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We discuss general aspects of renormalization group (RG) flows between two conformal fixed points in 4D
with a broken continuous global symmetry in the UV. Every such RG flow can be described in terms of the
dynamics of Nambu-Goldstone bosons of broken conformal and global symmetries. We derive the low-
energy effective action that describes this class of RG flows from basic symmetry principles. We view the
theory of Nambu-Goldstone bosons as a theory in anti—de Sitter space with the flat space limit. This enables
an equivalent 3D CFT (CFTj) formulation of these 4D RG flows in terms of spectral deformations of a
generalized free CFT5;. We utilize this dual description to impose further constraints on the low-energy
effective action associated with unitary RG flows in 4D by invoking the chaos bound in 3D. This approach
naturally provides a set of independent monotonically decreasing C-functions for 4D RG flows with global
symmetry breaking by explicitly relating 4D C-functions with certain out-of-time-order correlators that
diagnose chaos in 3D. We also comment on a more general connection between RG and chaos in QFT.
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I. INTRODUCTION

The renormalization group (RG) and quantum chaos are
two fundamentally important but distinct phenomena in
quantum field theory (QFT) with some similar qualitative
features. For example, both RG flows and semiclassical
chaos exhibit certain universal positivity and monotonicity
properties in generic quantum systems. Over the years, a
great deal of progress has been made on understanding such
general features of both RG and chaos; however, any
connection between their positivity and monotonicity prop-
erties has never been established. This is not surprising since
the underlying physics associated with RG and chaos is
believed to be different. Nevertheless, in this paper we
present a precise but indirect connection between RG and
semiclassical chaos by considering a rather general class of
RG flows in 4D. This also provides a tool to constrain
unitary RG flows by utilizing the chaos bound of Maldacena
et al. [1].

Most physical systems, when viewed at different energy
scales, admit descriptions in terms of completely different
degrees of freedom. The RG is a concrete realization of this
phenomenon in QFT. It is a systematic coarse-graining
procedure that identifies relevant long-distance degrees of
freedom of a given quantum theory. Conformal field theories
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(CFTs) play a central role in RG since it is long believed that
fixed points of RG flows are CFTs.!

On physical grounds, it is expected that all RG flows
should be irreversible. Consider a CFTyy which is
deformed by adding a relevant (or marginally relevant)
operator that breaks conformal symmetry.” This triggers a
RG flow that ends at CFTg. The irreversibility requires
that any RG flow that starts from CFTjr and ends at
CFTyy must be forbidden. A closely related but not
exactly equivalent statement is that there exist real
positive definite C-functions on the space of couplings
with the following properties: (i) C decreases monoton-
ically under RG flows, and (ii) at the fixed points of the
RG flow, C is constant and independent of the energy
scale. Moreover, the value of a C-function at fixed points
depends only on CFTyy and CFTiyg, respectively. The
existence of a C-function necessarily implies irreversibil-
ity of RG flows when it interpolates between some central
charge of CFTyy and CFTjr. Such a C-function was first
found by Zamolodchikov in 1986 for any unitary, Lorentz
invariant QFT in 2D establishing the irreversibility of
2D RG flows [3]. In 4D, a C-function was found by
Komargodski and Schwimmer in 2011 that interpolates
between the Euler central charges in the ultraviolet and the
infrared [4] (see also [5]). This proved Cardy’s conjecture

" d> 4, a CFT can flow to a fixed point which is scale
invariant but nonconformal [2]. However, in this paper, we will
only consider 4D RG flows between two CFTs.

*There are RG flows in which conformal symmetry is broken
spontaneously. The same discussion applies for such RG flows as
well.
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[6] Aa = ayy — ag > 0 establishing that all unitary RG
flows are irreversible in 4D.’

In many 4D RG flows (e.g., supersymmetric RG flows),
the breaking of conformal symmetry is accompanied by
the breaking of some other global symmetries of CFTyy.
In this paper, we consider RG flows between two
conformal fixed points in 4D in which conformal sym-
metry and a continuous global symmetry are broken in the
UV. Our main argument can be briefly summarized as
follows:

(1) Many general features of these RG flows, such as
irreversibility and positivity, can be studied by
analyzing the effective action of Nambu-Goldstone
(NG) bosons of broken conformal and global sym-
metries. By extending the argument of [4], we show
that the general form of the effective action that
describes 4D RG flows with global symmetry
breaking is completely fixed from symmetries.
The effective action makes it obvious that the proof
of the a-theorem remains unaffected even when
global symmetries are broken.

(2) Next, by following the framework of [8] we analyze
the flat space effective theory of NG bosons by
viewing it as a theory in anti—de Sitter (AdS) space
with finite but large radius R 445 and then take the flat
space limit Rpq5 — oo. This provides an alternative
description of this class of 4D RG flows in terms of
spectral deformations of a generalized free CFT in
3D (CFT;).*

(3) Finally, we utilize this dual description to derive
positivity conditions for the effective action by
invoking the chaos bound [1,13,14] in the dual
CFTj;. In particular, the chaos bound in 3D implies
the a-theorem in 4D.” Furthermore, the 3D chaos
bound provides a natural basis for constructing a set
of 4D C-functions for RG flows with global sym-
metry breaking.

Our approach, as summarized in Fig. 1, connects RG and
quantum chaos, albeit in different spacetime dimensions.

A general proof of the RG irreversibility is still missing in 6D
(for attempts see [7,8]). On the other hand, the 6D a-theorem has
been established for all 6D flows that preserve (2,0) supersym-
metry in [9]. The proof was later extended to RG flows of (1,0)
superconformal field theories (SCFTs) onto the tensor branch in
[2]. However, a proof of the a-theorem for RG flows of (1,0)
SCFTs onto the Higgs branch is still an open problem even
though there is strong evidence in favor it [10-12].

Altematlvely, one can combine the first two steps by
imagining the RG flow between CFTyy and CFTy is taking
place in AdS, with Ry4s — o0. These two interpretations are
completely equivalent in the leading order of the effective action
(up to four-derivative interactions). However, in general two
1nterpretat10ns may differ at higher derivative order.

>This connection was already noticed in [8].

RG flow in 4D CFT description in 3D
_CFTy, +_glebal symmetry Generalized free theory
{Agﬂ N (gft}
NG bosons in AdS, > spectral
deformation
CFT Chaos Bound CFT;

+ NG bosons < [Agft+7 gt +c)

Flat space limit
FIG. 1. Every RG flow with global symmetry breaking can be
described by the effective action of NG bosons of broken
conformal and global symmetries. Any such RG flow in 4D
has a dual CFTj; description where the dual CFTj is obtained by
deforming operator dimensions and OPE coefficients of a 3D
generalized free theory. The 3D chaos bound then imposes a
constraint on the effective action of the NG bosons.

A. RG flows with global symmetry breaking

In [4] Komargodski and Schwimmer taught us how
every RG flow can be described in terms of a spontaneous
breaking of conformal symmetry. We consider a more
general class of RG flows in 4D where CFTyy has some
global symmetry G, where G is a compact Lie group. The
conformal symmetry and the global symmetry of CFTyy
are broken either spontaneously or explicitly. This triggers
a RG flow that preserves some subgroup H of G. Following
[4], we argue that every such RG flow can be described as
spontaneous breaking of conformal and global symmetries.
The spontaneously broken conformal symmetry generates a
massless NG boson—the dilaton ¢. The dilaton is accom-
panied by N = dim G/H additional massless NG bosons ¢;
arising from the spontaneous breaking of the global
symmetry. So, in general the low-energy theory consists
of CFTyr and (N + 1) massless scalars ¢ and .f,-.ﬁ We derive
the effective action S.[¢h,&;] of ¢ and &; from basic
symmetry principles. In particular, we show that the
effective action, up to four-field four-derivative terms,
can be written in the form’

Seff[¢a é:l] - Sconforma.l [¢, A(l] + Sglobal[éi; Bijkl]

+Smixed[¢’§i;Aa7bi]‘ (11)
The first term Sconsormal[@; Aa] results from the conformal
symmetry breaking alone and hence it is precisely the
dilaton effective action of [4]. Similarly, Sgiopa(&is Bijki
with coupling constants B;j; is the part of the effective
action that depends only on the global symmetry breaking.

®For RG flows in which the symmetries are broken explicitly,
the scalars ¢ and ¢; should be thought of as compensator fields.
For a discussion on compensator fields, see [4]

"The explicit form of the effective action is given by Eq. (4.31).
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Dimensionless coupling B = {B;,} is a strongly paired
symmetric 4-tensor which has the symmetries of the
N-dimensional elasticity tensor. Finally, the mixed part of
the action S|, &5 Aa, b;] represents interactions between
¢ and &; with coupling constants Aa and b;,i € {1,...,N}.
Interestingly, a part of S, eq[®, &5 Aa, b;] is also universal. In
general, b; and B, j;; depend on CFTyy, CFTg, and defor-
mations [or vacuum expectation values (VEVs)] that break the
conformal symmetry in the UV. For unitary RG flows, these
coefficients must also satisfy various positivity conditions
which we will derive in this paper.

There is a discrete difference between RG flows with and
without global symmetry breaking. Nevertheless, the
decomposition (1.1) of the effective action states that
RG flows that do not break any global symmetries are a
special case of the general scenario with &; — 0 implying
Seit[#, &] has a smooth & — 0 limit. This in turn implies
that breaking of additional global symmetries does not
interfere with the proof of the 4D a-theorem by
Komargodski and Schwimmer. This was already noticed
by Bobev er al. in [15] for 4D RG flows with U(1)
symmetry breaking.

It is a fact that scalar effective field theories in AdS, are
in one-to-one correspondence with perturbative solutions of
crossing symmetry in CFT,_; [16-28]. This connection
was utilized in [8] to argue that every RG flow connecting
two conformal fixed points in d dimensions is equivalently
described as deformations of the spectrum of a generalized
free CFT,_, for d > 3. In this paper, we adopt the same
philosophy and analyze the dual CFT; description of the
effective action (1.1) of NG bosons. The dual CFT; is
obtained by deforming specific operator dimensions and
OPE coefficients of a generalized free theory of (N + 1)
scalar primary single-trace operators that are dual to NG
bosons ¢ and ¢;. This dual CFTj for any unitary RG flow
must obey the Euclidean axioms. This immediately implies
that the space of {Aa, b;, B, } for unitary RG flows can be
constrained by invoking the chaos bound [1,13,14] in the
dual CFTj;. In particular, we argue that couplings Aa, b;,
and B, must be positive definite.® Moreover, interference
effects in the chaos bound impose further nonlinear con-
straints among {Aa,b;, B;j;;}. These nonlinear analytic
constraints, among other things, provide an upper bound on
Aa in terms of b; and Bjjy,.

As a representative example, we analyze RG flows
between two conformal fixed points in 4D with a broken
U(1) global symmetry. Every such RG flow can be

¥To be specific, by positive definiteness of the 4-tensor B we
simply mean that B has a positive definite biquadratic form
Bjjic;Cjci¢; > 0 for all nonzero ¢, € RM. This can be alter-
natively stated as B is strongly elliptic. Note that there can be loop
effects when G is non-Abelian, as we will explain later. Of
course, B should be understood as the one-loop effective B when
loop effects are present.

b N =1 SUSY

Free massive
scalars

[¥]

Aa = ayy —amr >0

FIG. 2. For unitary RG flows between two conformal fixed
points in 4D with a broken U(1) global symmetry only the
shaded region (along with Aa > 0) is consistent with the chaos
bound. Notice that there is a kink at b =0 and B = 2Aa. The
black dot corresponds to RG flows between two 4D N =1
SCFTs in which flows preserve the N =1 supersymmetry
(SUSY). The red dot corresponds to a RG flow in which the
CFTyy is a theory of two massless scalars. This theory is
deformed with mass terms that are infinitesimally different.
The red line represents the same RG flow as we increase the
mass difference.

described in terms of exactly three parameters {Aa, b, B}
that uniquely determine the low-energy effective action of
NG bosons [see Eq. (2.18)] of broken conformal and U(1)
symmetries. These RG flows, as we described before, have a
dual description in terms of spectral deformations of a
generalized free CFT in 3D of two scalar primary single-
trace operators. For unitary RG flows, we invoke the chaos
bound to constrain the space of {Aa, b, B}, as shown in
Fig. 2. Interestingly, there is a “bootstrap” kink in the
exclusion plot 2 in Fig. 2. However, we are not aware of
any RG flow that sits on the kink.

In the exclusion plot 2 in Fig. 2, we identify a special point
in the allowed parameter space that corresponds to RG flows
between two 4D N =1 SCFTs in which the N =1
supersymmetry is preserved along the flow. These flows
break the U(1) R-symmetry of the CFTyy since the stress
tensor and the R-current are in the same supermultiplet
[15,29]. In the dual CFT; language, these supersymmetric
flows are equivalently described by spectral deformations
in which anomalous dimensions of certain double-trace
operators obey simple relations [see Eq. (3.3)]. Moreover,
for NV =1 supersymmetric flows we show that there are
infinitely many distinct C-functions that decrease monoton-
ically from ayy to ar under RG flows.
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It should be noted that the same bounds can be obtained
directly in flat space, perhaps with some additional assump-
tions about the scattering amplitudes.” However, the dual
CFTj; description has several conceptual as well as technical
advantages. For example, our derivation of the bounds does
not make any assumptions about the dual CFT5; beyond the
usual Euclidean axioms. This simply means that some
properties of low-energy effective actions, such as (1.1),
are more transparent in AdS. This parallels the idea of
S-matrix bootstrap where conformal bootstrap methods are
used to constrain QFTs in AdS [34-37].

B. RG and quantum chaos

The CFT;3-based description of 4D RG flows naturally
provides a set of 4D C-functions. Furthermore, this
construction has the conceptual advantage that it explic-
itly relates C-functions with certain out-of-time-order
correlators (OTOCs) in 3D which have been used exten-
sively in recent years as a quantum field theoretic measure
for chaos [1,38,39]. In particular, we will construct a
series of C-functions all of which have the form

—zmk/ﬂ — _f
p. >>to>>/3/ Re <Fd F<tR 4>>’

C(u)~- lim
(1.2)

where F; and F(t), as defined in [1], are standard thermal
correlators of simple operators that diagnose chaos.'” To be
specific, in the above expression F(tz —if3/4) is a CFT;
four-point correlator of scalar primaries dual to NG bosons
in the Minkowski vacuum state, which we interpret as an
OTOC in a thermal state of temperature 1/£ on Rindler
space, where f; is the Rindler time. Monotonicity and
positivity of C(u) follow directly from positivity conditions
that F(r) satisfies [1] (see also [13,14,40]). A special case of
(1.2) is a set of monotonically decreasing independent
functions, also known as a-functions, that interpolate
between ayy in the UV (@ - o0) and ap in the IR
(u — 0) establishing the RG irreversibility. As a by-product,
we obtain a relation between 4D Aa and 3D OTOC

im [ dtgre=2"'r/PRe (Fd -F <IR - f) ) > 0.
0

L>t>>p [,

Aaoc1
(1.3)

It is only natural to wonder whether there is a deeper, more
fundamental connection between RG and chaos in QFT. At
first sight, a more general connection seems unlikely. After
all, chaos probes long-time but not necessarily low-energy

For similar bounds on effective actions from scattering
amplitudes see [30-33].

""Note that C(u) in Eq. (1.2) is independent of #, as long as 7,
is much smaller than the effective scrambling time z,.

properties of quantum systems. So, it is not expected that the
full richness of physics associated with chaos can be
captured by RG which only deals with low-energy degrees
of freedom. However, information about the high-energy
degrees of freedom is not completely lost in any unitary RG
flow. They are simply hidden in the positivity and monot-
onicity properties of RG. The relation (1.2) connects these
general features of RG with analogous monotonicity and
positivity properties of semiclassical chaos, however, in
different spacetime dimensions. It is certainly possible that
this connection is more fundamental and holds even in the
same spacetime dimensions.""

One significant hint for this general connection is that
both RG and chaos are intimately related to causality. This
is certainly true in 4D in which the a-theorem of [4] could
be derived by invoking causality [42]. Moreover, for
holographic theories, the RG monotonicity follows directly
from causality in general spacetime dimension [43.44].
Likewise, the chaos bound of [1] is known to be related to
causality as well [13,14,40].

There is another nice interrelation between RG, chaos,
and causality in 4D CFT. Any unitary CFT must obey
certain causality constraints that are known as the con-
formal collider bounds [45-48]. The collider bounds can
also be thought of as a special case of the chaos bound for
vacuum CFT correlators [40]. In 4D, the collider bounds
impose that the Euler central charge a must be positive.
This positivity together with the 4D a-theorem then imply
that the Euler central charge is a good measure of the
effective number of degrees of freedom in 4D CFT.

All these hints are suggestive of a much deeper relation-
ship between RG and chaos. It would be very interesting to
make this connection more direct and explicit. For example,
chaos in QFT could be formulated as coarse-graining of the
operator algebra. Such a description of chaos does exist in
quantum mechanics [49]. It is also possible that both RG and
semiclassical chaos are related by some version of the
eigenstate thermalization hypothesis [50-52].

C. Outline

The rest of the paper is organized as follows. We begin
with a detailed analysis of 4D RG flows with a broken U(1)
global symmetry in Sec. II. In Sec. III we discuss 4D RG
flows with A = 1 supersymmetry and compare it with our
general results. In Sec. IV we derive the most general low-
energy effective action that describes 4D RG flows with a
broken continuous symmetry group G, where G can be a
direct product of a finite number of simple Lie groups.
Furthermore, we derive constraints on this effective action
for unitary RG flows. In Sec. V we construct C-functions
that have the form (1.2). Finally, in Sec. VI we provide a

"A related but somewhat different question is how chaotic
dynamics in QFT changes under RG flows. This has been
discussed recently in [41] for holographic theories.
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simple example which highlights basic features of our
general framework. We take the CFTyy to be a theory of
two massless scalars. The conformal symmetry and the
global U(1) symmetry are broken explicitly by introducing
different mass terms for two scalars. The CFTy, is this case is
trivial with no degrees of freedom.

II. RG FLOWS WITH A BROKEN U(1) GLOBAL
SYMMETRY

In this section we consider 4D CFTs with some U(1)
global symmetry in which the conformal symmetry and the
U(1) symmetry are broken either spontaneously or explic-
itly. We assume that the induced flow terminates in a
different CFT in the deep IR which is invariant under the
same U(1) transformation. Every such RG flow can be
described as spontaneous breaking of conformal and U(1)
symmetries. This enables us to study general features of
these RG flows in terms of the effective action of some
Nambu-Goldstone bosons of spontaneously broken con-
formal and U(1) symmetries.

A. The dilaton-axion effective action

Consider a CFTyy in (3 4+ 1) dimensions with a global
U(1) symmetry. We assume that the CFTyy has a moduli
space of vacua which enables us to break the conformal
symmetry and the U(1) symmetry spontaneously by turning
on VEVs for an operator O. The VEV (0) ~ f triggers a RG
flow that leads to some CFTjz which we assume to be
invariant under the UV U(1) symmetry." ? In other words, the
global U(1) symmetry of the UV theory is also a symmetry
of CFTjr (which can be anomalous in the presence of
background fields). Of course, the CFT|z can transform
trivially under the UV U(1) symmetry group.

Each broken generator associated with spontaneous
breaking of continuous global symmetries produces a
massless NG pseudo-scalar. The low-energy effective
action of the NG bosons can be obtained in a systematic
way by using the coset construction introduced in [53,54]
(see also [55]). The coset construction for spontaneous
breaking of spacetime symmetries is more subtle [56].
When the conformal algebra is spontaneously broken to
Poincaré subalgebra

80(4,2) - i80(3, 1), (2.1)
one may expect that there are five NG modes—a scalar 7
associated with the broken dilation generator D and a vector
a, associated with the broken special conformal generators
K. However, not all these modes are independent because
of the inverse Higgs effect [57]. This follows from the fact

"It should be noted that there could be other emergent U(1)
symmetries in the IR that do not embed at all in the UV theory.
These additional U(1)s will not affect our argument.

that the commutator [K,, P,| = 2(J,, —#,,D) can be uti-
lized to eliminate a, = %aﬂe’ [58-63].

So, the spontaneously broken conformal symmetry
generates only one massless NG boson—the dilaton 7.
The dilaton is accompanied by a pseudo-scalar 3, which is
the NG boson of the spontaneously broken U(1) symmetry.
For RG flows in which the conformal symmetry and the
U(1) symmetry are broken explicitly, the dilaton 7 and the
axion S can be introduced as compensators for broken
symmetries. So, in general the low-energy theory consists
of CFTjg and massless scalars 7 and f,

Sir = CFTR + Sege [z, A (2.2)
The effective action S.[z, #] can be obtained by using the
coset construction. However, following [15] we will derive
the effective action in a physically more transparent way by
coupling the theory to background fields.

We begin by coupling the theory to a background metric
g, (x) and a background U(1) gauge potential A, (x). In the
presence of background fields, the conformal trace
anomaly has the following structure:

(TV) = —aE, + cW? + ko F?, (2.3)
up to total derivative terms which can be removed by
adding finite and covariant counterterms in the UV theory.
Here, E, is the 4D Euler density, W 5 is the Weyl tensor,
and F = dA is the flux for the background gauge field.
Global symmetries can also have 't Hooft anomalies. In 4D,
such anomalies reveal themselves through the current j,
associated with the U(1) symmetry which is no longer
conserved

(V) = chWF”’“ + czRﬂmﬂf\’””aﬁ. (2.4)
Note that Hodge dualization
- 1 o - 1 /5
F/w = ze/waﬂF > R/waﬂ = EeﬂvyﬁR aff (25)

is defined with respect to the background metric g,,. Since
the global symmetry is anomalous, one may worry that the
trace anomaly (2.3) can also have nongauge invariant
terms. However, as shown in [15], the Wess-Zumino
consistency conditions guarantee that the trace anomaly
is gauge invariant.

In the IR, the gauge field A, may not couple to CFTyR at
all or it can couple to some spin-1 Abelian conserved
current ji} of CFTg. In the latter case, the U(1) symmetry
associated with jLR can also have 't Hooft anomalies. The
standard anomaly matching arguments of [29] imply that
the IR theory (2.2) must have the same anomalies as the UV
theory CFTyy. This requirement completely fixes the low-
energy effective action Se[g,,.A,;7.p]. The flat space

025016-5
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limit of Sef[g,,.A,:7.p] with no background gauge field
then leads to the effective action S|z, .

Let us now study the variation of the action (2.2) under
diff x Weyl transformations and gauge transformations.
Under Weyl transformations

9ux) = Vg, (x). 7(x) ~ 7(x) +o(x).  (2.6)
Similarly, the gauge transformation is defined in the usual
way

A (x)=A,(x)+V,a(x), px)—=px)+alx). (2.7)
Of course, in general CFTyy and CFTjr have a different set
of anomalies. Hence, all changes in anomalies in the flow
from CFTyy to CFT|g must be compensated by the dilaton
and the axion. Hence, the Weyl variation of the effective
action is completely fixed

éﬁseff[guwAu;Tvﬁ] :/d4x —QG(X)(—ACZE4

+ AcW? + Ak F?). (2.8)
Likewise, variation of the effective action under the gauge
transformation (2.7) is also fixed

5aSeff[g/4wA/4;T’ﬂ] = /d4x _ga(x)(Achm/F}w

+ AC2Rﬂyaﬂleaﬁ). (29)
In the above equations A(---) denotes the change of an
anomaly under the RG flow, where IR anomalies should be
understood as the total anomalies of CFTg, the dilaton, and
the axion. The variational equations (2.8) and (2.9) can now
be solved systematically to obtain Se[g,,.A,:7.p] by a
straightforward generalization of [15].

It is useful, as discussed in [8], to decompose the
effective action in the following way:

Seff[g;wvAy;T’ﬂ] = /d4xv _gﬁ(x)(Achm/F/w

—|—Ac2RﬂmﬁI~?"mﬂ) + / d*x\/=gr(x)

X (—AaEy + AcW? + AkyF?)

~+ 68wz + Sinv- (2.10)
Note that the first term in the above equation generates the
correct gauge variation (2.9). On the other hand, the second
term in the above equation generates the correct Weyl
variation (2.8) plus an extra term —Aa f d*x\/=gr(x)5,E,
which is canceled by adding a nonlinear Wess-Zumino term
0Swyz of 7. Of course, we can also add a term S;,, in the
action whose gauge and Weyl variations vanish. The main

advantage of this formalism is that 6Sy is uniquely fixed
by Aa [4]

1
6SWZ = —Aa / d4x\/—_g<4 (R,w - Eg”DR>

x V7V, —2(Vr)?(20c - (Vr)2)> (2.11)

up to terms that are invariant under both diff x Weyl
transformations and gauge transformations and hence
can be absorbed in S, .

Importantly, only Sw, and Sj,, in (2.10) contribute in
the flat space limit with no background gauge field. We
now focus on Sj,,. This is the part of the effective action
which, in general, depends on the details of the RG flow.
Nevertheless, at each derivative order only a finite number
of independent gauge and Weyl-invariant terms can appear
in Sim,.13 These terms can be efficiently constructed by
defining gauge and Weyl-invariant combinations
A, =A,=V,p.

.@;w = e—2rgﬂw (212)

Up to four derivatives, the most general S;,, is given by [15]
2 (R .
Sinv = /d4x V —,@(—% (g + }/(Z)Q”DAMAD>

S W O<V6>), (2.13)
i=1

where R is defined using the Weyl-invariant metric (2.12)
and four-derivative invariants W; are given in Appendix A.
Note that f has dimension of mass and y; are real
dimensionless coefficients. We are now ready to write
down the low-energy effective action by taking the flat
space limit of (2.10) with no background gauge field.
Putting everything together, S.i¢[7, ] is given by

2
Suales] = [ @~ 5 e (002 + (o

+2Aa(07)* (207 - (87)2))

9
+/d4xe—4r<zyiwi> 4+
i=1

Guw=Muw ~Ay =0

(2.14)

SThe Sinv 18 constructed from terms that are exactly invariant
under the gauge and Weyl transformations. Hence, it is possible
that we miss Wess-Zumino-type terms in the action that are not
exactly invariant but shift by a total derivative under the gauge
and Weyl transformations [64]. However, these terms do not
contribute at the four-field four-derivative level and can be
ignored for our purpose.
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where dots represent higher derivative terms. Equations of
motion at the two-derivative level are given by

Oz = (07)? — v3(9B)?, Op =2(0z-90p). (2.15)
Terms that vanish once we impose the on-shell condition
for the dilaton and the axion can be safely ignored at low
energies since these terms can only affect low-energy
observables at subleading orders. Hence, the above effec-
tive action can be further simplified by using the above
equations of motion yielding

2
Sualrl = [ aix(=Ge(002+ @p7)
+2Aa(0r)* - 4Aa(6¢)2(8ﬁ)2>
+/d4x(B(aﬂ)4+b(6r-8ﬂ)2)+-~~, (2.16)

where we have redefined f to absorb y,. Note that
coefficients » and B are some linear combinations of y;
(see Appendix A).

B. Physical dilaton and axion

The effective action (2.16) is not very useful when we
wish to study the theory using traditional tools of QFT. We
resolve this issue by a simple field redefinition:

oerip) — 1 _PTE

, (2.17)

where the physical fields ¢ and £ are real. Plugging this into
the action (2.16) and then expanding up to fourth order in
the fields, we obtain

Sl il = [ a( =3 002 - 5 08P

Aa
+ 2_f4 (¢2|:|2¢2 _ 2§2|:|2¢2))
+ # / dx(BECRE + bpelRpe) + -
(2.18)

where we have used the equations of motion to simplify the
action. The first line of the action is completely fixed by the
UV and the IR fixed points of the RG flow. On the other
hand, the second line depends on the details of the RG flow
and parameters B and b, in general, are completely
arbitrary. Dots represent terms with more than four fields
and/or four derivatives.

To summarize, any 4D RG flow with U(1) global
symmetry breaking between two CFTs can be described
by the effective action of NG bosons of spontaneously

broken conformal and U(1) symmetry. Up to four-deriva-
tive order, the effective action is completely fixed in terms
of three parameters {Aa, b, B}. Also the effective action
(2.18) has the structure (1.1) implying RG flows that do not
break the global symmetry are a special case of the general
scenario with & — 0. There is a discrete difference between
RG flows with and without global symmetry breaking;
however Seg[¢, £] still has a smooth & — 0 limit.

The above feature of the effective action (2.18), as
correctly pointed out in [15], has an important implication.
The four-particle interaction of the physical dilaton remains
unmodified even when we break the global U(1) sym-
metry. This implies that the proof of the a-theorem by
Komargodski and Schwimmer applies here as well.
Moreover, from the action (2.18) it is clear that there are
other constraints on the parameters {Aa, b, B} for unitary
RG flows. Next we will introduce an equivalent CFT;
description of these RG flows to impose constraints on
{Aa, b, B} from the chaos bound.

C. Dual CFT; description

It was shown in [8] that every RG flow connecting two
conformal fixed points in d dimensions can be interpreted
as deformations of the spectrum of a generalized free
CFT,_; for d > 3. This dual CFT,_; for any unitary RG
flow must obey the Euclidean axioms. As a consequence,
four-point correlators of the dual CFT,_; must obey the
chaos bound [1]. This imposes rigorous constraints on
{Aa, b, B} for unitary RG flows.

We analyze the effective action (2.18) as a theory in
AdS, with AdS radius R 4g large but finite. The action now
is simply given by

1
Seff[¢» 5] = /d4x\/gAdS (‘25&5‘9”455@

- SR0E0E + Lo ) (219)
where the interactions are obtained from (2.18)
Ling = 41? (2Aad* [P ? — 4Aal’[Pp* + BE2E2
+ bPEPPE) + - - -. (2.20)

This is a theory in AdS without dynamical gravity. In the
dual CFTj, the stress tensor decouples from the low-energy
spectrum. In other words, the CFTj; central charge c; — oo;
however, fRgs = Ay is large but fixed." The resulting
CFTj; must be well behaved below the cutoff scale A ;. This
effective CFT; contains two scalar primary operators O,
and Oy which are dual to the dilaton and the axion

"“The central charge cy is the overall coefficient that appears in
the stress tensor two-point function.
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respectively. The fact that ¢ and & are NG bosons implies
that

Ay=A;=3 (2.21)
will not receive perturbative corrections.

We follow the formalism developed in [8] and interpret the
dual CFTj as a small perturbation of a generalized free CFT
in 3D with two scalar primaries. First consider the case,
L = 0. The dual CFTj, in this case, is exactly a generalized
free CFT of scalar primaries O, and O. In addition, crossing
symmetry requires that this generalized free CFT must also
contain infinite towers of double-trace operators [O;Oy],, ,,
[0:O¢], s» and [O40O¢], , with spin £ and dimension 6 +-
2n + ¢ for all integers n > 0 [65,66]. We now turn on the
interaction L;,, in AdS,;. The bulk theory (2.19) now
corresponds to a deformed solution of CFTj; crossing
equations in which double-trace operators [O;O], ;.
[0:O¢|, s» and [O4O¢|, , acquire anomalous dimensions

yfff ), yf?, and yfﬁ) respectively. The information of

{Aa, b, B} is contained in these anomalous dimensions.

D. CFT Regge correlators

We are now in a position to study Lorentzian four-point
functions for the CFT; dual to the effective field theory
(2.19). First, we start with two-point functions which can
be easily computed from (2.19)

Co

(Op(x1)0p(x2)) = (Ox(x1)O¢(x2)) = (2.22)

6°

|x1 — X2

where ¢) = 1.

Next we consider various four-point functions of oper-
ators O and O,. We are interested in the contributions of the
four-point interaction L;, in the bulk theory (2.19) to these
four-point correlators. These are obtained from the tree-level
Witten diagram in Fig. 3. We begin with the Lorentzian
correlator Gy (p.p) = (Op(x4) Oy (x1) Oy (x2) Oy (x3))

where all points are restricted to a 2D subspace:

1 4
2 3
FIG. 3. The tree-level contact Witten diagram.

x” xzt

oV (—1,1)

o W(=p,p)

FIG. 4. A Lorentzian four-point function of W = Oy + ¢,0;
and V = Oy + ¢,O;. All points are restricted to a 2D subspace

{x%,x'} and time x° is running upward. Null coordinates are
defined as x* = x° + x!.

Xy =-—x =" =pxt=-p0),

x3=—-x4=(x =-1,x" =1,0), (2.23)
with 0 <p <1 and p > 1. Note that we are using null
coordinates x* = x & x!, where x is time (see Fig. 4). The
CFT Regge limit is defined as

p—>oo, p—0, with pp=fixed>0 (2.24)
of the Lorentzian correlator (Oy(x4)Oy(x1)Op(x2)
O,(x3)), where operators are ordered as written. Our goal
is to compute the contribution of L;, to Gy, (p, p) in the
Regge limit (2.24). We follow [8] to obtain the leading Regge

contribution

2
o . Aa P
—= ! 753333
16pp)*  167°A% (pp)'/?

X <—%10g(/)/‘))>

where the first term comes from the bulk identity exchange
(disconnected Witten diagram). The function f3333 is an
integral

f3333(S) = /_oo dDQib<s)r<%;—iy>2F

[Se]

13/2 — iv\ 2
<(757)

of the harmonic function €;, on hyperbolic space H 2.15 The
exact expression for f3333(s) will not be important for us. The
only relevant information is that fi333(—1log(pp)) >0
for0 <pp < L.

Gy (P D) (

(2.25)

(2.26)

15 . . . . .
Harmonic functions Q;, are known in any dimension [67].
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Similarly, the Lorentzian correlator Gezz:(p, p) = (O¢(x4)
O¢(x1)O¢(x2)O¢(x3)) can be computed in an identical way.
In particular, the leading Regge contribution is given by

< ., B _p
l
16pp)* ~ 322°A% (pp)

(L)

There are many mixed four-point functions that we can
construct with operators O, and O;. Clearly, the four-point
interaction L;,, can only contribute to mixed correlators
with two O, operators and two O; operators. For example,
consider the correlator

Gypez (P D) = (Oy(x4) Op(x1) Op(x2) Oy (x3))
= (O¢(x4) O (x1) Oy (x2) Op(x3))-

At the leading order in the Regge limit, by following [8],
we obtain

Geeee(p.p) = ( 772 f3333

(2.27)

(2.28)

2

c§ . b P

—5 1 —7 /3333
16pp)* ~ 1287°A% (pp)/?

(L)

Note that the same f3333 function appears here as well.
Moreover, the correlator G yee(p.p) = (Op(x4)Og(x1)
O,(x2)O¢(x3)) and its cousins also grow in the limit p —
oo for fixed pp. In particular, at tree level all these
correlators have the following Regge behavior:

Gypee(p:P) ~ (

(2.29)

(b—8Aa) p 7
i
2567:5Aj‘c (pp)’? 3333

(L)

E. Anomalous dimensions

Gyepe (P, D) R

(2.30)

The bulk theory (2.19) leads to anomalous dimensions
to double-trace operators [O;0,], s—o, [O:O¢], ,—,, and
[0pO¢l,,.r—>- Among these double twist operators, the
operators [0;0ylp0, [0:O¢lg,, and [0;0¢],, are of
particular importance. So, we introduce the notation

— ., (0¢) — (&) (3
Yop =702 > Yee =Yoo o Ype =702 (2.31)
to denote anomalous dimensions of spin-2 double-trace
operators with minimal twists.
From the Regge correlators of the previous section, we
can relate {Aa, b, B} to anomalous dimensions 7, e,

and y,:. Following [8], we find

_ 704Aq 3528
0T T A TR T T3l
_ 88(8Aa — b)

= 2.32
]’¢§ 13”2A;‘c ( )

There are general constraints on families of minimal twist
operators that appear in the OPEs of primary operators of
any unitary CFTs in more than two dimensions [14,65].
It is tempting to apply these constraints directly to (2.32);
however one should be more careful for the following
reason. The dual CFT; must be regarded as an effective
CFT which is defined order by order in perturbation theory.
Of course, even for such a theory bounds of [14,65] apply
to minimal twist operators. However, identifying families
of minimal twist operators can be subtle for an effective
CFT. In particular, it is easy to obtain a wrong bound when
the anomalous dimension and the OPE coefficient of a
candidate minimal twist operator receive contributions at
different orders in perturbation theory.16 Therefore, we will
not apply the CFT Nachtmann theorem directly to (2.32).
Instead, we will utilize the chaos bound which leads to
similar but not exactly equivalent constraints. Positivity
conditions obtained from the chaos bound are more reliable
since they follow from rigorous CFT sum rules [13,68,69].

F. Constraints from the chaos bound

We now impose constraints on the effective action (2.18)
by utilizing the chaos bound in the dual CFT5. Consider the
Lorentzian correlator

(V) W) W(x2) V(x3))

= W) W)} (V () V (x3)

(2.33)

in the Regge kinematics (2.23), as shown in Fig. 4, where
operators inside the correlator are ordered as written. In the
above correlator, W and V are simple Hermitian operators
which are defined as follows:

W= O¢ + cl(’),:, V= O¢ + CQO,:, (234)
where ¢ and ¢, are arbitrary real numbers. In the Regge limit
(2.24), these types of correlators obey some nice properties in
any unitary CFT. For example, any Lorentzian correlator,
such as G, where operators are inserted symmetrically in the
Rindler wedges can be interpreted as thermal correlators.
More precisely, the Minkowski vacuum can be interpreted as
the thermofield double entangling the right Rindler wedge

"®For example, consider the stress tensor operator which has
twist 1. Obviously, it appears in the OPE of OO, as well as
(95(95. Hence, the stress tensor is truly the lowest twist spin-2
operator in the full theory. However, in the limit ¢; — oo, the
stress tensor contribution to four-point correlators is subleading.
So, it is unclear whether, and in what sense, the CFT Nachtmann
theorems of [14,65] apply to (2.32).
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with the left Rindler wedge. In this “thermal” state of
temperature 7, a standard measure for chaos is the OTOC [1]

F(tg) = u[yVyW(tg)yVyW(tg)] (2.35)
where 7 in this case is the Rindler time and
—pH 1
L . 2.36
y tr[e_/)’H] ’ ﬁ T N ( N )

The Minkowski correlator (2.33) now can be viewed as a
thermal correlator on Rindler space

F(L‘_ﬁ) Fyq=u[y?Vy VIu[y? W (rg)y* W (1g)].

(2.37)

where e?”'*/F = p/./pp. The correlator G in the Regge limit
behaves in the following way:

G =1+46G, (2.38)
where the growth of 6G ~ p/\/pp can now be thought of as
the Lyapunov growth of a thermal quantum system.
Moreover, Ay now has a natural interpretation as the
scrambling time 7, = flog(As).

The chaos bound of [1] imposes rigorous constraints on
oG in the Regge limit (2.24): (i) 6G must not grow faster
than p, and (ii) when 6G grows as p,

IméG >0 for 0 <pp < 1. (2.39)
The chaos bound can be interpreted as a causality constraint
[13,68,69] or as a unitarity constraint in certain scenarios
[67,70]. The positivity condition (2.39) applies to effective
CFTs as well since it follows from a CFT sum rule."”

We are now in a position to compute 6G by utilizing our
results from Sec. I D. Specifically, we obtain

(16pp)*
G= G + 323G
C(2)(1+C%)<1+C%)( bbb 19288288

+ (€1 + 63)Gygez + 4c162G gege)

(2.40)

implying 6G ~ ip ~ ie**'*/F The chaos bound (2.39) now
imposes

8Aa+4cic3B+ (¢t +c3)b+2cicy(b—8Aa) >0 (2.41)

for all ¢y, c, € R. First, the above inequality immediately
implies the 4D a-theorem

"This CFT sum rule plays a crucial role in constructing
C-functions from OTOC. We will discuss this in Sec. V.

Aa = dygy — AR > O, (242)
where the equality holds only when the dilaton is exactly
free representing the case in which there is no RG flow.
Moreover, the inequality (2.41) imposes constraints on B
and b as well

b > 4Aa — V8BAa.

Note that b = 0 and/or B = 0 necessarily require Aa = 0
(no RG flow). The excluded region in the B-b plane is
shown in Fig. 2. The last inequality which follows from the
interference effect can be interpreted as an upper bound
on Aa.

Clearly, 6G is a monotonically increasing function of
Rindler time 7. This fact, as we will explain in Sec. V, it is
closely related to the existence of multiple C-functions that
decrease monotonically under RG flows in 4D.

As mentioned in the Introduction, the bounds (2.43) can
also be obtained directly in flat space following [42] with
some assumption about the asymptotic behavior of four-
point scattering amplitudes. The last bound of (2.43) is
more subtle and may require additional assumptions (see
[30-33] for similar bounds).

B>0, 520, (2.43)

G. Bootstrap corner

When we look closely, there is a kink in the exclusion
plot 2 in Fig. 2. The kink is located at'®

B =2Aa, b=0 (2.44)
which corresponds to the effective action
1 1
Sl il = [ (=5 002 - S 067
2A
F2 - 00r7). )

This type of corner, often seen in the conformal bootstrap,
is associated with interesting theories. However, we are not
aware of any RG flows that are described by the effective
action (2.45).

III. SUPERSYMMETRIC FLOWS

A simple example of a RG flow with broken global
symmetry comes naturally from supersymmetry. Consider
4D N = 1 SCFTs in which conformal symmetry is broken
by an operator that preserves the AN/ = 1 supersymmetry.
This breaks the U(1) R-symmetry as well since the stress
tensor is in the same supermultiplet as the R-current. As a

'8As mentioned before, b = 0 is ruled out. By Eq. (2.44), we
mean that ﬁ — 0 is parametrically suppressed.
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result the theory flows to another SCFT in the deep IR. In
this scenario, the NG fields 7 and S are part of a chiral
superfield ® =7+ i+ ---. The resulting low-energy
effective action for the bosonic part is given by [15,29]

Sl =5 [ (002 - @27 + 55 (P

+ E20028% — 28202 + 4¢§D2¢§)> (3.1)
implying

B=2Aa, b=8Aa. (3.2)

These relations can be thought of as the N' =1 super-
symmetric Ward identities [15]. The relations (2.32) allow
us to reinterpret these Ward identities as simple relations
among various anomalous dimensions in the dual CFT;

Yoo =Veer Ve =0 (3:3)
as shown in Fig. 5.

In Sec. V, we will argue that there are infinitely many
distinct C-functions that decrease monotonically from ayy
to ar under RG flows. In particular, for N' =1 super-
symmetric flows in 4D, by using the Ward identities
of [15], we define the following set of independent
C-functions (also known as a-functions) in the dual
CFT; description:

Yop = Yoy

FIG. 5. 4D RG flows connecting two A =1 SCFTs are
represented by the black dot inside the allowed region in the
B-b plane. Two dashed red lines correspond to the N =1
supersymmetric Ward identities which can be equivalently stated

as 74 = e and yye = 0.

C(,M) = dRr + doRe

A;‘cl’]% . X
——5——— lim /
f3333(=3108(n)) Zrecxst Jar#r

;
(ri £ r3)c
(16n)°

for all ry, r, € R, where 7 and ¢ are defined in Eq. (5.2).”
In the above equation, we have exploited the positivity of
the integrand which follows from Rindler positivity [40].
Moreover, A ¢ is given by fRa4s times some positive
numerical factor (which is independent of #, r;, and r,).
The numerical factor can always be chosen such that

C(? = 0) = ap, c<§ = oo> =ayy. (3.5)

This will be discussed in more detail in Sec. V, where the
integral on the right-hand side of (3.4) will be written as
an integral over an OTOC. Of course, a similar set of
C-functions can also be constructed from combinations of
flat space amplitudes A(¢pppep) and A(PEpE) by extending
the procedure presented in [4].

The presence of multiple a-functions for ' = 1 flows has
along and interesting history. For example, it was a source of
much interest right after a-maximization was proposed.
However, it is not clear if there is any relation between
the C-functions of (3.4) and a-maximization [71-73].
In fact, it is also not obvious whether different C-functions
of (3.4) are truly distinct. It is possible that these C-functions
just represent different RG schemes.”

— 11Gypgp = 75G¢¢55> (3.4)

IV. GENERALIZATION TO NON-ABELIAN
GLOBAL SYMMETRIES

There are a few subtleties associated with generalizing
the preceding discussion to the breaking of non-Abelian
global symmetries. Now we start with a CFTyy in 3 + 1)
dimensions with a global symmetry group G, where G is
any compact Lie group. For simplicity, we assume that G
is simple. However, as we will explain later, our result
is applicable even when G is a direct product of a finite
number of simple Lie groups.

Similar to the Abelian case, we again couple the UV
theory to a background metric g,,(x) and a background
gauge field A,(x). In the present case, it is important that
the gauge field A,(x) is introduced in such a way that it
makes the global symmetry of the UV theory local. In
general, the global symmetry G can have 't Hooft anomaly.

Note that ¢y, ¢ and ry, r, are related in the following way:

ri=(1+cica), ry=c| — Cp.

Moreover, as we found before ¢, = 1z

“We thank J. Heckman for pointi’ﬁg it out.
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In that case, the above gauging seems to be problematic.
However, we can always introduce a set of massless
spectating fields which only couple to the gauge field A,
(but not CFTyy) in such a way that the G-anomaly is
canceled. This standard trick enables us to make the global
symmetry of CFTyy local by coupling it to a gauge field
Aﬂ. Of course, at the linearized level, Au is coupled to
CFTyy through the spin-1 conserved current associated
with the global symmetry G.

Let us now imagine that the conformal symmetry and the
global symmetry of CFTyy are spontaneously broken by
turning on VEVs for some operator

G x 30(4,2) - i30(3,1). (4.1)

This starts a RG flow that ends at CFTr. We will only
consider RG flows in which CFTg is invariant under the
action of the group G. This means either the “individual
fields” of CFTjr transform trivially under the group G or
more generally CFT}r also has the UV symmetry G (which
can be anomalous). Equivalently, the gauge field A, at the
linearized level, couples only to some spin-1 conserved
current of CFTr (if at all).?" Of course, CFTp can have
other global symmetries that do not embed at all in the UV
theory.

These classes of RG flows are also described in terms of
an effective action of the NG bosons of broken symmetries.
The same effective action also describes RG flows where
the conformal symmetry and the global symmetry of the
CFTyy are broken explicitly. In that scenario, as discussed
before, the NG bosons should be interpreted as compensa-
tor fields.

A. Effective action

One advantage of coupling the theory to background
fields is that the standard coset construction for sponta-
neous symmetry breaking emerges naturally from it.
Moreover, it is also more convenient to track all anomalies
when we couple the theory to a background metric g, (x)
and a background gauge field A,(x). The background
gauge field A,(x) can be decomposed as follows:

A, (x) = AL(X)T, (4.2)

where T with i € {1,2,...,dimG} are Hermitian gener-
ators of G in the fundamental representation satisfying

!Note that the massless spectator fields that were introduced
to cancel the UV G-anomaly will survive even at the IR. The full
IR theory, including the spectators, must be free from G-anomaly.
Hence, we can simply incorporate the effects of these spectator
fields by implementing the 't Hooft anomaly matching condition.

[T, T/ = ifikT* (4.3)
and TrT'T/ o« 6.

The broken global symmetry generates massless NG
bosons f;, i € {1, ...,dim G}, which accompany the dila-
ton 7. The low-energy effective action S.[z, ;] can be
derived by studying the variation of the action under diff x
Weyl transformations and gauge transformations. Weyl
transformations act in the usual way (2.6). On the other
hand, the gauge field transforms under the gauge trans-
formation as

A, (x) = Q(x)A,(x)Q 7! (x) +iQ(x)0,Q7 (x), (44)
where Q(x) = ¢/ € G. Under the same gauge trans-
formation, NG fields (x) = B;(x)T" transform as

g(x) = P - Q(x)eiﬂ(x). (4.5)
The infinitesimal gauge transformation takes the familiar
form

A (x) = A(x)+ 0,

=A,(x) + Dya(x),

a(x) —i[A,. a]

p(x) = px) +a(x), (4.6
where a(x) = o (x)T".

We now can simply repeat the argument of the U(1)
case. The anomaly matching arguments of [4,29] apply
here as well implying that the changes in anomalies in the
flow from CFTyy to CFTr must be compensated by the
NG bosons. This leads to the variation of the effective
action under an infinitesimal Weyl transformation

8o Sett (G Aus 7. Bi] = /d“x —go(x)(—AaE, + AcW?

+ AKGTer) (47)
where k¢ is the trace anomaly associated with the back-
ground gauge field A, (x). Similarly, the variation of the
effective action under an infinitesimal gauge transformation
(4.6) must have the following form:

5aSeff[guwAu;Tvﬁi] = /d4x\/_g(AcAdijkaiFlj;UFIl:y

+ Ac,Tr(a)R,,q5R™), (4.8)
where ¢4 and ¢, are anomaly coefficients and
dij = Tr({T;, T;}Ty). Note that the second term in
(4.8) vanishes since Tr7; = 0. Hence, there is no mixed
gauge-gravitational anomaly when the symmetry group G
is simply laced. Nevertheless, we kept both terms since
later we will generalize to symmetry groups that may
contain U(1) factors. This does not cost us anything
because in the flat space limit with no background gauge
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field, the gauge anomalies (4.8) do not contribute to the
low-energy effective action of NG bosons.

The rest of the argument is exactly the same as before
implying that in the flat space limit with no background
gauge field S.[z, ;] still has the same simple form

Seit[t. Bi] = (Swz + Sinv) g, =, 4,~00 (4.9)
where the Wess-Zumino part of the action Sy, produces
both the conformal anomaly (4.7), as well as the anomaly
for the global symmetry G (4.8). Similar to the Abelian

case, Sy in the flat space limit with no background gauge
field is uniquely fixed by Aaq,

SWZ|gM=nM,Aﬂ=o =2Aa / d*x\/—g(V7)?(20r — (V1)?).
(4.10)

Furthermore, S;,, can be constructed from the Weyl-
invariant combination g, = e‘ZTgW and the gauge covar-
iant combination A, = A, — w,, where

,(x) = ig(x) 097" (x)

with g(x) = ¢, Under the gauge transformation we
find A, — Q(x)A,Q"(x). Note that »,(x) is precisely the
Maurer-Cartan form which plays a central role in the coset
construction. This allows us to define a coset covariant
derivative

=oi(x)T;,  (411)

w,(x) = D,p(x).

Therefore, up to four-field level, we can write

(4.12)

global[élv ljkl] ___/d4 <a§1 651 6f2fl]kfl] 14 5]5} éké:k’

4f4

where B;j; is fixed by symmetry

Bji = B 1601 + By (651 + 6116 1)

+ B3 (friwfij + frinfijx) + BaTiju (4.17)

up to arbitrary dimensionless coefficients B, B,, B3, and B,.
Note that we have defined T, = Tr({T;, T;}{T}.T,}) and

fije = =2iTe([T', T/]T*). Of course, for a specific G all

/d XB &2 (E&)) +O(0%°),

/ d*x\/=§ (——( +2yog””Tr(Aufly)>

10
+) W+ 0(86)>, (4.13)
=1

where W, are all four-derivative invariants which are
given in Appendix B. Similar to the previous sections, the
mass scale f represents the symmetry breaking scale,
whereas y-coefficients are real, dimensionless, and theory
dependent.

After using the equations of motion and taking the flat
space limit with no background gauge field, we obtain the
low-energy effective action (B10) for the physical dilaton ¢
and physical axions &; (for details see Appendix B). The
effective action at the four-derivative and four-field level
has the form (1.1)

Seff[(pv 51] = Sconforma.l [¢’ All] + Sglobal[éi; Bijkl]

+ Smixed[¢v gi; Aa, b] (4 14)

As noted in the Introduction, the effective action of the
dilaton Scopformal[¢0; Aa] remains unaffected by breaking of
the global symmetry G,

Sconformal [#5 Aa] = /d4x <—%(8¢) _|_7¢2|:|2¢2)
+0(0%¢°) (4.15)

which agrees with the dilaton effective action of [4].
Similarly, Sgobai[€;; Bjjx] is the axionic part of the effective
action

ZJ:ZDE)

i#]

(4.16)

B-coefficients may not be independent. For example, for
G = SU(2) it is sufficient to set B3 = B, = 0.

In contrast to the Abelian case, the axionic part of the
effective action (4.16) also contains two-derivative four-
field interactions. This should not be surprising since
spontaneous breaking of a non-Abelian continuous global
symmetry can generate two-derivative four-field inter-
actions which follow directly from the Maurer-Cartan form
(4.11). In fact, this type of two-derivative interaction is

“Let us note that Syjopa [ B; sz] can always be written in the form (4.16). However, this requires scaling the generators such that
Tr(T,T;) = 5, ;» where yy > 0 is theory dependent. The structure constants f;;. are also defined in this convention.

025016-13



SANDIPAN KUNDU

PHYS. REV. D 105, 025016 (2022)

already present in more familiar chiral Lagrangians in
particle physics which lead to radiative corrections.
However, there is a crucial difference. The term &I
in the action (4.16) appears only when the breaking of
global symmetry is accompanied by a breaking of con-
formal symmetry. In other words, taking the physical
dilaton ¢ = 0 in (4.14) does not reproduce the low-energy
effective action associated with spontaneous breaking of
only the global symmetry G. On the other hand, the limit
7 = 0 is actually smooth reproducing the correct effective
action for the broken global symmetry.

Finally, the mixed part of the action Sy.q[®, &3 Aa, b]
represents interactions between ¢ and &;,

Smixed[¢a fi; Aa, b] 4f4 / d4 <b¢§z|:|2 (gbfz)
—48aZP?) + O(0% ¢ 4*E)

(4.18)

where b is a dimensionless coupling constant. Note that
the second term of Sy,c.q 1S universal. In general, b and
B-coefficients depend on CFTyy, CFTpR, and deforma-
tions (or VEVs) that trigger the RG flow. As the Abelian
case leads us to expect, these coefficients must also
satisfy various positivity conditions for unitary RG flows
which we will derive next. However, the presence of the
two-derivative four-field interactions in (4.16) makes
these bounds more subtle.

B. Bounds from chaos

Similar to the U(1) case, we again consider the dual CFT5
description of RG flows characterized by (4.14). The dual
CFT; now contains N + 1 scalar primary operators of
dimensions A = 3. The operator dual to the physical dilaton
is denoted by O. Similarly, operators O; for i =1,...,N
are dual to &;. In this dual description, consider the Regge
correlator (2.33) in the kinematics (2.23), where operators W
and V now are defined as follows:

(4.19)

W:O¢+Zci0i’ V=O¢+ZEZO,,

where c¢; and ¢; are arbitrary real numbers. The chaos bound
(2.39) now imposes

8Aa + bz

eff . ~ ~
+4 E Bifkcitjed 2 0
ikl

2) +2(b—8Aa) ch

(4.20)

for all ¢, ¢ € RV, Unlike the Abelian case, now there can be
loop contributions
B =

Bijy + Bj™ (4.21)

1-loop

where B, represents one-loop contributions to the Regge

correlator (2.33) from the two-derivative four-field inter-
actions in (4.16).

1. Linear constraints

First, note that the consistency condition (4.20) imposes

Aa>0, b>0, (4.22)

implying that the broken global symmetry does not affect
the proof of the a-theorem. Similarly, we also find that B,

is strongly elliptic. In other words, it has a positive definite
biquadratic form

sz’z = ZB?;/ElCiZ’jCkE[ >0 (423)

i.j.kl

for all ¢,¢ € RN over unit spheres Y, c;c; = >, ¢;¢; = 1.
It should be noted that in general the constraint (4.23) is not
very interesting since it is automatically satisfied because of
the one-loop contributions from the two-derivative four-field
interactions in (4.16). From the effective field theory
perspective the two-derivative four-field interactions in
(4.16) induce log runnings of B;, B,, B3, and B4 which
dominate at low energies. These log runnings ensure that the
constraint (4.23) is trivially satisfied. This is very similar to
the constraints on the SU(2) chiral Lagrangian, as discussed
in [42,74].

On the other hand, if the two-derivative four-field
interactions in (4.16) are parametrlcally suppressed
because of weak coupling |B, kil > |B; ,k(z)op| the constraint
(4.23) becomes nontrivial.”> In this case B ki A Biju and

hence the positivity constraint (4.23) leads to interesting
bounds on B-coefficients. Clearly, when loop contribu-
tions are suppressed, the positivity condition (4.23) is
nontrivial and holds whenever any global symmetry is
spontaneously broken with or without conformal sym-
metry breaking.

2. Nonlinear constraints

When loop contributions are suppressed |Bjjy| >

|Bllj,13°p| there are stronger conditions that Aa, b, and
Bjji; must also satisfy. In particular, the relation (4.20)

imposes that

ZIn the effective action (4.16), this weak coupling suppression
can be equivalently stated as |B,|, ..., |B,| > 1 but not too large
so that it does not affect the perturbative expansion in }
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1
Alc, ¢ = Aa(1 = 2c-?) +§b(c+5)2

1
+= (B, +By)(c- &)+ 532&52

l\)\'—l\)l'—‘

(4.24)

(Bsfvijf i + BaTjig)ci€ ey >0

forall c,¢ € RY. Clearly, forc - ¢ = Y, ¢;¢; > 0 the above
condition is stronger than the previous positivity conditions
when loop contributions are absent. Of course, this infinite
set of inequalities is not all independent. It is always
possible to reduce A[c,¢] >0 into a finite number of
constraints on Aa, b, and B;.

C. Example: SU(2)

Let us provide an example to persuade the reader that for
specific theories the above constraints simplify greatly. We
consider a scenario in which CFTyy has a global SU(2)
symmetry. The conformal symmetry and the global sym-
metry of CFTyy are explicitly or spontaneously broken

SU(2) x 80(4,2) — i30(3,1) (4.25)
which starts a RG flow that ends at CFTr. This happens
naturally when the CFTyy has A =2 supersymmetry
since N/ = 2 SCFTs have U(1) x SU(2) R-symmetry.

The SU(2) symmetry implies

Biji = B16;;0k + By (6y8j1 + 646).  (4.26)
Of course, the constraints (4.22) remain unaffected. On the
other hand, the condition that B, is strongly elliptic
imposes
B, + B, > 0, B, > 0. (4.27)
As discussed before, the positivity conditions (4.27) are
nontrivial only when one-loop contributions are negligible.
Furthermore, when one-loop contributions are suppressed,
Alc, €] = 0 reduces to a stronger nonlinear constraint

b > 4Aa — \/8Aa(B, + 2B,) (4.28)

which can be viewed as an upper bound on Aa. Clearly, we
again obtain an exclusion plot which is exactly the same as
Fig. 2 with the substitution B — B; + 2B,. Furthermore, this
identification suggests that RG flows between N = 2 SCFTs
in which conformal symmetry and SU(2), symmetry are
broken by an operator that preserves the ' = 2 supersym-
metry, are described by b = 8Aa and B + 2B, = 2Aa. It

would be nice to verify this expectation directly from
supersymmetric Ward identities.

D. A more general scenario

So far, we have assumed that G is a simple Lie group.
However, the form of the effective action (4.9) implies that
the same analysis holds for a more general scenario. In
particular, the preceding argument applies even when G is a
direct product of a finite number of simple Lie groups and
U(l)’

(4.29)

G =]]G.

Now there can be mixed anomalies associated with various
G,. However, contributions from these additional anomalies
also vanish when we take the flat space limit with no
background fields. In general, the RG flow between CFTyy
and CFT can preserve some subgroup H of G. In such a
scenario CFTr has the global symmetry H. In fact, it is
possible that deep in the IR some of the broken UV
symmetries get restored and hence the CFTr can have a
bigger symmetry group H' > H. This situation, for example,
arises naturally for supersymmetric flows. We can include
this possibility as well since the low-energy effective action
of the NG bosons depends only on H. In general, these RG
flows are also described in terms of a low-energy effective
action of a dilaton ¢ and N axions &; where

N =dimG-dimH = dimG, —dimH.  (4.30)

The effective action still has the form (4.14) where Scnformal
remains unaffected (4.15). A straightforward generalization

leads to
1 N
" 851 )
5 (100 DI
A—4<¢ZDZ¢2 2252%2) o [5])
ek (Z bibeP g,
i=1

N

>

i,j,k,I=1

eff [(:b 51 d4 (

ljklété:jl:' 51(51) (431)

where N is given by (4.30). Again notice that NG modes ¢&;
of broken global symmetries do not interfere with the proof
of the 4D ag-theorem. In this general case, the low-energy
effective action of NG bosons is completely fixed by
symmetry up to dimensionless coupling -coefficients
{b;, B; jk,}.24 Just like before, coupling coefficients

*Note that just from symmetry argument we get a real
symmetric matrix b;; and a 4-tensor B; ;. We can always perform

a field redefinition to diagonalize b;; = b;5;;.
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B = {B,,} are a strongly paired symmetric 4-tensor which
has the symmetries of the N-dimensional elasticity tensor

Bjjui = Bjity = Biji = Buij- (4.32)
However, now it may not have the form (4.17) in general.
Together, {b;, B;;;} contains £N(N*+ 2N*+ 3N + 10)
independent coefficients, although, in a specific theory some
of these coefficients can be related to each other and/or Aa.

In the above effective action (4.31), the axionic part also
contains two-derivative four-field interactions £ )[&]. This
can be obtained directly from our earlier analysis

1
E(z) [5] = ngfijkfij’k’fjfj’m(fkfk’)

1
- 87225%552,

i#]

(4.33)

where axions & withi € {1,2, ..., N} belong in some large
reducible representation with structure constants ;.
Clearly, the first term vanishes for NG bosons associated
with broken U(1)’s.

The chaos bound now leads to a similar positive function
in the Space of {Aa, bi?Bijkl}’

—_
=z

A[C,Z‘] :Aa(1—2c5)+§ bi(Ci+z'i)2
i=1

1

1
eff . ~ ~
+ 3 ZBijklcicjckcl >0
i.jk.l

(4.34)

for all ¢, ¢ € RN, where B';“inl is defined as before (4.21).
This positivity condition leads to Aa > 0, b; > 0, and Bf]f}d
is strongly elliptic (4.23). Some of these constraints
involving B;j; can be trivially satisfied because of the
one-loop contributions from the two-derivative four-field
interactions (4.33).

This is the most we can say about the effective action
(4.14) without requiring to know anything about the details
of the flow. For specific theories, some components of
{Aa.b;, B;j,} can actually be related. In that case, the
above constraints simplify greatly. In general, the condition
(4.34) can be alternatively and equivalently stated as an
eigenvalue problem [75]
|

_ ApE(1+ N (14 N&2)

Ale.e] = f3333(—%10g(’7))

E AjjriciCic, = ATy,
i.j.k

E CiC; = E Z’,»Z‘,-Zl
i i

where ¢ and ¢ are left and right eigenvectors of A with
eigenvalue 1 € R. Now the condition (4.23) implies that all
eigenvalues of (4.35) must be positive. In spirit, this is
analogous to the matrix eigenvalue problem; however, in
general the eigenvalue problem (4.35) for N > 3 is difficult
to solve. In fact, it is known that the optimization problem
(4.23) is NP hard [76].

E AjjuCiciC; = Aci,
Tk

(4.35)

V. SUM RULES, OTOC, AND C-FUNCTIONS

It was argued in [8] that some properties of RG flows are
more transparent in the dual CFT description in one less
dimension. For example we can write a rigorous CFT; sum
rule for A[c, €], as defined in (4.34) [with (2.41) and (5.7) as
special cases]. This can be achieved by considering the
correlator

(V(x)W(x)W(x2)V(x3))
(Wx))W(x2))(V(x)V(x3))

Gu:(o) = (5.1)

in the kinematics (2.23) in the dual CFT; description. The
operators W and V are defined in (4.19) with ¢, ¢ € RY. We
have also introduced variables

n=pp. o=-. (5.2)

A. Sum rules

The correlator (5.1), as explained in Sec. I F, can be
viewed as a thermal OTOC on Rindler space

G.:(0) = F(tR - ?) /F,, e~/ — Vo, (5.3)

where 7, is the Rindler time. Analyticity of CFT correlators
in Lorentzian signature, as discussed in [40] (see also
[8,14]), allows us to write a CFT; sum rule for Alc, €],

lim [ do Re(1=G.a(0)) 20

(5.4)

1
AT}«X«] 0

forany ¢, ¢ € RN where 0 < 5 < 1. Note that f333, as defined in (2.26), is positive.25 Positivity of the integral follows from
Rindler positivity which requires Re(1 — G.z(o)) > 0 [40]. This sum rule does not make any assumptions about the dual

»We have also absorbed positive numerical factors in the definition of A ’

025016-16



RG FLOWS WITH GLOBAL SYMMETRY BREAKING AND BOUNDS ...

PHYS. REV. D 105, 025016 (2022)

CFT; beyond the usual Euclidean axioms. Alternatively, the positivity also follows from the bound on the OTOC
|F(tg — %})| < Fy, up to corrections that vanish in the limit |6| < 1 [1]. Moreover, the above CFT; sum rule, after using

(5.3), can be rewritten as a time integral of the OTOC

Akiﬂz%P@)hm

1.>3>t>f 1o

- dtre=>"x/F Re (Fd - F(tR - ?)) >0,

(5.5)

where P(n) is a theory-independent positive function of 7 that does not depend on ¢ and e A special case of (5.5) is
¢ = ¢ = 0 which provides a relation equating Aa with the integral of F(t; — %f)

B. C-functions

Another reason the sum rules (5.4) and (5.5) are of importance is that they provide a basis to construct an infinite set of
CFT; functions that decrease monotonically along the RG flow

Adnp(1 + Ne?)(1+ Ne?)

Al c.¢] = f3333(—%10g(’1)>

1 to-+24t,
=—P(y) lim [ 7

t.>>1>f fo

with 0 <7 < 1 for all ¢, & € RY. These functions for all
¢, ¢ € RY interpolate between A[c, & in the UV (u/f — o0)
and 0 in the IR (u/f — 0). Thus, using the basis (5.7), we
can construct a general C-function

-C
Cuv IRAIP;C’ g,

Clu,c,cl=C _—
[us ¢, ¢ R T Ale. 7]

(5.8)

By construction, Clu;c, ¢ for any c,¢ € RV decreases
monotonically from Cyy to Cig under the RG flow. Besides,
Clu; ¢, ¢] defines a function which is constant and indepen-
dent of energy scale at the UV and IR fixed points. A special
case of (5.8) with Cyy = ayy and Cir = apg is an infinite
set of a-functions that monotonically decrease from ayy to
ar- Any such a-function provides a good measure of the
effective number of degrees of freedom along 4D RG flows.

Of course, in general (5.8) is stronger than the special case
we considered above. For example, it is possible that for
certain values of ¢ and ¢ the constraint (4.34) for specific
theories leads to a positivity condition for some other central
charges associated with CFTyy and CFTk. For any such
central charges, (5.8) also provides a set of C-functions that
interpolate between the UV and the IR values.

26 .
To be precise,

Plr) 5122° Adp? P ( 1 ) (5:6)
= J =—log|—|. .
1 9f3333(— % log(n)) * 2 ¢ Vix

Also note that the integral (5.5) does not depend on ¢, as long
as it is much smaller than the effective scrambling time
t. = plog(As) > 15> f.

nmf do Re(1 = G,o(0))
A;4“/’fx

Ll
i

dige™ 7 Re (Fd _F <tR - ?))

(5.7)

Finally, let us comment on C-functions of 4D super-
symmetric RG flows. The above discussion immediately
implies that there are infinitely many distinct functions
a(p) for N' = 1 supersymmetric flows that monotonically
decrease along RG flows from ayy to ajg. In particular, the
CFTj; quantity (3.4) for any choice of r; and r, leads to a
distinct a(u).

VI. EXAMPLE: FREE MASSIVE SCALARS

The results of the preceding sections depend only on
general principles and symmetries. We now provide a
simple example that highlights most of the basic features
of our general construction.

Our UV theory contains a free complex scalar

1
CFTyy = -5 / d*x0,® ' D, (6.1)

which enjoys an additional U(1) global symmetry:
D — D, d" - e PDT. We now deform this CFT by
adding mass terms

1 .
Sov = -3 [ 30,000 + i3 < n30d). (62)

where ® = @, + i®, and m?},m3 > 0. The mass terms
break both the conformal symmetry and the global U(1)
symmetry explicitly. We will discuss the flow of this UV
theory. The CFTyy consists of two free massless scalars
and hence
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ayy = 2 (63)

" 360(47)2

In the deep IR, the scalar field @ decouples completely, and
the CFTy is trivial with no degrees of freedom, imply-
ing aR — 0.

A. Dilaton as a compensator

First as a warm-up, we introduce a single real compen-
sator Q that allows us to view the explicit conformal
symmetry breaking as a spontaneous symmetry breaking

1
5= / d'x(9,0T D + 9,Q00Q + 1,20}

+ 1, Q2 D3), (6.4)
where A, = m?/f* and 1, = m3/f? for some arbitrary
mass scale f. The scale f can be freely tuned; however,
we do not want the compensator to modify the RG flow of
(6.2) and hence we choose f > m, m,. In this limit, Q and
® are weakly interacting and we have perturbative control
over the theory (6.4).

The theory (6.4) at the classical level is conformal. This
can be seen by computing the classical stress tensor

pr = ayq)layq)l + 8M<I>25‘,,<I>2 + (')”Q(‘)DQ
1 _
- Ei/l;tl/(ayq)—i oD + aﬂgaﬂg + /1192@%

+ 2,Q2®3) (6.5)
which is conserved but not traceless. This can be made
traceless by adding an improvement term

1
™ =71, - ¢ (0,0, —n,,0) (@D + Q). (6.6)

The improved stress tensor T,ﬁ‘,’," is both conserved and
traceless when we apply the equations of motion.

So, the conformal compensator modifies the theory (6.2)
into a classically conformal theory (6.4). What does it imply
for the quantum theory? Whenever conformal symmetry is
broken explicitly by some mass parameters such as m; and
m,, that always introduces an operatorial anomaly to the
trace of the stress tensor which spoils the anomaly matching
argument of the previous sections. One can always introduce
some conformal compensator € that removes the operatorial
anomaly. This is reflected by the fact that T is traceless.
Moreover, the absence of the operatorial anomaly in (6.4)
guarantees that ayy must match the total IR anomaly of
CFTir plus the dilaton.

The theory (6.4) has a moduli space along Q for
(®) = 0. Clearly, the theory is conformal at (Q) = 0.
However, the conformal symmetry is spontaneously broken
at (Q) = f where we recover (6.2). Note that the theory

(6.4) does not have any global U(1) symmetry even
classically. From this perspective, the global U(1) sym-
metry of CFTyy is emergent only at (Q) = 0. Hence, in this
description we will not produce any NG boson for the
broken U(1) symmetry.

The dilaton effective action can be obtained by studying
fluctuations around the broken phase: Q = f —¢. The
action now becomes

S = Syy —;/ d*x <8ﬂq’)8"¢ + J<¢> (mid? + m%@%)),

f
2

] <¢> _P 22

) f
At low energies, we can integrate out the massive fields @,
and @,. We proceed by computing the dilaton four-point
amplitude at the leading order in 1/f. This leads to
precisely two copies of the one-loop diagram in [4] for
a single massive field—one with ®@; running in the loop and
another one with @, running in the loop. So, we get the
following four-derivative effective action for the dilaton:

(6.7)

1 1
S conformal [‘ll’] = —5 / d*x <(6¢)2 — W (¢2D2¢2)

+0(¢° 66)) (6.8)

which agrees with (4.15) for Aa = ayy given by (6.3).

B. Spontaneous breaking of U(1) symmetry

Discussion of this section can be extended to also
describe the explicit U(1) symmetry breaking of (6.2) as
a spontaneous symmetry breaking. This can be done by
introducing a complex compensator €:

1 ~
§=-3 / d*x(0,@'0"® + 9,Q0' Q" + 1,QQ 0"

+ 1 (Q201? + QF20?)), (6.9)
where couplings between @ and  are arbitrarily weak

2 2
_m+m = my—m;
212 7

Moreover, under the U(1) symmetry Q transforms as

M (6.10)

Q - eQ, QF — e70Q7, (6.11)
Similar to the previous case, the theory (6.9) is classically
conformal. Furthermore, now one can also define a spin-1
current

ju = i(®70,® - ®9,0") +i(Q'9,Q - Q9,Q7)  (6.12)
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which is conserved, once we impose the equations of
motion.

At the leading order in 4, and 4,, the theory (6.9) at
energies my,m, < E < f can be viewed as an exactly
conformal theory with a U(1) global symmetry. These
symmetries are spontaneously broken when Q gets a
nonzero VEV, (Q)=f, where we recover (6.2).
Fluctuations around the broken phase Q= f—¢ —i&
create NG bosons associated with these broken symmetries.
The additional massless mode £ arises from the sponta-
neous breaking of the global U(1) symmetry.

The dilaton-axion effective action now can be obtained
by integrating out the massive fields ®; and ®, from

S = Suv —%/ d*x(0,p0"p + 0,E00E

+ J@) (m1®? + m2d?)
~ 52
= 80P By (P8 — fE) + 25 (m3 @} 4+ mi@3)). (6.13)
As our general discussion led us to expect, the dilaton four-
point scattering amplitude remains unchanged. In order to
simplify the computations of other amplitudes, we take

my = my + om with om < my. In this limit, at the one-
loop level we find*’

2+ 12+ u?
As(ppddp) = ISR (6.14)
2p2 a2 (16 (om\2(om\4

ateeer =it (145 () +o ()
(6.15)
52 4u*  [(6m\?2 sm\ 4

A2 =5z s ) O o)
(6.16)

where s =2p, - p,y, t =2p; - p3, and u =2p; - ps. The
resulting effective action has exactly the form (2.18) with

16 (6m\? om\*
B= 6Aa(1 - (—m> +O<—m) >
3 \my my
om\? om\ 4
b= 8Aa<—m> + O(—m> .
ny nmy
These results are shown in Fig. 2. Notice that b = 0 only

when Aa = 0, which is consistent with the general results
of Sec. II. Following our discussion of the preceding

(6.17)

*’Calculations of one-loop scattering amplitudes of NG bosons
in the context of free massive scalars can be performed in any
spacetime dimensions following [77].

section, we can construct a set of functions that monoton-

ically decreases from ayy = W to ag = 0.
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APPENDIX A: INVARIANTS FOR U(1) GLOBAL
SYMMETRY

Four-derivative invariants W; for U(1) global symmetry
are given by [15]

Wl — Wz, W2 — Rz,

W4 - (@ﬂA”)Z’ W5 - @,MUA
Wy = Rg™A A,
Wo = 9A,A, VA,

where R, R, and Wﬂmﬁ are computed using the Weyl-
invariant metric (2.12). Terms that vanish once we impose
the on-shell condition for the dilaton and the axion can be
safely ignored at low energies since these terms can only
affect low-energy observables at subleading orders. Hence,
the Weyl invariants W, in the flat space limit with no
background gauge field can be further simplified by using
the free equations of motion (2.15)

W] = 0, W2 = 36]/3641(8‘8)4, W3 = 0,
Wy=0, Ws=Ws==2e"(r5(9p)* + (9 - Ip)*),
(

4
Wy = —673¢"(9P)*. Wy = e(0p)". Wy =0. (A2)

APPENDIX B: THE EFFECTIVE ACTION FOR
NON-ABELIAN GLOBAL SYMMETRIES

1. Invariants for non-Abelian global symmetries

Independent four-derivative invariants W; for a general
compact, simple Lie group G are given by28

“Note that there can be Wess-Zumino-type terms that are not
exactly invariant but shift by a total derivative under the gauge
and Weyl transformations. For a detailed discussion see [64].
However, these terms do not contribute at the four-field four-
derivative level and hence we will ignore them.

025016-19



SANDIPAN KUNDU PHYS. REV. D 105, 025016 (2022)

Wy =Tr ((V'4,)(V'A,),  Wy=g*Tr(A4,04,),

Wi =R*Tr(A,A,), V,=RyTr(AA,),  Ws=p*Tr(A,A,VA,),

We = 3™ 5° Tr (A”AD)Tr(ApA(,), W, =y’ Tr (A”Ap)Tr(ADA(,),

Wy = 9o Tr (A,A,AA,), Wy = W2, Wi = R2. (B1)

We now write down the low-energy effective action by taking the flat space limit with no background gauge field of (4.13)

Seit[7, B = / d*x <—f;e_2’<(07)2 + Nl (Dﬁ,-)2> +2Aa(07)*(207 - (5‘1)2))

i=

+ / d*x e"”(lzoy,W,) Sy (B2)

I=1 G =My A4,=0

where dots represent higher derivative terms. Note that we removed y,, which is theory dependent, by rescaling the
generators

1
7T gz
The Maurer-Cartan form D,/ is given by
1 1

D,p; = 0,p; — Efijkﬁjayﬂk + Efnjkfnilﬂlﬁjayﬂk T (B4)

Equations of motion at the leading order are

N
Or = (07 = > (9p,)? . OB =2(0r-9B) 4. (B5)

i=1

The invariants W, in the flat space limit with no background gauge field can be further simplified by using the above
equations of motion. At the four-field level we obtain

2
=0, Wam Wy = ( (X 00 ) + ay0r- 08) 050 ).
~ 2 ~
Wy = =3e* <Z,~<8ﬂi)2) , Ws = e fiufiyw(OP; - 0B;) (0P - Oy ).
- 1 2 - 1
We = 2641 (Zi(aﬂi)2> ’ Wy = *641(8:31' - 0P)(0B; - OBy,
Wy = T,;1e%(0B; - 0B,) (0B - Op)). T =Tr ({T:. T;H{Tw. T'}),
Wo=0, Wy =36e" (Zi(aﬁi)2) . (B6)

Note that there is another possible invariant g*¢”° Tr (A”A/,ADA,,); however, this term at the four-field four-derivative level

can be expressed as a linear combination of W5 and Wg. Moreover, one can also construct a parity odd invariant
e*P° Tr (AMA,,A/,A,,) which is a total derivative.
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2. Effective action

We can now write the effective action at the four-derivative four-field level

Seff [Tv ﬁi] =

i=1

+2Aa / ((6‘[

where indices i, j,--- € {1,2, ...,

Biji = B16;i0k + By (681 + 646 1) + Bs(fruwfvji + frifvjx) + BaTijus

_f; / dxe2 ((87)2 + ZN: (9p;)* -

N
3 o0
i=1

+ / d*x(b(dz - 9P;) (0t - OP;) + Byj1i(0P; - OP;) (0P - Opy)) +

1
Efijkfij’k’ﬁjﬁj’(aﬁk “OPy) + - )

N = dim G}. Coefficients B;j; satisty

(B8)

where b, By, B, B3, B, are arbitrary coefficients and T, = Tr ({7, T;}{T}. T;}), fijx = —2i Tr ([T, TV]T*). Note that

for G = U(1), this action agrees with (2.16).

Let us now write the effective action (B7) in a more traditional form by performing the following field redefinition:

&
%

e Fsinfl; =

where & =
written as

Seff [45, fi] =

2Aa

1
_E/ <(a¢) + afl aéz lzfzft/kftj k’gjé:j (851{ agk’

2 2
(55

&;£;. In terms of the physical fields ¢ and &;, the effective action at the four-derivative and four-field level can be

3+ )

i#j

4 2Aa / d*x((0h)* - 2(0¢)2(9¢; - DE,))

f4

o / dx(b(0h - 0 (D - OE,) + Byyua (9, - 0E,) (08 - D)) +

(B10)
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