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We renormalize the Wess-Zumino model at five loops in both the minimal subtraction (MS) and
momentum subtraction schemes. The calculation is carried out automatically using a routine that performs
the D-algebra. Generalizations of the model to include O(N) symmetry as well as the case with real and
complex tensor couplings are also considered. We confirm that the emergent SU(3) symmetry of six-
dimensional O(N) ¢* theory is also a property of the tensor O(N) model. With the new loop order
precision we compute critical exponents in the e expansion for several of these generalizations as well as
the XYZ model in order to compare with conformal bootstrap estimates in three dimensions. For example at
five loops our estimate for the correction to scaling exponent is in very good agreement for the Wess-
Zumino model which equates to the emergent supersymmetric fixed point of the Gross-Neveu-Yukawa
model. We also compute the rational number that is part of the six loop MS p-function.
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I. INTRODUCTION

The Wess-Zumino model constructed in [1] is the
simplest scalar supersymmetric quantum field theory in
four dimensions with chiral symmetry that is renormaliz-
able. It comprises two scalar fields and a Dirac fermion to
have equal boson and fermion degrees of freedom. There
are two interactions one of which is a quartic scalar whereas
the other is a scalar-Yukawa one. In this respect it has the
basic structure of the Standard Model in the absence of
gauge fields and flavor symmetry groups. Consequently the
Wess-Zumino model forms a sector of the extension of the
Standard Model to the Minimal Supersymmetric Standard
Model (MSSM) and as such has been used as a simple
laboratory to explore aspects of that potential theory for
new physics beyond the Standard Model. This property of
the Wess-Zumino model has been one of the motivations
for its study since its construction in 1974. While the
original article considered the component field Lagrangian
it has been reformulated in superspace [2] where it involves
two scalar superfields, one of which is chiral and the other
antichiral. These separately have cubic self-interactions in
the superspace action. Several years after its inception the
renormalization group functions were determined beyond
the one loop ones recorded in [1]. Indeed the four loop
expressions in the modified minimal subtraction (MS)
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scheme were determined in a very short time span from
1979 to 1982 [3-6]. The three loop p-function in the
momentum subtraction (MOM) scheme was also given in
[4]. One reason for the rapid progress was the calculational
shortcut available from the supersymmetry Ward identity
[1,2]. This ensures that there is only one independent
renormalization constant in the massless theory which is
that of either the wave function or the coupling constant. As
the former is deduced from the 2-point function this means
that a relatively small number of Feynman graphs have to
be evaluated even to four loops in order to deduce the
p-function. While this was manageable at very low loop
order, progress with the three and four loop renormalization
was further advanced with the use of superspace techniques
[2,4,6]. In addition to having a small number of super-
graphs to consider the superspace approach circumvents
the issue of y° if a regularization involving analytically
continuing the space-time dimension is employed [4].
Aside from the main connection to a sector of the MSSM
the Wess-Zumino model has enjoyed a renaissance of
interest in recent years due, for example, to an observation
in condensed matter physics. In [7-10] it was shown that
supersymmetry was present on the boundary of a three-
dimensional topological insulator. This emergent super-
symmetry is believed to be described by the Wess-Zumino
model. Another instance where the Wess-Zumino model
can emerge is in a two-dimensional optical lattice with cold
atom-molecule mixtures [11]. Equally there is a connection
with the four-dimensional Gross-Neveu-Yukawa model
[12] or XY Gross-Neveu model [13—15]. This is a theory
with a scalar-Yukawa and a quartic scalar interaction.
Both interactions have independent coupling constants.
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However, it has been established [8,13—17] that there is a
Wilson-Fisher fixed point in d = 4 — 2¢ dimensions where
the critical couplings are equal. Moreover the anomalous
dimensions of all the fields are equal at criticality revealing
the emergent supersymmetry. This has been established at
four loops in the € expansion [15], and the exponents have
been shown to be equal to those of the Wess-Zumino model
[18]. The extrapolation to three dimensions is believed to
be in the same universality class of the supersymmetry
associated with the topological insulator.

Given this renewed interest in the Wess-Zumino model
and the potential for supersymmetry to be realized in
nature, albeit not through observations using a particle
collider, the main aim of this article is to compute the five
loop p-function of the Wess-Zumino model. While this is
around 40 years since the previous loop order appeared
such a computation is possible now given the revolution in
automatically evaluating Feynman diagrams that has
advanced the field in the last decade. The main techniques
that have been instrumental in this are the Laporta algo-
rithm [19] and the FORCER package [20,21]. The former is a
routine that systematically uses integration by parts to relate
specific classes of Feynman graphs to a small set of master
integrals whose Laurent expansion in € is known. The latter
method is a four loop algorithm for the evaluation of
2-point functions in d dimensions and is the natural
successor to the MINCER package [22,23] that has been
the workhorse of four-dimensional massless multiloop
calculations for a generation. For instance, both approaches
have led to the five loop MS renormalization of quantum
chromodynamics (QCD) [24-27]. Also the four loop
p-function of six-dimensional ¢° theory has been given
in [28]. More recently this has been superseded by the five
loop result [29,30]. The latter computation [30] was
effected by a technique that successfully extended our
loop knowledge of scalar theories to much higher orders.
The particular method is known as graphical functions
[31-33]. Prior to [29,30] the six and seven loop ¢* MS
p-functions were computed using algebraic geometry as
well as graphical functions [32,34]. Indeed it was men-
tioned in [31] that it may be possible to extend the field
anomalous dimension to eight loops in MS.

We will use both the Laporta and FORCER techniques in
this article together with a routine developed here to
automatically carry out the D-algebra associated with
superspace calculations specifically for the Wess-Zumino
model. Another motivation for extending the renormaliza-
tion to five loops is that in recent years the conformal
bootstrap and functional renormalization group techniques
have been successful in determining critical exponents at
very high numerical precision. These methods have also
been used to study the Wess-Zumino model in three
dimensions partly for the emergent supersymmetry reasons
but also for other more mathematical physics problems
[17,35-39]. Therefore we will carry out the analogous

renormalization of these theories to have five loop precision
for the exponents of various operators as well as the
correction to scaling exponent by using the ¢ expansion
and extracting estimates in three dimensions. For instance,
in [40] the complex one-dimensional conformal manifold
that underlies the infrared behavior of a class of NV =2
supersymmetric theories in three dimensions was studied in
depth using the conformal bootstrap. One aspect of the
study of these more mathematical three-dimensional the-
ories is that certain dualities have been found to exist. For
instance, there is believed to be a dual connection between
supersymmetric quantum electrodynamics and an SU(3)
Wess-Zumino model [41-46]. In this context we will also
examine the five loop structure of the O(N) model in two
formulations. One is the standard one of the Hubbard-
Stratonovich decomposition used for ¢* theory. Indeed this
case has already been examined in the large N expansion
[47-49] and we will use the information contained in the
O(1/N?) d-dimensional critical exponents of [48,49] as a
nontrivial check on our five loop renormalization group
functions. However, there is an alternative formulation of
the O(N) Wess-Zumino model based on a tensor decom-
position of the O(N) quartic interaction. This was studied
in nonsupersymmetric ¢ theory in six dimensions in
[50,51] at low loop order before being extended to four
loops in [52]. For the O(3) tensor model an emergent
SU(3) symmetric fixed point was found [50,52]. The
exponents of the constituent scalar fields are equal as
are the critical couplings thereby admitting the larger
symmetry. This is in complete analogy with the emergent
supersymmetry in the chiral XY Gross-Neveu model. As
the tensor O(N) Wess-Zumino model has the same formal
cubic interaction we will confirm that the tensor O(3)
Wess-Zumino model too has an emergent SU(3) fixed
point which potentially adds to the set of theories connected
to the dual behavior in three dimensions. In light of this it is
not inconceivable that the chiral XY Gross-Neveu theory
can be extended to have a parallel tensor symmetry. In that
case the emergent supersymmetry and SU(3) symmetry
should occur together at one of the fixed points of that
tensor theory.

The paper is organized as follows. The basic properties
of the Wess-Zumino model that are necessary for the five
loop renormalization are introduced in Sec. II. The com-
putational strategy for this is reviewed in Sec. III in the
context of the four loop renormalization while the details of
the five loop algorithm that we used are given in Sec. IV.
The main results for the original Wess-Zumino model are
given in Sec. V where the MS and MOM renormalization
group functions are recorded. The next few sections are
devoted to the extension of the theory to include various
symmetries. For instance, a group valued coupling is
considered in Sec. VI where the ¢ expansion is used to
compare exponents with estimates of the same quantities
from the functional renormalization group and conformal
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bootstrap techniques. Endowing the Wess-Zumino model
with an O(N) symmetry is the subject of Secs. VII and VIII
with the latter concentrating on the tensor O(N) version of
the model. Section IX is devoted to the case where the basic
coupling constant is replaced by a rank 3 symmetric tensor
coupling. This forms the groundwork for studying the
exponents connected with the three-dimensional conformal
manifold which is discussed in Sec. X. While the focus will
have been on five loops to this point, Sec. XI explores some
of the issues that would arise if the six loop renormalization
were to be computed. In fact we will provide the rational
part of the six loop S-function in the MS scheme from the
MOM scheme expression that was deduced from a Hopf
algebra argument. Concluding remarks are provided in
Sec. XII and two appendixes contain definitions and details
of the tensor coupling renormalization.

II. BACKGROUND

In this section we review the Wess-Zumino model [1]
and its properties that are relevant for the renormalization.
The superspace bare action is given by

S = /d4x [/ d*0d>0d(x, 9)e‘29\&9<bo(x, 0)

+% P00} (x,0) +% / 0B} (x, 9)} (2.1)
where we use type I chiral bare superfields ®g(x, 8) and
®,(x,0) and g, is the bare real coupling constant. The
superspace coordinates 6 and € are anticommuting and
represented by two component spinors. In light of this the
2 x 2 covariant Pauli spin matrices ¢ are used in spinor
space leading to the shorthand notation & = ¢*0,. The ¢*
matrices satisfy the same Clifford algebra as the usual Dirac
y matrices. This version of the action, (2.1), was used for
the four loop calculation of [6]. When the model was
renormalized at lower loop order, the component
Lagrangian was employed [1,3], and for completeness
we note that the bare Lagrangian in that case is

. 1 1
LY = igrofyro + > (,00)* + > (9,m0)?

+ g0 (o0 + imor )y + 2—149%)(0% +m)% (2:2)
It is this form of the Wess-Zumino Lagrangian that
demonstrates the connection with the emergent supersym-
metry at one of the fixed points of the chiral XY Gross-
Neveu-Yukawa theory [8,13—-17]. The only difference
between (2.2) and that of the Gross-Neveu-Yukawa
Lagrangian is that there are two coupling constants g,
and g, respectively for the cubic and quartic interactions. At
the emergent supersymmetry fixed point both g; and g, are

equivalent [8,13—17]. Moreover the anomalous dimensions
of all the fields are equivalent at the fixed point.

One useful property of (2.1) that we used in the
renormalization is that of the supersymmetry Ward identity
[1,3]. If we define renormalized entities via the renormal-
ization constants Z, and Z, with
Dy = \/Zp, Dy = \/Zp?, go =HZyg (2.3)
where p is a mass dimension 1 object in d =4 —2¢
dimensions, then there is only one independent renormal-
ization since it has been shown that the vertex function is

finite [1,3]. As a consequence we have

3
Z, 26 =1 (2.4)
which implies
Bla) = 3ayq(a) (2.5)
where
2
g
= 2.6
“ 1672 (26)

and yq(a) is the anomalous dimension of ® and ®.
Having discussed the formulation of the superspace
action we now outline the strategy taken to carry out the
five loop renormalization. One way to gauge the magnitude
of a high loop order computation is to tally up the number
of Feynman graphs that have to be computed. This has been
recorded in Table I where the data for the 2-point function
are given. These were compiled using the QGRAF package
[53]. Due to the supersymmetry Ward identity the vertex
function is completely finite and so those graphs do not
have to be calculated. There are several ways of counting
the diagrams for (2.1) which will determine the strategy we
will follow. Aside from a superspace approach, where the
graph count is given in the final column of Table I, the
theory can be formulated in terms of component fields. For
(2.1) one can have real bosonic fields, as in (2.2), or
complex ones. The numbers of graphs for the bosonic field

TABLE I. Number of graphs at each loop order L for 2-point
functions using real component, complex component and super-
field Lagrangians.

L Real field Complex field Superfield k;,
1 1 1 1
2 8 7 1
3 96 90 4
4 1942 1797 13
5 49710 45183 63
Total 51757 47078 82
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2-point functions are provided in the table too. Clearly there
is a significantly larger number of graphs for both compo-
nent field calculations. We have chosen not to effect a
calculation for either component Lagrangian. This is due
not merely to the number of graphs but also because in that
case one would have to use dimensional reduction [54]
rather than dimensional regularization as the latter does not
preserve supersymmetry. The former regularization needs
to be implemented with care since additional evanescent
fields have to be included in the dimensionally regularized
Lagrangian [55-57]. By contrast, although the superfield
formalism has less than a total of 100 graphs to compute,
the superspace propagator in momentum space for (2.1) is

~\\_ exp(20pb)
=

(®(p,0)D(—p.0)) g (2.7)

where p is the momentum. Not only is the loop momentum
integrated over in superspace Feynman integrals but also
the internal @ coordinates that arise at each vertex of a
supergraph. In [4] a different form of the superpropagator
was used which involved the supercovariant derivatives D,,
and D?. These satisfy an algebra, known as the D-algebra,
which is used to simplify each superspace integral before
the integration over the loop momenta can be carried out.
Ordinarily the D-algebra is implemented by hand, which is
straightforward to three loops for (2.1), but this is not a
practical approach for higher order calculations. As the
superpropagator takes the form of (2.7) in (2.1) it is
possible to implement the corresponding D-algebra in an
automatic Feynman diagram calculation. To do so we have
written a module in the symbolic manipulation language
FORM and its threaded version TFORM [58,59] to achieve
this. Indeed the full computation could only be carried out
with several key features of the language. For instance,
the noncommuting function facility of FORM was essential
for handling the D-algebra. Moreover, once it has been
applied to each Feynman graph they can each be evaluated
in dimensional regularization which is what we use
throughout.

III. COMPUTATIONAL DETAILS

We now discuss the technical aspects behind the five
loop calculation which will involve explaining the algo-
rithm for constructing an automatic five loop evaluation.
In order to provide the necessary introduction to all the
ingredients required for this we focus on the lower loop
Feynman graphs for the moment and outline the first step of
the process which is to reduce the superspace integrals to
momentum space ones. For instance the one and two loop
graphs contributing to the one-particle irreducible @
2-point function are illustrated in Figs. 1 and 2. Our
notation throughout will be that Feynman graphs in super-
space will have directed lines as in these two figures. In this
respect we note that from (2.1) the arrows on a propagator

@ - O

FIG. 1. One loop 1PI 2-point function.

-

FIG. 2. Two loop 1PI 2-point function.

will all be directed toward the vertex or away. The immediate
consequence for this is that there are no Feynman diagrams
with subgraphs with an odd number of propagators. This is
evident in Figs. 1 and 2 as well as ones that appear later.
Through where some figures have undirected propagators
these represent Feynman integrals in ordinary momentum
space and not superspace. We will also use I',, to denote the
one-particle irreducible graphs at n loops and C,, to indicate
the connected 2-point Green’s function at the same order.
This will simplify our illustration of the higher loop
contributions to the 2-point function.

For I'; and I', the D-algebra is simple to implement.
Since the € and 6 dependence in (2.7) is in the exponential
of each propagator then each graph will have one expo-
nential that depends on all the anticommuting variables of
each vertex of a Feynman diagram. So, for example, since
I'; has only two external vertices the overall exponential
depends solely on the external vertex variables. Hence the
exponential factors off, consistent with renormalizability in
superspace. In fact this is a feature of all higher loop graphs
where the same factor emerges overall [6]. Moreover when
I'; appears embedded in a higher loop graph this factor that
was external contributes to the D-algebra calculation of the
remaining part of the higher loop graph. So for I'; the only
anticommuting variable dependence that remains is a factor
exp (20,%6,) where k is the loop momentum and 6, and &,
are to be integrated over [6]. This is after a change of
variables on the original internal anticommuting variables.
Expanding the exponential then only the quadratic terms
are relevant for the 0, and 0, integration after a trace is
taken over the ¢ matrices [6]. This is readily carried out by
mapping the traces to the usual y-matrix trace routine but
adjusted so that the trace normalization is 2 and not 4. The
resulting momentum space Feynman integral is represented
by the graph of Fig. 3. We have detailed this relatively
simple calculation as it is an example of a deeper obser-
vation for the D-algebra of 2-point subgraphs in higher
loop graphs. It turns out that in the resulting momentum
space integral one of the propagators connecting any I,
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FIG. 3. Momentum space representation of I',.

subgraph is deleted in the same way as in Fig. 3. This
lemma was useful in the five loop calculation.

At next order the four three loop graphs are summarized
in Fig. 4 where C, contains two diagrams. The nonplanar
graph is primitive and is divergent. This is in contrast to the
identical momentum space nonplanar integral with undi-
rected edges which is finite being equal to 20{5 where ¢, is
the Riemann zeta function. See, for example, the articles
[60—63] for the early discussion on the connection of the

Riemann zeta series with the topology of high loop
Feynman graph. To evaluate the primitive graph the
D-algebra needs to be applied. This results in a set of
momentum space integrals that are given in Fig. 5. In
displaying these we note that in total there are 14 integrals
but we have used left-right and up-down symmetry to
reduce these to the four independent topologies. The
nonplanar graph contains the irreducible numerator which
becomes apparent when the trace is taken over the fermion
propagators which are represented by the dotted lines. It is
important to note that these integrals result from the
D-algebra and have no connection with the Feynman
integrals that one would have to compute using the
component Lagrangian. We have detailed the reduction
for this graph as it differs from the way it was evaluated in
the four loop calculation of [6]. There the external
momentum was nullified in the numerator of the integral

o (%

FIG. 4. Three loop 1PI 2-point function.

<PO- <>

FIG. 5.

Momentum space integrals after applying the D-algebra to the three loop nonplanar graph.
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FIG. 6. Four loop 1PI 2-point function.

after carrying out the integration over the anticommuting
superspace coordinates. For the five loop renormalization
we have to determine the integral to the O(e) term rather
than just isolate the divergence. We note that comment was
also made in [64] as to how to effect the D-algebra for this
topology.

At the next loop order the 13 2-point function graphs are
given in Fig. 6 where we have introduced a shorthand
definition of the two loop nonplanar vertex which will be
denoted by V, and is defined in Fig. 7. The subgraph V, of
Fig. 6 corresponds to the graph of Fig. 7 but with the
direction of the external legs reversed which is the origin of
the conjugate notation. In Fig. 6 and later figures we do not
display all the subgraph mirror images. To illustrate what
we mean by subgraph mirror image there is another graph
similar to the final graph on the first row of Fig. 6 where the
V, subgraph is translated to the other external vertex
whence it would become V,. However in performing this
translation there is no reflection of the direction of any of
the propagators which remains unchanged. The graphs of
Fig. 6 follow a similar pattern to those at three loops in that
the majority are decorations of the previous loop order. This
includes the three cases where there are propagator cor-
rections on the three loop primitive. The remaining
undecorated planar four loop graph is a primitive at this
order. It will have to be evaluated without the rerouting
simplification that was used in [6] since we will need the
finite part. Moreover it transpires that there are a

FIG. 7. Two loop nonplanar vertex correction.

significantly larger number of momentum space integrals
that result from the D-algebra compared to those of the
three loop primitive.

Although our aim is to renormalize (2.1) to five loops we
pause at this point to discuss the techniques we used to
evaluate the momentum space integrals. To four loops the
main tools we employed were the three and four loop
packages MINCER [22,23] and FORCER [20,21], respec-
tively. These are FORM encoded packages that evaluate
dimensionally regularized 2-point functions up to various
orders in e. While MINCER is tied to theories in four
dimensions FORCER has the capacity to determine the e
expansion of momentum space integrals in theories with
even critical dimensions. The usefulness of MINCER for
example in its application to the Wess-Zumino model is that
it can determine the part of the p-function that solely
involves rational numbers to five loops. While it can
equally be applied to the evaluation of most of the four
loop graphs we had to use FORCER to find the primitive of
Fig. 6 to the finite part. Another technique we used, which
is not limited to the computation of 2-point functions, was
the Laporta algorithm [19] encoded in the REDUZE package
[65,66]. This was primarily required to check the four loop
primitive graphs but was also used more extensively at five
loops to verify the simple pole of certain difficult primi-
tives. In applying both MINCER and FORCER to all the
momentum space integrals that result from the D-algebra
we have verified the four loop f-function of [6]. As far as
we are aware this is the first direct evaluation of the graphs
where there has been no simplification involving the
external momenta to extract the divergences.

IV. FIVE LOOP CALCULATION

We turn now to the details of the five loop renormaliza-
tion which first requires the evaluation of the 63 graphs. We
have chosen to illustrate these in a sequence of figures and
classify the graphs by the underlying skeleton topology.
Those given by propagator dressings of I'; are shown in
Fig. 8 where we note that C5 and C, include the respective

025004-6
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FIG. 8.

three and four loop primitives. As all the subgraphs within
C, and I',, in the figure are available to the finite part from
lower loop computations their contributions to yq(a) are
straightforward to determine. However this is not the case
for the decoration of the three loop primitive where the
graphs are illustrated in Fig. 4. The reason for this is
that after performing the superspace integration over the
internal anticommuting coordinates the set of momentum
space integrals do not have a direct correspondence with the
decoration of the topologies of Fig. 5 in all possible ways.
This is not unrelated to the irreducible scalar products
that arise. For an L loop 2-point Feynman graph there are
1(L = 1)(L - 2) irreducible scalar products. So to address
this issue using a Laporta algorithm approach would
require an integral reduction of significant size. Instead
as the four loop FORCER package has no direct applicability
we have followed a different tactic and that is to apply the
method outlined in the five loop renormalization of QCD in

o

Five loop graphs based on the decoration of I';.

[25]. There the divergent part of similar five loop integrals
was determined by a combination of infrared rearrange-
ment and the method of subtractions. The external momen-
tum is rerouted through the graph such that it enters through
one current external vertex but exits via the first vertex
adjacent to that one. For some of the graphs of Fig. 9 there
are several ways of achieving this which gives a check on
the procedure. As noted in [25] this produces an integral
containing a four loop 2-point subgraph that can then be
evaluated using the FORCER algorithm [20,21]. In other
words this package is used indirectly to extract the five loop
divergences. For the Wess-Zumino model there are several
additional simplifications compared to the QCD case.
Aside from the fact that the superspace graphs are zero
dimensional, there are fewer graphs and within these there
are a small set of irreducible scalar products. Therefore we
have constructed a procedure to effect the subtraction
approach for the subset of graphs of Fig. 9. As a check

0%
&

FIG. 9. Five loop graphs based on decoration of three loop primitive graph.
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on our method we have applied it to the similar decorations
of the three loop primitive shown in Fig. 6 since we know
the correct answer from their direct evaluation in FORCER.

In applying that check we thereby verify that it is a valid
procedure for evaluating the decoration of the four loop
primitive graph of Fig. 6. The corresponding representative
five loop graphs are shown in Fig. 10 and it is clear that the
rerouting approach that exploits FORCER is one of the few
strategies we have. However for this skeleton topology we
were also able to check both poles in ¢ of the four graphs of
Fig. 10 by following the algorithm given in [6] for the
underlying four loop graph. That method did not reroute the
external momentum but set the external momentum to zero
where it appeared in the numerator of the integral after the
D-algebra had been applied. At five loops this produced a
topology with a four loop 2-point subgraph which had a
different structure to that of the external momentum
rerouting but which could equally well be evaluated using
FORCER. For each of the four cases we obtained consistent
expressions for the divergences.

The final subset of graphs for the five loop renormaliza-
tion are provided in Fig. 11 and are the primitives. These
can be divided into two classes. One class involves the
decoration of the three loop primitives by nonplanar vertex
corrections. In fact the first graph on the top row is I’
where both external vertices are dressed with V, and V5.
For both these graphs we have evaluated them in several
different ways. For the double dressing of I'j, for instance,
we can merely multiply the pole of I'; by the finite value of
V,. We have determined this by computing the two loop
vertex function using either MINCER or FORCER with one
external momentum nullified. As an alternative we have

-0

Y A

A Y
1 A

Yy

A Y

also computed the underlying integral without any restric-
tion on the external momentum. In other words the integral
is evaluated at a nonexceptional subtraction point. More
specifically we considered the fully symmetric point where
the squares of the external momenta are all equal. After
applying the FORM D-algebra module we used the REDUZE
encoding of the Laporta algorithm to express the diagram in
terms of the various two loop master integrals which are
available in [67-70]. Either method produces the value of
3¢5 for the finite part of V, and its conjugate. With this
value it transpires that both graphs in the top row of Fig. 11
are proportional to ¢3. In each case we have checked this
argument by rerouting the external momentum. As the
graphs are primitive where the momentum enters the graph
and leaves is not important as long as it is at two separate
vertices. This includes the case where only one external
momentum is rerouted which we used on the lower loop
decorated primitives. The divergence was extracted using
FORCER. Whichever approach we used the same simple
pole resulted for both these graphs. It also tallies with the
method used in [6] for the underlying skeleton topology.
What is worth noting about this primitive is that in
nonsupersymmetric models graphs with a nonplanar vertex
subgraph correction would not ordinarily be regarded as a
primitive. Indeed in the conventional understanding of the
appearance of {, to five loops in 2-point function calcu-
lations the primitives are associated with {3, {5 and 5.
This product of {, values in a primitive appears to be
solely peculiar to the Wess-Zumino model. This leaves the
graphs of the lower row of Fig. 11 to evaluate. These do not
have any vertex subgraphs and so we do not have the
same guidance into the final residue of the simple pole.

Y A
A Y
1) Y A
A Y

FIG. 10. Five loop graphs based on decoration of a four loop primitive graph.
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Y

A

Y

FIG. 11.

However we have applied the same techniques to extract
the divergence and find that both involve the underlying
number which is %C , if one omits the symmetry factor.
That this combination appears is not surprising since it is
not unrelated to a parallel primitive Feynman graph in
scalar ¢* theory. In [61-63,71] the primitive graph was
evaluated by the use of conformal integration or the
uniqueness method [72-74] after an initial numerical
evaluation [61-63]. In fact the residue was also recorded
for what is termed the zigzag graph in the prescient work of
Broadhurst in [60]. In particular it is recorded in Table 3 of
that article where it corresponds to diagram c of Fig. 6
there. The residue of the other five loop primitive shown in
the first row of Fig. 11 is also apparent in Table 3 of [60] via
diagrams d and e of Fig. 6. The fact that the zigzag topology
arises in the seemingly topologically unconnected lower
row graphs of Fig. 11 is as a consequence of the D-algebra.
In the simplification of the numerator scalar products after
using the method of [6] several propagators are deleted to
leave the zigzag graph.

Having outlined in detail in this and the previous section
how we have evaluated all the diagrams to five loops to the
requisite order in € to carry out the full renormalization we
now note some of the practical aspects of the automatic
routine we have constructed. First all the superspace graphs
are generated electronically using the FORTRAN based
QGRAF package [53]. To ease the implementation of the
D-algebra routine that we have written we use the QGRAF
setting that equates to the MINCER or FORCER setup where
each propagator is allocated a momentum p,. After the
D-algebra has been carried out either the energy-
momentum conservation is implemented at each vertex
to reduce the number of p; to the number of loops or values

Y A
A Y

Five loop primitive graphs.

of each p; are substituted explicitly. The latter is used for
the cases where the REDUZE package was required since
the integral families are defined by the explicit values of the
internal loop momenta. This represents the core of the
integration routine. Though for those five loop graphs
where a rerouting was necessary to find the divergence the
value was constructed in a separate routine and the result
included in the automatic calculation which reduces the
run-time. This is particularly important since although the
focus thus far has been on the renormalization of (2.1) we
have also considered extensions of this action such as that
with O(N) symmetry which have a significantly larger
number of graphs to be determined. Once all the graphs
have been computed they are summed before the renorm-
alization is carried out. This follows the established routine
of [75] where the calculation is carried out for bare
parameters which in the Wess-Zumino case is the coupling
constant. Its renormalized partner is introduced through
(2.3). As there is one independent renormalization constant
the coupling constant counterterms are formally deduced
by iteratively solving (2.4) and expressing them in terms of
the Zg counterterms. These relations are then included in
the routine that ultimately determines the values of the Zg
counterterms. We close with a final remark on the evalu-
ation of the diagrams. Although early loop computations
of the f-function primarily concentrated on extracting the
result in the MS scheme, in [4] the f-function in the MOM
scheme was also determined at three loops. This required
knowledge of the higher order terms in the ¢ expansion of
each Feynman graph to two loops. Those at three loop were
not necessary [4], as they would contribute to the four loop
MOM p-function. Therefore, as we have used FORCER to
compute the four loop graphs we have also found the finite
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part of those diagrams as well as the O(¢) terms. So we will also be able to determine the five loop MOM scheme f-function
for (2.1) and its extensions.

V. RESULTS

After discussing the technical details of how we evaluated all 63 five loop graphs we now provide the results together

with comments on internal checks on the final renormalization group functions. We find in the MS scheme that the field
anomalous dimension is

3 4

11 :
Vola) = ~a—~a® + 1285 + 5] 2 1 [188, — 605 — 805 — 9] &
2472 8 8
5
+ [504¢2 + 858C; — 4418, + 1828Cs — 900C, + 2646¢; + 79] 5—2 +0(d’) (5.1)
implying
3, 3, at @
ﬂ(a) = Ea —Ea + [36(;3 + 15]§+ [544’4 - 1804’3 - 240(_,’5 - 27]§
6
+ (151282 + 25745 — 1323, + 5484C5 — 27008, + 7938, + 237) ;’—2
+0(d") (5.2)

for the p-function which are some of the main results of the article. In arriving at (5.1) the nonsimple poles of Zg, are not
independent from the property of the renormalization group and are related to the residues of the lower loop order poles.
That this is consistent validates that aspect of the calculation. Another nontrivial check on the result will be discussed in a
later section. Also structurally the five loop S-function is formally the same as its scalar ¢* counterpart [61-63,76] in terms
of the rational and irrational dependence.

As the MOM scheme was considered in [4] we can also provide the renormalization group functions to five loops for that
case. For (2.1) the MOM scheme is defined such that at the subtraction point there are no O(a) corrections to the 2-point
function. In other words after renormalization in that scheme the 2-point function is unity in superspace at the subtraction
point. This will determine the MOM expression for Zg. However in extracting it from the 2-point function the coupling
constant has also to be renormalized in the same scheme. This is effected by ensuring that the supersymmetry Ward identity
(2.4) is preserved as otherwise the scheme would not be consistent with this symmetry. Applying this procedure to the
2-point function and retaining the necessary terms depending on € at each loop order we arrive at the results

MOM 1 L, a’ a*
Yoo (a) =5a—5a®+ 605+ 7] — —[1383 +20C5 + 20]
20 2 4 2
5
+ [21683 + 77245 + 2305 + 1323¢; + 1222] ?—6 + 0(a®) (5.3)
and
MOM 3, 334 a* a
pYO¥(a) =5 a* =5 a’ +3[605 + 7] - = 3[1385 + 205 + 20] =
6
+ 3[216¢3 + 77285 + 230¢s + 1323¢, + 1222] 4 Lo (5.4)

16

where both are provided for later purposes. Our convention is that when a renormalization group function is labeled with
MOM then the coupling constant @ is the MOM coupling constant rather than the MS one. For cases where there is potential
ambiguity we denote the MOM coupling constant by aM°M, Where there is no ambiguity a will be regarded as the MS
variable. There are several interesting features of (5.3) and (5.4). First the coefficients of the one and two loop terms of
yMOM(g) are the same as the MS yq(a). This is a consequence of the supersymmetry Ward identity ensuring the S-function
and y4 (a) are proportional. It appears to contradict the accepted position that only the S-function in a single coupling theory
is scheme independent at two loops. In scalar ¢* theory the two loop term of the field anomalous dimension is independent
of the renormalization scheme but this is for a trivial reason since it is the first nonzero term. The other peculiar feature of
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(5.3) for example is that there are no terms involving ¢,,,. In
other words only the odd integer argument Riemann zeta
function numbers are present. Hence there are no terms
which involve even powers of 7z at least to five loops.

While we have found the five loop result for y}°M(a) by
direct evaluation it is possible to determine it by another
method. This was discussed in [4] and involves construct-
ing the map between the coupling constant in one scheme
with that in the other. It only requires the four loop
calculation of Zg is each scheme to achieve this. First,
we define the two conversion functions

MS MOM
Zg _ Zy

C,(a) = (ZM—M) Cale) = s

(5.5)

where each renormalization constant depends on the
coupling constant in the indicated scheme. Although each
renormalization constant has poles in e the conversion
function is finite as ¢ — 0. This is because the variables a
and aMM are not independent and in fact ensuring C,(a)is
finite order by order determines the relation between the
two. Thus we find

a3

57
aMOM =al|l -3a +Zaz - [644’3 + 184’4 + 659]§

a4

+ (20948, = 2483 + 351, + 5045 + 300 + 8895] T

+ 0(a%) (5.6)

where a on the right side is in the MS scheme. Equally once (5.6) has been established the wave function scheme conversion
function Cg(a) can be deduced as
3

15
Cola) = 1—a+—a® - [64C; + 18C,4 +471]%

4

+ [1838¢5 — 242 + 279¢, + 504(s + 3008 + 6156] Z_s +0(ad). (5.7)

Equipped with these relations and using the renormalization group formalism the MOM renormalization group functions
can be calculated using

8aMOM
MOM (MOM) [ﬁ(a) ] (5.8)
da MS—MOM
and
IO (gMOM) _ [y@@ @) L c%éOM(a)] (5.9)
Oa MS—MOM

where the restriction indicates that because the quantity inside the square brackets is a function of « it has to be mapped to
the aMOM variable. This is achieved by the mapping which is the inverse of (5.6). Following this we reproduce the five loop
MOM results (5.3) and (5.4). Only four loop information is required for this exercise which is also the reason why the finite
parts of the five loop Feynman graphs are not required to determine the five loop MOM renormalization group functions.

VI. GROUP VALUED WESS-ZUMINO MODEL

We now turn to a variation on (2.1) which is to have a multiplet of N superfields where the interaction contains a real
tensor denoted by d”/* where 1 < i < N. The bare action is

ijk

o - d
S = / d*x { / POLHD] (x,0) e 200D (x, 0) + g, 3

. dik oo
/ d>0D) DL DE + gy 3 / d29c1>;)<1>{)c1>{§} (6.1)
where the aim is to determine the coupling constant renormalization. The notation for the tensor derives from that of six-
dimensional scalar ¢ theory [77,78]. To accommodate the different combinations of tensors that appear in loop
calculations a useful notation was also provided in [77,78] and extended to the four loop renormalization in [79]. This will

introduce scalar objects 7; that play a similar role as the group Casimirs of a non-Abelian gauge theory. As the diagrams
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comprising the 2-point function of (6.1) only have subgraphs with an even number of propagators, we only need to recall
the relevant tensor combinations that will appear to five loops. These are

T25ij = dini2giiniy
Tdik = iivia it gisis ginisis ginisis
Ty dilk = itz giisis ghisis giviais giisis fisisis girisis,
T94dijk — dihvi2 iisia gkisin givisic Jiaizis Jisioin Jiaiioiin Jisiriio Jisiolin (62)

The first digit of the subscript of any T'; indicates the number of d’/* tensors comprising the underlying graph or equivalently
the number of propagators. So 7', denotes the one loop 2-point bubble. The others correspond to vertex functions at two,
three and four loops respectively. Contracting these tensors with another tensor produces a 2-point function topology. These
then isolate the respective three and four loop primitive graphs of Figs. 4 and 6. At five loops the graphs that involve T, are
those of the lower row of Fig. 11. Those in the top row involve Tg. One advantage of this notation is that the contribution to
the renormalization group functions from the primitive at each loop order can be identified and followed within a
calculation. Such an analysis was performed for scalar ¢* theory in [34] and suggested that the percentage contribution from
the primitive graphs at each loop order increases with the number of loops.
Therefore we have computed the renormalization group functions for (6.1) and find

1 1 a?

yr(a) = 5T - 5T%a2 + T5[12¢5T5 + 5T3] N
4
+ T5[182,T,Ts — 60¢3T,Ts — 80¢5T4; — 9T3] %

S+ To[1285T4 + 79T + 8460, T2Ts — 4414, T3Ts — 612¢5T3Ts — 21683T, T+,
6
a

+ 2440¢5T, T, — 90086 T> T+ + T2082T2 + 26468, oy =

+ 0(a’) (6.3)

for the anomalous dimension in the MS scheme. As there is only one coupling and chiral field in (6.1) the original

supersymmetry Ward identity (2.4) is satisfied. At the same time it is a simple matter to determine the MOM scheme version
of (6.3) giving

1 3

1 a
rYM(a) = 3 Tha - ET%QZ + T,[6¢5Ts + TT3] T
4
a
— T5[1543T,Ts — 243T5 + 20¢5T5; + 2073] 5

+ T,[1222T% — 1648, T4 + 936£5T3Ts — 810¢sT2Ts — 14403T, T,
5

+ 10405 T, T4y + 36083T2 4 13238, To,] % + 0(a®) (6.4)

where like (5.4) there are no even zetas. Formally setting 7'; = 1 for all i recovers the analogous equations of the previous
section. It is clear from both expressions that the coefficients of the primitives are unchanged at the loop order where they
first appear. We note that the coupling constant map is

57 3
6117\~/[OM = |:l — 3T2Cl + ZT% 2 _ T2[72§3T% —_ 8§3T2T5 + 18€4T2T5 + 659T% %

614

16

+ T, {8895T% — 3008573 + 23945 T, Ts + 3518, T>Ts — 33605 T>Ts — 2422T4, + 8400 5Ty + 30086T7] — | a
+ 0(ad). (6.5)

To gauge the primitive contribution the numerical evaluations of (6.3) and (6.4) are
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1

1
yr(a) = 3 Toa =5 Ta® + T5[0.62573 + 1.8030857]a’

2

— T,[1.125T3 + 6.5801997T,T5 + 10.369277T4,]a*

+ T5[2.919521T5 — 2.967631T3T 5 + 38.872050T,T7; + 32.5111687% + 83.377881Tg4)a® + O(a®)

and

1 1
r¥OM (@) =2 Tha =3T3 +T5[1.7575 + 1.8030857 s]a’

(6.6)

—T,[8.797943T5 +9.015427T,T5+10.369277T;;|a*

+T,[64.053917T4 + 17.825861T2Ts + 54.395837T, 5, +32.511168T2 +83.377881T ] a° + O(a®)

respectively. If we recall that at five loops the graphs of the
upper row of Fig. 11 are what we termed product primitives
we can identity their contributions from the coefficient of
T,T2.In (6.4) that term is the penultimate one in the O(a°)
coefficient. This is because T'5 is associated with the graph
V,. If we compute the contribution from the primitives at
three, four and five loop order we find that respectively they
contribute 74.26%, 57.37% and 74.91%. At lower orders it
is not meaningful to quote values as it would be 100% at
one loop and there are no two loop primitives. For the
MOM scheme the analogous numbers are 50.75%, 36.79%
and 45.96%. The smaller relative contribution for the
MOM scheme is due primarily to the increase in the
coefficient of the T} terms at each loop order L.
However for the MS scheme the observation of [34] that
the primitives make an increasing contribution at higher
orders for ¢* theory seems to hold here too for the MS
scheme albeit at one loop order fewer than [34]. It would be
interesting if another scheme could be studied for the
nonsupersymmetric theory.

An additional motivation for examining the f-function of
(6.1) is that it provides another relatively trivial check on
our five loop computation. It transpires that the coefficients
of the terms of T% in (6.4) have already been computed
before. More specifically we mean the three loop and
higher coefficients since the one and two loop terms are
scheme independent. We stress that we are indeed referring
to the MOM result rather than the MS one. In [64,80,81]
Yo (a) was studied using the Hopf algebra construction of
Broadhurst and Kreimer [82,83]. Specifically it was used to
determine the scalar field anomalous dimension in scalar ¢
and scalar-Yukawa theories for a specific class of Feynman

(6.7)

diagrams. In particular the Dyson-Schwinger equation for
embedding of basic one loop propagator correction within
the skeleton one loop graph itself was constructed and
solved for the anomalous dimension. This was extended in
[81] to the Wess-Zumino model where the supersymmetry
Ward identity was important in constructing and solving the
corresponding Dyson-Schwinger equation. Moreover, it is
the first case we believe where the f-function of any theory
was accessed this way in the Hopf approach. Consequently
the first 200 coefficients of y4 (a) were determined for (2.1)
with the analytic form given for the first 12 terms for the
class of diagrams considered. While the analysis of [81]
centered on the theory with action (2.1) a subset of the
graphs making up the coefficients of (5.1) were found.
These are straightforward to isolate with the labeling used
for (6.1). As [81] used the iteration of the one loop bubble
the T% terms of our five loop f-function should tally with
the Hopf algebra case. The question of which scheme was
used can be established by the renormalization condition
used in [81] and it is clear it corresponds to the MOM one
of [4]. This therefore represents a specific check on the T%
coefficients of (6.4).

Having established the five loop renormalization group
functions we can now extract estimates for several critical
exponents in the e expansion at the Wilson-Fisher fixed
point where again we take d =4 —2e¢. The specific
exponents we will compute are 7 =yqe(a*) and the
correction to scaling exponent 2f'(a*) where a* is the
critical coupling constant. We will denote this combination
here and later by & rather than the more usual unhatted
version to avoid conflict with notation in a later section.
From (5.2) we find

4 4 4
& =2¢— ge2 +3 [12¢5 + 1] + 5 [54¢, — 84¢5 —240¢5 — 7)e*

4
+ g7 (57603 + 39605 — 3782, + 141675 — 18007 + 529287 + 19)¢” + O(ef)

(6.8)
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or
& = 26 — 1.333333¢2 + 6.85541563 — 44.205924¢* + 290.935250¢% + O(¢") (6.9)

numerically. The situation with 7 is somewhat simpler in perturbation theory due to the supersymmetry Ward identity as has
been noted in [15,35] for example. As the dimensionality of the coupling constant manifests itself in the O(a) term of f(a)
in d dimensions then (5.1) implies

n=-e¢ (6.10)

exactly. For the more general group valued case (6.1), and for later purposes, we note that the critical coupling is

i 2 4 ) e’ s et
ClT = 3—Tz€ + 9—7126 + 2[T 4§3T5] 9—7_3 + 8[2T2 - 9£4T2T5 + 40C5T71] 81—]_"2‘

+2(16T5 — 12{3T5 — 5443T3Ts + 984 T3Ts + 612¢5T5Ts + 21643T, T+,
5

—=52085TT7; + 90086 T> T, — 288L3T% — 264687 T o4 # + O(°) (6.11)
2
implying
. 4 4 28 €
or = 2€—§€2 —|—§€3 —fe4 + 42485 + 19]a
8 5| Ts
535 +3 [954 — 1445)e* 37 [6253 63¢4 —204¢s]e T2
2
320 32 T4
[—Qs 77 (11085 — 1843 - 754’6}65] 73
448 784 | T
—gs; €+ by +0(e) (6.12)

where we have ordered the expansion in terms of the group invariants. The power of the leading term in € of each of the
invariants tallies with the loop order of the S-function where the corresponding 7; first appears. The leading order T;
independent terms correspond to the bubble insertions associated with 7, with the primitive ranked by powers of 1/7,.

One comment concerning the use of different schemes to compute exponents is in order if instead of the MS S-function
the MOM one was employed. For example, using (5.4) as it stands to find @ would not produce the same expression as
(6.8). However this does not contradict the renormalization group invariance property of critical exponents. This is because
(6.8) is the MOM p-function in strictly four dimensions. In deriving the renormalization group functions from the respective
renormalization constants the calculations are carried out for nonzero e before setting € = 0 to deduce the expressions in the
critical dimension. Moreover in MOM and other schemes where the renormalization constants contain finite parts, these
play a crucial role and lead to different coefficients in the renormalization group functions from the MS ones after a few loop
orders. In addition the finite parts appear in the renormalization group functions as O(¢) contributions in each of the loop
coefficients. While setting € to zero produces expressions like (5.4) it is the nonzero e renormalization group functions that
are crucial to computing the critical exponents at the Wilson-Fisher fixed point. Therefore to assist with understanding this
point we note that the ¢ dependent MOM p-function is
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2 2

MM ()| = F ERNE I 3[6¢; + 7] "Z — 3[13¢5 + 20C5 + 20]

4

W

a
2

6
+3[21622 + 77285 + 230¢s + 1323¢; + 1222] f—6 + 0(&)}

21
+ {—a +3a® - 7613 + 3[64¢5 + 1884 + 107]

5
+3[1623 — 5005 + 18¢, — 3365 ~ 200, ~ 691] - + O(a(’)} ¢

where the O(a®) linear term in e is not required to
determine @ at O(e’). Those terms would contribute
to the O(e®) piece of (6.8). Therefore using (6.13) to
determine the critical S-function slope one obtains exact
agreement with (6.8) that was derived in the MS scheme.

One reason for determining & in (6.8) is that there has
been interest in estimating this exponent in three dimen-
sions using various methods [15,18,35-39,84]. Therefore
with the five loop extension of (5.2) we can update the four
loop € expansion estimate noted in [38]. To do this we have
evaluated Padé approximants which are recorded in
Table II. In addition to the five loop estimates for
completeness we have provided lower loop approximants.
In the table only estimates in three dimensions are given
where there were no singularities in the Padé approximant
between four and three dimensions. In other words the
approximant has to be continuously connected to the value
in the critical dimension. The final column gives the
average of the approximants at each loop order. If one
focuses on the three and higher loop averages it would
appear that the approximants are converging but perhaps
oscillating about the true value. In order to place the five
loop estimate in perspective we have gathered results from
earlier work on the exponent and recorded them chrono-
logically in Table III. Aside from the € expansion the two
main techniques are the conformal bootstrap and the
functional renormalization group. Some comments are in

TABLE II. Estimates for @ in three dimensions from Padé
approximants.
L Padé Value Average
2 [2, 0] 0.666667 0.666667
3 [2, 1] 0.906650 0.906650
4 (3, 1] 0.869530

[2, 2] 0.872352 0.870940
5 4, 1] 0.879670

[3, 2] 0.877593

[2, 3] 0.878492 0.878585

a
8

a (6.13)

order. Errors on estimates are those given in the corre-
sponding paper. In [37] two sets of values were provided
and distinguished by the parameter n. We have noted both
sets but mention that the authors regarded the n = 2 data as
superior. Also the value we quote for @ is that designated as
supersymmetric in Table I of [37]. The bracketed value for
1/v from [36] was derived from the estimate of 7 using the
superscaling law of [37,85,86]

(d—n). (6.14)

NS

We have also used this to extract the value recorded in the
table from the exact value of § for # which would imply that
L — 12 In [35] the value of v was determined but we have
converted it to % for consistency with the other entries in the
table. This was used to deduce 7 from the superscaling law.
While the values of the exponents from [84] are noted as €
expansion they are not deduced in the same way as those of
this paper. Instead they represent the result of a matched
Padé approach where the € expansion of two theories in the
same universality class are used but one theory has a critical
dimension of 2 while the other is renormalizable in 4.
Moreover the universality class is the Gross-Neveu-
Yukawa one and the values in the table correspond to
those for the emergent supersymmetry. As we took a direct

TABLE III. Summary of exponent estimates by conformal
bootstrap (CB), functional renormalization group (FRG) and e
expansion methods.

Method Reference n L 1)
CB [18] 0.166667 1.0902(20)  0.9098(20)
FRG [35] 0.114 1.443 0.796
CB [36] 0.164 (1.418) .

FRG [37] (n=1) 0.174 1.385 0.765
FRG [37] (n =2) 0.167 1.395 0.782

€ [15] 0.166667 1.129(1) 0.871(1)
FRG [38] e 1.1656 0.8344

€ 84]  0.1673(50)  1.415(12) .

CB [39] 0.168888(60) 1.415556(30) 0.882(9)
€ This work 0.166667 1.416667 0.878585
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supersymmetric approach our values for # and % are exact
due to the supersymmetry Ward identity and are within the
errors given in [84]. As an aside we note that the other ¢
expansion result of [15] did not benefit from a two-sided
Padé approach which may be the reason why that estimate
for % is low compared to [84]. In terms of the overall picture
there appears to be a consensus that the value of # is around
0.166 especially in the more recent articles that did not have
the use of the supersymmetry Ward identity present in the €
expansion. The latest conformal bootstrap value appears to
be the most accurate numerically given the precision and
tight error bars on # and % Indeed our exact values differ by
around 1.3% and 0.08% respectively with both conformal
bootstrap values satisfying (6.14). For & the difference is
roughly 0.5%.

|

5 25

5 25
vo(a@)lsue) =50~ 15 @ + 57 486 + 125’ + =2 720, -

648

25
+ 5552 [36840¢5 —

and

5 25

One interesting application of considering (6.1) is that
the renormalization group functions can be deduced for Lie
groups which have a nontrivial rank 3 fully symmetric
tensor d'/¥. One such class of groups are the SU(N,) ones
and in that case (6.2) reduce to

5 25
P(@)lsuy = 50> =5 a’ + =5 (4805 + 125]a* + 2 (728, = 5305 — 225 — 24005’

6 7
25

+ = [36840¢5 — 9702¢2 — 17640¢, + 137170¢s — 59625¢¢ + 78057¢; + 19750]a® + O(d")

5184

[N% - 4} 4 2
T, = , Ts =——|[Nz—-10
2 Nc 5 N2 [ ]
1
T N2 — 8][N* — 8N2 + 256,
71 8N3 [ J[Ve ¢ +256]
1
Ty, = —[NE — 64N% + 1216N?2 — 6784] N (6.15)
using [87]. So, for example, for SU(3) we have
530¢5 — 225 — 2404?3]514
970283 — 17640¢, + 13717085 — 596258 + 7805787 + 19750](15 + O(aG) (6.16)
3
(6.17)

which we record for later purposes. As there has also been recent interest in Wess-Zumino models with F, symmetry [46],
we note that the corresponding renormalization group functions and exponents can be extracted from (6.3) and (6.12) with

T,

2

N2 — —[N2— 10N —16] ——2
| }2[N+2] | ]2[N+2]2
3
T = —3N? + 80N 1007
4
Tos = —[N* — 14N? — 12N? — 616N — 672] ——=— 6.18

where N is the dimension of an F, representation such as 2, 5, 8, 14, 26, 27, 90, or 324.

VII. O(N) WESS-ZUMINO MODEL

As a second generalization of (2.1) we consider the Wess-Zumino model with an O(N) symmetry as it will provide us
with another check on our computation. This is because the O(N) model admits a large N expansion and the
renormalization group functions have been computed to three orders in powers of 1/N in [48,49]. The action in terms of

bare quantities is

SOW) = /d4x [/ aaﬁfééé(x,é)e‘zgﬁécbé(x, 0) + &o(x, 9)e‘29}9@00(x, 0)

+g;0/d290 @i @i + 210

9‘0 PO5,0i ), + 20 [ 2063 4920 / d@ag]

6 6
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and was given in [88] where 1 <i < N. We regard the
coupling constants as real and define §; = 4zg;. In [88]
they were taken to be complex but they will only appear as
squares in the renormalization group functions. In this case
this combination will be equivalent to the squared length of
g, and g, respectively given in [88]. The superfields @ and
@' lie in an O(N) multiplet and the ¢ and & fields would
equate to auxiliary fields in nonsupersymmetric four-
dimensional ¢* theory. In other words in that instance
the quartic interaction can be rewritten as a cubic inter-
action, akin to that of (7.1) with the g; coupling constant,
and a nonkinetic quadratic term equivalent to that for ¢ and
& but without the 8 dependent exponential. For that reason
one can regard the O(N) Wess-Zumino model as a super-
symmetric generalization of O(N) scalar ¢* theory. This is
apparent in the purely bosonic sector of the component
Lagrangian (2.2). Indeed it is that rewriting of the quartic
interaction that is the key to accessing the large N
expansion through the critical point formalism developed
in d dimensions in [73,74,89] for scalar ¢4 theory as we
will show later. This was extended in [48,49] for (7.1)
where more background on this aspect to exploring the
Wess-Zumino model can be found. It is also worth noting
that when both couplings are nonzero the action is formally
equivalent to that of nonsupersymmetric O(N)¢? theory in
six dimensions that was analyzed at three loops in [79,90].
This is in the sense that in six dimensions there are two
interactions that ensure the theory is renormalizable.
Finally we note that the O(N) Wess-Zumino model also
has only two independent renormalization constants which
can be expressed as |

TABLE IV. Number of graphs at each loop order L for the ®
and o superfield 2-point functions in the O(N) Wess-Zumino
model.

L 0] o

1 1 2
2 3 3
3 15 20
4 109 124
5 952 1063
Total 1080 1212

ON I . onw O(N
s (g,) :591[%( Y9+ 2rs™ (a0,

3
BN (g) =2 0r8™ (91) (7.2)

2

where y,(g;) is the anomalous dimension of the ¢ and &
superfields and we use g; as shorthand for pair of
couplings {g;. g, }-

To extract the renormalization group functions for (7.1)
using QGRAF we have generated all the supergraphs to five
loops required for renormalizing the ® and ¢ 2-point
functions. The number of graphs that we had to compute at
each loop order are listed in Table IV. With these graphs as
input we applied the automatic integration routine that was
outlined earlier and extracted the corresponding renorm-
alization group functions which are included in the
Supplemental Material [91]. To five loops we found

1 1 1 1
A (9) = 5919 + 291 +—Ng?] + [——9193—9?95—29? ——Ng‘fg%—zNgﬂ

2 2

5
8

2

2

9

8 3 3

8 3

3
+ 508 +>9103 + g5 +29] +

8 8 1
+ |59 395 3919 3

7 1
+-N2gigh — = N?g]g3 — 6N*g]

2

1 11 3
N9 +4NgIG + Nyl -2 N2g1g3

8

1 3 15
+=N?g] + 5(39193 + 12839795 + 128397 + 7531\/9?9% + 3C3N9Z}

10 , 49

97
9193 — =91 ——Ngigs ——Ngjg3 — 14Ng]

3 6 6

1 1
- ZN39¥9% + EN?’Q? - 1059195

—408sg793 — 1608597 g3 — 80Lsg] — 408sN g, g — 805N gl g5 — 605sNg]

9 3
— 1065N2g] + 7Lag193 = 5649103 + 15049163 + 21849195 + 24Ca9)

15 39 15
+3C4Ngigs + - CaNgIg + 5 CaNgig5 + 12¢4,Ng] + 5 LNl

3 15 7
+ 58N g1 = 5830193 — 560195 — 308397193 — 64039195 — 72L34]
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11 47
=5 GNGig8 — 5 L3N gigs — 89C3Nglgs — 4853Ngi + (N gig)

3] 1
-5 &Nglg5 - 353N%g) + 56Nl

79 1 20 7
329192 + 69395 + 9592 9192 - gglgz + ggl - gNg?gg
1021 351 587 37
+ g Noids + 5 Ngigs + 75 Noigs + 38Ng)' - 1N
19 173 145 7 77
- &NZQIQZ +7N29192 + N2gi' + §N3g¥gz - @N%lgz
25 5 | 1323 441
+ 5Vt - 3—2N4g?g% + RN“QP 67919 + - C1g18
39 9 48 11907
579195 + 2205874793 + 882@79{‘ + C7Nglgz + $Nglgh
22491 3087 3087
+ §7N9 +7§7N s 16 §7N29?g% 6 €7N29}1
225
——Ceglgz + 6369192 10069765 — 350869195 — 50064793
275 125 425 2025
— 3008691 ——C6Ng?g§ — 5 CeNgigs - Cf,Nglgz = (6Ngi g
11 2 7 4 1 25 2.9 2 11
—300f¢Ng;" — é'éN - 74’61\] 92 - §6N

75 355
- —C6N3g%‘ + —nglg + 11459795 + —nglgz + 531859} 93

L2143 193 277 3979
nglgz +6938591! + —CsNglgz + —é“sNglgz + TCsNQM

337
{sNgigs +4518sNgp' — fésNzgsgz - 7§5N29192
]601
CSNzglgz +—Z.:5N2 11_—§5N39192+ Z.:SNS
441 3 8 56 219, 54 9 > 1
549192 + C49192 = 57849195 — 7549192 = 162849795 — 174849,
393 963 1077 1917
C4 glgz C4 glgz §4N9192 —§4N9192
327 267 12 93
——C4N9 — 55 SN 20195 — =5 GV 29?9‘2‘——64N29192
147

——C4N2 + C4N39192——§4N39192 §4N39}1+3—2§4N49?9%

nglgz - —nglgz - 90@“39192 + 138839] g3 + 252839793 + 2683}

19
i CsN9192 —QNQ?

2521
4’3N9192+—C3N9192
+ 377¢3Ng}! ——C3N29192+—C%N29192 TC3N29192+6SC3N2 gi!

55 1
- EC3N39¥93 + §C3N39?9% + §C3N3g{' - RC3N49?9% - §C3N49}
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63
+5¢ 301930 — g + 4483075 + 17283 9] g5 + 4488347 g3 + 28843 1!
25 2 8 2 2 693 2 2
——C3N9 g5 +86L3Ng o5 + T1L3N gl 3 +5G INgi g5 + 183N g}

45 9
- 11§2N29192+_§§N2 192 7@%1\]29}1 —Z§%N39{l} +0(933)

and

3. 3 3. 03
M(g) = [593 +§Ng%gz} + {—593 —ENg%g% —3Ng‘1‘gz}

3 s 3
~Ngigs +INglg3 + =

9 9
1 2N9?92 —=N%gtg3 +3N*qbg, + 55393

Ry
g 2 8

45
+ 74“3N9‘1‘9§ + 94“3N9?92}

27

91
+ [——93

13
1 - N4ig3

13 21
—=Ngigy — = Ngigs —4Ngig, + —N’gig3 5

8 2 8

5
—N3gi‘gz — 308595 — 120{sN gt g3 — 24085sN g g3

3
— 14N?glg, =2 N gl +

4
—60{5Ngig, — 3005N%g} g, + 5492 +94Ngi g5 + %QNQ?QS
+36L4N gt g3 + 18L4Ngi g, + 5 §4N29?9% T3 C4N29£1§92 - g &9,
2 CNG R~ 69LN G ~ 136N i} ~ 66N Glan + 3Nl

3 3
— 483N — 93N g gr + —§3N39?9% - —53N39?92

+ %7 “——Ng? 2+@N9192+%N9?9§+ 2 NG +TNg%,
—%Nzglgz +21—65N29 % +34—3N29 % +%Nzgl % +27:N3g?g§

11463 Ngig3 + 883 N3glg, - ;—ZN“gi‘gi + ]96 N*gi0g, + 3?29 &rg%!

14553 {7Nglgl + 357 GING 9 +463 {INgGY +&C7N91 [}
+%C7 N%gig 2+£C7N291 gz—@% —%CéN%gz
_ﬁC6Nglgz 7 Cé 9193 §6N9192 22556N91 9
—%Cs N*g5g3 —ﬁ&) N*gig; —fo)Nzgl % —fé“aN3gl %

@ng + 57—945Ng 9+ —CsNglgz + 9—CsNg|gz + 4—CsNglgz
+ ECSNQI 9 - —CsN29192 CsN29?9§ + TCsNzg?g%
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1557 1665 117 1323

+— N0 = —— NG + —— N g1 — == Lagh!

4 8 2 32

1179 2727 1341 2295

— g CaNgig: — 5 CaNGigs — —g— CaNgigs ——— CNdi3
297 801 3789 2097

- TC4NQ}092 - 3—2§4N294119% - 3—2§4N29?9§ - TQNZQ?Q%
135 153 675 153

- TQNZQ%ng + 3—254]\’39?93 - FQN‘%Q%!]% - 1—6§4N3g%092
45 9 1287 141 4959

+ 3—2§4N49§93 - §C4N49%092 + 1—6539%1 + 753]\’9%93 + 1—6§3N9‘119;
1707 2247 159

+ n GNg g + TQNQ?Q% +24353Ng%g, — EQNngfgg

2745 2115 357 165
+ 1—6§3N29?9§ + Té’gNzg’fg% + 7531\’29%092 - ¥§3N39§39§

45 99 15 3 189
+ ZC3N39§9% + §C3N39%092 - 1—6C3N49§93 + §53N49}092 +—03g3!

4
75 2 2.9 2 4 7 2 ) 1167 2 8 3 2 10
= GiNgigy + 25803N 4195 + 309G3N g5 + ——CiNgigs + 21603N 9

789 81 27
= 3BEN* R + - GN*lg) - 5 GEN?91°0 = - GN91°0 | + O(g7?) (7:4)

for the S-functions in the MS scheme where the terms have been bracketed by loop order when there is more than one
contribution. As the anomalous dimensions of both fields in the O(N) model have not been recorded before we found

O(N
o™ (g) = 263 + -2 — 29t — N

3 1
+ [59?93 + 4195 + 245 + Ngigs + 5N g5 — ENzg? + 12839105 + 128368

8 8 1 10 , 7 38
+ [— 39195 = 3919, = 39195 — 5 91 — 13 N9 — 14Ndig3 — =N
11 4 1
+ 5 Nhg — NG — NP g) — 40854143 — 16085793 — 80Csg)

3 15
— 40CsNG) = 5Cagigh + 150ag19s + 21849803 + 24Cu9) + 5 Calgiga
7 1
+6LuNGY — 5830195 — 30039195 — 64039795 — 728391 = 563N g,
1 1
= 4503Ngig3 = 260N g} + 5 C3Nglgs + 5 G g)

67 17 1 20 3 155
+|69103 + 159163 T 919 — 3919 + 5 9" = gNgids + - Ndigs
247 107 39 11 76
+ NG +—-Noi’ -5 N*gigs + - Ndig3 + = N°g)°
11 29 1 441 3969
+ 3 VoG -GN —g N + S Gdld + — = Cdlg
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and

2205 25
+ 22059593 + 8828791 + 4414,Ngh g3 + 1 $1Ngl® + 7669%93

— 100¢69195 — 3508698 g4 — 5008698 g3 — 3008691° — S0LsN S g

75 355
— 25006N g3 = 22506Ng," = —-CeN* 91" + 11859103 + s
2143 455
+ 531859093 + L5919 + 693¢59,° — 2sNgieh + ——CsNdha?
8 2 663 10 2 10 33 2.8 4 6
+ 497¢5N91gz + 755N91 + 118¢sN g1 + EQQ]QQ - 57649192
219 27 315
— 5 adhgs — 162L4gi03 — 174L49}° = T CaNGi g5 — == LuNgias
15 243
— 144LuNgigs = 140Ny = [ CaN?ggs = == L1093
57 9 3 3 177
— N G0+ —ON3B B + S N3 g0 + SNl + — gt
4 16 2 8 8
129
+ 9039163 + 138836795 + 252039105 + 268L391" + == (3Ngigh
23
+ 15603N g9 + 44383N g1 g3 + 29603N ;" — = N1
141 17 27 5
+ TC3N2921;9% + 7531\’29{0 - §C3N3921;9% - §C3N39]10
1
— 26N - Gaigs + 44839195 + 17283475 + 44803413 + 28834,

- 320N glgs + 15283N g3 g3 — 543N gi° — 9G3N?g1° | + O(g!?)

(0]
ro™(g)) = [ + N2 + [=¢% — N2 g% — 2N ]

5 1 3
+ [—gS + = Ngigs + 6Ngig3 + Ngi — ZN29‘1‘Q% +2N2g8 + 38345

4 2

+15{3Ngl{ g5 + 643N g}

9 91 13 8 7 13 28

4 6 3 3 4 3 3

+ [——gg ——Ngigs = Ngtgs — - Ngi + N>gigs — —N’gig5 — N’}

1 5
— §N3g?g% + 6N3g§‘ — 208593 — 80L5Nggs — 160¢sN ¢ g3 — 4055N g}

9 15
= 2065N?g) + 5 Lagh + 6CaNgIg3 + —-CaNgias + 240uN g3 + 120N gy

+ 155N g0 g3 + 354N g8 — 150365 — 1143N g ¢S — 4603N g} g3 — 88L3N o8 g3

— 445N g} + 203N gt gh — 320N 6505 — 653N g} + (3N g g3 — GNP g}

79 7 1039 41 31 14

1_69%0 - ZNQ%QE + 71\’9‘1193 + ZNQ?QE‘ + TNQ?!J% + ?Ng%o
37 215 313 131 7

— 3 VB + S NG+ NGl + = N9\ +  Ngg,
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143 83 5 3 1323
- ﬁN%ﬁg% + 5N39i0 - EN49§93 + §N49%0 + 7579%0
4851 11907 15435

+TC7N9‘1‘93+ 2 $INgb g3 + $INgi g3 +44187Ng)°

8
3087 2205 225 275
+ TQNzgﬁgg% + TQNZQ}O - Téégéo - TC6Ng%g§ - 125§6N941193

1025
- 325§6Ng?g§ - T%Ng’fg% - 150§6Ng%0 - 175C6Nzg?g§

1025 225 75 457 193
- T§6N29§9% - 7561\729}0 - ZCﬁN39}O + Tngéo + TCSNQ%QE
293 3069 1391 19
+ =3 EsNGIGS + 5 (sNagd + ——LsNgigs + 23905 Ngi° — = sN?gigh
105 1601 519 555
- TCsNzg?gg + TCSNZQ?Q% + TCSNZQ%O - TC5N3Q§1;9%
441 393 909 447
+ 390N g1 — =849 = == CaNG g5 — == CaNgigs ———CaNgigs
16 8 16 4
765 267 1263
— 3 CaNgigs —99CNg)® — S LNl — = = LuN g3
699

51 225 51
- TC4N29§9§ —450,N*g{° + 1—6§4N39?93 - TC“N}‘Q?Q% - §C4N3g}0

653
o (Ngigh

15 3 429 1
+1gSalNV 9193 — 76N + = C39,° + 473N gt s +

569 749 53 915
+5-CNgNG + - GNGig; + 16203Ng,° — == E3N2gig3 + == LN gla

705 55 15 33

+ - GNgig5 + 11903N2g," §63N39?93 + 5 6GNgigs + 6N g’
5 1 63 25

-3 LN gB + i G3N4gl0 + > B3al - = $3Ngigs + 17283N g 6h

263
+20653N 9193 + 38903l g3 + 14453Ng)° — 223N g g5 + —=(IN*dlg3

9
- 2753N%g1° = S GN?g1° | + O(gP) (7.6)

2

in the same scheme. We note that the first two loop orders of each f-function were recorded in [88] with which we are in
agreement. In [88] the higher loop terms were deduced from the four loop results of [92]. Therefore the results (7.3), (7.4),
(7.5) and (7.6) are the first direct calculation of the O(N) theory renormalization group functions including y4(g;)

and ,(g;)-

We recall from [88] that there are four different fixed points given by the solutions of f5;(g;) = 0 in d = 4 — 2e. Explicit
expressions to two loops are recorded in Eq. (2.4) of [88]. One of these is the trivial Gaussian one while two involve one or
other of the couplings being zero. The remaining fixed point has both g; and g, nonzero which only exists for N < 2. In this
instance when N = 2 the solution for the critical couplings reduces to the g; = 0 solution [88]. In the other case with N = 1
both critical couplings are equal and this corresponds to the emergent supersymmetric fixed point in the Gross-Neveu-
Yukawa theory. This can be seen by computing the eigenvalues of the matrix

ﬂij(ghgz) = <73/)’,»(gl,gz)>

at the critical point. We find these are
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4, 4 4
i =2e — 3+ (1205 + 16 + 5 [54¢4 — 84L5 — 24005~ T)e

4
+ g7 157603 + 39605 — 3782, + 141605 — 1800Z + 529247 + 19)e” + O(c")

2
in=3e+ 0(e%) (7.8)

where the first is equivalent to (6.8) and the second would appear to be exact.

While we have already noted several internal consistency checks on the earlier five loop renormalization it is also possible
to check the computation via the O(N) fixed point given by g, = 0. To assist with this we record the renormalization group
functions for that and note

)
g
7o' (91.0) = 20 = [N +2]g} = [N? = 10N — 4 - 24¢,] &
F[[6C — 3IN? — 16N? + [72, — 152 — 3128, — 480C5]N — 40 — 864¢,
8
+288¢, — 960¢5)] %

+ [98,N* — 683N* — 3N* — 6083N? + 360 ,N? — 58N3 — 216,2N?
+ 20485N? — 3420,N? + 2832(sN? — 9006 N> + 608N2 — 12962N

+ 7104{3N — 27368 4N + 7956¢sN — 54008¢N + 13230{7N + 856N

10

+ 691222 + 643275 — 41768, + 1663285 — 72006 + 21168¢; + 160] % +0(g"») (1.9

and

yf,)(N) (9,,0) = Ng% _ 2]\79‘11 + N[2N +1+ 653]9?

+ N[[5 = 603]N? + [18¢, — 56 — 365 — 120¢5]N
8
+ 728, — 16 — 264¢5 — 240¢5]] 96—1

+ N[6C3N3 — 18L,N3 + ON3 — 108.2N? + 198L3N? — 153¢,N* + 936(5N>
— 45086N* + 166N% — 648L2N + 285683N — 1080(,N + 6228{sN
— 270086N 4 66156;N + 524N + 3456(2 + 3888(; — 2376(, + 5736( s

10
— 36008, + 10584¢; + 112] %4 +0(g!?) (7.10)

for the two field anomalous dimensions. The nontrivial g-function is
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2N (g,.0) = [N +4]g—j— 2[N + 1]g; + [N? + [11 + 63]N + 4 + 244“3]%z
+ [N? 4 (98, — 36 — 18¢5 — 60¢5|N? + [72¢,4 — 84 — 288¢5 — 360(5|N
—20 —432¢5 + 144¢, — 480(5] %?
+ [BN* — 63N* — 10882N3 + 78L3N3 — 81¢,N3 + 936¢5sN> — 450¢N?
+ 50N? — 1080£3N? + 3264¢3N? — 1764¢4,N* + 11892¢sN* — 45008 N>
+ 66150,N? + 1740N? + 864L3N + 18096¢3N — 7848(4N + 21648(sN
— 1440086N + 37044(7N + 1824N + 13824@5 + 12864¢5 — 83524,

+ 33264¢5 — 144008 + 423364, + 320) 2L i 0(g'%). (7.11)

48
We recall that the O(N) Wess-Zumino model renormalization group functions are known to several orders in the 1/N

expansion [47-49]. The O(1/N?) correction to the f-function and the O(1/N?) ones for yg(N) (g1,0) were computed by
exploiting the scaling properties of the propagators at the Wilson-Fisher fixed point in d dimensions using the large N
formalism developed in [73,89] for the nonsupersymmetric version of (2.1) which is the O(N) nonlinear sigma model. That
model is in the same universality class of O(N) ¢* theory in four dimensions In order to check (7.9) and (7.11) in large N
we compute the critical exponents ngm’) = %ygw) (g¢,0) and @° (,B | ) (g;.0) where g; is the value of the coupling
constant at the Wilson-Fisher critical point in d dimensions and the factor of 2 has been omitted here to be consistent with
the definition used in [48]. From (7.11) we have

¢ 16 1
i N + |:—8€ + 16€? — 8¢* — 764 + [8¢3 = 4]65] N

64
+ {32e — 176€2 + [296 — 48¢5]¢3 + [3204“5 —3 48+ 9643} e

1
{6004“6 - % — 1248¢5 + 1088, — 296¢ 5 + 1444 € } —+ 0( N3> (7.12)

to the necessary orders in powers of 1/N that are needed to compare with [47-49]. Thus we have

1
ng(N) = [26 = 26* = 26> + [405 — 2]e* + [6{4 — 2 — 4(5)€”] N

1
+ [~8€ + 2862 + 4e® — [16 + 64¢5]e* + [17685 — 32 — 95¢,4]€] N

1 1
+ [32¢ — 240> + 288> + [368 + 624¢5]e* + [144 4 9368, — 3312¢5]€’] — Cha 0( N4> (7.13)

and

1
@O = e+ [-86? + 86’ + 8¢ + [8 ~ 1643)e”]

+ [5662 + [48¢5 — 136]€3 + [72¢, — 160 — 480Cs — 144¢5]e*

1 1
+ [176 ~ 1200 + 169675 — 2164, + 5285 — 28823]e”] 5 + 0< N3) (7.14)

If one expands the d-dimensional expressions for 7 and @ of [48,49] in powers of ¢ we find precise agreement. This is the
other nontrivial check on our perturbative computation, that we referred to earlier, since the higher order large N
calculations involve the three and four loop primitive topologies. Hence several of the dressed propagator graphs of Figs. 9

and 10 arise in the higher order large N exponent calculations. The critical exponent associated with 11,? W) = y,? ™) (g7,0)is
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also in agreement. However this is a trivial check since the
vertex of (7.1) is not renormalized due to the supersym-
metry Ward identity. Thus at the critical point this implies
that the vertex anomalous dimension exponent is zero to all

orders and so 11,? ™) is not independent of ng(N). We have
checked that this is indeed the case to five loops and
O(1/N?). In fact given this identity the Wess-Zumino
model is perhaps the first case where the anomalous
dimension of the linear field in the cubic interaction of
the class of large N expandable theories using the tech-
nology of [73,74,89] is available at O(1/N?3) rather
than O(1/N?).

One observation in respect of the connection between
the Wess-Zumino model and the emergent supersymmetry
of the Gross-Neveu-Yukawa Lagrangian needs to be made
in the context of the large N expansion. First we set some
notation and denote the O(1/N") term of the matter field
anomalous dimension by #, for both theories. By matter
field we mean @' of (7.1) and y' of the O(N) extension of
(2.2) when an O(N) symmetry is included. For back-
ground to this point we recall that in the scalar O(N)
universality class containing four-dimensional ¢* theory
the d-dimensional expression for #z; [89] involved a
function /(u) which was related to an ,F3 hypergeometric
function in [93,94]. Its € expansion near four dimensions
involves multiple zeta values [89,93,95] and implies that
such irrationals will appear at high loop order in the
renormalization group functions. The same function
appears in #3 in various other models including the
O(N) Gross-Neveu model [96,97] and its ' = 1 super-
symmetric extension [98]. What was unusual about 73
computed for (7.1) in [49] was that the integral I(u)
did not appear. This was attributed to either the presence
of supersymmetry, since simplifications in the renormal-
ization group functions are known to occur when this
symmetry is present, or chiral symmetry. Alternatively
both symmetries could have equally conspired to exclude
the underlying topologies that would have led to /(u). The
key point is that to O(1/N?) no multiple zeta irrationals

will appear in yg(N) (91,0). Since the simple O(N) Gross-
Neveu model 75 contains I(u) [96,97], one question that
was recently addressed [99] was whether /(i) would be
present in 773 of the nonsupersymmetric chiral XY or chiral
Gross-Neveu model universality class where the theory
has a U(1) symmetry. This was particularly relevant since
the four-dimensional theory has an emergent supersym-
metry. It transpires that the d-dimensional expression for
173 in the chiral Gross-Neveu theory does not contain I(u)
[99]. Although the emergent supersymmetry occurs for a
specific value of N that is low, the large N critical
exponent 73 contains information on the renormalization
group functions. While the absence of I(x) in the chiral
Gross-Neveu model at O(1/N?) is an indirect indication
of the structural similarities of both models at criticality it

also suggests that the absence of I(u) is perhaps due to the
chiral symmetry. One final comment needs to be made
concerning the multiple zeta irrationals. The absence of
such numbers at O(1/N?) does not necessarily imply that
they are absent for all orders in large N or perturbation
theory. They could arise at much higher order. In pertur-
bation theory for example the first multiple zeta, 5,
appears at six loops in ¢* theory p-function. That term
would be present in the critical #-function exponent at
O(1/N?) in the large N expansion of the O(N) extension
of that model [89,94].

At the end of this section we pause to discuss a potential
connection with the large N expansion technique men-
tioned here in relation to the renormalization group
functions and the Hopf algebra solution of the Dyson-
Schwinger equations of [81]. Indeed the large N methods
of [73,74] also relies upon the solution of the Dyson-
Schwinger equation in the critical region close to the
Wilson-Fisher fixed point. In the latter approach the use of
the group invariants has allowed us to identify that
solution with a seemingly parallel bubble expansion.
This is effected through the group factor 7',. For instance
the € expansion of the correction to scaling exponent was
given in (6.12) through the critical coupling (6.11) and
both have a similar structure to each other. Both actions
(6.1) and (7.1), however, are different in that the former
involves one field whereas the latter has an O(N) multiplet
of fields in addition to a scalar field. Indeed the interaction
connecting both fields is akin to the force matter one of
QCD which is a theory of N, quarks with gluons that are
elements of the adjoint representation of the SU(N,.) Lie
group with N. = 3. In addition to canonical perturbation
theory it admits both a large N, and large N, expansion
with the former being achieved using the same techniques
as [73,74]. The large N, properties have also been widely
investigated where background to the issues are given in
[100,101]. There could not be a greater difference though
in how the Feynman graphs of each expansion are
ordered. For instance in the solution of the large Ng
Dyson-Schwinger equations at criticality there is a finite
and small number of graphs at leading order. By contrast
in the large N, case it is known that there are an infinite
number of graphs at leading order [20,21]. This is evident
in the structure of the QCD p-function. To two loops it is
linear in Ny which means the leading large N, term of the
critical coupling at the Wilson-Fisher fixed point has a
finite number of terms in €. In fact there is only one. The
N. dependence for the SU(N,.) color group by contrast is
different in that the coefficient of the leading order 1/N.
term of the critical coupling is an infinite series in €. In the
absence of the all orders p-function it therefore remains
unavailable. These two situations have parallels in the two
actions (6.1) and (7.1). Clearly the large N expansion
discussed in this section is completely the same as the
large N, one of QCD given the common use of [73,74] in
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finding the d-dimensional critical exponents. Indeed the
critical coupling (7.12) has only one term at leading order
as the f-function (7.11) is linear in N. By contrast the
p-function of the other action (6.3) is not linear in T,
which leads to an infinite number of terms in € at leading
order in the 1/T, expansion of the critical coupling (6.11).
Equally the correction to scaling exponent has the
same property in complete parallel with the large N,
expansion.

This suggests that the 1/T, expansion of the renormal-
ization group functions of (6.1) using the Hopf algebra
solution of the Dyson-Schwinger equation is a potential
way of carrying out a large N, expansion of the f-function
of QCD. It is worth outlining the ingredients needed for
such an exercise. Indeed there are many challenges that
would need to be resolved. First, the Wess-Zumino model
has a supersymmetry Ward identity that allows the
p-function to be deduced from the field anomalous dimen-
sion. So the Dyson-Schwinger equation for the vertex
function would need to be analyzed in the Hopf algebra
formalism. This could be played out in the same laboratory
of ¢* and scalar-Yukawa theory [82,83] where the field
anomalous dimension was examined in the first instance.
Next in the QCD case there is the complication of gauge
symmetry. Even for Yang-Mills theory one would have
more Dyson-Schwinger equations to consider. Aside from
treating the transverse and longitudinal contributions to the
gluon equations separately, unless the focus was on the
Landau gauge, the Faddeev-Popov ghost Dyson-Schwinger
equation would play a nontrivial role. The use of the
Landau gauge may have the advantage that the f-function
could be accessible in the Hopf approach since the ghost-
gluon vertex is finite in this gauge due to Taylor’s theorem
[102]. This would be a parallel to the nonrenormalization of
the Wess-Zumino vertex here due to the supersymmetry
Ward identity. While these observations have in the main
concentrated on the close similarities there are inevitably
several technical differences. The obvious one is that the set
of basic Feynman graphs of the Wess-Zumino model is
smaller than the QCD one. By set we mean the underlying
graph topology and the difference lies in the absence of one
loop subgraphs with an odd number of propagators as well
as no quartic interaction. In turn this means that the group

invariant designation 7; does not have the same parallels as
the group Casimirs in QCD. This is understandable since the
core tensor of (6.1) is symmetric in contrast to the
antisymmetric structure constants of the SU(N,.) Lie color
group. In this case while 75 does have a partner group
theory combination in Yang-Mills, since the two loop
nonplanar vertex function has subgraphs with an even
number of propagators, it is actually zero in the adjoint
representation in Yang-Mills theory. Instead 7;; would be
the first topology that nontrivially connects with graphs in
QCD where they would equate with the so-called four
loop light-by-light graphs. Despite these issues that we
have outlined it would seem that the Hopf algebra
approach offers a viable way of probing ideas concerning
the renormalization group functions of QCD in the 1/N,
expansion in parallel with potentially the same benefit as
the large N d-dimensional critical exponents. Finally we
remark that there is also the potential for the Hopf algebra
constuction given in [81] to be extended to the next order
for the Wess-Zumino model. From the location of 75 in
(6.11) and (6.12) it is clear that the next topology to
consider beyond the iteration of the one loop bubble used
in [81] is the bubble decoration of the nonplanar primitive
of Fig. 4. The Chebyshev polynomial approach to evaluate
this graph given in the appendix of [4] should be useful in
this respect.

VIII. TENSOR O(N) WESS-ZUMINO MODEL

We now turn to an alternative version of the O(N)
theory which we will term the tensor O(N) Wess-Zumino
model as it also has an origin in nonsupersymmetric
O(N)¢* theory. In that case the interaction (¢*)> can be
rewritten in terms of an auxiliary field o which leads to the
cubic interaction akin to that of (7.1). As pointed out in
[50,103] this is not the only way of decomposing the
quartic interaction since one can introduce a tensor
channel rather than a scalar one. In this case the auxiliary
field is a vector in the O(N) group and denoted by ¢
where 1 <a <N, with Ny =1(N—1)(N+2). Since
this decomposition has parallels with the canonical one
of (7.1) it can also be incorporated in the Wess-Zumino
case as well. This is the focus of this section and we note
the bare action is

SOAN) = /d4x [/ 020D (x, 0) e 20D (x, 0) + 58 (x, 9)e‘29}9é03(x, 0)

2

6

+ Lo / dﬁaogqx‘)/\;yb{ﬁg—;’

+ 920 gabe / dOsoto + 2 dy* / d%gagag]

d* 05 DYAL D,
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where the fully symmetric rank 3 tensor depends on the
N4 real, symmetric, traceless matrices A?j via

dsbe = Tr(A“APA°) (8.2)
which formally has similar interactions to the nonsuper-
symmetric scalar tensor O(N) cubic theory that is renor-
malizable in six dimensions [50,103].

With this action we have constructed the five loop
renormalization group functions using an extension of
the algorithm for the scalar decomposition of the previous
section. The supersymmetry Ward identities (7.2) remain

the same. So all that is entailed is to append a FORM group
theory module to handle the presence of the matrix. Useful
in implementing this is the relation [50]

2
AZA%I - 5ik5jl + 5i15jk - Néijékl. (83)

Like [52] the expressions for the renormalization group
functions for arbitrary N are sizable and included in the
Supplemental Material [91]. However it is valuable to
record them for one particular value of N. For instance
when N = 3 we have

20 20

ro(9)lv—s =3 91 + 5 [=1391 = Ta3lai

20
+ > 2768347 + 24191 — 84839793 + 112075 + 14743] g3

20

T 543 (612540308 + 190442496 — 6168059 — 172014 + 2940039103
+ 5229491 g5 — 268808541 g3 — 1695441 g3 + 7938439193 — 44108443 g4

— 386408507 g3 — 88699793 — 72248395 — 2583495 — 10976¢5] 7

5
+ 255 (2017008234} + 12797088034} — 694360824} + 212629685}

— 10639800¢44% + 208068215¢% + 21989084 — 3786048L3¢° 43

+ 210336083663 — 27714968, 063 + 17172792563 — 78120008545 %
+ 526024807663 + 215490846 3 — 784896024 g + 23343644

+ 168462849193 + 15298584¢541 g3 — 5913600864 g3 + 630674174193
+286101241 g — 2010624036265 — 31923395 + 10062366245

+ 1110698456295 — 540960055795 + 509355085425 + 882196245

— 924008365 + 2552508¢395 + 73206495 + 1000272¢545

+ 1155000848 + 138297648]9 + O(g)2) (8.4)

and

2 4
7o(9)lv=s =3 Bgi +7g3) + 9 (3091 — 214793 — 4943

2
+57 (828398 + 660g8 — 630839193 + 23314163 + 29463 g5 + 17228395 + 171548]

4
+ g7 (730144830} + 952209} — 308405} — 119504} — 2856¢54703

— 6930449593 — 26880854593 — 14938453 + 1381859144 — 2205844193
— 77280¢ 59193 — 415034} g3 — 1654839795 + 10332849195 — 602704345
+ 18081848 — 77000565 — 21609g3]
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1
+——[2017008¢3 410 + 12023784¢3 910 — 627706884910 + 17472048¢5g1°

486
—106398008691° + 20806821¢,g1° + 244052091° — 6471360343 g3

+ 86257920563 g3 — 10473128463 g3 + 30972984¢ 545 g3 — 981540065 g3

+ 92054344, g8 g% + 749070045 g3 — 586924839095 — 92316¢ 3¢ g

+ 2862090¢ 4 g -+ 606782405 g5 g+ — 244608008565 g3

+ 18920223¢7¢895 + 38231764595 — 554064043471 95 + 5826828(347 45

— 2235618C, 4195 + 4430126459t g5 — 13524000861 5

+ 2801452584195 + 133413284165 — 231000083 g5 -+ 7958580L 397 65

—9122526,9395 + 17502576¢5g3 g5 — 127050004647 g5 — 8067364395

+ 265104083930 +24601332¢59}0 — 12403566¢ 9} + 48544888¢59.°

— 24255000853° + 47944197930 + 5311012¢)°] + 0(g?) (8.5)

for the MS field anomalous dimensions and

1 2
Prgi)lv= =3 23g1 + 7g3]91 + 5 [~160g} — 914393 — 4943]9,

together with

L1
27

gl

(6348595 + 548097 — 231034193 +4571g1g3 + 32349793 + 17228365 + 1715653],

~702972¢3g8 + 219006468 — 7093205 g% — 20786048 + 2083230 g3

+ 31500849395 — 3494400573 — 2143544793 + 12083439793

— 507158, g% — 618240¢s g4 — 2131994 g} — 121884528

+ 5166449795 — 1097604795 — 1808108565 + 54243443 — 231000{595 — 6482745] g,

1
+ 557¢ 639118403910 + 2920131124391 ~ 1577033642,9}° + 477675504 51"

— 2447154004910 + 4785568837910 + 5129972091° — 95135040¢3 68 9
+ 67944576398 G — 58571856445 g3 + 436374792 s 65 3

— 185686200691 g3 + 132821262¢747g5 + 655702604’ 93

— 3330566402604 + 43917728683 + 1195551084044

+ 488006400¢59°g3 — 19165440086 60g3 + 182895489¢7¢C g4

+ 686897680 g4 — 5683440083195 4 1741664454t d5 + 134178668, ¢S
+ 355043472¢ 59 g5 — 1487640006795 + 185914575¢74% 68

+ 5766790447 g5 — 87780008347 g5 + 74925900¢ 347 65

— 259034588493 95 + 72513168597 g5 — 15015000462 65

+ 2523931243 g8 + 795312052950 + 7380399643930 — 37210698491

+ 1456346645g)0 — 727650008690 + 1438325918730 + 15933036920]g; + O(g}?) (8.6)
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2
B2(9:) =3 = B + 793192 + 3 (=304} — 219195 — 4993]9>
1
+ 3 [828¢3% + 660g8 — 630¢3g1 g5 + 23319t g3 + 2943 g3 + 17228365 + 171565] 9>

2
+ 27 [—30144859% + 95228498 — 308408598 — 1195045 — 285639593

— 693049593 — 26880859593 — 149384593 + 138184591 g4 — 220549148
— 7728054193 — 415034193 — 16548459768 + 1033249795
— 60270368 + 18081¢,68 — 77000C56% — 2160948] g

1
+3 20170082391 + 12023784¢3g10 — 6277068¢,g1° + 17472048 591°

— 10639800Z691° + 20806821¢791° + 244052041° — 64713602243 g3

+ 8625792059795 — 1047312449} g3 + 30972984 59} g5 — 9815400844 g3

+9205434¢795 g3 + 749070045 g3 — 586924823 ¢% g3 — 92316¢ 34594

+ 28620904453 + 606782408 5953 — 24460800 9%

+ 18920223¢7¢°g3 + 38231764594 — 5540640024} g5 + 5826828( 3} 95

— 2235618844145 + 4430126454795 — 135240008647 95

+ 2801452574195 + 133413284195 — 2310000£3g7 5 + 795858059795

— 9122526449365 + 1750257659395 — 1270500084795 — 80673643 g5

+ 2651040830 + 2460133243910 — 124035664, 930 + 48544888( 593

— 242550000930 + 47944197¢763° + 531101243]g> + O(g}?) (8.7)

for the MS p-functions.

One property of the tensor O(N) model that was present in the six-dimensional nonsupersymmetric cubic theory [50] and
was illuminated in more detail in [52] was an emergent symmetry. When N = 3 then N, = 5 giving a total of eight fields.
This is the same dimension as the adjoint representation of SU(3) and it was shown in [52] that there is an emergent SU(3)
symmetric in the tensor O(3) cubic theory in six dimensions. Given that this is an observation at the level of group theory it
is no surprise that there is a similar emergent SU(3) symmetry in (8.1). This occurs when the couplings are equal as then the
action can be reorganized into one that is formally equivalent to (6.1). In particular the field anomalous dimensions become
equal since

Yo (gi)|N:3.g|:gz = }/a(gi>|N:3,glzgz

0, 400, 80
- 91 27

3977

800
+% [36840¢3 —9702¢% — 176408, + 137170¢5 — 59625¢4 + 78057¢; + 19750191 + O(g1?)  (8.8)

1600
(4885 +125]¢% +W [72¢4 —240¢5 — 530¢5 — 225] 8

as well as the f-functions which is apparent from (8.6) and (8.7) since

/B(gi) |N:3,g1:g2 = ﬁ(gi”N:},gl:ﬁ

200 40 800
=109} ———g) + 5 [48¢5 + 125]g] + > [72¢4 — 240¢5 — 5305 — 225] g3

3
400
+teT [36840¢3 — 970243 — 176408, + 13717085 — 59625 + 78057¢7 + 19750]g1! + O(g1)  (8.9)
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to five loops. These are clearly consistent with the direct
evaluation of the same quantities given in (6.16) and (6.17)
which affirms the emergent SU(3) symmetry.

While the emergent SU(3) theory from the O(3) theory
is not a surprise given that it runs parallel to the same
observation in six-dimensional ¢? theory, the SU(3) Wess-
Zumino model itself already had connections to other
supersymmetric models in three dimensions [41-46]. For
instance in [44] a duality was observed in three dimensions
between an N = 2 supersymmetric U(1) gauge theory or
supersymmetric quantum electrodynamics which had an
infrared enhancement of flavor symmetry to SU(3) and
an N =1 supersymmetric Wess-Zumino model with an
adjoint SU(3) symmetry corresponding to the action
(6.1). It was proposed that the latter theory has an
N = 2 supersymmetry in the infrared in three dimensions.
This symmetry enhancement had been observed earlier in
[41,43] and explored further in [44-46]. That the O(3)
tensor model has also this connection with the SU(3)
Wess-Zumino model is perhaps not surprising as [46]

|

{(¢'g)?. dsPee’

ALY P NGNS PP PN P (d5P e )Y

studied various breakings and enhancement of this group
to SU(2) x U(1).

We close by noting that one can in principle construct a
nonsupersymmetric Lagrangian with O(3) symmetry that
has both SU(3) and supersymmetry emerging simultane-
ously at the same fixed point. Such a Lagrangian would
need the field content of both the ®' and ¢ superfields and
their conjugates. Consequently, the interaction Lagrangian
would have a large number of terms. A nonexhaustive
representative set of the formal 3-point vertices is, for
example,

{c W ALw! m W NG iy Al AP EY ) (8.10)

where we have temporarily dropped the Dirac conjugate on
the fermions briefly to avoid confusion with the chiral
aspect of the underlying supermultiplets. Here ¢’ and y' are
the fields that would be in the ®' supermultiplet while ¢¢,
x“ and &% are the analogous ones for the ¢ multiplet with
the latter two being fermions. Similarly

(8.11)

are several formal quartic vertex structures. Such a Lagrangian with distinct couplings would be nontrivial and would therefore
require a large computation to determine its renormalization group functions even at low loop order in order to explore this

double emergence conjecture further.

IX. GENERAL ACTION

While we considered a generalization of the Wess-Zumino model to include interactions with group valued tensor
couplings which were real in (6.1) that was not the most general cubic supersymmetric chiral theory. Instead the most
general action involves tensors that themselves undergo renormalization which we will determine to five loops in this
section extending thereby the four loop work of [92]. In other words the bare action has the form

S di* o dij*
S = / d*x { / d20d20D)(x,0)e~20% i (x, 0) +% / d> 0D, D} ®f +%

where the tensor couplings are bare in contrast to (6.1). The
corresponding renormalized quantities are defined by

Q) =71/, D) =ZJd (9.2)
for the superfields and
it =z g gk = z3Hrergrar - (9.3)

for the tensor couplings. However, the tensor renormaliza-
tion constants are not independent due to the supersym-

metry Ward identity which implies that Z./ Hpar” and its
conjugate are constrained to satisfy
Zil zim zkn zm\par gpar — sk (9.4)

dzéégd'){;ci)g} ©.1)

|

We have determined the conditions these place on the
vertex counterterms to five loops and implemented them
within our automatic FORM program to renormalize (9.1).
Once Zg has been calculated to this order in either the MS
or MOM schemes then the renormalization group functions
are deduced from

yikzh — Z9 (9.5)

[ ——— S o

a2 P S

where the fS-functions are defined by

ik = ﬂidpqr,

_ . d -
ijk —drar,
du s 'ud,u
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The explicit form of the tensor f-function is found via the
supersymmetry Ward identity (9.4) which implies [92]

piik = _ediik 4 dijpy]g’ + dipkyg’ + dllikyg. (9.7)

We have followed this prescription and as a check have

reproduced the four loop MS result of [92] for 74. That result
was expressed as a sum of tensors which have a close
correspondence with the individual four loop graphs of the
superfield 2-point function. In other words it contained
19 tensors which were presented in a relatively compact
way. At five loops there are 63 five loop graphs as indicated in
Table I and we take a similar approach here. First if we
formally define the field anomalous dimension tensor by

CW:%’ Cﬁ:_%’ Cﬁzggb

S F-lile A
c?z—é—l—%&, c?:%, cﬁ:
C%:%’ C%:_é‘f‘%é’y NS =

which are in agreement with [47,92]. At five loops we find

— 9 = 143 9 1
Clsv{szié’%, ngS:__m 55——3254 +_16C3’
— 1 3 1 — 67
S TAS A TAC e R

9 1
37 = 18¢s —§C4 +ZC3’

12 2

— 9 1
cyy = 185 —§C4 +4_1C3’

5 k
A=SNT, 98
r=1

L=1

where S denotes the renormalization scheme, ¢, are the

numerical coefficients of the tensors 77, L labels the loop
order and r identifies the specific tensor. The explicit
expression for each tensor is provided in Appendix A which
alsorecords the connection to the underlying five loop graphs
of the 2-point function.

Having set this notation we have determined the values
for each of the coefficients. For the MS scheme to four
loops we have

F--p Foh Fo

_% 4_%4“3, cﬁ—%§4—3§37

C4—%C3’ C§:25_4’ Cﬁ:%’

—1537 o = ) 6:9)
c@ = —%Cs —%Q +1_16£3’

PR B M P

e 25 25 1
3 = _Z§6 +7C5 +5€§,

ol 25 25 1
o = —ZCs +74’5 +§C2,

— 79 9 1
62“153 = _ZCS —EQ +§§3’
— 25 25 5
M = _ZC6 +?4’5 3 %

w25, 25 11,

441 = 25 25 1
M :TC% 0213:—7564‘755 +§C§,
— 441 1
o =16 %7 csi3 =g

— 25 25 5
M = —ZCG +755 —EC%,

C5]82_§C6+Z§5_Z 3 cg’Tlg:%%, cﬁ:gg{

= 153, 9 1 o 153, 9 1
M=l felatgh AR =Gl gh
G 143, 21, 31 143, 21, 31
C%gz_T§5_E§4+§C3’ Cg/ﬁ:—?(s—%&%—?&,

= 9 1

ngss = 18¢s —54'4 +ZC3’

= 143 9 1
5 = —g 5Tt Tt
— 41 9 1
Cls\ggzjéfs—g@ +5%:

— 9 1
e = 18¢5 —§C4 +Z§3,

w143, 9 1

Csog = —?Cs —RQ +§C37
e 41 21 31
%o = Sl t o
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ngéés +3%§4—%§37 M =0, c§=%+3—264—f—6§3,
ngl%-f—;—zék—%és, ng—%-f—l%éﬁ—%é, c¥2=—33—2€4—1i663,
B=-l =i B35 =gt
B =tst2%, =t =ty =3,
ngéé?s +33—254—%C3, 024756:%475 +3%C4—%C3, M =0, cMS =0,
Cgsgz%+;—2§4—%§3, 0%2%4'33—254—%53’ ng_%&_l_z&’
6’@:—%54—%53, ng—g, Cg;:—%, ng—% %54—%53’
015\4_52:1364—;—254—13653, CgZ—CS‘F%Q?L%C% c§=—§,
cgsg:—%—%éwéca, C%Z—%—%Q‘F%C& ng%—gél*'ééb
We have repeated this exercise for the MOM scheme and found to four loops
CIIV{OM:%’ CIIVEOM:_%’ 613\/{01\4:%§3, C%OM:%’ CI;/%OM:%’
MM = 1,
HOM=-10g, M=o M=o M=o
C%OM:_§+%C3’ C%OM:_§+%C37 C%OM:_%€3’ C%OM:_Z,
dM=-i A--i AM--i A3
CHOM _; (9.11)

To two loops the respective coefficients are the same as those of the MS scheme consistent with earlier expectations. At
three and four loops a few of the coefficients also match between schemes aside from the primitive graphs. At next order the

coefficients are

gow=>a M= -Pridn ammo Pl

AM =S Cn MM IS, M=) dn QM= I8 43
MOM — y5po 430, MOM —jozs,  MOM oz, cMOM = %g%
A=10g A =-TRnln, A= A =l-g
MOM — 1075 — 302, (MOM —j0gs —3¢2,  (MOM —sSp_3¢2,  (MOM —ogr2
a0, =Dl api=-rnile
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75 75
%gMZ—Zé'S‘i‘%s, C%QMI—ZC5+3C3, MM =155 + 3¢5,
75 3 75 3 65

C%QM:—ZCS +56: C%%)M:_Z§5 +56: Cls\ggM:ZCs+353,

65 3 9 1 9 5
nggM:ICS + 6C3. C%?MZEQ, nggMzg—ECL C%gMZZ—Zé’a

9 5 3 3 9 7 3
C%?M:Z—ng, C%?MIE—ZC& C%gMIZ—Ca C%QMZE—EQ,

7
Cg%%)M = 5 ngcg)M = 10{s, Cgﬁ(gM =33, C%ﬁ?M =3¢, Cls\i(z)M = 6(3,

1 9 1 3 3

cgﬁlgM:3—§C3, cgﬁgMzz—ECy C%?MZEC% Cgﬂ(gMZECs»

9 9 9 9 9
N O AEET: «EE

9 7 7 3 9
MG M= Aol Aol Al

9 9 9

57 =30 GRN =40 aR =5 e =5 o =3

9
A=, v 12

|
S . . @
To assist with the derivation of both sets of coefficients from W(®,) = g,®,0,D; _,__(q)? +q)% _,_q)g) (10.1)

the value of Z¢ in each scheme we have recorded the explicit
expression in Appendix B. Indeed by providing them for
each specific tensor means the divergence structure of all the
individual diagrams are provided to five loops. More tensors
appear in ZJ than 3. The extra ones arise in terms with poles
in e higher than the simple one. They correspond to
connected one-particle reducible Feynman graphs of the
® 2-point function. Such topologies and hence tensors
clearly cannot appear in the final expression for y¢ in either
scheme which is a nontrivial check on the overall expression.
This is because it is the generalization of the observation that
in a conventional coupling constant renormalization the
coefficients of the nonsimple poles in ¢ are determined by
the lower order renormalization constants.

X. XYZ MODEL

As an application of the general tensor renormalization
we consider a particular theory that is connected to the
Wess-Zumino model which was examined in [40,104]. It
was investigated in [40] due to its connection with a one
dimensional conformal manifold. In particular several
theories are of interest for the case when the Wess-
Zumino model has three chiral superfields as they lie on
the manifold. These are the XYZ model and a version of the
model itself with three copies. First we recall the relevant
properties of the more general model in order to extend the
four loop analysis of [92] to five loops here. As indicated in
[40] the model involves three chiral superfields and their
antichiral counterparts with superpotential

025004-
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and its conjugate where g; and ¢, are complex coupling
constants. Therefore the nonzero tensor coupling entries are

d123 =g,
a123 — gl’

AV = P2 = PP = g,

alll — 6_1222 — a333 = 5. (10.2)
These variables were mapped to others which are similar to
polar coordinates in geometry through [40,105]

_ %

T b
g

r* = 20191 + 0205, (10.3)

9
where the parameter 7 takes values in CP(1) [105]. Using
these combinations certain values of 7z and 7 allow one to
define various different theories with the justification
recorded in [40]. We have provided these in Table V where
the first three were given in [40] and cWZ? is used as
shorthand to denote the three copy Wess-Zumino model.

TABLE V. Definition of various models from the values of 7

T T Theory

0 0 XYZ model

1 1 cWZ?
(1-3)a? (1-+3)a* 7, X Z, symmetric

00 00 Wess-Zumino model (2.1)
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This is also equivalent to the parameter choice of the final
row of Table V which was not noted in [40] and will be

With (10.3) the anomalous dimension is formally
written as

another useful limit for checking results. For the Z, x Z,
symmetric model the complex number @ and its conjugate

appear arc rolre®) = Y fie (105)
BN PR YRV § i
“- 2+ 27 2 27 (104) where the coefficients are given by
J
73 3 T
R e T e e LTS
3 7 T 7)* — -7 -7
fale ) =2+ Eg —1—254“3] e+ 2)[(2 jﬁ? 187,240 [ngﬁ]4 ==
79 [3 423[(2? +2)(7 +2) + 18¢7] 441 [(7 +2)(7> +2) + 1877]
Ssen) =5+ [§+F 2+ 7 3 2+ 77 4
305[(2+77)* —8(1 =7%)(1=7%)] 153[(z* +2)(7* +2) + 1877]
[4 2+ 77 8 24z } &
225[(2 + 77)* = 8(1 — 3)(1 = B)]
8 2+ oz %o
~ [g 9[2+e)t =8(1=2)(1=7)] 45[(F +2)(F +2) + 18ﬁq o
4 2 2+ 7z 2 2+ 77 3
1323[(2 4 72)* — 10(1 = 3)(1 — )]
16 2 4 «7]* & (10.6)

with f| to f4 in accord with [40]. Tt is straightforward to check that f;(1,1) = f;(c0, 00) for i = 1 to 5. Moreover the
fi(1,1) correspond to the respective coefficients of (5.1). While we have checked the values f;(z, 7) to four loops and found

f5(z,7) using (10.2) and (10.3) they could also have been derived from (6.3) from the simple identifications

T5:

(23 +2)(F +2) + 18¢7]

2 + 77
e+t =8(1-7)(1-7)]
2 +77)*

’

thereby making the connection with the primitive graphs
for the conformal manifold case. It is worth remarking that
given this relation between the 7; invariants one could in
principle repeat the analysis of [40] and that which follows
here for nonsupersymmetric scalar ¢ theory. While that
theory is renormalizable in six dimensions the four loop
renormalization group functions have been expressed in
terms of the four T; that appear here for chiral ¢ theory.

The main topic of study in [40] was the evaluation of the
critical exponents of the dimension 2 bilinear operators
denoted by A; where i € {1,2,2/,2”,2"} correspond to
the different representations of the 3 ® 3 decomposition of
the nine operators. These operator dimensions were deter-
mined in three dimensions using conformal bootstrap
methods as well as resumming four-dimensional perturba-
tion theory. For the latter the matrix of operator anomalous

’

(24 77)* =101 —7°)(1 = 7%)]
2 + 77)*

T94 - (107)

[
dimensions was computed to four loops prior to being
evaluated at the Wilson-Fisher fixed point. The critical
point eigenvalues of this matrix then corresponded to the
critical exponents A; [40]. We are now in a position to
extend the four loop analysis of [40] to five loops in order to
compare with the bootstrap exponent estimates. First, the
location of the Wilson-Fisher fixed point has to be found.
Since the f-function is synonymous with y4 (7, 7, 7) in this
model then the e expansion of the critical value of r,
denoted by r,, is given by solving y4(r,,7.7) = 1e. From
(10.5) and defining

(10.8)

[e]
rl = E h;e'
i=1
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the various coefficients of the critical coupling are

3 2T o PTor 2ar T RIS 8L sIfY
W4 T8 2 2afa s

hy = 1 h f2 e — 2f3 /3 N _5faf3 513 fa

= — . 10.9
> 243f? 81f*1g +81ﬂ+ 81f7 243 1% ( )
The 3 x 3 matrix of mass anomalous dimensions that was constructed in [40] is defined by
y dMi
ij 10.10
Yu = H ( )

where the matrix M*/ corresponds to the mass dimension 2 matrix (m?)” of [40] which is computed from yj/,’ using

. 3 oyl , , I
v = —2MU 4 [MPSdST 4 MPdPST M dP9) ﬁ + [MPS@SaT 4 M5 @PsT 4 M5 dPas] dpLj (10.11)

The next stage is to construct the 9 x 9 matrix, A/¥, the eigenvalues of which produce the scaling dimensions of the bilinear
operators. It has 81 elements since the matrix is labeled by the pairs of indices (ij) and (k) and defined by

iy
8 Mkl :

Akl — gsikgil 4 (10.12)

Following the prescription given in [40] we have extended the four loop expressions for the five critical exponents A; to the
next order. In particular we found

3 =3 =
soacfe
28 112[(2 +2)(7 +2) + 1877 (2 +2)(F +2)+1877] . 320[(e7+2)*=8(1 =) (1-7)] . ] ,
B {ﬁ 9 2+ 7 3-8 2+77 bty 2+ 77 C5]€
(76 [496[(7® +2)(73 4+ 2) + 1877] 32 56 (7 +2)(7° +2) + 1877]
- 181 [7 2 4 77)? E] 3 24 77)? b4
13520 [(v7 +2)* = 8(1 = 2°) (1 = 7°)]  544[(7> +2)(F +2) + 1877] 800 [(z7 +2)* = 8(1 = 2%)(1 = 2%)]
127 2+ 77 9 PERZE } 9 2 + 7] %o
N 256 [2[(24—1%)4—8(1 —-2)(1-7)] 45 g[(r*+2)(%3+2)+18ﬁ]]_g[(r3+2)(%3+2)+ 181%}2] e
181 [2 2 4 77]* 4 2 2 4 77)? 3 2 4 77]° 3
=\4 3 =3
?Kzﬂr) _[213(;47 )<1_T)]C7}e5+0(eﬁ) (10.13)

for the singlet operator as well as
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- 4 _[1 -7 _[41=77)[10—77] 16[3(1 -7+ (1-7)(1-7%)], ] 4
M =2 gt T T s P 3 2+ 546

. {i [72°7> = 2627 + 100][1 = z7] 16 2(1 = 77)(2 +27)* + [3(1 = 27)* + (1 = 2°) (1 = °)](2 + 777)] ¢

27 2+ o 9 PR .

[3(1 =772+ (1 = 2*)(1 = 7)] 320 [377(2 + 77)(1 — 77)* + 8(1 — 7°)(1 — )]
8 2+ G=%7 2+ 54&
_[ 4 [197%7% — 3877 + 100][1 — z7][10 — 77]
B {ﬁ 2 + 77
+2—3[3172%2(1 )1 =7 =32e7(1 = 2%) (1 = 2%) +28(1 = %) (1 = 7%)
i} ; . _ v 63

—(20%%* + 850373 — 2370222 + 14877 — 52)(1 — 17)] 2

8 - — — - — 3 - 5_:4
-3 [7(1 =) (1 =237z + 2177(1 — 77)% + 12(1 — 77)+2(1 — 7%) + 2(1 - 13)}{24_—1%]5
—;—?[3(7013%3 — 3867272 — 56677 + 207)(2 + 77)(1 — 77) — 1447°72(1 = 3) (1 = 7%) + 191677(1 — ) (1 = 7%)

) 4 800[8(1 —7)(1 =7)(1 + 7+ 22)(1 +7 +72) + 377(2 + 77) (1 — 77)?]

+1336(1—#)(1—H)}ﬁ—7 = L
+%[(181’4f4 — 7207 + 1377272 — 20577 — 34)(1 —77) + 6323 (1 — 23) (1 = 7°) + 467272 (1 = %) (1 = %)
—7773(1 = 2)(1 = 2) +9(1 = 23)2 + 9(1 — 2%)2+52(1 — 7°) + 52(1 — ﬂ]ﬁ

392 [¢z(1 + 277)(1 = 22)> + 4(1 =) (1 =), ] 4
+3 el &€+ O(ed). (10.14)

Electronic expressions for these are included in the Supplemental Material [91]. While we have also calculated expressions
for Ay, Ay and A,n explicitly they can also be deduced from the following mappings given in [40],

[t + 2] _ [F+2]
A Ay
R T | A T
A _)A”‘T_)[a)f—ﬁ—Z] %_)[5)%4—2]
S PP T @z-1]
(0?7 + 2] [@°7 + 2]
Ay — Ay , . 10.15
278 T @7 — 1] (10.15)

We note that each expression resulting from applying the mappings to A, is consistent with the direct five loop evaluation
which provides a useful check on the critical exponents. Another consistency check is that setting both 7 and 7 to be equal to
1 or oo in A; reproduces the coefficients of € in (6.8). The discrepancy in the O(¢) term is due to the canonical part of AV,
Having determined the five loop corrections to A; we can now extract estimates for them in three dimensions. First we
record the explicit expressions for the e expansion of the various exponents for each of the three theories. We have
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4 3 4
AYYZ =22 4(65 + 1) % P A(27C, — 4285 — 12085 —T) =
5
+2(7282 + 4208 — 378C, + 14165 — 18006 + 3969¢; + 38) — o+ O0(e).
AXYZ =2 — 2,
ASYZ = AXYZ = AXYZ
_o-2eto unon e a A(5484 — 56¢5 — 16085 — 3) - ¢
3€75¢ 3707 4708 5781
5
+ 2(528G3 + 2485 — SO4L, + 14675 — 24005, + 529205 — 14) 7=+ O(€°). (10.16)

3 3
A iWZ = A ;WZ
et

4 3
=2-3€+4(124 + 1)%+ A(54L, — 8485 — 24005 —T) — 7

5
+A(ST622 + 3965 — 378C, + 14165 — 1800 + 52928, + 19) — o7 T O)

4
AV = AV = AN =2 — 3¢ (10.17)

and

4 3 4
AP =) §62 +4(95 +1) % +2(81¢&, — 1265 — 30085 — 14) 5—7

&l

+ (237682 4 242485 — 22688, + 5856¢5 — 9000 + 22491¢, + 152) e T Ol 6),
AZZZXZZ _ A?xzz

~ B 3
5 (26 -15V3) +(265 153V3) 2 4 (159030, — 41v3 - 27548+ 71) &

c e
(713 -123)  3(71/3 - 123) 9(71/3 - 123)
+ (14310V/38, — 17452+/3¢5 — 53000v/3¢s — 1011+/3 + 30228¢5 — 24786,
4
€
+9180085 + 1751) ——
¢s )54(71\@ —123)
+ (177624/3¢2 + 107664v/3¢ 5 — 157068+/3¢, + 451070v/3¢s — 795000/384
+1912617v/3¢; — 1602v/3 — 3076563 — 186480¢5 + 2720528, — 781293
5
€
+ 1377000 — 3312792¢, + 2774 + 0(e%),
s . ) 324(71V/3 - 123) )
A§2x22 _ A?/%XZZ
(97 — 561/3) (11V3-19) e

) 114 413 = 198¢5 — 71
2 (713 — 123) +3(71\/§—123)€+( V3L +41v3 - 198¢, = 71)

+ (1026V/3¢, — 724V/385 — 3800v/3¢ s + 3011/3 + 12605 — 1782¢, 4 660085 — 521)

9(71y/3 — 123)

€4

54(71/3 — 123)
+ (6408v/322 4 13921/3¢5 — 6516+/3¢, + 48983v/3¢s — 57000v/3¢

+ 122598v/3¢; + 2170V/3 — 111602 — 2448¢5 + 11340, — 84996( 5

el

+99000¢¢ — 213003¢; — 3758 +
‘e & )324(71\/§ —123)

O(e5). (10.18)
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We note that both ASVZ' and ASY?" are indeed consistent
with (6.8) as expected after allowance is made for the
canonical dimension contribution of 2 — 2¢. For several
exponents the series truncates at O(e) and no order symbol
is included. This is because these are exact to all orders in €
and their three-dimensional values tally precisely with
those of [40]. In deriving (10.16), (10.17) and (10.18)
we have encoded (10.13) and (10.14) together with the =
and 7 dependent expressions for Ay, A, and A,» in one

|

program and then evaluated each explicitly. For the XYZ
and the ¢WZ? cases we find that several nonexact
exponents are equal and this agrees with [40]. However
in the Z, x Z, case we disagree with the equivalences
recorded in Table 2 of [40] for the 2” and 2" dimensions.

Instead we found A3>*” = AZ7*% and AJ*% = AZP
To see the alternating sign pattern and the magnitude of
the coefficients the numerical values of the nonexact

exponents are

AXYZ =2 —1.333333€? + 3.649929¢3 — 22.621480¢* + 95.728196¢° + O(¢€°),

AZYE = AJYE = AJY-

=2 —0.666667¢ — 0.444444¢> + 1.988842¢> — 8.779169¢* + 40.471457¢> + O(°),

3 3
AV = AV

=2 —1.333333¢? + 6.855415¢* — 44.205924¢* + 290.935250¢> + O(e®),

=2 —1.577350¢ + 0.051567¢> + 0.278877¢> — 0.888082¢* + 5.331310€> + O(e®),

AIZZXZ2 =2 —1.333333¢? + 5.252672¢ — 28.805134¢* + 145.920995¢° + O(e°),
AZZZXZZ _ A?lez

ZyxZy _ pZyXZy
Az/ - Az/l/

=2 —0.422650¢ — 0.718233¢> + 2.926608¢> — 16.028343¢* + 78.326933¢> + O(€%).

For the exponents which have an O(¢) term the series are
alternating when the canonical value of (2 — 2¢) is allowed
for.

In [44] the perturbative expansion was used to estimate
the exponents in three dimensions in order to compare them
with the conformal bootstrap calculation. Therefore we
have extended that study here using the same method. This
was to construct the Padé approximants for the five loop
nonexact exponents. The results for each of the three
theories are given in Tables VI, VII and VIII where the
Padé approximants for three and four loops are also given.
The [L, 0] and [0, L] approximants at each loop order L are

(10.19)

[

excluded as they either do not converge or are singular in
2 < d < 4. There are no entries in each table for some
operator dimensions. This is because for those cases the
Padé approximant is also singular above three dimensions.
So because there is no continuous connection down from
four dimensions to three in these cases any evaluation at the
latter dimension is unreliable. What is generally evident for
each of the theories is that the five loop Padé approximants
are similar especially in the cases where there are no
singularities. Table IX summarizes the situation at three,
four and five loops for each of the three theories and also
records the conformal bootstrap results of [40]. Each loop

TABLE VI. Padé approximants at three, four and five loops for TABLE VII. Padé approximants at three, four and five loops for
nonexact operator dimensions in the XYZ model. the nonexact operator dimensions in cWZ? model.
Padé Ay Ay Padé Ay

[2, 1] 1.859277 1.632346 [2, 1] 1.906650
[1, 2] 1.868528 1.660704 [1, 2] 1.910813
[3, 1] 1.777975 1.633073 [3, 1] 1.869530
(2, 2] e 1.633070 2, 2] e

[1, 3] 1.797562 1.639170 [1, 3] 1.874821
[4, 1] 1.669152 1.638139 [4, 1] 1.879670
[3, 2] e 1.632229 [3, 2] 1.877593
[2, 3] 1.637434 [2, 3] 1.879319
[1, 4] 1.705650 1.637537 [1, 4] 1.879929
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TABLE VIII. Padé approximants at three, four and five loops
for the nonexact operator dimensions in Z, x Z, model.

Padé Ay A, Ay
[2, 1] 1.887757 1.729559
[1, 2] 1.893722 1.253242 1.747789
[3, 1] 1.842132 1.237664 1.706973
[2, 2] 1.237098 1.702425
[1, 3] 1.850355 1.716789
[4, 1] 1.813663 1.245205 1.684017
[3, 2] 1.255392
[2, 3] 1.243920
[1, 4] 1.821597 1.253878 1.692667

TABLE IX. Averages of three, four and five loop Padé
approximants for nonexact operator dimensions compared with
conformal bootstrap results.

Model  Dimension Three loop Four loop Five loop [40]
XYZ Aq 1.863902 1.787768 1.687401 1.639
Ay 1.646525 1.635104 1.636335 1.681
cWZ? Aq 1.908732 1.872175 1.879128 1.910
Zy X Z, Aq 1.890740 1.846243 1.817630 1.898
A, 1.253242  1.237381 1.249599 1.259
Ay 1.738674 1.708729 1.688342 1.727

estimate is the average of the Padé approximants in the
individual table of each theory. In [40] the three loop Padé
approximants were used to compare with the bootstrap. By
providing the same data for the next two loop orders gives
an overall indication of the trend of including higher order
loops. For the XYZ model the A; estimates are decreasing
toward the bootstrap value and is a significant improvement
on the three loop estimate. The estimates for the other
exponents are slowly decreasing away from the value given
in [40]. It might be tempting to surmise that the operator
dimensions in the XYZ model have been interchanged
since swapping them would give agreement to a few
percent. However this is not the case from analyzing
(10.16). A similar feature occurs for the nonexact exponent
of the cWZ? theory although the five loop value is within
2% of the bootstrap value. The situation for the three
nonexact dimensions for the Z, x Z, case is somewhat
mixed. Clearly the estimate for AZ‘ZZXZ2 is within less than a
percentage of the value of [40] and is stable at each loop
order. For the other operators the tolerance is around 5%
but the trend with loop order is not as settled.

XI. BEYOND FIVE LOOPS

While our focus to this point has been on the five loop
renormalization group functions, the next stage in studying
(2.1) would be to extend this to six loops. Given what we
have established here it is worth giving guidance on what

would be required for that as several common features
emerged. First, at six loops there are 324 Feynman graphs
contributing to the ® 2-point function. The content of
Yo(a) at that order will involve rationals as well as what we
term irrationals. The majority of these will be {,, for n = 3
to 9. In addition their products such as {35 and ¢ % which
are both present in the six loop ¢* p-function [32,34],
should appear if the structure of the renormalization group
functions of this nonsupersymmetric paradigm theory is
valid. That would therefore imply the potential additional
presence of the multiple zeta {35. As noted earlier the
O(1/N?) expression for the exponent 5 [49] may indicate
that such an irrational is actually absent. However if it
were present it would have to arise in a primitive graph
whose O(N) group theory factor is beyond O(1/N?).
Alternatively candidate primitive graphs from ¢* theory
may be excluded because of the restriction the chiral
symmetry places on the graph topologies.

Of the 324 graphs it turns out that 17 of these are
primitive. One feature to emerge from the five loop
evaluation of the Feynman graphs was the appearance of
what was termed the product primitives. These are 2-point
graphs with vertex subgraphs. As the vertex function is
finite, we noted that the simple pole can be deduced from
the finite value of the vertex itself. At six loops we have
illustrated the eight graphs of the total primitives that are
product primitives in Fig. 12 where the vertex V5 is defined
in Fig. 13. The residue of the simple pole in € of each of the
graphs will be proportional to {35 and have a group factor
of T,T5T; for (6.1). The explicit coefficient of this residue
requires the implementation of the D-algebra. This is also
an issue for the remaining nonproduct primitives especially
as the power of the irreducible scalar products increases
with loop order. The remaining graphs intermediate to
those with rational contributions and the primitives corre-
spond to the decoration of the lower loop primitives with
an extra one loop bubble. A subset of these should be
calculable with the use of subtractions and FORCER. The
remainder of this type, similar to the nonproduct primitives,
could only be reliably evaluated with a five loop version of
FORCER.

Next we note that the concept of product primitives
naturally continues at higher loop order. We have provided
several examples in Fig. 14 to illustrate the point. A new
vertex function V4 has been defined in Fig. 15 where the
actual 3-point function is isolated by amputating the right
external vertex. In Fig. 14 the graphs are 8, 10, 9 and 13
loops respectively from top left to bottom right. The simple
pole residue of each would be £3¢s, &3, £3¢% and {3¢2¢; in
the same respective order with the equally associated group
factors of T2T§T71, TQT%I, T2T5T%l and T2T5T%1T94. So
there is a clear association of each group factor with a
specific &,,.

Finally we return to the rational part of y(a) and note
that it is possible to deduce the contribution in the MS
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FIG. 12.
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Six loop product primitive graphs.

FIG. 13. Three loop planar vertex correction.

Y A
\% <
A Y

scheme purely from the five loop computation. This is
because the rational part of the six loop MOM scheme is
known from the Hopf algebra solution of the Dyson-
Schwinger equation given in [81]. As we showed earlier
the five loop MOM expression for y4(a) could be deduced
from the MS expression by using the coupling constant
map (5.6) and the formalism of (5.8) and (5.9). To extract
the rational part at six loops requires one ingredient
which is the finite part of the @ 2-point function at five
loops. This is because the coupling constant mapping at L
loops determines the (L 4 1) loop renormalization group

\ A
Vg < Vé
A Y

FIG. 14. Higher order product primitive graphs.
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FIG. 15.

functions from (5.8) and (5.9) once they are available at L
loops in one specific scheme. Previously the MOM five loop
p-function was deduced from the MS one. Here we reverse
the process given the result of [81]. So all that is required is
|

3 3 4

pla) =3 a* = Sa* + [36¢3 + 1] % 1 [54, — 180¢5 — 2405 — 27]

2

+ (151283 + 257485 — 13238, + 54845 — 27007 + 79387 + 237) 3

69
+ | ===+ nonrational contribution |a’ + O(a®)

20

and we note that the alternating sign pattern of the rationals
is maintained. To determine the nonrational contribution of
(11.1) is of course a more strenuous exercise.

XII. DISCUSSION

We have completed a comprehensive study of the Wess-
Zumino model at five loops. This has proceeded in two
phases with the initial one outlining the algorithm for
carrying out the computation of the five loop Feynman
graphs that are required for the f-function of the original
model of [1]. Once established the second part addressed
applications to various extensions of the core theory by
allowing the fields to lie in various symmetry groups or take
the couplings to be general tensors. One consequence was
to extend the precision of the e expansion of critical
exponents to a new order. This is important in the context
of other methods such as the conformal bootstrap and the
functional renormalization group techniques. These have
been applied to several problems like the emergent super-
symmetric fixed point that is present in Gross-Neveu-
Yukawa systems which relate to materials in nature and
could be the first manifestation of supersymmetry in reality.
As a corollary the five loop Wess-Zumino renormalization
could be a useful independent check on any future higher
order renormalization of that system. However, to effect
such a calculation in the Gross-Neveu-Yukawa model in
four dimensions at five loops would be a massive under-
taking especially given the number of graphs that would

Definition of four loop primitive vertex.

the rational part of the @ 2-point function at five loops. As
these are the bubble graphs which are simple to evaluate to
the finite part we have applied the formalism to find the
rational piece of the six loop MS p-function which is

aS

8
6
a
]_

(11.1)

|

need to be evaluated. At four loops either 7384 or 188531
Feynman graphs were determined in [15] where the two
totals depend on whether real or complex scalars were used
together with their respective Dirac or left- and right-
handed Weyl fermions. These are substantially larger
numbers than the four loop ones given in Table I. This
is primarily due to the fact that unlike the component Wess-
Zumino model each interaction of the Gross-Neveu-
Yukawa system has an independent coupling constant.
Consequently all the 3- and 4-point vertices have to be
renormalized separately in the absence of any Ward
identities. One interesting aspect of the ¢ expansion
analysis was the close agreement of the five loop estimates
with other methods for the Gross-Neveu-Yukawa system as
is evident from Table III. While the five loop results
appear competitive with the latest bootstrap estimates there
is still not precise agreement. Whether this is an indication
of some discrepancy or not, such as nonperturbative
contributions outside the scope of perturbation theory, is
worth pursuing. If so it should not violate the underlying
supersymmetry in the extension from four to three dimen-
sions in an e expansion approach. The other case where we
produced exponent estimates to compare with bootstrap
methods, which concerned the one-dimensional conformal
manifold connected to the XYZ model, we found values
that in some instances were close to the values quoted in
[40]. This suggests that perhaps higher orders in € would be
necessary to produce a more accurate comparison. While
we have sketched out some basic ideas as to how a six loop
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computation could proceed again such a task is not trivial.
Perhaps the graphical function methods of [31-33] offers
the best direction to follow especially if the method could
be adapted to superspace in the first instance rather than
have to use a component Lagrangian. Such a six loop
renormalization would give insight into whether there are
multiple zetas in the f-function of the Wess-Zumino model.
This is the order where (35 first appears in its non-
supersymmetric cousin ¢* theory which also has no chiral
symmetry. If it was present at this order in (2.1) then there
would be no more debate.
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APPENDIX A: TENSOR DEFINITIONS

In this appendix we define the tensors 77/, that appear in
the anomalous dimension of the general action (9.1). Each
of these tensors depends on the tensor couplings d"/* and
d'/*. The subscript of each dummy index j, in each of the
definitions is in direct correspondence to the label used in
the QGRAF electronic output that defines the underlying

graph. In particular the bridge between szr and the settings
of the ggraf . dat file in partnership with the form. sty
style file is to use the onepi and nosnail options. To
three loops the first set of tensors is

At five loops the 63 different tensors are

dinidiig: = Y,
diiiz isials Jiivis gizjsis — T;jl ,
A2 qisisin giadeds dijsia divisie giziris — ngl’
diiz dizisie diairis E[.ij3j4 E[jljsje E[izhjs — Téjz ,
A2 disden giadsis dijvis dizials isisin — T%,
A2 disisde (isinis dijvis dizials gisiris — TZ3J4 (A1)
For orientation T;jl and Téjl correspond to the graphs of
Figs. 1 and 2 respectively while 775, is the nonplanar graph
of Fig. 4. We note that in [92] a factor of % was included in
the definition of the tensor corresponding to 77,. At four
loops the 13 tensors are

A2 disisio disiriv disisi gidsia girisie giziis giejiiin = Tfljl ,
diiiz gisisio disieio giviinis gijsis givisie gizirjs diojioin — TiiZ’
diJ3Ja dirisie gi2iris dieq i gidviz gisisio disieiio gininis — T;f3 ,
Az isisia gisiedo isioin giisis givisie giziris diojioin — TZ"

diiiz gisisie disioo dirisin giisis givisie gizrjs diijojo — TﬁlJS ,

Az disisie diairio disioin gijsis girisie gizjris dioioin — TZS’
diiiz gisisin gisisio disiin giivis gizisis gisisiio girjoin — Ti/‘%
A7z disiedn disdsis disioin gidis gizials disisio girioin = Tftfé’

diiiz isisir gisisis gioqin giivis gizisls girioin gisisjo — T%’

A3 giziads giriin disiedo diiviz disieir gisisis diojioin — Tflle’
Az disiedn disisis dieq i gidis gizials dieiris disioiin = Tﬁljll’
diiiz gisiade disiris giviojio giivis gizisis gisiojio girjsin — Tfljl2’
diiiz gisiade disiris diojin giivis dizisis dierio disiin — Tfljl3
(A2)

where Tiﬁ and Tf{l respectively correspond to the graphs in
the bottom row of Fig. 6.

A2 disieo giadnin disiniis gisisia gidsis givisie diznis gitzjein giadioiiz = ngl ,

diiiz dizieq gisiviin disieivs girisia gijsia gitisie giziris givsoin ghajiojiz — Tij

52

diT3is dirisis dizivis givsioin giaiioii gidvia gisisir gisiie gisisis girisia — T

- 53
Az giziew disini disieiis dj7j8j|4aj.f3.74aj1.isj6;1.f2.i7jslelsjt)j]oc_ijmj]1.712 — TéJ;l’
diiiz isisio disioin diei2ivs girisia gijsis gitisie giziris gioisiiz ghsioin — T;js’
Az disisio disiin dleinis girisia gijsia ditisie giziris gisiieiiz ghajiojin — Téj()’
diiiz disisio disiin dieirir: gisivzia gijsia girisie giziris gioisiia gizioin — Té’%’
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disds dirisie diriris dioiizira givzivi giiviz gisisio gisiin dieiriv gisiviie — T58’

Az dizisio gisivin dieirire gisiia giisia girisie diziiis gieireis giajioin = T59 ,

dii3ds dirisie diziris dieieiis giadvoii giiviz gisisio gisiin dieiriv gisiviie — T5 .
Az dizisio disiin dieirive disisia giisia girisie dizinis gisidis giriniie = T511 ,
diiz disisio disioin disiriv gisivia gijsis girisie giziris gieiizito ginjiziie — T512’
diiz disisio disirire disviv gisivsia gijsis girisie giziris gioiizira giroiniiz — T513’
Az dizisio disiriv disiiire gisisia giisia girisie gizinis gioiniis giriiziis = T514’
diiz gisisio disirire dieviv gisivsia gijsis girisie giziris gioiiiir gijiziie — T515 ,
diiz disisio disiriro disisin givzivsia gijsis girisie giziris gioiiiir giriiziie — T516’
di3ds girisie dizris gieiiir giivia giiviz gisisio gisirio dieisin giriziie — T517 ,
diiz gisisio disirire dieisin givzivsia gijsis girisie giziris gioiir ginziie — T518’
Az dizisio giadeiv giriviive gisisia gidsia girisie diziiis gisiniis giriiziis = T519’
di3ds girisie diziris gioiiiii givivaia giiviz gisisio giseio girinin gisivziie — T520,
Az dizisio diaisiro giriviine gisisia gidsia girisie gizinis gisiniie giriizie = T521 ,
disia divisie giziris dioiiiiiz giviisia giiviz gisisio disieiio giziviie gisizie = T522’
diiiz disisio disieiio disivzivs ginirive gijsis girisie giziris gioiin giriziie — T523’
diJsia divisie giziris diehin givisia giiviz gisisio disieiio gisisia ginzie = T524’
diiiz disisio disiedio dirisin givivsia gijsis girisie giziris gieiiiir gijiziie — T525 ,
disds dirisie diziris gioiiiir givivsia gijviz gisisio diseio girisin girziziie — T526’
Az gisisio disiedio dirisin i gijsis girisie gizjris giojii ginjiziie — T’5127 ,
disds dirisie diriris gioiir ginvsia giiviz gisisio giaeio girisin giriziie — TlSéS’
Az dizdsin diadsis dishoin givaiveiis giisia givisie gizinis gisireiis giriniie = Tl5j29,
diiz isisin disdedo disioin givivsia gijsis givisie giziris gioiir giniziie — T’5/30,
diiz gisisie disiodro giriviiv gisivsia gijsis girisie giziris gioiiiiz giriiziie — T’5/31 ,
Az disisie iadsivo giriviive gisisia gidsia girisie diziiis gisiniiz giriiziie = T‘5/32’
diiz gisisie disiodio dirisin givivsia gijsis girisie giziris giiizi gindojiz — T’SJ33 ,
diJsia divisie giziris diiisiia givodve giiviz gisisie disisiio gizisin giniizie = T’5/34’
diiz gisisie disodio girisin givivsia gijsis girisie giziris gioiii ginjiziie — T535 ,
diiiz disisie disirio disioin giairveiis gijsis girisie giziris gioiiziis giriniie — T15J36’
Az disisie iairis dishoin givisia giisia girisie diziiis gisiiie ginizie = Téj37 ,
diiiz gisiein disisio disioin givivsia giivis gizisis gisisivz giriizi giojoiin. — T’S’38 ,
Az dizdeln diaisio dishoin divisia giivis gizials dieisive giziodis gisiniia = TI5j39’
diiz gisiein disisio disioin i giivis gizisis gisisie girioiis i — T’5/40,
A3 diriss disisive dirioiis giaivoinn giiviz gisiedn giaisio gisioin girziziie — T541 ,
Az dizdeln diaisio dishoin givisia giivis gizials dieisiio gizjedie ginizie = T‘5/42’
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diiz gisiein disdsio gisioin giaiveiis giivis gizisis gisisio giziziiz giiniie — i3
diiz disien diaisio disioin givivsia giivis gizisis gisisio gizioir ginjiziie — s
Az dizdeln giaisis dioiiiis divivadia ivjs gizials disisiio giziviie gisiziie =

=TY

=TY

T545’
A3 giriss disiodio giriviv gisivia giiviz gisiein giaisis giojiniiz giiziia — T546’
Az dizdeln diaisis dioiiis divainive giivjs gizials dieisiio giziviie gisiziie = T547 ,
A3 di2ials disisiv giriviiie gisisia gidviz gisiea disisis gieiis giainiiz = T548 ,
diiiz disiein disisis gioiin givzivsia giivis gizisis gisjoio girinin gisivziie — T549 ,
A3 di2isls disisiv girivine gisisia giiviz gisisa disisis gisiin giniizie = T550’
diiz disiein disisis gioieiis giinia giivis giziads girioin disieo gitaiieiz — TISJSI ,
A3 dirisls dirioin gisieio giaiveiis giiviz gisiedn giaisis gioiziiz giroiniie — T552’
Az disiein disisis giejiirz ginivsia giivis gizisds gizioin gisisio giriiziie — T553 ,
A3 dirisls dirioin gisiedo givivsia giiviz gisiein giaisis gioiir giniziie — T554’
Az dizdeln diasis dioiiziis diroinia iivis gizials dieinis gisioin giiaiiziiz = T555 ,
diiz gisiein disisis gioiir ginivsia giivis gizisis gisirio gisioin giiziia — T15]56’
diiz disisie disiris gioiiiii giviveiia gijvis giziais gisiodio girinin gisivsiie — T557 ,
Az dizisle isinis dioiiiiz giviisia iivjs gizials disisiio giziviie gisiziie = T558 ,

diiz gizisie disiris giiiziv gindoiie giivis gizials gisiodio girisin girziziie — T559’
A3 di2isls disisiv girisin givisia giiviz gisiade disinis givoiisia ginjejiz — T560’
diiz gisisde disiris giofi ginivsia giivis giziads gisiodio girisin giiiziie — T561 ,
diiiz disisie disiris dioiieiis giviniie giivis giziais gisivio gisioin giaiziiz — T562’

Az dizisle isinis diehiiz dinisia giivis gizials dieiis gisioin giniizie = T563 (A3)

Again to assist with orientation the graphs in the top row of Fig. 11 are respectively T511 and Tgil 4~ Those of the lower row
correspond to the tensors T5 and T519

APPENDIX B: RENORMALIZATION CONSTANTS

In this appendix we record the explicit form of the wave function renormalization constant for the action with the general
tensor couplings (9.1). This is primarily to illustrate the structure of such a tensor renormalization constant as well as to
provide the numerical value of each pole in € for each tensor. To record the result in a compact way we decompose the

renormalization constant Zg into a basis of tensors as well as the residues of the respective poles giving

5 Lk 5 L d
L 1 L 1
U St l/
=604 D > D @l Tl gt ) D D Bl g (B1)
L=1 g=0 r=1 L=2 ¢=0 r=1
where k; is defined in the last column of Table I. The coefficients a5 , and b . have pairs of labels. The first pair

Lg|Lr Lg|Lr
identifies the loop order and the power of the € pole while the second pair relates to the relevant tensor. The label S denotes

either the MS or MOM scheme. Clearly aw‘ ;, =0 and pMS
renormalization constant.

ro, =0 as g =0 would indicate the finite part of the

In addition to the tensors Tij, that ultimately appear in the related renormalization group functions, other ones arise for
poles in ¢ of order higher than the simple one. These are denoted by D} and those that arise to five loops are
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Dlzj1 = (Tﬁ) D% = (Ti)ijv Déjz = (TuT1)".
41 = (T? )Y, D42 = (T%I) ] thj3 = (TZIT%I)U’ thj;t = (T51Ty)",
= (TT1)Y, Do = (Ts3Thy)", DYy = (T34Tyy)Y,
51 = (T ) Dsz = (T%l) ] Dlsl3 = (Tle%)ij’ D54 = (T%1T11)
55 - <T31T21)U7 Dss = (T32T21)ij7 Dlsj7 = (T33T21)l ) Dss = (T%4T21)
59 - (TBIT 1)”’ D;jlo = (T32T%1)ijv ngn = (T33T%1)ij’ D512 = (T34T11)”1
513 = (TuTn)", ngm = (T2 Tn)", ng15 = (T43Tn)", ngm = (TauTn)",
Dy = (TysTy1)", ngm = (T46T11)", ngw = (TyyTn)", ngzo = (T4sT11)",
Dy = (TyoTyy)Y, Déjzz = (Ty10T11)", ng23 = (T4 T11)Y, ng24 = (Ty12T11)Y,
D5 = (Ta3T1y)". (B2)

Graphically these correspond to the product of one-particle irreducible graphs. Their coefficients in the Laurent expansion
in € are determined by lower loop orders consistent with the renormalization group function.
For the MS scheme the residue of the poles to three loops are

MS l MS l MS 1 aM_S _ L aM_S i
4 T Ty np1 = Ty Dipr T g 3332 48° 33133 24’
1 1 — 1 — 1
“%\834 o4 13\%?32 48" al%vé\sw 24" agg\sﬂ -3 agﬁm 4 ¢35
1 1 — 1
MS MS S _
a13\4”32 48" a13v{\33 YR ag/{|34 76 (B3)
with those at four loop being given by
M b S b M _ b M b
44\45 64’ 44\46 64’ 44\48 192° 44\49 64’
4MS b MS b M b M b
Gaalar0 = T gz Qaalant = T gz Qa2 = T 9g° 44413 = T 9g°
1 1 1 1 1
a%\su 64’ a%?% YR a%\sats 64’ %?49 YR azl\éiuo YR
MS 1 MS 1 MS 1
4a3la11 = gy 4a3la12 = 35> 4a3413 = 7
vy 1 oM 1 Ms 1 MS
42\42 E G 42|43 E <3 42|44 g . 42|45 64 ’
vy 5 vy 3 M 1 oM 5
%46 =~ T 190 A = Egiﬁ, Aas = "qon° 4aja9 = T19n°
5 — 1 = 1 — 19
aig?mo = 192 a%\an T’ a%\smz =796’ a%\s413 =796’
— 5 3 3 3 3
alﬁ‘sﬂ :ng, Z/{\Sn ﬁ&"’ﬁgs, M‘S@ 554 +EC3’
3 — 1 1 — 1
0341\344 géﬁrg?a’ s RTREVIE “341?462—g’
oM 3 Z o+ 3 ¢ oM _ 5 MS b oM b
41\47 32 4 16 3 41\48 192’ 41|49 24’ 41\410 24’
1 1 5
aiﬁm ~ 64 5‘53’ ‘12/{?412 ~ 796 + C3’ “{4\/{\5413 16 (B4)

The coefficients of the connected higher pole tensors are
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pMS _i MS _ _ L MS L pMS i
22|21 32’ 33|31 128° 33|32 32’ 32032 32’
MS o _ 5 1 MS _3 MS _ b
44|41 2048’ 44\42 128° 44\43 256° 44|4S 192°
bMS 1 MS __ 1
4446 = %’ 44|47 — _%’
[ —— pMS i MS L MS 1 MS _ i
43142 7 a4 43143 T 256° 4345 192° 43\46 96 ’ 43(47 32’
— 1 < 1 — 1 < 1
2“2?42 = 128’ %\544 = _EC% 2@\545 = 192° 22\546 = 96’ b%\sm = o4’ (BS)

where obviously there can be no one loop coefficient.

Given that there are more tensors at five loops we record the data for this part of Zg by the order of the pole. First, the

leading pole coefficients are

aMs
Uss)s4 =

aMs
Assis33 =

avs_ —
Ass537 =

aMs.  —
Assi547 =

aMsS._ —
Assiss1 =

aMs
dss5]555 —

aMs
Assi560 —

then

aMs
Asy|s4 =

aMs
sa)533 =

aMs
sq)537 =

aMs
Asaj547 =

MS

54551 —

aMs
sq)555 =

aMs
s4]560 =

1
~30°
1
~160°
1

240

1
T 180
1
~540°
1
~160°
1
30

1
=30
1
64
11

480°
11

1920°

11
960"

1
=160’

1
=50

Ass)538 —

MS

As5i548 =

MS

As5)550 —

MS
As5)556 —

MS

aMs
s54]56 —

aMs
sa]534 =

MS

Assi561 — —

Usqj538 =

MS

A54]548 =

MS

Usaj550 =

MS

Usq)556 =

MS

sa)561 =

~160°
1
T 430"
1
~540°
1
~160°
1
350"

1
64’
1
64’
1
40°
11

1920°

11
%7

1
64’
3

320

ML
55|515 320’
o L
55|535 160°
MS — L
55|543 320°
L
55|549 160°
MS — L
55|553 240°
1
alsvé?sss 960"
L
55|562 480°
alsvﬁlt?ﬂs ~ 30’
S 1
S _
a?ﬁ\ﬁs ~160°
A3
54\543 320’
MS 1
54549 = 64’
A
54|553 480°
MS L
54\558 160°
M 1
54\562 80’

are the quartic pole ones. Continuing the triple pole coefficients are

025004-46

Mo L
55\532 480°
Mo
55\536 240°
MS — L
55\544 320°
MS — i
55\550 160°
M
55\554 240’
MS L
55\559 320’
1
MS
55563 = ~ 130 (B6)
VS 11
54|532 1920 ’
s 1
54|536 960°
MS 1
54|544 60 ’

1
alsvzlt\ssso 64°
S 11
54|554 480 ’

MS 1
54|559 60 ’
1
MS
2/4[”563 48 (B7)
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with

aMs
As3)563 =

aMs
Us3)550 =

aMS
A53]554 —

aMs
As53j544 —

oM
As3j535 =

aMs
As3j56 =

aMs
As3j545 =

aMs
53531 —

aMs
As3]527 —

aMs
Us3j523 =

Ms
As3)58 =

aMs
As3js2 =

aMS. —
syls2 =

aMsS. —
dsylss =

MS
As53j58 =

aMsS
Asyj513 —

MS
As5y518 —

aMs
Usyls23 =

MS
53506 —

aMS
As53j509 =

aMS_
Usylszn =

aMs
As53)535 —

MS
531539

=G,

o B w1 e U
96° 53|562 480° 53\561 320’ 53|560 320°

_ 1 Ao 13 AL M L

320’ 53\558 960° 53\556 160° 53|555 160°

S v S v N S v S

120° 53\553 120° 53\550 160° 53|549 160°

S s o s T s T

320’ 53\543 320’ 53\538 480° 53|537 120°
I S v I S v S S S L
160° 53|534 160° 53\533 160° 53|515 960°

i MS i MS ié‘ MS ig

160° As3j54 = 320° As3)557 — 40°% As53j546 — 160>

9 3 3 = 3
ﬁcﬁ l5\/5542 EC% gg?sm = _%4’3* als\g?sm = _%53’
9 MS 1 MS 1 MS 1
@C% 4531530 — E‘:% As31509 = EC& ds3]508 = _@C%
1 1 1 1
@63’ 15\/;?526 EC% 1;g|8525 EQ’ 2@?524 %C%
1 1 1 1
%53’ 2@?522 %C% 2@|S521 = _@53’ %Ssn %C%
1 1 1 1
%553, 15\%?57 _EC3’ 2437’55 —EC& 2%‘553 @53,

1

ﬁ@

3 3 B 3 M 1 1
T304 Tie0t e T oC4 Tl60% 9 T30 T 160
3 3 3 1 3
%‘:4 +%C3, 6115\%‘556 %—ﬁga 15\/5‘857 *54 +%C3,

3 3 N 1 — 1 1
%(:4 +4—OC3, a%%g :ZCS, 6115\%‘5510 :ZCS, 015\/%?512 455,

3 1 ~< 1 = 1
0€4+%C37 15\/5‘5515 1—207 al;g?SIG :ZCS’ aIS\g‘Ssn :Zé’Sv
1 — 3
§C5’ 015\/5\5521 :—@54 +8_C3’ 22‘5522 0C4 +%C3,
VS s 3 3
160(:4 +5n 4'37 Asyjso4 = 160(:4 +5n é'sa Asylsp5 = —@54 + EC&
< = 3 3
—C4 +—C3, a%%y 16O€4+ C3, ag“ﬁm = _1—6()§4+%C3’

3 < 3 = 3 9
80C4 +—= C3’ 015\/5‘5530 80§4+ C% 02/5531 2%54“‘@4’3,
19 - 3 1 ¢ aMs. . — 3 _ Lg
19200 95253 T 73207 160°% 5215347320 1607

1 1 =< 19 1 = 19 1
160_@€3’ “2/5536 = _%4’@@3’ agg\ssm = 480" 2@?538 60°
= 9 3 = 9 3
015\%‘5540:—@54 +1_6£:3’ 6152‘5541 :_@54 +1—6§3,
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9 3 =< 1 3 == 1
2%?542 %Q + §§3’ agg\ssu = _% - ﬁg% agg?su 240"
3 9 e 9 s 19
l5%?545 %5—:4 + ﬁC3’ (12%‘?546 320 C4 + Og alS\g\SSM =~ 1920 ’
VS 19 VS 3 1 s 3 1
As53)548 = T1920° 53549 = “320° 160 ¢35 Asylss0 = ~ 320 @Q’
19 1 19 1 19
2%?551 ~ 7960 + —OC3’ 15\/5\8552 960 + ﬁgﬁ 2%?55% 480"
aMS 19 aMs 1 _ig aMs __i_ig
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as the coefficients for the double pole. Finally the simple poles that lead to yg are
9 143 9 1 — 143 9 1
MS __ 2 v a2 A Ms _ 1% e
o5t = 7306 G T g0 T30 TTe0% Gils T 160 T 320% T 160"
1 1 67 9 1
e =335 320C4+160¢ s = ~30% * 5% 20
3 I
Is\/ﬁ% = 160 320(:4 +35 473, al;“m Cs + C4 C
5 5
2/{?58 gCS +%C4_EC3’ 1;/{\359 8C6_Z€5__§%7
— 5 5 1 441 5 5 1
a?’ifslozg%—zés—z—o ol =gyt Al =50 30-58
=< 9 1 441 == 1
aSijsis = Cs + @54 —ggln A= @47’ aijsis = ~go°
5 5
2/{‘8516 C CS +- €37 2/{?517 é’ CS + 4’37
5 9 9
2/{\5518 16 %6~ ng + %gz, 15\41\5519 ~ 770 % 1svhsszo 10 %
=< 153 9 1 . 153 9 1
ag’{‘sm Cs + 16OC %437 241?522 ) —~ {5+ EQ - %C&
= 143 21 31 < 143 21 31
2/{‘5523 20 TR +@C4—%§37 2/{?524 80 ~~Cs +@C4—%C3’
9 9 1 9 1
21‘5525 ng +%§4—%C3, al;/{‘sjzé ng +%C4—%§37
N 143 9 1 N 143 9 1
als\/{\ssz7 30 < G5 +ﬁ54 —%53’ 2/{?528 Cs + 160(: @Csv
41 9 1 41 31
15\/{‘8529 —Oé's +—§4——§37 1;/{?530 —055 +@C4—E§3,
1 13 3 3 1
MS . MS - - _
U511 = 5095~ 320 320% TT60% %1 T 10 320 T3
3 3 1 1 3 1
o = ~Tg0 305 TR Bl = g0 1605 Tl

025004-48



FIVE LOOP RENORMALIZATION OF THE WESS-ZUMINO ...

PHYS. REV. D 105, 025004 (2022)
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from which it is straightforward to see the connection with c@.
For the coefficients of D}, we have
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for the next order. The remaining two sets of coefficients are
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MOM and bMOM

The analogous expressions for arglLr Lq|Lr

are available in the Supplemental Material [91].
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