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The investigations presented in this study are directed at relativistic modifications of the uncertainty
relation derived from the curvature of the background spacetime. These findings generalize previous work
that is recovered in the nonrelativistic limit. Applying the 3þ 1 splitting in accordance with the ADM
formalism, we find the relativistic physical momentum operator and compute its standard deviation for
wave functions confined to a geodesic ball on a spacelike hypersurface. Its radius can then be understood as
a measure of position uncertainty. Under the assumption of small position uncertainties in comparison to
background curvature length scales, we obtain the corresponding corrections to the uncertainty relation in
flat space. Those depend on the Ricci scalar of the effective spatial metric, the particle is moving on, and, if
there are nonvanishing time-space components of the spacetime metric, there are gradients of the shift
vector and the lapse function. Interestingly, this result is applicable not only to massive but also to massless
particles. Over all, this is not a covariant, yet a consistently general relativistic approach. We further
speculate on a possible covariant extension.
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I. INTRODUCTION

Deformations of the Heisenberg algebra reflecting the
influence of classical and quantum gravity on nonrelativ-
istic quantummechanics [1–15], as popularized by findings
in string theory [16–20], are consistently gaining in impor-
tance in the community of quantum gravity phenomenol-
ogy. They imply modifications of the uncertainty relation
commonly known as generalized [21–28] and extended
uncertainty principles (EUPs) [29–34] given, that they are
momentum or position dependent, respectively. This pecu-
liar behavior can be inferred from the Robertson relation
[35,36] linking the standard deviations of the position and
momentum operators to their commutator

σpσx ≥
jhx̂; p̂ij

2
: ð1Þ

In one-dimensional quantum mechanics, for example, an
EUP may be obtained from the algebra of observables

½x̂; p̂� ¼ iℏ

�
1þ p2

minx̂
2

4ℏ2

�
: ð2Þ

Then, the resulting theory implies a restricted resolution of
momentum measurements σp > pmin or a maximal wave
length, akin to the temperature of spacetimes containing
cosmological horizons. Similarly, momentum-dependent
deformations often imply a minimum length.

Note, however, the open issues associated with deformed
Heisenberg algebras, which have been reviewed, e.g., in
Ref. [28]. In particular, its classical limit is highly nontrivial
[37,38]. Modifying the uncertainty relation, one might run
the risk of violating Gromov’s nonsqueezing theorem [39],
a cornerstone of symplectic geometry, which may be
understood as a classical analog of Heisenberg’s celebrated
principle [40]. Correspondingly, it is unclear whether this
line of reasoning complies with the second law of thermo-
dynamics [41]. Furthermore, theories containing a mini-
mum length suffer from an inverse soccer ball problem,
making it hard to interpret multiparticle states [42], and it is
not thoroughly understood [43] how to include gauge
invariance. Moreover, relativistic extensions of the mini-
mum length paradigm usually lead to deformations [44] or
violations [45] of Lorentz invariance. While such a break-
ing of spacetime symmetry has been constrained to
Planckian precision [46], it might lead to interesting
phenomenology in the infrared [47]. On the physical side,
when derived from string theory, the actual value of the
minimum length depends on the probe used, e.g., strings
[16,19] and D-branes [48,49].
Because of their relation to a minimal momentum, i.e., a

maximal wavelength such as the one indicated by the
cosmological horizon, EUPs are supposed to be vaguely
related to the curvature of the background spacetime
[32,33], while GUPs may be understood as alternative
descriptions of quantum mechanics on curved momentum
space [50–53].
That momentum space may be nontrivial, perhaps even
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Wataghin’s nonlocal field theory program [54] and Born’s
reciprocity principle [55,56], postulating that physical
structures should be invariant under the transformation
x → p, p → −x. The idea was further developed by
Gol’fand [57–59] and Tamm [60,61]. Moreover, canonical
quantization was dealt with in this context in Refs. [62–64].
Some recent developments of this field include the
construction of Born geometry [65–69], capturing the
mathematical structures behind Hamiltonian mechanics
(symplectic), quantum theory (complex), and general rela-
tivity (metric) in one consistent framework. Furthermore, it
has gained in importance considerably in the area of quantum
gravity phenomenology in the last few years [70–72]. For
more information consult the recent review [46].
The relation between GUPs and nontrivial momentum

space and EUPs and curved space, mentioned above,
translates this insight into the language of deformed
quantum mechanics. This loose connection was put on
firm ground recently [73–75] as EUPs were derived from
the sole assumption that the theory is staged on a curved
three-dimensional geometry. This was further generalized
to curved spacetime in Ref. [76]. Those studies as well as
most of the work on GUPs and EUPs have in common that
they are restricted to the nonrelativistic context (some
notable exceptions are provided in Refs. [53,77–79]).
The present paper is intended to relax this assumption
by dropping the nonrelativistic limit altogether and thus
obtain an uncertainty relation that can be applied to fast as
well as massless particles in a general relativistic setting.
In that vein, we allow the four-dimensional background

manifold describing position space to be nontrivial. As a
result, the relativistic physical three-momentum pi of a
particle moving on this background, which is the observ-
able of interest, does not equal the canonical conjugate πi to
the positions xi. Its explicit form is obtained given the
Arnowitt-Deser-Misner (ADM) splitting [80,81]. Turning
to the quantum theory, the algebra of canonical observables
on spacelike hypersurfaces is assumed to be unaltered

½x̂i; x̂j� ¼ 0; ½π̂i; π̂j� ¼ 0; ½x̂i; π̂j� ¼ iℏδij; ð3Þ

where Latin indices describe spacelike coordinates while
Greek ones indicate a description of spacetime. By analogy
with the classical case, the physical relativistic momentum
operator transcends the canonical one. In particular, it is
plagued by ordering ambiguities. However, we show that
the central finding of this paper is independent of ordering.
The algebra (3) implies that there are no modifications to

Heisenberg’s uncertainty principle through the Robertson
relation. However, this inequality is not the only way an
uncertainty relation in quantum mechanics may be for-
mulated [82–84]. In principle, the rather vague motivations
behind the EUPs cannot be deployed as the means of
distinguishing between those different approaches. To the
contrary, on the GUP side there are a number of alternative

approaches toward a minimum length, for example, by
superposition of geometries [85,86] or direct inclusion into
differential geometry [87–89]. For the following consid-
erations we rely on the recently found alternative men-
tioned above, which has a rather operational interpretation
and is straightforwardly generalizable to curved manifolds
[73–76,90]. The main idea behind this relation consists in
confining the theory to a compact domain, in this case a
geodesic ball. Then, it is possible to interpret a diffeo-
morphism invariant measure of its size, here the radius of
the ball, as the position uncertainty. In this setting, the
standard deviation of the momentum operator develops a
global minimum which is dependent on that very measure
of uncertainty, thus yielding the desired relation.
Assuming the position uncertainty to be small in

comparison to background curvature length scales, the
effective spatial metric the particle is subjected to can be
approximated in terms of Riemann normal coordinates.
This allows for the perturbative derivation of the uncer-
tainty relation that is obtained to quadratic order in the
radius of the ball.
The paper is organized as follows. First, we introduce

the general idea behind this type of uncertainty relation
in Sec. II. Section III is aimed at deriving the relativistic
physical momentum operator. The corrections to the uncer-
tainty relation in flat spacetime are computed in Sec. IV,
while Sec. V summarizes the conclusions drawn from this
result.

II. UNCERTAINTY RELATION

This section may be understood as an introduction to the
alternative to the Robertson relation we alluded to in the
preceding section. The formalism, which is elaborated upon
in the present section, was introduced in Refs. [73,90] and
further expanded upon by the author and collaborators in
Refs. [74–76]. It is instructive to consider it first in the flat
case fromwhich the generalization to a curved background is
straightforward.

A. Standard deviation of the momentum operator

Assume that the effective line element on hypersurfaces
of constant time reads

ds2 ¼ δijdxidxj ð4Þ

featuring the Kronecker delta δij. Further asserting the
canonical commutation relations (3) to be satisfied, the
position space representation of the momentum operator
may be given in terms of partial derivatives

π̂aψ ¼ −iℏ∂aψ ð5Þ

with a general position space-wave function ψ . Throughout
this paper, we will time and again come back to calculating
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the standard deviation of the momentum operator p̂ which,
assuming pa ¼ πa as usual for a nonrelativistic particle in a
flat background (more on this below), reads

σp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hπ̂2i − δabhπ̂aihπ̂bi

q
: ð6Þ

This quantity will be the measure of momentum uncertainty
used in this work. The position uncertainty, however, will
be represented differently.

B. Position uncertainty as size of a compact domain

In this section we take a more operational route toward
constructing an instance of position uncertainty. Restricting
the support of allowed wave functions in the Hilbert space
underlying the quantum theory to a compact domainD, i.e.,
choosing it to beH ¼ L2ðD; d3xÞ, we clearly localize them
within a controllably sized setting. This can be achieved by
imposing Dirichlet boundary conditions. Accordingly,
all ψ ∈ H have to satisfy ψ j∂D ¼ 0, i.e., vanish at the
boundary and outside of it (see Fig. 1 for a visualization).
Any diffeomorphism invariant scale characterizing the

domain’s extent would thus yield a measure of the position
uncertainty. For example, we might use a function of the
domain’s volume

V ¼
Z
D
ddx: ð7Þ

In particular, a position uncertainty of the dimensions of
length is required, denoted by the symbol ρ. Following this
reasoning, we may choose

ρ ∝
ffiffiffiffi
Vd

p
: ð8Þ

In principle, this approach can be applied to any kind of
domain. For reasons of simplicity, however, we will choose
to work with geodesic balls and measure the position
uncertainty through their radius. This information suffices
to specify the Hilbert space which is about to be explored.

Thus, we are all set to pose the problem whose solution
yields the uncertainty relation.

C. Eigenvalue problem and resulting inequality

The investigated quantum theory is set within a compact
domain on a flat background manifold. Therefore, it can
be shown that the Laplacian, basically representing the
squared conjugate momentum operator, is Hermitian and
possesses a discrete spectrum [91]. Thus, its eigenvectors ψ
furnish an orthonormal basis of the Hilbert space H.
Evidently, they have to be solutions to the eigenvalue
problem

Δψ þ λψ ¼ 0withinD; ð9aÞ

ψ ¼ 0 on ∂D: ð9bÞ
In d dimensions, these eigenstates are characterized by d

quantum numbers, represented by the sole symbol n to
avoid index cluttering. An example of how the absolute
values of the eigenstates may be distributed within a two-
dimensional disk is given in Fig. 1. A general state Ψ can
then be expressed as a linear combination of the eigenstates

Ψ ¼
X
n

anψn ð10Þ

with the coefficients an satisfyingX
n

janj2 ¼ 1: ð11Þ

The standard deviation (6) possesses a global minimum for
a special state Ψ0 such that

σpðΨÞ ≥ σpðΨ0Þ≡ σ̄pðρÞ ≥ 0; ð12Þ

where ρ, recall, denotes the measure of position uncer-
tainty. Simple multiplication by ρ yields the uncertainty
relation in the usual form (as the product of uncertainties)

FIG. 1. Schematic visualization of the squared absolute value of two wave functions (eigenfunctions of the Laplacian) color coded
from violet (vanishing) to red on a flat two-dimensional background, here as a plane embedded in three-dimensional space, and confined
to a disk whose boundary is displayed in black.
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σpρ ≥ σ̄pðρÞρ: ð13Þ

Thus finding the state Ψ0 is all that is required to obtain
the desired result. In general, it is hard to achieve that in a
domain-independent fashion. Therefore, the domain is
mainly chosen to be a geodesic ball below. First, however,
we will give a general argument showing how the uncer-
tainty relation scales in flat space.

D. Domain independent result in flat space

Euclidean space has a simplifying advantage over all
other Riemannian manifolds: Any kind of domain can be
scaled up without ambiguities. Therefore, we are able to
obtain a result for general domains following a simple
conformal reasoning. Assume the measure of position
uncertainty to be of the form (8). Increasing the volume
of a general extended object in flat space by a constant
factor ad, i.e., transforming ρ → ρ̃ ¼ aρ, is then equivalent
to a conformal transformation of the metric δij → a2δij.
Correspondingly, the Laplacian transforms as Δ → Δ=a2,
and therefore the nth eigenvalue of the transformed
Laplacian, denoted λ̃n, satisfies

�
Δ
a2

þ λ̃n

�
ψ̃n ¼ 0: ð14Þ

Evidently, the eigenvalues of the Laplacian transform
accordingly: λ̃n ¼ λn=a2. Hence, we immediately see that

λn
λ̃n

¼
�
ρ̃

ρ

�
2

: ð15Þ

As Cn ¼ λ̃nρ̃
2 is just a dimensionless parameter indepen-

dent of the scale a, the entire dependence of the eigenvalues
of the Laplacian on it has to be summarized in ρ−2. Thus,
we obtain

λnðaÞ ¼
Cn

ρ2ðaÞ ; ð16Þ

where the exact value of Cn depends on the shape of the
domain and the exact form of the position uncertainty ρ.
In general, the real and the imaginary parts of the

eigenvalue problem (9) are collinear. This implies that
the phase of its solutions ψn can be removed by rotating the
coordinate system. As the locally Euclidean frame is
invariant under rotations, we can calculate the expectation
value of the momentum operator in any of those related by
a rotation. Thus, we can take the eigenfunctions of the
Laplacian to be real. However, the expectation value of the
momentum operator with respect to any real wave function
ψ∶IR3 → IR vanishes as can readily be verified by

hψ jπ̂aψi ¼
Z

dμψπ̂aψ

¼ −
Z

dμπ̂aðψÞψ ¼ −hψ jπ̂aψi ¼ 0; ð17Þ

where dμ stands for the integration measure in flat space
(dμ ¼ d3x in Cartesian coordinates) and we used the
symmetry of π̂a as well as the boundary condition (9b).
In fact, this statement continues to be true on curved
backgrounds.
If the state saturating the uncertainty relation is an

eigenvector of the Laplacian (represented as n ¼ 1), as
was shown explicitly below for the geodesic ball in
Ref. [76], the uncertainty relation in flat space thus reads

σpρ ≥ ℏC1; ð18Þ

which shows the same scaling as Heisenberg’s celebrated
inequality. The value of C1 is determined in the subsequent
section for the specific choice of a geodesic ball as domain.

E. Geodesic ball in three dimensions

A geodesic ball Bρ is defined such that the geodesic
distance σ ¼ R ds from its center p0 to its boundary equals
the radius ρ. In flat space, of course, this is just the familiar
ball. Rewritten in terms of spherical coordinates σi ¼
ðσ; χ; γÞ and the explicit quantum numbers in three dimen-
sions n, l, and m, the eigenvalue problem (9) then becomes

�
∂2
σ þ

2

σ
∂σ −

L̂2

σ2ℏ2
þ λð0Þnlm

�
ψ ð0Þ
nlm ¼ 0; ð19Þ

ψ ð0Þ
nlmjσ¼ρ ¼ 0; ð20Þ

where the superscript (0) stands for the zeroth order of the
perturbative expansion we perform below and we intro-
duced the squared angular momentum operator, whose
position representation reads

L̂2ψ ¼ −ℏ2ð∂2
χ þ cot χ∂χ þ sec2χ∂2

γÞψ : ð21Þ

This problem can be solved by the separation of variables,
yielding the result

ψ ð0Þ
nlm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ρ3j2lþ1ðjl;nÞ

s
jl

�
jl;n

σ

ρ

�
Yl
mðχ; γÞ; ð22Þ

λð0Þnlm ¼
�
jl;n
ρ

�
2

ð23Þ

with the spherical harmonics Yl
m, the spherical Bessel

function of first kind jlðxÞ, and the nth zero of the spherical
Bessel function of first kind jl;n. In particular, as shown in
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Ref. [76], the state saturating the uncertainty relation is the
ground state of the Laplacian, which reads

ψ ð0Þ
100 ¼

1ffiffiffiffiffiffiffiffi
2πρ

p sin ðπ σ
ρÞ

σ
ð24Þ

and has eigenvalue λð0Þ100 ¼ π2=ρ2—a rather intuitive result
because, being the ground state, it is the only distinguished
state in the system. Therefore, we conclude that the ground

state ψ ð0Þ
100 is indeed the state of lowest uncertainty in flat

space

Ψ0 ¼ ψ ð0Þ
100: ð25Þ

We can infer from this result that C1 ¼ π for geodesic balls
yielding the flat-space uncertainty relation

σpρ ≥ πℏ: ð26Þ

This resembles but does not equal the inequality derived
from the Robertson relation because those two describe
different setups, which are nonlinearly related.
The power of the formalism introduced here, in the

flat case akin to using a sledgehammer to crack a nut, is
shown to unfold at full strength below, where we obtain
relativistic curvature induced corrections to the relation
(26) perturbatively.

F. Generalization to curved space

Almost all assertions made in this section swiftly
generalize to nontrivial three-dimensional backgrounds.
Geodesic balls, for example, continue to be well-defined
objects with diffeomorphism invariant radius. However,
they may not look like simple balls depending on the
observer in question. An example of this variation is
displayed in Fig. 2 showing the distortion of a geodesic
ball as it approaches a Schwarzschild horizon as seen from
the static observer at spacelike infinity. Furthermore, the
eigenvalue problem (9) basically stays the same. However,
given a nontrivial background, the Laplacian has to be
replaced by its covariant version, the Laplace-Beltrami
operator. Thus, the setting is of the form displayed in Fig. 3
for a two-dimensional spherical background.
However, we do not only live on a three-dimensional

Riemannian manifold but in curved four-dimensional

FIG. 2. Three geodesic balls with equal geodesic radius ρ ¼
0.4RS but different distances from the center of symmetry r0 ¼
3.5RS (left), r0 ¼ 2.5RS (mid), and r0 ¼ 1.5RS (right) on a spatial
section of the Schwarzschild static patch characterized by the
Schwarzschild radius RS and described in terms of Schwarzschild
coordinates. Surfaces of geodesic balls are colored blue while
black hole horizons are indicated in black.

FIG. 3. Schematic visualization of the squared absolute value of two wave functions (eigenfunctions of the Laplacian) color coded
from violet (vanishing) to red on a sphere, imbedded in three-dimensional Euclidean space, and confined to a disk whose boundary is
indicated in black.
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spacetime. In this context, there are a couple of subtleties in
defining the physical momentum operator, i.e., the momen-
tum as it may be measured in experiments. These are dealt
with in the following section.

III. GENERAL RELATIVISTIC MOMENTUM
OPERATOR FOR MASSIVE PARTICLES

This section is devoted to the derivation of the operator
corresponding to the momentum of a massive particle
moving in a possibly curved spacetime. To this aim, the
underlying classical quantity is treated first to subsequently
provide its quantum mechanical counterpart.

A. Classical physical momentum

An approach, similar to the present one, was taken
in Ref. [76], where the reader can find more details.
Accordingly, the background metric gμνðxÞ may be para-
metrized as

ds2 ¼ −N2ðdx0Þ2 þ hijðNidx0 þ dxiÞðNjdx0 þ dxjÞ ð27Þ

in accordance with the ADM formalism [80,81], where the
lapse function and the shift vector on the d-dimensional
spacelike hypersurfaces of constant coordinate time x0 are
denoted as NðxÞ, NiðxÞ, and hijðxÞ, respectively. Breaking
the time reparametrization invariance of the action describ-
ing a particle on this background by choosing the affine
parameter τ ¼ x0, the Lagrangian can then be expressed as

L ¼ −mN
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
ð28Þ

with the analog of the squared ratio of velocity and speed of
light in the curved-spacetime setting

β2 ≡ ðNi þ _xiÞðNj þ _xjÞhij
N2

: ð29Þ

This quantity was expanded in Ref. [76] to obtain the
nonrelativistic limit. The present treatment diverges from
said approach at this point. Instead, the canonical momenta
can directly be derived from the Lagrangian (28) yielding

πi ≡ ∂L
∂ _xi ¼ m

Gijð_xj þ NiÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p : ð30Þ

This relation can be inverted to express the velocities in
terms of the canonical momenta as

_xi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
m

Gijπj − Ni ð31Þ

with the effective spatial metric the particle is experiencing
Gij ¼ hij=N, which, importantly, does not necessarily

equal the induced metric on spacelike hypersurfaces.
This behavior was already observed in the nonrelativistic
case [76]. There, the physical momentum is defined as

pijβ≪1 ≡mGij _xjjβ≪1
¼ πi −mGijNi ð32Þ

to make it gauge invariant. In the relativistic context,
though, we have to define the physical momentum differ-
ently, multiplying the equivalent of the γ factor to account
for standard relativistic effects

pi ≡ mGij _xjffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p ¼ πi −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ π2

Nm2

s
mGijNj ð33Þ

with the squared canonical momentum π2 ¼ Gijπiπj. For
small canonical momenta with respect to the particle’s
mass, this clearly recovers Eq. (32). In the ultrarelativistic
limit, on the other hand, it results in

pijβ≫1 ≡mGij _xjjβ≪1
¼ πi −

ffiffiffiffiffi
π2

p
GijNi=

ffiffiffiffi
N

p
; ð34Þ

which, being independent of the mass, also applies to
massless particles.
Importantly, the physical momentum (33) only equals

the canonical momentum if the shift vector vanishes.
A momentum measurement, thus, does not concern the
canonical quantity in and of itself but the combination (33).
Therefore, uncertainty relations should, in fact, be obtained
with respect to the physical momentum pi.

B. Quantum mechanical canonical momentum

On a general Riemannian background, the position space
representation with manifest diffeomorphism invariance
necessitates the nontrivial integral measure

dμ ¼
ffiffiffiffi
G

p
ddx ð35Þ

with the determinant of the effective metric G. Assuming
that positions and canonical momenta satisfy the
Heisenberg algebra (3) and that the operator representing
the latter be Hermitian, it has to act on position space wave
functions as [92]

π̂iψ ¼ −iℏ
�
∂i þ

1

2
Γi
ij

�
ψ ≡ −iℏ∇iψ ; ð36Þ

where the last equality defines the covariant derivative
acting on scalar densities of weight 1=2. Writing it this way,
we concealed a subtlety, though.
The familiar treatment of vector operators in textbook

quantum mechanics is not immediately generalizable to
curved space. In particular, the expectation value of a vector
operator, being an integral over a vector, is mathematically
not well-defined. For example, we could describe the
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momentum in two distinct coordinate systems xi and ya

expressing the components of a general one-form ωi of the
former in terms of the latter as

ωi ¼
∂yj
∂xi ωj: ð37Þ

Then, the expectation value of the canonical momentum
operator in the coordinate system xi with respect to a
general state jψi would read

hπ̂ii ¼
�∂ŷj
∂x̂i π̂j

�
¼
Z

ddx
ffiffiffi
g

p
ψ�
�
−iℏ

∂yj
∂xi ∇j

�
ψ ð38Þ

≠
∂yj
∂xi
Z

ddx
ffiffiffi
g

p
ψ�ð−iℏ∇iÞψ ; ð39Þ

where the transformation matrix ∂ya=∂xi, being position
dependent, cannot be taken out of the integral. Thus, it is
not diffeomorphism invariant as reflected by the inequality

hπ̂ii ≠
∂yj
∂xi hπ̂ji: ð40Þ

This problem can be circumvented with the help of geo-
metric calculus [93]. Expressed in this language, one-forms
are expanded in terms of basis vectors γðxÞi that satisfy the
generalized Clifford algebra

fγi; γjg ¼ 2gij; ð41Þ

where the curly brackets stand for the anticommutator. The
basis vectors themselves can be made independent of the
position using the tetrad formalism [94]. Define the vielbein
eia and its inverse eai such that

gij ≡ eai e
b
jδab; gij ≡ eiae

j
bδ

ab: ð42Þ

Then, according to Eq. (41), one can choose a basis such
that γa ¼ eai γ

i ≠ γaðxÞ and

fγa; γbg ¼ 2δab: ð43Þ

Applying all of this machinery and using the familiar Dirac
notation, a one-form =ω can be expressed as =ω ¼ γiðxÞωi ¼
γaeiaωi. Vectors may be treated analogously. Then, the
symmetric contraction of an operator-valued vector =̂V ¼
γiV̂

i and an operator-valued one-form =̂ω reads

f=̂V; =̂ωg ¼ fV̂i; ω̂ig ð44Þ

as expected. In short, expectation values of vectors should
always be evaluated in a local Euclidean frame. On a flat
background, this reduces to quantizing in Cartesian

coordinates. This peculiar fact had already been stressed
by Dirac [95].
Define, thus, the conjugate momentum operator through

its action on wave functions in position space [96]

=̂πψ ≡ γiπ̂iψ ¼ −iℏγiðxÞ∇iψ : ð45Þ

Its expectation value reads

h=̂πi ¼ γaheiaπ̂ii: ð46Þ

Here we could take the basis vector out of the integral
because, as was alluded to above, it is independent of the
positions. Thus, it suffices to add in the vielbein; i.e.,
describe the momentum in a local Euclidean frame, to turn
the expectation value of the momentum operator into a
well-defined object. In Ref. [96], the operator =̂π is shown to
generate translations. Furthermore, it is proven that its
square is proportional to the Laplace-Beltrami operator

=̂π2ψ ¼ π̂2ψ ¼ −ℏ2
1ffiffiffiffi
G

p ∂ið
ffiffiffiffi
G

p ∂iψÞ; ð47Þ

thereby claiming the correct relation to the free-particle
Hamiltonian. Thus, it fulfills all the requirements to yield
a position representation of the canonical momentum
operator in curved space. However, it only describes the
canonical momentum. The definition of the physical
momentum operator bears subtleties in and of itself.

C. Operator ordering ambiguities

Quantization, provided we understand it as such in the
first place, is not an injective map. In fact, given any
classical function there is an infinite number of possible
quantum operators corresponding to it. Consider, for
example, the squared position in one dimension, x2, which
could be derived as the classical limit of any operator of the
symmetric form

Fðp̂Þx̂F−2ðp̂Þx̂Fðp̂Þ ¼ x̂2 − ℏ2

��
F0

F

�
2

þ F00

F

�
ð48Þ

for a general real function F. In the end, it is up to
experiment to decide on the correct definition even
though there may be theoretical reasons to prefer one
ordering over another. For instance, the Laplace-Beltrami
operator, a quantization of the classical function gijðxÞpipj,
apart from being backed by experiment, has the advan-
tage that it is invariant under spatial diffeomorphisms as
expected from the squared magnitude of the physical
momentum. In the more primitive case of Eq. (48), how-
ever, there is just no reason to expect anything other than x̂2

to be the quantization of the squared position. If no other
principles can be found to guide the choice of ordering, it is
thus intuitive to refrain from adding more ingredients.
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Furthermore, as they are supposed to be observables, the
resulting operators have to be symmetric.
In comparison to the nonrelativistic version (32), the

relativistic momentum (33) mixes positions and canonical
momenta. Thus, it is not of the primitive form featured in
Eq. (48). Not specifying the exact prescription, its quantum
mechanical counterpart can be written as

=̂p ¼ =̂π −m

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ π̂2

N̂m2

s
=̂N

!
O

; ð49Þ

where the subscript O stands for any symmetric ordering
without the addition of extra operators. Then, the inequality
that is at the heart of the present work has to be derived
from the standard deviation of the physical momentum
operator

σ=̂p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h=̂p2i − h=̂pi2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hp̂2i − δabhp̂aihp̂bi

q
; ð50Þ

i.e., in a local Euclidean frame. The rest of the treatment is
analogous to the one introduced in Sec. II.
For the purpose of calculating this quantity, it is only

required to show that any symmetric term possibly appear-
ing in an ordering, obeying said principles, of a power of
the squared conjugate momentum and a position coordinate
satisfies

1

2
ðπ̂2Jx̂aπ̂2ðN−JÞ þ π̂2ðN−JÞx̂aπ̂2JÞ

¼ 1

2
fx̂a; π̂2N g þ ½π̂2ðN−JÞ; ½x̂a; π̂2J�� ð51Þ

¼ 1

2
fx̂a; π̂2N g ð52Þ

with J ∈ ð0; 1;…;N Þ and that similarly, once two coor-
dinates are included,

1

2
ðπ̂2Jx̂aπ̂2Kx̂bπ̂2½N−ðJþKÞ� þ π̂2½N−ðJþKÞ�x̂bπ̂2Kx̂aπ̂2JÞ

¼ 1

2
fx̂ax̂b; π̂2N g þ iℏfJ½π̂2½N−ðJþKÞ�x̂b; π̂aπ̂2ðJþK−1Þ�

−ðJ þ KÞ½x̂a; π̂bπ̂2ðN−1Þ�g ð53Þ

¼ 1

2
fx̂ax̂b; π̂2N g þ ℏ2fJπ̂2ðN−1Þδab þ 2½ðJ þ KÞðN − 1Þ

−JðJ þ K − 1Þ�π̂2ðN−2Þπ̂aπ̂bg ð54Þ

with J; K ∈ ð0; 1;…;N Þ and J þ K ∈ ð0; 1;…;N Þ. This
implies that every function f, which is analytic on IRþ and
therefore can be expanded nonsingularly for all elements in
the spectrum of π̂2, will satisfy

½fðπ̂2Þxa�O ¼ 1

2
fx̂a; fðπ̂Þg; ð55Þ

½fðπ̂2Þx̂ax̂b�O ¼ 1

2
fx̂ax̂b; fðπ̂Þg

þ ℏ2½Gðπ̂2Þδab þ G̃ðπ̂2Þπ̂aπ̂b�; ð56Þ

where the subscript O symbolizes a general symmetric
ordering without adding extra operators and we introduced
the two additional, not specified, but equally analytic func-
tions G and G̃. Similar results hold for symmetric orderings
of the forms ½fðπ̂2Þfxaπbgg�O and ½fðπ̂2Þfxaxbπcπdgg�O,
where the curly brackets indicate that the ordering in their
interior is fixed. These identities suffice to show that the
resulting uncertainty relation is independent of operator
ordering.
As position and momentum dependent operators appear

within one square root in the expression (49), the ordering
has to be enforced at the perturbative level which, for-
tunately, is exactly what is required for the purpose of
this paper.

D. Riemann normal coordinates

Assuming small position uncertainties, the geometry
of the relevant neighborhood of the underlying three-
dimensional manifold may be approximated by describing
the effective spatial metric in terms of Riemann normal
coordinates xa defined around the point p0 as

Gab ≃ δab −
1

3
Racbdjp0

xcxd ð57Þ

with the Riemann tensor Racbd. Furthermore, the lapse
function and the shift vector may be expanded as

N ≃ Njp0
þ∇bNjp0

xb þ∇b∇cNjp0
xbxc; ð58Þ

Na ≃ Najp0
þ∇bNajp0

xb þ∇b∇cNajp0
xbxc: ð59Þ

Both are constant at lowest order. Being a quantity derived
from the metric, the canonical momentum operator expands
as =̂π ≃ =̂πð0Þ þ =̂πð2Þ. This implies that, applying Eqs. (55)
and (56) and the relation ½=̂π; x̂a� ¼ ½=̂πð0Þ; x̂a�, the physical
momentum operator satisfies order by order
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=̂pð0Þ ¼ =̂πð0Þ −m=Njp0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Π̂2

p
; ð60aÞ

=̂pð1Þ ¼
m
2

�
1

2
=N∇a lnNjp0

	
x̂a;

Π̂2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Π̂2

p 

−∇a=Njp0

fx̂a;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Π̂2

p
g
�
; ð60bÞ

=̂pð2Þ ¼ =̂πð2Þ þ
m
4

��
∇a=N∇b lnN þ =N

∇a∇bN
2N

�����
p0

	
x̂ax̂b;

Π̂2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Π̂2

p 

− =N

∇aN∇bN
4N2

����
p0

	
x̂ax̂b;

Π̂2ð4þ 3Π̂2Þ
ð1þ Π̂2Þ3=2




−∇a∇b=Njp0
fx̂ax̂b;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Π̂2

p
g − =N

2Nm2

����
p0

	
π̂2ð2Þ;

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Π̂2

p 
�
þ =Gabðπ̂2ð0ÞÞδab þ =̃Gabðπ̂2ð0ÞÞπ̂að0Þπ̂bð0Þ; ð60cÞ

where we introduced the ordering-dependent tensor- and
vector-valued functions =Gab and =̃Gab, which are analytic on
IRþ, and the operator Π̂2 ≡ π̂2ð0Þ=Njp0

m2. Its expectation
value

hΠ̂2i ¼
β2ð0Þ

1 − β2ð0Þ
ð61Þ

measures the relativisticness of the given state at lowest
order. Functions of Π̂2 can be expanded in the eigenstates
of the Laplacian

fðΠ̂2Þ≡X
n;l;m

f

�
ℏ2λð0Þnl

m2Njp0

�
jψ ð0Þ

nlmihψ ð0Þ
nlmj; ð62Þ

where the states are represented as in Eq. (22) and the
eigenvalues are provided in Eq. (23).
In the nonrelativistic limit (Π̂2 → 0) the expansion of the

physical momentum operator (60) clearly recovers the
expressions provided in Ref. [76] as expected. Having
thus obtained an expansion of the momentum operator
around a point on our background manifold, it is time to
tackle the main goal of this paper.

IV. EXPLICIT SOLUTION

As the theoretical subtleties have been settled, we can
now proceed to derive the uncertainty relation for a general
curved background. The result is first obtained analytically
for a flat background to be further generalized to small
perturbations around it as indicated by the expansion in the
preceding section.

A. Flat space

As for nonrelativistic particles, we begin with the
uncertainty relation in flat space. In this case, the linear
and squared momentum operators are given by Eq. (60a)
and as

p̂2
ð0Þ ¼ π̂2ð0Þ − 2m=Njp0

f=̂πð0Þ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Π̂2

p
g

þm2NaNajp0
ð1þ Π̂2Þ: ð63Þ

Then, the variance of the momentum operator σ2p can be
expressed as

ðσ2pÞð0Þ ¼ ðσ2πÞð0Þ þ ðσ2pÞð0Þrel ; ð64Þ

where the global minimum of ðσ2πÞð0Þ, stemming from the
ground state of the Laplacian ψ100, was found in Sec. II E
and we introduced the relativistic correction

ðσ2pÞð0Þrel ¼ 2m=Njp0
ðh=̂πð0Þih

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Π̂2

p
i − h=̂πð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Π̂2

p
iÞ

þm2NaNajp0
½h1þ Π̂2i − h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Π̂2

p
i2�: ð65Þ

Clearly, the first two terms can decrease the uncertainty
when h=̂πð0Þi ≠ 0, i.e., for superpositions of eigenstates of
the Laplacian with relative phase, the kind that was treated
in Ref. [76]. The straightforward yet tedious search for the
state saturating the uncertainty relation is shown in more
detail in the Appendix.

In a nutshell, the ground state of the Laplacian ψ ð0Þ
100

remains the state of smallest uncertainty; i.e., we find

Ψð0Þ
0 ¼ ψ ð0Þ

100 ð66Þ

and we recover the inequality (26) in the relativistic setting.
This result will be modified by the gradual inclusion of
curvature.

B. Corrections

As perturbative corrections are comparably small by
definition, the fact that the ground state of the Laplacian
uniquely saturates the uncertainty relation, carries over to
the slightly curved setting in general meaning that

Ψ0 ¼ ψ100: ð67Þ
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This implies that Eq. (17) continues to hold to all orders in
the expansion. Furthermore, the integration measure in flat
space, with respect to which corrections to expectation
values are computed (cf. Ref. [75]), is even in the radial
coordinate. Hence, all expectation values of operators,
which are odd in the sum of the numbers of positions
and unperturbed momenta vanish. Therefore, the derivation
of the correction

ðσ2pÞð1Þðψ100Þ ¼ −2hψ ð0Þ
100jp̂ð1Þψ

ð0Þ
100i0hψ

ð0Þ
100jp̂ð0Þψ

ð0Þ
100i0

þ hψ ð0Þ
100jp̂2

ð1Þψ
ð0Þ
100i0; ð68Þ

where the subscript 0 at expectation values stands for the
flat-space integration measure, simplifies significantly.
In fact, at this order all possibly arising corrections to h=̂pi

are even in the momenta and odd in the coordinates
implying h=̂pð1Þi ¼ 0. Most of the contributions to hp̂2i
vanish for the same reason. The remaining terms assume
the form

hψ ð0Þ
100jp̂2

ð1Þψ
ð0Þ
100i0 ∝ hψ ð0Þ

100jfx̂aπ̂bgψ ð0Þ
100i0: ð69Þ

This can be shown to equal zero applying the canonical
commutation relations (3) and computing explicitly that

hψ ð0Þ
100jx̂aπ̂bψ ð0Þ

100i0 ¼
iℏ
2
δab: ð70Þ

To put it in a nutshell, there are no first-order corrections to
the uncertainty relation. In order to obtain curvature-
induced contributions, it is necessary to treat the system
at higher order.
The second-order contribution to the variance of the

momentum operator

ðσ2pÞð2Þ ¼ hð=̂pð1ÞÞ2i0 − h=̂pð1Þi20 þ hf=̂pð2Þ; =̂pð0Þgi0
− 2h=̂pð2Þi0h=̂pð0Þi0; ð71Þ

for example, yields meaningful terms. Still, it simplifies
considerably taking into account generic cancellations.
The second term was shown to vanish when treating the
calculations at first order. Furthermore, Eq. (60a) implies
that the third and the fourth terms largely cancel for all
eigenstates of the Laplacian, leaving us with

ðσ2pÞð2ÞðψnlmÞ ¼ hð=̂pð1ÞÞ2i0 þ hf=̂pð2Þ; =̂πð0Þgi0
þ h½=̂pð0Þ − =̂πð0Þ; =̂pð2Þ�i

0
: ð72Þ

All contributions to =̂pð2Þ as given in Eq. (60c) except for
=̂πð2Þ are even in π̂a and x̂b while =̂πð0Þ is evidently odd. Thus,
when evaluated respective to the ground state of the
Laplacian, this sum experiences a further simplification
to read

ðσ2pÞð2Þðψ100Þ ¼ hπ̂2ð2Þi0 þ hð=̂pð1ÞÞ2i0
þ h½=̂pð0Þ − =̂πð0Þ; =̂pð2Þ�i

0
: ð73Þ

The first term appearing at the right-hand side just equals
ðσ2πÞð2Þ as derived in Ref. [75] yielding

hπ2ð2Þi ¼ −
Rjp0

6
; ð74Þ

with the Ricci scalar R derived from the effective metric
Gab, while the correction obtained in Ref. [76] is hidden in
the second term. Making use of Eq. (60b), this expectation
value is of the form

hð=̂pð1ÞÞ2i0 ¼
m2

4
hfx̂a; =FaðΠ̂2Þg2i0 ð75Þ

¼ m2

	
ρ2

Π2

π2
½ðFacFacÞ0

−
ρ2

ℏ2

Π2

π2
ð2FacF00

bc þ F0
acF0

bcÞhπ̂aπ̂bi�

þFacFc
bðΠ2Þhxaxbi0



; ð76Þ

where Π2 ¼ ℏ2π2=ρ2m2Njp0
¼ π2ƛ2C=ρ

2Njp0
, with the

reduced Compton wavelength λC ≡ ℏ=m, denotes the
relativisticness of the ground state and we introduced
the dimensionful, tensor-valued function

FacðΠ̂2Þ ¼ 1

2
Nc∇a lnNjp0

Π̂2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Π̂2

p −∇aNcjp0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Π̂2

p
:

ð77Þ
The required expectation values can be evaluated explicitly
yielding

hψ ð0Þ
100jx̂ax̂bψ ð0Þ

100i0 ¼
2π2 − 3

18π2
ρ2δab ≡ ξ

2
ρ2δab; ð78Þ

hψ ð0Þ
100jπ̂aπ̂bψ ð0Þ

100i0 ¼
ℏ2π2

3ρ2
δab; ð79Þ

where the third equality of the first equation defines
the mathematical constant ξ ∼Oð10−1Þ. Plugging these
explicit results back in Eq. (76), we obtain

hð=̂pð1ÞÞ2i0 ¼ m2ρ2
	
ξ

2
FacFac þ Π2

π2

�
1

2
ðFacFacÞ0

−
Π2

3
ð2F00

acFac þ F0
acF0acÞ

�

: ð80Þ

Fortunately, the third term of Eq. (73) turns out to be such
that the dependence on the ordering in the second-order
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correction to the momentum operator (60c) exactly cancels.
Resultingly, this contribution can be expressed as

h½=̂pð0Þ − =̂πð0Þ; =̂pð2Þ�i
0
¼ ρ2m2

3π4
Π2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Π2

p
�

F̃a
a

1þ Π2
− F̃0a

a

�

þ ℏ2

36

Π2

1þ Π2

NcNcR
N

����
p0

; ð81Þ

where we introduced the dimensionful, tensor-valued
function

F̃ab ¼
Nc

2

�
1

2
∇aðNc∇b lnNÞ Π̂2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Π̂2
p

−
1

8
Nc∇a lnN∇b lnN

Π̂2ð4þ 3Π̂2Þ
ð1þ Π̂2Þ3=2

−∇a∇bNc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Π̂2

p �����
p0

: ð82Þ

Plugging all those terms back into Eq. (73) and introducing
the functions of relativisticness

F 1 ¼
π2

4
ξ

Π2

1þ Π2
þ Π2ð−4þ 5Π2 þ 2Π4Þ

12ð1þ Π2Þ3 ; ð83Þ

F 2 ¼ π2ξþ 1 −
Π2

3ð1þ Π2Þ2 ; ð84Þ

F 3 ¼ π2ξ
1þ Π2

Π2
þ 1þ 1

6

Π2

1þ Π2
; ð85Þ

F 4 ¼
1

6

Π2

1þ Π2
; ð86Þ

F 5 ¼
1

12

Π2ð4þ Π2Þ
ð1þ Π2Þ2 ; ð87Þ

the uncertainty relation becomes

σpρ ≥ πℏ

	
1þ ρ2

4π2

�
R
9

�
NaNa

N
Π2

1þ Π2
− 3

�����
p0

þ F 1ðΠ2Þ∇a lnN∇a lnN
NbNb

N

����
p0

− F 2ðΠ2Þ∇a lnN
∇aNbNb

N

����
p0

þ F 3ðΠ2Þ∇aNb∇aNb

N

����
p0

− F 4ðΠ2ÞN
bΔNb

N

����
p0

þ F 5ðΠ2ÞNbNb

N
Δ lnN

����
p0

�

: ð88Þ

Undoubtedly, this is a quite involved expression. Therefore,
it is instructive to consider its asymptotic behavior. On the
one hand, for Π ≪ 1, implying the nonrelativistic limit, we
recover the relation derived in Ref. [76],

σpρ ≥ πℏ

�
1 − ρ2

�
R

12π2
− ξ

ρ2

λ2C
∇aNb∇aNb

�����
p0

�
; ð89Þ

as expected. Ultrarelativistic particles satisfying Π ≫ 1, on
the other hand, obey the uncertainty relation

σpρ ≥ πℏ

	
1þ ρ2

4π2

�
R
9

�
NaNa

N
− 3

�

þ ξ̃∇aðNb=
ffiffiffiffi
N

p
Þ∇aðNb=

ffiffiffiffi
N

p
Þ

−
Na

6
ffiffiffiffi
N

p ΔðNa=
ffiffiffiffi
N

p
Þ
�����

p0



ð90Þ

with the mathematical constant ξ̃ ¼ ξþ 7=6π2 ∼Oð10−1Þ,
a result that reflects the form of the ultrarelativistic
momentum (34). In particular, it is independent of Π.
Hence, there is no divergence at high energies. Instead, the
relation asymptotes toward a constant value. In principle, it
therefore also applies to massless particles. On the other
hand, the nonrelativistic shift-dependent correction in
Eq. (89) scales linearly with the mass of the particle.

Thus, the gravitational influence is strongest on very
massive particles as expected. Furthermore, as mentioned
above, all relativistic corrections are dependent on the value
of the shift vector. If the latter vanishes, the corrections only
depend on the scalar curvature of the effective spatial
geometry. It is instructive to examine the new corrections
by virtue of an example.

C. Kerr black hole

Arguably, the most famous geometry with nontrivial
nondiagonal elements is the Kerr black hole, in Boyer-
Lindquist coordinates described by the metric

ds2 ¼ −
�
1þ 2ϕGR

r2

Ξ2

�
dt2 þ 4ϕGRaJsin2θ

r2

Ξ2
dtdφ

þ r2
�
1þ a2J

r2
− 2ϕGRsin2θ

a2J
Ξ2

�
sin2θdφ2

þ Ξ2

Σ
dr2 þ Ξ2dθ2 ð91Þ

with ϕGR ¼ −GM=r, Ξ ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2 θa2J=r

2
p

, and Σ ¼
r2ð1þ ϕGR þ a2J=r

2Þ. The resulting relativistic uncertainty
relation reads to fourth order in the gravitational potential
ϕGRjr0 and the relative angular momentum aJ=r0 at the
point p0 ¼ ðr0; θ0;ϕ0Þ,
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σPρ ≥ πℏ

	
1þ ϕ2

GRjr0ρ2
48π2r20

�
10þ 10ϕGRjr0 þ 15ϕ2

GRjr0

þ a2J
r20

ð96F 3jN¼1ð7 − 3 cos 2θ0Þ

− 469þ 217 cos 2θ0Þ
�


: ð92Þ

Note that the radial coordinate, in terms of which this
inequality is provided in Ref. [76], is nonlinearly related to
the one used in this paper. Therefore, even though the
second and third terms in the square brackets have different
prefactors, both results are equivalent. In said reference the
modified uncertainty relation was evaluated along a wide
trajectory around a rotating black hole for a heavy particle.
The relativistic version clearly allows for closer orbits and
lighter particles. Such an evolution is displayed in the left
plot of Fig. 4, where the color of the curve indicates
progress in proper time. The graph inset in the top left
corner of this visualization provides the deviation of the
right-hand side of inequality (92) from the value of the flat-
space uncertainty ℏπ. Clearly, the influence is strongest
when the curvature is large, leading to peaks at the
periapsis, as had already been concluded in Ref. [76].
The nonrelativistic and relativistic expressions are com-
pared graphically at the first peak in the plot to the right of
Fig. 4. The former leads to an increase of the effect by a
factor of 2 for the given choice of parameters.

V. CONCLUSION

Starting at the dynamics of relativistic particles in curved
spacetime, we have derived an uncertainty relation between
the positions and momenta on hypersurfaces of constant

time in accordance with the 3þ 1 formalism. This was
achieved by, first, finding the relevant relativistic physical
momentum operator and then obtaining its standard
deviation on a compact domain. In particular, for reasons
of simplicity we chose to work with geodesic balls whose
radii are diffeomorphism invariant and yield, thus, a
meaningful measure of position uncertainty. Under the
assumption that the involved position uncertainties are
small in comparison to all relevant background curvature
length scales, we solved the corresponding problem per-
turbatively by describing the effective spatial metric in
terms of Riemann normal coordinates constructed in the
center of the ball. This was done drawing heavily on results
obtained in earlier work [75,76].
To second order, the resulting uncertainty relation is

proportional to the Ricci scalar of the effective spatial
metric as well as a couple of terms, which depend on
the gradients of the shift vector and the lapse function. In
particular, all relativistic corrections to the nonrelativistic
result in Ref. [76] are proportional to the shift vector
and/or its gradients. Thus, they all vanish in the absence of
meaningful nondiagonal entries in the original spacetime
metric. Interestingly, the ultrarelativistic limit asymptoti-
cally yields a constant correction and does not diverge.
Thus, the relation may, in principle, also be used to describe
massless particles.
This formalism was applied to a particle moving on a

geodesic in the equatorial plane of the Kerr geometry.
In that vein, it was shown that the relativistic corrections
support the effect by increasing the deviation from the flat-
space uncertainty relation.
Have we thus obtained a covariant uncertainty relation?

Recall that the derivation we followed throughout this
paper was based on a given division of the underlying
spacetime manifoldM into a time direction IR and spacelike

FIG. 4. The left plot shows the trajectory followed by a massive particle in the equatorial (x-y) plane of a fast black hole rotating as
aJ=GM ¼ 0.5 and with an outer horizon of radius rþ symbolized by the black disk in the center. Its starting point lies on the x axis at a
distance 100rþ from the source with initial velocity uðτ ¼ 0Þ ≃ ð1.010;−0.0010; 0.0000; 0.0001Þ in Boyer-Lindquist coordinates. The
color, ranging from violet to red, indicates an increase in the affine parameter τ. Inset in the top left corner is a plot displaying all the
corrections to the uncertainty relation in units of ℏ logarithmically experienced by a particle of massm ¼ ℏ=rþ with position uncertainty
ρ ¼ 10−1rþ along this orbit as a function of proper time. On the right-hand side, the fully relativistic (blue curve and nonrelativistic
(orange, dotted curve) corrections are compared allowing a closer look at the first peak of the uncertainty relation.
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hypersurfaces Σ, on which the uncertainty relation is
determined. To be more precise, this was indicated by the
choice of domain. The investigated particle is confined to a
geodesic ball at a certain time, which is clearly a slicing-
dependent statement. Changing the time coordinate, e.g., by
a local Lorenz transformation,would lead to a deformation of
the ball and change the problem entirely (for a visualization
in flat spacetime cf. Fig. 5). Clearly, the core of this
peculiarity lies in the fact that the objective lies in obtaining
an uncertainty principle relating positions and momenta,
notions that can only be understood as absolute in a

nonrelativistic context. We stress that the underlying theory
describes the dynamics of a relativistic particle in curved
spacetime without deformed commutators. Ipso facto it is
the construction of the relation in its very intention that is
breaking the symmetry, not the background. How could we,
then, obtain an intrinsically covariant result?
In principle, the relevant quantity to study in this

direction would be the standard deviation of the Dirac
operator =̂p ¼ −iℏγμ∂μ. By analogy, this requires a domain,
compact not only in space but also in time, thus treating
both entities equally. Hence, it seems necessary to consider
the domain to be expanding into the future from an initial
hypersurface to afterwards recollapsing into another hyper-
surface, basically as the creation and subsequent annihila-
tion of an excitation by the uncertainty. This will be the
subject of future research.
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APPENDIX: FLAT-SPACE UNCERTAINTY
RELATION

Expressed as a linear combination Ψ [cf. Eq. (10)] of the
eigenstates of the Laplacian and applying Eqs. (9) and (17),
the relativistic correction to the variance of the momentum
operator in flat space becomes

ðσ2pÞð0Þrel ¼ 2m=Njp0

X
n≠n0

Reða�n0anhψ ð0Þ
n0 j=̂πð0Þψ ð0Þ

n Þ
 X

n00
jan00 j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ƛ2Cλn00

Njp0

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ƛ2Cλn

Njp0

s !

þm2NaNajp0

"
1þ

X
n

janj2
 
ƛ2Cλn
Njp0

−
X
n0
jan0 j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ƛ2Cλn

Njp0

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ƛ2Cλn0

Njp0

s !#
; ðA1Þ

where ƛC stands for the reduced Compton wavelength and
MaxRe indicates a choice of relative phaseΔϕnln0l0 between
the coefficients an and an0 such that the real part of the
resulting quantity is maximized. In the nonrelativistic limit
the corrections multiply the factor

P
n00 ðjan00 j2 − δn00nÞ ¼ 0

and the contribution vanishes as expected.
In order to be able to evaluate the expectation value of

the momentum operator with respect to a general state Ψ
written in the basis of the Laplacian [see Eq. (10)], we need
to compute the transition amplitudes hψn0 =̂πð0Þψni. In parti-
cular, confined to geodesic balls of radius ρ and on a flat
three-dimensional background they read

hψn0l0m0 j=̂πð0Þψnlmi ¼
Z
Bρ

dμψ�
n0l0m0 =̂πð0Þψnlm; ðA2Þ

where the functions ψnlm were defined in Eq. (22) and we
introduced the flat space measure dμ ¼ σ2 sin χdσdχdγ in
spherical coordinates σi ¼ ðσ; χ; γÞ.
According to Eq. (17), those amplitudes evidently vanish

if n0 ¼ n, l0 ¼ l, and m0 ¼ m. To be more precise, this
result can be extended to cases where m0 ≠ m. Having in
mind that nonvanishing Δm≡m0 −m leads to a phase
difference ψnlm ¼ exp iΔmγψnlm0 , the only possible change
in the transition amplitude has to stem from derivatives with
respect to the coordinate γ. Because of the proportionality

FIG. 5. A geodesic ball on a flat background, deformed by
Lorentz transformations. The velocity parameter corresponding
to the transformation, in units of the speed of light, is color-coded,
increasing in steps of 0.1 from red (0) to violet (0.8).
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∂γψnlm ∝ ψnlm; ðA3Þ

we infer that the relevant integrals, i.e., the ones that could
prevent the transition amplitude from vanishing, share the
behavior

Z
2π

0

e−iΔmγ sin γdγ ¼
Z

2π

0

e−iΔmγ cos γdγ ¼ 0; ðA4Þ

where the last equality holds irrespective of the value of
Δm. Thus, varying solely m does not change the transition
amplitude, yielding

hψnlm0 j=̂πð0Þψnlmi ¼ 0: ðA5Þ

As the eigenvalues of the Laplacian are functions of the
quantum numbers l and m [cf. Eq. (23)], the remaining
transition amplitudes feature states with distinct eigenval-
ues. The evaluation of those can be simplified considering a
different amplitude of this kind,

h=̂π3ð0Þi ¼ −ℏ2λnlhψnlm0 j=̂πð0Þψnlmi ðA6Þ

¼ −ℏ3

Z
Bρ

dμ∂j½ð−i=∂ψn0l0m0 Þ�∂jψnlm�

− ℏ2λn0l0 hψnlm0 =̂πð0Þψnlmi; ðA7Þ

where the boundary condition (9b) has been applied. The
first term, being a total derivative, can be turned into a
surface integral by Stokes’ theorem such that we can
rewrite Eq. (A7),

h=̂πð0Þi ¼
ℏ

λnl − λn0l0

Z
∂Bρ

dμ̃ð−i=∂ψn0l0m0 Þ�nj∂jψnlm

¼ σ2ℏ
λnl − λn0l0

Z
S2
dΩð−i=∂ψn0l0m0 Þ�∂σψnlmjσ¼ρ ðA8Þ

with the determinant of the induced metric on the surface of
the geodesic ball, which in spherical coordinates is propor-
tional to the volume element of the two-sphere S2 (of radius
σ) dμ̃ ¼ σ2dΩ ¼ σ2 sin χdχdγ, and the outward normal
ni ¼ δiσ. Writing the basis states decomposed in terms of
their radial and angular parts,

RnlðσÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

ρ3j2lþ1ðjl;nÞ

s
jl

�
jl;n

σ

ρ

�
; ðA9Þ

and the spherical harmonics Yl
mðχ; γÞ, respectively,

Eq. (A8) can be re-expressed as

hψn0l0m0 j=̂πð0Þψnlmi ¼ −
iρ2ℏ

λnl − λn0l0
∂σRn0l0∂σRnljσ¼ρ

×
Z

dΩγσðYl0
m0 Þ�Yl

m; ðA10Þ

where γσ ¼ γa∂σi=∂xa denotes the unit radial vector and
we used the boundary condition (9b) yielding Rnljσ¼ρ ¼ 0.
Without loss of generality, we can choose l ≥ l0 because the
inverse case can be obtained from this one by complex
conjugation. Then the remaining integral can be calculated
explicitly yieldingZ

dΩγσðYl0
m0 Þ�Yl

m ¼ δlþ1
l0 ½s−1l0m0δmþ1

m0 ð−γx þ iγyÞ

þ s1l0m0δm−1
m0 ðγx þ iγyÞ

þ is0l0m0δmm0γz�; ðA11Þ
where we introduced the unit vectors in the x, y, and z
directions denoted γx, γy, and γz, respectively, and the
sequences sΔmlm ,

s�1
lm ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ l ∓ mÞð2þ l ∓ mÞ

3þ 4lð2þ lÞ

s
; ðA12Þ

s0lm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1Þ2 −m2

4ðlþ 1Þ2 − 1

s
: ðA13Þ

Formulated explicitly, a general transition amplitude fea-
turing the momentum operator for l0 ≥ l reads

hψn0l0m0 j=̂πð0Þψnlmi ¼
ρ2ℏ

λn0l0 − λnl
∂σRn0l0∂σRnljσ¼ρ

	
× δlþ1

l0 ½s1l0m0δmþ1
m0 ðiγx þ γyÞ

þ s−1l0m0δm−1
m0 ð−iγx þ γyÞ

þ is0l0m0δmm0γz�


: ðA14Þ

Introducing the sign function sgnðxÞ which equals one for
x > 0 and negative one for x < 0, we can readily evaluate

∂σRnljσ¼ρ ¼ sgn½jlþ1ðjl;nÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λnl=ρ3

q
ðA15Þ

and estimate 0 < s1lm, s
−1
lm , s

0
lm < 1=2. This implies for the

maximal real part of the transition amplitude, including a
relative phase Δϕ, that

kRe½eiϕhψn0l0m0 j=̂πð0Þψnlmi�k ≤
ℏ
ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λnlλn0l0

p
jλn0l0 − λnlj

ðA16Þ

unless Δl ≠ 1 and Δm > 1, for which it vanishes. We can
thus estimate
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ðσ2pÞð0Þrel ≥ −
2ℏ2

ρƛC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NaNbGab

q
jp0

X
n;l≠n0;l0

janjjan0 j
jl;njl0;n0
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�����
X
n00;l00
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: ðA17Þ

As the nonrelativistic case has been treated already in Ref. [76], a possible change in the state of smallest uncertainty should
be expected to result in the ultrarelativistic limit, i.e., for states for which ƛCjl00;n00=Njp0

ρ2 ≫ 1. Then the sum of both
relevant contributions to the variance (64) satisfies at the ultrarelativistic level

ρ2

ℏ2
ðσ2pÞð0ÞjhΠ̂i≫1

≳ −2
ffiffiffiffiffiffiffiffiffiffiffiffi
NaNa

N

r ����
p0

X
n;l≠n0;l0

janjjan0 j
jl;njl0;n0

jj2l;n − j2l0;n0 j
����X
n00;l00

ðjan00;l00 j2 − δnn00δll00 Þjl00;n00
����

þ
X
n

janj2
�
j2l;n

�
1þ NaNa

N

����
p0

�
−
NaNa

N

����
p0

X
n0
jan0 j2jl;njl0;n0

�
: ðA18Þ

As the transition amplitude hψnlmj=̂πð0Þψn0l0m0 i is only non-
vanishing if Δl ¼ jl0 − lj ¼ 1, the effect of linearly com-
bining more than two eigenstates of the Laplacian cannot
be stronger than just adding two of them. Thus, we can
consider only the former without loss of generality. Then,

we can define the relative weight a≡ jan;lj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jan0;l0 j2

q
leading to the relation

ðσ2pÞð0ÞjhΠ̂i≫1
≥
ℏ2

ρ2

�
AðaÞ − BðaÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
NaNa

N

r ����
p0

þ CðaÞN
aNa

N

����
p0

�
; ðA19Þ

where, denoting the quantum numbers of the two states as
n, l and n0; l0 by a slight abuse of notation, we introduced
the functions of the parameter

AðaÞ ¼ a2j2l;n þ ð1 − a2Þj2l0;n0 ; ðA20Þ

BðaÞ ¼ 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
j1 − 2a2j jl0;n0jl;n

jj2l0;n0 − j2l;nj
jjl;n − jl0;n0 j;

ðA21Þ

CðaÞ ¼ a2ð1 − a2Þðjl;n − jl0;n0 Þ2: ðA22Þ

As a function of the shift vector and the lapse func-
tion, the uncertainty clearly has a global minimum atffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NaNa=N

p jp0
¼ B

2C. Thus, we can estimate

ðσ2pÞð0ÞjhΠ̂i≫1
≥
ℏ2

ρ2

�
A −

B2

4C

�
ðA23Þ

¼ ℏ2

ρ2

�
a2j2l;n þ ð1 − a2Þj2l0;n0

−ð1 − 2a2Þ2 jl0;n0jl;n
jj2l0;n0 − j2l;nj

�
: ðA24Þ

The resulting uncertainties as functions of the parameter a
are plotted for all eigenfunctions of the Laplacian (22)
characterized by quantum numbers n ≤ 10, n0 ≤ 11 in

FIG. 6. Lower bounds on the relativistic momentum uncertain-
ties of all linear combinations of two eigenstates of the Laplacian
(22) with principal quantum numbers ðn; n0Þ ≤ ð10; 11Þ to lowest
nonvanishing order as functions of the parameter a ∈ ½0; 1�
characterizing the relative weight and in units of ℏ=ρ. Black
curves correspond to linear combinations including the ground
state (24), while the color measures the sum of the principal
quantum numbers n and n0 for the others. The eigenvalue of the
ground state is represented by the violet line.
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Fig. 6. Not a single one of those states has a smaller
uncertainty than the ground state of the Laplacian

ψ ð0Þ
100 defined in Eq. (24). Those mixing with the ground

state as

Ψ ¼ aeiΔϕψ ð0Þ
100 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
ψ ð0Þ
nlm; ðA25Þ

colored black, for example, only reach their minimum
value at a ¼ 1. Furthermore, the difference only grows with
increasing nþ n0 as can be inferred from the color of the
other graphs.
We conclude, that the ground state of the Laplacian ψ100

continues to saturate the uncertainty relation in the fully
relativistic context.
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[79] Jaume Giné and Giuseppe Gaetano Luciano, Gravitational
effects on the Heisenberg uncertainty principle: A geometric
approach, arXiv:2110.15342.

[80] Richard L. Arnowitt, Stanley Deser, and Charles W. Misner,
Canonical variables for general relativity, Phys. Rev. 117,
1595 (1960).

[81] Richard L. Arnowitt, Stanley Deser, and Charles W. Misner,
The dynamics of general relativity, Gen. Relativ. Gravit. 40,
1997 (2008).

[82] Hans Maassen and J. B. M. Uffink, Generalized Entropic
Uncertainty Relations, Phys. Rev. Lett. 60, 1103
(1988).

[83] Lorenzo Maccone and Arun K. Pati, Stronger Uncertainty
Relations for All Incompatible Observables, Phys. Rev. Lett.
113, 260401 (2014).

[84] Patrick J. Coles, Mario Berta, Marco Tomamichel, and
Stephanie Wehner, Entropic uncertainty relations and their
applications, Rev. Mod. Phys. 89, 015002 (2017).

[85] Matthew J. Lake, Marek Miller, Ray F. Ganardi, Zheng
Liu, Shi-Dong Liang, and Tomasz Paterek, Generalised

uncertainty relations from superpositions of geometries,
Classical Quantum Gravity 36, 155012 (2019).

[86] Matthew J. Lake, A new approach to generalised uncertainty
relations, arXiv:2008.13183.

[87] T. Padmanabhan, Duality and Zero Point Length of Space-
Time, Phys. Rev. Lett. 78, 1854 (1997).

[88] Dawood Kothawala, Minimal length and small scale struc-
ture of spacetime, Phys. Rev. D 88, 104029 (2013).

[89] T. Padmanabhan, Sumanta Chakraborty, and Dawood
Kothawala, Spacetime with zero point length is two-
dimensional at the Planck scale, Gen. Relativ. Gravit. 48,
55 (2016).

[90] Thomas Schrmann and Ingo Hoffmann, A closer look at the
uncertainty relation of position and momentum, Found.
Phys. 39, 958 (2009).

[91] David Hilbert, Grundzge einer Allgemeinen Theorie der
Linearen Integralgleichungen (Teubner, Leipzig and Berlin,
1912).

[92] Bryce S. DeWitt, Point transformations in quantum me-
chanics, Phys. Rev. 85, 653 (1952).

[93] David Hestenes and Garret Sobczyk, Clifford Algebra
to Geometric Calculus: A Unified Language for Mathemat-
ics and Physics, D. Reidel, Distributed in the U.S.A.
and Canada by Kluwer Academic Publishers, Dordrecht;
Boston; Hingham, MA, U.S.A., 1984.

[94] Albert Einstein, Riemann-Geometrie mit Aufrechterhaltung
des Begriffes des Fernparallelismus, in Sitzungsberichte der
Preussischen Akademie der Wissenschaften, Physikalisch-
Mathematische Klasse (Berlin-Brandenburgische Akademie
der Wissenschaften, 1928), pp. 217–221.

[95] Paul A. M. Dirac, The Principles of Quantum Mechanics
(Oxford University Press, Oxford, 1930).

[96] Matej Pavsic, How the geometric calculus resolves the
ordering ambiguity of quantum theory in curved space,
Classical Quantum Gravity 20, 2697 (2003).

FABIAN WAGNER PHYS. REV. D 105, 025005 (2022)

025005-18

https://doi.org/10.1140/epjc/s10052-019-7232-3
https://doi.org/10.1140/epjc/s10052-020-8250-x
https://doi.org/10.1140/epjc/s10052-020-8250-x
https://doi.org/10.1103/PhysRevD.103.104061
https://doi.org/10.1103/PhysRevD.103.104061
https://doi.org/10.1016/j.aop.2019.03.014
https://doi.org/10.1016/j.aop.2019.03.014
https://doi.org/10.1088/1742-6596/1275/1/012025
https://doi.org/10.1088/1742-6596/1275/1/012025
https://arXiv.org/abs/2110.15342
https://doi.org/10.1103/PhysRev.117.1595
https://doi.org/10.1103/PhysRev.117.1595
https://doi.org/10.1007/s10714-008-0661-1
https://doi.org/10.1007/s10714-008-0661-1
https://doi.org/10.1103/PhysRevLett.60.1103
https://doi.org/10.1103/PhysRevLett.60.1103
https://doi.org/10.1103/PhysRevLett.113.260401
https://doi.org/10.1103/PhysRevLett.113.260401
https://doi.org/10.1103/RevModPhys.89.015002
https://doi.org/10.1088/1361-6382/ab2160
https://arXiv.org/abs/2008.13183
https://doi.org/10.1103/PhysRevLett.78.1854
https://doi.org/10.1103/PhysRevD.88.104029
https://doi.org/10.1007/s10714-016-2053-2
https://doi.org/10.1007/s10714-016-2053-2
https://doi.org/10.1007/s10701-009-9310-0
https://doi.org/10.1007/s10701-009-9310-0
https://doi.org/10.1103/PhysRev.85.653
https://doi.org/10.1088/0264-9381/20/13/318

