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We suggest the suð1; NjMÞ superconformal mechanics formulated in terms of phase superspace given by
the noncompact analogue of complex projective superspace. We parametrized this phase space by the
specific coordinates allowing us to interpret it as a higher-dimensional superanalogue of the Lobachevsky
plane parametrized by lower half-plane (Klein model). Then we introduced the canonical coordinates
corresponding to the known separation of the “radial” and “angular” parts of (super)conformal mechanics.
Relating the “angular” coordinates with action-angle variables, we demonstrated that the proposed scheme
allows us to construct the suð1; NjMÞ supeconformal extensions of wide class of superintegrable systems.
We also proposed the superintegrable oscillator- and Coulomb-like systems with a suð1; NjMÞ dynamical
superalgebra and found that oscillatorlike systems admit deformed N ¼ 2M Poincaré supersymmetry, in
contrast with Coulomb-like ones.
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I. INTRODUCTION

Kähler manifolds are the Hermitian manifolds, which
possesses the symplectic structure obeying the specific
compatibility condition with the Riemann (and/or com-
plex) structure [1]. Being highly common objects in
almost all areas of theoretical physics, these manifolds
usually appear as configuration spaces of the particles and
fields. Only in a limited number of physical problems,
they appear as phase spaces, mostly for the description of
various generalizations of tops, the Hall effect (including
its higher-dimensional generalizatons, see, e.g. [2] and
Refs. therein), etc. Respectively, the number of the known
nontrivial (super)integrable systems with Kähler phase
spaces is very restricted, and their study does not attract
much attention. The widely known integrable model with
Kähler phase space extensively studying nowadays is
the compactified Ruijsenaars-Schneider model with an
excluded center of mass, whose phase space is complex
projective space [3].
On the other hand, there are some indications that Kähler

phase spaces can be useful for the study of conventional
Hamiltonian systems, i.e., for the systems formulated on

cotangent bundle of Riemann manifolds. A very simple
example of such a system is one-dimensional conformal
mechanics formulated in terms of a Lobachevsky plane
(“noncompact complex projective plane”) treated as a phase
space [4]. Such a description, being quite elegant, allows
immediate construction of N ¼ 2M superconformal exten-
sion associated with suð1; 1jMÞ superalgebra. Recently, the
similar formulation of some higher-dimensional systems was
given in terms of suð1; NÞ-symmetric Kähler phase space
treated as the noncompact version of a complex projective
space [5]. In such an approach, all symmetries of the generic
superintegrable conformal-mechanical systems acquire inter-
pretation in terms of the powers of the suð1; NÞ isometry
generators. The maximally superintegrable generalizations of
the Euclidean oscillator/Coulomb systems has also been
considered; all the symmetries of these superintegrable
systems were expressed via suð1; NÞ isometry generators
as well. However, the supersymmetrization aspects of that
systems was not considered there at all. In the present paper,
we construct the N -extended superconformal extensions of
the systems considered in [5], as it was done in [4] for an one-
dimensional case. Namely, we consider the systems with
suð1; NjMÞ-symmetric ðNjMÞC-dimensional Kähler phase

superspace (in what follows, we denote it by fCPNjM) and
relate their symmetries with the isometry generators of the
super-Kähler structure. We construct this superspace, reduc-
ing the ðN þ 1jMÞC-dimensional complex pseudo-Euclidean
superspace by the Uð1Þ-group action and then identify
the reduced phase superspace with the noncompact analogue
of complex projective superspace constructed in [6]. We
parametrize this superspace by the complex bosonic variable
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w, Im w < 0, by the N − 1 complex bosonic variables
jzαj ∈ ½0;∞Þ, arg z ∈ ½0; 2πÞ, and by M complex fermionic
coordinates ηA. Thus, it can be considered as the
N-dimensional extension of the Klein model of
Lobachevsky plane [7]. This allows us to connect the
complex coordinate w with the radial coordinate and
momentum of the conformal-mechanical system spanned
by suð1; 1Þ subalgebra and separate the suð1; 1Þ generators
interpreting them as Hamiltonian, conformal boosts, and
dilatation operators. The rest bosonic generators zα para-
metrize the angular part of integrable conformal mechanics
with Euclidean configuration spaces.1 Relating the angular
coordinates and momenta with the action-angle variables, we
describe all symmetries of the generic superintegrable con-
formal-mechanical systems in terms of the powers of the
suð1; NÞ isometry generators. An important aspect of the
proposed approach is the choice of canonical coordinates
where all fermionic degrees of freedom appear only in the
angular part of the Hamiltonian.
Furthermore, we construct the superanalogues of the

maximally superintegrable generalizations of the Euclidean
oscillator/Coulomb systems considered in [5] as follows: we
preserve the form of Hamiltonian expressed via generators of
suð1; 1Þ subalgebra but extend the phase space fCPN to phase

superspace fCPNjM. As a result, we find that these super-
extensions preserve all symmetries of the initial bosonic
Hamiltonians and possess a maximal set of functionally
independent fermionic integrals; i.e., they remains super-
integrable in the sense of the super-Liouville theorem. We
also find, that the constructed oscillatorlike systems (in
contrast with Coulomb-like ones) possess deformed N ¼
2M; d ¼ 1 Poincaré supersymmetry (see [9]) and express all
the symmetries of these superintegrable systems via suð1; NÞ
isometry generators as well.
The paper organized as follows.
In Sec. II, we present the basic facts on Kähler super-

manifolds and construct, by the Hamiltonian reduction, the
noncompact complex projective superspace fCPNjM in the
parametrization similar to those of Klein model. In Sec. III,

we analyze the symmetry algebra of fCPNjM and extract
from it the suð1; NjMÞ-superconformal systems. In Sec. IV,
we introduce the canonical coordinates, which naturally
split radial and angular parts of the Hamiltonian and relate
the angular part with the systems formulating in terms of
action-angle variables. In the Sec. V, we construct super-
integrable supergeneralizations of oscillator- and Coulomb-
like systems. In Sec. VI, we represent the Kähler structure
of phase superspace in the Fubini-Study-like form. We
conclude the paper by the outlook and final remarks in
Sec. VII.

II. NONCOMPACT COMPLEX PROJECTIVE
SUPERSPACE

The (even) ðNjMÞ-dimensional Kähler supermanifold
can be defined as a complex supermanifold with a
symplectic structure, given by the expression,

Ω ¼ {ð−1ÞpIðpJþ1ÞgIJ̄dZI ∧ dZ̄J; dΩ ¼ 0; ð1Þ

with ZI denoting N complex bosonic coordinates and M
complex fermionic ones. The pI ≔ pðZIÞ is Grassmanian
parity of coordinate: it is equal to zero for bosonic
coordinate and to one for the fermionic one. Through
the paper, we will use the following conjugation rule:

ZIZJ ¼ Z̄IZ̄J, Z̄IZJ ¼ ZIZ̄J,Z̄IZ̄J ¼ ZIZJ, for both
bosonic and fermionic variables.
The “metrics components” gIJ̄ can then be locally

represented in the form,

gIJ̄ ¼
∂L

∂ZI

∂R

∂Z̄J KðZ; Z̄Þ; ð2Þ

where ∂LðRÞ=∂ZI denotes left(right) derivatives and the
function K is called Kähler potential.
The Poisson brackets associated with this Kähler struc-

ture looks as follows:

ff; gg ¼ {

�∂Rf
∂Z̄I g

ĪJ ∂Lg
∂ZJ − ð−1ÞpIpJ

∂Rf
∂ZI g

J̄I ∂Lg
∂Z̄J

�
; where

gĪJgJK̄ ¼ δĪK̄ ; gĪJ ¼ ð−1ÞpIpJgJ̄I: ð3Þ

As in the pure bosonic case, the isometries of Kähler
supermanifolds are given by the holomorphic Hamiltonian
vector fields,

Vμ ≔ fhμðZ; Z̄Þ; g ¼ VIðZÞ ∂L

∂ZI þ V̄IðZ̄Þ ∂L

∂Z̄I ; ð4Þ

where hμðZ; Z̄Þ are real functions called Killing potentials
(see, e.g., [6,10] for the details).
Our goal is to study the systems on the Kähler phase

space with suð1; NjMÞ isometry superalgebra. For the
construction of such phase space, it is convenient, at first,
to present the linear realization of uð1; NjMÞ superconfor-
mal algebra on the complex pseudo-Euclidean superspace
C1;NjM equipped with the canonical Kähler structure (and
thus, by the canonical supersymplectic structure) and then
reduce it by the action of uð1Þ generator.
It is instructive to present this reduction in details. Let us

equip, at first, the ðN þ 1jMÞ-dimensional complex super-
space with the canonical symplectic structure,

Ω0 ¼ {
XN
a;b¼0

γab̄dv
a ∧ dv̄b þ

XM
A¼1

dηA ∧ dη̄A; ð5Þ
1The convenience of the separation of the radial coordinates

from the angular one in the study of conformal mechanics and in
their supersymmetrization was demonstrated, e.g., in [8].
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with va; v̄a being bosonic variables, and ηA; η̄A being
fermionic ones, and with the matrix γab̄ chosen in the form,

ð6Þ

With this supersymplectic structure, we can associate the
Poisson brackets given by the relations,

fva; v̄bg ¼ −{γb̄a; fηA; η̄Bg ¼ fη̄B; ηAg ¼ δAB̄;

γābγbc̄ ¼ δāc̄ : ð7Þ

Equivalently,

fv0; v̄Ng ¼ 1; fvN; v̄0g ¼ −1;

fvα; v̄βg ¼ {δαβ̄; fηA; η̄Bg ¼ fη̄B; ηAg ¼ δAB̄: ð8Þ

Here we introduced the indices α; β ¼ 1;…; N − 1.
On this superspace, we can define the linear Hamiltonian

action of uð1; NjMÞ ¼ uð1Þ × suð1; NjMÞ superalgebra,

fhab̄; hcd̄g ¼ −{ðhad̄γc̄b − hcb̄γ
ādÞ;

fΘAā; Θ̄B̄bg ¼ hbāδBĀ − RAB̄γ
b̄a;

fΘAā; hbc̄g ¼ −{ΘAc̄γ
b̄a; ð9Þ

fRAB̄; RCD̄g ¼ {ðRAD̄δ
BC̄ − RCB̄δ

DĀÞ;
fΘAā; RBC̄g ¼ −{ΘBāδ

CĀ; ð10Þ

where

hab̄ ¼ v̄avb; ΘAā ¼ η̄Ava; RAB̄ ¼ {η̄AηB: ð11Þ

The uð1Þ generator defining the center of uð1.NjMÞ is
given by the expression,

J ¼ γab̄v
av̄b þ {ηAη̄A∶ fJ; hab̄g ¼ fJ;ΘAāg

¼ fJ; RAB̄g ¼ 0: ð12Þ

Hence, reducing the system by the action of this generator,

we will get the “noncompact” projective superspace fCPNjM

(i.e., the supergeneralization of noncompact projective
space fCPN), which is ð2Nj2MÞ-(real)dimensional space.
For performing the reduction by the action of generator

(12), we have to choose, at first, the 2N real (N complex)
bosonic and 2M real (M complex) fermionic functions
commuting with J. Then, we have to calculate their Poisson
brackets and restrict the latters to the level surface,

J ¼ g: ð13Þ

As a result we will get the Poisson brackets on the reduced
ð2Nj2MÞ-(real) dimensional space, with that uð1Þ-invariant
functions playing the role of the latter’s coordinates.
The required functions could be easily found as

w ¼ vN

v0
; zα ¼ vα

v0
; θA ¼ ηA

v0
∶

fw; Jg ¼ fza; Jg ¼ fθA; Jg ¼ 0; and c:c: ð14Þ

Calculating their Poisson brackets and having in mind the
expression following from Eqs. (12) and (13),

A ≔
1

v0v̄0

����
J¼g

¼ 1

g

�
{ðw − w̄Þ −

XN−1

γ¼1

zγ z̄γ þ {
XM
C¼1

θCθ̄C
�
; ð15Þ

we get the reduced Poisson brackets defined by the following nonzero relations (and their complex conjugates):

fw; w̄g ¼ −Aðw − w̄Þ; fzα; z̄βg ¼ {Aδαβ̄; fθA; θ̄Bg ¼ AδAB̄; fw; z̄αg ¼ Az̄α; fw; θ̄Ag ¼ Aθ̄A: ð16Þ

These Poisson brackets are associated with the supersymplectic structure,

Ω ¼ {
g

�
1

A2
dw ∧ dw̄ −

{zα

A2
dw ∧ dz̄α −

θA

A2
dw ∧ dθ̄A þ {z̄α

A2
dzα ∧ dw̄þ

�
gδαβ̄
A

þ z̄αzβ

A2

�
dzα ∧ dz̄β

−
{z̄αθA

A2
dzα ∧ dθ̄A −

θ̄A

A2
dθA ∧ dw̄þ {θ̄Azα

A2
dθA ∧ dz̄α −

�
{gδAB̄
A

þ θ̄AθB

A2

�
dθA ∧ dθ̄B

�
: ð17Þ

It is defined by the Kähler potential,
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K ¼ −g logð{ðw − w̄Þ − zαz̄α þ {θAθ̄AÞ: ð18Þ

In what follows, we will call this space “noncompact projective superspace fCPNjM.” The isometry algebra of this space is
suð1; NjMÞ, which can be easily obtained by the restriction of the generators (9), (10) to the level surface (13). It is defined
by the following Killing potentials:

H ≔ vNv̄N jJ¼g ¼
ww̄
A

; K ≔ v0v̄0jJ¼g ¼
1

A
; D ≔ ðvNv̄0 þ v0v̄NÞjJ¼g ¼

wþ w̄
A

; ð19Þ

Hα ≔ v̄αvN jJ¼g ¼
z̄αw
A

; Kα ≔ v̄αv0jJ¼g ¼
z̄α

A
; hαβ̄ ≔ v̄αvβjJ¼g ¼

z̄αzβ

A
; ð20Þ

QA ≔ η̄AvN jJ¼g ¼
θ̄Aw
A

; SA ≔ η̄Av0jJ¼g ¼
θ̄A

A
; ΘAᾱ ≔ η̄AvαjJ¼g ¼

θ̄Azα

A
; ð21Þ

RAB̄ ≔ {η̄AηBjJ¼g ¼ {
θ̄AθB

A
: ð22Þ

Constructed super-Kähler structure can be viewed as a
higher dimensional analogue of the Klein model of
Lobachevsky space, where the latter is parametrized by
the lower half-plane. One can choose, instead of a non-
diagonal matrix Eq. (6), the diagonal one, γab̄ ¼
diagð1;−1;…;−1Þ. In that case, the reduced Kähler
structure will have the Fubini-Study-like form (see
Sec. VI). In the next section, we will analyze the isometry
algebra defined by these generators in detail. Presented
choice (6) is motivated by its convenience for the
analyzing superconformal mechanics. Indeed, in that case,
the generators (19) define conformal subalgebra suð1; 1Þ
and are separated from the rest suðN − 1jMÞ generators.
Thus, they can be interpreted as the Hamiltonian of
conformal mechanics, the generator of conformal boosts
and the generator of dilatation.

In the next section, we will analyze in details these
superconformal mechanics and their dynamical defined by
the generators (19)–(22).

III. suð1;NjMÞ SUPERCONFORMAL ALGEBRA

The generators (Killing potentials) (19)–(22) form
suð1; NjMÞ superalgebra given by Eqs. (9), (10) with
γab̄ defined in Eq. (6). Its explicit expression with separated
suð1; 1Þ subalgebra is represented below. For convenience,
it is divided into three sectors: “bosonic,” “fermionic,” and
“mixed” ones.

A. “Bosonic” sector: suð1;NÞ × uðMÞ algebra
The bosonic sector is the direct product of the suð1; NÞ

algebra defined by the generators (19), (20), and the uðMÞ
algebra defined by the R-symmetry generators (22).
Explicitly, the suð1; NÞ algebra is given by the relations,

fH;Kg ¼ −D; fH;Dg ¼ −2H; fK;Dg ¼ 2K; ð23Þ

fH;Kαg ¼ −Hα; fH;Hαg ¼ fH; hαβ̄g ¼ 0; ð24Þ

fK;Hαg ¼ Kα; fK;Kαg ¼ fK; hαβ̄g ¼ 0; ð25Þ

fD;Kαg ¼ −Kα; fD;Hαg ¼ Hα; fD; hαβ̄g ¼ 0; ð26Þ

fKα; Kβg ¼ fHα; Hβg ¼ fKα; Hβg ¼ 0; ð27Þ

fKα; K̄βg ¼ −{Kδαβ̄; fHα; H̄βg ¼ −{Hδαβ̄; fhαβ̄; hγδ̄g ¼ {ðhαδ̄δγβ̄ − hγβ̄δαδ̄Þ; ð28Þ

fKα; hβγ̄g ¼ −{Kβδαγ̄; fHα; hβγ̄g ¼ −{Hβδαγ̄; fKα; H̄βg ¼ hαβ̄ þ
1

2
ðI − {DÞδαβ̄; ð29Þ

where
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I ≔ gþ
XN−1

γ¼1

hγγ̄ þ
XM
C¼1

RCC̄: ð30Þ

The R-symmetry generators form uðMÞ algebra and com-
mute with all generators of suð1; NÞ,

fRAB̄; RCD̄g ¼ {ðRAD̄δCB̄ − RCB̄δAD̄Þ;
fRAB̄; ðH;K;D;Kα;Hα; hαβ̄Þg ¼ 0: ð31Þ

It is clear that the generators H, D, and K form conformal
algebra suð1; 1Þ, the generators hαβ̄ form the algebra
uðN − 1Þ, and all together—the suð1; 1Þ × uðN − 1Þ

algebra. Notice, that the generator I in Eq. (30) defines
the Casimir of conformal algebra suð1; 1Þ,

I ≔
1

2
I2 ¼ 1

2
D2 − 2HK: ð32Þ

Hence, choosing H as a Hamiltonian, we get that Hα,
hαβ̄; RAB̄ define its constant of motion. Similarly, choosing
the generator K as a Hamiltonian, we get that it has
constants of motion Kα; hαβ̄; RAB̄.

B. “Fermionic” sector

The Poisson brackets between fermionic generators (21)
have the form,

fSA; S̄Bg ¼ KδAB̄; fQA; Q̄Bg ¼ HδAB̄; fSA; Q̄Bg ¼ −{RAB̄ þ {
2
ðI − {DÞδAB̄; ð33Þ

fΘAᾱ; Θ̄Bβ̄g ¼ RAB̄δβᾱ þ hβᾱδAB̄; fSA; Θ̄Bᾱg ¼ KαδAB̄; fQA; Θ̄Bᾱg ¼ HαδAB̄; ð34Þ

fSA; SBg ¼ fQA;QBg ¼ fΘAᾱ;ΘBβ̄g ¼ fSA;QBg ¼ fSA;ΘBᾱg ¼ fQA;ΘBᾱg ¼ 0: ð35Þ

Hence, the functions QA play the role of supercharges for the Hamiltonian H, and the functions SA define the supercharges
of the Hamiltonian given by the generator of conformal boosts K.

C. “Mixed” sector

The mixed sector is given by the relations,

fH;QAg ¼ fH;ΘAᾱg ¼ 0; fH; SAg ¼ −QA; ð36Þ

fK; SAg ¼ fK;ΘAᾱg ¼ 0; fK;QAg ¼ SA; ð37Þ

fD; SAg ¼ −SA; fD;QAg ¼ QA; fD;ΘAᾱg ¼ 0 ð38Þ

fQA; K̄αg ¼ −ΘAᾱ; fQA;Hαg ¼ fQA; H̄αg ¼ fQA; K̄αg ¼ fQA; hαβ̄g ¼ 0; ð39Þ

fSA; H̄αg ¼ ΘAᾱ; fSA; Kαg ¼ fSA; K̄αg ¼ fSA;Hαg ¼ fSA; hαβ̄g ¼ 0; ð40Þ

fΘAᾱ; Kβg ¼ {SAδβᾱ; fΘAᾱ; Hβg ¼ {QAδβᾱ; fΘAᾱ; H̄αg ¼ fΘAᾱ; K̄αg ¼ 0; fΘAᾱ; hβγ̄g ¼ {ΘAγ̄δβᾱ; ð41Þ

fSA; RBC̄g ¼ −{SBδAC̄; fQA; RBC̄g ¼ −{QBδAC̄; fΘAᾱ; RBC̄g ¼ −{ΘBᾱδAC̄: ð42Þ

Looking to the all Poisson bracket relations together, we conclude that
(i) The bosonic functions Hα, hαβ̄, and the fermionic functions QA, ΘAᾱ commute with the Hamiltonian H and thus,

provide it by the superintegrability property2;
(ii) The bosonic functions Kα, hαβ̄ and the fermionic functions SA,ΘAᾱ commute with the generator K. Hence, the

Hamiltonian K defines the superintegrable system as well.

2In accord with superanalogue of Liouville theorem [11], the system on ð2N:MÞ phase superspace is integrable if and only
if it possess N commuting bosonic integrals (with nonvanishing and functionally independent bosonic parts) and M fermionic
ones.
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(iii) The triples ðH;Hα; QA; Þ and ðK;Kα; SA; Þ transform into each other under the discrete transformation,

ðw; zα; θAÞ →
�
−
1

w
;
zα

w
;
θA

w

�
⇒ D → −D;

� ðH;Hα; QA; Þ → ðK;−Kα;−SAÞ;
ðK;Kα; SAÞ → ðH;Hα; QA; Þ

: ð43Þ

(iv) The functions hαβ̄;ΘAᾱ are invariant under discrete transformation (43). Moreover, they appear to be constants of
motion both for H and K. Hence, they remain to be constants of motion for any Hamiltonian being the functions of
H,K. In particular, adding to the HamiltonianH, the appropriate function ofK, we get the superintegrable oscillator-
and Coulomb-like systems with dynamical superconformal symmetry (see Sec. V).

(v) The superalgebra suð1; NjMÞ admits five-graded decomposition [12,13],

suð1; NjMÞ ¼ f−2 ⊕ f−1 ⊕ f0 ⊕ fþ1 ⊕ fþ2 with ½fi; fj� ⊆ fiþj for i; j ∈ f−2;−1; 0; 1; 2g; ð44Þ

where fi ¼ 0 for jij > 2 is understood. The subset f0 includes the generators D; hαβ̄;ΘAᾱ; Θ̄Aᾱ; RAB̄, the subsets f−2
and f2 contain only generators H and K, respectively, while the subsets f−1 and f1 contain the generators
Hα; H̄α; QA; Q̄A and Kα; K̄α; SA; S̄A.

Let us conclude this section by the following remark. It is easy to see, that the generator (30) commutes the generators
H;D;K; SA;QA; RAB̄. Hence, these generators form superconformal algebra suð1; 1jMÞ witha central charge

ffiffiffiffiffiffi
2I

p
(32)

(being the Casimir of suð1; 1jMÞÞ as well),

fH;Kg ¼ −D; fH;Dg ¼ −2H; fK;Dg ¼ 2K; fSA; S̄Bg ¼ KδAB̄; fQA; Q̄Bg ¼ HδAB̄;

fSA; Q̄Bg ¼ −{RAB̄ þ {
2
ð

ffiffiffiffiffiffi
2I

p
− {DÞδAB̄;

fH; SAg ¼ −QA; fK;QAg ¼ SA; fH;QAg ¼ fK; SAg ¼ 0; fD; SAg ¼ −SA; fD;QAg ¼ QA;

fRAB̄; RCD̄g ¼ {ðRAD̄δCB̄ − RCB̄δAD̄Þ; fSA; RBC̄g ¼ −{SBδAC̄; fQA; RBC̄g ¼ −{QBδAC̄: ð45Þ

In the next section, we will express presented suð1; NjMÞ generators in appropriate canonical coordinates, and in this
way, we will relate presented formulas with the superextensions of conventional conformal mechanics.

IV. CANONICAL COORDINATES AND ACTION-ANGLE VARIABLES

To define the canonical coordinates, we pass from the complex bosonic coordinates w, zα,

w ¼ xþ {y; zα ¼ qαe{φα ; where y < 0; qα ≥ 0; φα ∈ ½0; 2πÞ; q2 ≔
XN−1

α¼1

q2α < −2y: ð46Þ

Then we redefine fermionic ones such that the new variables will have canonical Poisson brackets.
For this purpose, we write down the symplectic/Kähler one form and identify it with the canonical one,

A ¼ −
g
2

dwþ dw̄ − {ðzαdz̄α − z̄αdzαÞ þ θAdθ̄A þ θ̄AdθA

{ðw − w̄Þ − zγ z̄γ þ {θCθ̄C
≔ pxdxþ παdφα þ

1

2
χAdχ̄A þ 1

2
χ̄AdχA: ð47Þ

After some calculations and canonical transformation ðpx; xÞ → ð− r2
2
; pr
r Þ, one can obtain

w ¼ pr

r
− {

I
r2
; zα ¼

ffiffiffiffiffiffiffiffi
2πα

p
r

e{φα ; θA ¼
ffiffiffi
2

p

r
χA; ð48Þ

where r; pr; πα;φα; χA; χ̄A are canonical coordinates,

fr; prg ¼ 1; fφβ; παg ¼ δαβ; fχA; χ̄Bg ¼ δAB̄; πα ≥ 0; φα ∈ ½0; 2πÞ; r > 0: ð49Þ

They expresses via initial ones as follows:
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pr ¼
wþ w̄

2

ffiffiffiffi
2

A

r
; r ¼

ffiffiffiffi
2

A

r
; πα ¼

zαz̄α

A
;

φα ¼ argðzαÞ; χA ¼ θAffiffiffiffi
A

p ; c:c:; ð50Þ

where

I ¼ gþ
XN−1

α¼1

πα þ
XM
A¼1

{χ̄AχA;

A ¼ {ðw − w̄Þ −P
N−1
γ¼1 zγ z̄γ þ {

P
M
C¼1 θCθ̄C

g
¼ 2

r2
: ð51Þ

In these canonical coordinates the isometry generators
read

H ¼ p2
r

2
þ I2

2r2
; K ¼ r2

2
; D ¼ prr; ð52Þ

Hα ¼
ffiffiffiffiffi
πα
2

r
e−{φα

�
pr − {

I
r

�
; Kα ¼ r

ffiffiffiffiffi
πα
2

r
e−{φα ;

hαβ̄ ¼ ffiffiffiffiffiffiffiffiffiffi
παπβ

p
e−{ðφα−φβÞ; ð53Þ

QA ¼ χ̄Affiffiffi
2

p
�
pr − {

I
r

�
; SA ¼ χ̄Affiffiffi

2
p r;

ΘAᾱ ¼ χ̄A
ffiffiffiffiffi
πα

p
e{φα ; RAB̄ ¼ {χ̄AχB: ð54Þ

Interpreting r as a radial coordinate, and pr as radial
momentum, we get the superconformal mechanics with
angular Hamiltonian given by

I ¼ I2

2
≔

1

2
ðI0 þ ðχ̄χÞÞ2; with I0 ≔ gþ

XN−1

α¼1

πα;

ðχ̄χÞ ≔
XM
A¼1

{χ̄AχA: ð55Þ

So, the fermionic part of superconformal Hamiltonian is
encoded in its angular part.
The explicit dependence of the Hamiltonian H and the

supercharges QA on the fermions is as follows:

H ¼ H0 þ
I0ðχ̄χÞ
r2

þ ðχ̄χÞ2
2r2

;

QA ¼ −
χ̄Affiffiffi
2

p
�
pr − {

I0
r
− {

ðχ̄χÞ
r

�
; ð56Þ

while the dependence of bosonic integrals Hα on fermions
is given by the expression,

Hα ¼ H0
α −

Kαðχ̄χÞ
2K

; ð57Þ

where

H0 ≔
p2
r

2
þ I20
2r2

;

H0
α ¼

ffiffiffiffiffi
πα
2

r
e−{φα

�
pr − {

I0
r

�
∶ fH0

α; H0g ¼ 0: ð58Þ

So, proposed superconformal Hamiltonian H inherits all
symmetries of initial Hamiltonian H0 (given by H0

α; hαβ̄).
Looking at the functional dependence of the angular

Hamiltonian I from the angular variables φα; πα, one can
expect that the set of conformal mechanics admitting
proposed suð1; NjMÞ superconformal extensions seems
to be very restricted. However, it is not the case, since it
is not necessary to interpret φα as a coordinate of the
configuration space, and πα as its canonically conjugated
momentum. Instead, since πα define a constant of motion of
the bosonic Hamiltonian H0 (and of the respective angular
Hamiltonian I0 ¼ H0K=2 −D2), we can interpret it as the
action variable Iα and consider φα as a respective angle
variable Φα.
Furthermore, suppose that πα;φα are related with the

action-angle variables ðIα;ΦαÞ of some (N − 1)-dimensional
angular mechanics by the relations,

πα ¼ nαIα; φα ¼
Φα

nα
; where nα ∈ N;

fΦα; Iβg ¼ δαβ; Φα ∈ ½0; 2πÞ: ð59Þ

Upon this identification, the bosonic part of the angular
Hamiltonian (55) takes a form,

Ĩ0 ¼
1

2

�
gþ

XN−1

α¼1

nαIα

�2

; with nα ∈ N; ð60Þ

but the bosonic generators Hα; Sα; hαβ̄, become locally
defined, φα ∈ ½0; 2π=nαÞ and fail to be constants of motion.
To get the globally defined bosonic generators, we have to
take their relevant powers,

H̃α≔ ðHαÞnα ; K̃α≔ ðKαÞnα ; h̃αβ̄≔ ðhαβ̄Þnαnβ ; ð61Þ

as well as replace the fermionic generator ΘAᾱ by the
following one:

Θ̃Aᾱ ¼ ðHαÞnα−1ΘAᾱ: ð62Þ

As a result, the dynamical (super)symmetry algebra becomes
a nonlinear deformation of suð1; NjMÞ.
The angular Hamiltonian (60) defines the class the

superintegrable generalizations of the conformal mechanics,
and of the oscillator- and Coulomb-like systems on the
N-dimensional Euclidean spaces [14]. As a particular case,
this class of systems includes the “charge-monopole” system
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[15], Smorodinsky-Winternitz system [16] (for the explicit
expressions of the action-angle variables of these systems,
see, respectively, [17,18]), as well as the rational Calogero
models.3 Thus, proposed systems can be considered as their
2M superconformal extensions.
Since the generators QA; SA; RAB̄ remain unchanged

upon above identification [as well as the expression of
the angular Hamiltonian (32) via generators H, K, D], we
conclude that listed generators form superconformal alge-
bra suð1; 1jNÞ with the central charge (45).
Finally, notice that in Eq. (60), the nonzero constant

g ≠ 0 appears, and the range of validity of the action
variables is fixed to be Iα ∈ ½0;∞Þ. As a result, standard
free particle and conformal mechanics cannot be included
in the proposed description, since for these systems, we
should choose g ¼ 0; Iα ∈ ½0;∞Þ. To exclude this con-
stant, we should replace the initial generators by the
following ones:

H ≔ H −
gðg − 2IÞ

4K
; Hα ≔ Hα þ {g

Kα

2K
;

QA ≔ QA − {g
SA
2K

: ð63Þ

This deformation will further “nonlinearize” the dynami-
cal supersymmetry algebra suð1; NjMÞ.

V. OSCILLATOR- AND COULOMB-LIKE
SYSTEMS

In the previous section, we mentioned that the angular
Hamiltonian (60) defines the superintegrable deformations
ofN-dimensional oscillator and Coulomb system [14], while
in [5], the examples of such systems on noncompact
projective space fCPN playing the role of phase space were
constructed. So, one can expect that on the phase superspacefCPNjM, one can construct the supercounterparts of that
systems, which presumably, possess (deformed) N ¼ 2M,
d ¼ 1 Poincaré supersymmetry. Below, we examine this
question and show that our claim is correct in some particular
cases.

A. Oscillatorlike systems

We define the supersymmetric oscillatorlike system by
the phase space fCPNjM [equipped with the Poisson brackets
(16)] by the Hamiltonian,

Hosc ¼ H þ ω2K; ð64Þ

where the generators H, K are given by Eq. (19). In
canonical coordinates (50), it reads

Hosc ¼
p2
r

2
þðgþP

N−1
α¼1 παþ

P
M
A¼1 {χ̄

AχAÞ2
r2

þω2r2

2
: ð65Þ

This system possesses the uðN − 1Þ symmetry given by the
generators hαβ̄ defined in Eq. (20) (among them N − 1

constants of motion πα are functionally independent), the
uðMÞ R symmetry given by the generators RAB̄ (22) as well
as N − 1 hidden symmetries given by the generators,

Mαβ ¼ ðHα þ {ωKαÞðHβ − {ωKβÞ

¼ z̄αz̄β

A2
ðw2 þ ω2Þ∶ fHosc;Mαβg ¼ 0: ð66Þ

The generators (66) and the suðNÞ generators hαβ̄ form the
following symmetry algebra:

fhαβ̄;Mγδg¼ {ðMαδδγβ̄þMγαδδβ̄Þ; fMαβ;Mγδg¼0; ð67Þ

fMαβ; M̄γδg ¼ {

�
4ω2Ihαδ̄hβγ̄ −

MαβM̄γδ

hαγ̄
δαγ̄ −

MαβM̄γδ

hαδ̄
δαδ̄

−
MαβM̄γδ

hβγ̄
δβγ̄ −

MαβM̄γδ

hβδ̄
δβδ̄

�
; ð68Þ

with I given by Eq. (30) and summation over repeated
indices is not assumed.
Besides, this system has a fermionic constant of motion

ΘAᾱ defined in Eq. (21). Hence, it is superintegrable system
in the sense of super-Liouville theorem; i.e., it has 2N − 1
bosonic and 2M fermionic, functionally independent,
constants of motion [11]. Further generalization to the
systems with angular Hamiltonian (60) is straightforward.
Let us show, that for the even M ¼ 2k this system

possesses the deformed N ¼ 2k Poincaré supersymmetry,
in the sense of papers [9]. For this purpose, we choose the
following Ansatz for supercharges:

QA ¼ QA þ ωCABS̄B; ð69Þ

with the constant matrix CAB obeying the conditions,

CAB þ CBA ¼ 0; CABC̄BD ¼ −δAD̄: ð70Þ

For sure, the condition (70) assumes that M is an even
number, M ¼ 2k.
Calculating Poisson brackets of the functions (69), we

get

fQA; Q̄Bg ¼ HoscδAB; fQA;QBg ¼ −{ωGAB;

fQ̄A; Q̄Bg ¼ {ωḠAB; ð71Þ

where

3To our best knowledge, action-angle variables for the angular
part of the rational Calogero models are not yet constructed
explicitly. However, we have at hand, the spectrum of the angular
part of rational Calogero model [19]. Taking its (semi)classical
limit, we can conclude that it has the form Eq. (60); see, e.g., [14].
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GAB ≔ CACRBC̄ þ CBCRAC̄;

GĀ B̄ ≔ ḠAB ¼ C̄ACRCB̄ þ C̄BCRCĀ;

ḠAB ¼ C̄ACC̄DBGDC: ð72Þ

Then, we get that the algebra of generators QA, Hosc, GB
A is

closed indeed,

fQA;Hoscg ¼ ωCABQB; fGAB;Hoscg ¼ 0; ð73Þ

fQA;GBCg ¼ {ðCABQC þ CACQBÞ;
fQA; ḠBCg ¼ −{ðC̄BDQDδAC̄ þ C̄CDQDδAB̄Þ: ð74Þ

Hence, for the M ¼ 2k, the above oscillatorlike system
(64) possesses deformed N ¼ 4k supersymmetry. In the
particular case M ¼ 2, the choice of the matrix CAB is
unique (up to unessential phase factor): CAB ≔ eκεAB. In
that case, the above relations define the superalgebra
suð1j2Þ-deformation of N ¼ 4 Poincaré supersymmetric
mechanics studied in details in [9]. For the k ≥ 2, the
choice of matrices CAB is not unique, and we get the family
of deformed N ¼ 4k Poincaré supersymmetric mechanics.
Let us present other deformed N ¼ 2M Poincaré super-

symmetric systems, whose bosonic part is different from
those of Eq. (64) but nevertheless, has the oscillator potential.
For this purpose, we choose another ansatz for super-

charges (in contrast with previous caseM is not restricted to
be even number),

Q̃A ¼ QA þ {ωSA: ð75Þ

These supercharges generates the suð1jMÞ superalgebra,
and thus generalizes the systems considered in [9] to
arbitrary M,

fQ̃A;
¯̃QBg ¼ HoscδAB − ωRA

B; fQ̃A; Q̃Bg ¼ 0;

fRB
A;R

D
Cg ¼ {ðRD

A δ
B
C −RB

Cδ
D
A Þ ð76Þ

fQ̃A;RC
Bg ¼ {

�
1

M
Q̃AδBC̄ þ Q̃BδAC̄

�
;

fQ̃A;Hoscg ¼ {ω
2M − 1

M
Q̃A; ð77Þ

where

Hosc ≔ Hosc − ω

�
I þ 1

M

X
C

RCC̄

�
;

RB
A ≔ RAB̄ −

1

M
δBA
X
C

RCC̄ ð78Þ

with I defined by Eq. (30). Hence, the Hamiltonian get the
additional bosonic term proportional to the Casimir of
conformal group. In canonical coordinates (50), it reads

Hosc ¼
p2
r

2
þ I
r2

þ ω2r2

2
− ω

� ffiffiffiffiffiffi
2I

p
þ 1

M
ðχ̄χÞ

�
: ð79Þ

This Hamiltonian, seemingly, describes the oscillatorlike
systems specified by the presence of external mag-
netic field.
So, choosing fCPNjM as a phase superspace, we can

easily construct superintegrable oscillatorlike systems,
which possess deformed N ¼ 2M, d ¼ 1 Poincaré
supersymmetry.

B. Coulomb-like systems

Now, let us construct on the phase space fCPNjM with the
Poisson bracket relations (16), the Coulomb-like system
given by the Hamiltonian,

HCoul ¼ H þ γffiffiffiffiffiffiffi
2K

p ; ð80Þ

where the generators H, K are defined by Eq. (19).
The bosonic constants of motion of this system are given

by the uðN − 1Þ symmetry generators hαβ, and by the
N − 1 additional constants of motion,

Rα¼Hαþ {γ
Kα

I
ffiffiffiffiffiffiffi
2K

p ∶ fHCoul;Rαg¼fHCoul;hαβ̄g¼0; ð81Þ

where Hα; Kα; ηαβ̄ are defined by Eq. (20). These gener-
ators form the algebra,

fRα; R̄β̄g ¼ −{δαβ̄

�
HCoul −

{γ2

2I2

�
þ {γ2hαβ̄

2I3
;

fhαβ̄; Rγg ¼ {δγβ̄Rα; fRα; Rβg ¼ 0: ð82Þ

Besides, proposed system has 2M fermionic constants of
motion given by ΘAᾱ and uðMÞ R symmetry given by RAB̄.
Hence, it is superintegrable in the sense of super-Liouville
theorem [11]. So, we constructed the maximally super-
integrable Coulomb problem with dynamical suð1; NjMÞ
superconformal symmetry, which inherits all symmetries of
initial bosonic system.
One can expect, that in analogy with oscillatorlike

system, our Coulomb-like system would possess
(deformed) N ¼ 2M-super-Poincaré symmetry for M ¼
2k and γ > 1. However, it is not the case.
Indeed, let us choose the following Ansatz for super-

charges:

QA ¼ QA þ
ffiffiffiffiffi
2γ

p
CAB

S̄B
ð2KÞ3=4 ; ð83Þ

with the constant matrix CAB obeying the conditions (70),
M ¼ 2k and γ > 0.
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Calculating their Poisson brackets, we find

fQA;Q̄Bg¼HCoulδAB̄þ
3

2

ffiffiffiffiffi
2γ

p
ð2KÞ7=4 ðSAC̄BDSDþ S̄BCADS̄DÞ;

ð84Þ

fQA;QBg ¼ −
{

ffiffiffiffiffi
2γ

p
2ð2KÞ3=4 ðCBDRD

A þ CACRD
B Þ;

fQA;RC
Bg ¼ −{QBδAC̄; ð85Þ

where RA
B is defined in Eq. (78).

Further calculating the Poisson brackets of QA with the
generators appearing in the rhs of the above expressions,
we get that the superalgebra is not closed. For example,

fQA;HCoulg ¼
3γ

ð2KÞ3=2 SAþ
ffiffiffiffiffi
2γ

p
ð2KÞ3=4CAB

�
Q̄B−

3

4K
S̄BD

�
:

ð86Þ

Hence, proposed supercharges do not yield closed defor-
mation of N ¼ 2M-super-Poincaré algebra.
Let us choose another ansatz for supercharges (as above

we assume that γ > 0),

Q̃A ¼ QA þ {
ffiffiffiffiffi
2γ

p
e{

π
2

SA
ð2KÞ3=4 ; ð87Þ

which yields

fQ̃A;
¯̃QBg ¼ HCoulδAB̄ þ

ffiffiffiffiffi
2γ

p
2ð2KÞ3=4R

B
A; fQ̃A; Q̃Bg ¼ 0;

fQ̃A;RC
Bg ¼ {

�
1

M
Q̃AδBC̄ − Q̃BδAC̄

�
; ð88Þ

where

HCoul ¼ HCoul −
ffiffiffiffiffi
2γ

p
ð2KÞ3=4

�
I −

1

2M

X
C

RCC̄

�
; ð89Þ

with I and RA
B are defined, respectively, in Eqs. (55) and

(78). In canonical coordinates (50), this Hamiltonian reads

HCoul ¼
pr

2
þ I
r2

þ γ

r
−

ffiffiffiffiffi
2γ

p
r3=2

�
gþ

X
α

πα þ
2M − 1

2M
ðχ̄χÞ

�
:

ð90Þ

However, one can easily check that proposed supercharges
do not yield closed deformation of Poincaré superalgebra as
well, e.g.,

�
Q̃A;

RC
B

ð2KÞ3=4
	

¼ {

ð2KÞ3=4
�
1

M
Q̃AδBC̄ − Q̃BδAC̄

�

þ 3

2

SA
ð2KÞ7=4 R

C
B: ð91Þ

So, proposed superextensions of Coulomb-like systems,
being well-defined from the viewpoint of superintegrabil-
ity, do not possess neitherN ¼ 2M supersymmetry, nor its
deformation. The suð1; NjMÞ superalgebra plays the role of
dynamical algebra of that systems.

VI. FUBINI-STUDY-LIKE KÄHLER STRUCTURE

The above considered super-Kähler structure is obviously
the higher-dimensional superanalogue of the Klein model of
Lobachevsky space. On the other hand, Lobachevsky space
has other common parametrization as well, which is known
as Poincaré disc [7]. The higher-dimensional generalization
of Poincaré disc parametrizing the noncompact complex
projective space is quite similar to the Fubini-Study structure
for CPN. It is defined by the Kähler potential,

K ¼ −g log
�
1 −

XN
a¼1

zaz̄a
�
: ð92Þ

For the obtaining of the superanalogue of this potential from
C1;NjM, one should pass from the matrix (6) to the diagonal
matrix γab̄ ¼ diagð1;−1;…;−1Þ. This can be done by the
transformation,

v0 →
v0 þ vNffiffiffi

2
p ; vN →

v0 − vN

{
ffiffiffi
2

p : ð93Þ

On the reduced phase space (93) corresponds to the
transformation,

w → {
zN − 1

zN þ 1
; zα →

ffiffiffi
2

p zα

zN þ 1
;

θA →
ffiffiffi
2

p θA

zN þ 1
: ð94Þ

Thus, we will get the Fubini-Study-like Kähler potential,

K ¼ −g logð1 − zcz̄c þ {θCθ̄CÞ; ð95Þ

which defines the following Kähler structure:

Ω¼ {
g

��
gδab̄
Ã

þ z̄azb

Ã2

�
dza ∧ dz̄bþ {θ̄Aza

Ã2
dθA ∧ dz̄a

−
{z̄aθA

Ã2
dza ∧ dθ̄A −

�
gδAB̄
Ã

þ θ̄AθB

Ã2

�
dθA ∧ dθ̄B

�
; ð96Þ

where we have used a similar notation as in Eq. (15),
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Ã ≔
1 − zcz̄c þ {θCθ̄C

g
: ð97Þ

The respective Poisson brackets read

fza; z̄bg ¼ {Ãðδab̄ − zaz̄bÞ; fza; θ̄Ag ¼ {Ãzaθ̄A;

fθA; θ̄Bg ¼ ÃðδAB̄ þ θAθ̄BÞ: ð98Þ

Now let us introduce the canonical coordinates, but now
taking the symplectic/Kähler one form associated with the
Kähler potential (95), i.e., the one that define “Fubini-
Study”-like metric. Then, as before, one needs to identify it
with the canonical one, and this canonical coordinates will
play the role of “Cartesian” coordinates instead of the
“spherical” ones discussed above,

Ã ¼ −
g
2

{ðz̄adza − zadz̄aÞ þ θAdθ̄A þ θ̄AdθA

1 − zcz̄c þ {θCθ̄C

≔ padφa þ
1

2
χAdχ̄A þ 1

2
χ̄AdχA: ð99Þ

It leads to the relations,

za ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pa

gþ p − {χCχ̄C

r
e{φa ; θA ¼

ffiffiffi
2

p

r
χA;

p ¼
X
a

pa; ð100Þ

or

pa ¼
zaz̄a

Ã
; φa ¼ argðzaÞ; χA ¼ θAffiffiffiffĩ

A
p ; ð101Þ

where Ã is defined by Eq. (97).
These coordinates are related with Eq. (50) as follows:

pα ¼ πα; pN ¼ 1

4

�
p2
r þ

�
r −

ffiffiffiffiffiffi
2I

p

r

�2�
;

φN ¼ arctan

�
2xy

ðx − yÞðxþ yÞ
�
; ð102Þ

where

x ¼ 1 −
p2
r

r2
−
2I
r4

; y ¼ pr

r
; ð103Þ

while χA and φα remains unchanged after transition from
one parametrization to the other.
Finally, let us draw readers attention to the complete

similarity of the bosonic part of Eq. (100) with the equations
mapping parametrizing compactified Ruijsenaars-Schneider
model with an excluded center of mass to the complex
projective (phase) space CPN . This prompt us, at first, to

construct the conformal-invariant analogue of that model
by replacing the complex projective space by its non-
compact analogue fCPN . Then, one can try to construct its
suð1; NjMÞ-supeconformal extension by further replacement

of fCPN by fCPNjM.

VII. CONCLUDING REMARKS

In this paper, we suggested to construct the suð1; NjMÞ-
superconformal mechanics formulating them on phase
superspace given by the noncompact analogue of complex

projective superspace fCPNjM. The suð1; NjMÞ symmetry
generators were defined there as a Killing potentials offCPNjM. We parametrized this phase space by the specific
coordinates allowing us to interpret it as a higher-
dimensional superanalogue of the Lobachevsky plane
parametrized by lower half-plane (Klein model). Then,
we transited to the canonical coordinates corresponding to
the known separation of the “radial” and “angular” parts of
(super)conformal mechanics. Relating the “angular” coor-
dinates with action-angle variables, we demonstrated that
the proposed scheme allows us to construct the suð1; NjMÞ
supeconformal extensions of wide class of superintegrable
systems. We also proposed the superintegrable oscillator-
and Coulomb-like systems with a suð1; NjMÞ dynamical
superalgebra, and found that oscillatorlike systems admit
deformed N ¼ 2M Poincaré supersymmetry, in contrast
with Coulomb-like ones.
In fact, the proposed scheme demonstrated the effective-

ness of the supersymmetrization via formulation of the
initial systems in terms of Kähler phase space and further
superextension of the latter. In order to relate considered
systems with the conventional ones (with Euclidean con-
figuration spaces), we restricted ourself by the noncompact
complex projective superspace. So, we are sure that
applying the same approach to the conventional (compact)
complex projective spaces, we can find many new inte-
grable systems as well and construct their unexpected
extended supersymmetric extensions.
The proposed scheme could obviously be extended to the

systems on complex Grassmanians (and on their non-
compact analogues). In particular, we expect to find, in
this way, the N -supersymmetric extensions of compacti-
fied spin-Ruijsenaars-Schneider models. Moreover, it
seems to be straightforward task to apply proposed
approach to the systems with generic UðNÞ-invariant
Kähler phase spaces locally defined by the Kähler potential
Kðzaz̄aÞ. We expect that it can be done in terms of Kähler
phase superspace locally defined by the potential,

K̃ ¼ Kðzaz̄a þ {ηaη̄AÞ: ð104Þ

In this way, we expect to construct the N ¼ 2M super-
symmetric extensions of the systems with curved
(Riemann) configuration space as well, in particular, of
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the so-called κ-deformations (i.e., spherical/hyperbolic
generalizations) of conformal mechanics, oscillator, and
Coulomb systems [20,21].
Finally, notice that considered phase superspace is not

associated with external algebra of initial bosonic mani-
fold, and thus, it is not related with the superfield
approach. Thus, it is interesting to consider the systems
with ðNjkMÞ-dimensional Kähler phase superspaces
defined by the potentials,

K̃ ¼ Kðzaz̄aÞ þ Fð{gab̄ηaαη̄bαÞ; F0ð0Þ ¼ const; ð105Þ

and construct, in this way, the N ¼ kN supersymmetric
mechanics. A very preliminary attempt in this direction
was done in [22], where the N ¼ 2 supersymmetric
extensions of the systems with generic Kähler phase

space was considered. However, this promising direction
was not further developed since that time. We plan to
consider listed problems elsewhere.
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