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A broad class of forces, P, is identified, for which the Abraham-Lorentz-Dirac (ALD) and Newton-like
equations have solutions in common. Moreover, these solutions do not present preacceleration or escape
into infinity (runaway behavior). Any continuous or piecewise continuous force can be represented in terms
of functions belonging to this class P. It was also argued that the set of common solutions of both sets of
equations is wider, and it was proved that these solutions could be formulated in terms of generalized
functions. The existence of such generalized functions motions is explicitly demonstrated for the relevant
example of the instantaneously applied constant force, for which the respective solution of the ALD
equation exhibits a lack of causality and runaway motion. In this case, the expressions for the position and
velocity of the particle are formulated in terms of generalized functions of time, having only a point support
at the time that the force is applied. Thus, both the velocity and the position are discontinuous at the instant
that the force was applied. The solution for a particle moving between the plates of a capacitor reproduces
the one obtained by A. Yaghjian from his discussion for extended particles. This outcome suggests a
possible link or equivalence between both studies. A solution, common to the Newton-like and the ALD
equations, for a constant homogeneous magnetic field is also presented. The extension of the results
obtained to a relativistic context will be studied in future works.
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I. INTRODUCTION

It has been known for more than 100 years that an
accelerated charge radiates, and that the effects of this
radiation on the charge itself can be described as a reaction
force that acts as a friction on the particle. Surprisingly, also
during this last century, great effort has been made to find
an appropriate equation to describe the motion of a charged
particle. Great physicists, starting with Abraham and
Lorentz, have worked on this issue and already today there
are hundreds of articles in the literature dealing with the
topic [1–31]. The Abraham-Lorentz-Dirac (ALD) equa-
tions were introduced more than a century ago to describe
the interaction of a charged particle with its own electro-
magnetic field and its relativistic version was developed by
Dirac in 1938 [5].
The treatment of this problem by classical electromag-

netism has been plagued with difficulties, although this
theory has been used to obtain equations that very
accurately describe radiation for the most important appli-
cations. Starting from Maxwell’s equations for the par-
ticle’s field and Newton’s equations for the particle, an
equation of motion was obtained, one that included the

forces produced by the particle’s radiated field. This system
of equations proved to be suitable for the description of a
macroscopic particle, yet not for a point particle or even
for small enough particles. In the low speed limit, these
equations are called the nonrelativistic ALD equations.
These equations incorporate the effects of the radiation
produced by this classical charged particle on the particle
itself; that is, they include a term for the reaction force due
to the radiation. The fact that these equations of motion are
not of second order, that is, there is a third order derivative
of position involved, leads to fundamental issues for the
solution, such as noncausality, runaway behavior, or con-
tradictions with special relativity. One of the main reasons
behind such problems is that the punctual charge’s field,
supposedly Coulombian, diverges around the position of
the particle itself. This situation causes the need for a
renormalization of the mass and the existence of the
runaway solutions. Nevertheless, the works of Poincaré
and Dirac solved the contradiction with special relativity
but the other problems remained [5].
Some authors maintain that these difficulties can be

avoided if the assumption of the electron as a point particle
is eliminated, because if the gravitational effects are
negligible, then a point particle with finite charge and
mass is impossible in classical physics. For example, in
Refs. [9,10] the authors affirm that the particle should be
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considered as extended and they derive a second-order
equation of motion, which they claim to be exact, assuming
the existence of an internal structure within the charged
particle. Reference [8] is another work that sustains this line
of thought, arguing that for forces that do not depend
analytically on time, the ALD equations cannot be derived
exactly from the coupled equations for the particle reacting
to its own electromagnetic field. Likewise, in Ref. [25]
the authors introduce a special form of the extended structure
that also removes the runaway behavior and preacceleration.
Also, in a different line of thought, some authors

maintain that certain physically coherent initial conditions
should be imposed upon the solutions of the equation of
motion. Some of them state that this procedure could
provide an exact equation. This idea was originally
proposed by Dirac himself [5]. In the article [11], and
some of its references, this point of view has been
thoroughly examined. In these works, special constraints
have been proposed in order to prevent undesirable proper-
ties to show up in the solutions of the ALD equations.
Another variation of the ALD equations consists in

developing a solution through several iterations, and gen-
eralizing each term into a series. This equation is known as
the Landau-Lifshitz (LL) one, which has been carefully
studied by some authors.
However, an also numerous group of authors consider

the ALD equations as rigorously valid. Therefore, it can be
concluded that there is still a heated discussion about the
ALD equation.
In Ref. [31], a discussion was presented that can be

considered within the just mentioned line of thought. A
Newton-like set of equations was examined, whose sol-
utions also solved the ALD equations. In addition, a
covariant generalization of these Newton-like equations
was proposed, whose motions also satisfy the ALD
equations. Although the proposed Newton-like equations
suggest that there is no preacceleration or runaway in their
solutions, the relationship between the two kinds of
solutions, those of the Newton-like equations and those
of the ALD ones, was not clear from the beginning. In
particular, it was not understood if the ALD equations have
or not more physically coherent solutions than the Newton-
like ones. This question is still open and is one of the main
issues that will be addressed in further works. Its under-
standing will define if the solutions of the Newton like
equations contain or not the whole spectrum of possible
motions of the radiating particle.
The present work begins the study of the connections

between the solutions of the two types of equations. We
start here with their nonrelativistic version, which deals
with fewer conceptual difficulties. The results of this first
study are expected to be helpful in understanding the
relationship between the relativistic forms of both equations.
In addition, we will concentrate on generalizing the dis-
cussion to include solutions in terms of generalized func-
tions. Then, we will study the motion for an instantaneously

applied force described by Heaviside’s unitary step function,
which is the most relevant case that shows noncausal and
runaway behavior in this context.
Our first goal is to introduce a class of forces for which

the Newton-like equations are convergent, and therefore,
well defined. This set consists of all forces fiðtÞ represented
by polynomials of the time t. These functions then form the
space P. Therefore, by virtue of the Weierstrass approxi-
mation theorem, it follows that with functions of this kind,
it becomes possible to approximate any continuous or
piecewise continuous force as much as it is desired in any
closed time interval.
Next, another goal of this study is to formulate non-

relativistic solutions common to both equations in terms of
generalized functions. For that, we will employ functions of
the space P. Then, we will explicitly verify that these
solutions are causal and do not show runaway behavior.
The solvability of these equations is checked in the sense of
generalized functions, according to the theoretical frame-
work introduced by Colombeau and Egorov in [32–34].
This modern approach to generalized functions can be
applied even to nonlinear problems, in contrast to the more
classical theory of Schwartz and Sobolev [32].
Further, we focus on explicitly solving the particular case

of the instantaneously applied constant force. An exact
formula is obtained for the coordinates and velocities, once
the limits of the sequences that define the solutions are
calculated for all times except the instant the force is
applied. It follows that the coordinates and the velocities of
the particle have discontinuous jumps at the instant in
which the force is applied. The absence in the literature of
this kind of solution is justified, since it violates the usual
rule that the coordinates of the particle do not suddenly
change. In fact, this is not the case, since forces depending
on derivatives of the Dirac Delta function show up. These
kinds of forces clearly lead to discontinuous jumps in the
initial coordinates of the particle. Moreover, this property
represents a contradiction with special relativity, since it
requires speeds greater than the speed of light. However, in
the framework of the nonrelativistic movement under
consideration, this property still does not represent a
conflict. Then, it is in our best interest to verify that there
exists a relativistic solution whose limit, when the speed of
light becomes infinite, leads to the nonrelativistic solution.
This is expected to be studied in subsequent works.
It can be helpful here to further insist in the physical

relevance of the forces represented by Heaviside’s function.
For example, they are relevant in particle accelerators, in all
kinds of experiments in which many charged particles
suddenly enter regions where electric or magnetic forces
exist. Thus, the effective forces acting on them can be
accurately represented as instantaneously applied and
constant for short time periods. For these reasons this
simple example has been frequently discussed when the
ALD equations are studied. As a matter of fact, it is
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precisely for these forces that some solutions of the ALD
equations predict nonphysical results for the motion: run-
away solutions and lack of causality. It is mainly because of
this, that this example will have a central role in this work.
However, as it was stated before, we intend to present a

general discussion about how to define a solution in terms
of generalized functions, specifically to address the prob-
lem of the force represented by a Heaviside function.
Moreover, the solution we developed was causal and did
not show runaway behavior.
Actually, the aforementioned problems were not dis-

cussed in Ref. [31], as no solutions were formulated in the
sense of generalized functions. However, that initial analy-
sis was required to proceed to the study of the problem with
a force represented by a Heaviside function.
We estimate that this study explores from a new

perspective the difficult problem of finding consistent
solutions to the ALD equations that do not show any kind
of noncausal or runaway behavior. These solutions should
be easier to find in a nonrelativistic context, as a first
approach to this problem. This problem has already been
solved, at least for the nonrelativistic ALD and the Newton-
like equations. Moreover, since we now included solutions
formulated in terms of generalized functions, there are now
more solutions available for both equations and so, it seems
more likely to find properly consistent solutions.
It is of utter importance in this work that the solutions

found for a particle moving between the two plates of an
electric capacitor that produces a constant electric field
coincide with the ones in [8]. The developed nonrelativistic
solution allows us to directly evaluate the energy and
momentum radiated by the particle at the input and the
output of the capacitor. This result suggests that the analysis
presented here is perhaps equivalent to the general dis-
cussion developed in Ref. [8]. Also, in that work, it was
proven that if the spatial extension of the particle is taken
into account, the ALD equation ceases to be valid. We
expect to assess the possible equivalence between the
analysis done here and that of Ref. [8] once the results
of this work are extended to the relativistic context.
We also present the exact solution of the Newton-like

equations for the case of an homogeneous magnetic field.
This solution also satisfies the nonrelativistic ALD equation.
The work is structured as follows. In Sec. II, it is checked

that well-defined solutions of the Newton-like equa-
tions are also exact solutions of the nonrelativistic ALD
equation. Thereafter, in Sec. III, a new class of solutions for
the Newton-like equation is identified, that is, a kind of
solution that can be represented by polynomial functions
of time. Then, it is in Sec. IV that the main result of this
work is presented: there are solutions for both ALD and
the Newton-like equations that can be expressed in terms
of successions of functions defined by these aforemen-
tioned polynomials of the time t, in the modern sense
of generalized functions according to Colombeau and

Egorov [32–34]. In Sec. V, the existence of this kind of
solution is proven with an example relevant to the subject,
that of the suddenly applied constant force. Further, in
Sec. VI, the solution for a charge moving between the
plates of an electric capacitor is developed. Moreover, this
solution turned out to be the very same that A. Yaghjian
developed in [8] for a radiating extended charge. Finally, in
Sec. VII, the solution of the Newton-like equation for an
homogeneous magnetic field is found. Then, it is shown
that this solution satisfies the ALD equations as well.

II. THE NEWTON-LIKE EQUATIONS

Let us consider a nonrelativistic motion of a particle
through space-time described by a trajectory C defined by
the curve xðtÞ ¼ ðx1ðtÞ; x2ðtÞ; x3ðtÞÞ and parametrized by
time t. All along this work we will employ natural units, in
which distance and time are measured in cm and the mass
in cm−1.
In this case, the ALD equations are

maiðtÞ − fiðtÞ ¼ k
daiðtÞ
dt

; ð1Þ

viðtÞ ¼ _xiðtÞ ¼ dxiðtÞ
dt

; ð2Þ

aiðtÞ ¼ _viðtÞ ¼ dviðtÞ
dt

; ð3Þ

where the index i has the three values i ¼ 1; 2; 3.
Then, a class of exact solutions of Eq. (1) is defined by

the so-called Landau-Lifshitz series [13,31]. Below, wewill
refer to these equations as the Newton-like equations,
explicitly defined as

aiðtÞ ¼ 1

m

X∞
n¼0

dn

dtn
fiðtÞ

�
k
m

�
n
: ð4Þ

That the solutions of Eq. (4) also solve the ALD ones can
be easily checked considering that

_aiðtÞ ¼ 1

m

X∞
n¼0

dnþ1

dtnþ1
fiðtÞ

�
k
m

�
n

¼ 1

k

X∞
n¼0

dnþ1

dtnþ1
fiðtÞ

�
k
m

�
nþ1

¼ 1

k

�X∞
n¼0

dn

dtn
fiðtÞ

�
k
m

�
n
− fiðtÞ

�

¼ 1

k
½maiðtÞ − fiðtÞ�: ð5Þ

This form of the Landau-Lifshitz series is a valid solution
for accelerations small enough to be considered non-
relativistic, as it is stated in Refs. [13,29]. However, the
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Landau-Lifshitz series may diverge and constitutes an
asymptotic series of the solution of the ALD equation. It
should be remarked, that, up to our knowledge, a proof
does not exist requiring that the Landau-Lifshitz series
should converge for a force to be physically meaningful.
If such a condition results are in fact valid, it constitutes
a proof of the equivalence between the ALD and
Newton-like equations. The important point for us in
what follows is that, assuming that the series is well
defined, the path xiðtÞ exactly satisfies the nonrelativistic
ALD equation:

maiðtÞ − fiðtÞ ¼ k _aðtÞ: ð6Þ

III. A WIDE CLASS OF SOLUTIONS FOR THE
NEWTON-LIKE EQUATIONS

The aforementioned Newton-like equation for the non-
relativistic ALD equation has the form

aiðtÞ ¼ 1

m

X∞
n¼0

dn

dtn
fiðtÞ

�
k
m

�
n
:

Note that the name, Newton-like, means that the equa-
tion has the form of a Newtonian equation in which the
acceleration is defined by a series. However, the operator Ô

ÔfiðtÞ ¼ 1

m

X∞
n¼0

dn

dtn
fiðtÞ

�
k
m

�
n
; ð7Þ

may not converge for a wide class of functions. Therefore,
the answer to the following question is not clear: Can any
force fiðtÞ, for example, a continuous one, be linearly
approximated by functions belonging to the class for which
the series converges?.
The presence of arbitrary time derivatives in the

Newton-like equation directly indicates that if the com-
ponents of the force fiðtÞ are polynomial of the time
variable t, the series will always be convergent and the
finite expression obtained will be an exact solution of the
ALD equation. We will call the set of all polynomial
functions of time defined in an arbitrary and closed
interval ða; bÞ as P.
The number of possible solutions in this class of

functions is large. This is a direct consequence of the
so-called Weierstrass approximation theorem: Any continu-
ous function on the interval ða; bÞ can be uniformly
approximated by polynomials on this interval.
This theorem implies that it is possible to arbitrarily

approximate continuous forces by functions belonging to
P. In addition to this, the theorem has been generalized for
piecewise continuous functions like the Heaviside’s unitary
step function.

IV. FORMAL SOLUTION IN TERMS OF
GENERALIZED FUNCTIONS

As the class of functions P seems to be general enough,
the formulation of solutions common to the Newton-like
and the ALD equations within the set of continuous (or
piecewise continuous) forces seems feasible. The solutions
appear as successions of functions that satisfy the ALD
equations in the sense of the generalized functions and
belong to the set P. That is, the ALD equations after being
multiplied by a test function (infinitely differentiable and
with compact support) and integrated, vanish, after taking
the limit of the index of their respective associated
succession to infinity.
Let us first define a succession of functions, belonging to

the previously defined set P, as follows. We will assume
that the force fiðtÞ is a continuous (or piecewise continu-
ous) function of time and that it can have a divergent LL
series for certain values of the time. Then, fiðtÞ can be
approximated around the instant in which the LL series
diverges, with arbitrary precision due to the Weierstrass
approximation theorem as

lim
n→∞

finðtÞ ¼ fiðtÞ; ð8Þ

where the expansion finðtÞ is a polynomial function in t
pertaining to P. Let us now consider a force with a LL
series showing divergent behavior at time t and, as well, let
us assume that the interval a ≤ t ≤ b is completely
included in the larger interval 0 < t < 1.
Let us further impose that α and β are such that

0 < α < a < b < β < 1: ð9Þ

Then, the arbitrarily precise polynomial approximation
of the force fiðtÞ can be expressed in the form defined in
Ref. [35] by the formula

finðtÞ ¼
R
β
α fiðsÞ½1 − ðs − tÞ2�ndsR

1
−1 ½1 − ðs − tÞ2�nds : ð10Þ

This representation can be conceived as the integral of
the force multiplied by very localized contributions to the
force over all the space in which the force is defined.
Intuitively, this can actually be interpreted as an integral
over all the punctual components of the force over the
range of definition, ergo, as the sum of infinitely many
contributions of Dirac Delta functions of the argument
(t − s). The elements of this succession are plotted for
n ¼ 500, 1000, 2000, 10000 in the Fig. 1 for the one-
dimensional case i ¼ 1 and fi ¼ 1.

A. The existence of generalized solutions

Let us now consider the aforementioned formal proof
that solutions in the sense of the generalized functions of
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the ALD equations can exist as sequences of functions
defined in the space P.
The satisfaction of the ALD equation in the sense of the

Colombeau-Egorov theory of generalized functions [32–
34] in the internal region of the interval ða; bÞ can be shown
if it is possible to define in P a succession of coordinates,
xinðtÞ, n ¼ 1; 2;…∞ for which the following limit vanishes

E ¼ limn→∞

Z
b

a
ϕðtÞ½mð1 − τ∂tÞainðtÞ − finðtÞ�dt

¼ 0; ð11Þ

for arbitrary values of the test functions of time ϕðtÞ
[infinitely differentiable and with compact support con-
tained in the interval ða; bÞ�. The other quantities related to
the equations above are the velocities and accelerations

vinðtÞ ¼
d
dt

xinðtÞ;

ainðtÞ ¼
d
dt

vinðtÞ:

Then, we can define the following sequence of functions:

ainðtÞ ¼
1

m

XNn

l¼0

τi
dl

dtl
finðtÞ; n ¼ 1; 2; 3;… ð12Þ

formulated in terms of the force functions finðtÞ. Also,Nn is
an integer that tends to infinity when n also does and it
fulfills the condition:

Nn þ 1 > 2n: ð13Þ

Below, we will argue that the succession (12) satisfies the
ALD equations in the sense of the generalized functions
[32–34] in the limit n → ∞.
Substituting (12) in the solvability condition, we obtain

E ¼ limn→∞

Z
ϕðtÞ

�
ð1 − τ∂tÞ

XNn

m¼0

τm
dm

dtm
finðtÞ − finðtÞ

�
dt

¼ limn→∞

Z
−ϕðtÞτNnþ1

dNnþ1

dtNnþ1
finðtÞdt

¼ 0; ð14Þ
which vanishes due to relation (13), since the only
derivative appearing acting on the polynomials finðtÞ is
zero. That is, the number of derivatives is greater than the
order of the polynomial on which the derivatives act in the
integrand of (14). Therefore, the defined sequence satisfies
the ALD equations in the sense of generalized functions.
Let us now show that the Newton-like equations satisfy

their corresponding solvability condition in the sense of
generalized functions. After substituting (12) into that
equivalent condition, we get

E ¼ limn→∞

Z
ϕðtÞ

�XNn

m¼0

τm
dm

dtm
finðtÞ − ainðtÞ

�
dt

¼ 0: ð15Þ

which vanishes directly due to the same definition of the
sequences (12). In this case the integrand in (15) is exactly
zero if the sequences turn out to be properly defined for all
the sequence indices and parameters.
Thus, the existence of solutions to the ALD and the

Newton-like equations in the form of infinite successions
of functions defined in the space P seems plausible.
Although, for them to effectively exist, it is required that
the infinite sequences should be also well defined for
all the sequence indices and parameters before taking
the limit. This condition seems to be assured by the
Weierstrass theorem.
Finally, we will prove in the next section that such

generalized functions actually exist. To support this claim,
we will study the particular case of a suddenly applied
constant force. It can be underlined that this system had
been a relevant primer in connection with the discussions of
the properties of radiating particles along the times.

V. THE INSTANTANEOUSLY APPLIED
CONSTANT FORCE

Let us now consider the example of the instantane-
ously applied constant force. As commented before, the
resolution of this problem will conclude our analysis in
the present paper on the generalized functions of the
space P.

FIG. 1. The figure shows four elements of the sequence that
approximates the constant force applied at time t ¼ 1

2
cm (the

time and distance are measured in natural units cm), for the index
values: n ¼ 500, 1000, 2000, 10000. The effective force asso-
ciated with the noncausal but controlled solution of the ALD
equation is also plotted in blue.
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Let us assume that the force is applied at a time t ¼ 1
2
.

Then, this force can be represented by a Heaviside unitary
step function. Now, let us shift the argument of that unitary
step function by τ ¼ 1

2
, then:

fiðtÞ ¼ fiθ̄

�
t −

1

2

�

¼ fiθðtÞ;

where θ̄ðtÞ is the usual Heaviside function.

θ̄ðtÞ ¼
�
0 for t < 01

1 for t ≥ 0
: ð16Þ

The constants a, b, α, β will be chosen with the values

a ¼ 0.001; ð17Þ

α ¼ 0.002; ð18Þ

β ¼ 0.998; ð19Þ

b ¼ 0.999: ð20Þ

Then, integrating the expression of the acceleration
succession, the formula for the velocity associated with
the solution ainðtÞ, in the form of a succession in the interval
ða; bÞ (after taking as initial condition the velocity vi0 at an
instant t0 <

1
2
) becomes

vinðtÞ¼ vi0þ
Z

t

t0

ainðt0Þdt0

¼ vi0þ
1

m

XNn

l¼0

τl
Z

t

t0

dl

dsl
finðsÞds

¼ vi0þ
fi

m

Z
t

t0

θnðt0Þdt0 þ
fi

m
τ½θnðtÞ−θnðt0Þ�

þfi

m
τ2δn

�
t−

1

2

�
þfi

m

XNn

l¼3

τl
�
dl−2

dt0l−2
δn

�
t0−

1

2

������
t0¼t

;

ð21Þ
where we defined

d
dt

θnðtÞ ¼
d
dt

θ̄n

�
t −

1

2

�

¼ δn

�
t −

1

2

�
; ð22Þ

in which δnðt − 1
2
Þ is a polynomial regularization of the

Dirac Delta centered at t ¼ 1
2
.

Integrating again and assuming the initial condition for
the coordinate as xi0 we have for the coordinates the
expression

xinðtÞ ¼ xi0 þ vi0ðt − t0Þ þ
Z

t

t0

vinðt0Þdt0

¼ xi0 þ vi0ðt − t0Þ þ
fi

m

XNn

l¼0

τl
Z

t

t0

dt00
Z

t00

t0

dl

dt0l
θnðt0Þdt0

¼ xi0 þ vi0ðt − t0Þ þ
fi

m

Z
t

t0

dt00
Z

t00

t0

θnðt0Þdt0

þ fi

m
τ

Z
t

t0

½θnðt0Þ − θnðt0Þ�dt0 þ
fi

m
τ2½θnðtÞ − θnðt0Þ�

þ fi

m

XNn

l¼3

τl
�
dl−3

dt0l−3
δn

�
t0 −

1

2

������
t0¼t

: ð23Þ

The terms of higher order in the derivatives in the
respective equations for the velocity and the coordinates
have the forms

Tn
vðtÞ ¼

fi

m

XNn

l¼3

τl
�
dl−2

dt0l−2
δn

�
t0 −

1

2

������
t0¼t

; ð24Þ

Tn
xðtÞ ¼

fi

m

XNn

l¼3

τl
�
dl−3

dt0l−3
δn

�
t0 −

1

2

������
t0¼t

; ð25Þ

where Nn can be substituted by infinity, because for every
l > Nn the number of derivatives present in both relations
acting on the polynomials, that define the functions δnðt0Þ,
make all these terms vanish. But, taking then the limit
n → ∞, for all times t different than the moment in which
the force was applied t ¼ 1

2
, we have

lim
n→∞

Tn
vðtÞ ¼

fi

m

X∞
l¼3

τl
�
dl−2

dtl−2
lim
n→∞

δn

�
t −

1

2

������
t≠1

2

¼ fi

m

X∞
l¼3

τl
�
dl−2

dtl−2
δ

�
t −

1

2

������
t≠1

2

¼ 0; ð26Þ

lim
n→∞

Tn
xðtÞ ¼

fi

m

X∞
l¼3

τl
�
dl−3

dtl−3
lim
n→∞

δn

�
t −

1

2

������
t≠1

2

;

¼ fi

m

X∞
l¼3

τl
�
dl−3

dtl−3
δ

�
t −

1

2

������
t≠1

2

;

¼ 0: ð27Þ

That is, except for the time in which the force was
applied t ¼ 1

2
, the corrections to the velocities and coor-

dinates determined by these two terms are zero, because all
the derivatives of the Delta function vanish outside their
point support. Therefore, the following expressions for the
velocity and the coordinates fully determine the values of
these two magnitudes at all times except for the moment in
which the force is applied t ¼ 1

2
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viðtÞ ¼ vi0 þ
fi

m

Z
t

t0

θðt0Þdt0 þ fi

m
τθðtÞ þ fi

m
τ2δ

�
t − 1

2

�
;

ð28Þ

¼ vi0 þ
fi

m
tθðtÞ þ fi

4m
δ

�
t − 1

2

�
; ð29Þ

xiðtÞ ¼ xi0 þ vi0ðt − t0Þ þ
fi

m

Z
t

t0

dt00
Z

t00

t0

θðt0Þdt0

þ fi

m
τ

Z
t

t0

½θðt0Þ − θðt0Þ�dt0þ ð30Þ

fi

m
τ2½θðtÞ − θðt0Þ� ð31Þ

¼ xi0 þ vi0ðt − t0Þ þ
fi

2m

�
t − 1

2

�
2

θðtÞ

þ fi

2m

�
t − 1

2

�
θðtÞ þ fi

4m
θðtÞ; ð32Þ

¼ xi0 þ vi0ðt − t0Þ þ
fi

2m
θðtÞ

�
t2 þ 1

4

�
ð33Þ

in which it was considered that θðt0Þ ¼ 0.
Hence, the solution defined by the velocity viðtÞ and

coordinates xiðtÞ, which are taken in the limit n → ∞ at all
times t ≠ 1

2
, is well defined at every instant except for the

moment the force was applied.
Let us illustrate the above result with an example, in

order to clarify how the solutions in terms of generalized
functions can be approximated by successions at every
instant of time, except for the moment the force was
applied. As it is difficult to plot the sum of all the terms,
let us take the following approximation for the acceleration:

að3Þin ðtÞ ¼ 1

m

X3
l¼0

τi
dl

dtl
finðtÞ; ð34Þ

and to simplify the numbers, the ratio between the force and
the mass will take the value

f
m

¼ 1: ð35Þ

Also, we will assume that the motion is in one dimen-
sion; therefore, we will only consider the component i ¼ 1.
That is, to illustrate this solution we will omit the terms

of order higher than 3 in the powers of τ and in the
derivatives. More terms could be included, but what they
produce is a greater complexity in the curves in the area
very close in time to the point of connection of the force.
Nevertheless, these terms vanish in the limit n → ∞ for
every instant t ≠ 1

2
.

Figure 2 shows the expressions for the velocity that
are obtained by integrating over time the terms of the

successions of accelerations að3Þin ðtÞ for a one-dimensional

problem (i takes a single value i ¼ 1Þ. The values of the
indices of the sequence and the set of parameters are

n ¼ 500; 1000; 2000; 10000; ð36Þ

m ¼ 1; fi ¼ 1; i ¼ 1: ð37Þ

For the initial conditions for the velocity and the
coordinate the following values were chosen:

FIG. 3. Iterative solutions for the coordinate xnðtÞ for the

approximation of the acceleration að3Þn ðtÞ. Notice how as the
index n of the succession associated with the solution in the form
of a generalized function grows, the coordinates get closer and
closer to the expression (41). The curves are reducing their width
corresponding to the growth of their index n in the values
n ¼ 500, 1000, 2000, 10000. The time and distance are measured
in natural units cm.

FIG. 2. The iterative solutions for the velocity vnðtÞ in the

approximation of the acceleration taken að3Þn ðtÞ in (34) as
functions of the time in cm (the time and distance are measured
in natural units cm). Notice how, as the index n of the succession
associated to the solution in the form of a generalized function
grows, the coordinates get closer and closer to the expression
(41). The curves are reducing their width corresponding to the
growth of their index n in the values n ¼ 500, 1000, 2000, 10000.
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vð−1Þ ¼ 0; ð38Þ

xð−1Þ ¼ 0: ð39Þ

As it can be seen in Fig. 2, for times different than the
moment the force was applied t ¼ 1

2
and as the value of the

index n grows, the elements of the succession of velocities
vnðtÞ; n ¼ 500, 1000, 2000, 10000 are getting closer and
closer to the values of the velocities of the solution (28)

vðtÞ ¼ tθ̄

�
t −

1

2

�
: ð40Þ

The same behavior can be seen in Fig. 3 for the
succession of coordinates xnðtÞ, n ¼ 500, 1000, 2000,
10000, which approximates the coordinate values also
given by the solution (31)

xðtÞ ¼
�
t2

2
þ 1

8

�
θ̄

�
t −

1

2

�
: ð41Þ

VI. ELECTRON MOVING BETWEEN THE
PLATES OF A CAPACITOR

Next, we will proceed to compare our solution for the
case of an instantaneously applied constant force with the
one obtained by A. Yaghjian in Ref. [8]. In this discussion
the author poses the problem of a charged particle that
accelerates between the parallel plates of a capacitor that
produces a constant electric field E0. The particle is
released at t ¼ 0 from a capacitor plate and leaves the
capacitor through a small hole in the opposite plate at time
t ¼ t2. The causal and controlled solutions for acceleration
and velocity proposed by Yaghjian for this problem are as
follows:

ν0ðtÞ ¼ eE0

m

8<
:

0 for t < 0

1 for 0þ < t < t2
0 for tþ2 < t

; ð42Þ

νðtÞ ¼

8>><
>>:

0 for t < 0

Δν1 þ eE0

m t for 0þ < t < t2;

Δν21 þ eE0

m for tþ2 < t

ð43Þ

where Δν1 ¼ νð0þÞ, Δν2 ¼ νðt2Þ, and Δν21 ¼ Δν1 þ Δν2.
On the other hand, the causal and controlled solutions
previously presented by us for velocity and acceleration for
every instant of time except for the instant in which the
force was applied becomes

aiðtÞ ¼
�
0 for t < 0
fi

m for t > 0
; ð44Þ

viðtÞ ¼
� viðt0Þ for t < 0

viðt0Þ þ fi

m ðtþ k
mÞ for t > 0

: ð45Þ

From here we see that if we take fi ¼ eE0 and make

viðt0Þ ¼ 0, fik
m2 ¼ Δν1 then both solutions coincide for

every instant of time in which the constant force acts
except for that instant in which the force was applied.
This constitutes an important result if we take into
account that in Ref. [8] this conclusion is obtained after
assuming the finite spatial extension of the particle.
Therefore, the coincidence suggests the possible equiv-
alence between the description presented in this work and
the one proposed by A. Yaghjian. Thus, we consider it of
great interest to verify this possible equivalence in further
works once the results obtained are extended to a
relativistic context.

VII. SOLUTION FOR A CONSTANT
MAGNETIC FIELD

In this section we want to present the solution of the
nonrelativistic Newtonian equation for the important
case of a particle moving in a constant magnetic field.
Our objective is to verify that the solution of this
problem reproduces the movement of the particle in
the same magnetic field but for the nonrelativistic ALD
equation. The solution to this problem with the ALD
equations was found in Ref. [14]; the resulting motion is
described by a spiral that tends to a point for sufficiently
long times.
The solution that we will show below reproduces this

behavior, and then provides another example of motion that
simultaneously satisfies the Newtonian-like equations and
the ALD ones [13,29,31].
Consider the force vector in the form fiðtÞ as the Lorentz

force in a constant magnetic field

fiðtÞ ¼ qϵijkvjðtÞBk; ð46Þ

where the indices i, j, k ¼ 1; 2; 3, ϵi;j;k are the Levi-Civita
symbol, which stands for the vector product, and q is the
charge of the particle. For simplicity the magnetic field will
be written in the form

Bk ¼ Bδk3; ð47Þ

where δki is the Kronecker Delta with indices k, i.
After substituting the expression for the Lorentz force in

the Newtonian equations they take the form
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aiðtÞ ¼ 1

m

X∞
l¼0

�
κ

m

�
l dl

dtl
fiðtÞ;

d
dt

vjðtÞ ¼ qB
m

ϵij
X∞
l¼0

�
κ

m

�
l dl

dtl
vjðtÞ; ð48Þ

where the two-index tensor ϵij is defined in terms of the
Levi-Civita symbol as

ϵij ¼ ϵij3: ð49Þ

Let us separate Eq. (48) into two equations, one for the
motion in the plane orthogonal to the magnetic field and the
other for the motion parallel to it

d
dt

vjðtÞ ¼ qB
m

ϵij
X∞
l¼0

�
κ

m

�
l dl

dtl
vjðtÞ; i ¼ 1; 2; ð50Þ

d
dt

v3ðtÞ ¼ 0: ð51Þ

From here we observe that the movement parallel to the
field is uniform

v3ðtÞ ¼ v30; ð52Þ

x3ðtÞ ¼ v30tþ x30: ð53Þ

For the movement in the orthogonal plane, it will be
useful to define the complex variable

vðtÞ ¼ v1ðtÞ þ iv2ðtÞ: ð54Þ

But, since multiplying a complex number by the imagi-
nary unit is equivalent to rotating the corresponding 2D
vector to π

2
from the x1 axis towards the x2 axis, we can

establish the following equivalence:

V0i ¼ ϵijVj ≡ V 0 ¼ iV: ð55Þ

Then, the equation for the motion in the plane orthogonal
to the field (50) can be written in a complex expression as
follows:

d
dt

vðtÞ ¼ iqB
m

X∞
l¼0

τl
dl

dtl
vðtÞ; ð56Þ

τ ¼ κ

m
: ð57Þ

Considering that the equation is invariant to a shift in
time t → tþ a, we will look for exponential solutions with
the form

vðtÞ ¼ expðiwtÞv0: ð58Þ

Substituting this expression in (56) we have

iwv0 ¼
iqB
m

X∞
l¼0

ðiτwÞlv0 ð59Þ

¼ iqB
m

1

1 − iτw
v0: ð60Þ

This formula can be written as

�
w2 þ i

w
τ
−
iqB
τm

�
v0 ¼ 0: ð61Þ

Therefore, this relation implies that the parameter w
satisfies

w2 þ i
w
τ
−
iqB
τm

¼ 0: ð62Þ

The two solutions of this equation are

w ¼ −
i
2τ

� i
2τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4qBτ
m

i

r
: ð63Þ

But, at the zero magnetic field limit the equation takes
the form

d
dt

vðtÞ ¼ iwvðtÞ ¼ 0;

implying that the physical solution of Eq. (62) is

w ¼ −
i
2τ

þ i
2τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4qBτ
m

i

r
: ð64Þ

The complex representation of the solution for the
velocity is

vðtÞ ¼ exp

�
i

�
−

i
2τ

þ i
2τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4qBτ
m

i

r �
t

�
v0: ð65Þ

Therefore, for a real parameter v0 the solutions for the
velocity components are

v1ðtÞ ¼ Re

�
exp

�
i

�
−

i
2τ

þ i
2τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4qBτ
m

i

r �
t

�	
v0; ð66Þ

v2ðtÞ ¼ Im

�
exp

�
i

�
−

i
2τ

þ i
2τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4qBτ
m

i

r �
t

�	
v0; ð67Þ

v3ðtÞ ¼ v30: ð68Þ

The components of the coordinate are obtained after
integrating the expressions for the velocity
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x1ðtÞ ¼Re

8<
:
exp

h
i


− i

2τþ i
2τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 4qBτ

m i
q �

t
i
− 1

i


− i

2τþ i
2τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 4qBτ

m i
q �

9=
;v0; ð69Þ

x2ðtÞ ¼ Im

8<
:
exp

h
i


− i

2τþ i
2τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 4qBτ

m i
q �

t
i
− 1

i


− i

2τþ i
2τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 4qBτ

m i
q �

9=
;v0; ð70Þ

x3ðtÞ ¼ v30tþ x30: ð71Þ

The evolution of the coordinates in time is shown in
Fig. 4. In this picture it can be observed how the particle
radiates its kinetic energy while it advances, which deter-
mines the spiral shape of the trajectory in the plane
perpendicular to the magnetic field.

A. Equivalence between Newtonian equations
and ALD equations

Let us now show that the solution found satisfies the
ALD equation as well. Then, the ALD equation associated
to this case is

aiðtÞ − eB
m

ϵijvjðtÞ ¼ τ
d
dt

aiðtÞ; ð72Þ

which in complex notation becomes

aðtÞ − i
eB
m

vðtÞ ¼ τ
d
dt

aðtÞ: ð73Þ

But, the derivative of the acceleration, after taking into
account the expression (64), becomes

τ
d
dt

aðtÞ ¼ τ
d2

dt2
vðtÞ

¼ τðiwÞ2 expðiwtÞv0
¼ τðiwÞ2vðtÞ

¼
�
1

2τ
− i

qB
m

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4qBτ
m

i

r �
vðtÞ: ð74Þ

On the other hand, the left side of the ALD equation
becomes

aðtÞ − i
eB
m

vðtÞ ¼ d
dt

vðtÞ − i
eB
m

vðtÞ

¼
�
iw − i

eB
m

�
vðtÞ

¼
�
1

2τ
− i

qB
m

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4qBτ
m

i

r �
vðtÞ: ð75Þ

Therefore, the solution found also satisfies the ALD
equation.

VIII. SUMMARY

In the present work, we sought to formulate a causal
and controlled solution for the nonrelativistic Abraham-
Lorentz-Dirac equation. For this purpose, we focused on
the search for a class of functions, which we called P, that
would make the Landau-Lifshitz series convergent. Then, it
turned out that the solutions formulated in the space
spanned by such functions were equivalent to the solutions
of the ALD equation. The following results were obtained:
(1) Awide class of forces was identified, for which exact

solutions to both the ALD and the Newton-like
equation could be formulated. This set of forces is
composed of polynomial functions of the time t
defined in an open interval of time. Also, these
functions satisfy the Weierstrass theorem, which
states that any continuous or piecewise continuous
function can be approximated with arbitrary preci-
sion in the aforementioned interval. Thus, almost
any force can be represented by the elements of
this class.

(2) We argue the existence of a wider set of solutions
common to the ALD and the Newton-like equations,

FIG. 4. The graph shows the resulting spiral motion for a
charged particle in a constant magnetic field. The movement in
the direction parallel to the field is uniform. The kinetic energy of
the particle in the plane orthogonal to the field is constantly
radiated and the motion becomes uniform at the end. The solution
was found first in Ref. [14] after solving the ALD equation. The
derivative here after solving the Newtonian equation was ob-
tained in order to verify the exact equivalence between both
equations. The spatial and time axis units are in the natural system
of units cm.
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in the terms of generalized functions which were
defined by sequences of functions of P. These
solutions did not show any kind of noncausal
behavior or uncontrolled growth.

(3) An important solution in terms of generalized
functions was found. It was the solution for the
instantaneously applied force, which might be con-
sidered the most relevant result of this work. As it is
known, it is in this case that the ALD equations
show the most distinctive difficulties associated with
this equation, namely, runaway and preaccelerated
behavior. It was explicitly shown how the succes-
sions defining the generalized functions get closer
and closer to the solution for every instant different
than the moment the force was applied when the
index of the successions tends to infinity.

(4) Another important conclusion of the discussion is
that the solution exactly reproduces the one obtained
by A. Yaghjian [8] for the problem of a particle
moving between the plates of a capacitor that
produces a constant electric field. This conclusion
suggests the possible equivalence between the de-
scription presented and Yaghjian’s proposal in terms
of the finite spatial extent of the particle.

(5) Similarly, the nonrelativistic Newtonian equation
was applied to the important case of a charged
particle moving in a constant magnetic field; the
solution obtained reproduces the particle’s motion
determined by G. N. Plass in [14]. In that reference,
the solution was derived after solving the ALD
equation for this case. The motion derived here was
shown to simultaneously satisfy the Newton-like as
well as the ALD equations.

The conclusions drawn from this work, as well as the
information acquired and questions that arose during the
writing process, motivated new objectives to direct our
efforts. A few points of interest for future studies are

(i) To extend the study to the relativistic case, thus
formulating a more general discussion that allows
verifying that the solution obtained here constitutes a
particular limit case of a more general one.

(ii) Afterwards, to study how the relativistic solutions
allows us to explain why, as it was seen in this
work, a discontinuous jump appear in the initial
conditions for the coordinates of the particle,
for the instantaneously applied constant force. The
idea is that the relativistic solutions can show a
continuous time variation of the coordinates that
translates into a discontinuous variation of the
coordinates once the speed of light is taken in the
infinite limit.

(iii) The most ambitious result that is expected to be
obtained is to prove that a relativistic version of the
Newton-like equation would be equivalent to the
corresponding relativistic version of the ALD equa-
tions, yet avoiding the aforementioned drawbacks.

(iv) Investigate the possible equivalence between the
analysis presented here and the one presented by A.
Yaghjian in Ref. [8].
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