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We discuss general aspects of renormalization group (RG) flows between two conformal fixed points in 4D
with a broken continuous global symmetry in the UV. Every such RG flow can be described in terms of the
dynamics of Nambu-Goldstone bosons of broken conformal and global symmetries. We derive the low-
energy effective action that describes this class of RG flows from basic symmetry principles. We view the
theory of Nambu-Goldstone bosons as a theory in anti–de Sitter space with the flat space limit. This enables
an equivalent 3D CFT (CFT3) formulation of these 4D RG flows in terms of spectral deformations of a
generalized free CFT3. We utilize this dual description to impose further constraints on the low-energy
effective action associated with unitary RG flows in 4D by invoking the chaos bound in 3D. This approach
naturally provides a set of independent monotonically decreasing C-functions for 4D RG flows with global
symmetry breaking by explicitly relating 4D C-functions with certain out-of-time-order correlators that
diagnose chaos in 3D. We also comment on a more general connection between RG and chaos in QFT.
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I. INTRODUCTION

The renormalization group (RG) and quantum chaos are
two fundamentally important but distinct phenomena in
quantum field theory (QFT) with some similar qualitative
features. For example, both RG flows and semiclassical
chaos exhibit certain universal positivity and monotonicity
properties in generic quantum systems. Over the years, a
great deal of progress has been made on understanding such
general features of both RG and chaos; however, any
connection between their positivity and monotonicity prop-
erties has never been established. This is not surprising since
the underlying physics associated with RG and chaos is
believed to be different. Nevertheless, in this paper we
present a precise but indirect connection between RG and
semiclassical chaos by considering a rather general class of
RG flows in 4D. This also provides a tool to constrain
unitary RG flows by utilizing the chaos bound of Maldacena
et al. [1].
Most physical systems, when viewed at different energy

scales, admit descriptions in terms of completely different
degrees of freedom. The RG is a concrete realization of this
phenomenon in QFT. It is a systematic coarse-graining
procedure that identifies relevant long-distance degrees of
freedom of a given quantum theory. Conformal field theories

(CFTs) play a central role in RG since it is long believed that
fixed points of RG flows are CFTs.1

On physical grounds, it is expected that all RG flows
should be irreversible. Consider a CFTUV which is
deformed by adding a relevant (or marginally relevant)
operator that breaks conformal symmetry.2 This triggers a
RG flow that ends at CFTIR. The irreversibility requires
that any RG flow that starts from CFTIR and ends at
CFTUV must be forbidden. A closely related but not
exactly equivalent statement is that there exist real
positive definite C-functions on the space of couplings
with the following properties: (i) C decreases monoton-
ically under RG flows, and (ii) at the fixed points of the
RG flow, C is constant and independent of the energy
scale. Moreover, the value of a C-function at fixed points
depends only on CFTUV and CFTIR, respectively. The
existence of a C-function necessarily implies irreversibil-
ity of RG flows when it interpolates between some central
charge of CFTUV and CFTIR. Such a C-function was first
found by Zamolodchikov in 1986 for any unitary, Lorentz
invariant QFT in 2D establishing the irreversibility of
2D RG flows [3]. In 4D, a C-function was found by
Komargodski and Schwimmer in 2011 that interpolates
between the Euler central charges in the ultraviolet and the
infrared [4] (see also [5]). This proved Cardy’s conjecture

*kundu@jhu.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1In d > 4, a CFT can flow to a fixed point which is scale
invariant but nonconformal [2]. However, in this paper, we will
only consider 4D RG flows between two CFTs.

2There are RG flows in which conformal symmetry is broken
spontaneously. The same discussion applies for such RG flows as
well.
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[6] Δa ¼ aUV − aIR > 0 establishing that all unitary RG
flows are irreversible in 4D.3

In many 4D RG flows (e.g., supersymmetric RG flows),
the breaking of conformal symmetry is accompanied by
the breaking of some other global symmetries of CFTUV.
In this paper, we consider RG flows between two
conformal fixed points in 4D in which conformal sym-
metry and a continuous global symmetry are broken in the
UV. Our main argument can be briefly summarized as
follows:
(1) Many general features of these RG flows, such as

irreversibility and positivity, can be studied by
analyzing the effective action of Nambu-Goldstone
(NG) bosons of broken conformal and global sym-
metries. By extending the argument of [4], we show
that the general form of the effective action that
describes 4D RG flows with global symmetry
breaking is completely fixed from symmetries.
The effective action makes it obvious that the proof
of the a-theorem remains unaffected even when
global symmetries are broken.

(2) Next, by following the framework of [8] we analyze
the flat space effective theory of NG bosons by
viewing it as a theory in anti–de Sitter (AdS) space
with finite but large radius RAdS and then take the flat
space limit RAdS → ∞. This provides an alternative
description of this class of 4D RG flows in terms of
spectral deformations of a generalized free CFT in
3D (CFT3).

4

(3) Finally, we utilize this dual description to derive
positivity conditions for the effective action by
invoking the chaos bound [1,13,14] in the dual
CFT3. In particular, the chaos bound in 3D implies
the a-theorem in 4D.5 Furthermore, the 3D chaos
bound provides a natural basis for constructing a set
of 4D C-functions for RG flows with global sym-
metry breaking.

Our approach, as summarized in Fig. 1, connects RG and
quantum chaos, albeit in different spacetime dimensions.

A. RG flows with global symmetry breaking

In [4] Komargodski and Schwimmer taught us how
every RG flow can be described in terms of a spontaneous
breaking of conformal symmetry. We consider a more
general class of RG flows in 4D where CFTUV has some
global symmetry G, where G is a compact Lie group. The
conformal symmetry and the global symmetry of CFTUV
are broken either spontaneously or explicitly. This triggers
a RG flow that preserves some subgroupH ofG. Following
[4], we argue that every such RG flow can be described as
spontaneous breaking of conformal and global symmetries.
The spontaneously broken conformal symmetry generates a
massless NG boson—the dilaton ϕ. The dilaton is accom-
panied by N ¼ dimG=H additional massless NG bosons ξi
arising from the spontaneous breaking of the global
symmetry. So, in general the low-energy theory consists
of CFTIR and (N þ 1) massless scalars ϕ and ξi.

6 We derive
the effective action Seff ½ϕ; ξi� of ϕ and ξi from basic
symmetry principles. In particular, we show that the
effective action, up to four-field four-derivative terms,
can be written in the form7

Seff ½ϕ; ξi� ¼ Sconformal½ϕ;Δa� þ Sglobal½ξi;Bijkl�
þ Smixed½ϕ; ξi;Δa; bi�: ð1:1Þ

The first term Sconformal½ϕ;Δa� results from the conformal
symmetry breaking alone and hence it is precisely the
dilaton effective action of [4]. Similarly, Sglobal½ξi;Bijkl�
with coupling constants Bijkl is the part of the effective
action that depends only on the global symmetry breaking.

FIG. 1. Every RG flow with global symmetry breaking can be
described by the effective action of NG bosons of broken
conformal and global symmetries. Any such RG flow in 4D
has a dual CFT3 description where the dual CFT3 is obtained by
deforming operator dimensions and OPE coefficients of a 3D
generalized free theory. The 3D chaos bound then imposes a
constraint on the effective action of the NG bosons.

3A general proof of the RG irreversibility is still missing in 6D
(for attempts see [7,8]). On the other hand, the 6D a-theorem has
been established for all 6D flows that preserve (2,0) supersym-
metry in [9]. The proof was later extended to RG flows of (1,0)
superconformal field theories (SCFTs) onto the tensor branch in
[2]. However, a proof of the a-theorem for RG flows of (1,0)
SCFTs onto the Higgs branch is still an open problem even
though there is strong evidence in favor it [10–12].

4Alternatively, one can combine the first two steps by
imagining the RG flow between CFTUV and CFTIR is taking
place in AdS4 with RAdS → ∞. These two interpretations are
completely equivalent in the leading order of the effective action
(up to four-derivative interactions). However, in general two
interpretations may differ at higher derivative order.

5This connection was already noticed in [8].

6For RG flows in which the symmetries are broken explicitly,
the scalars ϕ and ξi should be thought of as compensator fields.
For a discussion on compensator fields, see [4].

7The explicit form of the effective action is given by Eq. (4.31).
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Dimensionless coupling B≡ fBijklg is a strongly paired
symmetric 4-tensor which has the symmetries of the
N-dimensional elasticity tensor. Finally, the mixed part of
the actionSmixed½ϕ; ξi;Δa; bi� represents interactions between
ϕ and ξi with coupling constants Δa and bi; i ∈ f1;…; Ng.
Interestingly, a part of Smixed½ϕ; ξi;Δa; bi� is also universal. In
general, bi and Bijkl depend on CFTUV, CFTIR, and defor-
mations [or vacuumexpectationvalues (VEVs)] that break the
conformal symmetry in the UV. For unitary RG flows, these
coefficients must also satisfy various positivity conditions
which we will derive in this paper.
There is a discrete difference between RG flows with and

without global symmetry breaking. Nevertheless, the
decomposition (1.1) of the effective action states that
RG flows that do not break any global symmetries are a
special case of the general scenario with ξi → 0 implying
Seff ½ϕ; ξi� has a smooth ξi → 0 limit. This in turn implies
that breaking of additional global symmetries does not
interfere with the proof of the 4D a-theorem by
Komargodski and Schwimmer. This was already noticed
by Bobev et al. in [15] for 4D RG flows with Uð1Þ
symmetry breaking.
It is a fact that scalar effective field theories in AdSd are

in one-to-one correspondencewith perturbative solutions of
crossing symmetry in CFTd−1 [16–28]. This connection
was utilized in [8] to argue that every RG flow connecting
two conformal fixed points in d dimensions is equivalently
described as deformations of the spectrum of a generalized
free CFTd−1 for d ≥ 3. In this paper, we adopt the same
philosophy and analyze the dual CFT3 description of the
effective action (1.1) of NG bosons. The dual CFT3 is
obtained by deforming specific operator dimensions and
OPE coefficients of a generalized free theory of (N þ 1)
scalar primary single-trace operators that are dual to NG
bosons ϕ and ξi. This dual CFT3 for any unitary RG flow
must obey the Euclidean axioms. This immediately implies
that the space of fΔa; bi; Bijklg for unitary RG flows can be
constrained by invoking the chaos bound [1,13,14] in the
dual CFT3. In particular, we argue that couplings Δa; bi,
and Bijkl must be positive definite.8 Moreover, interference
effects in the chaos bound impose further nonlinear con-
straints among fΔa; bi; Bijklg. These nonlinear analytic
constraints, among other things, provide an upper bound on
Δa in terms of bi and Bijkl.
As a representative example, we analyze RG flows

between two conformal fixed points in 4D with a broken
Uð1Þ global symmetry. Every such RG flow can be

described in terms of exactly three parameters fΔa; b; Bg
that uniquely determine the low-energy effective action of
NG bosons [see Eq. (2.18)] of broken conformal and Uð1Þ
symmetries. These RG flows, as we described before, have a
dual description in terms of spectral deformations of a
generalized free CFT in 3D of two scalar primary single-
trace operators. For unitary RG flows, we invoke the chaos
bound to constrain the space of fΔa; b; Bg, as shown in
Fig. 2. Interestingly, there is a “bootstrap” kink in the
exclusion plot 2 in Fig. 2. However, we are not aware of
any RG flow that sits on the kink.
In the exclusion plot 2 in Fig. 2, we identify a special point

in the allowed parameter space that corresponds to RG flows
between two 4D N ¼ 1 SCFTs in which the N ¼ 1
supersymmetry is preserved along the flow. These flows
break the Uð1Þ R-symmetry of the CFTUV since the stress
tensor and the R-current are in the same supermultiplet
[15,29]. In the dual CFT3 language, these supersymmetric
flows are equivalently described by spectral deformations
in which anomalous dimensions of certain double-trace
operators obey simple relations [see Eq. (3.3)]. Moreover,
for N ¼ 1 supersymmetric flows we show that there are
infinitely many distinct C-functions that decrease monoton-
ically from aUV to aIR under RG flows.

FIG. 2. For unitary RG flows between two conformal fixed
points in 4D with a broken Uð1Þ global symmetry only the
shaded region (along with Δa > 0) is consistent with the chaos
bound. Notice that there is a kink at b ¼ 0 and B ¼ 2Δa. The
black dot corresponds to RG flows between two 4D N ¼ 1

SCFTs in which flows preserve the N ¼ 1 supersymmetry
(SUSY). The red dot corresponds to a RG flow in which the
CFTUV is a theory of two massless scalars. This theory is
deformed with mass terms that are infinitesimally different.
The red line represents the same RG flow as we increase the
mass difference.

8To be specific, by positive definiteness of the 4-tensor B we
simply mean that B has a positive definite biquadratic form
Bijklcic̃jckc̃l > 0 for all nonzero c; c̃ ∈ RN . This can be alter-
natively stated as B is strongly elliptic. Note that there can be loop
effects when G is non-Abelian, as we will explain later. Of
course, B should be understood as the one-loop effective B when
loop effects are present.
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It should be noted that the same bounds can be obtained
directly in flat space, perhaps with some additional assump-
tions about the scattering amplitudes.9 However, the dual
CFT3 description has several conceptual as well as technical
advantages. For example, our derivation of the bounds does
not make any assumptions about the dual CFT3 beyond the
usual Euclidean axioms. This simply means that some
properties of low-energy effective actions, such as (1.1),
are more transparent in AdS. This parallels the idea of
S-matrix bootstrap where conformal bootstrap methods are
used to constrain QFTs in AdS [34–37].

B. RG and quantum chaos

The CFT3-based description of 4D RG flows naturally
provides a set of 4D C-functions. Furthermore, this
construction has the conceptual advantage that it explic-
itly relates C-functions with certain out-of-time-order
correlators (OTOCs) in 3D which have been used exten-
sively in recent years as a quantum field theoretic measure
for chaos [1,38,39]. In particular, we will construct a
series of C-functions all of which have the form

CðμÞ∼ 1

β
lim

t�≫t0≫β

Z
t0þμ

t0

dtRe−2πtR=βRe

�
Fd −F

�
tR −

iβ
4

��
;

ð1:2Þ

where Fd and FðtÞ, as defined in [1], are standard thermal
correlators of simple operators that diagnose chaos.10 To be
specific, in the above expression FðtR − iβ=4Þ is a CFT3

four-point correlator of scalar primaries dual to NG bosons
in the Minkowski vacuum state, which we interpret as an
OTOC in a thermal state of temperature 1=β on Rindler
space, where tR is the Rindler time. Monotonicity and
positivity of CðμÞ follow directly from positivity conditions
that FðtÞ satisfies [1] (see also [13,14,40]). A special case of
(1.2) is a set of monotonically decreasing independent
functions, also known as a-functions, that interpolate
between aUV in the UV (μ → ∞) and aIR in the IR
(μ → 0) establishing the RG irreversibility. As a by-product,
we obtain a relation between 4D Δa and 3D OTOC

Δa ∝
1

β
lim

t�≫t0≫β

Z
∞

t0

dtRe−2πtR=βRe

�
Fd −F

�
tR −

iβ
4

��
> 0:

ð1:3Þ

It is only natural to wonder whether there is a deeper, more
fundamental connection between RG and chaos in QFT. At
first sight, a more general connection seems unlikely. After
all, chaos probes long-time but not necessarily low-energy

properties of quantum systems. So, it is not expected that the
full richness of physics associated with chaos can be
captured by RG which only deals with low-energy degrees
of freedom. However, information about the high-energy
degrees of freedom is not completely lost in any unitary RG
flow. They are simply hidden in the positivity and monot-
onicity properties of RG. The relation (1.2) connects these
general features of RG with analogous monotonicity and
positivity properties of semiclassical chaos, however, in
different spacetime dimensions. It is certainly possible that
this connection is more fundamental and holds even in the
same spacetime dimensions.11

One significant hint for this general connection is that
both RG and chaos are intimately related to causality. This
is certainly true in 4D in which the a-theorem of [4] could
be derived by invoking causality [42]. Moreover, for
holographic theories, the RG monotonicity follows directly
from causality in general spacetime dimension [43,44].
Likewise, the chaos bound of [1] is known to be related to
causality as well [13,14,40].
There is another nice interrelation between RG, chaos,

and causality in 4D CFT. Any unitary CFT must obey
certain causality constraints that are known as the con-
formal collider bounds [45–48]. The collider bounds can
also be thought of as a special case of the chaos bound for
vacuum CFT correlators [40]. In 4D, the collider bounds
impose that the Euler central charge a must be positive.
This positivity together with the 4D a-theorem then imply
that the Euler central charge is a good measure of the
effective number of degrees of freedom in 4D CFT.
All these hints are suggestive of a much deeper relation-

ship between RG and chaos. It would be very interesting to
make this connection more direct and explicit. For example,
chaos in QFT could be formulated as coarse-graining of the
operator algebra. Such a description of chaos does exist in
quantum mechanics [49]. It is also possible that both RG and
semiclassical chaos are related by some version of the
eigenstate thermalization hypothesis [50–52].

C. Outline

The rest of the paper is organized as follows. We begin
with a detailed analysis of 4D RG flows with a broken Uð1Þ
global symmetry in Sec. II. In Sec. III we discuss 4D RG
flows with N ¼ 1 supersymmetry and compare it with our
general results. In Sec. IV we derive the most general low-
energy effective action that describes 4D RG flows with a
broken continuous symmetry group G, where G can be a
direct product of a finite number of simple Lie groups.
Furthermore, we derive constraints on this effective action
for unitary RG flows. In Sec. V we construct C-functions
that have the form (1.2). Finally, in Sec. VI we provide a

9For similar bounds on effective actions from scattering
amplitudes see [30–33].

10Note that CðμÞ in Eq. (1.2) is independent of t0 as long as t0
is much smaller than the effective scrambling time t�.

11A related but somewhat different question is how chaotic
dynamics in QFT changes under RG flows. This has been
discussed recently in [41] for holographic theories.
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simple example which highlights basic features of our
general framework. We take the CFTUV to be a theory of
two massless scalars. The conformal symmetry and the
global Uð1Þ symmetry are broken explicitly by introducing
different mass terms for two scalars. The CFTIR is this case is
trivial with no degrees of freedom.

II. RG FLOWS WITH A BROKEN Uð1Þ GLOBAL
SYMMETRY

In this section we consider 4D CFTs with some Uð1Þ
global symmetry in which the conformal symmetry and the
Uð1Þ symmetry are broken either spontaneously or explic-
itly. We assume that the induced flow terminates in a
different CFT in the deep IR which is invariant under the
same Uð1Þ transformation. Every such RG flow can be
described as spontaneous breaking of conformal and Uð1Þ
symmetries. This enables us to study general features of
these RG flows in terms of the effective action of some
Nambu-Goldstone bosons of spontaneously broken con-
formal and Uð1Þ symmetries.

A. The dilaton-axion effective action

Consider a CFTUV in (3þ 1) dimensions with a global
Uð1Þ symmetry. We assume that the CFTUV has a moduli
space of vacua which enables us to break the conformal
symmetry and theUð1Þ symmetry spontaneously by turning
on VEVs for an operatorO. The VEV hOi ∼ f triggers a RG
flow that leads to some CFTIR which we assume to be
invariant under the UVUð1Þ symmetry.12 In other words, the
global Uð1Þ symmetry of the UV theory is also a symmetry
of CFTIR (which can be anomalous in the presence of
background fields). Of course, the CFTIR can transform
trivially under the UV Uð1Þ symmetry group.
Each broken generator associated with spontaneous

breaking of continuous global symmetries produces a
massless NG pseudo-scalar. The low-energy effective
action of the NG bosons can be obtained in a systematic
way by using the coset construction introduced in [53,54]
(see also [55]). The coset construction for spontaneous
breaking of spacetime symmetries is more subtle [56].
When the conformal algebra is spontaneously broken to
Poincaré subalgebra

soð4; 2Þ → isoð3; 1Þ; ð2:1Þ

one may expect that there are five NG modes—a scalar τ
associated with the broken dilation generatorD and a vector
aμ associated with the broken special conformal generators
Kμ. However, not all these modes are independent because
of the inverse Higgs effect [57]. This follows from the fact

that the commutator ½Kμ; Pν� ¼ 2ðJμν − ημνDÞ can be uti-
lized to eliminate aμ ¼ 1

2
∂μeτ [58–63].

So, the spontaneously broken conformal symmetry
generates only one massless NG boson—the dilaton τ.
The dilaton is accompanied by a pseudo-scalar β, which is
the NG boson of the spontaneously brokenUð1Þ symmetry.
For RG flows in which the conformal symmetry and the
Uð1Þ symmetry are broken explicitly, the dilaton τ and the
axion β can be introduced as compensators for broken
symmetries. So, in general the low-energy theory consists
of CFTIR and massless scalars τ and β,

SIR ¼ CFTIR þ Seff ½τ; β�: ð2:2Þ

The effective action Seff ½τ; β� can be obtained by using the
coset construction. However, following [15] we will derive
the effective action in a physically more transparent way by
coupling the theory to background fields.
We begin by coupling the theory to a background metric

gμνðxÞ and a backgroundUð1Þ gauge potential AμðxÞ. In the
presence of background fields, the conformal trace
anomaly has the following structure:

hTμ
μi ¼ −aE4 þ cW2 þ κ0F2; ð2:3Þ

up to total derivative terms which can be removed by
adding finite and covariant counterterms in the UV theory.
Here, E4 is the 4D Euler density, Wμναβ is the Weyl tensor,
and F ¼ dA is the flux for the background gauge field.
Global symmetries can also have ’t Hooft anomalies. In 4D,
such anomalies reveal themselves through the current jμ
associated with the Uð1Þ symmetry which is no longer
conserved

h∇μjμi ¼ c1FμνF̃μν þ c2RμναβR̃μναβ: ð2:4Þ

Note that Hodge dualization

F̃μν ¼
1

2
ϵμναβFαβ; R̃μναβ ¼

1

2
ϵμνγδRγδ

αβ ð2:5Þ

is defined with respect to the background metric gμν. Since
the global symmetry is anomalous, one may worry that the
trace anomaly (2.3) can also have nongauge invariant
terms. However, as shown in [15], the Wess-Zumino
consistency conditions guarantee that the trace anomaly
is gauge invariant.
In the IR, the gauge field Aμ may not couple to CFTIR at

all or it can couple to some spin-1 Abelian conserved
current jIRμ of CFTIR. In the latter case, the Uð1Þ symmetry
associated with jIRμ can also have ’t Hooft anomalies. The
standard anomaly matching arguments of [29] imply that
the IR theory (2.2) must have the same anomalies as the UV
theory CFTUV. This requirement completely fixes the low-
energy effective action Seff ½gμν; Aμ; τ; β�. The flat space

12It should be noted that there could be other emergent Uð1Þ
symmetries in the IR that do not embed at all in the UV theory.
These additional Uð1Þs will not affect our argument.
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limit of Seff ½gμν; Aμ; τ; β� with no background gauge field
then leads to the effective action Seff ½τ; β�.
Let us now study the variation of the action (2.2) under

diff × Weyl transformations and gauge transformations.
Under Weyl transformations

gμνðxÞ → e2σðxÞgμνðxÞ; τðxÞ → τðxÞ þ σðxÞ: ð2:6Þ

Similarly, the gauge transformation is defined in the usual
way

AμðxÞ→AμðxÞþ∇μαðxÞ; βðxÞ→βðxÞþαðxÞ: ð2:7Þ

Of course, in general CFTUV and CFTIR have a different set
of anomalies. Hence, all changes in anomalies in the flow
from CFTUV to CFTIR must be compensated by the dilaton
and the axion. Hence, the Weyl variation of the effective
action is completely fixed

δσSeff ½gμν; Aμ; τ; β� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
σðxÞð−ΔaE4

þ ΔcW2 þ Δκ0F2Þ: ð2:8Þ

Likewise, variation of the effective action under the gauge
transformation (2.7) is also fixed

δαSeff ½gμν; Aμ; τ; β� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
αðxÞðΔc1FμνF̃μν

þ Δc2RμναβR̃μναβÞ: ð2:9Þ

In the above equations Δð� � �Þ denotes the change of an
anomaly under the RG flow, where IR anomalies should be
understood as the total anomalies of CFTIR, the dilaton, and
the axion. The variational equations (2.8) and (2.9) can now
be solved systematically to obtain Seff ½gμν; Aμ; τ; β� by a
straightforward generalization of [15].
It is useful, as discussed in [8], to decompose the

effective action in the following way:

Seff ½gμν; Aμ; τ; β� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
βðxÞðΔc1FμνF̃μν

þ Δc2RμναβR̃μναβÞ þ
Z

d4x
ffiffiffiffiffiffi
−g

p
τðxÞ

× ð−ΔaE4 þ ΔcW2 þ Δκ0F2Þ
þ δSWZ þ Sinv: ð2:10Þ

Note that the first term in the above equation generates the
correct gauge variation (2.9). On the other hand, the second
term in the above equation generates the correct Weyl
variation (2.8) plus an extra term −Δa

R
d4x

ffiffiffiffiffiffi−gp
τðxÞδσE4

which is canceled by adding a nonlinearWess-Zumino term
δSWZ of τ. Of course, we can also add a term Sinv in the
action whose gauge and Weyl variations vanish. The main

advantage of this formalism is that δSWZ is uniquely fixed
by Δa [4]

δSWZ ¼ −Δa
Z

d4x
ffiffiffiffiffiffi
−g

p �
4

�
Rμν −

1

2
gμνR

�

×∇μτ∇ντ − 2ð∇τÞ2ð2□τ − ð∇τÞ2Þ
�

ð2:11Þ

up to terms that are invariant under both diff × Weyl
transformations and gauge transformations and hence
can be absorbed in Sinv.
Importantly, only δSWZ and Sinv in (2.10) contribute in

the flat space limit with no background gauge field. We
now focus on Sinv. This is the part of the effective action
which, in general, depends on the details of the RG flow.
Nevertheless, at each derivative order only a finite number
of independent gauge and Weyl-invariant terms can appear
in Sinv.

13 These terms can be efficiently constructed by
defining gauge and Weyl-invariant combinations

ĝμν ¼ e−2τgμν; Âμ ¼ Aμ −∇μβ: ð2:12Þ

Up to four derivatives, the most general Sinv is given by [15]

Sinv ¼
Z

d4x
ffiffiffiffiffiffi
−ĝ

p �
−
f2

2

�
R̂
6
þ γ20ĝ

μνÂμÂν

�

þ
X9
i¼1

γiWi þOð∇6Þ
�
; ð2:13Þ

where R̂ is defined using the Weyl-invariant metric (2.12)
and four-derivative invariants Wi are given in Appendix A.
Note that f has dimension of mass and γi are real
dimensionless coefficients. We are now ready to write
down the low-energy effective action by taking the flat
space limit of (2.10) with no background gauge field.
Putting everything together, Seff ½τ; β� is given by

Seff ½τ; β� ¼
Z

d4x
�
−
f2

2
e−2τðð∂τÞ2 þ γ20ð∂βÞ2Þ

þ 2Δað∂τÞ2ð2□τ − ð∂τÞ2Þ
�

þ
Z

d4xe−4τ
�X9

i¼1

γiWi

�
gμν¼ημν;Aμ¼0

þ � � � ;

ð2:14Þ

13The Sinv is constructed from terms that are exactly invariant
under the gauge and Weyl transformations. Hence, it is possible
that we miss Wess-Zumino-type terms in the action that are not
exactly invariant but shift by a total derivative under the gauge
and Weyl transformations [64]. However, these terms do not
contribute at the four-field four-derivative level and can be
ignored for our purpose.
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where dots represent higher derivative terms. Equations of
motion at the two-derivative level are given by

□τ ¼ ð∂τÞ2 − γ20ð∂βÞ2; □β ¼ 2ð∂τ · ∂βÞ: ð2:15Þ

Terms that vanish once we impose the on-shell condition
for the dilaton and the axion can be safely ignored at low
energies since these terms can only affect low-energy
observables at subleading orders. Hence, the above effec-
tive action can be further simplified by using the above
equations of motion yielding

Seff ½τ;β� ¼
Z

d4x

�
−
f2

2
e−2τðð∂τÞ2 þ ð∂βÞ2Þ

þ 2Δað∂τÞ4 − 4Δað∂τÞ2ð∂βÞ2
�

þ
Z

d4xðBð∂βÞ4 þ bð∂τ · ∂βÞ2Þ þ � � � ; ð2:16Þ

where we have redefined β to absorb γ0. Note that
coefficients b and B are some linear combinations of γi
(see Appendix A).

B. Physical dilaton and axion

The effective action (2.16) is not very useful when we
wish to study the theory using traditional tools of QFT. We
resolve this issue by a simple field redefinition:

e−ðτþiβÞ ¼ 1 −
ϕþ iξ

f
; ð2:17Þ

where the physical fields ϕ and ξ are real. Plugging this into
the action (2.16) and then expanding up to fourth order in
the fields, we obtain

Seff ½ϕ; ξ� ¼
Z

d4x

�
−
1

2
ð∂ϕÞ2 − 1

2
ð∂ξÞ2

þ Δa
2f4

ðϕ2
□

2ϕ2 − 2ξ2□2ϕ2Þ
�

þ 1

4f4

Z
d4xðBξ2□2ξ2 þ bϕξ□2ϕξÞ þ � � � ;

ð2:18Þ

where we have used the equations of motion to simplify the
action. The first line of the action is completely fixed by the
UV and the IR fixed points of the RG flow. On the other
hand, the second line depends on the details of the RG flow
and parameters B and b, in general, are completely
arbitrary. Dots represent terms with more than four fields
and/or four derivatives.
To summarize, any 4D RG flow with Uð1Þ global

symmetry breaking between two CFTs can be described
by the effective action of NG bosons of spontaneously

broken conformal and Uð1Þ symmetry. Up to four-deriva-
tive order, the effective action is completely fixed in terms
of three parameters fΔa; b; Bg. Also the effective action
(2.18) has the structure (1.1) implying RG flows that do not
break the global symmetry are a special case of the general
scenario with ξ → 0. There is a discrete difference between
RG flows with and without global symmetry breaking;
however Seff ½ϕ; ξ� still has a smooth ξ → 0 limit.
The above feature of the effective action (2.18), as

correctly pointed out in [15], has an important implication.
The four-particle interaction of the physical dilaton remains
unmodified even when we break the global Uð1Þ sym-
metry. This implies that the proof of the a-theorem by
Komargodski and Schwimmer applies here as well.
Moreover, from the action (2.18) it is clear that there are
other constraints on the parameters fΔa; b; Bg for unitary
RG flows. Next we will introduce an equivalent CFT3

description of these RG flows to impose constraints on
fΔa; b; Bg from the chaos bound.

C. Dual CFT3 description

It was shown in [8] that every RG flow connecting two
conformal fixed points in d dimensions can be interpreted
as deformations of the spectrum of a generalized free
CFTd−1 for d ≥ 3. This dual CFTd−1 for any unitary RG
flow must obey the Euclidean axioms. As a consequence,
four-point correlators of the dual CFTd−1 must obey the
chaos bound [1]. This imposes rigorous constraints on
fΔa; b; Bg for unitary RG flows.
We analyze the effective action (2.18) as a theory in

AdS4 with AdS radius RAdS large but finite. The action now
is simply given by

Seff ½ϕ; ξ� ¼
Z

d4x
ffiffiffiffiffiffiffiffiffi
gAdS

p �
−
1

2
gμνAdS∂μϕ∂νϕ

−
1

2
gμνAdS∂μξ∂νξþ Lint

�
; ð2:19Þ

where the interactions are obtained from (2.18)

Lint ¼
1

4f4
ð2Δaϕ2

□
2ϕ2 − 4Δaξ2□2ϕ2 þ Bξ2□2ξ2

þ bϕξ□2ϕξÞ þ � � � : ð2:20Þ

This is a theory in AdS without dynamical gravity. In the
dual CFT3, the stress tensor decouples from the low-energy
spectrum. In other words, the CFT3 central charge cT → ∞;
however, fRAdS ≡ Δf is large but fixed.14 The resulting
CFT3 must be well behaved below the cutoff scale Δf. This
effective CFT3 contains two scalar primary operators Oϕ

and Oξ which are dual to the dilaton and the axion

14The central charge cT is the overall coefficient that appears in
the stress tensor two-point function.
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respectively. The fact that ϕ and ξ are NG bosons implies
that

Δϕ ¼ Δξ ¼ 3 ð2:21Þ

will not receive perturbative corrections.
We follow the formalism developed in [8] and interpret the

dual CFT3 as a small perturbation of a generalized free CFT
in 3D with two scalar primaries. First consider the case,
Lint ¼ 0. The dual CFT3, in this case, is exactly a generalized
free CFTof scalar primariesOϕ andOξ. In addition, crossing
symmetry requires that this generalized free CFT must also
contain infinite towers of double-trace operators ½OϕOϕ�n;l,
½OξOξ�n;l, and ½OϕOξ�n;l with spin l and dimension 6þ
2nþ l for all integers n ≥ 0 [65,66]. We now turn on the
interaction Lint in AdS4. The bulk theory (2.19) now
corresponds to a deformed solution of CFT3 crossing
equations in which double-trace operators ½OϕOϕ�n;l,
½OξOξ�n;l, and ½OϕOξ�n;l acquire anomalous dimensions

γðϕϕÞn;l , γðξξÞn;l , and γðϕξÞn;l respectively. The information of
fΔa; b; Bg is contained in these anomalous dimensions.

D. CFT Regge correlators

We are now in a position to study Lorentzian four-point
functions for the CFT3 dual to the effective field theory
(2.19). First, we start with two-point functions which can
be easily computed from (2.19)

hOϕðx1ÞOϕðx2Þi ¼ hOξðx1ÞOξðx2Þi ¼
c0

jx1 − x2j6
; ð2:22Þ

where c0 ¼ 12
π2
.

Next we consider various four-point functions of oper-
atorsOϕ andOξ. We are interested in the contributions of the
four-point interaction Lint in the bulk theory (2.19) to these
four-point correlators. These are obtained from the tree-level
Witten diagram in Fig. 3. We begin with the Lorentzian
correlator Gϕϕϕϕðρ; ρ̄Þ ¼ hOϕðx4ÞOϕðx1ÞOϕðx2ÞOϕðx3Þi
where all points are restricted to a 2D subspace:

x1 ¼ −x2 ¼ ðx− ¼ ρ; xþ ¼ −ρ̄; 0Þ;
x3 ¼ −x4 ¼ ðx− ¼ −1; xþ ¼ 1; 0Þ; ð2:23Þ

with 0 < ρ < 1 and ρ̄ > 1. Note that we are using null
coordinates x� ¼ x0 � x1, where x0 is time (see Fig. 4). The
CFT Regge limit is defined as

ρ → ∞; ρ̄ → 0; with ρρ̄ ¼ fixed > 0 ð2:24Þ

of the Lorentzian correlator hOϕðx4ÞOϕðx1ÞOϕðx2Þ
Oϕðx3Þi, where operators are ordered as written. Our goal
is to compute the contribution of Lint to Gϕϕϕϕðρ; ρ̄Þ in the
Regge limit (2.24). We follow [8] to obtain the leading Regge
contribution

Gϕϕϕϕðρ; ρ̄Þ ≈
c20

ð16ρρ̄Þ3 þ i
Δa

16π5Δ4
f

ρ

ðρρ̄Þ7=2 f3333

×
�
−
1

2
logðρρ̄Þ

�
ð2:25Þ

where the first term comes from the bulk identity exchange
(disconnected Witten diagram). The function f3333 is an
integral

f3333ðsÞ ¼
Z

∞

−∞
dνΩiνðsÞΓ

�
13=2þ iν

2

�
2

Γ

×

�
13=2 − iν

2

�
2

ð2:26Þ

of the harmonic function Ωiν on hyperbolic space H2.
15 The

exact expression for f3333ðsÞwill not be important for us. The
only relevant information is that f3333ð− 1

2
logðρρ̄ÞÞ > 0

for 0 < ρρ̄ < 1.

FIG. 3. The tree-level contact Witten diagram.

FIG. 4. A Lorentzian four-point function of W ¼ Oϕ þ c1Oξ

and V ¼ Oϕ þ c2Oξ. All points are restricted to a 2D subspace
fx0; x1g and time x0 is running upward. Null coordinates are
defined as x� ¼ x0 � x1.

15Harmonic functions Ωiν are known in any dimension [67].
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Similarly, the Lorentzian correlator Gξξξξðρ; ρ̄Þ ¼ hOξðx4Þ
Oξðx1ÞOξðx2ÞOξðx3Þi can be computed in an identical way.
In particular, the leading Regge contribution is given by

Gξξξξðρ; ρ̄Þ ≈
c20

ð16ρρ̄Þ3 þ i
B

32π5Δ4
f

ρ

ðρρ̄Þ7=2 f3333

×

�
−
1

2
logðρρ̄Þ

�
: ð2:27Þ

There are many mixed four-point functions that we can
construct with operatorsOϕ andOξ. Clearly, the four-point
interaction Lint can only contribute to mixed correlators
with two Oϕ operators and two Oξ operators. For example,
consider the correlator

Gϕϕξξðρ; ρ̄Þ≡ hOϕðx4ÞOξðx1ÞOξðx2ÞOϕðx3Þi
¼ hOξðx4ÞOϕðx1ÞOϕðx2ÞOξðx3Þi: ð2:28Þ

At the leading order in the Regge limit, by following [8],
we obtain

Gϕϕξξðρ; ρ̄Þ ≈
c20

ð16ρρ̄Þ3 þ i
b

128π5Δ4
f

ρ

ðρρ̄Þ7=2 f3333

×

�
−
1

2
logðρρ̄Þ

�
: ð2:29Þ

Note that the same f3333 function appears here as well.
Moreover, the correlator Gϕξϕξðρ; ρ̄Þ≡ hOϕðx4ÞOξðx1Þ

Oϕðx2ÞOξðx3Þi and its cousins also grow in the limit ρ →
∞ for fixed ρρ̄. In particular, at tree level all these
correlators have the following Regge behavior:

Gϕξϕξðρ; ρ̄Þ ≈ i
ðb − 8ΔaÞ
256π5Δ4

f

ρ

ðρρ̄Þ7=2 f3333

×

�
−
1

2
logðρρ̄Þ

�
: ð2:30Þ

E. Anomalous dimensions

The bulk theory (2.19) leads to anomalous dimensions
to double-trace operators ½OϕOϕ�n;l¼2, ½OξOξ�n;l¼2, and
½OϕOξ�n;l¼2. Among these double twist operators, the
operators ½OϕOϕ�0;2, ½OξOξ�0;2, and ½OϕOξ�0;2 are of
particular importance. So, we introduce the notation

γϕϕ ≡ γðϕϕÞ0;2 ; γξξ ≡ γðξξÞ0;2 ; γϕξ ≡ γðϕξÞ0;2 ð2:31Þ

to denote anomalous dimensions of spin-2 double-trace
operators with minimal twists.
From the Regge correlators of the previous section, we

can relate fΔa; b; Bg to anomalous dimensions γϕϕ, γξξ,
and γϕξ. Following [8], we find

γϕϕ ¼ −
704Δa
13π2Δ4

f

; γξξ ¼ −
352B
13π2Δ4

f

;

γϕξ ¼
88ð8Δa − bÞ

13π2Δ4
f

: ð2:32Þ

There are general constraints on families of minimal twist
operators that appear in the OPEs of primary operators of
any unitary CFTs in more than two dimensions [14,65].
It is tempting to apply these constraints directly to (2.32);
however one should be more careful for the following
reason. The dual CFT3 must be regarded as an effective
CFTwhich is defined order by order in perturbation theory.
Of course, even for such a theory bounds of [14,65] apply
to minimal twist operators. However, identifying families
of minimal twist operators can be subtle for an effective
CFT. In particular, it is easy to obtain a wrong bound when
the anomalous dimension and the OPE coefficient of a
candidate minimal twist operator receive contributions at
different orders in perturbation theory.16 Therefore, we will
not apply the CFT Nachtmann theorem directly to (2.32).
Instead, we will utilize the chaos bound which leads to
similar but not exactly equivalent constraints. Positivity
conditions obtained from the chaos bound are more reliable
since they follow from rigorous CFT sum rules [13,68,69].

F. Constraints from the chaos bound

We now impose constraints on the effective action (2.18)
by utilizing the chaos bound in the dual CFT3. Consider the
Lorentzian correlator

G ¼ hVðx4ÞWðx1ÞWðx2ÞVðx3Þi
hWðx1ÞWðx2ÞihVðx4ÞVðx3Þi

ð2:33Þ

in the Regge kinematics (2.23), as shown in Fig. 4, where
operators inside the correlator are ordered as written. In the
above correlator, W and V are simple Hermitian operators
which are defined as follows:

W ¼ Oϕ þ c1Oξ; V ¼ Oϕ þ c2Oξ; ð2:34Þ

where c1 and c2 are arbitrary real numbers. In the Regge limit
(2.24), these types of correlators obey some nice properties in
any unitary CFT. For example, any Lorentzian correlator,
such as G, where operators are inserted symmetrically in the
Rindler wedges can be interpreted as thermal correlators.
More precisely, the Minkowski vacuum can be interpreted as
the thermofield double entangling the right Rindler wedge

16For example, consider the stress tensor operator which has
twist 1. Obviously, it appears in the OPE of OϕOϕ, as well as
OξOξ. Hence, the stress tensor is truly the lowest twist spin-2
operator in the full theory. However, in the limit cT → ∞, the
stress tensor contribution to four-point correlators is subleading.
So, it is unclear whether, and in what sense, the CFT Nachtmann
theorems of [14,65] apply to (2.32).
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with the left Rindler wedge. In this “thermal” state of
temperature T, a standard measure for chaos is the OTOC [1]

FðtRÞ ¼ tr½yVyWðtRÞyVyWðtRÞ� ð2:35Þ

where tR in this case is the Rindler time and

y4 ¼ e−βH

tr½e−βH� ; β ¼ 1

T
: ð2:36Þ

The Minkowski correlator (2.33) now can be viewed as a
thermal correlator on Rindler space

G ¼ FðtR − iβ
4
Þ

Fd
; Fd ¼ tr½y2Vy2V�tr½y2WðtRÞy2WðtRÞ�;

ð2:37Þ

where e2πtR=β ¼ ρ=
ffiffiffiffiffi
ρρ̄

p
. The correlator G in the Regge limit

behaves in the following way:

G ¼ 1þ δG; ð2:38Þ

where the growth of δG ∼ ρ=
ffiffiffiffiffi
ρρ̄

p
can now be thought of as

the Lyapunov growth of a thermal quantum system.
Moreover, Δf now has a natural interpretation as the
scrambling time t� ¼ β logðΔfÞ.
The chaos bound of [1] imposes rigorous constraints on

δG in the Regge limit (2.24): (i) δG must not grow faster
than ρ, and (ii) when δG grows as ρ,

ImδG ≥ 0 for 0 < ρρ̄ < 1: ð2:39Þ

The chaos bound can be interpreted as a causality constraint
[13,68,69] or as a unitarity constraint in certain scenarios
[67,70]. The positivity condition (2.39) applies to effective
CFTs as well since it follows from a CFT sum rule.17

We are now in a position to compute δG by utilizing our
results from Sec. II D. Specifically, we obtain

G ¼ ð16ρρ̄Þ3
c20ð1þ c21Þð1þ c22Þ

ðGϕϕϕϕ þ c21c
2
2Gξξξξ

þ ðc21 þ c22ÞGϕϕξξ þ 4c1c2GϕξϕξÞ ð2:40Þ

implying δG ∼ iρ ∼ ie2πtR=β. The chaos bound (2.39) now
imposes

8Δaþ4c21c
2
2Bþðc21þc22Þbþ2c1c2ðb−8ΔaÞ≥ 0 ð2:41Þ

for all c1; c2 ∈ R. First, the above inequality immediately
implies the 4D a-theorem

Δa ¼ aUV − aIR ≥ 0; ð2:42Þ

where the equality holds only when the dilaton is exactly
free representing the case in which there is no RG flow.
Moreover, the inequality (2.41) imposes constraints on B
and b as well

B ≥ 0; b ≥ 0; b ≥ 4Δa −
ffiffiffiffiffiffiffiffiffiffiffiffi
8BΔa

p
: ð2:43Þ

Note that b ¼ 0 and/or B ¼ 0 necessarily require Δa ¼ 0
(no RG flow). The excluded region in the B-b plane is
shown in Fig. 2. The last inequality which follows from the
interference effect can be interpreted as an upper bound
on Δa.
Clearly, δG is a monotonically increasing function of

Rindler time tR. This fact, as we will explain in Sec. V, it is
closely related to the existence of multiple C-functions that
decrease monotonically under RG flows in 4D.
As mentioned in the Introduction, the bounds (2.43) can

also be obtained directly in flat space following [42] with
some assumption about the asymptotic behavior of four-
point scattering amplitudes. The last bound of (2.43) is
more subtle and may require additional assumptions (see
[30–33] for similar bounds).

G. Bootstrap corner

When we look closely, there is a kink in the exclusion
plot 2 in Fig. 2. The kink is located at18

B ¼ 2Δa; b ¼ 0 ð2:44Þ

which corresponds to the effective action

Seff ½ϕ; ξ� ¼
Z

d4x

�
−
1

2
ð∂ϕÞ2 − 1

2
ð∂ξÞ2

þ 2Δa
f4

ðð∂ϕÞ2 − ð∂ξÞ2Þ2
�
: ð2:45Þ

This type of corner, often seen in the conformal bootstrap,
is associated with interesting theories. However, we are not
aware of any RG flows that are described by the effective
action (2.45).

III. SUPERSYMMETRIC FLOWS

A simple example of a RG flow with broken global
symmetry comes naturally from supersymmetry. Consider
4DN ¼ 1 SCFTs in which conformal symmetry is broken
by an operator that preserves the N ¼ 1 supersymmetry.
This breaks the Uð1Þ R-symmetry as well since the stress
tensor is in the same supermultiplet as the R-current. As a

17This CFT sum rule plays a crucial role in constructing
C-functions from OTOC. We will discuss this in Sec. V.

18As mentioned before, b ¼ 0 is ruled out. By Eq. (2.44), we
mean that b

Δa → 0 is parametrically suppressed.
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result the theory flows to another SCFT in the deep IR. In
this scenario, the NG fields τ and β are part of a chiral
superfield Φ ¼ τ þ iβ þ � � �. The resulting low-energy
effective action for the bosonic part is given by [15,29]

Seff ½ϕ; ξ� ¼
1

2

Z
d4x

�
−ð∂ϕÞ2 − ð∂ξÞ2 þ Δa

f4
ðϕ2□2ϕ2

þ ξ2□2ξ2 − 2ξ2□2ϕ2 þ 4ϕξ□2ϕξÞ
�

ð3:1Þ

implying

B ¼ 2Δa; b ¼ 8Δa: ð3:2Þ

These relations can be thought of as the N ¼ 1 super-
symmetric Ward identities [15]. The relations (2.32) allow
us to reinterpret these Ward identities as simple relations
among various anomalous dimensions in the dual CFT3

γϕϕ ¼ γξξ; γϕξ ¼ 0 ð3:3Þ

as shown in Fig. 5.
In Sec. V, we will argue that there are infinitely many

distinct C-functions that decrease monotonically from aUV
to aIR under RG flows. In particular, for N ¼ 1 super-
symmetric flows in 4D, by using the Ward identities
of [15], we define the following set of independent
C-functions (also known as a-functions) in the dual
CFT3 description:

CðμÞ ¼ aIR þ Δ̃4
fη

7
2

f3333ð− 1
2
logðηÞÞ lim

1

Δ4
f

≪x≪1

Z
x

Δ−4μ=f
f x

dσRe

×
�ðr21 þ r22Þc20

ð16ηÞ3 − r21Gϕϕϕϕ − r22Gϕϕξξ

�
ð3:4Þ

for all r1; r2 ∈ R, where η and σ are defined in Eq. (5.2).19

In the above equation, we have exploited the positivity of
the integrand which follows from Rindler positivity [40].
Moreover, Δ̃f is given by fRAdS times some positive
numerical factor (which is independent of η, r1, and r2).
The numerical factor can always be chosen such that

C

�
μ

f
→ 0

�
¼ aIR; C

�
μ

f
→ ∞

�
¼ aUV: ð3:5Þ

This will be discussed in more detail in Sec. V, where the
integral on the right-hand side of (3.4) will be written as
an integral over an OTOC. Of course, a similar set of
C-functions can also be constructed from combinations of
flat space amplitudesAðϕϕϕϕÞ andAðϕξϕξÞ by extending
the procedure presented in [4].
The presence of multiple a-functions forN ¼ 1 flows has

a long and interesting history. For example, it was a source of
much interest right after a-maximization was proposed.
However, it is not clear if there is any relation between
the C-functions of (3.4) and a-maximization [71–73].
In fact, it is also not obvious whether different C-functions
of (3.4) are truly distinct. It is possible that these C-functions
just represent different RG schemes.20

IV. GENERALIZATION TO NON-ABELIAN
GLOBAL SYMMETRIES

There are a few subtleties associated with generalizing
the preceding discussion to the breaking of non-Abelian
global symmetries. Now we start with a CFTUV in (3þ 1)
dimensions with a global symmetry group G, where G is
any compact Lie group. For simplicity, we assume that G
is simple. However, as we will explain later, our result
is applicable even when G is a direct product of a finite
number of simple Lie groups.
Similar to the Abelian case, we again couple the UV

theory to a background metric gμνðxÞ and a background
gauge field AμðxÞ. In the present case, it is important that
the gauge field AμðxÞ is introduced in such a way that it
makes the global symmetry of the UV theory local. In
general, the global symmetry G can have ’t Hooft anomaly.

FIG. 5. 4D RG flows connecting two N ¼ 1 SCFTs are
represented by the black dot inside the allowed region in the
B-b plane. Two dashed red lines correspond to the N ¼ 1
supersymmetric Ward identities which can be equivalently stated
as γϕϕ ¼ γξξ and γϕξ ¼ 0.

19Note that c1, c2 and r1, r2 are related in the following way:

r1 ¼ ð1þ c1c2Þ; r2 ¼ c1 − c2:

Moreover, as we found before c0 ¼ 12
π2
.

20We thank J. Heckman for pointing it out.
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In that case, the above gauging seems to be problematic.
However, we can always introduce a set of massless
spectating fields which only couple to the gauge field Aμ

(but not CFTUV) in such a way that the G-anomaly is
canceled. This standard trick enables us to make the global
symmetry of CFTUV local by coupling it to a gauge field
Aμ. Of course, at the linearized level, Aμ is coupled to
CFTUV through the spin-1 conserved current associated
with the global symmetry G.
Let us now imagine that the conformal symmetry and the

global symmetry of CFTUV are spontaneously broken by
turning on VEVs for some operator

G × soð4; 2Þ → isoð3; 1Þ: ð4:1Þ

This starts a RG flow that ends at CFTIR. We will only
consider RG flows in which CFTIR is invariant under the
action of the group G. This means either the “individual
fields” of CFTIR transform trivially under the group G or
more generally CFTIR also has the UV symmetry G (which
can be anomalous). Equivalently, the gauge field Aμ at the
linearized level, couples only to some spin-1 conserved
current of CFTIR (if at all).21 Of course, CFTIR can have
other global symmetries that do not embed at all in the UV
theory.
These classes of RG flows are also described in terms of

an effective action of the NG bosons of broken symmetries.
The same effective action also describes RG flows where
the conformal symmetry and the global symmetry of the
CFTUV are broken explicitly. In that scenario, as discussed
before, the NG bosons should be interpreted as compensa-
tor fields.

A. Effective action

One advantage of coupling the theory to background
fields is that the standard coset construction for sponta-
neous symmetry breaking emerges naturally from it.
Moreover, it is also more convenient to track all anomalies
when we couple the theory to a background metric gμνðxÞ
and a background gauge field AμðxÞ. The background
gauge field AμðxÞ can be decomposed as follows:

AμðxÞ ¼ Ai
μðxÞTi; ð4:2Þ

where Ti with i ∈ f1; 2;…; dimGg are Hermitian gener-
ators of G in the fundamental representation satisfying

½Ti; Tj� ¼ ifijkTk ð4:3Þ

and TrTiTj ∝ δij.
The broken global symmetry generates massless NG

bosons βi, i ∈ f1;…; dimGg, which accompany the dila-
ton τ. The low-energy effective action Seff ½τ; βi� can be
derived by studying the variation of the action under diff ×
Weyl transformations and gauge transformations. Weyl
transformations act in the usual way (2.6). On the other
hand, the gauge field transforms under the gauge trans-
formation as

AμðxÞ → ΩðxÞAμðxÞΩ−1ðxÞ þ iΩðxÞ∂μΩ−1ðxÞ; ð4:4Þ

where ΩðxÞ ¼ eiαiðxÞTi ∈ G. Under the same gauge trans-
formation, NG fields βðxÞ≡ βiðxÞTi transform as

gðxÞ≡ eiβðxÞ → ΩðxÞeiβðxÞ: ð4:5Þ

The infinitesimal gauge transformation takes the familiar
form

AμðxÞ → AμðxÞ þ ∂μαðxÞ − i½Aμ; α�
≡ AμðxÞ þDμαðxÞ; βðxÞ → βðxÞ þ αðxÞ; ð4:6Þ

where αðxÞ ¼ αiðxÞTi.
We now can simply repeat the argument of the Uð1Þ

case. The anomaly matching arguments of [4,29] apply
here as well implying that the changes in anomalies in the
flow from CFTUV to CFTIR must be compensated by the
NG bosons. This leads to the variation of the effective
action under an infinitesimal Weyl transformation

δσSeff ½gμν; Aμ; τ; βi� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
σðxÞð−ΔaE4 þ ΔcW2

þ ΔκGTrF2Þ ð4:7Þ

where κG is the trace anomaly associated with the back-
ground gauge field AμðxÞ. Similarly, the variation of the
effective action under an infinitesimal gauge transformation
(4.6) must have the following form:

δαSeff ½gμν; Aμ; τ; βi� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðΔcAdijkαiFj
μνF̃

μν
k

þ ΔcgTrðαÞRμναβR̃μναβÞ; ð4:8Þ

where cA and cg are anomaly coefficients and
dijk ¼ TrðfTi; TjgTkÞ. Note that the second term in
(4.8) vanishes since TrTi ¼ 0. Hence, there is no mixed
gauge-gravitational anomaly when the symmetry group G
is simply laced. Nevertheless, we kept both terms since
later we will generalize to symmetry groups that may
contain Uð1Þ factors. This does not cost us anything
because in the flat space limit with no background gauge

21Note that the massless spectator fields that were introduced
to cancel the UV G-anomaly will survive even at the IR. The full
IR theory, including the spectators, must be free fromG-anomaly.
Hence, we can simply incorporate the effects of these spectator
fields by implementing the ’t Hooft anomaly matching condition.
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field, the gauge anomalies (4.8) do not contribute to the
low-energy effective action of NG bosons.
The rest of the argument is exactly the same as before

implying that in the flat space limit with no background
gauge field Seff ½τ; βi� still has the same simple form

Seff ½τ; βi� ¼ ðSWZ þ SinvÞgμν¼ημν;Aμ¼0; ð4:9Þ

where the Wess-Zumino part of the action SWZ produces
both the conformal anomaly (4.7), as well as the anomaly
for the global symmetry G (4.8). Similar to the Abelian
case, SWZ in the flat space limit with no background gauge
field is uniquely fixed by Δa,

SWZjgμν¼ημν;Aμ¼0 ¼ 2Δa
Z

d4x
ffiffiffiffiffiffi
−g

p ð∇τÞ2ð2□τ − ð∇τÞ2Þ:
ð4:10Þ

Furthermore, Sinv can be constructed from the Weyl-
invariant combination ĝμν ¼ e−2τgμν and the gauge covar-
iant combination Âμ ¼ Aμ − ωμ, where

ωμðxÞ≡ igðxÞ∂μg−1ðxÞ≡ ωi
μðxÞTi ð4:11Þ

with gðxÞ≡ eiβðxÞ. Under the gauge transformation we
find Âμ → ΩðxÞÂμΩ−1ðxÞ. Note that ωμðxÞ is precisely the
Maurer-Cartan form which plays a central role in the coset
construction. This allows us to define a coset covariant
derivative

ωμðxÞ ¼ DμβðxÞ: ð4:12Þ

Therefore, up to four-field level, we can write

Sinv ¼
Z

d4x
ffiffiffiffiffiffi
−ĝ

p �
−
f2

2

�
R̂
6
þ 2γ20ĝ

μνTrðÂμÂνÞ
�

þ
X10
I¼1

γIW̃I þOð∂6Þ
�
; ð4:13Þ

where W̃I are all four-derivative invariants which are
given in Appendix B. Similar to the previous sections, the
mass scale f represents the symmetry breaking scale,
whereas γ-coefficients are real, dimensionless, and theory
dependent.
After using the equations of motion and taking the flat

space limit with no background gauge field, we obtain the
low-energy effective action (B10) for the physical dilaton ϕ
and physical axions ξi (for details see Appendix B). The
effective action at the four-derivative and four-field level
has the form (1.1)

Seff ½ϕ; ξi� ¼ Sconformal½ϕ;Δa� þ Sglobal½ξi;Bijkl�
þ Smixed½ϕ; ξi;Δa; b�: ð4:14Þ

As noted in the Introduction, the effective action of the
dilaton Sconformal½ϕ;Δa� remains unaffected by breaking of
the global symmetry G,

Sconformal½ϕ;Δa� ¼
Z

d4x

�
−
1

2
ð∂ϕÞ2 þ Δa

2f4
ϕ2

□
2ϕ2

�
þOð∂6;ϕ6Þ ð4:15Þ

which agrees with the dilaton effective action of [4].
Similarly, Sglobal½ξi;Bijkl� is the axionic part of the effective
action22

Sglobal½ξi;Bijkl�¼−
1

2

Z
d4x

�
∂ξi ·∂ξi− 1

6f2
fijkfij0k0ξjξj0□ðξkξk0 Þþ

1

4f2
X
i≠j

ξ2i□ξ2j

�

þ 1

4f4

Z
d4xBijklξiξj□

2ðξkξlÞþOð∂6;ξ6Þ; ð4:16Þ

where Bijkl is fixed by symmetry

Bijkl ¼ B1δijδkl þ B2ðδikδjl þ δilδjkÞ
þ B3ðfi0ikfi0jl þ fi0ilfi0jkÞ þ B4Tijkl ð4:17Þ

up to arbitrary dimensionless coefficientsB1,B2,B3, andB4.
Note that we have defined Tijkl ¼ TrðfTi; TjgfTk; TlgÞ and
fijk ¼ −2iTrð½Ti; Tj�TkÞ. Of course, for a specific G all

B-coefficients may not be independent. For example, for
G ¼ SUð2Þ it is sufficient to set B3 ¼ B4 ¼ 0.
In contrast to the Abelian case, the axionic part of the

effective action (4.16) also contains two-derivative four-
field interactions. This should not be surprising since
spontaneous breaking of a non-Abelian continuous global
symmetry can generate two-derivative four-field inter-
actions which follow directly from the Maurer-Cartan form
(4.11). In fact, this type of two-derivative interaction is

22Let us note that Sglobal½ξi;Bijkl� can always be written in the form (4.16). However, this requires scaling the generators such that
TrðTiTjÞ ¼ 1

2γ2
0

δij, where γ0 > 0 is theory dependent. The structure constants fijk are also defined in this convention.
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already present in more familiar chiral Lagrangians in
particle physics which lead to radiative corrections.
However, there is a crucial difference. The term ξ2i□ξ2j
in the action (4.16) appears only when the breaking of
global symmetry is accompanied by a breaking of con-
formal symmetry. In other words, taking the physical
dilaton ϕ ¼ 0 in (4.14) does not reproduce the low-energy
effective action associated with spontaneous breaking of
only the global symmetry G. On the other hand, the limit
τ ¼ 0 is actually smooth reproducing the correct effective
action for the broken global symmetry.
Finally, the mixed part of the action Smixed½ϕ; ξi;Δa; b�

represents interactions between ϕ and ξi,

Smixed½ϕ; ξi;Δa; b� ¼
1

4f4

Z
d4xðbϕξi□2ðϕξiÞ

− 4Δaξ2□2ϕ2Þ þOð∂6;ϕ2ξ4;ϕ4ξ2Þ
ð4:18Þ

where b is a dimensionless coupling constant. Note that
the second term of Smixed is universal. In general, b and
B-coefficients depend on CFTUV, CFTIR, and deforma-
tions (or VEVs) that trigger the RG flow. As the Abelian
case leads us to expect, these coefficients must also
satisfy various positivity conditions for unitary RG flows
which we will derive next. However, the presence of the
two-derivative four-field interactions in (4.16) makes
these bounds more subtle.

B. Bounds from chaos

Similar to theUð1Þ case, we again consider the dual CFT3

description of RG flows characterized by (4.14). The dual
CFT3 now contains N þ 1 scalar primary operators of
dimensions Δ ¼ 3. The operator dual to the physical dilaton
is denoted by Oϕ. Similarly, operators Oi for i ¼ 1;…; N
are dual to ξi. In this dual description, consider the Regge
correlator (2.33) in the kinematics (2.23), where operatorsW
and V now are defined as follows:

W ¼ Oϕ þ
X
i

ciOi; V ¼ Oϕ þ
X
i

c̃iOi; ð4:19Þ

where ci and c̃i are arbitrary real numbers. The chaos bound
(2.39) now imposes

8Δaþ b
X
i

ðc2i þ c̃2i Þ þ 2ðb − 8ΔaÞ
X
i

cic̃i

þ 4
X
i;j;k;l

Beff
ijklcic̃jckc̃l ≥ 0 ð4:20Þ

for all c; c̃ ∈ RN . Unlike the Abelian case, now there can be
loop contributions

Beff
ijkl ¼ Bijkl þ B1-loop

ijkl ð4:21Þ

whereB1-loop
ijkl represents one-loop contributions to the Regge

correlator (2.33) from the two-derivative four-field inter-
actions in (4.16).

1. Linear constraints

First, note that the consistency condition (4.20) imposes

Δa > 0; b > 0; ð4:22Þ

implying that the broken global symmetry does not affect
the proof of the a-theorem. Similarly, we also find that Beff

ijkl

is strongly elliptic. In other words, it has a positive definite
biquadratic form

Bc2c̃2 ≡ X
i;j;k;l

Beff
ijklcic̃jckc̃l > 0 ð4:23Þ

for all c; c̃ ∈ RN over unit spheres
P

i cici ¼
P

i c̃ic̃i ¼ 1.
It should be noted that in general the constraint (4.23) is not
very interesting since it is automatically satisfied because of
the one-loop contributions from the two-derivative four-field
interactions in (4.16). From the effective field theory
perspective the two-derivative four-field interactions in
(4.16) induce log runnings of B1, B2, B3, and B4 which
dominate at low energies. These log runnings ensure that the
constraint (4.23) is trivially satisfied. This is very similar to
the constraints on the SUð2Þ chiral Lagrangian, as discussed
in [42,74].
On the other hand, if the two-derivative four-field

interactions in (4.16) are parametrically suppressed
because of weak coupling jBijklj ≫ jB1-loop

ijkl j, the constraint
(4.23) becomes nontrivial.23 In this case Beff

ijkl ≈ Bijkl and
hence the positivity constraint (4.23) leads to interesting
bounds on B-coefficients. Clearly, when loop contribu-
tions are suppressed, the positivity condition (4.23) is
nontrivial and holds whenever any global symmetry is
spontaneously broken with or without conformal sym-
metry breaking.

2. Nonlinear constraints

When loop contributions are suppressed jBijklj ≫
jB1-loop

ijkl j, there are stronger conditions that Δa, b, and
Bijkl must also satisfy. In particular, the relation (4.20)
imposes that

23In the effective action (4.16), this weak coupling suppression
can be equivalently stated as jB1j;…; jB4j ≫ 1 but not too large
so that it does not affect the perturbative expansion in 1

f.
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A½c; c̃�≡ Δað1 − 2c · c̃Þ þ 1

8
bðcþ c̃Þ2

þ 1

2
ðB1 þ B2Þðc · c̃Þ2 þ

1

2
B2c2c̃2

þ 1

2
ðB3fi0ijfi0kl þ B4TijklÞcic̃jckc̃l ≥ 0 ð4:24Þ

for all c; c̃ ∈ RN . Clearly, for c · c̃ ¼ P
i cic̃i > 0 the above

condition is stronger than the previous positivity conditions
when loop contributions are absent. Of course, this infinite
set of inequalities is not all independent. It is always
possible to reduce A½c; c̃� ≥ 0 into a finite number of
constraints on Δa, b, and BI .

C. Example: SUð2Þ
Let us provide an example to persuade the reader that for

specific theories the above constraints simplify greatly. We
consider a scenario in which CFTUV has a global SUð2Þ
symmetry. The conformal symmetry and the global sym-
metry of CFTUV are explicitly or spontaneously broken

SUð2Þ × soð4; 2Þ → isoð3; 1Þ ð4:25Þ

which starts a RG flow that ends at CFTIR. This happens
naturally when the CFTUV has N ¼ 2 supersymmetry
since N ¼ 2 SCFTs have Uð1Þ × SUð2Þ R-symmetry.
The SUð2Þ symmetry implies

Bijkl ¼ B1δijδkl þ B2ðδikδjl þ δilδjkÞ: ð4:26Þ

Of course, the constraints (4.22) remain unaffected. On the
other hand, the condition that Bijkl is strongly elliptic
imposes

B1 þ B2 > 0; B2 > 0: ð4:27Þ

As discussed before, the positivity conditions (4.27) are
nontrivial only when one-loop contributions are negligible.
Furthermore, when one-loop contributions are suppressed,
A½c; c̃� ≥ 0 reduces to a stronger nonlinear constraint

b ≥ 4Δa −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ΔaðB1 þ 2B2Þ

p
ð4:28Þ

which can be viewed as an upper bound on Δa. Clearly, we
again obtain an exclusion plot which is exactly the same as
Fig. 2 with the substitution B → B1 þ 2B2. Furthermore, this
identification suggests that RG flows betweenN ¼ 2 SCFTs
in which conformal symmetry and SUð2ÞR symmetry are
broken by an operator that preserves the N ¼ 2 supersym-
metry, are described by b ¼ 8Δa and B1 þ 2B2 ¼ 2Δa. It
would be nice to verify this expectation directly from
supersymmetric Ward identities.

D. A more general scenario

So far, we have assumed that G is a simple Lie group.
However, the form of the effective action (4.9) implies that
the same analysis holds for a more general scenario. In
particular, the preceding argument applies even when G is a
direct product of a finite number of simple Lie groups and
Uð1Þ,

G ¼
Y
a

Ga: ð4:29Þ

Now there can be mixed anomalies associated with various
Ga. However, contributions from these additional anomalies
also vanish when we take the flat space limit with no
background fields. In general, the RG flow between CFTUV
and CFTIR can preserve some subgroup H of G. In such a
scenario CFTIR has the global symmetry H. In fact, it is
possible that deep in the IR some of the broken UV
symmetries get restored and hence the CFTIR can have a
bigger symmetry groupH0 ≥ H. This situation, for example,
arises naturally for supersymmetric flows. We can include
this possibility as well since the low-energy effective action
of the NG bosons depends only on H. In general, these RG
flows are also described in terms of a low-energy effective
action of a dilaton ϕ and N axions ξi where

N ¼ dimG − dimH ¼
X
a

dimGa − dimH: ð4:30Þ

The effective action still has the form (4.14) where Sconformal
remains unaffected (4.15). A straightforward generalization
leads to

Seff ½ϕ; ξi� ¼
Z

d4x

�
−
1

2

�
ð∂ϕÞ2 þXN

i¼1

ð∂ξiÞ2
�

þ Δa
2f4

�
ϕ2□2ϕ2 − 2

XN
i¼1

ξ2i□
2ϕ2

�
þ Lð2Þ½ξ�

�

þ 1

4f4

Z
d4x

�XN
i¼1

biϕξi□2ϕξi

þ
XN

i;j;k;l¼1

Bijklξiξj□
2ξkξl

�
; ð4:31Þ

where N is given by (4.30). Again notice that NG modes ξi
of broken global symmetries do not interfere with the proof
of the 4D a-theorem. In this general case, the low-energy
effective action of NG bosons is completely fixed by
symmetry up to dimensionless coupling coefficients
fbi; Bijklg.24 Just like before, coupling coefficients

24Note that just from symmetry argument we get a real
symmetric matrix bij and a 4-tensor Bijkl. We can always perform
a field redefinition to diagonalize bij ⇒ biδij.
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B≡ fBijklg are a strongly paired symmetric 4-tensor which
has the symmetries of the N-dimensional elasticity tensor

Bijkl ¼ Bjikl ¼ Bijlk ¼ Bklij: ð4:32Þ

However, now it may not have the form (4.17) in general.
Together, fbi; Bijklg contains 1

8
NðN3 þ 2N2 þ 3N þ 10Þ

independent coefficients, although, in a specific theory some
of these coefficients can be related to each other and/or Δa.
In the above effective action (4.31), the axionic part also

contains two-derivative four-field interactions Lð2Þ½ξ�. This
can be obtained directly from our earlier analysis

Lð2Þ½ξ� ¼
1

12f2
fijkfij0k0ξjξj0□ðξkξk0 Þ

−
1

8f2
X
i≠j

ξ2i□ξ2j ; ð4:33Þ

where axions ξi with i ∈ f1; 2;…; Ng belong in some large
reducible representation with structure constants fijk.
Clearly, the first term vanishes for NG bosons associated
with broken Uð1Þ0s.
The chaos bound now leads to a similar positive function

in the space of fΔa; bi; Bijklg,

A½c; c̃� ¼ Δað1 − 2c · c̃Þ þ 1

8

XN
i¼1

biðci þ c̃iÞ2

þ 1

2

X
i;j;k;l

Beff
ijklcic̃jckc̃l ≥ 0 ð4:34Þ

for all c; c̃ ∈ RN , where Beff
ijkl is defined as before (4.21).

This positivity condition leads to Δa > 0, bi > 0, and Beff
ijkl

is strongly elliptic (4.23). Some of these constraints
involving Bijkl can be trivially satisfied because of the
one-loop contributions from the two-derivative four-field
interactions (4.33).
This is the most we can say about the effective action

(4.14) without requiring to know anything about the details
of the flow. For specific theories, some components of
fΔa; bi; Bijklg can actually be related. In that case, the
above constraints simplify greatly. In general, the condition
(4.34) can be alternatively and equivalently stated as an
eigenvalue problem [75]

X
j;k;l

Aijklc̃jckc̃l ¼ λci;
X
i;j;k

Aijklcic̃jck ¼ λc̃l;

X
i

cici ¼
X
i

c̃ic̃i ¼ 1 ð4:35Þ

where c and c̃ are left and right eigenvectors of A with
eigenvalue λ ∈ R. Now the condition (4.23) implies that all
eigenvalues of (4.35) must be positive. In spirit, this is
analogous to the matrix eigenvalue problem; however, in
general the eigenvalue problem (4.35) for N > 3 is difficult
to solve. In fact, it is known that the optimization problem
(4.23) is NP hard [76].

V. SUM RULES, OTOC, AND C-FUNCTIONS

It was argued in [8] that some properties of RG flows are
more transparent in the dual CFT description in one less
dimension. For example we can write a rigorous CFT3 sum
rule for A½c; c̃�, as defined in (4.34) [with (2.41) and (5.7) as
special cases]. This can be achieved by considering the
correlator

Gcc̃ðσÞ ¼
hVðx4ÞWðx1ÞWðx2ÞVðx3Þi
hWðx1ÞWðx2ÞihVðx4ÞVðx3Þi

ð5:1Þ

in the kinematics (2.23) in the dual CFT3 description. The
operatorsW and V are defined in (4.19) with c; c̃ ∈ RN . We
have also introduced variables

η ¼ ρρ̄; σ ¼ 1

ρ
: ð5:2Þ

A. Sum rules

The correlator (5.1), as explained in Sec. II F, can be
viewed as a thermal OTOC on Rindler space

Gcc̃ðσÞ ¼ F

�
tR −

iβ
4

�
=Fd; e−2πtR=β ¼ ffiffiffi

η
p

σ; ð5:3Þ

where tR is the Rindler time. Analyticity of CFT correlators
in Lorentzian signature, as discussed in [40] (see also
[8,14]), allows us to write a CFT3 sum rule for A½c; c̃�,

A½c; c̃� ¼ Δ̃4
fη

1
2ð1þ Nc2Þð1þ Nc̃2Þ
f3333ð− 1

2
logðηÞÞ lim

1

Δ4
f

≪x≪1

Z
x

0

dσ Reð1 −Gcc̃ðσÞÞ ≥ 0 ð5:4Þ

for any c; c̃ ∈ RN where 0 < η < 1. Note that f3333, as defined in (2.26), is positive.
25 Positivity of the integral follows from

Rindler positivity which requires Reð1 −Gcc̃ðσÞÞ ≥ 0 [40]. This sum rule does not make any assumptions about the dual

25We have also absorbed positive numerical factors in the definition of Δ̃f.
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CFT3 beyond the usual Euclidean axioms. Alternatively, the positivity also follows from the bound on the OTOC
jFðtR − iβ

4
Þj ≤ Fd, up to corrections that vanish in the limit jσj ≪ 1 [1]. Moreover, the above CFT3 sum rule, after using

(5.3), can be rewritten as a time integral of the OTOC

A½c; c̃� ¼ 1

β
PðηÞ lim

t�≫t0≫β

Z
∞

t0

dtRe−2πtR=β Re
�
Fd − F

�
tR −

iβ
4

��
≥ 0; ð5:5Þ

where PðηÞ is a theory-independent positive function of η that does not depend on c and c̃.26 A special case of (5.5) is
c ¼ c̃ ¼ 0 which provides a relation equating Δa with the integral of FðtR − iβ

4
Þ.

B. C-functions

Another reason the sum rules (5.4) and (5.5) are of importance is that they provide a basis to construct an infinite set of
CFT3 functions that decrease monotonically along the RG flow

A½μ; c; c̃� ¼ Δ̃4
fη

1
2ð1þ Nc2Þð1þ Nc̃2Þ
f3333ð− 1

2
logðηÞÞ lim

1

Δ4
f

≪x≪1

Z
x

Δ−4μ=f
f x

dσ Reð1 −Gcc̃ðσÞÞ

¼ 1

β
PðηÞ lim

t�≫t0≫β

Z
t0þ2μ

πft�

t0

dtRe
−2πtR

β Re

�
Fd − F

�
tR −

iβ
4

��
ð5:7Þ

with 0 < η < 1 for all c; c̃ ∈ RN . These functions for all
c; c̃ ∈ RN interpolate between A½c; c̃� in the UV (μ=f → ∞)
and 0 in the IR (μ=f → 0). Thus, using the basis (5.7), we
can construct a general C-function

C½μ; c; c̃� ¼ CIR þ CUV − CIR

A½c; c̃� A½μ; c; c̃�: ð5:8Þ

By construction, C½μ; c; c̃� for any c; c̃ ∈ RN decreases
monotonically from CUV to CIR under the RG flow. Besides,
C½μ; c; c̃� defines a function which is constant and indepen-
dent of energy scale at the UVand IR fixed points. A special
case of (5.8) with CUV ¼ aUV and CIR ¼ aIR is an infinite
set of a-functions that monotonically decrease from aUV to
aIR. Any such a-function provides a good measure of the
effective number of degrees of freedom along 4D RG flows.
Of course, in general (5.8) is stronger than the special case

we considered above. For example, it is possible that for
certain values of c and c̃ the constraint (4.34) for specific
theories leads to a positivity condition for some other central
charges associated with CFTUV and CFTIR. For any such
central charges, (5.8) also provides a set of C-functions that
interpolate between the UV and the IR values.

Finally, let us comment on C-functions of 4D super-
symmetric RG flows. The above discussion immediately
implies that there are infinitely many distinct functions
aðμÞ for N ¼ 1 supersymmetric flows that monotonically
decrease along RG flows from aUV to aIR. In particular, the
CFT3 quantity (3.4) for any choice of r1 and r2 leads to a
distinct aðμÞ.

VI. EXAMPLE: FREE MASSIVE SCALARS

The results of the preceding sections depend only on
general principles and symmetries. We now provide a
simple example that highlights most of the basic features
of our general construction.
Our UV theory contains a free complex scalar

CFTUV ¼ −
1

2

Z
d4x∂μΦ†∂μΦ; ð6:1Þ

which enjoys an additional Uð1Þ global symmetry:
Φ → eiθΦ;Φ† → e−iθΦ†. We now deform this CFT by
adding mass terms

SUV ¼ −
1

2

Z
d4xð∂μΦ†∂μΦþm2

1Φ2
1 þm2

2Φ2
2Þ; ð6:2Þ

where Φ ¼ Φ1 þ iΦ2 and m2
1; m

2
2 > 0. The mass terms

break both the conformal symmetry and the global Uð1Þ
symmetry explicitly. We will discuss the flow of this UV
theory. The CFTUV consists of two free massless scalars
and hence

26To be precise,

PðηÞ ¼ 512π5Δ̃4
fη

3

9f3333ð− 1
2
logðηÞÞ ; t0 ¼

β

2π
log

�
1ffiffiffi
η

p
x

�
: ð5:6Þ

Also note that the integral (5.5) does not depend on t0 as long
as it is much smaller than the effective scrambling time
t� ¼ β logðΔfÞ ≫ t0 ≫ β.
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aUV ¼ 2 ×
1

360ð4πÞ2 : ð6:3Þ

In the deep IR, the scalar fieldΦ decouples completely, and
the CFTIR is trivial with no degrees of freedom, imply-
ing aIR ¼ 0.

A. Dilaton as a compensator

First as a warm-up, we introduce a single real compen-
sator Ω that allows us to view the explicit conformal
symmetry breaking as a spontaneous symmetry breaking

S ¼ −
1

2

Z
d4xð∂μΦ†∂μΦþ ∂μΩ∂μΩþ λ1Ω2Φ2

1

þ λ2Ω2Φ2
2Þ; ð6:4Þ

where λ1 ¼ m2
1=f

2 and λ2 ¼ m2
2=f

2 for some arbitrary
mass scale f. The scale f can be freely tuned; however,
we do not want the compensator to modify the RG flow of
(6.2) and hence we choose f ≫ m1; m2. In this limit,Ω and
Φ are weakly interacting and we have perturbative control
over the theory (6.4).
The theory (6.4) at the classical level is conformal. This

can be seen by computing the classical stress tensor

Tμν ¼ ∂μΦ1∂νΦ1 þ ∂μΦ2∂νΦ2 þ ∂μΩ∂νΩ

−
1

2
ημνð∂μΦ†∂μΦþ ∂μΩ∂μΩþ λ1Ω2Φ2

1

þ λ2Ω2Φ2
2Þ ð6:5Þ

which is conserved but not traceless. This can be made
traceless by adding an improvement term

Tfull
μν ¼ Tμν −

1

6
ð∂μ∂ν − ημν□ÞðΦΦ† þΩ2Þ: ð6:6Þ

The improved stress tensor Tfull
μν is both conserved and

traceless when we apply the equations of motion.
So, the conformal compensator modifies the theory (6.2)

into a classically conformal theory (6.4). What does it imply
for the quantum theory? Whenever conformal symmetry is
broken explicitly by some mass parameters such as m1 and
m2, that always introduces an operatorial anomaly to the
trace of the stress tensor which spoils the anomaly matching
argument of the previous sections. One can always introduce
some conformal compensator Ω that removes the operatorial
anomaly. This is reflected by the fact that Tfull

μν is traceless.
Moreover, the absence of the operatorial anomaly in (6.4)
guarantees that aUV must match the total IR anomaly of
CFTIR plus the dilaton.
The theory (6.4) has a moduli space along Ω for

hΦi ¼ 0. Clearly, the theory is conformal at hΩi ¼ 0.
However, the conformal symmetry is spontaneously broken
at hΩi ¼ f where we recover (6.2). Note that the theory

(6.4) does not have any global Uð1Þ symmetry even
classically. From this perspective, the global Uð1Þ sym-
metry of CFTUV is emergent only at hΩi ¼ 0. Hence, in this
description we will not produce any NG boson for the
broken Uð1Þ symmetry.
The dilaton effective action can be obtained by studying

fluctuations around the broken phase: Ω ¼ f − ϕ. The
action now becomes

S ¼ SUV −
1

2

Z
d4x

�
∂μϕ∂μϕþ J

�
ϕ

f

�
ðm2

1Φ2
1 þm2

2Φ2
2Þ
�
;

J

�
ϕ

f

�
¼ ϕ2

f2
− 2

ϕ

f
: ð6:7Þ

At low energies, we can integrate out the massive fields Φ1

and Φ2. We proceed by computing the dilaton four-point
amplitude at the leading order in 1=f. This leads to
precisely two copies of the one-loop diagram in [4] for
a single massive field—onewithΦ1 running in the loop and
another one with Φ2 running in the loop. So, we get the
following four-derivative effective action for the dilaton:

Sconformal½ϕ� ¼ −
1

2

Z
d4x

�
ð∂ϕÞ2 − 1

180ð4πÞ2f4 ðϕ
2
□

2ϕ2Þ

þOðϕ6; ∂6Þ
�

ð6:8Þ

which agrees with (4.15) for Δa ¼ aUV given by (6.3).

B. Spontaneous breaking of Uð1Þ symmetry

Discussion of this section can be extended to also
describe the explicit Uð1Þ symmetry breaking of (6.2) as
a spontaneous symmetry breaking. This can be done by
introducing a complex compensator Ω:

S ¼ −
1

2

Z
d4xð∂μΦ†∂μΦþ ∂μΩ∂μΩ† þ λ̃1ΩΩ†ΦΦ†

þ λ̃2ðΩ2Φ†2 þ Ω†2Φ2ÞÞ; ð6:9Þ

where couplings between Φ and Ω are arbitrarily weak

λ̃1 ¼
m2

1 þm2
2

2f2
; λ̃2 ¼

m2
1 −m2

2

4f2
: ð6:10Þ

Moreover, under the Uð1Þ symmetry Ω transforms as

Ω → eiθΩ; Ω† → e−iθΩ†: ð6:11Þ

Similar to the previous case, the theory (6.9) is classically
conformal. Furthermore, now one can also define a spin-1
current

jμ ¼ iðΦ†∂μΦ −Φ∂μΦ†Þ þ iðΩ†∂μΩ −Ω∂μΩ†Þ ð6:12Þ
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which is conserved, once we impose the equations of
motion.
At the leading order in λ̃1 and λ̃2, the theory (6.9) at

energies m1; m2 ≪ E ≪ f can be viewed as an exactly
conformal theory with a Uð1Þ global symmetry. These
symmetries are spontaneously broken when Ω gets a
nonzero VEV, hΩi ¼ f, where we recover (6.2).
Fluctuations around the broken phase Ω ¼ f − ϕ − iξ
create NG bosons associated with these broken symmetries.
The additional massless mode ξ arises from the sponta-
neous breaking of the global Uð1Þ symmetry.
The dilaton-axion effective action now can be obtained

by integrating out the massive fields Φ1 and Φ2 from

S ¼ SUV −
1

2

Z
d4xð∂μϕ∂μϕþ ∂μξ∂μξ

þ J

�
ϕ

f

�
ðm2

1Φ2
1 þm2

2Φ2
2Þ

− 8λ̃2Φ1Φ2ðϕξ − fξÞ þ ξ2

f2
ðm2

2Φ2
1 þm2

1Φ2
2ÞÞ: ð6:13Þ

As our general discussion led us to expect, the dilaton four-
point scattering amplitude remains unchanged. In order to
simplify the computations of other amplitudes, we take
m2 ¼ m1 þ δm with δm ≪ m1. In this limit, at the one-
loop level we find27

A4ðϕϕϕϕÞ ¼
s2 þ t2 þ u2

45ð4πÞ2f4 ; ð6:14Þ

A4ðξξξξÞ ¼
s2 þ t2 þ u2

15ð4πÞ2f4
�
1þ 16

3

�
δm
m1

�
2

þO
�
δm
m1

�
4
�
;

ð6:15Þ

A4ðϕϕξξÞ¼−
s2

45ð4πÞ2f4þ
t2þu2

45ð4πÞ2f4
�
δm
m1

�
2

þO
�
δm
m1

�
4

ð6:16Þ

where s ¼ 2p1 · p2, t ¼ 2p1 · p3, and u ¼ 2p1 · p4. The
resulting effective action has exactly the form (2.18) with

B ¼ 6Δa
�
1þ 16

3

�
δm
m1

�
2

þO
�
δm
m1

�
4
�
;

b ¼ 8Δa
�
δm
m1

�
2

þO
�
δm
m1

�
4

: ð6:17Þ

These results are shown in Fig. 2. Notice that b ¼ 0 only
when Δa ¼ 0, which is consistent with the general results
of Sec. II. Following our discussion of the preceding

section, we can construct a set of functions that monoton-
ically decreases from aUV ¼ 1

180ð4πÞ2 to aIR ¼ 0.
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APPENDIX A: INVARIANTS FOR Uð1Þ GLOBAL
SYMMETRY

Four-derivative invariants Wi for Uð1Þ global symmetry
are given by [15]

W1 ¼ Ŵ2; W2 ¼ R̂2; W3 ¼ Âμ∇̂μR̂;

W4 ¼ ð∇̂μÂμÞ2; W5 ¼ ĝμνÂμ□̂Âν; W6 ¼ R̂μνÂμÂν;

W7 ¼ R̂ĝμνÂμÂν; W8 ¼ ðĝμνÂμÂνÞ2;
W9 ¼ ĝμνÂμÂν∇̂λÂλ; ðA1Þ

where R̂, R̂μν, and Ŵμναβ are computed using the Weyl-
invariant metric (2.12). Terms that vanish once we impose
the on-shell condition for the dilaton and the axion can be
safely ignored at low energies since these terms can only
affect low-energy observables at subleading orders. Hence,
the Weyl invariants Wi in the flat space limit with no
background gauge field can be further simplified by using
the free equations of motion (2.15)

W1 ¼ 0; W2 ¼ 36γ40e
4τð∂βÞ4; W3 ¼ 0;

W4 ¼ 0; W5 ¼ W6 ¼ −2e4τðγ20ð∂βÞ4 þ ð∂τ · ∂βÞ2Þ;
W7 ¼ −6γ20e4τð∂βÞ4; W8 ¼ e4τð∂βÞ4; W9 ¼ 0: ðA2Þ

APPENDIX B: THE EFFECTIVE ACTION FOR
NON-ABELIAN GLOBAL SYMMETRIES

1. Invariants for non-Abelian global symmetries

Independent four-derivative invariants W̃i for a general
compact, simple Lie group G are given by28

27Calculations of one-loop scattering amplitudes of NG bosons
in the context of free massive scalars can be performed in any
spacetime dimensions following [77].

28Note that there can be Wess-Zumino-type terms that are not
exactly invariant but shift by a total derivative under the gauge
and Weyl transformations. For a detailed discussion see [64].
However, these terms do not contribute at the four-field four-
derivative level and hence we will ignore them.
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W̃1 ¼ Tr ðð∇̂μÂμÞð∇̂νÂνÞÞ; W̃2 ¼ ĝμν Tr ðÂμ□̂ÂνÞ;
W̃3 ¼ R̂μν Tr ðÂμÂνÞ; W̃4 ¼ R̂ĝμν Tr ðÂμÂνÞ; W̃5 ¼ ĝμν Tr ðÂμÂρ∇̂ρÂνÞ;
W̃6 ¼ ĝμνĝρσ Tr ðÂμÂνÞTrðÂρÂσÞ; W̃7 ¼ ĝμνĝρσ Tr ðÂμÂρÞTrðÂνÂσÞ;
W̃8 ¼ ĝμνĝρσ Tr ðÂμÂνÂρÂσÞ; W̃9 ¼ Ŵ2; W̃10 ¼ R̂2: ðB1Þ

We now write down the low-energy effective action by taking the flat space limit with no background gauge field of (4.13)

Seff ½τ; β� ¼
Z

d4x

�
−
f2

2
e−2τ

�
ð∂τÞ2 þXN

i¼1

ðDβiÞ2
�
þ 2Δað∂τÞ2ð2□τ − ð∂τÞ2Þ

�

þ
Z

d4x e−4τ
�X10

I¼1

γIW̃I

�
gμν¼ημν; Aμ¼0

þ � � � ; ðB2Þ

where dots represent higher derivative terms. Note that we removed γ0, which is theory dependent, by rescaling the
generators

Tr ðTiTjÞ ¼
1

2γ20
δij: ðB3Þ

The Maurer-Cartan form Dμβ is given by

Dμβi ¼ ∂μβi −
1

2
fijkβj∂μβk þ

1

6
fnjkfnilβlβj∂μβk þ � � � : ðB4Þ

Equations of motion at the leading order are

□τ ¼ ð∂τÞ2 −XN
i¼1

ð∂βiÞ2 þ � � � ; □βi ¼ 2ð∂τ · ∂βiÞ þ � � � : ðB5Þ

The invariants W̃I in the flat space limit with no background gauge field can be further simplified by using the above
equations of motion. At the four-field level we obtain

W̃1 ¼ 0; W̃2 ¼ W̃3 ¼ −e4τ
��X

i
ð∂βiÞ2

�
2

þ δijð∂τ · ∂βiÞð∂τ · ∂βjÞ
�
;

W̃4 ¼ −3e4τ
�X

i
ð∂βiÞ2

�
2

; W̃5 ¼ e4τfijkfij0k0 ð∂βj · ∂βj0 Þð∂βk · ∂βk0 Þ;

W̃6 ¼
1

4
e4τ

�X
i
ð∂βiÞ2

�
2

; W̃7 ¼
1

4
e4τð∂βj · ∂βkÞð∂βj · ∂βkÞ;

W̃8 ¼ Tijkle4τð∂βi · ∂βjÞð∂βk · ∂βlÞ; Tijkl ¼ Tr ðfTi; TjgfTk; TlgÞ;

W̃9 ¼ 0; W̃10 ¼ 36e4τ
�X

i
ð∂βiÞ2

�
2

: ðB6Þ

Note that there is another possible invariant ĝμνĝρσ Tr ðÂμÂρÂνÂσÞ; however, this term at the four-field four-derivative level
can be expressed as a linear combination of W̃5 and W̃8. Moreover, one can also construct a parity odd invariant
ϵμνρσ Tr ðÂμÂνÂρÂσÞ which is a total derivative.
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2. Effective action

We can now write the effective action at the four-derivative four-field level

Seff ½τ; βi� ¼ −
f2

2

Z
d4xe−2τ

�
ð∂τÞ2 þXN

i¼1

ð∂βiÞ2 − 1

12
fijkfij0k0βjβj0 ð∂βk · ∂βk0 Þ þ � � �

�

þ 2Δa
Z

d4x

�
ð∂τÞ4 − 2ð∂τÞ2XN

i¼1

ð∂βiÞ2
�

þ
Z

d4xðbð∂τ · ∂βiÞð∂τ · ∂βiÞ þ Bijklð∂βi · ∂βjÞð∂βk · ∂βlÞÞ þ � � � ; ðB7Þ

where indices i; j; � � � ∈ f1; 2;…; N ¼ dimGg. Coefficients Bijkl satisfy

Bijkl ¼ B1δijδkl þ B2ðδikδjl þ δilδjkÞ þ B3ðfi0ikfi0jl þ fi0ilfi0jkÞ þ B4Tijkl; ðB8Þ

where b; B1; B2; B3; B4 are arbitrary coefficients and Tijkl ¼ Tr ðfTi; TjgfTk; TlgÞ, fijk ¼ −2i Tr ð½Ti; Tj�TkÞ. Note that
for G ¼ Uð1Þ, this action agrees with (2.16).
Let us now write the effective action (B7) in a more traditional form by performing the following field redefinition:

e−τ sin βi ¼
ξi
f
; e−τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

ϕ

f

�
2

þ ξ2

f2

s
; ðB9Þ

where ξ2 ¼ ξiξi. In terms of the physical fields ϕ and ξi, the effective action at the four-derivative and four-field level can be
written as

Seff ½ϕ; ξi� ¼ −
1

2

Z
d4x

�
ð∂ϕÞ2 þ ∂ξi · ∂ξi − 1

12f2
fijkfij0k0ξjξj0 ð∂ξk · ∂ξk0 Þ þ 1

4f2
X
i≠j

ξ2i□ξ2j þ � � �
�

þ 2Δa
f4

Z
d4xðð∂ϕÞ4 − 2ð∂ϕÞ2ð∂ξi · ∂ξiÞÞ

þ 1

f4

Z
d4xðbð∂ϕ · ∂ξiÞð∂ϕ · ∂ξiÞ þ Bijklð∂ξi · ∂ξjÞð∂ξk · ∂ξlÞÞ þ � � � : ðB10Þ
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