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Within the Russo-Susskind-Thorlacius (RST) two-dimensional model that includes a scalar (dilaton)
field we address the important question of how the classical black hole geometry is modified in a
semiclassical gravitational theory. It is the principle goal of this paper to analyze what is the back-reacted
geometry that corresponds to a given quantum state. The story is shown to be dramatically different for the
Hartle-Hawking state (HH) and for the Boulware state. In the HH case the back-reacted geometry is a
modification of the classical black hole metric that still has a smooth horizon with a regular curvature. On
the other hand, for the Boulware state the classical horizon is replaced by a throat in which the ðttÞ
component of the metric (while nonzero) is extremely small. The value of the metric at the throat is
bounded by the inverse of the classical black hole entropy. On the other side of the throat the spacetime is
ended at a null singularity. More generally, we identify a family of quantum states and their respective back-
reacted geometries. We also identify a certain duality in the space of states. Finally, we study a hybrid setup
where both physical and nonphysical fields, such as the ghosts, could be present. We suggest that it is
natural to associate ghosts with the Boulware state, while the physical fields can be in any quantum state. In
particular, if the physical fields are in the HH state, then the corresponding semiclassical geometry is
horizonless. Depending on the balance between the number of physical fields and ghosts, it generically has
a throat that may join with another asymptotically flat region on the other side of the throat.
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I. INTRODUCTION

Black holes are interesting geometric objects that typ-
ically appear as solutions to the classical gravitational
equations. The existence of the horizons is the main
property that defines the black hole spacetime in any
dimension. In the simplest nonrotating case the black hole
horizon is defined by the condition that the ðttÞ component
of the metric vanishes. As is well known, the horizon leads
to some very peculiar properties. Classically, the part of the
spacetime that is inside the horizon becomes inaccessible
for any outside observer.
A step toward nonclassicality will be to add quantum

fields, considering them on the black hole background that
still solves the classical gravitational equations. In this
picture the horizon does not appear to be absolutely
opaque. Instead, there appears radiation from the black
hole that is seen as a thermal radiation at the Hawking

temperature by an asymptotic observer. In fact, the pres-
ence of this thermal radiation is known to depend on the
choice of the states of the quantum fields. Some of the
quantum states that have been discussed in the literature are
as follows.
The Hartle-Hawking state: it contains thermal radiation

at infinity and the stress-energy tensor is regular at the
horizon. It describes a black hole in thermal equilibrium
with the Hawking radiation.
The Boulware state: the stress-energy tensor is vanishing

at infinity and there is no radiation there. However, it is
singular at the horizon.
The Unruh state: the stress-energy tensor is regular only

at the future horizon, and there is a thermal flux of radiation
at future null infinity. It describes the process of the black
hole evaporation.
Generally, the situation appears to be similar to the

choice of boundary conditions in an open domain: fixing
the regularity condition at one end, one gets a singular
behavior at the other. In this paper we prefer to start from
the asymptotic infinity, where we impose the conditions.
What happens at the horizon is then just a consequence of
this choice. Practically, the Unruh state is perhaps the most
physically justified quantum state. However, it corresponds
to a time evolving situation and will not be considered here
any further, since we focus on the static case only.
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A natural question that was addressed in the literature is
how the respective quantum stress-energy tensors back-
react on the geometry. There have been quite a few papers
on this subject, see for instance [1–4] that used certain
approximations for the quantum stress tensor.1 However in
those papers, at most one was able to compute the stress
tensor on a given solution to the classical gravitational
equations. Whereas, what one wants to know is its form for
a generic black hole metric.
Since the classical gravity is necessarily modified in the

quantum theory, it is clear that the black holes should
somehow be embedded in a more general quantum gravi-
tational theory. The latter is yet to be properly defined. A
good approximation to such a theory is given by the so-
called semiclassical gravitational theory. Indeed, each
quantum field propagating on a spacetime background
will produce a modification to the classical gravitational
theory. In this approach the metric is still classical, even
though the modifications due to quantum gravitons (small
quantum perturbations over the classical background) can
also be considered. The semiclassical gravitational theory is
a rather complicated theory that contains both local and
nonlocal terms. Some of such nonlocal terms were com-
puted in a series of papers [6] where the gravitational
effective action was expanded in powers of the curvature,
with the coefficients in the expansion being the nonlocal
form-factors. In four dimensions and in the cubic order one
counts as many as 29 invariants as was shown in [6]. Thus,
it is clearly a rather complicated problem to be addressed in
four dimensions.
Taking the complexity of the problem what are the basic

questions we would like to answer? Here are some of such
questions:

(i) does the quantum-corrected metric have a horizon?
(ii) if there is a horizon, how does its position and the

Hawking temperature change with respect to the
classical situation?

(iii) what happens at asymptotic infinity? If there exists a
thermal Hawking radiation as in the Hartle-Hawking
state, then it curves the spacetime and it is likely that
we no longer have Minkowski spacetime.

(iv) how do the answers to the previous questions
depend on the choice of the quantum state? What
are the back-reacted geometries for the Hartle-
Hawking and Boulware states?

(v) provided the quantum-corrected geometries are ho-
rizonless, how close are they to the classical black
hole geometry? Can they be considered as the black
hole mimickers?

We stress that our main objective is the four-dimensional
case where some particular understanding has recently been
achieved [7]. Due to the complexity of the gravitational

effective action in four dimensions, it is a good idea to
analyse the problem in a somewhat simplified while still
meaningful setting. In the present paper we are going to
address all these questions in a semiclassical model of two-
dimensional dilaton gravity. In two dimensions the gravi-
tational effective action is given by the Polyakov action
provided the quantum matter is a conformal field theory.
The simplicity of the theory makes it a quite attractive toy
model that motivated a very active study in the 1990s. This
direction of research was initiated in [8], for a review see
[9]. More specifically we shall study the model proposed
by Russo, Susskind and Thorlacius (RST) [10]. The
important advantage of this model is that it is exactly
integrable similar to the classical dilaton gravity. For the
Hartle-Hawking state it was fully analyzed in [11]. As we
show in the present paper this integrability can be extended
further to any quantum state including the Boulware state.2

A short outline of our paper is as follows. After briefly
reviewing the classical dilaton action in Sec. II, in Sec. III
we discuss the various states that we obtain once we add the
Polyakov action corresponding to conformal quantum
matter. Some of the main outcomes of this section is to
point out a one-parameter family of states besides Hartle-
Hawking (HH) and Boulware, and to also uncover an
interesting duality connecting two HH states in the space of
these parameter values. In Sec. IV, we briefly review the
two types of solutions that one obtains from the field
equations corresponding to the RST model. In particular, in
this paper we focus on the nonconstant dilaton solution. In
Sec. V, we study the resulting quantum geometry in HH
state and provide the asymptotic spacetime solution due to
the presence of the Hawking radiation. In Sec. VI, we solve
the complete effective action for arbitrary states and obtain
the master equations that we use in the following parts of
the paper. Section VII is devoted toward the study of
Boulware vacuum, and its corresponding subsections
explore various different limits and cases leading to
geometries with wormhole-type throat structures, null
singularities etc. In Sec. VIII we deal with the completely
general one-parameter family of states mentioned earlier.
Section IX studies the hybrid case of physical fields and
ghosts and their backreaction to the geometry. Finally we
conclude in Sec. X discussing several implications of our
results and potential future directions.

II. BLACK HOLES IN CLASSICAL
DILATON GRAVITY

As is well known, the Einstein-Hilbert action in two
dimensions does not produce any nontrivial equations. So
in order to introduce the gravitational dynamics in two

1The other interesting approach is related to brane paradigm
[5] that will not be discussed here.

2When the present study was in the final stages, we have
learned about an earlier paper by Zaslavsky [12] which addressed
some of the aspects relevant to our discussion of the Boulware
state in Sec. VII.
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dimensions one has to modify the gravitational action
either by considering certain nonlinear functions of curva-
ture fðRÞ, or stay in the class of theories with only two
derivatives in the field equations and introduce some
additional fields. A rather standard way is to introduce
a scalar field ϕ, called dilaton. In the class of two-
dimensional theories of dilaton gravity the most popular
is the so-called string inspired dilaton theory described by
the action [13]

I0 ¼
1

2π

Z
M
d2x

ffiffiffiffiffiffi
−g

p
e−2ϕðRþ 4ð∇ϕÞ2 þ 4λ2Þ; ð2:1Þ

where we have omitted the possible boundary terms.
Variation of the action with respect to the metric leads to

the gravitational equations

Tð0Þ
μν ≡ 1

π
e−2ϕð2∇μ∇νϕ − 2gμνð□ϕ − ð∇ϕÞ2 þ λ2Þ

¼ 0: ð2:2Þ

On the other hand the variation with respect to the field ϕ
gives us the dilaton equation

e−2ϕðRþ 4□ϕ − 4ð∇ϕÞ2 þ 4λ2Þ ¼ 0: ð2:3Þ

Looking separately at the trace and the trace-free parts of
(2.2) and taking into account (2.3), one arrives at the
following set of equations,

∇μ∇νϕ ¼ 1

2
gμν□ϕ; ð2:4Þ

R ¼ −2□ϕ; ð2:5Þ

Rþ 4ð∇ϕÞ2 − 4λ2 ¼ 0: ð2:6Þ

A consequence of (2.4) is that the vector field ξμ ¼ ϵμ
ν∂νϕ

is the Killing vector, i.e., ∇μξν þ∇νξμ ¼ 0. Its norm is
equal to ξ2 ¼ −ð∇ϕÞ2 so that vector ξ is null at the critical
points of ϕ, i.e., ð∇ϕÞ2 ¼ 0. Along the Killing trajectories
given by ξ the dilaton ϕ is constant as ξμ∇μϕ ¼ 0. So that it
is natural to choose ϕ as a spacelike coordinate and
associate ξ with a time coordinate, ξ ¼ ∂t. The general
solution to the field equations is thus a static metric of the
form

ds2 ¼ −gðxÞdt2 þ g−1ðxÞdx2;
ϕ ¼ −λx; gðϕÞ ¼ 1 − ae2ϕ: ð2:7Þ

For a ¼ 0 the metric is flat. This is the so-called linear
dilaton vacuum. For positive a the metric describes an
asymptotically flat space-time at ϕ → −∞, and has a
curvature singularity R ¼ −4λ2ae2ϕ at ϕ ¼ þ∞. The point
ϕ ¼ ϕh where the metric function vanishes, i.e., gðϕhÞ ¼ 0,

is the Killing horizon. Vector ξ becomes null here,
ξ2ðϕhÞ ¼ 0. For negative a the horizon is absent and the
solution describes a naked singularity.
The metric (2.7) then describes a two-dimensional black

hole with mass M ¼ λa
π . The Hawking temperature is

independent of mass, TH ¼ λ
2π. This appears to be a

peculiarity of two dimensions. The entropy of the black
hole is determined by the value of the dilaton field at the
horizon, SBH ¼ 2e−2ϕh ¼ 2a. For a discussion of the
thermodynamics of a classical 2d dilaton black hole
see [14].
Comparing this two-dimensional picture to the four-

dimensional case we see that the dilaton, or more precisely
e−ϕ, could be identified with the radial coordinate r.
So that the entropy would have the usual interpretation
as the “area”.

III. VACUA OF QUANTUM CFT ON
A 2D BLACK HOLE BACKGROUND

Now we take a step toward the quantum gravitational
theory and consider quantum matter on the classical black
hole background. To make things simpler we consider a
conformal field theory. The corresponding quantum effec-
tive action, provided the quantum fields are integrated out,
is known to be the Polyakov action. The Polyakov action is
a nonlocal functional of the background metric. We
however prefer to deal with a local version of the action.
This always can be done by introducing an auxiliary
field ψ ,

I1 ¼ −
κ

2π

Z
M
d2x

ffiffiffiffiffiffi
−g

p �
1

2
ð∇ψÞ2 þ ψR

�
; ð3:1Þ

where we again omit the possible boundary terms. For a
multiplet of N scalars one has κ ¼ N

24
. If one includes the

ghosts then κ ¼ N−24
24

. The negative number −24 comes out
as −24 ¼ −26þ 2 when one quantizes the dilaton gravity,
−26 being the contribution of the ghosts, see [15–17]. In
the next sections, where we consider the backreaction
problem, the parameter κ will control the quantum mod-
ifications to the classical geometry. So that sometimes we
will want to take the limit of very small κ in order to
illustrate how the semiclassical geometry approaches the
classical one. Thus, κ will be treated as a continuous
parameter. It mostly takes positive values but its negative
values may also be of some interest, which we have studied
below in the context of various quantum states. Its role,
when the back-reacted geometry is considered in two
dimensions, is similar to the Newton’s constant G in four
dimensions. In this section, however, κ simply measures the
number of degrees of freedom in the quantum conformal
field theory in question.
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Variation of this action with respect to ψ gives us

□ψ ¼ R: ð3:2Þ
This equation can be formally solved for ψ : ψðxÞ ¼R
dyGðx; yÞRðyÞ, where we introduced a Green’s function,

□xGðx; yÞ ¼ δðx − yÞ. The substitution of ψ back to the
action (3.1) will lead to the usual nonlocal version of the
Polyakov action. As always, the Green’s function is defined
up to a solution to the homogeneous equation and hence
one should specify the appropriate boundary conditions to
uniquely define it. In other words, there is a freedom in
defining ψ . In the dilaton gravity defined in Sec. II one has
that R ¼ −2□ϕ so that there exists a relation between ψ
and ϕ,

ψ ¼ −2ϕþ w; ð3:3Þ
where w solves the homogeneous equation

□w ¼ 0: ð3:4Þ
Variation of (3.1) with respect to metric gives the stress-
energy tensor for the quantum CFT,

Tð1Þ
μν ¼−

κ

2π

�
∂μψ∂νψ −2∇μ∇νψ−gμν

�
−2Rþ1

2
ð∇ψÞ2

��
:

ð3:5Þ
In a static two-dimensional metric of the form (2.7),
assuming that ψ is only a function of coordinate x (but
not of time t), one finds

Tð1Þ0
0¼

κ

2π

�
ψ 0ðxÞg0ðxÞþ1

2
gðxÞψ 02ðxÞþ2g00ðxÞ

�
ð3:6Þ

for the energy density [note that for metric (2.7), the scalar
curvature is R ¼ −g00ðxÞ]. On the other hand, the homo-
geneous equation (3.4) can be solved as (again we assume
here that w does not depend on time t)

w0ðxÞ ¼ C
gðxÞ ; wðxÞ ¼ C

Z
x dy
gðyÞ : ð3:7Þ

Here C is an integration constant. As we will soon see, this
constant incorporates the information on the choice of the
vacuum. For the solution of the dilaton gravity considered
in Sec. II one finds that (3.6) takes a simple form

Tð1Þ0
0 ¼

κ

π

�
3λ2gðxÞ − 2λ2 þ CðCþ 4λÞ

4gðxÞ
�
: ð3:8Þ

As a result, asymptotically, where gðxÞ approaches 1, the
energy density turns out to be

Tð1Þ0
0 ¼

κ

4π
ðCþ 2λÞ2: ð3:9Þ

Now we are ready to define the different quantum vacua.

The Hartle-Hawking (HH) state:
By definition, the Hartle-Hawking state is the one that is

regular at the horizon, i.e., gðxhÞ ¼ 0. As follows from (3.8)
there are two values ofC for which the divergent term in the
energy density at the horizon vanishes:

C ¼ 0 and C ¼ −4λ: ð3:10Þ

At infinity the energy density (3.9) is then

Tð1Þ0
0 ¼

κλ2

π
¼ π

6
NT2

H; ð3:11Þ

which is precisely the energy density of the radiation at the
Hawking temperature TH ¼ λ

2π. This is of course the
expected behavior of the Hartle-Hawking state. It is known
to describe the black hole in equilibrium with the thermal
Hawking radiation. For the range of the coordinate x from
the horizon xh to infinity the quantum energy density in the
Hartle-Hawking state for the solution (2.7) reads

Tð1Þ0
0 ¼

κλ2

π
ð1 − 3ae2ϕÞ: ð3:12Þ

At the horizon it takes some negative value Tð1Þ0
0 ¼ − 2κλ2

π .
The Boulware state:
The Boulware state is defined by the condition that it is

empty at asymptotic infinity, i.e., Tð1Þ0
0 ¼ 0 when g → 1.

As is seen from (3.9), this condition singles out the value

C ¼ −2λ: ð3:13Þ

The energy density then is divergent at the horizon. This is
the expected and in fact well-known property of the
Boulware state. In the region between the horizon and
the asymptotic infinity the energy density

Tð1Þ0
0 ¼ −

κλ2

π
a2ϕ

�
3þ 1

1 − ae2ϕ

�
ð3:14Þ

is everywhere negative.
A general C-state:
In general there exists a family of quantum states,

parametrized by C. For values of C different from
0;−2λ;−4λ such a C-state would be an intermediate
quantum state that shares certain properties of the
Hartle-Hawking state and of the Boulware state. Such a
C-state would not be empty at asymptotic infinity (as the
Hartle-Hawking state) and at the same time it would be
divergent at the horizon (as the Boulware state).
To end this section, we want to emphasize that there

exists an interesting duality in the space of quantum states
parametrized by C. The difference in the energy density for
two values of C is in the term which is divergent at the
horizon,
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Tð1Þ0
0ðC1Þ − Tð1Þ0

0ðC2Þ
¼ κ

4πgðϕÞ ðC1 − C2ÞðC1 þ C2 þ 4λÞ: ð3:15Þ

This indicates that the energy density is the same if C1 and
C2 are related by relation

C1 þ C2 ¼ −4λ: ð3:16Þ

This explains why there are two values of C for the Hartle-
Hawking state. On the other hand, the Boulware state
appears to be symmetric under this duality. As far as we are
aware, these arbitrary C-states and this duality in the
C-parameter space were not noticed in any earlier literature.
We also note that even though the energy density is the
same for these two values of C, the function w (and
therefore ψ) is not. The value of function ψ at the horizon
carries information about the entropy (see for instance
[18,19]). As a result, there may still appear some important
physical differences between these two HH states.
However, we will not discuss this issue in the present paper.
Backreaction in asymptotic region:
The nonvanishing stress-energy present at infinity, (3.9)

for a generic C, will necessarily curve the spacetime. This
will lead to some subleading terms in the metric present
asymptotically, when ϕ → −∞. In order to analyze the
asymptotic geometry we take metric in the form

ds2 ¼ −gðϕÞdt2 þ h2ðϕÞg−1ðϕÞdt2 ð3:17Þ

and assume that asymptotically one has that

g ¼ 1þ δg; h ¼ −1=λþ δh; ð3:18Þ

where δg and δh are small perturbations over the linear
dilaton vacuum. Equation Rþ 2□ϕ ¼ 0 will lead to a
relation

δh0 ¼ 1

2λ
ðδg00 − 2δg0Þ; ð3:19Þ

where all derivatives are with respect to dilaton ϕ. On the
other hand, one finds

δTð0Þ0
0 ¼

λ2

2π
e−2ϕð−δg00 þ 2δg0Þ: ð3:20Þ

The gravitational equations with a source in the form of

(3.9), Tð0Þ0
0 þ Tð1Þ0

0 ¼ 0, then leads to equation3

δTð0Þ0
0 þ

κ

4π
ðCþ 2λÞ2 ¼ 0 ð3:21Þ

that solves as follows

δg ¼ κ

4λ2
ðCþ 2λÞ2ϕe2ϕ: ð3:22Þ

Using (3.19) one finds

δh ¼ κ

8λ3
ðCþ 2λÞ2e2ϕ: ð3:23Þ

Equations (3.22) and (3.23) present the modifications in the
asymptotic geometry produced by the nonvanishing stress
energy tensor. For C ¼ 0 (or C ¼ −4λ) this corresponds to
the backreaction of the thermal radiation on the spacetime
metric.

IV. THE RST MODEL

Now we would like to address the question of the
backreaction of a quantum state to the geometry. The
appropriate two-dimensional model for this purpose is
the so-called RST model. It was suggested by Russo,
Susskind and Thorlacius in 1992 [10]. Its important
advantage is that it is exactly integrable. The integrability
is related to the fact that one preserves a certain symmetry
present in the classical action. The action of the model is a
sum of three terms: the classical dilaton action I0 (2.1), the
Polyakov action I1 (3.1) and a new local term I2,

IRST ¼ I0 þ I1 þ I2; I2 ¼ −
κ

2π

Z
d2x

ffiffiffiffiffiffi
−g

p
ϕR ð4:1Þ

Varying this action with respect to metric one finds

Tμν ≡ Tð0Þ
μν þ Tð1Þ

μν þ Tð2Þ
μν ¼ 0; ð4:2Þ

where we have previously defined Tð0Þ
μν (2.2) and Tð1Þ

μν (3.5).
Variation of the last term I2 in (4.1) with respect to metric
gives

Tð2Þ
μν ¼ −

κ

π
ðgμν□ϕ −∇μ∇νϕÞ: ð4:3Þ

Variation of the total action with respect to dilaton ϕ gives
the dilaton equation

2e−2ϕðRþ 4□ϕ − 4ð∇ϕÞ2 þ 4λ2Þ ¼ −κR: ð4:4Þ

On the other hand, taking the trace of (4.2) one gets

2e−2ϕð□ϕ − 2ð∇ϕÞ2 þ 2λ2Þ ¼ −κðRþ□ϕÞ: ð4:5Þ

Combining these two equations one arrives at a simple
equation

3In the RST model, which is considered in the rest of the paper,
we also have a third term Tð2Þ0

0 due to the local term which is
added to preserve a classical symmetry in the dilaton gravity
action. Analysis shows that this term Tð2Þ0

0 ¼ Oðe2ϕÞ is sub-
leading in the asymptotic region and hence it can be ignored in
the asymptotic analysis.
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ðRþ 2□ϕÞðκ − 2e−2ϕÞ ¼ 0: ð4:6Þ

It has solutions of two different types.
Anti–de Sitter space-time (constant dilaton):
The solution of first type is characterized by a constant

value of the dilaton

ϕ ¼ −
1

2
ln
κ

2
¼ const: ð4:7Þ

It follows from either Eq. (4.4) or (4.5) that the scalar
curvature is constant in this case,

R ¼ −2λ2: ð4:8Þ

This is a two-dimensional anti–de Sitter space-time. Even
though the value of the dilaton (4.7) is “quantum” the value
of the curvature (4.8) is classical. The existence of this
solution was demonstrated in [11]. This solution may be
interesting by itself. We, however, will not consider it in the
present paper.
Black hole type solution (nonconstant dilaton):
The other solution is characterized by a varying dilaton.

Then Eq. (4.6) solves as follows

R ¼ −2□ϕ: ð4:9Þ

This is the same equation as in the classical case, see (2.5).
This essentially simplifies the integration of the equations.
Taking that the equation for the auxiliary field ψ is still
□ψ ¼ R, Eq. (4.9) can be solved in the sameway as before,

ψ ¼ −2ϕþ w; □w ¼ 0: ð4:10Þ

Further integration of this equation depends on the choice
of function w. As we have discussed earlier in the paper, the
choice of w depends on the choice of the quantum state (or
vacuum).

V. QUANTUM-CORRECTED BLACK
HOLE (THE BACK-REACTED
HARTLE-HAWKING STATE)

Our first choice is w ¼ const so that all derivatives of w
vanish. As we have seen in Sec. III, this choice corresponds
to the Hartle-Hawking vacuum of the quantum conformal
field theory. This case was analyzed in details in [11]. In
this section we give a brief summary of findings made
in [11].
With this choice of w, the trace-free part of (4.2) can be

presented in the form

∇μ∇νFðϕÞ ¼
1

2
gμν□FðϕÞ; ð5:1Þ

where we introduced

FðϕÞ≡ ϕ −
κ

4
e2ϕ: ð5:2Þ

This equation is similar to (2.4) of the classical case.
Similarly to what we had in the classical dilaton gravity, the
Eq. (5.1) implies that vector ξμ ¼ ϵμ

ν∂νFðϕÞ is the Killing
vector. This fact essentially simplifies the integration of the
equations. The solution is presented as follows

ds2 ¼ −gðϕÞdt2 þ g−1ðϕÞh2ðϕÞdϕ2;

hðϕÞ ¼ −
1

λ
F0ðϕÞ ¼ −

1

λ

�
1 −

κ

2
e2ϕ

�
;

gðϕÞ ¼ 1þ κϕe2ϕ − ae2ϕ: ð5:3Þ

This solution in the present form was found in [11]. It
represents a quantum modification (parametrized by κ) of
the classical black hole metric (2.7). Asymptotically, when
ϕ → −∞, the metric function gðϕÞ approaches value 1 with
a correction term gðϕÞ ≃ 1þ κϕe2ϕ, which is due to
the backreaction of the stress-energy of the thermal
radiation present in the Hartle-Hawking state (e.g., compare
with (3.22) for C ¼ 0 or −4λ). The metric however
remains asymptotically flat as the curvature vanishes
as ϕ → −∞.
The metric (5.3) has a curvature singularity at ϕ ¼ ϕcr

where hðϕcrÞ vanishes,

R ¼ −
4λ−1e2ϕ

hðϕÞ3
�
a − κ − κϕþ κ2

4
e2ϕ

�
: ð5:4Þ

One finds thatϕcr ¼ − 1
2
ln κ

2
. The value of themetric function

at the singularity is finite and is equal to gðϕcrÞ ¼ 2
κ ðacr − aÞ,

wherewe introduced acr ¼ κ
2
ð1 − ln κ

2
Þ. The singularity has a

power law that depends on the value of a as we will see in a
moment. This is different from the classical case where the
curvature singularity was exponentially large.
Analyzing the solution (5.3) we note that the behavior of

the metric function gðϕÞ has now changed compared to the
classical case. Now gðϕÞ goes to þ∞ for ϕ ¼ ∞ and to 1
for ϕ ¼ −∞ so that gðϕÞ has a minimum at some ϕ ¼ ϕmin.
The value ϕmin can be easily found by solving the condition
g0ðϕminÞ ¼ 0 and is equal to ϕmin ¼ 1

κ ða − κ
2
Þ. The value of

gðϕÞ at the minimum is gðϕminÞ ¼ 1 − e
2
κða−acrÞ. One also

finds that ϕmin − ϕcr ¼ 1
κ ða − acrÞ.

We can now identify three distinct cases from the
discussions above (below we assume that κ > 0):
(i) a > acr: The metric function gðϕÞ is negative at its

minimum, gðϕminÞ < 0. Hence there exist two values of ϕ
where gðϕÞ vanishes, ϕh and ϕh0 > ϕh. One also finds that
gðϕcrÞ < 0 and that ϕmin > ϕcr. Collecting all inequalities
one finds

ϕh < ϕcr < ϕmin < ϕh0 : ð5:5Þ
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At the singularity the curvature behaves as R ∼ 1
ðϕ−ϕcrÞ3. The

shape of the function gðϕÞ in this case is shown in
Fig. 1.
The branch ϕ > ϕcr is completely in the nonclassical

region. When ϕ goes to þ∞ the metric becomes flat as is
seen from (5.4). In this branch the spacetime has a horizon
at ϕ ¼ ϕh0 and a singularity at ϕcr.
The branch ϕ < ϕcr lies in the classical region. The

horizon at ϕ ¼ ϕh is a deformation of the classical horizon
discussed in Sec. II. The Hawking temperature at the
quantum-corrected horizon is equal to TH ¼ λ

2π as in the
classical case. So that the Hawking temperature is not
modified. The same is true for the Hawking temperature at
the horizon in the second branch.
(ii) a ¼ acr: In this case gðϕminÞ ¼ 0 and the two horizon

in the first case now merge with the singularity: ϕh ¼
ϕh0 ¼ ϕcr ¼ ϕmin. The function gðϕÞ then has a double zero
that corresponds to an extreme horizon that moreover
coincides with the singularity. The curvature at the singu-
larity now grows as R ∼ 1

ðϕ−ϕcrÞ.
(iii) a < acr: The metric function gðϕÞ is positive in its

minimum and thus is positive everywhere. The curvature
singularity is not hidden behind a horizon. So that this case
describes a spacetime with naked singularity.
We note that in the classical case the solutions with

horizon and without horizon are separated by value
a ¼ 0 that corresponded to zero mass M ¼ 0 [see the
discussion below (2.7)]. In the quantum case the
separation of the solutions now happens at a ¼ acr. Its
sign depends on whether value of parameter κ is large
or small.

VI. INTEGRATION OF FIELD EQUATIONS FOR
A GENERAL CHOICE OF QUANTUM STATE

Given the discussions in Secs. III and IV, a general
choice of the quantum state corresponds to the function w,
that appears in (4.10), being nonvanishing. We are intere-
sted in a static metric

ds2 ¼ −gðxÞdt2 þ g−1ðxÞdx2
¼ −gðϕÞdt2 þ g−1ðϕÞh2ðϕÞdϕ2; ð6:1Þ

where in the second equality we choose the dilaton field ϕ
as a spacelike coordinate and assumed that ∂xϕ ¼ hðϕÞ.
Both the metric function gðϕÞ and the function hðϕÞ are to
be determined from the field equations. For a static metric
the equation □w ¼ 0 can be solved as

∂xwðxÞ ¼
C

gðxÞ or ∂ϕwðϕÞ ¼
ChðϕÞ
gðϕÞ ; ð6:2Þ

where C is an integration constant. Its value determines the
quantum state as was discussed in Sec. III.
Assuming that w is a function of the dilaton, (4.2) can be

written as (we replace the scalar curvature as R ¼ −2□ϕ)

�
1þκ

2
ð−1þw0Þe2ϕ

�
∇μ∇νϕ

−
κ

4
e2ϕðð−2þw0Þ2−2w00Þ∇μϕ∇νϕ

¼1

2
gμν

��
1−

κ

2
e2ϕ

�
□ϕ−

κ

4
e2ϕð−2þw0Þ2ð∇ϕÞ2Þ; ð6:3Þ

FIG. 1. Metric profile for classical vs quantum-corrected (the Harte-Hawking state) black hole.
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where 0 denotes the derivative with respect to dilaton ϕ. For
the metric written in ðt;ϕÞ coordinates as in (6.1), one finds

∇t∇tϕ ¼ −
gg0

2h2
; ∇t∇ϕϕ ¼ 0;

∇ϕ∇ϕϕ ¼ −
g
2h2

�
h2

g

�0
; □ϕ ¼ 1

h

�
g
h

�0
: ð6:4Þ

One then finds that ðtϕÞ component of Eq. (6.3) vanishes
identically while the components ðttÞ and ðϕϕÞ lead to the
same equation

�
1 −

κ

2
e2ϕ

�
h0

h
¼ −κe2ϕ

��
1 −

Ch
2g

�
2

þ C
2

g0h
g2

�
: ð6:5Þ

Therefore, (6.3) contains only one independent equation.
The other equation that we have to take into account is the
dilaton equation (again replacing R ¼ −2□ϕ)

�
1 −

κ

2
e2ϕ

�
□ϕ − 2ð∇ϕÞ2 þ 2λ2 ¼ 0: ð6:6Þ

For the metric (6.1) it takes the form

−
�
1 −

κ

2
e2ϕ

��
h0

h
−
g0

g

�
− 2þ 2λ2

h2

g
¼ 0: ð6:7Þ

Equations (6.5) and (6.7) have to be supplemented by the
third equation

R ¼ −2□ϕ; ð6:8Þ

that in the static metric (6.1) [note that R ¼ −g00ðxÞ] takes a
simple form

∂2
xgðxÞ ¼ 2∂xðg∂xϕÞ: ð6:9Þ

Equivalently, considering g as a function of the dilaton ϕ,
we have

∂ϕ

�
1

hðϕÞ ∂ϕgðϕÞ
�

¼ 2∂ϕ

�
1

hðϕÞ gðϕÞ
�
: ð6:10Þ

This can be integrated to give

∂ϕgðϕÞ ¼ 2gðϕÞ − dhðϕÞ; ð6:11Þ

where d is an integration constant. Assuming that the
solution has the standard asymptotic infinity (ϕ → −∞),
where ∂ϕgðϕÞ → 0 and the functions in the metric take
values gðϕÞ → 1 and h → −1=λ as in the classical case, one
determines the value of the integration constant as
d ¼ −2λ.
Equation (6.11) needs to be added to Eqs. (6.5) and (6.7).

Since these are three equations on two functions, gðϕÞ and

hðϕÞ, one of the equations has to follow from the others. In
fact, as we shall see, the third equation will determine the
value of the integration constant that appears when one
integrates the first two equations.
First of all we note that using (6.11), the Eq. (6.5) takes

the form

�
1 −

κ

2
e2ϕ

�
h0

h
¼ −κe2ϕ

�
1þ C

2

�
C
2
− d

�
h2

g2

�
: ð6:12Þ

Also (6.11) can be integrated as follows

gðϕÞ ¼ −
d
2λ

e2ϕZðϕÞ; ð6:13Þ

where ZðϕÞ satisfies the equation

Z0ðϕÞ ¼ 2λe−2ϕhðϕÞ: ð6:14Þ

Then, the dilaton equation (6.7) can be integrated as

gðϕÞ ¼ 2λhðϕÞe2ϕ
κe2ϕ − 2

ðZðϕÞ þ AÞÞ; ð6:15Þ

where A is an integration constant to be determined. To
obtain ZðϕÞ, we note that using (6.13) to (6.15) we get the
following differential equation where ZðϕÞ must satisfy

−
d
2λ

ðκ − 2e−2ϕÞ ¼ Z0ðϕÞð1þ A=ZðϕÞÞ: ð6:16Þ

This equation is easily integrated to give

ZðϕÞ þ A lnZðϕÞ ¼ −
d
2λ

ðκϕþ e−2ϕÞ þ a1; ð6:17Þ

where a1 is a new integration constant. Here and in most
parts of the paper we consider the domain of positive values
Z > 0. However, we remark on the case of negative values
Z < 0 in Sec. VII D. Solving this equation one gets
function ZðϕÞ which can then be used to determine gðϕÞ
by means of (6.13), and hðϕÞ using (6.14).
Now we substitute this solution into Eq. (6.12) and find

that (6.12) is automatically satisfied provided the integra-
tion constant A is related to constant C in (6.2) as follows

A ¼ −
κ

4dλ
CðC − 2dÞ: ð6:18Þ

A vanishes for C ¼ 0 or C ¼ 2d. In these cases we see that
the resulting solution (6.17), (6.13) is what we had before
for the Hartle-Hawking state, where the metric gHHðϕÞ
takes the form as in (5.3).
Taking d ¼ −2λ as explained below (6.11), we find that

the complete solution for any constant C is given by
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gðϕÞ ¼ e2ϕZðϕÞ; hðϕÞ ¼ 1

2λ
e2ϕZ0ðϕÞ; ð6:19Þ

where ZðϕÞ is found by solving the equation

Z þ A lnðZ=jAjÞ ¼ e−2ϕgHHðϕÞ;
gHHðϕÞ ¼ 1þ κϕe2ϕ − ae2ϕ;

A ¼ κ

8λ2
CðCþ 4λÞ; ð6:20Þ

where gHHðϕÞ is the metric function for the Hartle-
Hawking quantum state. Note that we redefined the only
remaining integration constant a1 and replaced it by
constant a that appears in the Hartle-Hawking function
gHHðϕÞ. This constant is eventually related to the mass of
the configuration.
Note that for this general solution, the quantum energy

density (3.6) is given by

Tð1Þ0
0 ¼

κ

2π

�
6g
h2

þ 4λ

h
þ CðCþ 4λÞ

2g
−
4gh0

h3

�
: ð6:21Þ

Since h0 goes to zero as ϕ goes to −∞, the energy density at
infinity is given by

Tð1Þ0
0∞ ¼ κ

4π
ðCþ 2λÞ2; ð6:22Þ

similarly to (3.9), so it vanishes for C ¼ −2λ, which
corresponds to the Boulware case. In the presence of a
horizon, defined by g ¼ 0, the energy density is singular
except for C ¼ 0 or C ¼ −4λ, i.e., for the Hartle-Hawking
state. Therefore the definition of these two quantum states
given previously is coherent as we get the same values for
the constant C.
WhenA¼0 (i.e.,C ¼ 0 orC ¼ 2d) then gðϕÞ ¼ gHHðϕÞ,

i.e., the solution (6.19) becomes the quantum-corrected black
hole discussed in detail in Sec. V. This is the back-reacted
geometry for the Hartle-Hawking quantum state.
For nonvanishing A, solving the equation in the first line

of (6.20) one determines the function ZðϕÞ. Due to the
logarithmic term in the equation one finds that, provided
A ≠ 0, the function ZðϕÞ does not vanish for any finite
value of ϕ. Since zeros of ZðϕÞ determine the zeros of the
metric function gðϕÞ, we conclude that gðϕÞ does not have
a zero at any finite value of ϕ. Zero of gðϕÞ is where the
horizon is located. Thus the geometry (6.19), for A ≠ 0, is
essentially horizon free everywhere in the bulk of the
spacetime. The horizon may, however, appear at the
limiting values of ϕ, either ϕ ¼ þ∞ or at ϕ ¼ −∞,
depending on the value of constant A. If the scalar curvature
is divergent there, it will indicate that in this case we are
dealing with the null singularity. It appears that the Hartle-
Hawking state is the only quantum state for which the back-
reacted geometry contains a regular horizon in the bulk of

the spacetime. In the next sections we shall consider the
spacetime (6.19) that arises as a backreaction of various
quantum states and we will provide more concrete exam-
ples of the above general statements. It should be noted that
the analysis of some of the particular cases relevant to the
Boulware vacuum present in the next section has been
discussed earlier by Zaslavsky [12].

VII. BACK-REACTED GEOMETRY
FOR THE BOULWARE STATE

As is discussed in Sec. III, the quantum Boulware state
corresponds to the value C ¼ −2λ and hence we have the
corresponding value of constant A ¼ −κ=2. The resulting
quantum-corrected space-time is described by the metric

ds2 ¼ −gðϕÞdt2 þ g−1ðϕÞh2ðϕÞdϕ2;

gðϕÞ ¼ e2ϕZðϕÞ; hðϕÞ ¼ 1

2λ
e2ϕZ0ðϕÞ: ð7:1Þ

The functions gðϕÞ and hðϕÞ are determined by function
ZðϕÞ that is obtained by solving the master equation (6.20)
that can be presented in the form

WðZÞ¼GðϕÞ;

WðZÞ¼Z−Zm ln
Z
Zm

; GðϕÞ¼ e−2ϕþ κϕ−a; ð7:2Þ

where we define Zm ¼ κ=2. It is easy to see that function
hðϕÞ can be also represented as follows

hðϕÞ ¼ 1

2λ
e2ϕG0ðϕÞ Z

Z − Zm
;

1

2
e2ϕG0ðϕÞ ¼

�
κ

2
e2ϕ − 1

�
¼ −F0ðϕÞ; ð7:3Þ

where FðϕÞ was earlier defined in (5.2).
On the other hand, gðϕÞ is given in implicit form as

follows,

e−2ϕ ¼ ðg − 1Þ−1ðZm ln gþ acr − aÞ; ð7:4Þ

where we introduced acr ¼ −Zm lnZm.
Function WðZÞ has its minimum at Z ¼ Zm, where it

takes value WðZmÞ ¼ Zm ¼ κ=2. On the other hand,
the function GðϕÞ, provided κ > 0, develops a minimum
at ϕ ¼ ϕcr ¼ − 1

2
ln κ

2
determined by the condition

G0ðϕcrÞ ¼ 0. Notice that as it is seen from (7.3), generically,
the function hðϕcrÞ ¼ 0 at this point.
The scalar curvature computed for the metric (7.1)–(7.2)

reads

R ¼ 8λ2e−2ϕ

Z03 ðZZ00 − Z02Þ ð7:5Þ
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or using (7.3), one gets an equivalent form

R ¼ 8λ2e−2ϕ

ZG03 ð−G02Z þ G00ðZ − ZmÞ2Þ; ð7:6Þ

where all derivatives are taken with respect to ϕ. Therefore
at ϕ ¼ ϕcr (where G0ðϕÞ ¼ 0) one generically expects a
curvature singularity. The other point where the curvature
appears to be singular is where ZðϕÞ ¼ 0.
The value of GðϕÞ at the minimum is

GðϕcrÞ ¼ WðZmÞ − ða − acrÞ; ð7:7Þ

where WðZmÞ ¼ Zm. Note that each function, WðZÞ and
GðϕÞ, has two branches: Z > Zm and Z < Zm for the
function WðZÞ, and ϕ < ϕcr and ϕ > ϕcr for the function
GðϕÞ. The classical domain lies in the quadrant ϕ < ϕm,
Z > Zm, where ϕm is defined by condition GðϕmÞ ¼ Zm.
Asymptotic behavior: First we analyze the asymptotic

behavior of the metric (7.1)–(7.2) in the classical
domain, when ϕ → −∞ and Z → ∞. This is where we
expect the solution to approach the classical black hole
solution. Developing the respective asymptotic expansion
in Eq. (7.2) we find that

ZðϕÞ ¼ e−2ϕ − ða − acrÞ þOðϕe2ϕÞ;
hðϕÞ ¼ −1=λþOðϕe2ϕÞ;
gðϕÞ ¼ 1 − ða − acrÞe2ϕ þOðϕe4ϕÞ: ð7:8Þ

We notice the absence of the term κϕe2ϕ in the asymptotic
expansion of the metric function gðϕÞ. As we discussed
earlier in the paper, this term is due to the presence
of the thermal radiation at the asymptotic infinity. Since
for the Boulware state no such radiation is present, the

corresponding term in the metric has to be absent. This is
what we observe in the asymptotic expansion (7.8).
Further analysis of the global structure of the solution

depends on the relative position of the minima of the
functions WðZÞ and GðϕÞ. There are a total of three cases
that we consider below.

A. Global space-time structure:
WðZmÞ > GðϕcrÞ (i.e., a > acr)

Minimal value of the dilaton: In this case, as we start
from ϕ ¼ −∞, the only branch of function GðϕÞ that is
accessible is the ST branch in Fig. 2. It goes for values
of ϕ: −∞ < ϕ ≤ ϕm, where ϕm is defined by the condition
GðϕmÞ ¼ Zm. One finds that ϕm ¼ ϕhðaþ κ

2
Þ, where ϕhðaÞ

is the position of the horizon in the Hartle-Hawking
back-reacted geometry for the mass parameter a,
gHHða;ϕhÞ ¼ 0. Thus, for positive κ the point ϕ ¼ ϕm is
located just outside the horizon in the Hartle-Hawking
metric for mass parameter a.
Wormhole interpretation: When one reaches the point

ϕ ¼ ϕm the value of ϕ starts decreasing and it covers the
branch STonce again, now in the opposite direction. On the
other hand, values of Z keep decreasing and one goes to
the branch Z < Zm of function WðZÞ that goes all the way
till Z ¼ 0. Thus, the function e−ϕ, that is similar to the
radius r in four dimensions, has a minimum at ϕ ¼ ϕm
(Z ¼ Zm). The other way to see this is to compute the
gradient of ϕ,

ð∇ϕÞ2 ¼ 4λ2e−2ϕðZðϕÞ − ZmÞ2
ZðϕÞG0ðϕÞ2 : ð7:9Þ

It vanishes when Z ¼ Zm. A critical point of e−ϕ can be
interpreted as a “minimal surface.” The latter does not have
a good definition in two dimensions so that the condition

FIG. 2. Admissible branches when WðZmÞ > GðϕcrÞ.
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ð∇ϕÞ2 ¼ 0 is the closest we can get in the analogy with the
four-dimensional case. Thus, in terms of the dilaton ϕ we
are dealing with a wormhole-type geometry with a throat at
ϕ ¼ ϕm. Note that this does not mean that the metric
function gðϕÞ has a minimum at ϕm. It already takes a small
value at Z ¼ Zm,

gðϕmÞ ¼
κ

2
e2ϕm ≃

κ

2a
¼ κ

SBHðaÞ
: ð7:10Þ

In the second equality we considered the limit of large
mass, a ≫ κ, and SBH ¼ 2a is the entropy of a classical
black hole. However, gðϕÞ keeps decreasing as soon as one
goes to the other branch Z < Zm of function WðZÞ.
Null singularity: One approaches Z ¼ 0 while ϕ goes to

−∞. In this regime one solves equation (7.2) which takes
the form

ZðϕÞ ¼ κ

2
e
2a
κ e−2ϕe−

2
κe

−2ϕ
: ð7:11Þ

Respectively one finds

gðϕÞ ¼ κ

2
e
2a
κ e−

2
κe

−2ϕ ð7:12Þ

and

hðϕÞ ¼ 1

λ
e
2a
κ e−2ϕe−

2
κe

−2ϕ
: ð7:13Þ

The metric function gðϕÞ ¼ −gtt goes to zero when ϕ goes
to −∞ (or ZðϕÞ goes to 0). This indicates the presence of a
horizon. A bit more careful analysis shows that this new
horizon is characterized by the same Hawking temperature
TH ¼ λ

2π as the classical horizon. However, this new
horizon is singular as the scalar curvature is divergent there

R ¼ 2κλ2e−
2a
κ e4ϕe

2
κe

−2ϕ
: ð7:14Þ

So we are dealing with a null singularity. Notice that the
position of this singularity is not dependent on the value of
the mass parameter a. So that it is not the classical horizon

that becomes singular when the backreaction of the
Boulware state is taken into account. Instead a new dressed
curvature singularity is formed relatively far from the
position of the classical horizon. On the other hand, the
classical horizon is now replaced by a long throat that starts
at ϕ ¼ ϕm (Z ¼ Zm) and continues to shrink till ϕ ¼ −∞
(Z ¼ 0). The Euclidean version of this geometry is illus-
trated in Fig. 3.
A long throat picture: Let us discuss the long throat

picture in somewhat more details. We call a throat some
region in the space where the metric component −gtt
becomes extremely small. In order to discuss the size of
the throat, it is more convenient to go to the optical metric.
The metric (7.1) can be rewritten in a conformally flat form,

ds2 ¼ gðZÞ
�
−dt2 þ d

�
1

2λ
lnZ

�
2
�
: ð7:15Þ

The metric in the brackets is the so-called optical metric. It
is the metric in which the rays of light propagate. So that the
optical distance (or, effectively, the travel time for a light
ray) from a point in space Z ¼ Z0 > Zm to the point Z ¼
Zm ¼ κ

2
is equal to

L ¼ tH ¼ 1

2λ
lnZ0=Zm: ð7:16Þ

This distance becomes large when one takes a small value
for κ. The point Z ¼ Zm is thus far away from any other
point in the space. Furthermore, the point Zm is charac-
terized by a very small value of −gtt, see (7.10). All this
justifies the interpretation of Zm as the neck of the throat.
Equation (7.16) gives us an estimate of the size of the throat
at Zm. The throat however does not stop at Zm. It continues
further for Z < Zm till Z ¼ 0 where it is ending with a null
singularity. The optical “size” of the extended throat is
infinite.

B. Global space-time structure:
WðZmÞ=GðϕcrÞ (i.e., a= acr)

The two minima of the functions in (7.2) coincide in this
case (see Fig. 4). The master equation (7.2) then takes the

FIG. 3. A cross section of the Euclidean geometry in which the classical horizon is replaced by a “bird’s beak” type throat ending with
a null singularity.
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form that is more convenient to express in terms of a new
variable y ¼ e−2ϕ,

W0ðZÞ ¼ W0ðyÞ; W0ðZÞ ¼ Z − Zm lnZ: ð7:17Þ

The function W0ðZÞ has two branches: Z > Zm and
Z < Zm. Therefore, there are two solutions to this equation.
If Z and y are from the same branch, i.e., ZðyÞ > Zm while
y > Zm or ZðyÞ < Zm while y < Zm, we call this solution
direct. If ZðyÞ and y are from different branches, i.e.,
ZðyÞ < Zm if y > Zm and ZðyÞ > Zm if y < Zm we call
this solution twisted. We start our analysis with the
simplest one.
Direct solution: The direct solution to (7.17) is very

simple,

ZðyÞ ¼ y ¼ e−2ϕ: ð7:18Þ

Respectively we find that

gðϕÞ ¼ 1; and hðϕÞ ¼ −1=λ: ð7:19Þ

This is the classical linear dilaton solution. The spacetime is
Minkowski. It appears as a Boulware type solution in the
two-dimensional semiclassical RST model.
Twisted solution: As we explained above, in the twisted

solution ZðyÞ and y belong to different branches. We did
not find an explicit analytic form of ZðyÞ in this case.
However, it can be easily found in certain limits.
First of all we consider the Eq. (7.17) near the minimum

Z ¼ Zm, where the function WðZÞ expands as follows
WðZÞ ¼ WðZmÞ þ 1

2Zm
ðZ − ZmÞ2 − 1

3Z2
m
ðZ − ZmÞ3 þ � � �.

Therefore Eq. (7.17) can be solved as

e−2ϕ ¼ y ¼ Zm þ ðZm − ZÞ þ 2

3Zm
ðZm − ZÞ2

−
4

9Z2
m
ðZ − ZmÞ3 þ…: ð7:20Þ

As a result, we find that

gðϕÞ ¼ 1 −
2

Zm
ðZm − ZÞ þ 4

3Z2
m
ðZm − ZÞ2 þ…;

hðϕÞ ¼ 1

λ

�
1þ 4

3Zm
ðZ − ZmÞ þ

4

9Z2
m
ðZ − ZmÞ2 þ…

�
:

ð7:21Þ

The point ϕðZ ¼ ZmÞ ¼ ϕcr is the critical point at
which the singularity in the scalar curvature may appear
since G0ðϕÞ vanishes at this point. Indeed, we find that
G0 ¼ −2ðZm − ZÞ, where we keep only the leading terms.
However, the function that appears in the numerator in (7.6)
also has a simple root at Z ¼ Zm, ðZ − ZmÞ2G00 − ZG02 ¼
−8ðZ − ZmÞ3. So that the zeros in the numerator and in the
denominator mutually cancel and the curvature comes out
regular, R ¼ −8λ2.
We note that by exactly the same mechanism the gradient

of the dilaton does not vanish at Z ¼ Zm and is equal to
ð∇ϕÞ2 ¼ λ2. So that in this case there is no wormhole type
behavior for the dilaton. Also, since g ¼ 1 at Z ¼ Zm, there
is no throat there.
Next, we consider the limit when ϕ goes to −∞, i.e.,

y → þ∞, while ZðyÞ → 0. The Eq. (7.17) in this limit
solves as

ZðyÞ ¼ e−y=Zm; y ¼ e−2ϕ: ð7:22Þ

Once again, in order to simplify the formulas we express
everything in terms of variable y ¼ e−2ϕ, which gives the
metric functions as

FIG. 4. Admissible branches when WðZmÞ ¼ GðϕcrÞ.
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gðϕÞ ¼ y−1e−y=Zm; hðϕÞ ¼ 1

λZm
e−y=Zm: ð7:23Þ

The scalar curvature is found to be

R ¼ −4λ2Z2
my−1ey=Zm; ð7:24Þ

which is divergent in this limit. We thus have a curvature
singularity. Note, that this behavior is drastically different
from the classical one where in this limit the spacetime
becomes flat. Notice that the singularity is again null since
gðϕÞ is vanishing in this limit.
Finally, we consider the limit when ϕ → þ∞ (y → 0)

while ZðyÞ → þ∞. We find, keeping only the leading
terms,

ZðϕÞ ¼ 2Zmϕ; gðϕÞ ¼ 2Zmϕe2ϕ; hðϕÞ ¼ Zm

λ
e2ϕ:

ð7:25Þ

The scalar curvature in the considered limit

R ¼ −
4λ2

Zm
e−2ϕ ð7:26Þ

now goes to zero. Thus, the spacetime is asymptotically flat
in this limit.
We conclude that the twisted solution describes a

spacetime which is asymptotically flat at one end and
has a null singularity at the other. We note also that in any
limits it does not approach the classical solution.

C. Global space-time structure:
WðZmÞ < GðϕcrÞ (i.e., a < acr)

In this case the minimum of function WðZmÞ is lower
than the minimum of functionGðϕÞ (see e.g., Fig. 5). Since
one expects a curvature singularity to appear at ϕ ¼ ϕcr, the
possible values for ϕ are either ϕ < ϕcr (classical branch)
or ϕ > ϕcr (nonclassical branch). Solving Eq. (7.2)
at ϕ ¼ ϕcr one finds two solutions: Z1 and Z2 such that
Z2 < Zm < Z1. Therefore there are two accessible
branches: Z > Z1 and Z < Z2 for Z. For simplicity below
we shall analyze only the classical branch ϕ < ϕcr. Since
this can be combined with two possible branches for Z we
have two possible solutions, which by analogy with the
case a ¼ acr, we shall call direct and twisted solutions.
Direct solution: ϕ < ϕcr and Z > Z1. The asymptotic

behavior for ϕ → −∞ and Z → þ∞ was already analyzed
above, see (7.8). Therefore the spacetime is asymptotically
flat. However, as expected, the curvature becomes diver-
gent when one approaches value ϕ ¼ ϕcr,

R ¼ λ2

2

ðZ1 − ZmÞ2
Z1Zm

ðϕ − ϕcrÞ−3: ð7:27Þ

There is also no horizon at this limit, so we conclude that
the direct solution describes a naked singularity. We also
note that since a < acr, the second term in the asymptotic
expansion gðϕÞ ¼ 1 − ða − acrÞe2ϕ is negative. Therefore
this is similar to the negative mass case in the classical
black hole solution.
Twisted solution: ϕ < ϕcr and 0 < Z < Z2. This solu-

tion also has a singularity at ϕ ¼ ϕcr (Z ¼ Z2). The
curvature there is described by the same formula (7.27)
by replacing Z1 with Z2. On the other end, when ϕ → −∞
one finds the asymptotic expansion (once again using the
variable y ¼ e−2ϕ in order to simplify the expressions)

FIG. 5. Both PM and NR branches are admissible for WðZmÞ < GðϕcrÞ.
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ZðϕÞ¼Zme−y=Zm; gðϕÞ¼Zmy−1e−y=Zm; hðϕÞ¼1

λ
e−y=Zm;

ð7:28Þ

and the scalar curvature takes the form

R ¼ −4λ2Zmy−1ey=Zm; ð7:29Þ

which indicates the presence of the singularity. Since gðϕÞ
in (7.28) goes to zero in this limit it is a null singularity.
Thus, the twisted solution represents a spacetime with a
naked singularity at one end and a null singularity at
the other.

D. The case Z < 0

As mentioned earlier, so far we have only considered the
branch where Z takes positive values. In order to get a
complete picture, we can consider what happens when Z
evolves on the branch with negative values. On this branch,
(7.2) becomes

WðZÞ¼GðϕÞ; Z < 0

WðZÞ¼Z−Zm ln
−Z
Zm

; GðϕÞ¼ e−2ϕþ κϕ−a; ð7:30Þ

where WðZÞ is a monotonic function with limits given by
WðZÞ → −∞ (when Z → −∞) and WðZÞ → þ∞ (when
Z → 0). Therefore, the spacetime is in the region Z > Zcr,
where Zcr is the solution of WðZcrÞ ¼ GðϕcrÞ. The spatial
infinity ϕ → −∞ corresponds to Z → 0, that is to say to the
null singularity discussed previously. When ϕ approaches
ϕcr, we arrive at the curvature singularity, and Z never
vanishes so that there is no horizon. Therefore the branch
Z < 0 corresponds to a spacetime located between a null
singularity at infinity and a naked singularity.

E. The case κ= − k < 0

In this section we briefly discuss the case of negative
values of κ. Indeed, if we consider nonphysical fields, e.g.,
ghosts, then it will contribute negatively to the 2d central
charge, i.e., to the coupling κ ¼ ðN − 24Þ=24. If these
nonphysical fields dominate then κ can be negative. This is
particularly the case if e.g., there are no physical fields at
all, and κ is induced only by quantum dilaton gravity.
Therefore, for the sake of completeness, it is worth
considering it in some detail (we will come back to a
similar setup in Sec. VIII C and in Sec. IX later). Note that
since all fields, including the nonphysical ones, are in the
Boulware state, they are not visible at the asymptotic
infinity. The master equation in this case is

WðZÞ ¼GðϕÞ;
WðZÞ ¼ ZþZm ln

Z
Zm

; GðϕÞ ¼ e−2ϕ− kϕ−a; ð7:31Þ

where now Zm ¼ k=2 > 0. This case is interesting since
both functionsWðZÞ andGðϕÞ are monotonic (note that we
consider only the region Z > 0). WðZÞ is monotonically
increasing while GðϕÞ is monotonically decreasing.
Therefore, the solution explores all possible values between
−∞ < ϕ < þ∞ and 0 < Z < þ∞. In the limit ϕ → −∞
the solution is asymptotically Minkowski as we showed in
the beginning of Sec. VII. The asymptotic value of the
metric function is g ¼ 1. On the other end of the spacetime,
when ϕ → þ∞, perturbatively solving Eq. (7.31) one
finds

ZðϕÞ¼Z0ðϕÞe−Z0ðϕÞ=Zm; Z0ðϕÞ¼Zme−a=Zme−2ϕ: ð7:32Þ

Notice that Z0ðϕÞ → 0 when ϕ → þ∞. Therefore one
finds that

gðϕÞ ¼ Zme−a=Zme−Z0ðϕÞ=Zm;

hðϕÞ ¼ −λ−1Zme−a=Zme−Z0ðϕÞ=Zm: ð7:33Þ

When ϕ ¼ þ∞, they have the limiting values

gðϕ ¼ þ∞Þ ¼ Zme−a=Zm;

hðϕ ¼ þ∞Þ ¼ −λ−1Zme−a=Zm: ð7:34Þ

The scalar curvature in this limit

R ¼ 4λ2

Zm
e−2ϕ ð7:35Þ

approaches zero. So that at this end the spacetime is again
asymptotically flat.
Thus the case of negative κ ¼ −k is interesting since in

this case the spacetime solution is everywhere regular,
which at one end ðϕ ¼ −∞Þ approaches the classical black
hole metric and at the other end ðϕ ¼ þ∞Þ is again
asymptotically flat. One can show that provided the mass
parameter a > Zm lnZm, the metric function is monoton-
ically decreasing g0ðϕÞ < 0. It goes from g ¼ 1 at one end
to its minimal value

min g ¼ gðϕ ¼ þ∞Þ ¼ k
2
e−2a=k ð7:36Þ

at the other end. Since the classical black hole entropy
SBH ¼ 2a, this minimal value is exponentially small (for
large a) in terms of the classical entropy,

minð−gttÞ ¼
k
2
e−SBH=k: ð7:37Þ
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This is similar to the bound found in four dimensions in [7].
The asymptotic region of large, positive value of the dilaton
can thus be represented as a very long throat in which the
metric function is extremely small while nonzero. This is an
example of a horizonless geometry which is regular every-
where and acts as a black hole mimicker.

VIII. BACK-REACTED GEOMETRY
FOR A GENERAL C-STATE

After considering the Hartle-Hawking (HH) and the
Boulware states in detail, we now turn our attention to
the case of arbitrary C. The master equations that we should
start with are then (6.19) and (6.20). Any value of C ≠ −2λ
(otherwise the state is Boulware) and C ≠ 0;−4λ (other-
wise the state is HH) falls in this case. These other values of
C effectively determine the sign of A, which in turn appears
in the master equations.
Asymptotic behavior: In the classical domain, where

ϕ → −∞ and Z → þ∞, Eqs. (6.19) and (6.20) can be
solved asymptotically. One finds that

Z ¼ e−2ϕ þ κ

4λ2
ðCþ 2λÞ2ϕ;

g ¼ 1þ κ

4λ2
ðCþ 2λÞ2ϕe2ϕ;

h ¼ −
1

λ
þ κ

8λ2
ðCþ 2λÞ2e2ϕ: ð8:1Þ

This is consistent with the asymptotic perturbation (3.22),
(3.23) of the metric over the linear vacuum produced by the
thermal Hawking radiation with the energy density (3.9).

A. The case A < 0

In fact, if A ¼ κ
8λ2

CðCþ 4λÞ < 0, then we have

WðZÞ¼GðϕÞ with

WðZÞ¼Z− jAj ln Z
jAj and GðϕÞ¼ e−2ϕþ κϕ−a: ð8:2Þ

This is effectively the Boulware case considered in (7.2) of
the above section. The only difference now being that Zm
needs to be substituted by jAj. Hence all the subcases
exactly follow the various cases we considered in Sec. VII,
and hence we will not be discussing this scenario in any
further details.

B. The case of A > 0

However, the situation is quite different when we have
A > 0. In this case, we can once again define our master
equation by

WðZÞ ¼ GðϕÞ with

WðZÞ ¼ ZþA ln
Z
A

and GðϕÞ ¼ e−2ϕ þ κϕ− a; ð8:3Þ

along with

gðϕÞ ¼ e2ϕZðϕÞ; hðϕÞ ¼ 1

2λ
e2ϕZ0ðϕÞ: ð8:4Þ

The first thing we notice is that the behavior of WðZÞ is
monotonic in this case and is given by the left plot of Fig. 6.
This immediately lets us conclude that the value of the zero

FIG. 6. The PQ branch can correspond to either ST or TVU branch for GðϕcrÞ > 0.
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of the WðZÞ is located at Z ¼ Z0 ≈ 0.567A ≠ 0, which
corresponds to ϕ ¼ ϕh (the location of the horizon in the
Hartle-Hawking solution). Therefore, due to quantum
modifications in these general C-states and for A > 0,
we have a throat of finite size at the location of the HH
horizon. At this location, the metric function −gtt takes a
very small nonzero value

gðϕÞ → e2ϕhZ0 ≃
Z0

SBH
: ð8:5Þ

We can also compute the general expression of Ricci
scalar for this geometry, which is given precisely by (7.5)
above, which for this particular case of (8.3) becomes

R ¼ 8λ2e−2ϕ

ZG03 ð−G02Z þG00ðZ þ AÞ2Þ: ð8:6Þ

Note that, as long as κ > 0, the behavior of GðϕÞ still
remains the same (we will shortly discuss the κ < 0 case in
this context in the next subsection). In particular, it still has
a minima at ϕ ¼ ϕcr ¼ − 1

2
ln κ

2
determined by the condition

G0ðϕcrÞ ¼ 0. Its value at the minima is again given by

GðϕcrÞ ¼ acr − a with acr ¼
κ

2

�
1 − ln

κ

2

�
: ð8:7Þ

This definition of acr is slightly different from what we
have defined in (7.7), and is rather similar to our definition
below (5.4). However, we can end up with various
comparative situations depending on the sign of GðϕcrÞ.
These are the cases we will enumerate next.

1. The cases GðϕcrÞ < 0 (or a > acr) and GðϕcrÞ ≥ 0
(or acr ≥ a)

As we will see below, both these cases yield the same
geometric structure of the spacetime. These correspond to
the situation we have in Fig. 6 (in this figure we have
plotted the GðϕcrÞ < 0 case, but a similar picture is there
for GðϕcrÞ ≥ 0). The minimum of GðϕÞ at ϕ ¼ ϕcr corre-
sponds to a value of Z ¼ Zcr. As at this point G0ðϕÞ ¼ 0,
the resulting spacetime has a curvature singularity coming
from the divergent piece of (8.6). This point corresponds to
a naked singularity as the metric function (8.4) is still finite
at this point.
(i) Z > Zcr and ϕ < ϕcr: As we go from P to Q in the

plot ofWðZÞ in Fig. 6 above, we can either choose the TS or
the TVU branch for GðϕÞ. The TS branch once again
corresponds to the classical case designated by ϕ → −∞
and Z → ∞ and it was already studied before in (8.1).
Therefore in this branch, starting from asymptotically flat
spacetimes (with subleading corrections due to thermal
radiation), we get to a naked singularity after passing
through a throat at ϕ ¼ ϕh.

(ii) Z > Zcr and ϕ > ϕcr: On the other hand, the branch
TVU entirely denotes a quantum spacetime. Asymptotically
atU, ϕ → ∞ and Z → ∞. In this limit, the analysis follows
the same steps as (7.25) and (7.26). At the end, we have an
asymptotically flat solution with the Ricci scalar (note that
it does not depend on A)

R ¼ −
8λ2

κ
e−2ϕ: ð8:8Þ

On the other hand, at point V the metric function satisfies
the classical HH condition of gHH ¼ 0. However, once
again it does not correspond to the metric function
being zero.
The analysis is essentially same also for GðϕcrÞ > 0. So

we see that both these cases produce a spacetime which has
a naked singularity at one end and an asymptotically flat
spacetime on the other.

C. The case of negative κ

Following our steps in Sec. VII E, we briefly discuss here
the case of negative κ ¼ −k < 0. The resulting spacetime
once again falls into the scenarios we encountered before.
In particular, if A > 0, then the corresponding master
equations are just what we have in (7.31) with Zm now
replaced by A. So in this case, we once again end up with a
black hole mimicker geometry with a throat of exponen-
tially small (in its classical entropy) size.
The situation is slightly different when A < 0. As now

we have a minima for the function WðZÞ, but the function
GðϕÞ is monotonic. This situation is illustrated in Fig. 7 (we
have only plotted and studied the case when Z > 0. Similar
arguments can be made for Z < 0 following the arguments
of Sec. VII D). When we approach ϕ → −∞, we can either
approach P or R. If we approach the point R asymptotically,
then we are in the classical regime, with the spacetime
approaching asymptotically flat spacetimes following the
steps around (8.1). On the other hand, when we approach P
(Z → 0), we have

Z ¼ jAje−y=jAj with y ¼ e−2ϕ; ð8:9Þ

which yields the metric functions to be

gðyÞ ¼ jAj
y
e−

y
jAj and hðyÞ ¼ 1

λ
e−y=jAj: ð8:10Þ

The resulting spacetime is once again null singular as we
approach y → ∞. So, in this case, we have an asymptoti-
cally flat spacetime on one end, and a null singularity on
the other.

IX. HYBRID QUANTUM STATE

In this section we would like to explore one more
interesting possibility. It is possible that among the
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quantum fields, some of them (characterized by coupling
κ1) are in the Hartle-Hawking state and the others (with the
coupling κ2) are in the Boulware state. This situation
appears quite naturally when besides the physical quantum
fields (with positive κ1 > 0) we also have the unphysical
fields, or ghosts, with negative κ2 < 0. We do not expect to
see a thermal radiation made of ghosts at the asymptotic
infinity so that the ghost fields have to be always in the
Boulware state. This is the situation when the Boulware
state is the distinguished and, in fact, the only possible
choice for the quantum state. The physical fields, on the
other hand, may be in the Hartle-Hawking state. So that any
observer at the asymptotic infinity would see only the
thermal radiation made of the physical particles. This
situation will be our main focus in the discussion below.
In the present situation it is natural to introduce two

auxiliary fields, ψ1 and ψ2, so that the Polyakov action will
be a sum

I1¼Ið1Þ1 þIð2Þ1 ;

IðnÞ1 ¼−
κn
2π

Z
M
d2x

ffiffiffiffiffiffi
−g

p �
1

2
ð∇ψnÞ2þψnR

�
; n¼1;2: ð9:1Þ

The action of the RST model then is the same as before,

IRST ¼ I0 þ I1 þ I2;

I2 ¼ −
ðκ1 þ κ2Þ

2π

Z
d2x

ffiffiffiffiffiffi
−g

p
ϕR: ð9:2Þ

On the level of the action and the field equations this
separation is of course redundant and one always can return
to one auxiliary field with one coupling κ ¼ κ1 þ κ2.

The important difference, however, appears when one
makes a choice of the quantum state. One has that

ψn ¼ −2ϕþ wn; □wn ¼ 0;

w0
nðϕÞ ¼

CnhðϕÞ
gðϕÞ ; n ¼ 1; 2 ð9:3Þ

where C1 ≠ C2. The integration of the field equations in
this more general situation goes through in the same way as
before and one arrives at the Eq. (6.20) which now takes the
form

Z þ A lnðZ=jAjÞ ¼ e−2ϕgHHðϕÞ;
gHHðϕÞ ¼ 1þ ðκ1 þ κ2Þϕe2ϕ − ae2ϕ;

A ¼ A1 þ A2;

An ¼
κn
8λ2

CnðCn þ 4λÞ; n ¼ 1; 2: ð9:4Þ

We will choose different quantum states for ψ1 and ψ2.
Namely, ψ1 will correspond to the Hartle-Hawking state,
i.e., C1 ¼ 0. On the other hand, ψ2 will be in the Boulware
state, C2 ¼ −2λ. The general situation (arbitrary κ1 and κ2)
can be easily analyzed. For simplicity and for the purposes of
the illustration of how this new situation is different from
the case when all fields are in the same quantum state, we
shall consider the case when the total κ vanishes i.e., κ ¼
κ1 þ κ2 ¼ 0. In other words, the contribution of ghosts
(κ2 < 0) is precisely compensated by the contribution of the
physical fields ðκ1 ¼ −κ2 > 0Þ. For this choice of the
quantum states one finds A1 ¼ 0 and A¼A2¼−κ2

2
¼κ1

2
>0.

The master equation (9.4) then takes the form

FIG. 7. The case of negative A and κ. As we go from T (at ϕ → −∞) to U, we traverse the entire WðZÞ.
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Z þ Zm lnZ=Zm ¼ e−2ϕgclðϕÞ; gclðϕÞ ¼ 1 − ae2ϕ;

Zm ¼ κ1
2
> 0: ð9:5Þ

Notice that ϕe2ϕ term in the metric function gHHðϕÞ
disappears and it becomes the metric function that appears
in the classical black hole solution (2.7).
Asymptotically, for ϕ → −∞, one finds that for

gðϕÞ ¼ e2ϕZðϕÞ,

gðϕÞ¼ 1þ κ1ϕe2ϕ− ða−Zm lnZmÞe2ϕþOðe4ϕÞ: ð9:6Þ

We see that only the physical fields that are in the Hartle-
Hawking state contribute to the term ϕe2ϕ in the metric
function. This is consistent with the fact that this term is due
to the presence of the thermal radiation in the asymptotic
region and that the thermal radiation is made of the physical
particles only.
At the other end of the spacetime, when ϕ → þ∞, one

finds that

ZðϕÞ ¼ Z∞ þ Z∞

Z∞ þ Zm
e−2ϕ; ð9:7Þ

where Z∞ is the solution to equation Z∞þZm lnZ∞=Zm¼
−a. If a ≫ Zm ¼ κ1=2 one has that Z∞ ¼ Zme−a=Zm . As a
result, one finds the following expressions for the functions
gðϕÞ and hðϕÞ,

gðϕÞ ¼ Z∞e2ϕ þ
Z∞

Z∞ þ Zm
;

hðϕÞ ¼ −λ−1
Z∞

Z∞ þ Zm
: ð9:8Þ

At this end, one has a singularity which is apparent from the
resulting scalar curvature

R ¼ −4λ2
ðZ∞ þ ZmÞ2

Z∞
e2ϕ: ð9:9Þ

Note, however, that unlike the singularity in the classical
metric, where it is spacelike, this singularity is a timelike
singularity.
As one varies ϕ, the metric function gðϕÞ decreases from

g ¼ 1 at ϕ ¼ −∞ and then increases to infinity for
ϕ ¼ þ∞. This indicates that gðϕÞ in-between must have
a minimum. This is indeed the case as can be seen by
the analysis of the equation g0ðϕÞ ¼ 0. The minimum
happens for Z ¼ Zmin and ϕ ¼ ϕmin related by equation
Zmin þ Zm ¼ e−2ϕmin . The value of Zmin and the minimal
value of the metric function gðϕÞ are found to be

Zmin ¼ ðZmeÞe−a=Zm; gðϕminÞ ¼
Zmin

Zmin þ Zm
: ð9:10Þ

One can check that Zmin > Z∞. When a ≫ Zm one finds
for the minimal value of the ðttÞ component in the metric

minð−gttÞ ¼ ee−2a=κ1 ¼ ee−SBH=κ1 : ð9:11Þ

It is exponentially small function of the entropy for the
classical black hole. It is also nonperturbative function of
κ1. When κ1 is taken to zero the minimal value (9.11)
approaches zero. The curvature is finite at the minimum,

R ¼ −4λ2e−1ea=Zm: ð9:12Þ

We note that when κ1 → 0 the dilaton value at the minimum
is moving to infinity, ϕmin → ∞, where the curvature is
divergent. So that one cannot interpret ϕ ¼ ϕmin as the
place where the classical horizon used to stay. It is rather the
place where the singularity was located in the classical
black hole solution. On the other hand, at the position of
the classical horizon ϕ ¼ ϕh ¼ −1=2 ln a we find that
ZðϕhÞ ¼ 0.567Zm and hence the respective value of the
metric function,

gðϕhÞ ¼
0.567κ1

2a
¼ 0.567κ1

SBH
; ð9:13Þ

is bounded by the inverse entropy of the classical black
hole. Clearly, when κ1 → 0 one has that gðϕhÞ ¼ 0. This
analysis shows that what used to be a horizon in the
classical solution, now becomes an extended region
between ϕ ¼ ϕh (Z ¼ 0.567Zm) to ϕ ¼ ϕmin (Z ¼ Zmin)
in the semiclassical solution.
In fact, we can also extend our computations for the

general case of κ1 ≠ −κ2, where the total κ ¼ κ1 þ κ2 may
be positive or negative. Once again we have denoted
physical fields with subscript 1 and ghosts with subscript 2.
If we further assume Z > 0 (which can be relaxed in a
manner similar to Sec. VII D), then we have A1 ¼ 0 and
A2 > 0. Therefore A ¼ A1 þ A2 > 0.
The case of κ > 0: If we assume κ > 0, then our master

equation (9.4) takes the form

WðZÞ¼GðϕÞ with

WðZÞ¼ZþA2 ln
Z
A2

and GðϕÞ¼ e−2ϕþ κϕ−a; ð9:14Þ

which is nothing but (8.3) studied before, with A having the
interpretation of A2. Following our analysis there, we
conclude that this hybrid case yields a spacetime with an
asymptotically flat spacetime on one end and a naked
singularity on the other, after passing through a throat of
size ∼1=SBH.
The case of κ < 0: On the other hand, if we have κ < 0,

then our master equation takes the form
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WðZÞ¼GðϕÞ;
WðZÞ¼ZþA2 ln

Z
A2

; GðϕÞ¼ e−2ϕ−kϕ−a; ð9:15Þ

which is what we encountered in (7.31). As we know, the
solution would therefore be asymptotically flat spacetimes
at both ends with a throat which is exponentially small
if expressed in terms of the classical black hole entropy
(see (7.37) e.g.).
Concluding this section let us note that the case of a

hybrid quantum state is interesting in the following sense.
This is the case where an outside observer sees the thermal
Hawking radiation of the physical particles at the classical
Hawking temperature. On the other hand, the global
spacetime does not have a horizon. Thus, this is a quite
unique example of coexistence of the known thermal
properties of the classical black hole and a no-horizon
semiclassical geometry. We remind the reader that this
situation happens when there is at least one nonphysical
quantum field (ghost) which is in the Boulware quantum
state. The subcase of negative total κ studied before is
perhaps the most interesting since the corresponding semi-
classical spacetime is everywhere nonsingular.

X. CONCLUDING REMARKS

Finally, let us try to draw a few obvious and less obvious
conclusions.
Long throat picture: What we find in the semiclassical

RST model is the following. The back-reacted geometry
corresponding to a generic quantum state different from the
Hartle-Hawking state is horizonless. It appears that the
Hartle-Hawking is the only state for which the back-reacted
geometry has a horizon and the entire space-time outside
the horizon is a deformation of the classical black hole
geometry. For all other quantum states, the classical
horizon is replaced by a region which we call a throat,
where the value of the ðttÞ component in the metric may be,
depending on the value of the coupling parameter κ,
extremely small although nonzero. The ratio of ð−gðttÞÞ
at the throat and at infinity defines a new time scale tP that
tells us how slow is time running in the throat in
comparison with the time at asymptotic infinity. We have
seen that tP is bounded by the inverse of the classical black
hole entropy and in certain cases it can be exponentially
small. This is consistent with the bound on the Poincaré
recurrence time discussed by Susskind [20], see also
discussions in [21–24]. Considering only the semiclassical
solutions which have a classical region, the typical back-
reacted geometry represents a spacetime which looks pretty
close to the classical black hole up to a small region just
outside the classical horizon. Then, the horizon is replaced
by a throat which may be quite long, again depending on
the value of κ. On the other side of the throat one finds a
spacetime with a singularity, either timelike or null-like.

The position of the singularity in the space is not dependent
on the mass parameter a. Thus, in the space of the quantum
states parametrized by real number C (modulo the duality
(3.16) discussed in Sec. III) there is only one point, C ¼ 0

(or C ¼ −4λ) for which the back-reacted geometry has a
horizon. While for any other values of C the geometry is
horizonless with a classical horizon being replaced by a
throat.
We also note that for some special cases, such as studied

respectively for the twisted solution in Sec. VII C and for
the negative Z case of Sec. VII D, the quantum spacetime
does not have any asymptotically flat region. Rather it is
bounded by null and naked singularities on either ends.
Black hole mimickers: Each of the geometries for

C ≠ 0;−4λ with a classical region gives us an example
of a black hole mimicker. Indeed, it behaves as the classical
black hole geometry everywhere from the asymptotic
infinity to the small region just outside the classical horizon
that is now replaced by a throat. The required travel time tH
[see (7.16)] for a light ray (sent from a point outside the
throat) to reach the center of the throat can be parametri-
cally very large. For time observation much less than this
characteristic time tH, no outside observer would be able to
see any difference from the true black hole. It is important
to note that what kind of spacetime is on the other side of
the throat plays no role in seeing this spacetime as a black
hole mimicker: for times less than tH the part of the
spacetime inside the throat is effectively cut off from
the part outside the throat. Thus, to be a mimicker, the
spacetime does not have to be a wormhole as in [25] with
two asymptotically flat regions. It is in fact sufficient to
simply have a throat with large characteristic time tH. This
opens up a bigger class of geometries that may represent the
black hole mimickers.
Consequences for information puzzle: As we see in the

present analysis of a generic quantum state (apart from the
Hartle-Hawking one), it is represented by a horizonless
spacetime. It is sufficient to just have one quantum field in
the Boulware state, for the entire classical horizon to
disappear. The Boulware state is the only physically
meaningful quantum state for the nonphysical fields such
as ghosts. Generically ghosts are ubiquitous, as they appear
either when the gauge fields are quantized or when the
gravity itself is quantized. In quantum field theory
described by a unitary S-matrix, the ghosts are not present
in the asymptotic states although they may appear in the
intermediate interactions deep in the bulk of spacetime. For
example, in the presence of gravity, the ghosts should not
have a nonvanishing stress tensor to be detected at the
asymptotic infinity although it may be nonzero somewhere
in the bulk of spacetime. This uniquely singles out the
Boulware state for the ghosts. Hence, in the presence of
ghosts even if all physical fields are in the Hartle-Hawking
state the classical horizon is removed and is replaced by a
throat. The information paradox is usually formulated in
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terms of the classical black hole spacetime with a horizon
that is formed in the process of the gravitational collapse.
That is a dynamical process which we did not analyze in the
present paper. However, it seems quite natural to expect that
the static geometries are good approximation for a dynami-
cal, slowly evolving situation so that the time evolution of
the metric can be thought of as a slow passage from one
static geometry to the other. The absence of a horizon in the
semiclassical geometry means that the paradox vanishes in
any practical sense. The problems related to the loss of
information inside the horizon in the classical picture now
becomes a better defined problem of the information
passing through the long throat and the problem of
interaction with the singularity. The long delay in the
possible retrieval of the information sent into “black hole”
due to its long passing in the throat mimics the information
loss in the sense that the information appears to be lost for
any observation time much less than tH while fundamen-
tally no actual loss happens. On the other hand, the
interaction with the singularity is a new problem that
arises. However, it might be treated in a rather conventional
way. For instance, the presence of a timelike singularity
plays a role similar to the boundary for a quantum field
and it simply requires a formulation of certain “boundary

conditions” at the singularity (see e.g., discussions in [26]).
We note that the singularity related problems are absent in a
hybrid scenario when κ is negative in which case the
spacetime is everywhere regular.
Finally, given our long-throat geometries arise quite

universally, such spacetimes seem to be very naturally
present as saddle points of some exact, quantum corrected
actions (as we also saw in four-dimensions in [7]).
Existence of such horizonless saddles should play a pivotal
role in the information loss problem (via the approach of
quantum gravity path integral). It will also be interesting to
see whether our findings here have any connections with
the recent developments in the information puzzle reviewed
in [27]. In the future we want to study these and the related
issues more carefully.
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