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In this paper we consider some new classical effects obtained for a planar electrodynamics with the
presence of a higher order derivatives term. The model can be interpreted as a kind of extension for the 3d
Maxwell-Chern-Simons electrodynamics with higher order derivatives. We consider setups with stationary
field sources describing pointlike charges and Dirac points. We also investigate this model with the
presence of a conducting line (in 3d dimensions, it is the equivalent of a conducting plate in 4d
dimensions). In this case we calculate the propagator for the gauge field and the interaction force between
the conducting line and a pointlike charge, as well as the force between the conducting line and a Dirac
point, the source for vortex field solutions. It is shown that the image method is not valid in any case. We
also compare the obtained results along the paper with the corresponding ones obtained with the standard
Maxwell-Chern-Simons electrodynamics [L. H. C. Borges et al., Eur. Phys. J. C 80, 238 (2020)].
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I. INTRODUCTION

Field theories in (2þ 1) dimensions have been intensely
investigated in the literature and, maybe, the main reason
for this relies on the fact that such kind of a theory exhibits
many interesting aspects, at classical and quantum levels,
due to the odd space-time dimensionality. In this scenario,
maybe the most popular planar gauge field theory is the so-
called Maxwell-Chern-Simons electrodynamics [1–3],
whose features were considered in a variety of contexts.
We can mention, for instance, the planar massive quantum
electrodynamics (QED3) [4–8], its relevance in condensed
matter systems (see, for instance, Ref. [9] and references
therein), the planar noncommutative electrodynamics
[10–13], and the planar electrodynamics with boundary
conditions [14–24], among others.
Recently, Ref. [25] investigated some physical phenom-

ena which emerge due to the presence of stationary
field sources and a perfectly conducting line in the

Maxwell-Chern-Simons electrodynamics. It is worth men-
tioning that, once we have a planar theory, the equivalent to
a conducting plate is just a conducting line. The results
were compared with the equivalent ones obtained in the
standard (2þ 1)-dimensional Maxwell electrodynamics.
Models which exhibit higher order derivatives, including

the planar ones, have been also studied in the literature from
time to time, mainly because the inclusion of higher order
derivatives improves renormalization properties that tame
ultraviolet divergences in field theories, at the classical and
quantum level. In this context, we highlight the higher
order derivative extension of the Chern-Simons electrody-
namics proposed in Ref. [26], whose stability, causality,
and unitarity properties and their conservation laws have
been investigated in Refs. [27–29]. In addition, this model
was considered in the noncommutative context [30] and its
Hamilton-Jacobi analysis was carried out thoroughly [31].
The higher order derivative extension of the Chern-

Simons term can be obtained from the standard QED in
(2þ 1) dimensions, as an one-loop quantum correction
when we integrate out in the fermionic field [32].
Recently, the higher order derivative extension of the

Chern-Simons term, proposed in Ref. [26], has been
considered to describe planar crystalline insulators [33].
A simplified version of this term (with the presence of the
Laplacian instead of the d’Alembertian) has been used to
describe viscosity in quantum Hall fluids [34].
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There is still a gap in the literature regarding the physical
phenomena which emerge in the presence of field sources
and a conducting line in the higher order derivative
extension of the Maxwell-Chern-Simons electrodynamics.
So, in this paper, we make a contribution to that extent, by
considering the model discussed in the work of Ref. [26]
with the presence of stationary pointlike sources and a
perfectly conducting line. Specifically, Sec. II is devoted to
an analysis of the free model propagator (without the
presence of conductors). In Sec. III we consider effects due
to the presence of pointlike stationary charges and Dirac
points. In Sec. IV we compute the propagator for the gauge
field in the presence of a conducting line. In Sec. V we
obtain the interaction force between the conducting line and
a pointlike charge. We also compare the interaction force
obtained in the free theory (theory without the conducting
line) and we check that the image method is not valid for
the higher order derivative theory considered in this work.
In Sec. VI we make a similar analysis to the one of the
Sec. V, but for the so-called Dirac point instead of charges,
and we verify that the image method is not valid. We also
compare the obtained results along the paper with the ones
obtained for the Maxwell-Chern-Simons electrodynamics
[25]. Section VII is dedicated to our final remarks and
conclusions.
Throughout the paper we shall deal with a model in

(2þ 1) dimensions in a Minkowski spacetime with diago-
nal metric ðþ;−;−Þ. The Levi-Civita tensor is denoted by
ϵμνλ with ϵ012 ¼ 1.

II. THE MODEL AND ITS PROPAGATOR

In this section we investigate some interactions between
stationary pointlike field sources which arise from the
higher order derivative extension of the 3dMaxwell-Chern-
Simons electrodynamics, whose Lagrangian density is [26]

L ¼ −
1

4
FμνFμν −

1

2ξ
ð∂μAμÞ2 þ 1

2m
ϵμνλð□AμÞð∂νAλÞ

− JμAμ; ð1Þ
where Aμ is the gauge field, Fμν ¼ ∂μAν − ∂νAμ is the field
strength, Jμ is the external source, ξ is a gauge fixing
parameter, and m > 0 is a positive parameter with dimen-
sion of mass.
The model (1) can be rewritten in the following way:

L →
1

2
AμOμνAν; ð2Þ

where we defined the differential operator

Oμν ¼ □ημν −
�
1 −

1

ξ

�
∂μ∂ν −

1

m
ϵμνρ□∂ρ: ð3Þ

The propagator Dμνðx; yÞ is the inverse of the operator
Oμν, as follows:

OμνDνλðx; yÞ ¼ ημλδ
3ðx − yÞ: ð4Þ

By using standard field theory methods, we can show
that the propagator in the Feynman gauge ξ ¼ 1 is given by

Dμνðx; yÞ ¼
Z

d3p
ð2πÞ3

�
1

p2 −m2
−

1

p2

�

×

�
ημν −

pμpν

m2
−

i
m
ϵμνλpλ

�
e−ip·ðx−yÞ: ð5Þ

The propagator (5) reveals that the parameter m takes on
multiple roles. From the first parenthesis on the right-hand
side of Eq. (5) we can see the presence a massive pole for
p2 ¼ m2 and a massless pole. So, the model (1) proposed in
Ref. [26] exhibits two kinds of field modes, ones with mass
and others massless. It is a similar situation to the one found
in the Lee-Wick electrodynamics [35]. Besides, it is a
different feature in comparison with the Maxwell-Chern-
Simons electrodynamics, which exhibits just massive
field modes.
The presence of a Levi-Civita (pesudo-)tensor in the

third term on the right-hand side of the Lagrangian (1)
brings about that the model (1) exhibits properties in
common with the Maxwell-Chern-Simons electrodynam-
ics, whose Lagrangian and propagator are given by [25]

LMCS ¼ −
1

4
FμνFμν −

1

2ξ
ð∂μAμÞ2 þm

2
ϵμνλAμ∂νAλ

Dμν
ðMCSÞðx; yÞ ¼ −

Z
d3p
ð2πÞ3

1

p2 −m2

×

�
ημν −m2

pμpν

p4
þ im

p2
ϵμνλpλ

�
e−ip·ðx−yÞ;

ð6Þ

in the gauge ξ ¼ 1. The sub-index MCS means Maxwell-
Chern-Simons.
The terms with Levi-Civita tensor in the propagators (5)

and (6) give rise to a wide range of physical phenomena
related to vortex field solutions in both theories, whose
intensities are controlled by the parameter m. This point
shall be explored in Sec. III.

III. INTERACTION BETWEEN
EXTERNAL SOURCES

The theory (1) is quadratic in the field variables Aμ, so it
can be shown that the contribution of the source JμðxÞ to
the vacuum energy of the system is given by [25,36–38]

E ¼ 1

2T

ZZ
d3xd3yJμðxÞDμνðx; yÞJνðyÞ; ð7Þ

where T is the time variable and it is implicit the
limit T → ∞.
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We start by considering the interaction between two
pointlike charges. This configuration is described by the
external source

JCCμ ðxÞ ¼ σ1η
0
μδ

2ðx − a1Þ þ σ2η
0
μδ

2ðx − a2Þ; ð8Þ

where the location of the charges are specified by the
spatial vectors a1 and a2 and the parameters σ1 and σ2 stand
for the electric charges [in (2þ 1) dimensions]. The super-
index CC means that we have the interaction between two
pointlike charges.
Substituting (5) and (8) in (7), discarding the self-

interacting contributions, performing the integrals in the
following order, d2x, d2y, dx0, introducing the Fourier
representation for the Dirac delta function, integrating out
in the momenta dp0, and identifying the time interval as
T ¼ R dy0, we arrive at

ECC ¼ σ1σ2

�Z
d2p
ð2πÞ2

eip·a

p2
−
Z

d2p
ð2πÞ2

eip·a

p2 þm2

�
; ð9Þ

where a ¼ a1 − a2 stands for the distance between the two
electric charges.
Notice that the energy (9) splits into two contributions.

The first one comes from the massless sector of the model
and does not involve the parameter m. The second one
comes from the massive sector.
For the second contribution we use the fact that [37]Z

d2p
ð2πÞ2

eip·a

p2 þm2
¼ 1

2π
K0ðmaÞ; ð10Þ

where a ¼ jaj, andK stands for the K-Bessel function [39].
For the first contribution we insert a regulator parameter

μ with mass dimension, as follows [25,37,40]:

Z
d2p
ð2πÞ2

eip·a

p2
→ lim

μ→0

Z
d2p
ð2πÞ2

eip·a

p2þ μ2
¼ 1

2π
lim
μ→0

½K0ðμaÞ� ¼−
1

2π
lim
μ→0

�
ln

�
μa
2

�
þ γ

�

¼−
1

2π
lim
μ→0

�
ln

�
μa
2

�
þ γþ lnðμa0Þ− lnðμa0Þ

�
¼−

1

2π

�
ln

�
a
a0

�
þ γ− ln2þ lim

μ→0
lnðμa0Þ

�

→−
1

2π
ln

�
a
a0

�
; ð11Þ

where in the first line we used the expansion

K0ðμaÞ →
μ→0

− ln ðμa=2Þ − γ (γ stands for the Euler con-
stant) and in the second line, we added and subtracted the
quantity ln ðμa0Þ, where a0 is an arbitrary constant
with dimension of length. In the third line we discarded
the a-independent terms, which does not contribute to the
interaction energy between the charges and, so, to the force
between them.
Inserting (10) and (11) in (9), the interaction energy

between the stationary charges becomes

ECC ¼ −
σ1σ2
2π

�
ln

�
a
a0

�
þ K0ðmaÞ

�
; ð12Þ

and the interaction force reads

FCC ¼ −
dECC

da
¼ σ1σ2

2πa
½1 − ðmaÞK1ðmaÞ�: ð13Þ

In Eq. (13) the first term between brackets on the
right-hand side is the well-known (2þ 1)-dimensional
Coulombian interaction. The m-dependent contribution is
similar to that one obtained in Maxwell-Chern-Simons
electrodynamics for the interaction between two pointlike
charges, but with an overall minus signal [25]. This fact can
be understood by considering the propagators of both

theories. The relevant terms of the propagators of each
theory, in this case, can be taken from (5) and (6) and are
given by

Dμν
CCðpÞ ∼

�
1

p2 −m2
−

1

p2

�
ημν;

Dμν
CCðMCSÞðpÞ ∼ −

1

p2 −m2
ημν: ð14Þ

By comparing the above expressions, it is evident to see
where the overall minus signal differentiating the m-
dependent contributions in both theories comes from.
The term in brackets in (13) is always non-negative and
goes to 1 for large values ofma, so the force is repulsive for
charges with the same signal and exhibits a Coulombian
behavior [in (2þ 1) dimensions] for large ma values.
For small values for the distance a, the force (13)

goes to zero, as usual for field theories with higher order
derivatives.
In the next example we study the interaction energy

between a pointlike charge and a Dirac point. Such a
system is composed by the following external field source

JCDμ ðxÞ ¼ ση0μδ
2ðx − a1Þ þ JμðDÞðxÞ; ð15Þ

where the first term stands for the external field source
produced by the pointlike charge placed at position a1 and

HIGHER ORDER DERIVATIVES EXTENSION OF MAXWELL- … PHYS. REV. D 105, 025008 (2022)

025008-3



the second one is the source produced by the Dirac point.
The superindex CD means that we have the interaction
between a pointlike charge and a Dirac point.
We choose a coordinate system where the Dirac point is

concentrated at position a2 with a magnetic flux Φ. This
external source is given by [25]

JμðDÞðxÞ ¼ −2πiΦ
Z

d3p
ð2πÞ3 δðp

0Þϵ0μαpαe−ip·xe−ip·a2 : ð16Þ

The expression (16) can be obtained with a dimensional
reduction of the field source related to a Dirac string [in
(3þ 1) dimensions] used in Refs. [35,41]. It can be also
obtained as a particular case of the source proposed in
Ref. [42] by dimensional reduction.
Substituting (16) in (15), using (7), discarding self-

interacting terms which do not contribute to the force
between the Dirac point and the charge (the self-interacting
terms are proportional to σ2 and Φ2), defining the distance
vector a ¼ a1 − a2 and following similar steps employed
previously, we obtain that

ECD ¼ σΦ
m

�Z
d2p
ð2πÞ2 e

ip·a−
Z

d2p
ð2πÞ2

p2

p2þm2
eip·a

�
: ð17Þ

The first term inside the brackets of Eq. (17) is the Dirac
delta function δ2ðaÞ and, provided that a ≠ 0, this term
vanishes. So, we have

ECD ¼ σΦ
m

∇2
a

Z
d2p
ð2πÞ2

expðip · aÞ
p2 þm2

; ð18Þ

where we defined the differential operator

∇a ¼
� ∂
∂a1 ;

∂
∂a2
�
: ð19Þ

Substituting (10) in (18), we arrive at

ECD ¼ mσΦ
2π

K0ðmaÞ: ð20Þ

The interaction energy (20) is an effect due to the
presence of the term with a Levi-Civita tensor in Eq. (1)
(which contains higher order derivatives), and has no
counterpart in Maxwell theory, where a pointlike charge
does not interact with a Dirac point [25]. This fact can be
verified if one takes into account that the right-hand side of
(20) goes to zero when m goes to infinity.
The corresponding interaction force for (20) reads

FCD ¼ −
dECD

da
¼ m2σΦ

2π
K1ðmaÞ: ð21Þ

We notice that the interaction force (21) is repulsive for
the case where the charge and the magnetic flux have the

same signal, and attractive otherwise. An equivalent sit-
uation occurs in Maxwell-Chern-Simons electrodynamics,
where the interaction force between the charge and the
Dirac point has the same form of Eq. (21) [25]. It is due to
the fact that the relevant parts of the propagators for this
interaction are equal to each other in both theories, what
can be seen from (5) and (6), as follows:

Dμν
CDðpÞ ∼Dμν

CDðMCSÞðpÞ ∼ −
i

mðp2 −m2Þ ϵ
μνλpλ: ð22Þ

In the limit m → ∞ the interaction force (21) vanishes, as
expected.
In the last example, we consider a system composed by

two Dirac points. We take a coordinate system where the
first Dirac point is placed at the position a1, with magnetic
flux Φ1 and the second one, with Φ2, is concentrated at the
position a2. This system is described by the external source,

JDDμ ðxÞ ¼ JμðD;1ÞðxÞ þ JμðD;2ÞðxÞ; ð23Þ

where

JμðD;1ÞðxÞ ¼ −2πiΦ1

Z
d3p
ð2πÞ3 δðp

0Þϵ0μαpαe−ip·xe−ip·a1 ;

ð24Þ

and JμðD;2ÞðxÞ is obtained replacing Φ by Φ2 in Eq. (16).

The superindex DDmeans that we have a system composed
by two Dirac points.
Substituting (24) in (7), discarding the self-interacting

contributions and proceeding as in the previous cases, we
can show that the interaction energy between two Dirac
points is given by

EDD ¼ −
m2Φ1Φ2

2π
K0ðmaÞ; ð25Þ

which also is similar to the interaction energy between two
Dirac points obtained in Ref. [25] for the Maxwell-Chern-
Simons electrodynamics, but with an overall minus signal.
This fact is due to the relevant structure of the propagators
(5) and (6) for this interaction in both theories, which are
given by

Dμν
DDðpÞ ∼

1

p2 −m2
ημν;

Dμν
DDðMCSÞðpÞ ∼ −

1

p2 −m2
ημν: ð26Þ

Once again, this interaction energy has no counterpart in
planar Maxwell electrodynamics [25].
The interaction force between the Dirac points is

given by
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FDD ¼ −
m3Φ1Φ2

2π
K1ðmaÞ: ð27Þ

The force above is attractive if the two magnetic fluxes
have the same signal, and repulsive otherwise. In Maxwell-
Chern-Simons electrodynamics an opposite situation is
observed [25]. It is worth mentioning that the force (27)
falls down as fast as the distance between the Dirac points a
increases.
As a final comment we point out that by comparing the

Eqs. (21) and (27) with the expression (13), we conclude
that Dirac points do not behave similarly to pointlike
charges for the model (1), on the contrary to the standard
Maxwell-Chern-Simons electrodynamics [25].

IV. THE PROPAGATOR IN THE PRESENCE
OF A CONDUCTING LINE

As discussed in Ref. [25], the presence of a conducting
line S in the Maxwell-Chern-Simons electrodynamics
imposes a boundary condition on the gauge field in such
a way that the components of the Lorentz force parallel on
the line vanishes. This condition is attained by

nμ �FμjS ¼ 0; ð28Þ

where the subindex S means that the condition must be
taken just on the line S, with �Fμ ¼ ð1=2ÞϵμνλFνλ standing
for the dual field strength, and nμ is the Lorenz three-
vector normal to the conducting line. In the higher order
derivative extension of the Maxwell-Chern-Simons
model, the coupling between the electromagnetic field
and charged particles exhibits the same structure as the
corresponding one in Maxwell-Chern-Simons electrody-
namics. Therefore, the conducting line condition (28) is the
same one for the higher order derivative theory (1).
It is important to mention that we have a (2þ 1)-

dimensional model, so a conducting surface is, in fact,
just a line.
From now on, we shall consider the presence of a single

perfectly conducting line. We shall take a coordinate
system where the surface is perpendicular to the x2 axis
and is located on the line x2 ¼ a, so that, nμ ¼ η2

μ ¼
ð0; 0; 1Þ is the Minkowski vector perpendicular to the

conducting surface. In this situation, the boundary con-
dition on the gauge field Aμ in (28) reads

�F2ðxÞjx2¼a ¼ ϵνλ2 ∂νAλðxÞjx2¼a ¼ 0: ð29Þ

By using the functional formalism employed in
Refs. [25,43–46], we can write the functional generator
as follows:

ZC½J� ¼
Z

DACe
i
R

d3xL; ð30Þ

where the subindex C means that we are integrating out in
all field configurations which satisfy the condition (29).
This restriction is attained by introducing a delta functional,
which is nonvanishing only for the field configurations that
satisfy the condition (29), as follows

ZC½J� ¼
Z

DAδ½ �F2ðxÞjx2¼a�ei
R

d3xL: ð31Þ

Now we use the Fourier representation for the delta
functional

δ½�F2ðxÞjx2¼a�¼
Z

DBexp

�
i
Z

d3xδðx2−aÞBðxkÞ�F2ðxÞ
�
;

ð32Þ
where xμk ¼ ðx0; x1; 0Þ means that we have only the
coordinates parallel to the conducting surface and BðxkÞ
is an auxiliary scalar field defined just along the conducting
surface and that depends just on the parallel coordinates.
Carrying out similar steps that were employed in

Ref. [25], we can write the functional generator as follows
(for more details, see Appendix).

ZC½J� ¼ Z½J�Z̄½J�; ð33Þ

where Z½J� is the free functional generator (without the
conducting surface)

Z½J� ¼Z½0�exp
�
−
i
2

Z
d3xd3yJμðxÞDμνðx;yÞJνðyÞ

�
; ð34Þ

and Z̄½J� is a contribution due to the scalar field B

Z̄½J� ¼
Z

DB exp

�
i
Z

d3xδðx2 − aÞIðxÞBðxkÞ
�
exp

�
−
i
2

Z
d3xd3yδðx2 − aÞδðy2 − aÞBðxkÞWðx; yÞBðykÞ

�
; ð35Þ

where we identified

IðxÞ ¼ −
Z

d3yϵγα2

� ∂
∂xγ Dαμðx; yÞ

�
JμðyÞ; Wðx; yÞ ¼ ϵγα2 ϵβλ2

∂2Dλαðx; yÞ
∂xβ∂yγ : ð36Þ
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Substituting (36) and (5) into (35), using the fact that
[25,44,45]

Z
dp2

2π

eip
2ðx2−y2Þ

pμpμ −m2
¼ −

i
2Γ

eiΓjx2−y2j;

Z
dp2

2π

eip
2ðx2−y2Þ

pμpμ
¼ −

i
2L

eiLjx2−y2j; ð37Þ

where p2 stands for the momentum component

perpendicular to the conducing line, Γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
k −m2

q
and

L ¼
ffiffiffiffiffi
p2
k

q
, with the definition of the parallel momentum

to the plate pμ
k ¼ ðp0; p1; 0Þ, and defining the parallel

metric

ημνk ¼ ημν − ημ2η
ν2; ð38Þ

one can write Eq. (35) in the following way

Z̄½J� ¼ Z̄½0�exp
�
−
i
2

Z
d3xd3yJμðxÞD̄μνðx;yÞJνðyÞ

�
; ð39Þ

where we defined the function (for more details, see the
Appendix).

D̄μνðx; yÞ ¼
i
2

Z
d2pk
ð2πÞ2

e−ipk·ðxk−ykÞ

p2
k

1

ð1L − 1
ΓÞ
��

ϵ2γμp
γ
k þ

ip2
k

m
η2μ

��
eiLjx2−aj

L
−
eiΓjx2−aj

Γ

�
−

i
m
ðLeiLjx2−aj − ΓeiΓjx2−ajÞη2μ

�

×

��
ϵ2βνp

β
k −

ip2
k

m
η2ν

��
eiLjy2−aj

L
−
eiΓjy2−aj

Γ

�
þ i
m
ðLeiLjy2−aj − ΓeiΓjy2−ajÞη2ν

�
: ð40Þ

Substituting (39) and (34) in (33), the functional generator of the higher order derivative theory (1) in the presence of a
conducting line becomes

ZC½J� ¼ ZC½0� exp
�
−
i
2

Z
d3xd3yJμðxÞðDμνðx; yÞ þ D̄μνðx; yÞÞJνðyÞ

�
: ð41Þ

Notice that, from the expression (41), one can identify
the propagator of the theory in the presence of a conducting
line as follows:

Dμν
C ¼ Dμνðx; yÞ þ D̄μνðx; yÞ: ð42Þ

The propagator (42) is composed by the sum of the free
propagator (5) with the correction (40), which accounts for
the presence of the conducting linear surface. It can be
checked out that taking the limitm → ∞ in (40) we recover
the standard Maxwell propagator in the presence of a
conducting line (in 3d), and that the conducting line con-
dition (29) is really satisfied. Besides, we can also show that

OμνDνα
C ðx; yÞ ¼ ηαμδ

3ðx − yÞ; ð43Þ

whereOμν is the operator defined in (3),whichmeans that the
gauge field propagator under the boundary conditions (29) is
really a Green’s function for the problem.

V. PARTICLE-CONDUCTOR INTERACTION

In this section we consider the interaction between a
pointlike charge and the conducting line. We can show that
the interaction energy between a static source JμðxÞ and a
conducting surface, in a quadratic theory, is given by
[25,44,45,47]

E ¼ 1

2T

Z
d3xd3yJμðxÞD̄μνðx; yÞJνðyÞ: ð44Þ

The presence of a pointlike charge is accomplished by
the external source

JCμ ðxÞ ¼ qη0μδ2ðx − bÞ; ð45Þ

where b is a constant vector standing for the charge
position that will be taken to be b ¼ ð0; bÞ, from now
on, for the sake of simplicity.
Substituting (45) and (40) in (44), and then performing

some manipulations similar to the ones employed in
Sec. III, we obtain

ELC ¼ −
q2

4π

Z
∞

0

djpkj
ffiffiffiffiffi
p2
k

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
k þm2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
k þm2

q
−

ffiffiffiffiffi
p2
k

q

×

0
B@e

−R
ffiffiffiffi
p2
k

p
ffiffiffiffiffi
p2
k

q −
e
−R

ffiffiffiffiffiffiffiffiffiffi
p2
kþm2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
k þm2

q
1
CA

2

; ð46Þ

where R ¼ jb − aj stands for the distance between the plate
and the charge and the superindex LC means that we have
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the interaction energy between the conducting line and the
charge.
Equation (46) can be simplified with the change of

integration variable p ¼ jpkj=m,

ELC¼−
q2

4π

Z
∞

0

dpp
h
ðp2þ1Þþp

ffiffiffiffiffiffiffiffiffiffiffiffi
p2þ1

q i

×

 
e−2pmR

p2
−2

e−ðpþ
ffiffiffiffiffiffiffiffi
p2þ1

p
ÞmR

p
ffiffiffiffiffiffiffiffiffiffiffiffi
p2þ1

p þe−2mR
ffiffiffiffiffiffiffiffi
p2þ1

p

p2þ1

!
: ð47Þ

Each contribution in the integral (47) can be calculated
exactly. For the first contribution, we have

Z
∞

0

dp
h
ðp2 þ 1Þ þ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 1

q i e−2pmR

p

¼ 1

4ðmRÞ2 þ
π

4mR
½SH1ð2mRÞ − Y1ð2mRÞ�

þ
Z

∞

0

dp
e−2pmR

p
; ð48Þ

where Y and SH stand for the Bessel function of second
kind and the Struve function, respectively [39]. We notice
that the integral on the right-hand side of the Eq. (48) is
divergent. It can be regularized by inserting a parameter ϵ,
as follows:

Z
∞

0

dp
e−2pmR

p
¼ lim

ϵ→0

Z
∞

ϵ
dp

e−2pmR

p

¼ lim
ϵ→0

½Eið1; 2mRϵÞ�; ð49Þ

where the limit ϵ → 0 is taken from the right due to the
definition of the defined integral and Eiðn; sÞ is the
exponential integral function [39], defined by

Eiðn; sÞ ¼
Z

∞

1

e−ts

tn
dt ℜðsÞ> 0; n¼ 0;1;2;…: ð50Þ

It is worth mentioning that Eið1; xÞ ¼ Γð0; xÞ, for x ∈ ℜ.
With the aid the approximation for Eið1; 2mRϵÞ for

small arguments [39], one can write

Eið1; 2mRϵÞ →
ϵ→0þ

− γ − ln ð2mRÞ − ln ϵþOðϵÞ: ð51Þ

Therefore,

Z
∞

0

dp
e−2pmR

p
¼ lim

ϵ→0
½− lnð2mRÞ − γ − ln ϵ�

¼ lim
ϵ→0

½− lnð2mRÞ − γ − ln ϵ

þ lnð2mR0Þ − lnð2mR0Þ�

¼ − ln

�
R
R0

�
− γ − lim

ϵ→0
lnð2mR0ϵÞ

→ − ln

�
R
R0

�
; ð52Þ

where γ is the Euler constant and R0 is an arbitrary constant
with dimension of length. In the last line of Eq. (52) we
neglected a divergent term that does not depend on the
distance R, once it does not contribute to the interaction
force between the charge and the conducting line. The
arbitrary constant R0 does not have any special physical
meaning and does not contribute to the force between the
charge and the conductor. It was just introduced simply to
make the argument of the ln function dimensionless and
characterizes a redefinition of the zero of the interaction
energy.
For the third contribution on the right-hand side

of (47) we perform the change in the integration variable
u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 1

p
, as follows:

Z
∞

0

dpp½1þ pðp2 þ 1Þ−1=2�e−2mR
ffiffiffiffiffiffiffiffi
p2þ1

p

¼
Z

∞

1

du
�
uþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − 1

p �
e−2umR

¼ K1ð2mRÞ
2mR

þ e−2mR

4ðmRÞ2 ð1þ 2mRÞ: ð53Þ

The second contribution to (47) is obtained with the
change of variable u ¼ pþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 1

p
, as follows:

− 2

Z
∞

0

dp
�
pþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 1

q �
e−ðpþ

ffiffiffiffiffiffiffiffi
p2þ1

p
ÞmR

¼ −
Z

∞

1

du
u2 þ 1

u
e−mRu

¼ −e−mR

�
1

ðmRÞ þ
1

ðmRÞ2
�
− Eið1; mRÞ: ð54Þ

Putting all this together, we have the interaction energy
between the point charge and the conducting line

ELC ¼ −
q2

4π

�
− ln

�
R
R0

�
þ Δ1ðmRÞ

�
; ð55Þ

where we defined the function,
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Δ1ðmRÞ ¼ 1

4ðmRÞ2 þ
π

4mR
½SH1ð2mRÞ − Y1ð2mRÞ�

− e−mR

�
1

ðmRÞ þ
1

ðmRÞ2
�

− Eið1; mRÞ þ K1ð2mRÞ
2mR

þ e−2mR

4ðmRÞ2 ð1þ 2mRÞ: ð56Þ

The result (55) is exact, but difficult to be interpreted.
The first term on the right-hand side is the same as
the one found for the surface-charge interaction
obtained in standard 3d Maxwell electrodynamics. It is
important to mention that the Coulomb energy in two
space dimensions exhibits a logarithmic behavior. The
second term falls when mR increases faster than the
first term.
From Eq. (55) we obtain the interaction force between

the conducting line and the charge

FLC ¼ −
q2

4πR
½1þ Δ2ðmRÞ�; ð57Þ

where the function Δ2ðmRÞ is defined by

Δ2ðmRÞ ¼ 1

2ðmRÞ2

−
π

2

�
Y2ð2mRÞ þ SH0ð2mRÞ − SH1ð2mRÞ

ðmRÞ
�

þ K2ð2mRÞ

− 2e−mR

�
1þ 1

ðmRÞ þ
1

ðmRÞ2
�

þ e−2mR

�
1þ 1

ðmRÞ þ
1

2ðmRÞ2
�
: ð58Þ

The first term on the right-hand side of Eq. (57) is the
usual Coulomb interaction (in 3d) between the charge q
and its image, placed at a distance 2R apart. The second
term is a correction imposed by the parameter m, which
falls down when mR increases. We notice that the inter-
action force (57) is always attractive, since the term inside
brackets on the right-hand side is always positive. In Fig. 1
we have a plot for the force (57) multiplied by 4π

mq2 as a

function of mR. We can see that there is a global minimum
around mR ≅ 0.82 and just one zero in the limit mR ¼ 0,
when the charge approaches to the conducting line.
The reader could ask what is the true value of the force

(57) when mR ¼ 0, once the results obtained up to now
were taken on the assumption thatmR > 0. In this situation
the charge is really taken to be lying on the conducting line.
To answer this question we have to go back to expression
(47), calculate the force and take case mR ¼ 0, as follows:

FLCðmR¼ 0Þ¼−
∂ELC

∂R
				
mR¼0

¼−
q2m
2π

Z
∞

0

dpp
h
ðp2þ1Þþp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þ1

q i e−2pmR

p
−
�
pþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þ1

q �e−ðpþ ffiffiffiffiffiffiffiffi
p2þ1

p
ÞmR

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þ1

p þe−2mR
ffiffiffiffiffiffiffiffi
p2þ1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þ1

p
!					

mR¼0

:

ð59Þ

With some simple manipulations, one can show that
the integrand above vanishes and so, also the force for
mR ¼ 0.

In order to check the validity, or not, of the image
method, we consider the expression (13) for the special
case where σ1 ¼ q, σ2 ¼ −q, and a ¼ 2R,

FCC ¼ −
q2

4πR
½1 − ð2mRÞK1ð2mRÞ�: ð60Þ

We notice that Eq. (60) is different from Eq. (57) thus, on
the contrary to the Maxwell-Chern-Simons theory [25], the
image method is not valid for the model (1) with the
conducting line condition (29). A similar situation occurs in
the 4d Lee-Wick electrodynamics with the presence of a
conducting plate, where the image method is not valid [44].
For the 3d Lee-Wick electrodynamics with the presence of
a conducting line, we hope a similar situation [48].FIG. 1. Plot for 4πFLC

mq2 , from Eq. (57), as a function of mR.
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The nonvalidity of the image method in the 4d Lee-Wick
electrodynamics is related to the nontriviality of the
boundary conditions imposed by conductors in this theory,
because we have two kinds of field modes in this case,
some of them being massless and other having mass. It is
evinced in the formulation of the Lee-Wick electrodynam-
ics in terms of two fields [49]. Maybe it is an indication that
the 3d model (1) could be written in terms of two coupled
fields, similarly to the Lee-Wick electrodynamics.
Besides, it is important to point out that the image

method is based on the fact that, in Maxwell electrostatics,
the field configurations can be obtained with only the zero
component of the gauge field (in an appropriated gauge),
which in turn obeys the Poisson equation and directly
gives the energy of the system. For the model (1) with
higher order derivatives, even for stationary situations, the
zero component of the potential does not obey the Poisson
equation, but instead, it is a solution of an equation with
higher order derivatives. Furthermore, for models with
higher order derivatives, energies of stationary systems are
not obtained directly from the zero component of the
gauge field. As an example, one can see the 00 component
of the energy momentum tensor of the Lee Wick electro-
dynamics [50].
The force (60) falls down when mR increases and is

always attractive, similarly to (57). In the limit where
R → 0, both forces (57) and (60) are not divergent, but go
to zero. This fact is due to the presence of the higher order
derivatives term in the model (1). It is a new example where
the presence of higher order derivatives (in this case, in a
term with the Levi-Civita tensor) can improve renormal-
ization properties and tame ultraviolet divergences [51],
even with the presence of material boundaries [44].
The deviation from the image method behavior can be

seen from the difference between Eqs. (57) and (60)
normalized by the Coulombian force in (2þ 1) dimen-
sions, as follows,

δðmRÞ¼jFLCj− jFCCj
½q2=ð4πRÞ� ¼Δ2ðmRÞþð2mRÞK1ð2mRÞ: ð61Þ

In Fig. 2 we have a plot for δðmRÞ as a function of mR.
In the limit mR → ∞ we have δ → 0. In the interval

0 < mR ≈<1, 72 we have δ < 0 and the modulus of
charge-line interaction is smaller than the modulus of
charge-image interaction. For mR > ≈ 1, 72 we have
δ > 0 and the charge-line interaction is greater than the
charge-image interaction, in modulus. It is also interesting
to notice that the curve of Fig. 2 exhibits a maximum for
mR ≅ 3; 82, a minimum for mR ≅ 0; 72 and two zeros for
mR ¼ 0 and mR ≅ 1; 72.

VI. DIRAC POINT-CONDUCTOR INTERACTION

In this section we study the interaction between a Dirac
point and the conducting line. This kind of interaction does
not occur in Maxwell electrodynamics [25].
First, we consider the Dirac point placed at the position

b ¼ ð0; bÞ, as follows

JμðxÞ ¼ −2πiΦ
Z

d3p
ð2πÞ3 δðp

0Þϵ0μαpαe−ip·xe−ip·b: ð62Þ

Substituting (62) and (40) in (44) and following the same
steps employed in the previous section, we obtain

ELD ¼ −
m2Φ2

4π

Z
∞

0

dpp
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ 1

q
þ p

� e−2mR
ffiffiffiffiffiffiffiffi
p2þ1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 1

p ;

ð63Þ

where the superscript LD means that we have the inter-
action between the Dirac point and the conducting line and
R ¼ jb − aj stands for the distance between the conductor
and the Dirac point.
Now, by using the Eq. (53), we arrive at

ELD ¼ −
m2Φ2

4π

�
K1ð2mRÞ
2mR

þ e−2mR

4ðmRÞ2 ð1þ 2mRÞ
�
: ð64Þ

The interaction energy (64) falls down when mR
increases and vanishes in the limit m → ∞.
The interaction force reads

FLD¼−
m2Φ2

4πR

�
e−2mR

�
1þ 1

ðmRÞþ
1

2ðmRÞ2
�
þK2ð2mRÞ

�
;

ð65Þ

which is always attractive.
The interaction force between the surface and the Dirac

point diverges when the source is placed on the conducting
line. In Fig. 3 we have a plot for the force (65) multiplied by
4π

m3ϕ2 as a function of mR.

It can be checked that for the case where Φ1 ¼
−Φ2 ¼ Φ, a ¼ 2R, the Eq. (27) turns out to be different
from the expression (65). So, the image method is not valid
for the Dirac point in the presence of the conducting line
condition (29). This situation is different to the one found inFIG. 2. Plot for δðmRÞ.
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the Maxwell-Chern-Simons electrodynamics, where the
image method remains valid for the Dirac point [25].

VII. CONCLUSIONS

In this paper, we have investigated the interactions
between stationary pointlike sources for the higher order
derivatives extension of 3d Chern-Simons model. We have
considered effects related to field sources which describe
pointlike charges and Dirac points.
Afterwards, we have considered the same model with the

presence of a perfectly conducting linear surface [notice
that we have a model defined in a (2þ 1)-dimensional
spacetime.] The propagators for the gauge field in the
presence of the conducting surface have been calculated
exactly. We have obtained the interaction force between the
conductor and a pointlike charge as well as the force
between the conductor and a Dirac point. It has been shown
that the image method is not valid for the model (1) for any
setup that we have considered. For the interaction between
the pointlike charge and the conductor, we have a local
minimum for a given value for the distance.
The nonvalidity of the image method for the model (1) is

an indication that, maybe, the model (1) could be
written in terms of two coupled fields, as the 4d Lee-
Wick electrodynamics.
We have compared the results obtained throughout the

paper with the corresponding ones obtained from the
Maxwell-Chern-Simons electrodynamics [25].
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APPENDIX: THE PROPAGATOR

In this Appendix we give some additional technical
details of how the propagator in Eq. (40) was computed. We
start by substituting (32) in (31) and using Eq. (29), what
leads to

ZC½J�¼
Z

DADBei
R
d3xL

×exp

�
−i
Z

d3xδðx2−aÞAβðxÞϵαβ2 ∂αBðxkÞ
�
: ðA1Þ

We can see that the first exponential in (A1) depends
only on the gauge field Aμ, but the second one involves a
coupling between the fields Aμ and B. In order to decouple
Aμ and B, we carry out the following translation:

AβðxÞ→AβðxÞþ
Z

d3yDβ
αðx;yÞδðy2−aÞϵγα2 ∂γBðykÞ; ðA2Þ

which has an unitary Jacobian and allows us to write the
functional generator (A1) in the form (33).
Substituting (36) into (35) and using Eqs. (5), (37), and

(38), we arrive at

Z̄½J�¼
Z

DBexp

�
i
Z

d2xkIðxkÞBðxkÞ
�

×exp

�
−
i
2

Z
d2xkd2ykBðxkÞWðxk;ykÞBðykÞ

�
; ðA3Þ

where

Wðxk; ykÞ ¼ −
i
2

Z
d2pk
ð2πÞ2 e

−ipk·ðxk−ykÞp2
k

�
1

L
−
1

Γ

�
;

IðxkÞ ¼
Z

d3yfμðy; xkÞJμðyÞ; ðA4Þ

with the definition

fμðy; xkÞ ¼ −
1

2

Z
d2pk
ð2πÞ2 e

−ipk·ðxk−ykÞ

×

��
ϵ2γμp

γ
k −

ip2
k

m
η2μ

��
eiLjy2−aj

L
−
eiΓjy2−aj

Γ

�

þ i
m
ðLeiLjy2−aj − ΓeiΓjy2−ajÞη2μ

�
: ðA5Þ

Now, in the functional integral (A3), we perform the
following translation:

BðxkÞ → BðxkÞ þ
Z

d2ykVðxk; ykÞIðykÞ; ðA6Þ

where Vðxk; ykÞ is the function which inverts Wðxk; ykÞ, in
the sense that,

Z
d2ykWðxk; ykÞVðyk; zkÞ ¼ δ2ðxk − zkÞ; ðA7Þ

namely,

FIG. 3. Plot for 4πFLD

m3ϕ2 , from Eq. (65), as a function of mR.
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Vðxk; ykÞ ¼ 2i
Z

d2pk
ð2πÞ2 e

−ipk·ðxk−ykÞ 1

p2
kð1L − 1

ΓÞ
: ðA8Þ

With the translation (A6) we obtain the functional
generator (39), where the correction to the propagator
which accounts for the presence of the conducting line
is given by

D̄μνðx; yÞ ¼ −
Z

d2zkd2wkfμðx; zkÞVðzk; wkÞfνðy; wkÞ:

ðA9Þ
Substituting (A5) and (A8) into Eq. (A9) and per-

forming some calculations, we finally obtain the expres-
sion (40).
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