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Employing time-dependent perturbation theory, we discuss the conditions under which a spatially
extended two level Unruh-DeWitt detector, coupled to the proper time derivative of a scalar field, can drive
itself into a coherent superposition of its energy basis. It is shown that this process, which is assisted due to
the energy cost required for the implementation of the interaction, is only possible for a field with a nonzero
coherent amplitude distribution. When the detector interacts instantaneously with the field through a delta
coupling, the latter acts as a catalyst resulting in the extraction of the same amount of coherence each time
at the cost of a positive amount of work. For a Gaussian smeared detector and a field in a coherent state the
amount generated to lowest order in the coupling constant depends on the phase of the amplitude
distribution, the initial energy of the field, the mean radius of the detector and the mean interaction duration
between the two. We observe that for a detector moving at a constant velocity and with a mean radius of the
same order as its transition wavelength, coherence swelling effects are present the intensity of which
depends on the dimension of the underlying Minkowski spacetime.

DOI: 10.1103/PhysRevD.105.025006

I. INTRODUCTION

Superposition is one of the most striking phenomena
which distinguishes quantum from classical physics. The
degree to which a system is superposed between different
orthogonal states is known as coherence [1–3]. Much like
entanglement [4], coherence is considered to be a valuable
resource in quantum information processes. In quantum
computing [5,6], where information is encoded in the states
of two-level systems, algorithms designed to operate in
superposition, are exponentially faster than their classical
counterparts [7–9]. Coherence is so central to the develop-
ment of a universal quantum computer that it is used as a
metric for the quality of a quantum processor. The time that it
takes for a qubit to effectively decohere due to noise is known
as the dephasing time with current processors achieving
times of a few hundred microseconds. Coherent phenomena
are important in other fields of research also, such as quantum
metrology [10] and thermodynamics [11–15] for example.
Surprisingly, thepossible presence of coherence in biological
processes has been suggested as an explanation for the
efficiency of energy transport during photosynthesis [16].
A simple method of obtaining coherence is by extracting

it from another system. Driven by similar research on
entanglement harvesting protocols (see, e.g., [17–26]) and
the deep connection that exists between entanglement
and coherence [27–29], it was recently demonstrated that

a two-level pointlike Unruh-DeWitt (UDW) detector
[30–32], initially in its ground energy state, interacting
with a coherent massless scalar field in 1þ 1 flat space-
time, can drive itself into a superposition of its energy basis
[33]. As it turns out, the amount of coherence obtained
depends on the initial energy of the field, the mean
interaction duration and the detector’s state of motion.
For a detector moving at relativistic speeds when the gap
between its energy levels is greater than the initial energy of
the field, it is possible to extract a larger amount of
coherence compared to a static detector, a phenomenon
dubbed by the authors as “coherence swelling.” These
relativistic effects may therefore be exploited as a possible
mechanism against environmentally induced decoherence
and could find applications in future quantum information
technologies based in space [34].
In this article, we provide a thorough study of the

conditions under which coherence generation in the detec-
tor is possible for any initial state of the field in nþ 1

dimensional Minkowski spacetime. In order to achieve this
and to avoid the problem of IR divergences that plague the
1þ 1 dimensional case of a linear coupling between
detector and field [35], we instead consider an interaction
in which the detector is coupled to the proper time
derivative of the field. Under the assumption that there
is no exchange of angular momentum, both models contain
all the essential features of matter interacting with radiation
[36,37], so they provide a useful benchmark for studying
possible applications of relativistic effects in quantum
information processing. Acknowledging the fact that a
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pointlike detector is an abstraction and not a physical
system—an atom or an elementary particle, for example,
has a finite size—and to make our results as relevant as
possible we take into consideration the spatial extension of
the detector.
We will show that when the interaction between detector

and field is instantaneous coherence generation is catalytic
[38]. At the cost of some energy, which assists in the overall
process, it is possible to repeatedly obtain the same amount
of coherence each time. For an inertial detector moving at a
constant velocity it is proven that, under suitable condi-
tions, this is also the maximum amount that can be
obtained. As an example we consider the case of generating
coherence with the help of a coherent scalar field. We find
that the process depends on the phase of the field’s coherent
amplitude distribution, its initial energy, the mean radius of
the detector and the mean interaction duration between the
two. We conclude that even in the case of a spatially
extended detector swelling effects are still present but these
are weaker in a 3þ 1 compared to a 1þ 1 dimensional
spacetime.

II. QUANTUM COHERENCE

From a physical point of view coherence reflects the
degree of superposition that a quantum system exhibits when
it simultaneously occupies different orthogonal eigenstates
of an observable of interest [3]. Coherent systems are
considered to be valuable resources in quantum information
processes, becausewith their help it is possible, at the cost of
consuming some of the coherence that they contain, to
simulate transformations that violate conservation laws
associated with the corresponding observable.
Mathematically, let fjiig denote a set of basis states

spanning a finite discrete Hilbert space H, which corre-
spond to the eigenstates of an observable Ô. Any state ρ
which is diagonal in this basis

ρ ¼
X
i

pijiihij ð1Þ

is called incoherent and commutes with Ô. If ρ contains
nondiagonal elements then it is called coherent [1]. In this
case ½ρ; Ô� ≠ 0 [39], and the state changes under the action
of the one parameter group of symmetry transformations
UðsÞ ¼ expð−isÔÞ generated by the observable. This
makes coherent systems useful as reference frames and
reservoirs for the implementation of nonsymmetric trans-
formations [40–43]. For example, for a fixed Hamiltonian
Ĥ, any system that possesses coherence with respect to the
energy basis has a nonzero rate of change, _ρðtÞ ≠ 0, and can
be used as a reference system in order to track the passage
of time. Alternatively this system could be utilized as a
coherent energy reservoir with the help of which it is

possible to perform incoherent transformations on other
systems [38].
The amount of coherence present in a system can be

quantified with the help of a coherence measure. This is a
real valued function Cð·Þ on the set of density matrices D
such that

CðρÞ ≥ 0; ∀ ρ ∈ D ð2Þ

with equality if and only if ρ is incoherent. A simple
example of such a function is given by the l1-norm of
coherence, which is equal to the sum of the modulus of the
system’s nondiagonal elements

CðρÞ ¼
X
i≠j

jρijj ð3Þ

with values ranging between 0 for an incoherent state and
d − 1 for the maximally coherent d-dimensional pure state

jψi ¼ 1ffiffiffi
d

p
Xd−1
i¼0

jii: ð4Þ

In order to extract coherence from a coherent system σ to
an incoherent system ρ it is necessary to bring the two in
contact andmake them interact through a completely positive
and trace preserving quantum operation.When the operation
obeys the conservation law associated with the observable
and is strictly incoherent (in the sense that it maps the set of
incoherent states to itself) the process is called faithful [44].
When this is no longer the case the operation generates extra
coherence, which increases the amount stored in the com-
bined system and can assist in the extraction process [45,46],
in much the same way that a quantum operation which is
nonlocal can create entanglement between two spacelike
separated systems. Since the interaction no longer obeys the
conservation law, this assisted protocol requires a cost in the
physical quantity represented by Ô which needs to be taken
into account.
We shall now demonstrate how to construct such a

protocol for generating coherence onto an UDW detector
with the help of a scalar field. In what follows we shall
assume a flat nþ 1 dimensional spacetime with metric
signature ð−þ � � � þÞ. We will denote spacetime vectors by
sans-serif characters, and the scalar product of vectors x
and y as x · y. Boldface letters represent spatial n-vectors.
Throughout, we make use of natural units in which ℏ ¼
c ¼ 1 and employ the interaction picture for operators and
states.

III. UNRUH-DEWITT DETECTOR MODEL

To study the amount of coherence generated with a
massless scalar field we will employ the help of an UDW
detector which is coupled to the proper time derivative of
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the field [47–49]. In the simplest case considered here, the
detector is modeled as a qubit with two energy levels,
ground jgi and excited jei with energy gap equal to Ω, and
Hamiltonian

ĤD ¼ Ω
2
ðjeihej − jgihgjÞ ð5Þ

which is moving along a worldline xðτÞ parametrized by its
proper time τ. The detector is subsequently made to interact
with a massless scalar field in nþ 1 dimensions

ϕ̂ðxÞ ¼
Z

dnkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2πÞn2jkjp ½âkeik·x þ H:c:�; ð6Þ

with a normal-ordered Hamiltonian of the form

Ĥϕ ¼
Z

jkjâ†kâkdnk; ð7Þ

where âk, and â†k are the creation and annihilation
operators of the field mode with momentum k that satisfy
the canonical commutation relations

½âk; âk0 � ¼ ½â†k; â†k0 � ¼ 0; ½âk; â†k0 � ¼ δðk − k0Þ: ð8Þ

The interaction between detector and field is constructed
by coupling the monopole moment operator

μ̂ðτÞ ¼ eiΩτjeihgj þ e−iΩτjgihej; ð9Þ

to the momentum degrees of freedom of the field through
the following interaction Hamiltonian

ĤintðτÞ ¼ λχðτÞμ̂ðτÞ ⊗ ∂τϕ̂fðxðτÞÞ: ð10Þ

Here, λ is a coupling constant with dimensions ðlengthÞnþ1
2 ,

χðτÞ is a real valued switching function with dimensions
ðtimeÞ−1 that describes the way the interaction is switched
on and off; and ϕ̂fðxðτÞÞ is a smeared field along the
detector’s center of mass worldline xðτÞ ¼ ðtðτÞ;xðτÞÞ,

ϕ̂fðxðτÞÞ ¼
Z
SðτÞ

fðξÞϕ̂ðxðτ; ξÞÞdnξ; ð11Þ

where

xðτ; ξÞ ¼ xðτÞ þ ξ ð12Þ

are the Fermi-Walker coordinates [50] on the simultaneity
hyperplane SðτÞ, which is defined by all those spacelike
vectors ξ normal to the detector’s four-velocity, SðτÞ ¼
fξju · ξ ¼ 0g (see Fig. 1). The real valued function fðξÞ
with dimensions ðlengthÞ−n in Eq. (11) is known as the

smearing function and is a physical reflection of the finite
size and shape of the detector [36,37,51,52].
Compared to the usual UDW interaction in which the

detector is linearly coupled to the field, the derivative
coupling is free of IR divergences which arise due to the
massless nature of the field in the 1þ 1 dimensional case
[35]. The Hamiltonian in Eq. (10) resembles closely the
dipole interaction between an atom with dipole moment d
and an external electromagnetic field. In this case the
electric field operator is defined, in the Coulomb gauge, by
means of the vector potential Âðt;xÞ as Êðt;xÞ ¼
−∂tÂðt;xÞ [53].
Combining Eq. (6) with Eqs. (11) and (12) the smeared

field operator can be written as

ϕ̂fðxðτÞÞ¼
Z

dnkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2πÞn2jkjp ½Fðk;τÞâkeik·xðτÞ þH:c:�; ð13Þ

where

Fðk; τÞ ¼
Z
SðτÞ

fðξÞeik·ξdnξ ð14Þ

is the Fourier transform of the smearing function.
Decomposing the momentum vector k as

k ¼ −ðk · uÞuþ ðk · ζÞζ ð15Þ

FIG. 1. Any point in the neighborhood of the detector’s
worldline can be described by its Fermi-Walker coordinates
ðτ; ξÞ, where the proper time τ indicates its position along the
trajectory and ξ is the displacement vector from this point lying
on the simultaneity hyperplane SðτÞ consisting of all those
spacelike vectors normal to its four-velocity u.
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for some unit vector ζ ∈ SðτÞ, it is easy to show that since
for a massless scalar field k is light-like, ðk · uÞ2 ¼ ðk · ζÞ2.
This means that for a spherically symmetric smearing
function the Fourier transform in Eq. (14) is real and
depends only on jk · uj,

Fðk; τÞ ¼ Fðjk · ujÞ: ð16Þ

IV. GENERATION AND CATALYSIS OF
COHERENCE WITH SCALAR FIELDS

Suppose now that before the interaction is switched on
the combined system of detector and field starts out in a
separable state of the form

jgihgj ⊗ σϕ; ð17Þ

where the detector occupies its lowest energy level and the
field is in a state σϕ. The state of the system after a time at
which the interaction is switched off can be obtained by
evolving Eq. (17) with the unitary operator

Û ¼ T exp

�
−i

Z þ∞

−∞
ĤintðτÞdτ

�
; ð18Þ

where T denotes time ordering. When dealing with an
extended detector interacting with a quantum field, issues
concerning the covariance of the model arise due to the
ambiguity of the way that the time ordering operator acts in
different frames of reference [54,55]. For a detector initially
in a diagonal state of its energy basis, these effects are of
order Oðλ3Þ to the coupling constant and can be safely
ignored in a perturbative treatment like the one considered
here. Setting

Φ̂ ¼
Z þ∞

−∞
χðτÞe−iΩτ∂τϕ̂fðxðτÞÞdτ; ð19Þ

the evolution operator can then be rewritten as

Û ¼ T exp ½−iλðjeihgj ⊗ Φ̂† þ jgihej ⊗ Φ̂Þ�: ð20Þ

Tracing out the field degrees of freedom of the evolved
system and noting that

1

2
ðT ðΦ̂Φ̂†Þ þ ½T ðΦ̂Φ̂†Þ�†Þ ¼ Φ̂Φ̂† ð21Þ

one can obtain the state of the detector after the interaction
which in this case is equal to

ρ ¼

0
B@ 1 − λ2hΦ̂Φ̂†iσϕ iλhΦ̂iσϕ

−iλhΦ̂†iσϕ λ2hΦ̂Φ̂†iσϕ

1
CAþOðλ3Þ; ð22Þ

where hÂiσϕ ¼ trðÂσϕÞ. In a similar fashion, by taking the
partial trace over the detector’s Hilbert space, we can obtain
the state of the field after it has interacted with the detector,

σ0ϕ ¼ σϕ þ λ2Φ̂†σϕΦ̂ −
λ2

2
ðT ðΦ̂Φ̂†Þσϕ þ σϕ½T ðΦ̂Φ̂†Þ�†Þ

þOðλ4Þ: ð23Þ

With the help of Eqs. (3) and (22) it can be seen that the
amount of coherence generated in the detector to lowest
order in the coupling constant is equal to

C ¼ 2λjtrðΦ̂σϕÞj: ð24Þ

Defining

F�ðkÞ ¼
Z þ∞

−∞
χðτÞe�iΩτ∂τ½Fðk; τÞeik·xðτÞ�dτ; ð25Þ

Eq. (24) can be written as

C ¼ 2λ

����
Z

dnkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2πÞn2jkjp ½F−ðkÞaðkÞ þ F �þðkÞa�ðkÞ�
����;
ð26Þ

where

aðkÞ ¼ trðâkσϕÞ ð27Þ

is the coherent amplitude distribution of the field.
Suppose now that we wish to repeat the process and

extract coherence onto a fresh detector copy. From
Eqs. (21)–(24) it is easy to see that

hΦ̂iσ0ϕ ¼ hΦ̂iσϕ þ
λ2

2
h½Φ̂; ½T ðΦ̂Φ̂†Þ�†�iσϕ þOðλ4Þ: ð28Þ

This means that to lowest order the amount of coherence
generated remains the same.
Let us focus our attention on normalized smearing and

switching functions such thatZ þ∞

−∞
χðτÞdτ ¼

Z
SðτÞ

fðξÞdnξ ¼ 1; ð29Þ

and define

R ¼
Z
SðτÞ

jξjfðξÞdnξ ð30Þ

as the mean radius of the detector and

T ¼
Z þ∞

−∞
jτjχðτÞdτ ð31Þ
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as themean interaction duration. This will make it easier to
compare different setups and will enable the study, in a
unified way, of the effects that different sizes and finite
interaction durations have on the extraction process.
In the limiting case of an instantaneous interaction for

which χðτÞ ¼ δðτÞ,

Φ̂ ¼ Φ̂† ¼ dϕ̂fðxðτÞÞ
dτ

����
τ¼0

ð32Þ

and the amount of coherence generated each time is
exactly the same to any order (for more details see
Appendix B). When the detector interacts with the field
through a delta coupling, the process is catalytic
[38,56,57]. Because the interaction Hamiltonian does
not commute with the unperturbed part, ĤD þ Ĥϕ, of
the total Hamiltonian, the process requires an outside
supply of positive energy ΔE each time [58,59]. Energy
nonconserving unitaries like the one in Eq. (18) can
increase the coherence of the combined system assisting
in the extraction process [45,46] (see Fig. 2). Roughly
speaking the terms that are equal to λF�ðkÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2πÞn2jkjp
in Eq. (26) correspond to the contribution to the amount of
obtained coherence due to the interaction while aðkÞ is the
same contribution due to the field. It is clear that a
necessary condition for generating a non trivial amount
of coherence is for the field to be in a state with a nonzero
coherent amplitude distribution.

V. INERTIAL DETECTORS

We will now consider an inertial detector which is
moving along a worldline with a constant velocity υ,
and whose center of mass coordinates is given by

xðτÞ ¼ uτ; ð33Þ

where u ¼ γð1; υÞ is its four-velocity, with γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − υ2

p
the Lorentz factor. For a spherically symmetric smearing
function with a positive Fourier transform, it can be
proven that
Theorem.—For a suitable choice of the coherent

amplitude distribution’s phase the maximum amount of
generated coherence to lowest order, is obtained by a
detector interacting instantaneously with the field.
Proof.—Taking the absolute value inside the integral in

Eq. (26) we find that

C ≤ 2λ

Z
dnkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2πÞn2jkjp jaðkÞj½jF−ðkÞj þ jFþðkÞj�: ð34Þ

For a detector moving with a constant velocity the Fourier
transform of the smearing function no longer depends on its
proper time, in this case

F−ðkÞ ¼ iðk · uÞFðjk · ujÞX�ðΩ − k · uÞ ð35Þ

and

FþðkÞ ¼ iðk · uÞFðjk · ujÞXðΩþ k · uÞ ð36Þ

where

XðΩ� k · uÞ ¼
Z þ∞

−∞
χðτÞeiðΩ�k·uÞτdτ: ð37Þ

Because of the normalization property in Eq. (29),
jXðΩ� k · uÞj ≤ 1, this means that

C ≤ 4λ

Z ð−k · uÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2πÞn2jkjp Fðjk · ujÞjaðkÞjdnk; ð38Þ

where equality holds for χðτÞ ¼ δðτÞ and a coherent
amplitude distribution with phase, argðaðkÞÞ ¼ π

2
.

Note that in the linear interactionwhere the factor ð−k · uÞ
in the numerator is absent, the above Theorem holds for an
arbitrary motion of the detector as long as xð0Þ ¼ 0. ▪
If the Fourier transform of the smearing function is not

positive then Eq. (38) is only an upper bound on the amount
of obtained coherence. It is noteworthy to point out that
coupling the detector locally with the field through an
instantaneous interaction is capable of generating coher-
ence, while in the context of entanglement harvesting two
spacelike separated detectors, each interacting instantane-
ously with the field, are unable to extract any entangle-
ment [60].
If the amplitude distribution is also spherically symmet-

ric then

FIG. 2. Generating quantum coherence with scalar fields: A
moving two-level system, initially in its ground state at some time
t < ton, interacts with a massless scalar field through a derivative
coupling. The interaction requires an external flow of energy
which assists in the extraction process by increasing the com-
bined system’s coherence. After the interaction is switched off at
a time toff the detector will find itself in a superposition between
its energy levels.
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C ¼ 2λ

����
Z ð−k · uÞFðjk · ujÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2πÞn2jkjp ½aðjkjÞX�ðΩ − k · uÞ

−a�ðjkjÞXðΩþ k · uÞ�dnk
����; ð39Þ

which for a static detector reduces to

C ¼ 2λsnffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞnp ����

Z
∞

0

kn−
1
2FðkÞ½aðkÞX�ðΩþ kÞ

−a�ðkÞXðΩ − kÞ�dk
����; ð40Þ

where sn ¼ 2πn=2=Γðn=2Þ denotes the surface area of the
unit n-sphere. By boosting the four-momentum k to the
detector’s frame of reference it can be shown that Eq. (39) is
equivalent to Eq. (40) with a symmetric coherent amplitude
distribution aυðkÞ of the form

aυðkÞ ¼
1

sn

Z
a

�
k

γð1 − υ · k̂Þ

�
dk̂

½γð1 − υ · k̂Þ�n−1
2

: ð41Þ

From the detector’s point of view then, the field’s
coherent amplitude is perceived as a continuous mixture
of Doppler shifted distributions with weight equal to
½snðγ − γυ · k̂Þn−1

2�−1. For a similar result regarding the
interaction of an inertial detector with a heat bath see [61].

VI. GENERATION AND CATALYSIS OF
COHERENCE WITH A COHERENT FIELD

For a coherent state jai of the field, the coherent amplitude
distribution in Eq. (27) evaluated at k is equal to the
eigenvalue of the annihilation operator with the same mode

âkjai ¼ aðkÞjai; ð42Þ

in this case the amount of coherence generated to lowest order
is given by the expectation value of the field operator Φ̂

C ¼ 2λjhajΦ̂jaij: ð43Þ

Let us consider an inertial detector and an extraction
process in which the switching and smearing functions are
given by Gaussians

χðτÞ ¼
exp

�
− τ2

πT2

�
πT

ð44Þ

fðξÞ ¼
exp

�
− ξ2

πR2
n

�
ðπRnÞn

; ð45Þ

with widths
ffiffi
π
2

p
T and

ffiffi
π
2

p
Rn respectively while the state

of the field is described by a coherent amplitude

distribution with a unit average number of excited quanta
of the form

aðkÞ ¼
exp

�
− k2

2πE2
n
þ i πr

2

�
ðπEnÞn=2

; r ¼ 0; 1 ð46Þ

where

En ¼
snþ1

πsn
E and Rn ¼

snþ1

πsn
R; ð47Þ

with E ¼ hajĤϕjai the mean initial energy of the field.
Note that even though technically speaking the support of
Eq. (44) is no longer compact the analysis is expected to
present a good approximation to a compact switching
function of the form

χðτÞ ¼
(

exp
�
− τ2

πT2

�
=ðπTÞ; jτj ≤ 4

ffiffiffi
π

p
T

0; otherwise
ð48Þ

We will now treat the static and moving cases separately.

A. Static detector

For υ ¼ 0 the Fourier transforms of the switching and
smearing functions are equal to

XðΩ� kÞ ¼ exp

�
−
πðΩ� kÞ2T2

4

	
ð49Þ

and

FðkÞ ¼ exp

�
−
πk2R2

n

4

	
ð50Þ

respectively. Inserting these expressions into Eq. (40) we
obtain that the amount of generated coherence, which now
depends on the initial energy of the field, the mean
interaction duration and the mean radius of the detector
is equal to

CðE;T;RÞ¼ 4λsnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2π2EnÞn

p e−
πΩ2T2

4

×
Z

∞

0

kn−
1
2e−ak

2

sinh1−rðbkÞcoshrðbkÞdk; ð51Þ

with

a ¼ 1

2πE2
n

�
1þ π2E2

nðR2
n þ T2Þ
2

	
; b ¼ πΩT2

2
: ð52Þ

The integral on the right-hand side of Eq. (51) can be
rewritten in terms of parabolic cylinder functions [62],
DpðzÞ, in the following way

NIKOLAOS K. KOLLAS and DIMITRIS MOUSTOS PHYS. REV. D 105, 025006 (2022)

025006-6



Z
∞

0

kn−
1
2e−ak

2

sinh1−rðbkÞcoshrðbkÞdk

¼ Γðnþ 1
2
Þ

2ð2aÞn2þ1
4

e
b2
8a

�
D−n−1

2

�
−

bffiffiffiffiffi
2a

p
�

− ð−1ÞrD−n−1
2

�
bffiffiffiffiffi
2a

p
�	

; b > 0: ð53Þ

In Figs. 3 and 4 we present the amount of coherence
obtained in this case, scaled by the dimensionless coupling
constant λ̄ ¼ λΩnþ1

2 , as a function of the initial mean energy

E of the field (in units Ω) and the interaction duration T (in
units 1=Ω) for a 1þ 1 and a 3þ 1 dimensional Mikowski
spacetime respectively. In order to simplify the situation we
will tacitly assume from now on that the mean radius of the
detector is equal to its transition wavelength R ¼ 1=Ω. It is
clear from both figures that the process depends strongly on
the phase of the coherent amplitude distribution. For r ¼ 1
and for a fixed initial field energy, the maximum amount
that can be generated is achieved through the use of an
instantaneous interaction (T ¼ 0), in full agreement with
the Theorem of Sec. V. On the contrary for a phaseless

FIG. 3. Amount of coherence C=λ̄ generated with the help of a coherent scalar field in 1þ 1 dimensions and a Gaussian amplitude
distribution with phase (a) ϕ ¼ π

2
and (b) ϕ ¼ 0, as a function of the mean initial energy of the field (in unitsΩ) and the mean interaction

duration (in units 1=Ω), for a detector with mean radius R ¼ 1=Ω.

FIG. 4. Amount of coherence C=λ̄ generated with the help of a coherent scalar field a coherent scalar field in 3þ 1 dimensions and a
Gaussian amplitude distribution with phase (a) ϕ ¼ π

2
and (b) ϕ ¼ 0, as a function of the mean initial energy of the field (in units Ω) and

the mean interaction duration (in units 1=Ω), for a detector with mean radius R ¼ 1=Ω
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coherent amplitude it is impossible to generate coherence to
a detector which is interacting instantaneously with the
field. In this case the maximum is obtained for interaction
durations comparable to the mean radius. In both settings, if
the initial energy of the field is zero the detector will remain
incoherent after the interaction takes place. This is also true
for very large energy values. Qualitatively, the process is
more efficient for field energies comparable to the energy
gap. For a resonant energy of the field, E ¼ Ω, it is possible
to extend the duration of the process to greater interaction
times compared to other energies and still extract a small
amount of coherence.

B. Detector moving at a constant velocity

According to Eq. (41), a detector moving at a constant
velocity still perceives the field as a coherent state but in a
mixture of static coherent amplitude distributions of the
form (46) with Doppler shifted energies equal to

Eðυk̂Þ ¼ Eγð1 − υ · k̂Þ: ð54Þ

For the specific choice of phase for the coherent amplitude
distribution the amount of generated coherence in this case
can also be written as a continuous mixture of static

coherences with mean field energy Eðυk̂Þ and weight equal
to

h
snðγ − γυ · k̂Þn−12

i
−1

CυðE; T; RÞ ¼
1

sn

Z
CðEðυk̂Þ; T; RÞh
γð1 − υ · k̂Þ

in−1
2

dk̂: ð55Þ

In Figs. 5 and 6 we numerically evaluate this amount for a
detector moving at a constant relativistic speed of υ ¼ 0.8,
in 1þ 1 and 3þ 1 dimensions respectively. We observe
that close to resonance the amount of coherence obtained
decreases when compared to the static case, a fact which
holds true for any value of the detector’s speed. As in [33],
for lower and higher initial energies of the field there exist
coherence “swelling” regions, where it is possible to extract
more coherence to a moving than to a static detector.
However, even though the parameter space in which
swelling is present is larger in the 3þ 1 dimensional case
this effect is less prominent than a lower spacetime
dimension.

C. Assisted catalysis

As it has already been mentioned, for an instantaneous
interaction the process is catalytic. Despite the fact that

FIG. 5. Left: amount of generated coherence, C0.8=λ̄, in 1þ 1 dimensions. Center: amount of coherence swelling C0=C0.8. Right:
comparison between a static and a moving detector for an initial energy of the field E ¼ 0.1Ω.
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after each extraction the state of the field has changed, it is
possible to repeat the process in order to generate the same
amount of coherence to a sequence of detectors. Ignoring
the trivial case of a phaseless coherent amplitude distribu-
tion which does not yield any coherence, it is easy to show
by setting T ¼ 0 in Eq. (51) that for a distribution with
phase ϕ ¼ π

2
each static detector will generate

CðEÞ ¼ 4λΓð3=4Þ
ð2πÞ14

E�
1þ π2E2

2Ω2

�3
4

ð56Þ

units of coherence in 1þ 1 and

CðEÞ ¼ 2λΓð7=4Þ
ð2πÞ14

E2�
1þ π2E2

32Ω2

�7
4

ð57Þ

in 3þ 1 dimensions respectively. Inserting the above
expressions into Eq. (55), we obtain the amount of
coherence generated in a detector moving at a constant
velocity

CυðEÞ ¼
2λΓð3=4Þ
ð2πÞ14

"
Eþ�

1þ π2E2
þ

2Ω2

�3
4

þ E−�
1þ π2E2

−
2Ω2

�3
4

#
ð58Þ

in 1þ 1 and

CυðEÞ ¼
16λ̄Γð3=4Þ
ð2π9Þ14γυ

��
1þ π2E2

−

32Ω2

�−3
4

−
�
1þ π2E2þ

32Ω2

�−3
4

	

ð59Þ

in 3þ 1 dimensions, where E� ¼ Eγð1� υÞ denotes the
field’s relativistic Doppler shifted energies.
Due to the nature of the interaction, catalysis is an energy

consuming process and requires a positive amount of work
ΔE. This amount is equal to the difference between the
final and initial energy of the combined system of detector
and field

ΔE ¼ trðĤDðρ − jgihgjÞÞ þ trðĤϕðσ0ϕ − jaihajÞÞ: ð60Þ

which to lowest order, according to Eqs. (22) and (23), is
equal to

FIG. 6. Left: amount of generated coherence, C0.8=λ̄, in 3þ 1 dimensions. Center: amount of coherence swelling C0=C0.8. Right:
comparison between a static and a moving detector for an initial energy of the field E ¼ 0.2Ω.

GENERATION AND CATALYSIS OF COHERENCE WITH SCALAR … PHYS. REV. D 105, 025006 (2022)

025006-9



ΔE ¼ λ2hajΩ _̂ϕ
2

fðxð0ÞÞ þ
1

2
½½ _̂ϕfðxð0ÞÞ; Ĥϕ�; _̂ϕfðxð0ÞÞ�jai:

ð61Þ

Keeping in mind that CυðEÞ ¼ 2λjhaj _̂ϕfðxð0ÞÞjaij, it can
be shown that the above equation splits into two contri-
butions

ΔE ¼ ΔEcoh þ ΔEvac; ð62Þ

where

ΔEcoh ¼
C2
υðEÞΩ
4

ð63Þ

is the cost associated with generating coherence and

ΔEvac ¼
λ2γ2

2ð2πÞn
Z

ð1 − υ · k̂Þ2ðjk2j þΩjkjÞe−πðk·uÞ2R2n
2 dnk:

ð64Þ

is the cost of interacting with the vacuum [22]. The cost of
each extraction to lowest order is therefore equal to

ΔE¼
8<
:

C2
υðEÞΩ
4

þ λ̄2Ω
2π2

�
1þ γffiffi

2
p
�
; 1þ1 dimensions

C2
υðEÞΩ
4

þ 8λ̄2Ω
π4

�
1þ 3γffiffi

2
p
�
; 3þ1 dimensions:

ð65Þ

In Fig. 7 we present the amount of coherence generated
through catalysis along with its energy cost (in unitsΩ) as a
function of the initial energy of the field. For field energies
close to resonance the amount obtained is maximized. Once
again it can be seen that for an increasing value of the
detector’s speed this amount decreases. This is also true for
the energy cost associated with coherence. On the other
hand, the cost associated with interacting with the vacuum
remains relatively constant.

VII. CONCLUSIONS

We have thoroughly investigated the conditions under
which an Unruh DeWitt detector initially in its ground state
and coupled to a massless scalar field through a derivative
coupling, can be brought into a coherent superposition of
its energy basis. It was proven that for an instantaneous
interaction between detector and field, the process is
catalytic, i.e., the same amount can be repeatedly extracted.
For a suitable choice of the field’s coherent amplitude
distribution and an inertial detector, when the Fourier trans-
form of the smearing function is positive this is also the
maximum amount that can be obtained. By considering as an
example a process in which the switching, smearing and
coherent amplitude functions are Gaussian, it was demon-
strated that for a coherent state of the field the amount of
coherence that can be generated depends on the phase of the
amplitude, the mean initial field energy, the mean interaction
duration (which can be extended for a resonant energy of the
field) and the mean radius of the detector.

FIG. 7. Amount of generated coherence Cυ=λ̄ and cost in energy ΔE=Ωλ̄2 as a function of the initial energy of the field (in units Ω) for
various detector speeds. Upper: 1þ 1 dimensions. Lower: 3þ 1 dimensions.
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For a detector moving at a constant velocity we verified
the presence of swelling effects first reported in [33].
The increase on the amount of generated coherence due
to the qubit’s motion could be exploited in constructing
protocols which would protect against decoherence effects
induced by the environment, a major hurdle in current
quantum technologies. Nonetheless, since energy noncon-
serving interactions such as the one considered here are
coherence generating [45,46], it is uncertain whether this
increase is an actual motion effect or simply due to the
nature of the interaction. For this reason it would be
interesting to study these protocols under energy conserv-
ing interactions such as the one given by the Glauber
photodetection model [63,64] for example. From a funda-
mental point of view studying coherence generation under
an energy conserved setting may provide a useful opera-
tional way of measuring the coherence stored in a quantum
field since in this case the process would constitute a
genuine method for extracting coherence similar to the one
that exists for harvesting entanglement from the quantum
vacuum.
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APPENDIX A: USEFUL RELATIONS

Let

F�ðkÞ ¼
Z þ∞

−∞
χðτÞe�iΩτ∂τðFðk; τÞeik·xðτÞÞdτ: ðA1Þ

Taking advantage of the commutation relations between the
creation and annihilation operators in Eq. (8) and rewriting
Φ̂ as

Φ̂ ¼
Z

dnkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2πÞn2jkjp ðF−ðkÞâk þ F �þðkÞâ†kÞ ðA2Þ

we can easily compute the following commutators

½Φ̂; Φ̂†� ¼
Z

dnk
ð2πÞn2jkj ðjF−ðkÞ2j − jFþðkÞ2jÞ ðA3Þ

½Φ̂; Ĥϕ� ¼
Z jkjdnkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2πÞn2jkjp ðF−ðkÞâk − F �þðkÞâ†kÞ ðA4Þ

½½Φ̂; Ĥϕ�; ðΦ̂†Þm� ¼ mc2ðΦ̂†Þm−1 ðA5Þ

where

c2 ¼ 1

2ð2πÞn
Z

ðjF−ðkÞ2j þ jFþðkÞ2jÞdnk: ðA6Þ

APPENDIX B: ASSISTED CATALYSIS FOR
INSTANTANEOUS INTERACTIONS

For χðτÞ ¼ δðτÞ it is easy to see from Eq. (19) that

Φ̂ ¼ Φ̂† ¼ _̂ϕfðxð0ÞÞ. The unitary evolution operator in
Eq. (18) can then be written as [23]

Û ¼ I ⊗ cosðλΦ̂Þ − iσx ⊗ sinðλΦ̂Þ ðB1Þ

where σx ¼ jeihgj þ jgihej. Evolving the separable state of
the combined system of detector and field in Eq. (17) and
tracing out the field degrees of freedom we find that the
state of the detector after the interaction is equal to

ρ ¼
�

trðcos2ðλΦ̂ÞσϕÞ i
2
trðsinð2λΦ̂ÞσϕÞ

− i
2
trðsinð2λΦ̂ÞσϕÞ trðsin2ðλΦ̂ÞσϕÞ

�
: ðB2Þ

Similarly the postinteraction state of the field is given by

σ0ϕ ¼ cosðλΦ̂Þσϕ cosðλΦ̂Þ þ sinðλΦ̂Þσϕ sinðλΦ̂Þ: ðB3Þ

From Eqs. (B2) and (B3) and the definition of the l1-norm
of coherence it can be seen that the amount of coherence
extracted the second time remains the same

C0 ¼ jtrðsinð2λΦ̂Þσ0ϕÞj
¼ jtrðsinð2λΦ̂ÞσϕÞj ðB4Þ

where in the last equality we have taken advantage
of the cyclic property of the trace and the fact that
cos2ðλΦ̂Þ þ sin2ðλΦ̂Þ ¼ Iϕ.
We will now compute the energy difference ΔE between

the initial and final states of the combined system of field
plus detector and show that it is always positive. This
means that for a detector coupled instantaneously to the
time derivative of the field, catalysis is an energy consum-
ing process so it cannot be repeated indefinitely.
From Eqs. (B2) and (B3) it is easy to see that the

difference in energy before and after extraction is equal to
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ΔE ¼ trðĤDðρD − jgihgjÞÞ þ trðĤϕðσ0ϕ − σϕÞÞ
¼ Ωtrðsin2ðλΦ̂ÞσϕÞ

þ 1

2
trð½½cosðλΦ̂Þ; Ĥϕ�; cosðλΦ̂Þ�σϕÞ

þ 1

2
trð½½sinðλΦ̂Þ; Ĥϕ�; sinðλΦ̂Þ�σϕÞ: ðB5Þ

The first term on the right-hand side as a product of two
positive definite operators is evidently positive, indeed this
must be the case since the qubit started out in its ground
state and can only gain energy. On the other hand from
Eq. (A5) it can be shown by induction that

½½Φ̂l; Ĥϕ�; Φ̂m� ¼ lmc2Φ̂lþm−2: ðB6Þ

This means that

½½cosðλΦ̂Þ; Ĥϕ�; cosðλΦ̂Þ� ¼ c2λ2 sin2ðλΦ̂Þ ðB7Þ

and

½½sinðλΦ̂Þ; Ĥϕ�; sinðλΦ̂Þ� ¼ c2λ2 cos2ðλΦ̂Þ ðB8Þ

so finally

ΔE ¼ Ωtrðsin2ðλΦ̂ÞσϕÞ þ
c2λ2

2
ðB9Þ

which is always positive.
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