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Using a nonperturbative approach based on the Cornwall-Jackiw-Tomboulis (CJT) effective action ΓðSÞ
for composite operators (S is the full fermion propagator), the phase structure of the simplest massless
(2þ 1)-dimensional Gross-Neveu model is investigated. We have calculated ΓðSÞ and its stationary (or
Dyson-Schwinger) equation in the first order of the bare coupling constant G and have shown that there
exist a well-defined dependence of G≡ GðΛÞ on the cutoff parameter Λ, such that the Dyson-Schwinger
equation is renormalized. It has three different solutions for fermion propagator S corresponding to possible
dynamical appearance of three different mass terms in the model. One is a Hermitian, but two others are
non-Hermitian and PT even or odd. It means that two phases with spontaneous non-Hermiticity can be
emerged in the system. Moreover, mass spectrum of quasiparticles is real in these non-Hermitian and PT
even/odd phases.
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I. INTRODUCTION

For a long time, it was believed that to describe quantum
systems it is necessary to use theories with Hermitian
Hamiltonians (or Lagrangians), since in this case the energy
spectrum is real. However, in recent decades, it has been
understood that there are situations, especially in open
physical systems interacting with the environment, which
can be effectively considered in the framework of non-
Hermitian Hamiltonians (see, e.g., in review [1]). Moreover,
it was claimed that if non-Hermitian theories have in addition
a space-time reflection symmetry PT , then its energy
spectrum is real [2,3], i.e., the Hermitian nature of the
Hamiltonian is only a sufficient, but far from necessary,
condition for the energy spectrum of the system to be real.
This statement is supported by a number of bosonic theories
in which non-Hermiticity together with PT symmetry lead
to real mass spectrum.
However, the situation is more involved in fermionic

systems. On the one hand, indeed, as the considerations
of some (1þ 1)- and (3þ 1)-dimensional (D) and
non-Hermitian field theory models with four-fermion
interaction show, the PT -symmetry together with non-

Hermiticity leads to a real spectrum of mass [4–6]. On the
other hand, in the same paper [6] other non-Hermitian and
anti-PT -symmetric extensions of the four-fermion mod-
els are also presented, in which, nevertheless, a real
spectrum of fermion masses is also generated, i.e., in fact
PT symmetry of the model is not a necessary condition
for real fermion masses to exist. Thus, the relationship
between the phenomena of non-Hermiticity, PT sym-
metry and the reality of the energy spectrum in any
quantum system remains a far from solved problem and
deserves further study. Moreover, it should be noted one
more feature of the non-Hermiticity phenomenon, which
was observed recently just within the framework of the
(3þ 1)-D Nambu–Jona-Lasinio (NJL) model [7] with
four-fermion interactions. Namely, in this model the non-
Hermiticity can arise spontaneously [8]. (Quite recently,
it was noted in Ref. [9] that, perhaps, the phenomenon of
spontaneous non-Hermiticity occurs also in some models
of Yukawa type.) It means that (i) initial Lagrangian of
the massless NJL model is taken to be Hermitian and
PT -symmetric, (ii) but, as it was proved in Ref. [8], there
exists a ground state corresponding to a dynamical
(spontaneous) appearance of the PT -symmetric and
non-Hermitian Yukawa-type term in the effective
Lagrangian. In addition, quasiparticle excitations of this
ground state obey a real mass.
In the present paper, we show that in the simplest

(2þ 1)-D massless Gross-Neveu (GN) model (for the first
time, it was discussed in Ref. [10]) with four-fermion
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interaction (initially, its Lagrangian is Hermitian and
PT -symmetric1) the non-Hermiticity can also arise spon-
taneously. In contrast to the situation observed in the
massless NJL model, in (2þ 1)-D massless GN model
(i) both PT - and anti-PT -symmetric non-Hermitian
ground states are allowed to be realized. And (ii) it means
that mass terms, and not terms with Yukawa interaction,
with corresponding symmetry properties are generated in
the model Lagrangian.
In this connection, it is necessary to note that recently

much attention has been paid to the investigation of
(2þ 1)-D field theory models, which can be used to
predict and study the condensed matter physical phenom-
ena of planar nature such as quantum Hall effect, high-
temperature superconductivity, low-energy graphene
physics, etc. To a fairly large extent, these phenomena
are usually considered within the framework of models
with a four-fermion interaction [11–19]. One of the
reasons is that in these models the spontaneous symmetry
breaking occurs dynamically, i.e., without taking into
account additional scalar Higgs bosons. Moreover, despite
the perturbative nonrenormalizability of these (2þ 1)-
dimensional models, in the framework of nonperturbative
approaches such as large-N technique, etc., they are
renormalizable [20]. And just using this nonperturbative
1=N approach, spontaneous symmetry breaking and the
associated effect of dynamical generation of the fermion
mass were investigated in the simplest (2þ 1)-D GN
model with four-fermion interaction. In particular, it was
shown, e.g., in Ref. [21] that at zero temperature and zero
chemical potential (as well as at fixed value of the cutoff
parameter Λ) in this (2þ 1)-D GN model a phase with
dynamical chiral symmetry breaking occurs only at
sufficiently large (positive) values of the bare coupling
constant G≡GðΛÞ. For a rather weak interaction, the
symmetric phase is realized in the model, and it is not an
asymptotically free one. (In contrast, the (1þ 1)-D GN
model [10] is an asymptotically free and dynamic gen-
eration of the fermionic mass occurs there for arbitrary
values of bare coupling constant.) Qualitatively the same
properties of this (2þ 1)-D GN model one can observe in
terms of variational optimized expansion technique [22]
and other nonperturbative variational approaches [23], etc.
Unlike the aforementioned papers, we investigate phase

structure of the (2þ 1)-D GN model (1) within the
framework of another nonperturbative approach based
on the effective action for composite operators.
Originally, the approach was proposed in the paper by
Cornwall-Jackiw-Tomboulis (CJT) [24] when considering
mainly a scalar ϕ4-field model, etc. Then in a series of
papers [25–29] the CJT effective action for composite
operators method has been extended to (Hermitian) quan-
tum field theory models with fermions. As a result, a

nonperturbative method has emerged for calculating vari-
ous multifermion Green’s functions based on functional
equations of the Dyson-Schwinger type. Moreover, in this
CJT effective action approach it is possible to investigate
the possibility of dynamical generation of the fermionmass
and chiral symmetry breaking, etc., as it was demonstrated,
e.g., in the framework of the (1þ 1)-D GN model in
Ref. [27]. And in the last case, i.e., in (1þ 1)-D, the results
of the CJT effective action studies of the model are
qualitatively the same as in the large-N expansion tech-
nique. It is also worth mentioning that the possibility
of dynamically generating fermion mass in some non-
Hermitian quantum field theory models has been inves-
tigated in Refs. [30–33]. Namely, in the first of these
papers, the problem is considered within the framework of
the 1=N expansion in the (3þ 1)-D NJL model (with a
complex coupling constant), while in the remaining papers,
for this purpose, the approach of the Dyson-Schwinger
equation was used in non-Hermitian Yukawa-type models
with additional four-fermion interaction term.
In the recent paper [34] we have studied phase structure of

the massless (2þ 1)-D GN model also using the CJT
effective action method. It turns out that in this case, in
contrast to (1þ 1)-D GNmodel, the CJTapproach predicts a
much richer phase structure compared to the result obtained
with other generally accepted nonperturbative methods, i.e.,
large-N and optimized expansion techniques, etc. And each
of the observed phases is associated with some dynamically
generated (Hermitian) mass term of the Lagrangian. So in
the present paper, we show that non-Hermiticity can arise
spontaneously in the (2þ 1)-D GN model under consid-
eration just in the framework of the CJT composite operator
approach. It means that for a certain well-defined behavior of
the bare coupling constant, the ground state of the system
can be characterized by a dynamically arising non-Hermitian
mass term of the Lagrangian, which can be both PT - and
anti-PT symmetric.
The paper is organized as follows. Section II A presents

the N-flavor massless (2þ 1)-dimensional Gross-Neveu
model symmetric under several discrete transformations,
two chiral transformations as well as with respect to spatial
P and time T reflections. It also clarifies the question of
how different fermion-antifermion structures (possible
massive terms of the model Lagrangian) are transformed
under the influence of PT . In Sec. II B the CJT effective
action ΓðSÞ of the composite bilocal and bifermion oper-
ator ψ̄ðxÞψðyÞ is constructed, which is actually the func-
tional of the full fermionic propagator Sðx; yÞ. In real
situations, the propagator is a translation invariant solution
of the stationary Schwinger-Dyson-type equation of the
CJT effective action. In this section, the unrenormalized
expression for ΓðSÞ is obtained up to a first order in the bare
coupling constantG. Based on this expression, we show in
Sec. III that for a some well-defined behavior of the
coupling constant GðΛÞ vs Λ, there exist three different1Its Lagrangian is presented below in Eq. (1).
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renormalized, i.e., without ultraviolet divergences, solu-
tions of the Schwinger-Dyson equation for the propagator.
One of them corresponds to a phase in which a dynamically
Hermitian mass term arises for fermions. The other two
solutions correspond to two different phases with dynami-
cally emerging non-Hermitian mass terms. In each of these
cases, the non-Hermiticity appears spontaneously in the
originally Hermitianmodel, and it is accompanied by a real
spectrum of fermions. Finally, in Sec. IV we show that the
spontaneous non-Hermiticity of the model arises only in
the chiral limit, i.e., if initially the Lagrangian of the model
contains a (Hermitian) nonzero mass term, then non-
Hermiticity does not arise.

II. (2 + 1)-DIMENSIONAL GNMODEL AND ITS CJT
EFFECTIVE ACTION

A. Model, its symmetries, etc.

We investigate the spontaneous (dynamical) generation
of non-Hermitian mass terms in the simplest massless
(2þ 1)-dimensional GN model. Its Lagrangian has the
following form

L ¼ ψ̄kγ
νi∂νψk þ

G
2N

ðψ̄kψkÞ2; ð1Þ

where for each k ¼ 1;…; N the field ψk ≡ ψkðt; x; yÞ is a
(reducible) four-component Dirac spinor [its spinor indices
are omitted in Eq. (1)], γν (ν ¼ 0; 1; 2) are 4 × 4 matrices
acting in this four-dimensional spinor space (the algebra of
these γ-matrices and their particular representation used in
the present paper is given in the Appendix, where the
matrices γ3, γ5 and τ ¼ −iγ3γ5 are also introduced), and the
summation over repeated k- and ν-indices is assumed in
Eq. (1) and below. The bare coupling constant G has a
dimension of ½mass�−1. The Lagrangian is invariant under
two discrete chiral transformations Γ5 and Γ3,

Γ5∶ ψkðt; x; yÞ → γ5ψkðt; x; yÞ;
ψ̄kðt; x; yÞ → −ψ̄kðt; x; yÞγ5;

Γ3∶ ψkðt; x; yÞ → γ3ψkðt; x; yÞ;
ψ̄kðt; x; yÞ → −ψ̄kðt; x; yÞγ3: ð2Þ

Moreover, it is symmetric with respect to space parity P,
time reversal T andPT symmetries, which we now discuss
in more detail within the framework of model (1).
In (2þ 1) dimensions the space reflection, or parity,

transformation P is defined by ðt; x; yÞ⟶P ðt;−x; yÞ.2
Moreover, we assume that an evident relation PP ¼ 1 is

valid. Let us derive the transformation of the spinor fields ψ
under P. To find this transformation, we postulate that the
Lagrangian L0 of the free massless spinor fields ψ remains
intact under space reflection P, i.e., L0 equals to PL0P,
where (below, for the sake of brevity we denote by x and x0
the set of coordinates ðt; x; yÞ and ðt;−x; yÞ, respectively)

L0 ≡ ψ̄ðxÞDψðxÞ; PL0P ¼ ψPðx0ÞD0ψPðx0Þ;
D ¼ iγ0∂0 þ iγ1∂1 þ iγ2∂2;

D0 ¼ PDP ¼ iγ0∂0 − iγ1∂1 þ iγ2∂2;

ψPðx0Þ ¼ PψðxÞP; ψPðx0Þ ¼ Pψ̄ðxÞP: ð3Þ

It is not very difficult to notice from Eq. (3) that L0 is
invariant under the action of P only when

ψPðx0Þ≡ ψPðt;−x; yÞ ¼ γ5γ1ψðt; x; yÞ; i:e:

ψPðx0Þ≡ ψPðt;−x; yÞ ¼ ψ̄ðt; x; yÞγ5γ1; ð4Þ

So the parity P transformation of the fermion fields can be
defined by Eq. (4). Now, it is easy to show that the
bifermion structure ψ̄ðxÞψðxÞ is P invariant. Indeed, it is
clear from Eqs. (3) and (4) that

ψ̄ðxÞψðxÞ⟶P Pψ̄ðxÞPPψðxÞP ¼ ψPðx0ÞψPðx0Þ
¼ ψ̄ðxÞγ5γ1γ5γ1ψðxÞ ¼ ψ̄ðxÞψðxÞ: ð5Þ

As a result, we conclude that the GN model (1) is P
invariant. In a similar way, one can find the P trans-
formations of some other Hermitian bispinor forms such as

ψ̄ðxÞiγ5ψðxÞ⟶P − ψ̄ðxÞiγ5ψðxÞ;
ψ̄ðxÞiγ3γ5ψðxÞ⟶P − ψ̄ðxÞiγ3γ5ψðxÞ;
ψ̄ðxÞiγ3ψðxÞ⟶P ψ̄ðxÞiγ3ψðxÞ: ð6Þ

Now, let us consider the time reversal T in the framework
of the (2þ 1)-D GN model (1). In the (2þ 1)-dimensional

spacetime it is defined as ðt; x; yÞ⟶T ð−t; x; yÞ, i.e., we
suppose that T T ¼ 1. To determine how the spinor fields
ψ are transformed under this operation in (2þ 1)-D
spacetime, we also assume from the very beginning (as
in the case of spatial reflection P) that the Lagrangian L0

(see in Eq. (3)) of free massless fermionic fields ψ remains
invariant with respect to T , i.e., L0 ¼ T L0T , where (now,
for the sake of brevity we denote below by x and x0 the set
of coordinates ðt; x; yÞ and ð−t; x; yÞ, respectively)

T L0T ¼ ψT ðx0ÞD0ψT ðx0Þ; ψT ðx0Þ ¼ T ψðxÞT ;

ψT ðx0Þ ¼ T ψ̄ðxÞT ; ð7Þ
2In (2þ 1) spacetime dimensions, parity corresponds to

inverting only one spatial axis [11,29], since the inversion of
both axes is equivalent to rotating the entire space by π.
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and in this formula D0 ¼ T DT . In the following, it is very
important to take into account that time-reversal operation
T (i) changes the sign of the time coordinate, t → −t, and
(ii) that it is an antilinear or antiunitary one, which means
that its action on any complex number or matrix C
transforms it into the complex conjugate C�, i.e., T CT ¼
C� (for details, see, e.g., in Refs. [3,35,36]). Taking into
account these (i) and (ii) properties of the T transformation,
we have

D0 ¼ iγ0�∂0− iγ1�∂1− iγ2�∂2¼ iγ0∂0þ iγ1∂1− iγ2∂2: ð8Þ

In the last equality of Eq. (8) we used the relations γ0� ¼ γ0,
γ1� ¼ −γ1 and γ2� ¼ γ2 (see in Appendix). Now, it is rather
evident from Eqs. (7) and (8) that L0 is invariant under the
action of T only when

ψT ðx0Þ≡ ψT ð−t; x; yÞ ¼ γ5γ2ψðt; x; yÞ; i:e:

ψT ðx0Þ≡ ψT ð−t; x; yÞ ¼ ψ̄ðt; x; yÞγ5γ2: ð9Þ

And just the relations (9) can be considered as a time
reversal T transformation of the spinor fields ψ . Now,
taking into account Eqs. (9), it is possible to obtain the T
transformations of some Hermitian bispinor forms. In
particular,

ψ̄ðxÞψðxÞ⟶T T ψ̄ðxÞT T ψðxÞT ¼ ψT ðx0ÞψT ðx0Þ
¼ ψ̄ðxÞγ5γ2γ5γ2ψðxÞ ¼ ψ̄ðxÞψðxÞ;

ψ̄ðxÞiγ3ψðxÞ⟶T T ψ̄ðxÞT T iγ3T T ψðxÞT
¼ ψT ðx0Þð−iÞγ3ψT ðx0Þ
¼ ψ̄ðxÞγ5γ2ð−iÞγ3γ5γ2ψðxÞ ¼ −ψ̄ðxÞiγ3ψðxÞ;

ð10Þ

where we have used the antiunitary property of the T
transformation, T iT ¼ −i. In a similar way it is possible to
find the T transformations of some other Hermitian
bispinor forms,

ψ̄ðxÞiγ5ψðxÞ⟶T − ψ̄ðxÞiγ5ψðxÞ;
ψ̄ðxÞiγ3γ5ψðxÞ⟶T − ψ̄ðxÞiγ3γ5ψðxÞ: ð11Þ

As it follows from Eqs. (5), (6), (10), and (11), the
Hermitian bispinor structures ψ̄ðxÞψðxÞ, ψ̄ðxÞiγ5ψðxÞ,
and ψ̄ðxÞiγ3γ5ψðxÞ are PT even (invariant), whereas the
Hermitian ψ̄ðxÞiγ3ψðxÞ form is a PT odd, i.e., it changes
the sign under the action of the PT transformation, and due
to this reason is called sometimes anti-PT -symmetric [6].
From the point of view of further consideration, we are

also interested in the behavior of such non-Hermitian
structures as ψ̄ðxÞγ5ψðxÞ and ψ̄ðxÞγ3ψðxÞ with respect to

P and T transformations. Obviously, under the action of P
they transform in the same way as the corresponding
Hermitian forms in Eq. (6). However, when reversing time,
we have (below, we use evident relations T γ5T ¼ γ5� ¼
−γ5 and T γ3T ¼ γ3)

ψ̄ðxÞγ5ψðxÞ⟶T ψ̄ðxÞγ5ψðxÞ;
ψ̄ðxÞγ3ψðxÞ⟶T ψ̄ðxÞγ3ψðxÞ: ð12Þ

Hence, ψ̄ðxÞγ5ψðxÞ is a PT -odd structure, but ψ̄ðxÞγ3ψðxÞ
is a PT -even one.
Below, we are going to study, using the CJT composite

operator technique, the possibility for dynamical generation
of the following mass terms in the model (1)

MH ¼ im5ψ̄ðxÞγ5ψðxÞ þ im3ψ̄ðxÞγ3ψðxÞ;
MNH1 ¼ im5ψ̄ðxÞγ5ψðxÞ þm3ψ̄ðxÞγ3ψðxÞ;
MNH2 ¼ m5ψ̄ðxÞγ5ψðxÞ þ im3ψ̄ðxÞγ3ψðxÞ; ð13Þ

(note that in this formula and below it is assumed thatm3 and
m5 are real quantities). The mass termMH is Hermitian and
its dynamical appearance corresponds to spontaneous break-
ing of some of the above mentioned discrete symmetries of
the model. Each of the remaining two mass terms in Eq. (13)
is non-Hermitian; therefore, their dynamic appearance cor-
responds to the spontaneous non-Hermitian nature of the
model (in addition to the spontaneous breaking of some of its
discrete symmetries). Moreover, the mass termMNH1 isPT
even (symmetric), but the non-Hermitian mass term MNH2

isPT odd, i.e., it changes the sign under this transformation.

B. CJT effective action of the model

Before starting to consider the question of the sponta-
neous emergence of the non-Hermiticity of the model, it is
necessary to add few words about the method for solving
the problem, i.e., about the CJT composite operator
approach.
Let us define ZðKÞ, the generating functional of the

Green’s functions of bilocal fermion-antifermion
composite operators

P
N
k¼1 ψ̄

α
kðxÞψkβðyÞ in the framework

of a ð2þ 1Þ-D GN model (1) (the corresponding tech-
nique for theories with four-fermion interaction is elab-
orated in details, e.g., in Ref. [28])

ZðKÞ≡ expðiNWðKÞÞ
Z

Dψ̄kDψk exp

�
i

�
Iðψ̄ ;ψÞ

þ
Z

d3xd3yψ̄α
kðxÞKβ

αðx; yÞψkβðyÞ
��

; ð14Þ

where α, β ¼ 1, 2, 3, 4 are spinor indices, Kβ
αðx; yÞ is a

bilocal source of the fermion bilinear composite field
ψ̄α
kðxÞψkβðyÞ (recall that in all expressions the summation
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over repeated indices is assumed).3 Moreover, Iðψ̄ ;ψÞ ¼ R
Ld3x, where L is the Lagrangian (1) of a (2þ 1)-dimensional

GN model under consideration. It is evident that

Iðψ̄ ;ψÞ ¼
Z

d3xd3yψ̄α
kðxÞDβ

αðx; yÞψkβðyÞ þ Iintðψ̄α
kψkβÞ;

Dβ
αðx; yÞ ¼ ðγνÞβαi∂νδ

3ðx − yÞ;

Iint ¼
G
2N

Z
d3xðψ̄kψkÞ2

¼ G
2N

Z
d3xd3td3ud3vδ3ðx − tÞδ3ðt − uÞ

× δ3ðu − vÞψ̄α
kðxÞδβαψkβðtÞψ̄ρ

l ðuÞδξρψ lξðvÞ: ð15Þ

Note that in Eq. (15) and similar expressions below, δ3ðx − yÞ denotes the three-dimensional Dirac delta function. There
is an alternative expression for ZðKÞ ¼ expðiNWðKÞÞ,

expðiNWðKÞÞ ¼ exp

�
iIint

�
−i

δ

δK

��Z
Dψ̄kDψk exp

�
i
Z

d3xd3yψ̄kðxÞ½Dðx; yÞ þ Kðx; yÞ�ψkðyÞ
�

¼ exp

�
iIint

�
−i

δ

δK

��
½detðDðx; yÞ þ Kðx; yÞÞ�N

¼ exp

�
iIint

�
−i

δ

δK

��
exp½NTr lnðDðx; yÞ þ Kðx; yÞÞ�; ð16Þ

where instead of each bilinear form ψ̄α
kðsÞψkβðtÞ appearing

in Iint of the Eq. (15) we use a variational derivative
−iδ=δKβ

αðs; tÞ. Moreover, the Tr-operation in Eq. (16)
means the trace both over spacetime and spinor coordi-
nates. The effective action (or CJT effective action) of the
composite bilocal and bispinor operator ψ̄α

kðxÞψkβðyÞ is
defined as a functional ΓðSÞ of the full fermion propagator
Sαβðx; yÞ by a Legendre transformation of the functional
WðKÞ entering in Eqs. (14) and (16),

ΓðSÞ ¼ WðKÞ −
Z

d3xd3ySαβðx; yÞKβ
αðy; xÞ; ð17Þ

where

Sαβðx; yÞ ¼
δWðKÞ
δKβ

αðy; xÞ
: ð18Þ

Taking into account the relation (14), it is clear that Sðx; yÞ
is the full fermion propagator at Kðx; yÞ ¼ 0. Hence, in
order to construct the CJT effective action ΓðSÞ of Eq. (17),
it is necessary to solve Eq. (18) with respect to K and then

to use the obtained expression for K (it is a functional of S)
in Eq. (17). It is clear from the definition (17)–(18) that

δΓðSÞ
δSαβðx;yÞ

¼
Z

d3ud3v
δWðKÞ
δKμ

νðu;vÞ
δKμ

νðu;vÞ
δSαβðx;yÞ

−Kβ
αðy;xÞ−

Z
d3ud3vSνμðv;uÞ

δKμ
νðu;vÞ

δSαβðx;yÞ
: ð19Þ

(In Eq. (19) and below, the Greek letters α, β, μ, ν, etc., also
denote the spinor indices, i.e., α;…ν;… ¼ 1;…; 4.) Now,
due to the relation (18), it is easy to see that the first term in
Eq. (19) cancels there the last term, so

δΓðSÞ
δSαβðx; yÞ

¼ −Kβ
αðy; xÞ: ð20Þ

Hence, in the true GN theory, in which bilocal sources
Kβ

αðy; xÞ are zero, the full fermion propagator is a solution
of the following stationary equation,

δΓðSÞ
δSαβðx; yÞ

¼ 0: ð21Þ

Note that in the nonperturbative CJT approach the sta-
tionary/gap equation (21) for fermion propagator Sβαðx; yÞ is
indeed a Schwinger–Dyson equation [28]. Further, in order
to simplify the calculations and obtain specific information
about the phase structure of the model, we calculate the

3We denote a matrix element of an arbitrary matrix (operator)
Â acting in the four dimensional spinor space by the symbol Aα

β ,
where the upper (low) index αðβÞ is the column (row) number of
the matrix Â. In particular, the matrix elements of any γμ matrix is
denoted by ðγμÞαβ.
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effective action (17) up to a first order in the coupling G. In
this case (the detailed calculations are given in Appendix B
of Ref. [34])

ΓðSÞ ¼−iTr lnð−iS−1Þþ
Z

d3xd3ySαβðx;yÞDβ
αðy;xÞ

þG
2

Z
d3x½trSðx;xÞ�2 − G

2N

Z
d3xtr½Sðx;xÞSðx;xÞ�:

ð22Þ

Notice that in Eq. (22) the symbol tr means the trace of an
operator over spinor indices only, but Tr is the trace
operation both over spacetime coordinates and spinor
indices. Moreover, there the operator Dðx; yÞ is introduced
in Eq. (15). The stationary equation (21) for the CJT
effective action (22) looks like

0 ¼ i½S−1�βαðx; yÞ þDβ
αðx; yÞ þ Gδβαδ3ðx − yÞtrSðx; yÞ

−
G
N
Sβαðx; yÞδ3ðx − yÞ: ð23Þ

Now suppose that Sðx; yÞ is a translationary invariant
operator. Then

Sβαðx; yÞ≡ SβαðzÞ ¼
Z

d3p
ð2πÞ3 S

β
αðpÞe−ipz;

SβαðpÞ ¼
Z

d3zSβαðzÞeipz;

ðS−1Þβαðx; yÞ≡ ðS−1ÞβαðzÞ ¼
Z

d3p
ð2πÞ3 ðS

−1ÞβαðpÞe−ipz; ð24Þ

where z ¼ x − y and SβαðpÞ is a Fourier transformation of
SβαðzÞ. After Fourier transformation, the Eq. (23) takes the
form

ðS−1ÞβαðpÞ − ipνðγνÞβα ¼ iGδβα

Z
d3q
ð2πÞ3 trS̄ðqÞ

− i
G
N

Z
d3q
ð2πÞ3 S

β
αðqÞ: ð25Þ

It is clear from Eq. (25) that in the framework of the four-
fermion model (1) the Schwinger-Dyson equation for
fermion propagator S̄ðpÞ reads in the first order in G like
the Hartree-Fock equation for its self-energy operator ΣðpÞ.
In particular, the first and second terms on the right-hand
side of Eq. (25) are, respectively, the so-called Hartree and
Fock contributions to the fermion self energy (for details,
see, e.g., the section 4.3.1 in Ref. [37]).
Finally note that both the CJTeffective action (22) and its

stationary equation (23)–(25), in whichG is a bare coupling
constant, contain ultraviolet (UV) divergences and need to
be renormalized. In the next sections, we will find out at

what behavior of the bare coupling constant G≡ GðΛÞ vs
Λ it is possible to renormalize the stationarity equation (25),
the finite solution of which corresponds at Λ → ∞ to the
dynamical appearance of the mass terms of the form (13) in
the Lagrangian.

III. POSSIBILITY FOR DYNAMICAL
GENERATION OF THE MASS TERMS (13)

A. Dynamical generation of the Hermitian mass MH

Let us explore the possibility that the solution of the gap
equation (25) has the form

S−1ðpÞ ¼ iðp̂þ iγ5m5 þ iγ3m3Þ; i:e:

S̄ðpÞ ¼ −i
p̂þ iγ5m5 þ iγ3m3

p2 − ðm2
3 þm2

5Þ
: ð26Þ

It corresponds to a dynamically generated mass term of the
form MH ¼ ðm5ψ̄iγ5ψ þm3ψ̄iγ3ψÞ in the Lagrangian (1)
(the Hermitian matrices γ3;5 are presented in Appendix).
Since we suppose that m5 and m3 are some real numbers,
this mass term is a Hermitian one. And it is not invariant
under each of the discrete transformations (2) or (3) (at
nonzerom3 andm5). Substituting Eq. (26) into Eq. (25), one
can obtain for m3 and m5 the following system of gap
equations

m3 ¼
im3G
N

Z
d3p
ð2πÞ3

1

p2 − ðm2
3 þm2

5Þ
;

m5 ¼
im5G
N

Z
d3p
ð2πÞ3

1

p2 − ðm2
3 þm2

5Þ
: ð27Þ

After a Wick rotation in Eq. (27) to Euclidean energy-
momentum, i.e., p0 → ip0, we see that ðm3; m5Þ should
obey the equation system (in which p2 ¼ p2

0 þ p2
1 þ p2

2)

m3

G
¼ m3

N

Z
d3p
ð2πÞ3

1

p2 þ ðm2
3 þm2

5Þ
;

m5

G
¼ m5

N

Z
d3p
ð2πÞ3

1

p2 þ ðm2
3 þm2

5Þ
: ð28Þ

This system contains UV-divergent integrals, i.e., it is
unrenormalized. For its regularization, we use the spherical
coordinate system when

R
d3pfð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 þ p2

1 þ p2
2

p
Þ ¼

4π
R∞
0 p2dpfðpÞ and p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
0 þ p2

1 þ p2
2

p
. Then, cutting

the region of integration in the obtained one-dimensional
UV-divergent integral by Λ, we have for ðm3; m5Þ the
regularized gap equations
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m3

G
¼ m3

2Nπ2

Z
Λ

0

p2

p2 þm2
3 þm2

5

dp;

m5

G
¼ m5

2Nπ2

Z
Λ

0

p2

p2 þm2
3 þm2

5

dp: ð29Þ

Notice that at Λ → ∞ an integral term in Eqs. (29) has the
following asymptotic expansion

Z
Λ

0

p2

p2þm2
3þm2

5

dp¼Λ−
π

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

3þm2
5

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

3þm2
5

q
O
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
3þm2

5

q

Λ

�
: ð30Þ

Hence, taking into account the expansion (30), the UV
divergence can be removed from the gap equations (29) if we
require (it is clear from the form of this equation system) the
following behavior of the bare coupling constant G≡GðΛÞ
vs Λ,

1

GðΛÞ ¼
1

2Nπ2

�
Λþ g

π

2
þ gO

�
g
Λ

��
; ð31Þ

where g is a finite Λ-independent and renormalization group
invariant quantity, and it can also be considered as a new free
parameter of the model. Now, comparing Eqs. (31) and (29),
we obtain in the limit Λ → ∞ the following renormalized,
i.e., without UV divergences, gap equations for the masses
m3 and m5

m3ðgþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

3 þm2
5

q
Þ ¼ 0;

m5ðgþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

3 þm2
5

q
Þ ¼ 0: ð32Þ

Hence, at g > 0 only a trivial solution of the gap equa-
tions (32) exists, m3 ¼ m5 ¼ 0, and all discrete symmetries
of the model remain intact. However, at g < 0 there are two
solutions, (i) m3 ¼ 0, m5 ¼ 0 and (ii) m3 ¼ jgj cos α, m5 ¼
jgj sin α (where 0 ≤ α ≤ π=2 is some arbitrary fixed angle),
of the system (32) of gap equations. To find which of the
solutions of the gap equations, (i) or (ii), is more preferable in
this case, it is necessary to consider the so-called CJT
effective potential VðSÞ of the model, which is defined on
the basis of the CJT effective action (22) by the following
relation [24,26]

VðSÞ
Z

d3x≡ −ΓðSÞjtransl:-inv: Sðx;yÞ; ð33Þ

where Sðx; yÞ is a translation invariant quantity, i.e.,
Sðx; yÞ≡ Sðx − yÞ, as assumed in Eq. (24). It is evident
that for arbitrary values of the bare coupling constant G the
CJT effective potential (33) is UV-divergent unrenormalized
quantity. However, if G is constrained by the condition (31),

then the UV divergences of VðSÞ are eliminated, and for
fermion propagator of the form (26) it looks at Λ → ∞ like
(up to unessentialm3- andm5-independent infinite constant)

VðSÞ≡ VHðm3; m5Þ

¼ 1

6π
ð2ðm2

3 þm2
5Þ3=2 þ 3gðm2

3 þm2
5ÞÞ: ð34Þ

It is clear from Eq. (34) that at g < 0 the effective potential
VH takes on the solution (ii) the value −jgj3=ð6πÞ, and this
quantity is smaller than VHðm3 ¼ 0; m5 ¼ 0Þ ¼ 0. This
allows us to conclude that if in the original model (1) the
bare coupling constantG behaves vsΛ like in the expression
(31) with g < 0, then the system undergoes dynamic
generation of the m3 ¼ jgj cosα and m5 ¼ jgj sin α masses,
i.e., a phase with spontaneous violation of all discrete
symmetries is realized in the model (if α ≠ 0, π=2). But
if α ¼ 0 then onlyPT -oddm3 ¼ jgjmass term is generated,
and Γ3 chiral symmetry (2) is dynamically violated.
However, at α ¼ π=2 only PT -even m5 ¼ jgj mass term
appears dynamically, and in this case chiral Γ5 symmetry is
broken spontaneously. Finally notice that at g < 0 in all
above mentioned cases, i.e., at arbitrary values of the angle
parameter α, the genuine physical fermion mass, which is
indeed a pole of the fermion propagator (26), is equal

to MF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

3 þm2
5

q
≡ jgj.

In terms of dimensionless bare coupling constant
λ≡ λðΛÞ ¼ ΛGðΛÞ, where GðΛÞ is given by Eq. (31),
the situation looks as follows. It is clear that in this case for
a sufficiently high values of Λ ≫ jgj both the dimensional
bare coupling GðΛÞ and the dimensionless coupling λ are
positive. In addition, it is easy to see that at Λ → ∞ the
dimensionless bare coupling λ tends to the quantity
λcrit ≡ 2Nπ2, which in fact is the UV-stable fixed point
of the model (see in Ref. [34]). Then the relation

λ − λcrit ∼ −
2π2Ng
Λ

ð35Þ

can be obtained. It follows from Eq. (35) that on the
positive λ-semiaxis the UV-fixed point λcrit separates the
symmetric phase from the one in which fermions are
massive. Indeed, if λ > λcrit then, as it is clear from
Eq. (35), the parameter g must be negative. In this case
dynamical generation of the Hermitian mass term MH ¼
ðm5ψ̄iγ5ψ þm3ψ̄iγ3ψÞ occurs in the Lagrangian (which
indeed corresponds to a physical mass MF of fermion
quasiparticles equal to jgj). In contrast, at λ < λcrit we have
g > 0 from Eq. (35) and symmetric phase of the model [see
the text below Eq. (32)].
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B. Dynamical generation of the non-Hermitian mass
terms MNH1 and MNH2

Generation of theMNH1 mass term. First, let us explore,
using the CJT approach, the possibility of the dynamic
appearance of a non-Hermitian and PT symmetric mass
termMNH1 (13) in the original (2þ 1)-D GNmodel (1). In
this case we should find the solution of the gap equa-
tion (25) in the form

S−1ðpÞ ¼ iðp̂þ iγ5m5 þ γ3m3Þ; i:e:

S̄ðpÞ ¼ −i
p̂þ iγ5m5 þ γ3m3

p2 − ðm2
5 −m2

3Þ
; ð36Þ

where m3 and m5 are real quantities. In addition, we
suppose that m2

5 ≥ m2
3. Substituting Eq. (36) into the CJT

stationary equation (25), one can obtain for m3 and m5 the
UV-divergent system of gap equations. In it, one can also
perform a Wick rotation and then to integrate over spherical
angles. Finally, after cutting off the region of integration by
Λ, we obtain for m3 and m5 a regularized system, which
looks like

m3

G
¼ m3

2Nπ2

Z
Λ

0

p2

p2 þm2
5 −m2

3

dp;

m5

G
¼ m5

2Nπ2

Z
Λ

0

p2

p2 þm2
5 −m2

3

dp: ð37Þ

Since in our consideration it is assumed that m2
5 ≥ m2

3, one
can apply in Eq. (37) the asymptotic expansion (30) and
find that the bare coupling constant G, which behaves vs Λ
like in Eq. (31), removes at Λ → ∞ all UV-divergences
from the gap system (37). And its finite, i.e., renormalized,
form reads

m3ðgþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

5 −m2
3

q
Þ ¼ 0;

m5ðgþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

5 −m2
3

q
Þ ¼ 0: ð38Þ

There are several solutions of the system (38). To find the
more preferable from the energy point of view, we again
use the CJT effective potential (33), which, after substitut-
ing the expressions (36) and (31) into Eq. (22), takes the
form (recall that in our case m2

5 −m2
3 ≥ 0)

VðSÞ≡ VNH1ðm3; m5Þ

¼ 1

6π
ð2ðm2

5 −m2
3Þ3=2 þ 3gðm2

5 −m2
3ÞÞ: ð39Þ

Hence, at g > 0 its global minimum lies at the point
m5 ¼ m3 ¼ 0, and dynamical mass generation is absent.
But at g < 0 the global minimum of the VNH1ðm3; m5Þ is
−jgj3=ð6πÞ, and it is achieved at arbitrary ðm3; m5Þ point

such that m2
5 −m2

3 ¼ g2, i.e., when m3 ¼ jgj sinh β and
m5 ¼ jgj cosh β, where β ∈ R. Note that such a structure of
the global minimum point of the model appears due to the
emergent symmetry of the CJT effective potential (39) with
respect to nonunitary transformations

�
m5

m3

�
→

�
cosh β sinh β

sinh β cosh β

��
m5

m3

�
: ð40Þ

The energies of all these ground states at which a non-
Hermitian and PT -symmetric fermion mass term MNH1

(13) arises spontaneously in the system are equal to each
other and, moreover, coincide with the energy of any
vacuum state corresponding to the dynamic appearance
of a Hermitian mass term MH of fermions in the system
(see in the previous subsection). The singularity of the
fermion propagator (36) corresponds to the fact that the
quasiparticle excitations of each of these non-Hermitian
and PT -even ground states of the system have a real mass
spectrum, i.e., their masses are real and also equal to the

same value MF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

5 −m2
3

q
≡ jgj, which is observed in

the case with Hermitian vacuum (see in the Sec. III A).
Generation of the MNH2 mass term. Omitting unnec-

essary details, it can be shown in exactly the same way that
for the same dependence (31) of the bare coupling constant
G vs Λ, there exists a nontrivial solution of the renormal-
ized stationary (Dyson-Schwinger) equation (25) of the
form

S−1ðpÞ ¼ iðp̂þ γ5m5 þ iγ3m3Þ; i:e:

S̄ðpÞ ¼ −i
p̂þ γ5m5 þ iγ3m3

p2 − ðm2
3 −m2

5Þ
; ð41Þ

which corresponds to spontaneous generation at g < 0 of the
non-Hermitian but PT -odd mass term MNH2 (13) in the
model. In this case m3 ¼ jgj coshω and m5 ¼ jgj sinhω,
where ω ∈ R. And in this phase fermion propagator (41)
describes, for any real value of ω, the quasiparticles with the

same real mass MF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

3 −m2
5

q
≡ jgj.

Conclusions. As a result, we see that at λ > λcrit ¼ 2Nπ2,
where λ≡ ΛGðΛÞ is the dimensionless coupling constant of
the model (see in the last paragraph of the previous
subsection III A), there might appear, on the same footing,
three different phases in the framework of the Hermitian
massless (2þ 1)-D GN model (1). One of them is charac-
terized by dynamical appearance of the Hermitian mass term
MH in the Lagrangian, i.e., the ground state of the system
remains Hermitian. However, in each of the remaining two
phases, a non-Hermitian mass term, MNH1 or MNH2, is
dynamically generated in the Lagrangian of the model. And
in this case non-Hermiticity of the model appears sponta-
neously, which is accompanied by a real mass spectrum of
quasiparticle excitations. In the first case, when MNH1 is
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generated, the non-Hermitian ground state of the model
remainsPT symmetrical, but whenMNH2 appears dynami-
cally, the PT -invariance of the model is broken sponta-
neously. Moreover, we note that the ground states of all these
three different phases, both Hermitian and non-Hermitian,
have the same energy density equal to −jgj3=ð6πÞ, i.e., they
are degenerate. The similar result was obtained in Ref. [8]
within (3þ 1)-D NJL model, where it was shown that in the
chiral limit the uniform non-Hermitian ground state has the
same (finite) free energy density as the usual Hermitian
ground state.
Finally, two remarks. (i) The phenomenon of spontaneous

emergence of non-Hermiticity in the massless (2þ 1)-D GN
model (1) is characteristic only for finite values of N and
cannot be observed in the framework of the large-N
expansion technique. Indeed, it might occur only at
λ > λcrit ¼ 2Nπ2. So at N → ∞ it is absent. (ii) In the
(3þ 1)-D NJL model, as it is proved in Ref. [8], the
spontaneous non-Hermiticity occurs only in the chiral limit,
i.e., if bare quark mass is zero. However, if it is a nonzero
quantity, then this effect does not appear. In the next section,
we show that in the framework of the (2þ 1)-D GN model
(1) with nonzero (Hermitian) bare mass of fermions, non-
Hermiticity also cannot arise spontaneously.

IV. THE CASE OF NONZERO HERMITIAN BARE
m5 MASS

Let us study the dynamical symmetry breaking in the
(2þ 1)-D GN model (1) when its Lagrangian contains,
e.g., a nonzero bare Hermitian chiral mass m5, i.e., the
Lagrangian of the model looks like

L ¼ ψ̄kγ
νi∂νψk þ im05ψ̄kγ

5ψk þ
G
2N

ðψ̄kψkÞ2: ð42Þ

In this case it is invariant only under discrete chiral Γ3 and
PT transformations [other discrete symmetries Γ5, P, and
T of the massless model (1) are violated explicitly, as it is
shown in Sec. II A, by the mass term of the Lagrangian
(42)]. In the present section, we are going to consider in the
framework of the model (42) the possibility of dynamical
generation in it of the m3-mass term of the form κm3ψ̄γ

3ψ ,
where κ is equal to 1 or i and m3 is real. If κ ¼ i, then both
the mass term and the model remain Hermitian, however if
κ ¼ 1 then the ground state of the model corresponds to
spontaneous emergence of non-Hermiticity in it. Note that
in both cases the discrete Γ3 symmetry (2) of the model is
spontaneously broken down.
The consideration is again performed on the basis of the

CJT effective action (22) and its stationary equation (23), in
which this time Dðx; yÞ ¼ ½γνi∂ν þ im05γ

5�δ3ðx − yÞ, i.e.,
D̄ðpÞ ¼ p̂þ im05γ

5. Fourier transformation of this gap
equation reads as

−iðS−1ÞβαðpÞ ¼ pνðγνÞβα þ im05γ
5 þ Gδβα

Z
d3q
ð2πÞ3 trS̄ðqÞ

−
G
N

Z
d3q
ð2πÞ3 S

β
αðqÞ: ð43Þ

Here we explore the possibility that the solution of this gap
equation has the form

S−1ðpÞ ¼ iðp̂þ iγ5m5 þ κγ3m3Þ; i:e:

S̄ðpÞ ¼ −i
p̂þ iγ5m5 þ κγ3m3

p2 − ðm2
5 − κ2m2

3Þ
: ð44Þ

It corresponds to a dynamically generated mass term of the
form κm3ψ̄γ

3ψ in the Lagrangian (42) (the Hermitian
matrices γ3;5 are presented in Appendix). Moreover, we
suppose that for each value of κ ¼ 1; i the mass parameters
m5 and m3 both in Eq. (44) and throughout the consid-
eration are some real numbers. Substituting Eq. (44) into
Eq. (43) and taking into account the technical details
discussed in previous two sections, one can obtain for
m3 andm5 the following system of gap equations (in which
p2 ¼ p2

0 − p2
1 − p2

2)

m3 ¼
im3G
N

Z
d3p
ð2πÞ3

1

p2 − ðm2
5 − κ2m2

3Þ
;

m5 ¼ m05 þ
im5G
N

Z
d3p
ð2πÞ3

1

p2 − ðm2
5 − κ2m2

3Þ
: ð45Þ

After a Wick rotation in Eq. (45) to Euclidean energy-
momentum, i.e., p0 → ip0, it is possible to use there a
spherical coordinate system. Then we integrate in the
obtained expressions over spherical angles and cut off
by Λ the resulting one-dimensional integral. As a result, we
see that the set ðm3; m5Þ should obey the following
regularized system

m3

G
¼ m3

N

Z
d3p
ð2πÞ3

1

p2 þ ðm2
5 − κ2m2

3Þ
¼ m3

2Nπ2

Z
Λ

0

p2dp
1

p2 þ ðm2
5 − κ2m2

3Þ
;

m5

G
−
m05

G
¼ m5

N

Z
d3p
ð2πÞ3

1

p2 þ ðm2
5 − κ2m2

3Þ
¼ m5

2Nπ2

Z
Λ

0

p2dp
1

p2 þ ðm2
5 − κ2m2

3Þ
: ð46Þ

Taking into account in these regularized equations the
asymptotic expansion (30), we see that the system of
equations (46) can be renormalized if we demand the
same behavior (31) of the bare coupling constantG vs Λ, as
well as that m05

G ¼ � m2

4πN, in addition (here m ≠ 0). Then
ðm3; m5Þ should obey the following finite gap system
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m3ðgþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

5 − κ2m2
3

q
Þ ¼ 0;

m5ðgþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

5 − κ2m2
3

q
Þ ¼ �m2: ð47Þ

Recall that both parameters g and m are some finite and
renormalization group invariant quantities with dimension
of [mass]. Sincem ≠ 0 (otherwise the bare massm05 would
be equal to zero), the expression in parentheses of Eq. (47)
is always nonzero. So the solution of Eq. (47) is such that
m3 ¼ 0, and m5 should obey the equation

m5ðgþ jm5jÞ ¼ �m2: ð48Þ

Hence, we conclude that both for κ ¼ i and κ ¼ 1 there no
exist solutions of the gap equations (47) with m3 ≠ 0. It
means that in the case when bare mass m05 ≠ 0, neither
Hermitian im3ψ̄γ

3ψ nor non-Hermitianm3ψ̄γ
3ψ mass terms

can arise dynamically in the model. In a similar way, it can
be shown that if some other Hermitian bare mass term
(instead of the chiral m05 considered in this section) is
present in the Lagrangian (1) (for example, the Dirac ψ̄ψ , the
Haldane iψ̄γ3γ5ψ-mass terms, etc.), then it is this mass term
that is modified in the framework of the CJT composite
approach. The dynamic emergence of other mass terms, both
Hermitian and non-Hermitian, is impossible.
So the spontaneous emergence of non-Hermiticity in the

initially Hermitian (2þ 1)-D GN model is allowed only in
the chiral limit, i.e., at zero bare masses.

V. SUMMARY AND CONCLUSIONS

In the present paper we have studied the possibility of the
dynamical appearance of both Hermitian and non-
Hermitian mass terms in the originally Hermitian massless
(2þ 1)-dimensional GN model (1). It is invariant with
respect to several discrete transformations, two chiral Γ3

and Γ5, space reflection (or parity) P and time reversal T
(see in Sec. II A). As a consequence, it is PT symmetric.
The problem is investigated, using a nonperturbative
approach based on the CJT effective action ΓðSÞ (17) for
the composite bifermion operator ψ̄ðxÞψðyÞ. In fact, ΓðSÞ is
a functional of a full fermion propagator Sðx; yÞ (see in the
Sec. II B). In this case, in order to find the true fermion
propagator of the original GN model and to determine what
kind of fermionic mass terms, Hermitian MH or non-
Hermitian MNH1 and MNH2 [see in Eq. (13)], can arise
dynamically in the model, it is sufficient to solve the
stationary (gap or Dyson-Schwinger) equation (21) for the
functional ΓðSÞ, which we have calculated up to the first
order in the coupling constant G [see Eqs. (22) and (25)].
It turns out that due to the behavior (31) of the bare

coupling constant GðΛÞ vs cutoff parameter Λ, the gap
equation (25) is renormalized and it has three different finite
solutions. The first one (see in Sec. III A) corresponds to a
dynamical generation of the Hermitian mass termMH in the

model Lagrangian. In this case the phase with spontaneous
breaking of all above mentioned discrete symmetries
(including the PT one) is realized in the system. The
second finite solution of the Dyson-Schwinger equation (25)
corresponds to dynamical appearing of the non-Hermitian
mass termMNH1 in the model (see in Sec. III B). In this case
the phase with spontaneous emergence of non-Hermiticity is
induced in the system, but it is still PT invariant and the
mass spectrum of its quasiparticle excitations is real. Finally,
there is a solution of the gap equation (25) that indicates on
the possibility of spontaneous realizing in the system another
non-Hermitian phase, in which fermionic quasiparticles are
described effectively by free Lagrangian with also non-
Hermitian but PT -odd mass term MNH2. Note that the
ground state in each of these three qualitatively different
phases has the same energy density, i.e., the phases can
appear spontaneously in the massless (2þ 1)-D GN model
(1) on the same footing. It means that in the space, filled with
one of these degenerated phases, bubbles of the other two
phases can be created, i.e.. one can observe in space the
mixture (or coexistence) of these three phases. Moreover, as
it is noted in Sec. III B, the effect of spontaneous non-
Hermiticity can be detected only at finite N, i.e., outside the
large-N expansion technique.
We have also shown (see in Sec. IV) that in the massive

(2þ 1)-D GN model (1), i.e., when one or another nonzero
bare Hermitian mass term is added to the Lagrangian (1),
the effect of its spontaneous non-Hermiticity is impossible.
It is worth recalling that earlier the effect of spontaneous

emergence of non-Hermiticity of a quantum system (accom-
panied by a real mass spectrum of its quasiparticle excita-
tions) was discovered on the basis of the (3þ 1)-D NJL
model [8]. Comparing our results with the results of this
paper, we see that despite the large qualitative difference
between the (2þ 1)-D GN and (3þ 1)-D NJL models, the
effects of their spontaneous non-Hermiticity (with real mass
spectrums) have many similar features. Indeed, in the NJL
model, this effect is also observed only in the chiral limit,
and the phase corresponding to it is PT symmetric. In
addition, the ground state of this non-Hermitian NJL phase
has the same free energy density as some PT -invariant
phase of the NJL model with Hermitian ground state.
However, there are some differences. On the one hand, in
the (2þ 1)-D GN model there is one more phase with
spontaneous non-Hermiticity, which is PT odd (nonsym-
metric). On the other hand, as shown in [8], in the NJL
model in the strong-coupling limit, the spontaneously non-
Hermitian ground state generates its inhomogeneity, i.e., in
this case the translational invariance of the system is
violated. Within the framework of the CJT effective action
approach used in our paper, it is impossible to detect such a
phase, since from the very beginning the presence of
translational invariance is assumed (see in Sec. II B).
We hope that the results of this article can be useful for

describing physical phenomena in condensed matter
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systems having a planar crystal structure, or in thin films,
e.g., like graphene. In such situations, it often happens that
the elementary excitations of the system are massless. As a
result, at low energies and in the continuum limit, physical
phenomena in it can be effectively described by massless
quantum field theory models with four-fermion interactions
of the type (1) [13,14,17]. And just in these cases, the effect
of spontaneous non-Hermiticity could be manifested.
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APPENDIX: ALGEBRA OF THE γ MATRICES IN
THE CASE OF SO(2,1) GROUP

The two-dimensional irreducible representation of the
(2þ 1)-dimensional Lorentz group SO(2,1) is realized by
the following 2 × 2 γ̃-matrices:

γ̃0 ¼ σ3 ¼
�
1 0

0 −1

�
; γ̃1 ¼ iσ1 ¼

�
0 i

i 0

�
;

γ̃2 ¼ iσ2 ¼
�

0 1

−1 0

�
; ðA1Þ

acting on two-component Dirac spinors. They have the
properties:

Trðγ̃μγ̃νÞ ¼ 2gμν; ½γ̃μ; γ̃ν� ¼ −2iεμναγ̃α;

γ̃μγ̃ν ¼ −iεμναγ̃α þ gμν; ðA2Þ

where gμν ¼ gμν ¼ diagð1;−1;−1Þ, γ̃α ¼ gαβγ̃β, ε012 ¼ 1.
There is also the relation:

Trðγ̃μγ̃νγ̃αÞ ¼ −2iεμνα: ðA3Þ

Note that the definition of chiral symmetry is slightly
unusual in (2þ 1)-dimensions (spin is here a pseudoscalar
rather than a (axial) vector). The formal reason is simply
that there exists no other 2 × 2 matrix anticommuting with
the Dirac matrices γ̃ν which would allow the introduction of
a γ5-matrix in the irreducible representation. The important
concept of “chiral” symmetries and their breakdown by
mass terms can nevertheless be realized also in the
framework of (2þ 1)-dimensional quantum field theories
by considering a four-component reducible representation
for Dirac fields. In this case the Dirac spinors ψ have the
following form:

ψðxÞ ¼
�
ψ̃1ðxÞ
ψ̃2ðxÞ

�
; ðA4Þ

with ψ̃1, ψ̃2 being two-component spinors. In the reduc-
ible four-dimensional spinor representation one deals with
4 × 4γ-matrices: γμ ¼ diagðγ̃μ;−γ̃μÞ, where γ̃μ are given in
(A1) (This particular reducible representation for γ-matri-
ces is used, e.g., in Ref. [29]). One can easily show, that
(μ, ν ¼ 0, 1, 2):

TrðγμγνÞ ¼ 4gμν; γμγν ¼ σμν þ gμν;

σμν ¼ 1

2
½γμ; γν� ¼ diagð−iεμναγ̃α;−iεμναγ̃αÞ: ðA5Þ

In addition to the Dirac matrices γμ (μ ¼ 0, 1, 2) there
exist two other matrices, γ3 and γ5, which anticommute
with all γμ (μ ¼ 0, 1, 2) and with themselves

γ3 ¼
�
0; I

I; 0

�
; γ5 ¼ γ0γ1γ2γ3 ¼ i

�
0; −I
I; 0

�
;

τ ¼ −iγ3γ5 ¼
�
I; 0

0; −I

�
ðA6Þ

with I being the unit 2 × 2 matrix.
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