-
magnetic charges [1]. The N ¼ 2� curve with mass m is

FIG. 7. Decoupling the two massive hypermultiplets in Nf ¼ 4 case A gives the domain of massless Nf ¼ 2 (blue). Two of the
differing regions (gray) are the regions near τ ¼ 1

2
, which are mapped (orange) to i∞. The remaining two are merely mapped to Γð2Þ

equivalent regions near the same cusp such that the resulting domain is connected. Alternatively, the fundamental domain in this figure is
the image of ST−1STS acting on the domain in Fig. 6.

FIG. 6. Fundamental domain of Nf ¼ 4 case A with m ¼ ðm;m; 0; 0Þ.
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identical to the one ofNf ¼ 4 (2.4) with 1
2
mA ¼ ðm

2
; m
2
; 0; 0Þ

[1]. A reason for this is that both theories have three
singularities each with monodromy being conjugate to T2.
Thiswas in fact the ansatz of Seiberg andWitten to determine
the curve with generic masses.
This allows to recycle many results from Sec. III A. The

order parameter for N ¼ 2� is equal to14

uN¼2� ðτ; τ0Þ ¼
1

4
uAðτ; τ0Þ: ð3:49Þ

In particular, it is a bimodular form of weight (0,2) for
ðΓð2Þ;Γð2Þ; SLð2;ZÞÞ. The derivative da

du only receives
an overall normalization from Nf ¼ 4, due to (3.48). In
N ¼ 2� the singularities each have degeneracy 1 and not
2 as in Nf ¼ 4 case A. Therefore, we have that
ΔN¼2� ¼

ffiffiffiffiffiffiffi
ΔA

p
, which is a polynomial of degree 3 in u

and a bimodular form of weight (0,6) [13].

IV. CONCLUSION AND DISCUSSION

In this paper, we have studied in detail the Coulomb
branch of the superconformal Nf ¼ 4 theory with gauge
group SU(2), which has remained of great interest through-
out the years [1,2,6,10,12,19–21,24–30,45–49]. For the
mass configurations with the largest flavor symmetry
group, such as when one, two, and four hypermultiplets
have an equal mass, we show that the Coulomb branch is
parametrized by a function uðτ; τ0Þ that is not only invariant
under separate modular transformations of τ and τ0, but
also exhibits invariance under a simultaneous transforma-
tion under τ and τ0. By restricting to the stabilizer subgroup
of a given mass under the triality action, such order
parameters constitute nontrivial examples of bimodular
forms [see (3.3) for example]. Furthermore, the moduli
spaces are permuted under triality, and the order parameter,
periods, discriminants, etc., furnish vector-valued bimod-
ular forms, which we also introduce (see definition 2).
The analysis of other mass configurations can be done

using the techniques established in [9]. As more compli-
cated mass configurations m inevitably introduce branch
points and cuts, in general um is not a bimodular form.
A simultaneous transformation of τ and τ0 is yet to be
expected by triality, while the separate transformations are
induced by monodromies and as such do not in general lie
in SLð2;ZÞ [1]. However, even in such cases the action of
the monodromy group of the u plane can be understood as

paths in the fundamental domain for τ. See Ref. [50] for a
discussion of these aspects for gauge group SU(3).
Our results allow to study the topologically twisted

theory on a four-manifold X [49,51–54], where the path
integral can be expressed as an integral over the funda-
mental domain for the effective coupling τ. In fact, a closed
expression for the order parameter is enough to define the
integrand. The modularity for τ allows to show that the
integral measure is well defined. The triality action then
gives the S-duality orbit of the Nf ¼ 4 theory on X [55].
It would also be interesting to apply our results to

other theories with an IR moduli space of vacua as well
as a nontrivial conformal manifold. Such theories may
include subsectors with triality symmetry, such as F theory
[56], quiver gauge theories [6], the Alday-Gaiotto-
Tachikawa (AGT) correspondence [7], little string theory
[57], and string/string/string triality [58].
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APPENDIX A: MODULAR FORMS

In this Appendix, we collect some properties of modular
forms for subgroups of SLð2;ZÞ. For further reading,
see [59–64].
We make use of modular forms for the congruence

subgroups Γ0ðnÞ and Γ0ðnÞ of SLð2;ZÞ. These subgroups
are defined as

Γ0ðnÞ ¼
��

a b

c d

�
∈ SLð2;ZÞjc≡ 0 mod n

�
;

Γ0ðnÞ ¼
��

a b

c d

�
∈ SLð2;ZÞjb≡ 0 mod n

�
; ðA1Þ

and are related by conjugation with the matrix diagðn; 1Þ.
We furthermore define the principal congruence subgroup
ΓðnÞ as the subgroup of SLð2;ZÞ ∋ A with A≡ 1 mod n.
A subgroup Γ of SLð2;ZÞ is called a congruence subgroup
if it contains ΓðnÞ for some n ∈ N. The smallest such n is
then called the level of Γ.
We furthermore make use of the theta group [65]:

gΓ0ð2Þ ¼ Γθ ≔ hT2; Si ⊆ SLð2;ZÞ: ðA2Þ

A fundamental domain for Γθ is

14The expressions for uN¼2� in the literature [10,12,13,43,44]
are related to uAðτ; τ0Þ by a transformation in (2.16), which
corresponds to the choice of a different solution of the sextic
equation associated with the N ¼ 2� theory [9]. The different
choices can be absorbed in the double-scaling limit. The counting
of the number of poles of uA is immediate from our expression
(3.3) (see comment on the transcendence of λ in Sec. III A).
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ΓθnH ¼ F ∪ TF ∪ TSF ; ðA3Þ

withF ¼ SLð2;ZÞnH. This demonstrates that Γθ has index
3 in SLð2;ZÞ. It is a congruence subgroup of SLð2;ZÞ,
as [66,67]15

Γθ ¼ fA ∈ SLð2;ZÞjA≡ 1 or S mod 2g: ðA4Þ

The above introduced congruence subgroups host a
number of interesting modular forms. The Jacobi theta
functions ϑj∶H → C, j ¼ 2, 3, 4, are defined as

ϑ2ðτÞ ¼
X
r∈Zþ1

2

qr
2=2; ϑ3ðτÞ ¼

X
n∈Z

qn
2=2;

ϑ4ðτÞ ¼
X
n∈Z

ð−1Þnqn2=2; ðA5Þ

with q ¼ e2πiτ. These functions transform under T; S ∈
SLð2;ZÞ as

S∶
ϑ2ð−1=τÞ ¼

ffiffiffiffiffiffiffi
−iτ

p
ϑ4ðτÞ;

ϑ3ð−1=τÞ ¼
ffiffiffiffiffiffiffi
−iτ

p
ϑ3ðτÞ;

ϑ4ð−1=τÞ ¼
ffiffiffiffiffiffiffi
−iτ

p
ϑ2ðτÞ;

T∶
ϑ2ðτ þ 1Þ ¼ e

πi
4ϑ2ðτÞ;

ϑ3ðτ þ 1Þ ¼ ϑ4ðτÞ;
ϑ4ðτ þ 1Þ ¼ ϑ3ðτÞ:

ðA6Þ

They furthermore satisfy the Jacobi abstruse identity:

ϑ42 þ ϑ44 ¼ ϑ43: ðA7Þ

The modular lambda function λ ¼ ϑ4
2

ϑ4
3

is a Hauptmodul for

Γð2Þ. The Dedekind eta function η∶ H → C is defined as
the infinite product

ηðτÞ ¼ q
1
24

Y∞
n¼1

ð1 − qnÞ; q ¼ e2πiτ: ðA8Þ

It transforms under the generators of SLð2;ZÞ as

S∶ ηð−1=τÞ ¼
ffiffiffiffiffiffiffi
−iτ

p
ηðτÞ;

T∶ ηðτ þ 1Þ ¼ e
πi
12ηðτÞ; ðA9Þ

and relates to the Jacobi theta series as η3 ¼ 1
2
ϑ2ϑ3ϑ4.

1. Eisenstein series

We let τ ∈ H and define q ¼ e2πiτ. Then the Eisenstein
series Ek∶H → C for even k ≥ 2 are defined as the q series

EkðτÞ ¼ 1 −
2k
Bk

X∞
n¼1

σk−1ðnÞqn; ðA10Þ

with σkðnÞ ¼
P

djn dk the divisor sum. For k ≥ 4 even, Ek

is a modular form of weight k for SLð2;ZÞ. Any modular
form for SLð2;ZÞ can be related to the Jacobi theta
functions (A5) by

E4 ¼
1

2
ðϑ82 þ ϑ83 þ ϑ84Þ;

E6 ¼
1

2
ðϑ42 þ ϑ43Þðϑ43 þ ϑ44Þðϑ44 − ϑ42Þ: ðA11Þ

With our normalization (A10) the j invariant can be
written as

j ¼ 1728
E3
4

E3
4 − E2

6

¼ 256
ðϑ83 − ϑ43ϑ

4
4 þ ϑ84Þ3

ϑ82ϑ
8
3ϑ

8
4

: ðA12Þ

APPENDIX B: PARTITIONS OF SIX

In Sec. II A we listed a number of special mass
configurations of the Nf ¼ 4 theory, where multiple
singularities have merged. Since the S and T transforma-
tions preserve the weight vector of the singularities kðmÞ,
we could use this vector as a partial classification of the loci
in mass space with merged singularities. As there are six
singularities on the Coulomb branch B4, we can consider
partitions of six, of which there are pð6Þ ¼ 11. To further
simplify the problem, we consider masses which are either
different (but generic), equal, or zero. This then means that
we should also consider partitions of four for the mass
vector. The results are collected in Table II.
More generally, we could consider specific relations

among the masses, including τ0 dependence, such as in the
AD theories of Sec. III F. For these cases, we tuned the
mass such that a number of nonlocal singularities merged
and we got a weight vector kðmAD

EFGÞ ¼ ð3; 2; 1Þ. Similar
situations appear in the other theories with several mass
parameters. For example, in the ðm;m;m; μÞ theory with
m ¼ mAD ¼ λ0

2−λ0
μ we find that one of the degeneracy 1

singularities merges with the degeneracy 3 singularity to
give a theory with weight vector k ¼ ð4; 1; 1Þ. We further
have the possibility to tune τ0 to a specific value such that
even more singularities merge. For example, in the AD
theory of case E studied in Sec. III F we saw that we could
fix τ0 ¼ 1þ i to get a theory with weight vector k ¼ ð3; 3Þ.
Similarly, in the ðm;m;m; μÞ theory mentioned above, with
m ¼ mAD we can set τ0 ¼ ð−1Þ1=3 to find a theory with
k ¼ ð4; 2Þ. In the ðm;m;m; 0Þ theory there is no value for
m such that more singularities merge (except m ¼ 0) but
we can set τ0 ¼ − 1

2
þ i

2
to find a k ¼ ð4; 2Þ theory. This is

the only theory with one mass parameter where this is
15It can also be written as the group of matrices ðac b

dÞ with
aþ bþ cþ d≡ 0 mod 2, or ab≡ cd≡ 0 mod 2.
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possible. For example, in case A, the value of τ0 needed to
merge further singularities is a singular one, corresponding
to λ0 ¼ 1, which is not allowed.
As discussed recently in Refs. [33,69], the possible

fibration structures of the SW curve over the u plane for
fixed masses and τ0 follow the classification of rational
elliptic surfaces by Miranda and Persson [68,70,71]. Using
this classification, each part of the partition kðmÞ can be
labeled with the appropriate singularity type. The singu-
larity for u → ∞ (τ → τ0) of the Nf ¼ 4 theory corre-
sponds to the I�0 singularity of Kodaira’s classification of
singular fibers. The cuspidal singularities correspond to In,
with n the width of the cusp, while the AD singularities are
of type II, III, and IV. Note that a part of the partition can
be realized by different singularity types depending on the
charges of the corresponding massless particles. For exam-
ple, a part “2” can correspond to either I2 or II. Indeed,
there are 19 different configurations with I�0 [33], while
there are only 11 different partitions of 6. We have included
in the third column in Table II the singularity type for
the data in the second column following Persson’s
classification [68].16

APPENDIX C: THE qq CURVE

The parameters u and mi in (2.4) are not immediately
related to htrϕ2i and the masses of the hypermultiplets
[20,21,28,72–75]. In fact, there is discrepancy between u
and htrϕ2i for Nf ≥ 3 [20]. Let us instead consider the
curve obtained from the qq characters of the Nf ≤ 4 SU(2)
theory [26–29], which is better suited from the perspective
of the instanton calculus [76,77]. The elliptic curve for
Nf ≤ 4 in the flat space limit is

ð1 − qÞ2y2 ¼ TðxÞ2 − 4q
YNf

i¼1

ðxþmiÞ; ðC1Þ

where

TðxÞ ¼ ð1þ qÞx2 þ qx
XNf

i¼1

mi − ð1 − qÞu: ðC2Þ

In the context of the qq curve, it is customary to define

q ≔ λðτ0Þ; ðC3Þ

where τ0 is the UV coupling. Expanding out all terms
for Nf ¼ 4 and substituting ð1 − qÞy by y, we find the
quartic curve:

y2 ¼ ð1 − qÞ2x4 − 2⟦m1⟧ð1 − qÞqx3
þ ðð⟦m1⟧

2 þ 2uÞq2 − 4⟦m1m2⟧q − 2uÞx2
− 2qð⟦m1⟧ð1 − qÞuþ 2⟦m1m2m3⟧Þx
þ ð1 − qÞ2u2 − 4qPfm; ðC4Þ

with the notation (2.3) as well as

⟦m1⟧ ¼
X4
i¼1

mi; ⟦m1m2⟧ ¼
X
i<j

mimj;

⟦m1m2m3⟧ ¼
X
i<j<k

mimjmk: ðC5Þ

As opposed to (2.7), the low-energy theory with Nf < 4

flavors and scale ΛNf
is obtained from the qq curve (C4)

by decoupling 4 − Nf hypermultiplets with masses mj in
the scaling limit:

TABLE II. A partial classification of mass loci of the Nf ¼ 4 theory, based on the weight vector kðmÞ. The second
column gives one example of the mass vector, where for some values of kðmÞ it is also necessary to fix τ0. Since the
weight vector is triality invariant, the orbits T ·m of m under T (2.12) give additional configurations. The third
column gives the singularity type following [68] for the example in the second column. The last column lists the
examples studied in the main text for a given kðmÞ, with a reference to the specific section.

kðmÞ Example Singularity type Corresponding section

(6) (0, 0, 0, 0) 2I�0 III
(5,1) � � � excluded � � �
(4,2) ðm;m;m; 0Þ with τ0 ¼ − 1

2
þ i

2
I�0 IV II � � �

(4, 1, 1) ðm; 0; 0; 0Þ I�0I42I1 B III B, C III C, D III D
(3,3) ðm;m; μ; μÞ, τ0 ¼ 1þ i, m ¼ μ

ffiffiffiffiffiffiffiffiffiffi
λðτ0Þ

p
, I�0 2III III F

(3, 2, 1) ðm;m; μ; μÞ, m ¼ μ
ffiffiffiffiffiffiffiffiffiffi
λðτ0Þ

p
I�0 III I2 I1 III F

(3, 1, 1, 1) ðm;m;m; μÞ, ðm;m;m; 0Þ I�0 I3 3I1 � � �
(2, 2, 2) ðm;m; 0; 0Þ I�0 3I2 A III A
(2, 2, 1, 1) ðm; μ; 0; 0Þ, ðm;m; μ; μÞ I�0 2I2 2I1 E, F, G III F
(2, 1, 1, 1, 1) ðm;m; μ1; μ2Þ, ðm;m; μ; 0Þ I�0 I2 4I1 � � �
(1, 1, 1, 1, 1, 1) ðm1; m2; m3; m4Þ, ðm1; m2; m3; 0Þ I�0 6I1 � � �

16We thank Cyril Closset for pointing out that kðmÞ ¼ ð5; 1Þ is
excluded based on the classification by Miranda and Persson.
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τUV → i∞; mj → ∞; Λ4−Nf

Nf
¼ 4q

Y
j

mj: ðC6Þ

The order parameter u in the qq curve (C4) is not identical
to the one of the Nf ¼ 4 SW curve (2.4) or the one of the
Nf ≤ 3 SW family (D1). The relation between the qq curve
and the Nf ¼ 4 SW curve is difficult to work out explicitly;
however, one easily finds that by decoupling hypermultip-
lets (C6) the order parameters are related through the chain

u → uNf¼3 −
Λ3

8
ðm1 þm2 þm3Þ → uNf¼2 −

Λ2
2

8

→ uNf¼1 → uNf¼0: ðC7Þ
These constant shifts are likely due to the fact that the
instanton partition function is better suited for U(N) gauge
theory rather than SU(N).

1. Case 0

Let us study the curve (C4) for the case m ¼ ð0; 0; 0; 0Þ.
Recall the rational functional R (3.2) which has poles at
p ¼ 0; 1;∞. It relates the Hauptmodul j of SLð2;ZÞ and
λ ≔ ϑ4

2

ϑ4
3

of Γð2Þ by RðλðτÞÞ ¼ jðτÞ. In the massless limit we

compute J ðu;q; 0Þ ¼ RðqÞ.17 As we identify jðτÞ ¼ J , it
follows that the UV coupling is related to the complex
structure of the curve by

q ¼ λðτÞ; ðC8Þ

with τ the low-energy effective coupling and q ¼ λðτ0Þ the
UV coupling. This has already been conjectured in [45] by
matching calculations in the field theory limit of type IIA
string compactification on Enriques Calabi-Yau to the
results from the Nekrasov partition function, and was
further explored in [12]. For a more extensive discussion
on the nonperturbative finite renormalization see [78],
Secs. 3.4–3.5.
In [6], the parameters of the moduli space of marginal

couplings are identified with coordinates on Teichmüller
spaces of punctured Riemann surfaces. For the case of
SU(2) theory with Nf ¼ 4, the corresponding surface is a
4-punctured Riemann sphere, and the natural coordinate
is a cross ratio q of the location of the punctures.
Under conformal transformations, the punctures are
permuted [12]:

q ∼
�
q;

1

q
;

1

1 − q
; 1 − q;

q
q − 1

;
q − 1

q

�
: ðC9Þ

We notice that q ↦ RðqÞ is invariant under these permu-
tations. The transformations (C9) of the modular lambda

function λ are generated by T∶ λ ↦ λ
λ−1 and S∶ λ ↦ 1 − λ

[79] and form the anharmonic group. Due to the permu-
tations (C9), we can view (C8) as an identification of the
equivalence class

q=∼ ¼ λðτÞ: ðC10Þ

It is also clear from J ¼ RðqÞ that (C8) is just one of six
solutions (C10), since the former equation can be written
as a polynomial equation of degree 6 in q (see also [9]).
From (C8) it is furthermore clear that τ ¼ τ0 is a solution,
such that τðuÞ ¼ τ0 is constant over the whole Coulomb
branch, just as in the case of the SW curve (3.1).

2. Case A

Let us then study the curve for mA ¼ ðm;m; 0; 0Þ. This
theory has global symmetry SUð2Þ×SUð2Þ×SUð2Þ×Uð1Þ.
The physical discriminant is

Δ ¼ ðu − u0;AÞ2ðu − um;AÞ2ðu − u�;AÞ2; ðC11Þ

where u0;A ¼ 0, um;A ¼ m2, u�;A ¼ qm2

q−1. The Coulomb
branch parameter u can be found as described in Sec. III,

uAðτÞ ¼ m2
q

q − λðτÞ ; ðC12Þ

where again λ is a Hauptmodul for Γð2Þ. This shows that
uðτ;qÞ is a modular function for Γð2Þτ. With the definition
(C3), uA is also a modular function for Γð2Þτ0. However, a
simultaneous SLð2;ZÞ transformation on τ and τ0 does not
give back the same function. Therefore, uA satisfies only
condition 1 of definition 1, and as such is only invariant
under separate transformations Γð2Þτ × Γð2Þτ0 .
The singularities (C11) can be easily associated to the

cusps of Γð2ÞnH by expanding the Jacobi theta functions.
As opposed to the asymptotically free cases, uð·;qÞ is not
weakly holomorphic due to a pole in the interior of H. In
other words, there is a singularity τ¼ λ−1ðqÞ, where u → ∞
at finite coupling. Just as in (C10) and (3.28), this is
essentially a definition of the UV coupling. We can collect

uA

�
1

2

�
¼ um;A; uAð0Þ ¼ u�;A;

uAð1Þ ¼ u0;A; uAðλ−1ðqÞÞ ¼ ∞: ðC13Þ

In the decoupling limit (C6), we find that u flows to (D6)
of the massless Nf ¼ 2 theory, considering the constant
shift (C7).
While the order parameter (C12) corresponding to the qq

curve is significantly simpler than the one (3.3) from the
SW curve, the action of triality is obstructed for the qq
curve. Using the relation (C3), we can express uA as a
two-variable function of τ and τ0. Through the single

17The invariant of a quartic curve can be found using the
formulas given in [32], for example.
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dependence of both uA and uA on λðτÞ, we can relate uA
and uA,

uAðτ; τ0Þ ¼
1

ϑ4ðτ0Þ4
uAðτ; τ0Þ −

m2

3

ϑ2ðτ0Þ4 − ϑ4ðτ0Þ4
ϑ4ðτ0Þ4

:

ðC14Þ

It is also immediate from this expression that uA is not
bimodular, as it fails to be invariant under a simultaneous
SLð2;ZÞ action. However, the obstruction to bimodularity
can be expressed analogously to (C14): We have that
uAðτ; τ0Þ ¼ h1ðτ0ÞuAðτ; τ0Þ þ h2ðτ0Þ for some meromor-
phic modular forms hj, while also a simultaneous action of
SLð2;ZÞ yields

uAðτ þ 1; τ0 þ 1Þ ¼ ϑ4ðτ0Þ4
ϑ3ðτ0Þ4

uAðτ; τ0Þ þm2λðτ0Þ;

uA

�
−
1

τ
;−

1

τ0

�
¼ −

ϑ4ðτ0Þ4
ϑ2ðτ0Þ4

uAðτ; τ0Þ; ðC15Þ

or equivalently in terms of q,

uAðτ þ 1; τ0 þ 1Þ ¼ ð1 − qÞuAðτ; τ0Þ þm2q;

uA

�
−
1

τ
;−

1

τ0

�
¼ q − 1

q
uAðτ; τ0Þ: ðC16Þ

We thus find that the action of triality is an affine trans-
formation on uA.

3. The other cases

For the other cases B–G the story is similar. The order
parameters of cases B, C, E, and F are listed in Table III.
It is straightforward to show that these parameters have
the correct flows when decoupling hypermultiplets and the
correct limits into each other upon tuning the masses. The
singularities are given in Table IV and the corresponding
degeneracies can be read off from the physical discrimi-
nants, which read

ΔB ¼ ðu − u�;BÞ4ðu − uþ;BÞðu − u−;BÞ;
ΔC ¼ u4ðu − uþ;CÞðu − u−;CÞ;
ΔE ¼ ðu − um;EÞ2ðu − uμ;EÞ2ðu − uþ;EÞðu − u−;EÞ;
ΔF ¼ u2ðu − u�;FÞ2ðu − uþ;FÞðu − u−;FÞ: ðC17Þ

From Table III it is clear that uBð·;qÞ is a modular
function for Γ0ð4Þ and uCð·;qÞ for Γ0ð4Þ, in agreement with
the results from the SW curve. The singularities of the
curves correspond to the cusps of the respective modular
curves. The singularities in the interior can be found as

uBðτ∞;BÞ ¼ ∞; τ∞;B ¼ f−1
�
1þ qffiffiffi

q
p

�
;

uCðτ∞;CÞ ¼ ∞; τ∞;C ¼ f̃−1
� ffiffiffiffiffiffiffiffiffiffiffi

1 − q
p

2 − 2
ffiffiffiffiffiffiffiffiffiffiffi
1 − q

p
− q

�
:

ðC18Þ
The order parameter of cases E, F and all of the more
general cases contain branch points. For cases E and F they

TABLE III. Order parameters for the massive Nf ¼ 4 cases B, C, E, and F.

Theory uðτÞ
B m2

�
1−3q
1−q − 1−q

1−fðτÞ ffiffi
q

p þq

�
C m2 q2

ð1−qÞ
1

2−q−
ffiffiffiffiffiffi
1−q

p ð2þ1=f̃ðτÞÞ
E − 2qmμ

1−q − qð−1þ2qλ−λ2Þðm2þμ2Þþð1þλÞ ffiffi
q

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðλ−1Þ2ðm2−μ2Þ2þ4ð1−qÞ2λðmμÞ2

p
2ðλ−qÞðqλ−1Þ

F
q

ϑ8
2
−ðϑ8

3
þϑ8

4
Þq

1−q μ2−ðϑ8
2
þ2ϑ4

3
ϑ4
4
qÞm2−ðϑ4

3
þϑ4

4
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϑ8
2
ðm2−μ2Þ2þ4q2ðmμÞ2ϑ4

3
ϑ4
4

1−q

q
2ðϑ4

2
þqϑ4

4
Þðϑ4

2
−qϑ4

3
Þ

TABLE IV. Singularities for the massive Nf ¼ 4 cases B, C, E, and F.

Theory Singularities

B u�;B ¼ m2 1−3q
1−q ; u�;B ¼ 2m2 −2q� ffiffi

q
p

1−q
C u0;C ¼ 0; u�;C ¼ �m2 2ð1� ffiffiffiffiffiffi

1−q
p Þ−q
1−q

E um;E ¼ m2 − 2mμq
1−q ; uμ;E ¼ μ2 − 2mμq

1−q ; u�;E ¼ qðmþμÞ2
q−1 � 2

ffiffiffi
q

p mμ
q−1

F u�;F ¼ q μ2−m2

1−q ; u�;F ¼ m2 þ μ2

1−q ∓ 2mμffiffiffiffiffiffi
1−q

p
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are given by the argument τbp for which the radicands
vanish. For case E for instance, it is given by

f2B

�
τbp;E
2

�
¼ −64

ðmμÞ2
ðm2 − μ2Þ2

ð1 − qÞ2
q

: ðC19Þ

The AD loci of the theories E, F, and G are now given by

PADE ¼ ðm2q − μ2Þðμ2q −m2Þ;
PADF ¼ ðm2ðq − 1Þ þ μ2Þðμ2ðq − 1Þ þm2Þ;
PADG ¼ ðm2ð1 − qÞ þ μ2qÞðμ2ð1 − qÞ þm2qÞ: ðC20Þ

We can note that these polynomials coincide with (3.43)
upon identifying q ≔ λ0. Similarly to (C15), the order
parameters uB, uC, and uD do not form a vector-valued
bimodular form, which is due to the fact that they transform
into each other with shifts in τ0.

APPENDIX D: THE ASYMPTOTICALLY
FREE THEORIES

The curves for the asymptotically free theories with
0 ≤ Nf ≤ 3 fundamental hypermultiplets have been deter-
mined in [1]. They read

Nf ¼ 0∶y2 ¼ x3 − ux2 þ 1

4
Λ4
0x;

Nf ¼ 1∶y2 ¼ x2ðx − uÞ þ 1

4
mΛ3

1x −
1

64
Λ6
1;

Nf ¼ 2∶y2 ¼
�
x2 −

1

64
Λ4
2

�
ðx − uÞ þ 1

4
m1m2Λ2

2x

−
1

64
ðm2

1 þm2
2ÞΛ4

2;

Nf ¼ 3∶y2 ¼ x2ðx − uÞ − 1

64
Λ2
3ðx − uÞ2

−
1

64
ðm2

1 þm2
2 þm2

3ÞΛ2
3ðx − uÞ

þ 1

4
m1m2m3Λ3x −

1

64
ðm2

1m
2
2 þm2

2m
2
3 þm2

1m
2
3ÞΛ2

3:

ðD1Þ

By taking the mass of a hypermultiplet to be infinite while
sending the dynamical scale of the theory to zero, in the
double-scaling limit [80],

mi → ∞; ΛNf
→ 0; miΛ

4−Nf

Nf
¼ Λ4−ðNf−1Þ

Nf−1 ðD2Þ

the hypermultiplets decouple. Identifying the J invari-
ants of the curves (D1) with the modular j invariant jðτÞ
allows to find the modular u parameters. This was done
in [9] for the massive Nf ¼ 2, 3 curves. As was discussed
in [9] in general there are six different solutions for the
order parameter as a function of τ from the curve.
However, there exists a unique choice of solution such
that the decoupling limits work out directly. These
solutions then also determine the Nf ¼ 4 solutions
uniquely in the same way, by demanding that the
decoupling limits work out.
For Nf ¼ 0, the unique choice is

u
Λ2
0

¼ −
1

2

ϑ42 þ ϑ43
ϑ22ϑ

2
3

: ðD3Þ

In massless Nf ¼ 1, the solution is given by

u
Λ2
1

¼ −
3

2
7
3

E
1
2

4

ðE3
2

4 − E6Þ13
: ðD4Þ

In equal mass Nf ¼ 2, one finds

u
Λ2
2

¼ −
ϑ84 þ ϑ42ϑ

4
3 þ ðϑ42 þ ϑ43Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16m2

Λ2
2

ϑ42ϑ
4
3 þ ϑ84

q
8ϑ42ϑ

4
3

; ðD5Þ

which becomes

u
Λ2
2

¼ −
1

8

ϑ43 þ ϑ44
ϑ42

ðD6Þ

in the massless limit. The theory with three hyper-
multiplets is much more complicated. For the mass
configuration m ¼ ðm; 0; 0Þ the equations can be solved
analogously, and one finds

u
Λ2
3

¼ −
2ϑ43ϑ

4
4 þ ðϑ43 þ ϑ44Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64m2

Λ2
3

ϑ82 þ ϑ43ϑ
4
4

q
64ϑ82

: ðD7Þ

In the massless limit this becomes

u
Λ2
3

¼ −
1

64

ϑ23ϑ
2
4

ðϑ23 − ϑ24Þ2
: ðD8Þ
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