
Five loop renormalization of the Wess-Zumino model

J. A. Gracey
Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool,

P.O. Box 147, Liverpool L69 3BX, United Kingdom

(Received 7 September 2021; accepted 8 December 2021; published 6 January 2022)

We renormalize the Wess-Zumino model at five loops in both the minimal subtraction (MS) and
momentum subtraction schemes. The calculation is carried out automatically using a routine that performs
the D-algebra. Generalizations of the model to include OðNÞ symmetry as well as the case with real and
complex tensor couplings are also considered. We confirm that the emergent SUð3Þ symmetry of six-
dimensional OðNÞ ϕ3 theory is also a property of the tensor OðNÞ model. With the new loop order
precision we compute critical exponents in the ϵ expansion for several of these generalizations as well as
the XYZmodel in order to compare with conformal bootstrap estimates in three dimensions. For example at
five loops our estimate for the correction to scaling exponent is in very good agreement for the Wess-
Zumino model which equates to the emergent supersymmetric fixed point of the Gross-Neveu-Yukawa
model. We also compute the rational number that is part of the six loop MS β-function.
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I. INTRODUCTION

The Wess-Zumino model constructed in [1] is the
simplest scalar supersymmetric quantum field theory in
four dimensions with chiral symmetry that is renormaliz-
able. It comprises two scalar fields and a Dirac fermion to
have equal boson and fermion degrees of freedom. There
are two interactions one of which is a quartic scalar whereas
the other is a scalar-Yukawa one. In this respect it has the
basic structure of the Standard Model in the absence of
gauge fields and flavor symmetry groups. Consequently the
Wess-Zumino model forms a sector of the extension of the
Standard Model to the Minimal Supersymmetric Standard
Model (MSSM) and as such has been used as a simple
laboratory to explore aspects of that potential theory for
new physics beyond the Standard Model. This property of
the Wess-Zumino model has been one of the motivations
for its study since its construction in 1974. While the
original article considered the component field Lagrangian
it has been reformulated in superspace [2] where it involves
two scalar superfields, one of which is chiral and the other
antichiral. These separately have cubic self-interactions in
the superspace action. Several years after its inception the
renormalization group functions were determined beyond
the one loop ones recorded in [1]. Indeed the four loop
expressions in the modified minimal subtraction (MS)

scheme were determined in a very short time span from
1979 to 1982 [3–6]. The three loop β-function in the
momentum subtraction (MOM) scheme was also given in
[4]. One reason for the rapid progress was the calculational
shortcut available from the supersymmetry Ward identity
[1,2]. This ensures that there is only one independent
renormalization constant in the massless theory which is
that of either the wave function or the coupling constant. As
the former is deduced from the 2-point function this means
that a relatively small number of Feynman graphs have to
be evaluated even to four loops in order to deduce the
β-function. While this was manageable at very low loop
order, progress with the three and four loop renormalization
was further advanced with the use of superspace techniques
[2,4,6]. In addition to having a small number of super-
graphs to consider the superspace approach circumvents
the issue of γ5 if a regularization involving analytically
continuing the space-time dimension is employed [4].
Aside from the main connection to a sector of the MSSM

the Wess-Zumino model has enjoyed a renaissance of
interest in recent years due, for example, to an observation
in condensed matter physics. In [7–10] it was shown that
supersymmetry was present on the boundary of a three-
dimensional topological insulator. This emergent super-
symmetry is believed to be described by the Wess-Zumino
model. Another instance where the Wess-Zumino model
can emerge is in a two-dimensional optical lattice with cold
atom-molecule mixtures [11]. Equally there is a connection
with the four-dimensional Gross-Neveu-Yukawa model
[12] or XY Gross-Neveu model [13–15]. This is a theory
with a scalar-Yukawa and a quartic scalar interaction.
Both interactions have independent coupling constants.
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However, it has been established [8,13–17] that there is a
Wilson-Fisher fixed point in d ¼ 4 − 2ϵ dimensions where
the critical couplings are equal. Moreover the anomalous
dimensions of all the fields are equal at criticality revealing
the emergent supersymmetry. This has been established at
four loops in the ϵ expansion [15], and the exponents have
been shown to be equal to those of the Wess-Zumino model
[18]. The extrapolation to three dimensions is believed to
be in the same universality class of the supersymmetry
associated with the topological insulator.
Given this renewed interest in the Wess-Zumino model

and the potential for supersymmetry to be realized in
nature, albeit not through observations using a particle
collider, the main aim of this article is to compute the five
loop β-function of the Wess-Zumino model. While this is
around 40 years since the previous loop order appeared
such a computation is possible now given the revolution in
automatically evaluating Feynman diagrams that has
advanced the field in the last decade. The main techniques
that have been instrumental in this are the Laporta algo-
rithm [19] and the FORCER package [20,21]. The former is a
routine that systematically uses integration by parts to relate
specific classes of Feynman graphs to a small set of master
integrals whose Laurent expansion in ϵ is known. The latter
method is a four loop algorithm for the evaluation of
2-point functions in d dimensions and is the natural
successor to the MINCER package [22,23] that has been
the workhorse of four-dimensional massless multiloop
calculations for a generation. For instance, both approaches
have led to the five loop MS renormalization of quantum
chromodynamics (QCD) [24–27]. Also the four loop
β-function of six-dimensional ϕ3 theory has been given
in [28]. More recently this has been superseded by the five
loop result [29,30]. The latter computation [30] was
effected by a technique that successfully extended our
loop knowledge of scalar theories to much higher orders.
The particular method is known as graphical functions
[31–33]. Prior to [29,30] the six and seven loop ϕ4 MS
β-functions were computed using algebraic geometry as
well as graphical functions [32,34]. Indeed it was men-
tioned in [31] that it may be possible to extend the field
anomalous dimension to eight loops in MS.
We will use both the Laporta and FORCER techniques in

this article together with a routine developed here to
automatically carry out the D-algebra associated with
superspace calculations specifically for the Wess-Zumino
model. Another motivation for extending the renormaliza-
tion to five loops is that in recent years the conformal
bootstrap and functional renormalization group techniques
have been successful in determining critical exponents at
very high numerical precision. These methods have also
been used to study the Wess-Zumino model in three
dimensions partly for the emergent supersymmetry reasons
but also for other more mathematical physics problems
[17,35–39]. Therefore we will carry out the analogous

renormalization of these theories to have five loop precision
for the exponents of various operators as well as the
correction to scaling exponent by using the ϵ expansion
and extracting estimates in three dimensions. For instance,
in [40] the complex one-dimensional conformal manifold
that underlies the infrared behavior of a class of N ¼ 2
supersymmetric theories in three dimensions was studied in
depth using the conformal bootstrap. One aspect of the
study of these more mathematical three-dimensional the-
ories is that certain dualities have been found to exist. For
instance, there is believed to be a dual connection between
supersymmetric quantum electrodynamics and an SUð3Þ
Wess-Zumino model [41–46]. In this context we will also
examine the five loop structure of the OðNÞ model in two
formulations. One is the standard one of the Hubbard-
Stratonovich decomposition used for ϕ4 theory. Indeed this
case has already been examined in the large N expansion
[47–49] and we will use the information contained in the
Oð1=N3Þ d-dimensional critical exponents of [48,49] as a
nontrivial check on our five loop renormalization group
functions. However, there is an alternative formulation of
the OðNÞ Wess-Zumino model based on a tensor decom-
position of the OðNÞ quartic interaction. This was studied
in nonsupersymmetric ϕ3 theory in six dimensions in
[50,51] at low loop order before being extended to four
loops in [52]. For the Oð3Þ tensor model an emergent
SUð3Þ symmetric fixed point was found [50,52]. The
exponents of the constituent scalar fields are equal as
are the critical couplings thereby admitting the larger
symmetry. This is in complete analogy with the emergent
supersymmetry in the chiral XY Gross-Neveu model. As
the tensor OðNÞ Wess-Zumino model has the same formal
cubic interaction we will confirm that the tensor Oð3Þ
Wess-Zumino model too has an emergent SUð3Þ fixed
point which potentially adds to the set of theories connected
to the dual behavior in three dimensions. In light of this it is
not inconceivable that the chiral XY Gross-Neveu theory
can be extended to have a parallel tensor symmetry. In that
case the emergent supersymmetry and SUð3Þ symmetry
should occur together at one of the fixed points of that
tensor theory.
The paper is organized as follows. The basic properties

of the Wess-Zumino model that are necessary for the five
loop renormalization are introduced in Sec. II. The com-
putational strategy for this is reviewed in Sec. III in the
context of the four loop renormalization while the details of
the five loop algorithm that we used are given in Sec. IV.
The main results for the original Wess-Zumino model are
given in Sec. V where the MS and MOM renormalization
group functions are recorded. The next few sections are
devoted to the extension of the theory to include various
symmetries. For instance, a group valued coupling is
considered in Sec. VI where the ϵ expansion is used to
compare exponents with estimates of the same quantities
from the functional renormalization group and conformal
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bootstrap techniques. Endowing the Wess-Zumino model
with anOðNÞ symmetry is the subject of Secs. VII and VIII
with the latter concentrating on the tensor OðNÞ version of
the model. Section IX is devoted to the case where the basic
coupling constant is replaced by a rank 3 symmetric tensor
coupling. This forms the groundwork for studying the
exponents connected with the three-dimensional conformal
manifold which is discussed in Sec. X. While the focus will
have been on five loops to this point, Sec. XI explores some
of the issues that would arise if the six loop renormalization
were to be computed. In fact we will provide the rational
part of the six loop β-function in the MS scheme from the
MOM scheme expression that was deduced from a Hopf
algebra argument. Concluding remarks are provided in
Sec. XII and two appendixes contain definitions and details
of the tensor coupling renormalization.

II. BACKGROUND

In this section we review the Wess-Zumino model [1]
and its properties that are relevant for the renormalization.
The superspace bare action is given by

S ¼
Z

d4x

�Z
d2θd2θ̄Φ̄0ðx; θ̄Þe−2θ∂θ̄Φ0ðx; θÞ

þ g0
3!

Z
d2θΦ3

0ðx; θÞ þ
g0
3!

Z
d2θ̄Φ̄3

0ðx; θ̄Þ
�

ð2:1Þ

where we use type I chiral bare superfields Φ0ðx; θÞ and
Φ̄0ðx; θ̄Þ and g0 is the bare real coupling constant. The
superspace coordinates θ and θ̄ are anticommuting and
represented by two component spinors. In light of this the
2 × 2 covariant Pauli spin matrices σμ are used in spinor
space leading to the shorthand notation ∂ ¼ σμ∂μ. The σμ

matrices satisfy the same Clifford algebra as the usual Dirac
γ matrices. This version of the action, (2.1), was used for
the four loop calculation of [6]. When the model was
renormalized at lower loop order, the component
Lagrangian was employed [1,3], and for completeness
we note that the bare Lagrangian in that case is

LWZ ¼ iψ̄0=∂ψ0 þ
1

2
ð∂μσ0Þ2 þ

1

2
ð∂μπ0Þ2

þ g0ψ̄ðσ0 þ iπ0γ5Þψ þ 1

24
g20ðσ20 þ π20Þ2: ð2:2Þ

It is this form of the Wess-Zumino Lagrangian that
demonstrates the connection with the emergent supersym-
metry at one of the fixed points of the chiral XY Gross-
Neveu-Yukawa theory [8,13–17]. The only difference
between (2.2) and that of the Gross-Neveu-Yukawa
Lagrangian is that there are two coupling constants g1
and g2 respectively for the cubic and quartic interactions. At
the emergent supersymmetry fixed point both g1 and g2 are

equivalent [8,13–17]. Moreover the anomalous dimensions
of all the fields are equivalent at the fixed point.
One useful property of (2.1) that we used in the

renormalization is that of the supersymmetry Ward identity
[1,3]. If we define renormalized entities via the renormal-
ization constants Zϕ and Zg with

Φ0 ¼
ffiffiffiffiffiffi
ZΦ

p
Φ; Φ̄0 ¼

ffiffiffiffiffiffi
ZΦ

p
Φ̄; g0 ¼ μϵZgg ð2:3Þ

where μ is a mass dimension 1 object in d ¼ 4 − 2ϵ
dimensions, then there is only one independent renormal-
ization since it has been shown that the vertex function is
finite [1,3]. As a consequence we have

ZgZ
3
2

Φ ¼ 1 ð2:4Þ

which implies

βðaÞ ¼ 3aγΦðaÞ ð2:5Þ

where

a ¼ g2

16π2
ð2:6Þ

and γΦðaÞ is the anomalous dimension of Φ and Φ̄.
Having discussed the formulation of the superspace

action we now outline the strategy taken to carry out the
five loop renormalization. One way to gauge the magnitude
of a high loop order computation is to tally up the number
of Feynman graphs that have to be computed. This has been
recorded in Table I where the data for the 2-point function
are given. These were compiled using the QGRAF package
[53]. Due to the supersymmetry Ward identity the vertex
function is completely finite and so those graphs do not
have to be calculated. There are several ways of counting
the diagrams for (2.1) which will determine the strategy we
will follow. Aside from a superspace approach, where the
graph count is given in the final column of Table I, the
theory can be formulated in terms of component fields. For
(2.1) one can have real bosonic fields, as in (2.2), or
complex ones. The numbers of graphs for the bosonic field

TABLE I. Number of graphs at each loop order L for 2-point
functions using real component, complex component and super-
field Lagrangians.

L Real field Complex field Superfield kL

1 1 1 1
2 8 7 1
3 96 90 4
4 1942 1797 13
5 49710 45183 63

Total 51757 47078 82
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2-point functions are provided in the table too. Clearly there
is a significantly larger number of graphs for both compo-
nent field calculations. We have chosen not to effect a
calculation for either component Lagrangian. This is due
not merely to the number of graphs but also because in that
case one would have to use dimensional reduction [54]
rather than dimensional regularization as the latter does not
preserve supersymmetry. The former regularization needs
to be implemented with care since additional evanescent
fields have to be included in the dimensionally regularized
Lagrangian [55–57]. By contrast, although the superfield
formalism has less than a total of 100 graphs to compute,
the superspace propagator in momentum space for (2.1) is

hΦðp; θÞΦ̄ð−p; θ̄Þi ¼ exp ð2θpθ̄Þ
p2

ð2:7Þ

where p is the momentum. Not only is the loop momentum
integrated over in superspace Feynman integrals but also
the internal θ coordinates that arise at each vertex of a
supergraph. In [4] a different form of the superpropagator
was used which involved the supercovariant derivatives Dα

and D̄ _α. These satisfy an algebra, known as the D-algebra,
which is used to simplify each superspace integral before
the integration over the loop momenta can be carried out.
Ordinarily the D-algebra is implemented by hand, which is
straightforward to three loops for (2.1), but this is not a
practical approach for higher order calculations. As the
superpropagator takes the form of (2.7) in (2.1) it is
possible to implement the corresponding D-algebra in an
automatic Feynman diagram calculation. To do so we have
written a module in the symbolic manipulation language
FORM and its threaded version TFORM [58,59] to achieve
this. Indeed the full computation could only be carried out
with several key features of the language. For instance,
the noncommuting function facility of FORM was essential
for handling the D-algebra. Moreover, once it has been
applied to each Feynman graph they can each be evaluated
in dimensional regularization which is what we use
throughout.

III. COMPUTATIONAL DETAILS

We now discuss the technical aspects behind the five
loop calculation which will involve explaining the algo-
rithm for constructing an automatic five loop evaluation.
In order to provide the necessary introduction to all the
ingredients required for this we focus on the lower loop
Feynman graphs for the moment and outline the first step of
the process which is to reduce the superspace integrals to
momentum space ones. For instance the one and two loop
graphs contributing to the one-particle irreducible Φ
2-point function are illustrated in Figs. 1 and 2. Our
notation throughout will be that Feynman graphs in super-
space will have directed lines as in these two figures. In this
respect we note that from (2.1) the arrows on a propagator

will all be directed toward the vertex or away. The immediate
consequence for this is that there are no Feynman diagrams
with subgraphs with an odd number of propagators. This is
evident in Figs. 1 and 2 as well as ones that appear later.
Through where some figures have undirected propagators
these represent Feynman integrals in ordinary momentum
space and not superspace. We will also use Γn to denote the
one-particle irreducible graphs at n loops and Cn to indicate
the connected 2-point Green’s function at the same order.
This will simplify our illustration of the higher loop
contributions to the 2-point function.
For Γ1 and Γ2 the D-algebra is simple to implement.

Since the θ and θ̄ dependence in (2.7) is in the exponential
of each propagator then each graph will have one expo-
nential that depends on all the anticommuting variables of
each vertex of a Feynman diagram. So, for example, since
Γ1 has only two external vertices the overall exponential
depends solely on the external vertex variables. Hence the
exponential factors off, consistent with renormalizability in
superspace. In fact this is a feature of all higher loop graphs
where the same factor emerges overall [6]. Moreover when
Γ1 appears embedded in a higher loop graph this factor that
was external contributes to the D-algebra calculation of the
remaining part of the higher loop graph. So for Γ2 the only
anticommuting variable dependence that remains is a factor
exp ð2θ1kθ̄1Þ where k is the loop momentum and θ1 and θ̄1
are to be integrated over [6]. This is after a change of
variables on the original internal anticommuting variables.
Expanding the exponential then only the quadratic terms
are relevant for the θ1 and θ̄1 integration after a trace is
taken over the σμ matrices [6]. This is readily carried out by
mapping the traces to the usual γ-matrix trace routine but
adjusted so that the trace normalization is 2 and not 4. The
resulting momentum space Feynman integral is represented
by the graph of Fig. 3. We have detailed this relatively
simple calculation as it is an example of a deeper obser-
vation for the D-algebra of 2-point subgraphs in higher
loop graphs. It turns out that in the resulting momentum
space integral one of the propagators connecting any Γn

FIG. 1. One loop 1PI 2-point function.

FIG. 2. Two loop 1PI 2-point function.
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subgraph is deleted in the same way as in Fig. 3. This
lemma was useful in the five loop calculation.
At next order the four three loop graphs are summarized

in Fig. 4 where C2 contains two diagrams. The nonplanar
graph is primitive and is divergent. This is in contrast to the
identical momentum space nonplanar integral with undi-
rected edges which is finite being equal to 20ζ5 where ζn is
the Riemann zeta function. See, for example, the articles
[60–63] for the early discussion on the connection of the

Riemann zeta series with the topology of high loop
Feynman graph. To evaluate the primitive graph the
D-algebra needs to be applied. This results in a set of
momentum space integrals that are given in Fig. 5. In
displaying these we note that in total there are 14 integrals
but we have used left-right and up-down symmetry to
reduce these to the four independent topologies. The
nonplanar graph contains the irreducible numerator which
becomes apparent when the trace is taken over the fermion
propagators which are represented by the dotted lines. It is
important to note that these integrals result from the
D-algebra and have no connection with the Feynman
integrals that one would have to compute using the
component Lagrangian. We have detailed the reduction
for this graph as it differs from the way it was evaluated in
the four loop calculation of [6]. There the external
momentum was nullified in the numerator of the integral

FIG. 3. Momentum space representation of Γ2.

FIG. 4. Three loop 1PI 2-point function.

FIG. 5. Momentum space integrals after applying the D-algebra to the three loop nonplanar graph.
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after carrying out the integration over the anticommuting
superspace coordinates. For the five loop renormalization
we have to determine the integral to the OðϵÞ term rather
than just isolate the divergence. We note that comment was
also made in [64] as to how to effect the D-algebra for this
topology.
At the next loop order the 13 2-point function graphs are

given in Fig. 6 where we have introduced a shorthand
definition of the two loop nonplanar vertex which will be
denoted by V2 and is defined in Fig. 7. The subgraph V̄2 of
Fig. 6 corresponds to the graph of Fig. 7 but with the
direction of the external legs reversed which is the origin of
the conjugate notation. In Fig. 6 and later figures we do not
display all the subgraph mirror images. To illustrate what
we mean by subgraph mirror image there is another graph
similar to the final graph on the first row of Fig. 6 where the
V̄2 subgraph is translated to the other external vertex
whence it would become V2. However in performing this
translation there is no reflection of the direction of any of
the propagators which remains unchanged. The graphs of
Fig. 6 follow a similar pattern to those at three loops in that
the majority are decorations of the previous loop order. This
includes the three cases where there are propagator cor-
rections on the three loop primitive. The remaining
undecorated planar four loop graph is a primitive at this
order. It will have to be evaluated without the rerouting
simplification that was used in [6] since we will need the
finite part. Moreover it transpires that there are a

significantly larger number of momentum space integrals
that result from the D-algebra compared to those of the
three loop primitive.
Although our aim is to renormalize (2.1) to five loops we

pause at this point to discuss the techniques we used to
evaluate the momentum space integrals. To four loops the
main tools we employed were the three and four loop
packages MINCER [22,23] and FORCER [20,21], respec-
tively. These are FORM encoded packages that evaluate
dimensionally regularized 2-point functions up to various
orders in ϵ. While MINCER is tied to theories in four
dimensions FORCER has the capacity to determine the ϵ
expansion of momentum space integrals in theories with
even critical dimensions. The usefulness of MINCER for
example in its application to theWess-Zumino model is that
it can determine the part of the β-function that solely
involves rational numbers to five loops. While it can
equally be applied to the evaluation of most of the four
loop graphs we had to use FORCER to find the primitive of
Fig. 6 to the finite part. Another technique we used, which
is not limited to the computation of 2-point functions, was
the Laporta algorithm [19] encoded in the REDUZE package
[65,66]. This was primarily required to check the four loop
primitive graphs but was also used more extensively at five
loops to verify the simple pole of certain difficult primi-
tives. In applying both MINCER and FORCER to all the
momentum space integrals that result from the D-algebra
we have verified the four loop β-function of [6]. As far as
we are aware this is the first direct evaluation of the graphs
where there has been no simplification involving the
external momenta to extract the divergences.

IV. FIVE LOOP CALCULATION

We turn now to the details of the five loop renormaliza-
tion which first requires the evaluation of the 63 graphs. We
have chosen to illustrate these in a sequence of figures and
classify the graphs by the underlying skeleton topology.
Those given by propagator dressings of Γ1 are shown in
Fig. 8 where we note that C3 and C4 include the respective

FIG. 6. Four loop 1PI 2-point function.

FIG. 7. Two loop nonplanar vertex correction.
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three and four loop primitives. As all the subgraphs within
Cn and Γn in the figure are available to the finite part from
lower loop computations their contributions to γΦðaÞ are
straightforward to determine. However this is not the case
for the decoration of the three loop primitive where the
graphs are illustrated in Fig. 4. The reason for this is
that after performing the superspace integration over the
internal anticommuting coordinates the set of momentum
space integrals do not have a direct correspondence with the
decoration of the topologies of Fig. 5 in all possible ways.
This is not unrelated to the irreducible scalar products
that arise. For an L loop 2-point Feynman graph there are
1
2
ðL − 1ÞðL − 2Þ irreducible scalar products. So to address

this issue using a Laporta algorithm approach would
require an integral reduction of significant size. Instead
as the four loop FORCER package has no direct applicability
we have followed a different tactic and that is to apply the
method outlined in the five loop renormalization of QCD in

[25]. There the divergent part of similar five loop integrals
was determined by a combination of infrared rearrange-
ment and the method of subtractions. The external momen-
tum is rerouted through the graph such that it enters through
one current external vertex but exits via the first vertex
adjacent to that one. For some of the graphs of Fig. 9 there
are several ways of achieving this which gives a check on
the procedure. As noted in [25] this produces an integral
containing a four loop 2-point subgraph that can then be
evaluated using the FORCER algorithm [20,21]. In other
words this package is used indirectly to extract the five loop
divergences. For the Wess-Zumino model there are several
additional simplifications compared to the QCD case.
Aside from the fact that the superspace graphs are zero
dimensional, there are fewer graphs and within these there
are a small set of irreducible scalar products. Therefore we
have constructed a procedure to effect the subtraction
approach for the subset of graphs of Fig. 9. As a check

FIG. 8. Five loop graphs based on the decoration of Γ1.

FIG. 9. Five loop graphs based on decoration of three loop primitive graph.
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on our method we have applied it to the similar decorations
of the three loop primitive shown in Fig. 6 since we know
the correct answer from their direct evaluation in FORCER.
In applying that check we thereby verify that it is a valid

procedure for evaluating the decoration of the four loop
primitive graph of Fig. 6. The corresponding representative
five loop graphs are shown in Fig. 10 and it is clear that the
rerouting approach that exploits FORCER is one of the few
strategies we have. However for this skeleton topology we
were also able to check both poles in ϵ of the four graphs of
Fig. 10 by following the algorithm given in [6] for the
underlying four loop graph. That method did not reroute the
external momentum but set the external momentum to zero
where it appeared in the numerator of the integral after the
D-algebra had been applied. At five loops this produced a
topology with a four loop 2-point subgraph which had a
different structure to that of the external momentum
rerouting but which could equally well be evaluated using
FORCER. For each of the four cases we obtained consistent
expressions for the divergences.
The final subset of graphs for the five loop renormaliza-

tion are provided in Fig. 11 and are the primitives. These
can be divided into two classes. One class involves the
decoration of the three loop primitives by nonplanar vertex
corrections. In fact the first graph on the top row is Γ1

where both external vertices are dressed with V2 and V̄2.
For both these graphs we have evaluated them in several
different ways. For the double dressing of Γ1, for instance,
we can merely multiply the pole of Γ1 by the finite value of
V2. We have determined this by computing the two loop
vertex function using either MINCER or FORCER with one
external momentum nullified. As an alternative we have

also computed the underlying integral without any restric-
tion on the external momentum. In other words the integral
is evaluated at a nonexceptional subtraction point. More
specifically we considered the fully symmetric point where
the squares of the external momenta are all equal. After
applying the FORM D-algebra module we used the REDUZE

encoding of the Laporta algorithm to express the diagram in
terms of the various two loop master integrals which are
available in [67–70]. Either method produces the value of
3ζ3 for the finite part of V2 and its conjugate. With this
value it transpires that both graphs in the top row of Fig. 11
are proportional to ζ23. In each case we have checked this
argument by rerouting the external momentum. As the
graphs are primitive where the momentum enters the graph
and leaves is not important as long as it is at two separate
vertices. This includes the case where only one external
momentum is rerouted which we used on the lower loop
decorated primitives. The divergence was extracted using
FORCER. Whichever approach we used the same simple
pole resulted for both these graphs. It also tallies with the
method used in [6] for the underlying skeleton topology.
What is worth noting about this primitive is that in
nonsupersymmetric models graphs with a nonplanar vertex
subgraph correction would not ordinarily be regarded as a
primitive. Indeed in the conventional understanding of the
appearance of ζn to five loops in 2-point function calcu-
lations the primitives are associated with ζ3, ζ5 and ζ7.
This product of ζn values in a primitive appears to be
solely peculiar to the Wess-Zumino model. This leaves the
graphs of the lower row of Fig. 11 to evaluate. These do not
have any vertex subgraphs and so we do not have the
same guidance into the final residue of the simple pole.

FIG. 10. Five loop graphs based on decoration of a four loop primitive graph.
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However we have applied the same techniques to extract
the divergence and find that both involve the underlying
number which is 441

8
ζ7 if one omits the symmetry factor.

That this combination appears is not surprising since it is
not unrelated to a parallel primitive Feynman graph in
scalar ϕ4 theory. In [61–63,71] the primitive graph was
evaluated by the use of conformal integration or the
uniqueness method [72–74] after an initial numerical
evaluation [61–63]. In fact the residue was also recorded
for what is termed the zigzag graph in the prescient work of
Broadhurst in [60]. In particular it is recorded in Table 3 of
that article where it corresponds to diagram c of Fig. 6
there. The residue of the other five loop primitive shown in
the first row of Fig. 11 is also apparent in Table 3 of [60] via
diagrams d and e of Fig. 6. The fact that the zigzag topology
arises in the seemingly topologically unconnected lower
row graphs of Fig. 11 is as a consequence of theD-algebra.
In the simplification of the numerator scalar products after
using the method of [6] several propagators are deleted to
leave the zigzag graph.
Having outlined in detail in this and the previous section

how we have evaluated all the diagrams to five loops to the
requisite order in ϵ to carry out the full renormalization we
now note some of the practical aspects of the automatic
routine we have constructed. First all the superspace graphs
are generated electronically using the FORTRAN based
QGRAF package [53]. To ease the implementation of the
D-algebra routine that we have written we use the QGRAF

setting that equates to the MINCER or FORCER setup where
each propagator is allocated a momentum pi. After the
D-algebra has been carried out either the energy-
momentum conservation is implemented at each vertex
to reduce the number of pi to the number of loops or values

of each pi are substituted explicitly. The latter is used for
the cases where the REDUZE package was required since
the integral families are defined by the explicit values of the
internal loop momenta. This represents the core of the
integration routine. Though for those five loop graphs
where a rerouting was necessary to find the divergence the
value was constructed in a separate routine and the result
included in the automatic calculation which reduces the
run-time. This is particularly important since although the
focus thus far has been on the renormalization of (2.1) we
have also considered extensions of this action such as that
with OðNÞ symmetry which have a significantly larger
number of graphs to be determined. Once all the graphs
have been computed they are summed before the renorm-
alization is carried out. This follows the established routine
of [75] where the calculation is carried out for bare
parameters which in the Wess-Zumino case is the coupling
constant. Its renormalized partner is introduced through
(2.3). As there is one independent renormalization constant
the coupling constant counterterms are formally deduced
by iteratively solving (2.4) and expressing them in terms of
the ZΦ counterterms. These relations are then included in
the routine that ultimately determines the values of the ZΦ
counterterms. We close with a final remark on the evalu-
ation of the diagrams. Although early loop computations
of the β-function primarily concentrated on extracting the
result in the MS scheme, in [4] the β-function in the MOM
scheme was also determined at three loops. This required
knowledge of the higher order terms in the ϵ expansion of
each Feynman graph to two loops. Those at three loop were
not necessary [4], as they would contribute to the four loop
MOM β-function. Therefore, as we have used FORCER to
compute the four loop graphs we have also found the finite

FIG. 11. Five loop primitive graphs.
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part of those diagrams as well as theOðϵÞ terms. So wewill also be able to determine the five loop MOM scheme β-function
for (2.1) and its extensions.

V. RESULTS

After discussing the technical details of how we evaluated all 63 five loop graphs we now provide the results together
with comments on internal checks on the final renormalization group functions. We find in the MS scheme that the field
anomalous dimension is

γΦðaÞ ¼
1

2
a −

1

2
a2 þ ½12ζ3 þ 5� a

3

8
þ ½18ζ4 − 60ζ3 − 80ζ5 − 9� a

4

8

þ ½504ζ23 þ 858ζ3 − 441ζ4 þ 1828ζ5 − 900ζ6 þ 2646ζ7 þ 79� a
5

32
þOða7Þ ð5:1Þ

implying

βðaÞ ¼ 3

2
a2 −

3

2
a3 þ ½36ζ3 þ 15� a

4

8
þ ½54ζ4 − 180ζ3 − 240ζ5 − 27� a

5

8

þ ½1512ζ23 þ 2574ζ3 − 1323ζ4 þ 5484ζ5 − 2700ζ6 þ 7938ζ7 þ 237� a
6

32

þOða7Þ ð5:2Þ
for the β-function which are some of the main results of the article. In arriving at (5.1) the nonsimple poles of ZΦ are not
independent from the property of the renormalization group and are related to the residues of the lower loop order poles.
That this is consistent validates that aspect of the calculation. Another nontrivial check on the result will be discussed in a
later section. Also structurally the five loop β-function is formally the same as its scalar ϕ4 counterpart [61–63,76] in terms
of the rational and irrational dependence.
As the MOM scheme was considered in [4] we can also provide the renormalization group functions to five loops for that

case. For (2.1) the MOM scheme is defined such that at the subtraction point there are no OðaÞ corrections to the 2-point
function. In other words after renormalization in that scheme the 2-point function is unity in superspace at the subtraction
point. This will determine the MOM expression for ZΦ. However in extracting it from the 2-point function the coupling
constant has also to be renormalized in the same scheme. This is effected by ensuring that the supersymmetry Ward identity
(2.4) is preserved as otherwise the scheme would not be consistent with this symmetry. Applying this procedure to the
2-point function and retaining the necessary terms depending on ϵ at each loop order we arrive at the results

γMOM
Φ ðaÞ ¼ 1

2
a −

1

2
a2 þ ½6ζ3 þ 7� a

3

4
− ½13ζ3 þ 20ζ5 þ 20� a

4

2

þ ½216ζ23 þ 772ζ3 þ 230ζ5 þ 1323ζ7 þ 1222� a
5

16
þOða6Þ ð5:3Þ

and

βMOMðaÞ ¼ 3

2
a2 −

3

2
a3 þ 3½6ζ3 þ 7� a

4

4
− 3½13ζ3 þ 20ζ5 þ 20� a

5

2

þ 3½216ζ23 þ 772ζ3 þ 230ζ5 þ 1323ζ7 þ 1222� a
6

16
þOða7Þ ð5:4Þ

where both are provided for later purposes. Our convention is that when a renormalization group function is labeled with
MOM then the coupling constant a is the MOM coupling constant rather than the MS one. For cases where there is potential
ambiguity we denote the MOM coupling constant by aMOM. Where there is no ambiguity a will be regarded as the MS
variable. There are several interesting features of (5.3) and (5.4). First the coefficients of the one and two loop terms of
γMOM
Φ ðaÞ are the same as the MS γΦðaÞ. This is a consequence of the supersymmetry Ward identity ensuring the β-function
and γΦðaÞ are proportional. It appears to contradict the accepted position that only the β-function in a single coupling theory
is scheme independent at two loops. In scalar ϕ4 theory the two loop term of the field anomalous dimension is independent
of the renormalization scheme but this is for a trivial reason since it is the first nonzero term. The other peculiar feature of
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(5.3) for example is that there are no terms involving ζ2n. In
other words only the odd integer argument Riemann zeta
function numbers are present. Hence there are no terms
which involve even powers of π at least to five loops.
While we have found the five loop result for γMOM

Φ ðaÞ by
direct evaluation it is possible to determine it by another
method. This was discussed in [4] and involves construct-
ing the map between the coupling constant in one scheme
with that in the other. It only requires the four loop
calculation of ZΦ is each scheme to achieve this. First,
we define the two conversion functions

CgðaÞ ¼
�

ZMS
g

ZMOM
g

�2

; CΦðaÞ ¼
ZMOM
Φ

ZMS
Φ

ð5:5Þ

where each renormalization constant depends on the
coupling constant in the indicated scheme. Although each
renormalization constant has poles in ϵ the conversion
function is finite as ϵ → 0. This is because the variables a
and aMOM are not independent and in fact ensuring CgðaÞ is
finite order by order determines the relation between the
two. Thus we find

aMOM ¼ a

�
1 − 3aþ 57

4
a2 − ½64ζ3 þ 18ζ4 þ 659� a

3

8

þ ½2094ζ3 − 24ζ23 þ 351ζ4 þ 504ζ5 þ 300ζ6 þ 8895� a
4

16

�
þOða6Þ ð5:6Þ

where a on the right side is in the MS scheme. Equally once (5.6) has been established the wave function scheme conversion
function CΦðaÞ can be deduced as

CΦðaÞ ¼ 1 − aþ 15

4
a2 − ½64ζ3 þ 18ζ4 þ 471� a

3

24

þ ½1838ζ3 − 24ζ23 þ 279ζ4 þ 504ζ5 þ 300ζ6 þ 6156� a
4

48
þOða5Þ: ð5:7Þ

Equipped with these relations and using the renormalization group formalism the MOM renormalization group functions
can be calculated using

βMOMðaMOMÞ ¼
�
βðaÞ ∂a

MOM

∂a
�
MS→MOM

ð5:8Þ

and

γMOM
Φ ðaMOMÞ ¼

�
γMS
Φ ðaÞ þ βMSðaÞ ∂

∂a lnC
MOM
Φ ðaÞ

�
MS→MOM

ð5:9Þ

where the restriction indicates that because the quantity inside the square brackets is a function of a it has to be mapped to
the aMOM variable. This is achieved by the mapping which is the inverse of (5.6). Following this we reproduce the five loop
MOM results (5.3) and (5.4). Only four loop information is required for this exercise which is also the reason why the finite
parts of the five loop Feynman graphs are not required to determine the five loop MOM renormalization group functions.

VI. GROUP VALUED WESS-ZUMINO MODEL

We now turn to a variation on (2.1) which is to have a multiplet of N superfields where the interaction contains a real
tensor denoted by dijk where 1 ≤ i ≤ N. The bare action is

S ¼
Z

d4x

�Z
d2θd2θ̄Φ̄i

0ðx; θ̄Þe−2θ∂θ̄Φi
0ðx; θÞ þ g0

dijk

3!

Z
d2θΦi

0Φ
j
0Φk

0 þ g0
dijk

3!

Z
d2θ̄Φ̄i

0Φ̄
j
0Φ̄k

0

�
ð6:1Þ

where the aim is to determine the coupling constant renormalization. The notation for the tensor derives from that of six-
dimensional scalar ϕ3 theory [77,78]. To accommodate the different combinations of tensors that appear in loop
calculations a useful notation was also provided in [77,78] and extended to the four loop renormalization in [79]. This will
introduce scalar objects Ti that play a similar role as the group Casimirs of a non-Abelian gauge theory. As the diagrams
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comprising the 2-point function of (6.1) only have subgraphs with an even number of propagators, we only need to recall
the relevant tensor combinations that will appear to five loops. These are

T2δ
ij ¼ dii1i2dji1i2 ;

T5dijk ¼ dii1i2dji3i4dki5i6di1i3i5di2i4i6 ;

T71dijk ¼ dii1i2dji3i4dki5i6di1i3i7di2i5i8di4i6i9di7i8i9 ;

T94dijk ¼ dii1i2dji3i4dki5i12di1i5i6di2i7i8di3i9i12di4i10i11di6i7i10di8i9i11 : ð6:2Þ

The first digit of the subscript of any Ti indicates the number of dijk tensors comprising the underlying graph or equivalently
the number of propagators. So T2 denotes the one loop 2-point bubble. The others correspond to vertex functions at two,
three and four loops respectively. Contracting these tensors with another tensor produces a 2-point function topology. These
then isolate the respective three and four loop primitive graphs of Figs. 4 and 6. At five loops the graphs that involve T94 are
those of the lower row of Fig. 11. Those in the top row involve T2

5. One advantage of this notation is that the contribution to
the renormalization group functions from the primitive at each loop order can be identified and followed within a
calculation. Such an analysis was performed for scalar ϕ4 theory in [34] and suggested that the percentage contribution from
the primitive graphs at each loop order increases with the number of loops.
Therefore we have computed the renormalization group functions for (6.1) and find

γTðaÞ ¼
1

2
T2a −

1

2
T2
2a

2 þ T2½12ζ3T5 þ 5T2
2�
a3

8

þ T2½18ζ4T2T5 − 60ζ3T2T5 − 80ζ5T71 − 9T3
2�
a4

8

þ T2½12ζ3T4
2 þ 79T4

2 þ 846ζ3T2
2T5 − 441ζ4T2

2T5 − 612ζ5T2
2T5 − 216ζ23T2T71

þ 2440ζ5T2T71 − 900ζ6T2T71 þ 720ζ23T
2
5 þ 2646ζ7T94�

a6

32
þOða7Þ ð6:3Þ

for the anomalous dimension in the MS scheme. As there is only one coupling and chiral field in (6.1) the original
supersymmetry Ward identity (2.4) is satisfied. At the same time it is a simple matter to determine the MOM scheme version
of (6.3) giving

γMOM
T ðaÞ ¼ 1

2
T2a −

1

2
T2
2a

2 þ T2½6ζ3T5 þ 7T2
2�
a3

4

− T2½15ζ3T2T5 − 2ζ3T3
2 þ 20ζ5T71 þ 20T3

2�
a4

2

þ T2½1222T4
2 − 164ζ3T4

2 þ 936ζ3T2
2T5 − 810ζ5T2

2T5 − 144ζ23T2T71

þ 1040ζ5T2T71 þ 360ζ23T
2
5 þ 1323ζ7T94�

a5

16
þOða6Þ ð6:4Þ

where like (5.4) there are no even zetas. Formally setting Ti ¼ 1 for all i recovers the analogous equations of the previous
section. It is clear from both expressions that the coefficients of the primitives are unchanged at the loop order where they
first appear. We note that the coupling constant map is

aMOM
T ¼

�
1 − 3T2aþ 57

4
T2
2a

2 − T2½72ζ3T2
2 − 8ζ3T2T5 þ 18ζ4T2T5 þ 659T2

2

�
a3

8

þ T2

�
8895T3

2 − 300ζ3T3
2 þ 2394ζ3T2T5 þ 351ζ4T2T5 − 336ζ5T2T5 − 24ζ23T71 þ 840ζ5T71 þ 300ζ6T71�

a4

16

�
a

þOða6Þ: ð6:5Þ

To gauge the primitive contribution the numerical evaluations of (6.3) and (6.4) are
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γTðaÞ ¼
1

2
T2a −

1

2
T2
2a

2 þ T2½0.625T2
2 þ 1.803085T5�a3

− T2½1.125T3
2 þ 6.580199T2T5 þ 10.369277T71�a4

þ T2½2.919521T4
2 − 2.967631T2

2T5 þ 38.872050T2T71 þ 32.511168T2
5 þ 83.377881T94�a5 þOða6Þ ð6:6Þ

and

γMOM
T ðaÞ¼1

2
T2a−

1

2
T2
2a

2þT2½1.75T2
2þ1.803085T5�a3

−T2½8.797943T3
2þ9.015427T2T5þ10.369277T71�a4

þT2½64.053917T4
2þ17.825861T2

2T5þ54.395837T2T71þ32.511168T2
5þ83.377881T94�a5þOða6Þ ð6:7Þ

respectively. If we recall that at five loops the graphs of the
upper row of Fig. 11 are what we termed product primitives
we can identity their contributions from the coefficient of
T2T2

5. In (6.4) that term is the penultimate one in the Oða5Þ
coefficient. This is because T5 is associated with the graph
V2. If we compute the contribution from the primitives at
three, four and five loop order we find that respectively they
contribute 74.26%, 57.37% and 74.91%. At lower orders it
is not meaningful to quote values as it would be 100% at
one loop and there are no two loop primitives. For the
MOM scheme the analogous numbers are 50.75%, 36.79%
and 45.96%. The smaller relative contribution for the
MOM scheme is due primarily to the increase in the
coefficient of the TL

2 terms at each loop order L.
However for the MS scheme the observation of [34] that
the primitives make an increasing contribution at higher
orders for ϕ4 theory seems to hold here too for the MS
scheme albeit at one loop order fewer than [34]. It would be
interesting if another scheme could be studied for the
nonsupersymmetric theory.
An additional motivation for examining the β-function of

(6.1) is that it provides another relatively trivial check on
our five loop computation. It transpires that the coefficients
of the terms of TL

2 in (6.4) have already been computed
before. More specifically we mean the three loop and
higher coefficients since the one and two loop terms are
scheme independent. We stress that we are indeed referring
to the MOM result rather than the MS one. In [64,80,81]
γΦðaÞ was studied using the Hopf algebra construction of
Broadhurst and Kreimer [82,83]. Specifically it was used to
determine the scalar field anomalous dimension in scalar ϕ3

and scalar-Yukawa theories for a specific class of Feynman

diagrams. In particular the Dyson-Schwinger equation for
embedding of basic one loop propagator correction within
the skeleton one loop graph itself was constructed and
solved for the anomalous dimension. This was extended in
[81] to the Wess-Zumino model where the supersymmetry
Ward identity was important in constructing and solving the
corresponding Dyson-Schwinger equation. Moreover, it is
the first case we believe where the β-function of any theory
was accessed this way in the Hopf approach. Consequently
the first 200 coefficients of γΦðaÞ were determined for (2.1)
with the analytic form given for the first 12 terms for the
class of diagrams considered. While the analysis of [81]
centered on the theory with action (2.1) a subset of the
graphs making up the coefficients of (5.1) were found.
These are straightforward to isolate with the labeling used
for (6.1). As [81] used the iteration of the one loop bubble
the TL

2 terms of our five loop β-function should tally with
the Hopf algebra case. The question of which scheme was
used can be established by the renormalization condition
used in [81] and it is clear it corresponds to the MOM one
of [4]. This therefore represents a specific check on the TL

2

coefficients of (6.4).
Having established the five loop renormalization group

functions we can now extract estimates for several critical
exponents in the ϵ expansion at the Wilson-Fisher fixed
point where again we take d ¼ 4 − 2ϵ. The specific
exponents we will compute are η ¼ γΦða�Þ and the
correction to scaling exponent 2β0ða�Þ where a� is the
critical coupling constant. We will denote this combination
here and later by ω̂ rather than the more usual unhatted
version to avoid conflict with notation in a later section.
From (5.2) we find

ω̂ ¼ 2ϵ −
4

3
ϵ2 þ 4

9
½12ζ3 þ 1�ϵ3 þ 4

27
½54ζ4 − 84ζ3 − 240ζ5 − 7�ϵ4

þ 4

81
½576ζ23 þ 396ζ3 − 378ζ4 þ 1416ζ5 − 1800ζ6 þ 5292ζ7 þ 19�ϵ5 þOðϵ6Þ ð6:8Þ
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or

ω̂ ¼ 2ϵ − 1.333333ϵ2 þ 6.855415ϵ3 − 44.205924ϵ4 þ 290.935250ϵ5 þOðϵ6Þ ð6:9Þ

numerically. The situation with η is somewhat simpler in perturbation theory due to the supersymmetry Ward identity as has
been noted in [15,35] for example. As the dimensionality of the coupling constant manifests itself in the OðaÞ term of βðaÞ
in d dimensions then (5.1) implies

η ¼ 1

3
ϵ ð6:10Þ

exactly. For the more general group valued case (6.1), and for later purposes, we note that the critical coupling is

a�T ¼ 2

3T2

ϵþ 4

9T2

ϵ2 þ 2½T2
2 − 4ζ3T5�

ϵ3

9T3
2

þ 8½2T3
2 − 9ζ4T2T5 þ 40ζ5T71�

ϵ4

81T4
2

þ 2½16T4
2 − 12ζ3T4

2 − 54ζ3T2
2T5 þ 9ζ4T2

2T5 þ 612ζ5T2
2T5 þ 216ζ23T2T71

− 520ζ5T2T71 þ 900ζ6T2T71 − 288ζ23T
2
5 − 2646ζ7T94�

ϵ5

243T5
2

þOðϵ6Þ ð6:11Þ

implying

ω̂T ¼ 2ϵ −
4

3
ϵ2 þ 4

9
ϵ3 −

28

27
ϵ4 þ 4½24ζ3 þ 19� ϵ

5

81

þ
�
16

3
ζ3ϵ

3 þ 8

9
½9ζ4 − 14ζ3�ϵ4 þ

8

27
½62ζ3 − 63ζ4 − 204ζ5�ϵ5

�
T5

T2
2

þ
�
−
320

9
ζ5ϵ

4 þ 32

27
½110ζ5 − 18ζ23 − 75ζ6�ϵ5

�
T71

T3
2

þ 448

9
ζ23

T2
5

T4
2

ϵ5 þ 784

3
ζ7

T94

T4
2

ϵ5 þOðϵ6Þ ð6:12Þ

where we have ordered the expansion in terms of the group invariants. The power of the leading term in ϵ of each of the
invariants tallies with the loop order of the β-function where the corresponding Ti first appears. The leading order Ti
independent terms correspond to the bubble insertions associated with T2 with the primitive ranked by powers of 1=T2.
One comment concerning the use of different schemes to compute exponents is in order if instead of the MS β-function

the MOM one was employed. For example, using (5.4) as it stands to find ω̃ would not produce the same expression as
(6.8). However this does not contradict the renormalization group invariance property of critical exponents. This is because
(6.8) is the MOM β-function in strictly four dimensions. In deriving the renormalization group functions from the respective
renormalization constants the calculations are carried out for nonzero ϵ before setting ϵ ¼ 0 to deduce the expressions in the
critical dimension. Moreover in MOM and other schemes where the renormalization constants contain finite parts, these
play a crucial role and lead to different coefficients in the renormalization group functions from the MS ones after a few loop
orders. In addition the finite parts appear in the renormalization group functions as OðϵÞ contributions in each of the loop
coefficients. While setting ϵ to zero produces expressions like (5.4) it is the nonzero ϵ renormalization group functions that
are crucial to computing the critical exponents at the Wilson-Fisher fixed point. Therefore to assist with understanding this
point we note that the ϵ dependent MOM β-function is
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βMOMðaÞjϵ≠0 ¼
�
3

2
a2 −

3

2
a3 þ 3½6ζ3 þ 7� a

4

4
− 3½13ζ3 þ 20ζ5 þ 20� a

5

2

þ 3½216ζ23 þ 772ζ3 þ 230ζ5 þ 1323ζ7 þ 1222� a
6

16
þOða7Þ

�

þ
�
−aþ 3a2 −

21

2
a3 þ 3½64ζ3 þ 18ζ4 þ 107� a

4

8

þ 3½16ζ23 − 500ζ3 þ 18ζ4 − 336ζ5 − 200ζ6 − 691� a
5

8
þOða6Þ

�
ϵ ð6:13Þ

where the Oða6Þ linear term in ϵ is not required to
determine ω̃ at Oðϵ5Þ. Those terms would contribute
to the Oðϵ6Þ piece of (6.8). Therefore using (6.13) to
determine the critical β-function slope one obtains exact
agreement with (6.8) that was derived in the MS scheme.
One reason for determining ω̂ in (6.8) is that there has

been interest in estimating this exponent in three dimen-
sions using various methods [15,18,35–39,84]. Therefore
with the five loop extension of (5.2) we can update the four
loop ϵ expansion estimate noted in [38]. To do this we have
evaluated Padé approximants which are recorded in
Table II. In addition to the five loop estimates for
completeness we have provided lower loop approximants.
In the table only estimates in three dimensions are given
where there were no singularities in the Padé approximant
between four and three dimensions. In other words the
approximant has to be continuously connected to the value
in the critical dimension. The final column gives the
average of the approximants at each loop order. If one
focuses on the three and higher loop averages it would
appear that the approximants are converging but perhaps
oscillating about the true value. In order to place the five
loop estimate in perspective we have gathered results from
earlier work on the exponent and recorded them chrono-
logically in Table III. Aside from the ϵ expansion the two
main techniques are the conformal bootstrap and the
functional renormalization group. Some comments are in

order. Errors on estimates are those given in the corre-
sponding paper. In [37] two sets of values were provided
and distinguished by the parameter n. We have noted both
sets but mention that the authors regarded the n ¼ 2 data as
superior. Also the value we quote for ω̂ is that designated as
supersymmetric in Table I of [37]. The bracketed value for
1=ν from [36] was derived from the estimate of η using the
superscaling law of [37,85,86]

1

ν
¼ 1

2
ðd − ηÞ: ð6:14Þ

We have also used this to extract the value recorded in the
table from the exact value of 1

6
for η which would imply that

1
ν ¼ 17

12
. In [35] the value of ν was determined but we have

converted it to 1
ν for consistency with the other entries in the

table. This was used to deduce η from the superscaling law.
While the values of the exponents from [84] are noted as ϵ
expansion they are not deduced in the same way as those of
this paper. Instead they represent the result of a matched
Padé approach where the ϵ expansion of two theories in the
same universality class are used but one theory has a critical
dimension of 2 while the other is renormalizable in 4.
Moreover the universality class is the Gross-Neveu-
Yukawa one and the values in the table correspond to
those for the emergent supersymmetry. As we took a direct

TABLE II. Estimates for ω̂ in three dimensions from Padé
approximants.

L Padé Value Average

2 [2, 0] 0.666667 0.666667
3 [2, 1] 0.906650 0.906650

4 [3, 1] 0.869530
[2, 2] 0.872352 0.870940

5 [4, 1] 0.879670
[3, 2] 0.877593
[2, 3] 0.878492 0.878585

TABLE III. Summary of exponent estimates by conformal
bootstrap (CB), functional renormalization group (FRG) and ϵ
expansion methods.

Method Reference η 1
ν

ω̂

CB [18] 0.166667 1.0902(20) 0.9098(20)
FRG [35] 0.114 1.443 0.796
CB [36] 0.164 (1.418) � � �
FRG [37] (n ¼ 1) 0.174 1.385 0.765
FRG [37] (n ¼ 2) 0.167 1.395 0.782
ϵ [15] 0.166667 1.129(1) 0.871(1)
FRG [38] � � � 1.1656 0.8344
ϵ [84] 0.1673(50) 1.415(12) � � �
CB [39] 0.168888(60) 1.415556(30) 0.882(9)
ϵ This work 0.166667 1.416667 0.878585
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supersymmetric approach our values for η and 1
ν are exact

due to the supersymmetry Ward identity and are within the
errors given in [84]. As an aside we note that the other ϵ
expansion result of [15] did not benefit from a two-sided
Padé approach which may be the reason why that estimate
for 1ν is low compared to [84]. In terms of the overall picture
there appears to be a consensus that the value of η is around
0.166 especially in the more recent articles that did not have
the use of the supersymmetry Ward identity present in the ϵ
expansion. The latest conformal bootstrap value appears to
be the most accurate numerically given the precision and
tight error bars on η and 1

ν. Indeed our exact values differ by
around 1.3% and 0.08% respectively with both conformal
bootstrap values satisfying (6.14). For ω̂ the difference is
roughly 0.5%.

One interesting application of considering (6.1) is that
the renormalization group functions can be deduced for Lie
groups which have a nontrivial rank 3 fully symmetric
tensor dijk. One such class of groups are the SUðNcÞ ones
and in that case (6.2) reduce to

T2 ¼
½N2

c − 4�
Nc

; T5 ¼ −
4

N2
c
½N2

c − 10�;

T71 ¼
1

8N3
c
½N2

c − 8�½N4
c − 8N2

c þ 256�;

T94 ¼ −½N6
c − 64N4

c þ 1216N2
c − 6784� 1

4N4
c

ð6:15Þ

using [87]. So, for example, for SUð3Þ we have

γΦðaÞjSUð3Þ ¼
5

6
a −

25

18
a2 þ 5

216
½48ζ3 þ 125�a3 þ 25

648
½72ζ4 − 530ζ5 − 225 − 240ζ3�a4

þ 25

15552
½36840ζ3 − 9702ζ23 − 17640ζ4 þ 137170ζ5 − 59625ζ6 þ 78057ζ7 þ 19750�a5 þOða6Þ ð6:16Þ

and

βðaÞjSUð3Þ ¼
5

2
a2 −

25

6
a3 þ 5

72
½48ζ3 þ 125�a4 þ 25

216
½72ζ4 − 530ζ5 − 225 − 240ζ3�a5

þ 25

5184
½36840ζ3 − 9702ζ23 − 17640ζ4 þ 137170ζ5 − 59625ζ6 þ 78057ζ7 þ 19750�a6 þOða7Þ ð6:17Þ

which we record for later purposes. As there has also been recent interest in Wess-Zumino models with F4 symmetry [46],
we note that the corresponding renormalization group functions and exponents can be extracted from (6.3) and (6.12) with

T3 ¼ −½N − 2� T2

2½N þ 2� ; T5 ¼ −½N2 − 10N − 16� T2
2

2½N þ 2�2 ;

T71 ¼ ½N3 − 3N2 þ 80N þ 100� T3
2

4½N þ 2�3 ;

T94 ¼ −½N4 − 14N3 − 12N2 − 616N − 672� T4
2

8½N þ 2�4 ð6:18Þ

where N is the dimension of an F4 representation such as 2, 5, 8, 14, 26, 27, 90, or 324.

VII. OðNÞ WESS-ZUMINO MODEL

As a second generalization of (2.1) we consider the Wess-Zumino model with an OðNÞ symmetry as it will provide us
with another check on our computation. This is because the OðNÞ model admits a large N expansion and the
renormalization group functions have been computed to three orders in powers of 1=N in [48,49]. The action in terms of
bare quantities is

SOðNÞ ¼
Z

d4x

�Z
d2θd2θ̄Φ̄i

0ðx; θ̄Þe−2θ∂θ̄Φi
0ðx; θÞ þ σ̄0ðx; θ̄Þe−2θ∂θ̄σ0ðx; θÞ

þ g̃10
2

Z
d2θσ0Φi

0Φi
0 þ

g̃10
2

Z
d2θσ̄0Φ̄i

0Φ̄i
0 þ

g̃20
6

Z
d2θσ30 þ

g̃20
6

Z
d2θσ̄30

�
ð7:1Þ
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and was given in [88] where 1 ≤ i ≤ N. We regard the
coupling constants as real and define g̃i ¼ 4πgi. In [88]
they were taken to be complex but they will only appear as
squares in the renormalization group functions. In this case
this combination will be equivalent to the squared length of
g1 and g2 respectively given in [88]. The superfieldsΦi and
Φ̄i lie in an OðNÞ multiplet and the σ and σ̄ fields would
equate to auxiliary fields in nonsupersymmetric four-
dimensional ϕ4 theory. In other words in that instance
the quartic interaction can be rewritten as a cubic inter-
action, akin to that of (7.1) with the g1 coupling constant,
and a nonkinetic quadratic term equivalent to that for σ and
σ̄ but without the θ dependent exponential. For that reason
one can regard the OðNÞ Wess-Zumino model as a super-
symmetric generalization of OðNÞ scalar ϕ4 theory. This is
apparent in the purely bosonic sector of the component
Lagrangian (2.2). Indeed it is that rewriting of the quartic
interaction that is the key to accessing the large N
expansion through the critical point formalism developed
in d dimensions in [73,74,89] for scalar ϕ4 theory as we
will show later. This was extended in [48,49] for (7.1)
where more background on this aspect to exploring the
Wess-Zumino model can be found. It is also worth noting
that when both couplings are nonzero the action is formally
equivalent to that of nonsupersymmetric OðNÞϕ3 theory in
six dimensions that was analyzed at three loops in [79,90].
This is in the sense that in six dimensions there are two
interactions that ensure the theory is renormalizable.
Finally we note that the OðNÞ Wess-Zumino model also
has only two independent renormalization constants which
can be expressed as

βOðNÞ
1 ðgiÞ ¼

1

2
g1½γOðNÞ

σ ðgiÞ þ 2γOðNÞ
Φ ðgiÞ�;

βOðNÞ
2 ðgiÞ ¼

3

2
g2γ

OðNÞ
σ ðgiÞ ð7:2Þ

where γσðgiÞ is the anomalous dimension of the σ and σ̄
superfields and we use gi as shorthand for pair of
couplings fg1; g2g.
To extract the renormalization group functions for (7.1)

using QGRAF we have generated all the supergraphs to five
loops required for renormalizing the Φi and σ 2-point
functions. The number of graphs that we had to compute at
each loop order are listed in Table IV. With these graphs as
input we applied the automatic integration routine that was
outlined earlier and extracted the corresponding renorm-
alization group functions which are included in the
Supplemental Material [91]. To five loops we found

βOðNÞ
1 ðgiÞ ¼

�
1

2
g1g22 þ 2g31 þ

1

2
Ng31

�
þ
�
−
1

2
g1g42 − g31g

2
2 − 2g51 −

1

2
Ng31g

2
2 − 2Ng51

�

þ
�
5

8
g1g62 þ

3

2
g31g

4
2 þ g51g

2
2 þ 2g71 þ

1

4
Ng31g

4
2 þ 4Ng51g

2
2 þ

11

2
Ng71 −

3

8
N2g51g

2
2

þ 1

2
N2g71 þ

3

2
ζ3g1g62 þ 12ζ3g51g

2
2 þ 12ζ3g71 þ

15

2
ζ3Ng51g

2
2 þ 3ζ3Ng71

�

þ
�
−
9

8
g1g82 −

8

3
g31g

6
2 −

8

3
g51g

4
2 −

1

3
g71g

2
2 −

10

3
g91 −

49

6
Ng51g

4
2 −

97

6
Ng71g

2
2 − 14Ng91

þ 7

8
N2g51g

4
2 −

1

3
N2g71g

2
2 − 6N2g91 −

1

4
N3g71g

2
2 þ

1

6
N3g91 − 10ζ5g1g82

− 40ζ5g51g
4
2 − 160ζ5g71g

2
2 − 80ζ5g91 − 40ζ5Ng51g

4
2 − 80ζ5Ng71g

2
2 − 60ζ5Ng91

− 10ζ5N2g91 þ
9

4
ζ4g1g82 −

3

2
ζ4g31g

6
2 þ 15ζ4g51g

4
2 þ 21ζ4g71g

2
2 þ 24ζ4g91

þ 3ζ4Ng31g
6
2 þ

15

4
ζ4Ng51g

4
2 þ

39

2
ζ4Ng71g

2
2 þ 12ζ4Ng91 þ

15

2
ζ4N2g71g

2
2

þ 3

2
ζ4N2g91 −

15

2
ζ3g1g82 −

7

2
ζ3g31g

6
2 − 30ζ3g51g

4
2 − 64ζ3g71g

2
2 − 72ζ3g91

TABLE IV. Number of graphs at each loop order L for the Φ
and σ superfield 2-point functions in the OðNÞ Wess-Zumino
model.

L Φ σ

1 1 2
2 3 3
3 15 20
4 109 124
5 952 1063

Total 1080 1212
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−
11

2
ζ3Ng31g

6
2 −

47

2
ζ3Ng51g

4
2 − 89ζ3Ng71g

2
2 − 48ζ3Ng91 þ ζ3N2g51g

4
2

−
31

2
ζ3N2g71g

2
2 − 3ζ3N2g91 þ

1

2
ζ3N3g71g

2
2

�

þ
�
79

32
g1g102 þ 6g31g

8
2 þ

67

12
g51g

6
2 þ

17

6
g71g

4
2 −

1

3
g91g

2
2 þ

20

3
g111 −

7

8
Ng31g

8
2

þ 1021

48
Ng51g

6
2 þ

351

8
Ng71g

4
2 þ

587

12
Ng91g

2
2 þ 38Ng111 −

37

16
N2g51g

6
2

−
19

48
N2g71g

4
2 þ

173

6
N2g91g

2
2 þ

145

4
N2g111 þ 7

8
N3g71g

4
2 −

77

48
N3g91g

2
2

þ 25

24
N3g111 −

5

32
N4g91g

2
2 þ

1

16
N4g111 þ 1323

16
ζ7g1g102 þ 441

2
ζ7g51g

6
2

þ 3969

4
ζ7g71g

4
2 þ 2205ζ7g91g

2
2 þ 882ζ7g111 þ 4851

16
ζ7Ng51g

6
2 þ

11907

16
ζ7Ng71g

4
2

þ 22491

16
ζ7Ng91g

2
2 þ

3087

4
ζ7Ng111 þ 3087

16
ζ7N2g91g

2
2 þ

2205

16
ζ7N2g111

−
225

8
ζ6g1g102 þ 25

2
ζ6g31g

8
2 − 100ζ6g51g

6
2 − 350ζ6g71g

4
2 − 500ζ6g91g

2
2

− 300ζ6g111 −
275

8
ζ6Ng31g

8
2 −

125

2
ζ6Ng51g

6
2 −

425

2
ζ6Ng71g

4
2 −

2025

4
ζ6Ng91g

2
2

− 300ζ6Ng111 −
175

2
ζ6N2g71g

4
2 −

1025

8
ζ6N2g91g

2
2 −

375

4
ζ6N2g111

−
75

8
ζ6N3g111 þ 457

8
ζ5g1g102 þ 11ζ5g31g

8
2 þ

355

2
ζ5g51g

6
2 þ 531ζ5g71g

4
2

þ 2143

2
ζ5g91g

2
2 þ 693ζ5g111 þ 193

4
ζ5Ng31g

8
2 þ

277

8
ζ5Ng51g

6
2 þ

3979

4
ζ5Ng71g

4
2

þ 3379

4
ζ5Ng91g

2
2 þ 451ζ5Ng111 −

19

8
ζ5N2g51g

6
2 −

105

4
ζ5N2g71g

4
2

þ 1601

4
ζ5N2g91g

2
2 þ

991

4
ζ5N2g111 −

555

8
ζ5N3g91g

2
2 þ

39

2
ζ5N3g111

−
441

32
ζ4g1g102 þ 33

16
ζ4g31g

8
2 − 57ζ4g51g

6
2 −

219

2
ζ4g71g

4
2 − 162ζ4g91g

2
2 − 174ζ4g111

−
393

16
ζ4Ng31g

8
2 −

963

32
ζ4Ng51g

6
2 −

1077

8
ζ4Ng71g

4
2 −

1917

8
ζ4Ng91g

2
2

−
327

2
ζ4Ng111 −

267

32
ζ4N2g51g

6
2 −

1293

32
ζ4N2g71g

4
2 −

471

4
ζ4N2g91g

2
2

−
147

4
ζ4N2g111 þ 51

32
ζ4N3g71g

4
2 −

27

2
ζ4N3g91g

2
2 −

27

16
ζ4N3g111 þ 15

32
ζ4N4g91g

2
2

þ 429

16
ζ3g1g102 þ 177

8
ζ3g31g

8
2 þ 90ζ3g51g

6
2 þ 138ζ3g71g

4
2 þ 252ζ3g91g

2
2 þ 268ζ3g111

þ 47

2
ζ3Ng31g

8
2 þ

1911

16
ζ3Ng51g

6
2 þ

1193

4
ζ3Ng71g

4
2 þ

2521

4
ζ3Ng91g

2
2

þ 377ζ3Ng111 −
53

16
ζ3N2g51g

6
2 þ

869

16
ζ3N2g71g

4
2 þ

423

2
ζ3N2g91g

2
2 þ 68ζ3N2g111

−
55

16
ζ3N3g71g

4
2 þ

3

8
ζ3N3g91g

2
2 þ

13

8
ζ3N3g111 −

5

16
ζ3N4g91g

2
2 −

1

8
ζ3N4g111
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þ 63

4
ζ23g1g

10
2 − ζ23g

3
1g

8
2 þ 44ζ23g

5
1g

6
2 þ 172ζ23g

7
1g

4
2 þ 448ζ23g

9
1g

2
2 þ 288ζ23g

11
1

−
25

4
ζ23Ng31g

8
2 þ 86ζ23Ng51g

6
2 þ 71ζ23Ng71g

4
2 þ

693

2
ζ23Ng91g

2
2 þ 18ζ23Ng111

− 11ζ23N
2g71g

4
2 þ

263

4
ζ23N

2g91g
2
2 −

45

2
ζ23N

2g111 −
9

4
ζ23N

3g111

�
þOðg13i Þ ð7:3Þ

and

βOðNÞ
2 ðgiÞ ¼

�
3

2
g32 þ

3

2
Ng21g2

�
þ
�
−
3

2
g52 −

3

2
Ng21g

3
2 − 3Ng41g2

�

þ
�
15

8
g72 þ

3

4
Ng21g

5
2 þ 9Ng41g

3
2 þ

3

2
Ng61g2 −

9

8
N2g41g

3
2 þ 3N2g61g2 þ

9

2
ζ3g72

þ 45

2
ζ3Ng41g

3
2 þ 9ζ3Ng61g2

�

þ
�
−
27

8
g92 −

91

4
Ng41g

5
2 −

13

2
Ng61g

3
2 − 4Ng81g2 þ

21

8
N2g41g

5
2 −

13

2
N2g61g

3
2

− 14N2g81g2 −
3

4
N3g61g

3
2 þ

5

4
N3g81g2 − 30ζ5g92 − 120ζ5Ng41g

5
2 − 240ζ5Ng61g

3
2

− 60ζ5Ng81g2 − 30ζ5N2g81g2 þ
27

4
ζ4g92 þ 9ζ4Ng21g

7
2 þ

45

4
ζ4Ng41g

5
2

þ 36ζ4Ng61g
3
2 þ 18ζ4Ng81g2 þ

45

2
ζ4N2g61g

3
2 þ

9

2
ζ4N2g81g2 −

45

2
ζ3g92

−
33

2
ζ3Ng21g

7
2 − 69ζ3Ng41g

5
2 − 132ζ3Ng61g

3
2 − 66ζ3Ng81g2 þ 3ζ3N2g41g

5
2

− 48ζ3N2g61g
3
2 − 9ζ3N2g81g2 þ

3

2
ζ3N3g61g

3
2 −

3

2
ζ3N3g81g2

�

þ
�
237

32
g112 −

21

8
Ng21g

9
2 þ

1039

16
Ng41g

7
2 þ

123

8
Ng61g

5
2 þ

93

4
Ng81g

3
2 þ 7Ng101 g2

−
111

16
N2g41g

7
2 þ

215

16
N2g61g

5
2 þ

313

4
N2g81g

3
2 þ

131

4
N2g101 g2 þ

21

8
N3g61g

5
2

−
143

16
N3g81g

3
2 þ

83

8
N3g101 g2 −

15

32
N4g81g

3
2 þ

9

16
N4g101 g2 þ

3969

16
ζ7g112

þ 14553

16
ζ7Ng41g

7
2 þ

35721

16
ζ7Ng61g

5
2 þ

46305

16
ζ7Ng81g

3
2 þ

1323

2
ζ7Ng101 g2

þ 9261

16
ζ7N2g81g

3
2 þ

6615

16
ζ7N2g101 g2 −

675

8
ζ6g112 −

825

8
ζ6Ng21g

9
2

−
375

2
ζ6Ng41g

7
2 −

975

2
ζ6Ng61g

5
2 −

3075

4
ζ6Ng81g

3
2 − 225ζ6Ng101 g2

−
525

2
ζ6N2g61g

5
2 −

3075

8
ζ6N2g81g

3
2 −

675

4
ζ6N2g101 g2 −

225

8
ζ6N3g101 g2

þ 1371

8
ζ5g112 þ 579

4
ζ5Ng21g

9
2 þ

879

8
ζ5Ng41g

7
2 þ

9207

4
ζ5Ng61g

5
2 þ

4173

4
ζ5Ng81g

3
2

þ 717

2
ζ5Ng101 g2 −

57

8
ζ5N2g41g

7
2 −

315

4
ζ5N2g61g

5
2 þ

4803

4
ζ5N2g81g

3
2
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þ 1557

4
ζ5N2g101 g2 −

1665

8
ζ5N3g81g

3
2 þ

117

2
ζ5N3g101 g2 −

1323

32
ζ4g112

−
1179

16
ζ4Ng21g

9
2 −

2727

32
ζ4Ng41g

7
2 −

1341

8
ζ4Ng61g

5
2 −

2295

8
ζ4Ng81g

3
2

−
297

2
ζ4Ng101 g2 −

801

32
ζ4N2g41g

7
2 −

3789

32
ζ4N2g61g

5
2 −

2097

8
ζ4N2g81g

3
2

−
135

2
ζ4N2g101 g2 þ

153

32
ζ4N3g61g

5
2 −

675

16
ζ4N3g81g

3
2 −

153

16
ζ4N3g101 g2

þ 45

32
ζ4N4g81g

3
2 −

9

8
ζ4N4g101 g2 þ

1287

16
ζ3g112 þ 141

2
ζ3Ng21g

9
2 þ

4959

16
ζ3Ng41g

7
2

þ 1707

4
ζ3Ng61g

5
2 þ

2247

4
ζ3Ng81g

3
2 þ 243ζ3Ng101 g2 −

159

16
ζ3N2g41g

7
2

þ 2745

16
ζ3N2g61g

5
2 þ

2115

4
ζ3N2g81g

3
2 þ

357

2
ζ3N2g101 g2 −

165

16
ζ3N3g61g

5
2

þ 45

4
ζ3N3g81g

3
2 þ

99

8
ζ3N3g101 g2 −

15

16
ζ3N4g81g

3
2 þ

3

8
ζ3N4g101 g2 þ

189

4
ζ23g

11
2

−
75

4
ζ23Ng21g

9
2 þ 258ζ23Ng41g

7
2 þ 309ζ23Ng61g

5
2 þ

1167

2
ζ23Ng81g

3
2 þ 216ζ23Ng101 g2

− 33ζ23N
2g61g

5
2 þ

789

4
ζ23N

2g81g
3
2 −

81

2
ζ23N

2g101 g2 −
27

4
ζ23N

3g101 g2

�
þOðg13i Þ ð7:4Þ

for the β-functions in the MS scheme where the terms have been bracketed by loop order when there is more than one
contribution. As the anomalous dimensions of both fields in the OðNÞ model have not been recorded before we found

γOðNÞ
Φ ðgiÞ ¼ 2g21 þ ½−g21g22 − 2g41 − Ng41�

þ
�
3

2
g21g

4
2 þ g41g

2
2 þ 2g61 þ Ng41g

2
2 þ 5Ng61 −

1

2
N2g61 þ 12ζ3g41g

2
2 þ 12ζ3g61

�

þ
�
−
8

3
g21g

6
2 −

8

3
g41g

4
2 −

1

3
g61g

2
2 −

10

3
g81 −

7

12
Ng41g

4
2 − 14Ng61g

2
2 −

38

3
Ng81

þ 11

6
N2g61g

2
2 −

4

3
N2g81 −

1

4
N3g81 − 40ζ5g41g

4
2 − 160ζ5g61g

2
2 − 80ζ5g81

− 40ζ5Ng81 −
3

2
ζ4g21g

6
2 þ 15ζ4g41g

4
2 þ 21ζ4g61g

2
2 þ 24ζ4g81 þ

15

2
ζ4Ng61g

2
2

þ 6ζ4Ng81 −
7

2
ζ3g21g

6
2 − 30ζ3g41g

4
2 − 64ζ3g61g

2
2 − 72ζ3g81 −

1

2
ζ3Ng41g

4
2

− 45ζ3Ng61g
2
2 − 26ζ3Ng81 þ

1

2
ζ3N2g61g

2
2 þ

1

2
ζ3N3g81

�

þ
�
6g21g

8
2 þ

67

12
g41g

6
2 þ

17

6
g61g

4
2 −

1

3
g81g

2
2 þ

20

3
g101 −

3

8
Ng41g

6
2 þ

155

4
Ng61g

4
2

þ 247

6
Ng81g

2
2 þ

107

3
Ng101 −

39

8
N2g61g

4
2 þ

11

4
N2g81g

2
2 þ

76

3
N2g101

þ 11

8
N3g81g

2
2 −

29

12
N3g101 −

1

8
N4g101 þ 441

2
ζ7g41g

6
2 þ

3969

4
ζ7g61g

4
2
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þ 2205ζ7g81g
2
2 þ 882ζ7g101 þ 441ζ7Ng81g

2
2 þ

2205

4
ζ7Ng101 þ 25

2
ζ6g21g

8
2

− 100ζ6g41g
6
2 − 350ζ6g61g

4
2 − 500ζ6g81g

2
2 − 300ζ6g101 − 50ζ6Ng61g

4
2

− 250ζ6Ng81g
2
2 − 225ζ6Ng101 −

75

2
ζ6N2g101 þ 11ζ5g21g

8
2 þ

355

2
ζ5g41g

6
2

þ 531ζ5g61g
4
2 þ

2143

2
ζ5g81g

2
2 þ 693ζ5g101 − 2ζ5Ng41g

6
2 þ

455

2
ζ5Ng61g

4
2

þ 497ζ5Ng81g
2
2 þ

663

2
ζ5Ng101 þ 118ζ5N2g101 þ 33

16
ζ4g21g

8
2 − 57ζ4g41g

6
2

−
219

2
ζ4g61g

4
2 − 162ζ4g81g

2
2 − 174ζ4g101 −

27

16
ζ4Ng41g

6
2 −

315

4
ζ4Ng61g

4
2

− 144ζ4Ng81g
2
2 − 114ζ4Ng101 −

15

16
ζ4N2g61g

4
2 −

243

8
ζ4N2g81g

2
2

−
57

4
ζ4N2g101 þ 9

16
ζ4N3g81g

2
2 þ

3

2
ζ4N3g101 þ 3

8
ζ4N4g101 þ 177

8
ζ3g21g

8
2

þ 90ζ3g41g
6
2 þ 138ζ3g61g

4
2 þ 252ζ3g81g

2
2 þ 268ζ3g101 þ 129

8
ζ3Ng41g

6
2

þ 156ζ3Ng61g
4
2 þ 443ζ3Ng81g

2
2 þ 296ζ3Ng101 −

23

8
ζ3N2g61g

4
2

þ 141

4
ζ3N2g81g

2
2 þ

17

2
ζ3N2g101 −

27

8
ζ3N3g81g

2
2 −

5

2
ζ3N3g101

−
1

4
ζ3N4g101 − ζ23g

2
1g

8
2 þ 44ζ23g

4
1g

6
2 þ 172ζ23g

6
1g

4
2 þ 448ζ23g

8
1g

2
2 þ 288ζ23g

10
1

− 32ζ23Ng61g
4
2 þ 152ζ23Ng81g

2
2 − 54ζ23Ng101 − 9ζ23N

2g101

�
þOðg13i Þ ð7:5Þ

and

γOðNÞ
σ ðgiÞ ¼ ½g22 þ Ng21� þ ½−g42 − Ng21g

2
2 − 2Ng41�

þ
�
5

4
g62 þ

1

2
Ng21g

4
2 þ 6Ng41g

2
2 þ Ng61 −

3

4
N2g41g

2
2 þ 2N2g61 þ 3ζ3g62

þ 15ζ3Ng41g
2
2 þ 6ζ3Ng61

�

þ
�
−
9

4
g82 −

91

6
Ng41g

4
2 −

13

3
Ng61g

2
2 −

8

3
Ng81 þ

7

4
N2g41g

4
2 −

13

3
N2g61g

2
2 −

28

3
N2g81

−
1

2
N3g61g

2
2 þ

5

6
N3g81 − 20ζ5g82 − 80ζ5Ng41g

4
2 − 160ζ5Ng61g

2
2 − 40ζ5Ng81

− 20ζ5N2g81 þ
9

2
ζ4g82 þ 6ζ4Ng21g

6
2 þ

15

2
ζ4Ng41g

4
2 þ 24ζ4Ng61g

2
2 þ 12ζ4Ng81

þ 15ζ4N2g61g
2
2 þ 3ζ4N2g81 − 15ζ3g82 − 11ζ3Ng21g

6
2 − 46ζ3Ng41g

4
2 − 88ζ3Ng61g

2
2

− 44ζ3Ng81 þ 2ζ3N2g41g
4
2 − 32ζ3N2g61g

2
2 − 6ζ3N2g81 þ ζ3N3g61g

2
2 − ζ3N3g81

�

þ
�
79

16
g102 −

7

4
Ng21g

8
2 þ

1039

24
Ng41g

6
2 þ

41

4
Ng61g

4
2 þ

31

2
Ng81g

2
2 þ

14

3
Ng101

−
37

8
N2g41g

6
2 þ

215

24
N2g61g

4
2 þ

313

6
N2g81g

2
2 þ

131

6
N2g101 þ 7

4
N3g61g

4
2
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−
143

24
N3g81g

2
2 þ

83

12
N3g101 −

5

16
N4g81g

2
2 þ

3

8
N4g101 þ 1323

8
ζ7g102

þ 4851

8
ζ7Ng41g

6
2 þ

11907

8
ζ7Ng61g

4
2 þ

15435

8
ζ7Ng81g

2
2 þ 441ζ7Ng101

þ 3087

8
ζ7N2g81g

2
2 þ

2205

8
ζ7N2g101 −

225

4
ζ6g102 −

275

4
ζ6Ng21g

8
2 − 125ζ6Ng41g

6
2

− 325ζ6Ng61g
4
2 −

1025

2
ζ6Ng81g

2
2 − 150ζ6Ng101 − 175ζ6N2g61g

4
2

−
1025

4
ζ6N2g81g

2
2 −

225

2
ζ6N2g101 −

75

4
ζ6N3g101 þ 457

4
ζ5g102 þ 193

2
ζ5Ng21g

8
2

þ 293

4
ζ5Ng41g

6
2 þ

3069

2
ζ5Ng61g

4
2 þ

1391

2
ζ5Ng81g

2
2 þ 239ζ5Ng101 −

19

4
ζ5N2g41g

6
2

−
105

2
ζ5N2g61g

4
2 þ

1601

2
ζ5N2g81g

2
2 þ

519

2
ζ5N2g101 −

555

4
ζ5N3g81g

2
2

þ 39ζ5N3g101 −
441

16
ζ4g102 −

393

8
ζ4Ng21g

8
2 −

909

16
ζ4Ng41g

6
2 −

447

4
ζ4Ng61g

4
2

−
765

4
ζ4Ng81g

2
2 − 99ζ4Ng101 −

267

16
ζ4N2g41g

6
2 −

1263

16
ζ4N2g61g

4
2

−
699

4
ζ4N2g81g

2
2 − 45ζ4N2g101 þ 51

16
ζ4N3g61g

4
2 −

225

8
ζ4N3g81g

2
2 −

51

8
ζ4N3g101

þ 15

16
ζ4N4g81g

2
2 −

3

4
ζ4N4g101 þ 429

8
ζ3g102 þ 47ζ3Ng21g

8
2 þ

1653

8
ζ3Ng41g

6
2

þ 569

2
ζ3Ng61g

4
2 þ

749

2
ζ3Ng81g

2
2 þ 162ζ3Ng101 −

53

8
ζ3N2g41g

6
2 þ

915

8
ζ3N2g61g

4
2

þ 705

2
ζ3N2g81g

2
2 þ 119ζ3N2g101 −

55

8
ζ3N3g61g

4
2 þ

15

2
ζ3N3g81g

2
2 þ

33

4
ζ3N3g101

−
5

8
ζ3N4g81g

2
2 þ

1

4
ζ3N4g101 þ 63

2
ζ23g

10
2 −

25

2
ζ23Ng21g

8
2 þ 172ζ23Ng41g

6
2

þ 206ζ23Ng61g
4
2 þ 389ζ23Ng81g

2
2 þ 144ζ23Ng101 − 22ζ23N

2g61g
4
2 þ

263

2
ζ23N

2g81g
2
2

− 27ζ23N
2g101 −

9

2
ζ23N

3g101

�
þOðg13i Þ ð7:6Þ

in the same scheme. We note that the first two loop orders of each β-function were recorded in [88] with which we are in
agreement. In [88] the higher loop terms were deduced from the four loop results of [92]. Therefore the results (7.3), (7.4),
(7.5) and (7.6) are the first direct calculation of the OðNÞ theory renormalization group functions including γΦðgiÞ
and γσðgiÞ.
We recall from [88] that there are four different fixed points given by the solutions of βiðgjÞ ¼ 0 in d ¼ 4 − 2ϵ. Explicit

expressions to two loops are recorded in Eq. (2.4) of [88]. One of these is the trivial Gaussian one while two involve one or
other of the couplings being zero. The remaining fixed point has both g1 and g2 nonzero which only exists for N ≤ 2. In this
instance when N ¼ 2 the solution for the critical couplings reduces to the g1 ¼ 0 solution [88]. In the other case with N ¼ 1
both critical couplings are equal and this corresponds to the emergent supersymmetric fixed point in the Gross-Neveu-
Yukawa theory. This can be seen by computing the eigenvalues of the matrix

βijðg1; g2Þ ¼
�∂βiðg1; g2Þ

∂gj
�

ð7:7Þ

at the critical point. We find these are
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ω̂1 ¼ 2ϵ −
4

3
ϵ2 þ 4

9
½12ζ3 þ 1�ϵ3 þ 4

27
½54ζ4 − 84ζ3 − 240ζ5 − 7�ϵ4

þ 4

81
½576ζ23 þ 396ζ3 − 378ζ4 þ 1416ζ5 − 1800ζ6 þ 5292ζ7 þ 19�ϵ5 þOðϵ6Þ

ω̂2 ¼
2

3
ϵþOðϵ6Þ ð7:8Þ

where the first is equivalent to (6.8) and the second would appear to be exact.
While we have already noted several internal consistency checks on the earlier five loop renormalization it is also possible

to check the computation via theOðNÞ fixed point given by g2 ¼ 0. To assist with this we record the renormalization group
functions for that and note

γOðNÞ
Φ ðg1; 0Þ ¼ 2g21 − ½N þ 2�g41 − ½N2 − 10N − 4 − 24ζ3�

g61
2

þ ½½6ζ3 − 3�N3 − 16N2 þ ½72ζ4 − 152 − 312ζ3 − 480ζ5�N − 40 − 864ζ3

þ 288ζ4 − 960ζ5�
g81
12

þ ½9ζ4N4 − 6ζ3N4 − 3N4 − 60ζ3N3 þ 36ζ4N3 − 58N3 − 216ζ23N
2

þ 204ζ3N2 − 342ζ4N2 þ 2832ζ5N2 − 900ζ6N2 þ 608N2 − 1296ζ23N

þ 7104ζ3N − 2736ζ4N þ 7956ζ5N − 5400ζ6N þ 13230ζ7N þ 856N

þ 6912ζ23 þ 6432ζ3 − 4176ζ4 þ 16632ζ5 − 7200ζ6 þ 21168ζ7 þ 160� g
10
1

24
þOðg121 Þ ð7:9Þ

and

γOðNÞ
σ ðg1; 0Þ ¼ Ng21 − 2Ng41 þ N½2N þ 1þ 6ζ3�g61

þ N½½5 − 6ζ3�N2 þ ½18ζ4 − 56 − 36ζ3 − 120ζ5�N

þ ½72ζ4 − 16 − 264ζ3 − 240ζ5��
g81
6

þ N½6ζ3N3 − 18ζ4N3 þ 9N3 − 108ζ23N
2 þ 198ζ3N2 − 153ζ4N2 þ 936ζ5N2

− 450ζ6N2 þ 166N2 − 648ζ23N þ 2856ζ3N − 1080ζ4N þ 6228ζ5N

− 2700ζ6N þ 6615ζ7N þ 524N þ 3456ζ23 þ 3888ζ3 − 2376ζ4 þ 5736ζ5

− 3600ζ6 þ 10584ζ7 þ 112� g
10
1

24
þOðg121 Þ ð7:10Þ

for the two field anomalous dimensions. The nontrivial β-function is
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βOðNÞ
1 ðg1; 0Þ ¼ ½N þ 4� g

3
1

2
− 2½N þ 1�g51 þ ½N2 þ ½11þ 6ζ3�N þ 4þ 24ζ3�

g71
2

þ ½N3 þ ½9ζ4 − 36 − 18ζ3 − 60ζ5�N2 þ ½72ζ4 − 84 − 288ζ3 − 360ζ5�N

− 20 − 432ζ3 þ 144ζ4 − 480ζ5�
g91
6

þ ½3N4 − 6ζ3N4 − 108ζ23N
3 þ 78ζ3N3 − 81ζ4N3 þ 936ζ5N3 − 450ζ6N3

þ 50N3 − 1080ζ23N
2 þ 3264ζ3N2 − 1764ζ4N2 þ 11892ζ5N2 − 4500ζ6N2

þ 6615ζ7N2 þ 1740N2 þ 864ζ23N þ 18096ζ3N − 7848ζ4N þ 21648ζ5N

− 14400ζ6N þ 37044ζ7N þ 1824N þ 13824ζ23 þ 12864ζ3 − 8352ζ4

þ 33264ζ5 − 14400ζ6 þ 42336ζ7 þ 320� g
11
1

48
þOðg131 Þ: ð7:11Þ

We recall that the OðNÞ Wess-Zumino model renormalization group functions are known to several orders in the 1=N

expansion [47–49]. The Oð1=N2Þ correction to the β-function and the Oð1=N3Þ ones for γOðNÞ
Φ ðg1; 0Þ were computed by

exploiting the scaling properties of the propagators at the Wilson-Fisher fixed point in d dimensions using the large N
formalism developed in [73,89] for the nonsupersymmetric version of (2.1) which is theOðNÞ nonlinear sigma model. That
model is in the same universality class of OðNÞ ϕ4 theory in four dimensions. In order to check (7.9) and (7.11) in large N

we compute the critical exponents ηOðNÞ
Φ ¼ 1

2
γOðNÞ
Φ ðg�1; 0Þ and ω̂OðNÞ ¼ 1

2
ðβOðNÞ

1 Þ0ðg�1; 0Þwhere g�1 is the value of the coupling
constant at the Wilson-Fisher critical point in d dimensions and the factor of 2 has been omitted here to be consistent with
the definition used in [48]. From (7.11) we have

g�1
2 ¼ 2ϵ

N
þ
�
−8ϵþ 16ϵ2 − 8ϵ3 −

16

3
ϵ4 þ ½8ζ3 − 4�ϵ5

�
1

N

þ
�
32ϵ − 176ϵ2 þ ½296 − 48ζ3�ϵ3 þ

�
320ζ5 −

64

3
− 48ζ4 þ 96ζ3

�
ϵ4

þ
�
600ζ6 −

392

3
− 1248ζ5 þ 108ζ4 − 296ζ3 þ 144ζ23

�
ϵ5
�

1

N2
þO

�
ϵ6;

1

N3

�
ð7:12Þ

to the necessary orders in powers of 1=N that are needed to compare with [47–49]. Thus we have

ηOðNÞ
Φ ¼ ½2ϵ − 2ϵ2 − 2ϵ3 þ ½4ζ3 − 2�ϵ4 þ ½6ζ4 − 2 − 4ζ3�ϵ5�

1

N

þ ½−8ϵþ 28ϵ2 þ 4ϵ3 − ½16þ 64ζ3�ϵ4 þ ½176ζ3 − 32 − 95ζ4�ϵ5�
1

N2

þ ½32ϵ − 240ϵ2 þ 288ϵ3 þ ½368þ 624ζ3�ϵ4 þ ½144þ 936ζ4 − 3312ζ3�ϵ5�
1

N3
þO

�
ϵ6;

1

N4

�
ð7:13Þ

and

ω̂OðNÞ ¼ ϵþ ½−8ϵ2 þ 8ϵ3 þ 8ϵ4 þ ½8 − 16ζ3�ϵ5�
1

N
þ ½56ϵ2 þ ½48ζ3 − 136�ϵ3 þ ½72ζ4 − 160 − 480ζ5 − 144ζ3�ϵ4

þ ½176 − 1200ζ6 þ 1696ζ5 − 216ζ4 þ 528ζ3 − 288ζ23�ϵ5�
1

N2
þO

�
ϵ6;

1

N3

�
: ð7:14Þ

If one expands the d-dimensional expressions for η and ω̂ of [48,49] in powers of ϵ we find precise agreement. This is the
other nontrivial check on our perturbative computation, that we referred to earlier, since the higher order large N
calculations involve the three and four loop primitive topologies. Hence several of the dressed propagator graphs of Figs. 9

and 10 arise in the higher order large N exponent calculations. The critical exponent associated with ηOðNÞ
σ ¼ γOðNÞ

σ ðg�1; 0Þ is
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also in agreement. However this is a trivial check since the
vertex of (7.1) is not renormalized due to the supersym-
metry Ward identity. Thus at the critical point this implies
that the vertex anomalous dimension exponent is zero to all

orders and so ηOðNÞ
σ is not independent of ηOðNÞ

Φ . We have
checked that this is indeed the case to five loops and
Oð1=N3Þ. In fact given this identity the Wess-Zumino
model is perhaps the first case where the anomalous
dimension of the linear field in the cubic interaction of
the class of large N expandable theories using the tech-
nology of [73,74,89] is available at Oð1=N3Þ rather
than Oð1=N2Þ.
One observation in respect of the connection between

the Wess-Zumino model and the emergent supersymmetry
of the Gross-Neveu-Yukawa Lagrangian needs to be made
in the context of the large N expansion. First we set some
notation and denote the Oð1=NrÞ term of the matter field
anomalous dimension by ηr for both theories. By matter
field we mean Φi of (7.1) and ψ i of the OðNÞ extension of
(2.2) when an OðNÞ symmetry is included. For back-
ground to this point we recall that in the scalar OðNÞ
universality class containing four-dimensional ϕ4 theory
the d-dimensional expression for η3 [89] involved a
function IðμÞ which was related to an 4F3 hypergeometric
function in [93,94]. Its ϵ expansion near four dimensions
involves multiple zeta values [89,93,95] and implies that
such irrationals will appear at high loop order in the
renormalization group functions. The same function
appears in η3 in various other models including the
OðNÞ Gross-Neveu model [96,97] and its N ¼ 1 super-
symmetric extension [98]. What was unusual about η3
computed for (7.1) in [49] was that the integral IðμÞ
did not appear. This was attributed to either the presence
of supersymmetry, since simplifications in the renormal-
ization group functions are known to occur when this
symmetry is present, or chiral symmetry. Alternatively
both symmetries could have equally conspired to exclude
the underlying topologies that would have led to IðμÞ. The
key point is that to Oð1=N3Þ no multiple zeta irrationals

will appear in γOðNÞ
Φ ðg1; 0Þ. Since the simple OðNÞ Gross-

Neveu model η3 contains IðμÞ [96,97], one question that
was recently addressed [99] was whether IðμÞ would be
present in η3 of the nonsupersymmetric chiral XYor chiral
Gross-Neveu model universality class where the theory
has a Uð1Þ symmetry. This was particularly relevant since
the four-dimensional theory has an emergent supersym-
metry. It transpires that the d-dimensional expression for
η3 in the chiral Gross-Neveu theory does not contain IðμÞ
[99]. Although the emergent supersymmetry occurs for a
specific value of N that is low, the large N critical
exponent η3 contains information on the renormalization
group functions. While the absence of IðμÞ in the chiral
Gross-Neveu model at Oð1=N3Þ is an indirect indication
of the structural similarities of both models at criticality it

also suggests that the absence of IðμÞ is perhaps due to the
chiral symmetry. One final comment needs to be made
concerning the multiple zeta irrationals. The absence of
such numbers at Oð1=N3Þ does not necessarily imply that
they are absent for all orders in large N or perturbation
theory. They could arise at much higher order. In pertur-
bation theory for example the first multiple zeta, ζ3;5,
appears at six loops in ϕ4 theory β-function. That term
would be present in the critical β-function exponent at
Oð1=N3Þ in the large N expansion of the OðNÞ extension
of that model [89,94].
At the end of this section we pause to discuss a potential

connection with the large N expansion technique men-
tioned here in relation to the renormalization group
functions and the Hopf algebra solution of the Dyson-
Schwinger equations of [81]. Indeed the large N methods
of [73,74] also relies upon the solution of the Dyson-
Schwinger equation in the critical region close to the
Wilson-Fisher fixed point. In the latter approach the use of
the group invariants has allowed us to identify that
solution with a seemingly parallel bubble expansion.
This is effected through the group factor T2. For instance
the ϵ expansion of the correction to scaling exponent was
given in (6.12) through the critical coupling (6.11) and
both have a similar structure to each other. Both actions
(6.1) and (7.1), however, are different in that the former
involves one field whereas the latter has anOðNÞmultiplet
of fields in addition to a scalar field. Indeed the interaction
connecting both fields is akin to the force matter one of
QCD which is a theory of Nf quarks with gluons that are
elements of the adjoint representation of the SUðNcÞ Lie
group with Nc ¼ 3. In addition to canonical perturbation
theory it admits both a large Nf and large Nc expansion
with the former being achieved using the same techniques
as [73,74]. The large Nc properties have also been widely
investigated where background to the issues are given in
[100,101]. There could not be a greater difference though
in how the Feynman graphs of each expansion are
ordered. For instance in the solution of the large Nf

Dyson-Schwinger equations at criticality there is a finite
and small number of graphs at leading order. By contrast
in the large Nc case it is known that there are an infinite
number of graphs at leading order [20,21]. This is evident
in the structure of the QCD β-function. To two loops it is
linear in Nf which means the leading large Nf term of the
critical coupling at the Wilson-Fisher fixed point has a
finite number of terms in ϵ. In fact there is only one. The
Nc dependence for the SUðNcÞ color group by contrast is
different in that the coefficient of the leading order 1=Nc
term of the critical coupling is an infinite series in ϵ. In the
absence of the all orders β-function it therefore remains
unavailable. These two situations have parallels in the two
actions (6.1) and (7.1). Clearly the large N expansion
discussed in this section is completely the same as the
large Nf one of QCD given the common use of [73,74] in
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finding the d-dimensional critical exponents. Indeed the
critical coupling (7.12) has only one term at leading order
as the β-function (7.11) is linear in N. By contrast the
β-function of the other action (6.3) is not linear in T2

which leads to an infinite number of terms in ϵ at leading
order in the 1=T2 expansion of the critical coupling (6.11).
Equally the correction to scaling exponent has the
same property in complete parallel with the large Nc
expansion.
This suggests that the 1=T2 expansion of the renormal-

ization group functions of (6.1) using the Hopf algebra
solution of the Dyson-Schwinger equation is a potential
way of carrying out a large Nc expansion of the β-function
of QCD. It is worth outlining the ingredients needed for
such an exercise. Indeed there are many challenges that
would need to be resolved. First, the Wess-Zumino model
has a supersymmetry Ward identity that allows the
β-function to be deduced from the field anomalous dimen-
sion. So the Dyson-Schwinger equation for the vertex
function would need to be analyzed in the Hopf algebra
formalism. This could be played out in the same laboratory
of ϕ3 and scalar-Yukawa theory [82,83] where the field
anomalous dimension was examined in the first instance.
Next in the QCD case there is the complication of gauge
symmetry. Even for Yang-Mills theory one would have
more Dyson-Schwinger equations to consider. Aside from
treating the transverse and longitudinal contributions to the
gluon equations separately, unless the focus was on the
Landau gauge, the Faddeev-Popov ghost Dyson-Schwinger
equation would play a nontrivial role. The use of the
Landau gauge may have the advantage that the β-function
could be accessible in the Hopf approach since the ghost-
gluon vertex is finite in this gauge due to Taylor’s theorem
[102]. This would be a parallel to the nonrenormalization of
the Wess-Zumino vertex here due to the supersymmetry
Ward identity. While these observations have in the main
concentrated on the close similarities there are inevitably
several technical differences. The obvious one is that the set
of basic Feynman graphs of the Wess-Zumino model is
smaller than the QCD one. By set we mean the underlying
graph topology and the difference lies in the absence of one
loop subgraphs with an odd number of propagators as well
as no quartic interaction. In turn this means that the group

invariant designation Ti does not have the same parallels as
the group Casimirs in QCD. This is understandable since the
core tensor of (6.1) is symmetric in contrast to the
antisymmetric structure constants of the SUðNcÞ Lie color
group. In this case while T5 does have a partner group
theory combination in Yang-Mills, since the two loop
nonplanar vertex function has subgraphs with an even
number of propagators, it is actually zero in the adjoint
representation in Yang-Mills theory. Instead T71 would be
the first topology that nontrivially connects with graphs in
QCD where they would equate with the so-called four
loop light-by-light graphs. Despite these issues that we
have outlined it would seem that the Hopf algebra
approach offers a viable way of probing ideas concerning
the renormalization group functions of QCD in the 1=Nc
expansion in parallel with potentially the same benefit as
the large Nf d-dimensional critical exponents. Finally we
remark that there is also the potential for the Hopf algebra
constuction given in [81] to be extended to the next order
for the Wess-Zumino model. From the location of T5 in
(6.11) and (6.12) it is clear that the next topology to
consider beyond the iteration of the one loop bubble used
in [81] is the bubble decoration of the nonplanar primitive
of Fig. 4. The Chebyshev polynomial approach to evaluate
this graph given in the appendix of [4] should be useful in
this respect.

VIII. TENSOR OðNÞ WESS-ZUMINO MODEL

We now turn to an alternative version of the OðNÞ
theory which we will term the tensor OðNÞ Wess-Zumino
model as it also has an origin in nonsupersymmetric
OðNÞϕ4 theory. In that case the interaction ðϕ2Þ2 can be
rewritten in terms of an auxiliary field σ which leads to the
cubic interaction akin to that of (7.1). As pointed out in
[50,103] this is not the only way of decomposing the
quartic interaction since one can introduce a tensor
channel rather than a scalar one. In this case the auxiliary
field is a vector in the OðNÞ group and denoted by σa

where 1 ≤ a ≤ NA with NA ¼ 1
2
ðN − 1ÞðN þ 2Þ. Since

this decomposition has parallels with the canonical one
of (7.1) it can also be incorporated in the Wess-Zumino
case as well. This is the focus of this section and we note
the bare action is

SOΛðNÞ ¼
Z

d4x

�Z
d2θd2θ̄Φ̄0ðx; θ̄Þe−2θ∂θ̄Φ0ðx; θÞ þ σ̄a0ðx; θ̄Þe−2θ∂θ̄σa0ðx; θÞ

þ g̃10
2

Z
d2θσa0Φi

0Λa
ijΦ

j
0 þ

g̃10
2

Z
d2θσ̄a0Φ̄i

0Λa
ijΦ̄

j
0

þ g̃20
6

dabc3

Z
d2θσa0σ

b
0σ

c
0 þ

g̃20
6

dabc3

Z
d2θσ̄a0 σ̄

b
0 σ̄

c
0

�
ð8:1Þ
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where the fully symmetric rank 3 tensor depends on the
NA real, symmetric, traceless matrices Λa

ij via

dabc3 ¼ TrðΛaΛbΛcÞ ð8:2Þ

which formally has similar interactions to the nonsuper-
symmetric scalar tensor OðNÞ cubic theory that is renor-
malizable in six dimensions [50,103].
With this action we have constructed the five loop

renormalization group functions using an extension of
the algorithm for the scalar decomposition of the previous
section. The supersymmetry Ward identities (7.2) remain

the same. So all that is entailed is to append a FORM group
theory module to handle the presence of the matrix. Useful
in implementing this is the relation [50]

Λa
ijΛa

kl ¼ δikδjl þ δilδjk −
2

N
δijδkl: ð8:3Þ

Like [52] the expressions for the renormalization group
functions for arbitrary N are sizable and included in the
Supplemental Material [91]. However it is valuable to
record them for one particular value of N. For instance
when N ¼ 3 we have

γΦðgiÞjN¼3 ¼
20

3
g21 þ

20

9
½−13g21 − 7g22�g21

þ 20

27
½276ζ3g41 þ 241g41 − 84ζ3g21g

2
2 þ 112g21g

2
2 þ 147g42�g21

þ 20

243
½−61254ζ3g61 þ 19044ζ4g61 − 61680ζ5g61 − 17201g61 þ 2940ζ3g41g

2
2

þ 5229ζ4g41g
2
2 − 26880ζ5g41g

2
2 − 16954g41g

2
2 þ 7938ζ3g21g

4
2 − 4410ζ4g21g

4
2

− 38640ζ5g21g
4
2 − 8869g21g

4
2 − 7224ζ3g62 − 2583ζ4g62 − 10976g62�g21

þ 5

729
½2017008ζ23g81 þ 12797088ζ3g81 − 6943608ζ4g81 þ 21262968ζ5g81

− 10639800ζ6g81 þ 20806821ζ7g81 þ 2198908g81 − 3786048ζ23g
6
1g

2
2

þ 2103360ζ3g61g
2
2 − 2771496ζ4g61g

2
2 þ 17172792ζ5g61g

2
2 − 7812000ζ6g61g

2
2

þ 5260248ζ7g61g
2
2 þ 2154908g61g

2
2 − 784896ζ23g

4
1g

4
2 þ 233436ζ3g41g

4
2

þ 168462ζ4g41g
4
2 þ 15298584ζ5g41g

4
2 − 5913600ζ6g41g

4
2 þ 6306741ζ7g41g

4
2

þ 2861012g41g
4
2 − 2010624ζ23g

2
1g

6
2 − 3192ζ3g21g

6
2 þ 1006236ζ4g21g

6
2

þ 11106984ζ5g21g
6
2 − 5409600ζ6g21g

6
2 þ 5093550ζ7g21g

6
2 þ 882196g21g

6
2

− 92400ζ23g
8
2 þ 2552508ζ3g82 þ 73206ζ4g82 þ 1000272ζ5g82

þ 1155000ζ6g82 þ 1382976g82�g21 þOðg12i Þ ð8:4Þ

and

γσðgiÞjN¼3 ¼
2

3
½3g21 þ 7g22� þ

4

9
½−30g41 − 21g21g

2
2 − 49g42�

þ 2

27
½828ζ3g61 þ 660g61 − 630ζ3g41g

2
2 þ 2331g41g

2
2 þ 294g21g

4
2 þ 1722ζ3g62 þ 1715g62�

þ 4

81
½−30144ζ3g81 þ 9522ζ4g81 − 30840ζ5g81 − 11950g81 − 2856ζ3g61g

2
2

− 6930ζ4g61g
2
2 − 26880ζ5g61g

2
2 − 14938g61g

2
2 þ 13818ζ3g41g

4
2 − 2205ζ4g41g

4
2

− 77280ζ5g41g
4
2 − 41503g41g

4
2 − 16548ζ3g21g

6
2 þ 10332ζ4g21g

6
2 − 60270ζ3g82

þ 18081ζ4g82 − 77000ζ5g82 − 21609g82�
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þ 1

486
½2017008ζ23g101 þ 12023784ζ3g101 − 6277068ζ4g101 þ 17472048ζ5g101

− 10639800ζ6g101 þ 20806821ζ7g101 þ 2440520g101 − 6471360ζ23g
8
1g

2
2

þ 8625792ζ3g81g
2
2 − 1047312ζ4g81g

2
2 þ 30972984ζ5g81g

2
2 − 9815400ζ6g81g

2
2

þ 9205434ζ7g81g
2
2 þ 7490700g81g

2
2 − 5869248ζ23g

6
1g

4
2 − 92316ζ3g61g

4
2

þ 2862090ζ4g61g
4
2 þ 60678240ζ5g61g

4
2 − 24460800ζ6g61g

4
2

þ 18920223ζ7g61g
4
2 þ 3823176g61g

4
2 − 5540640ζ23g

4
1g

6
2 þ 5826828ζ3g41g

6
2

− 2235618ζ4g41g
6
2 þ 44301264ζ5g41g

6
2 − 13524000ζ6g41g

6
2

þ 28014525ζ7g41g
6
2 þ 13341328g41g

6
2 − 2310000ζ23g

2
1g

8
2 þ 7958580ζ3g21g

8
2

− 9122526ζ4g21g
8
2 þ 17502576ζ5g21g

8
2 − 12705000ζ6g21g

8
2 − 806736g21g

8
2

þ 2651040ζ23g
10
2 þ 24601332ζ3g102 − 12403566ζ4g102 þ 48544888ζ5g102

− 24255000ζ6g102 þ 47944197ζ7g102 þ 5311012g102 � þOðg12i Þ ð8:5Þ

for the MS field anomalous dimensions and

β1ðgiÞjN¼3 ¼
1

3
½23g21 þ 7g22�g1 þ

2

9
½−160g41 − 91g21g

2
2 − 49g42�g1

þ 1

27
½6348ζ3g61 þ 5480g61 − 2310ζ3g41g

2
2 þ 4571g41g

2
2 þ 3234g21g

4
2 þ 1722ζ3g62 þ 1715g62�g1

þ 2

243
½−702972ζ3g81 þ 219006ζ4g81 − 709320ζ5g81 − 207860g81 þ 20832ζ3g61g

2
2

þ 31500ζ4g61g
2
2 − 349440ζ5g61g

2
2 − 214354g61g

2
2 þ 120834ζ3g41g

4
2

− 50715ζ4g41g
4
2 − 618240ζ5g41g

4
2 − 213199g41g

4
2 − 121884ζ3g21g

6
2

þ 5166ζ4g21g
6
2 − 109760g21g

6
2 − 180810ζ3g82 þ 54243ζ4g82 − 231000ζ5g82 − 64827g82�g1

þ 1

2916
½46391184ζ23g101 þ 292013112ζ3g101 − 157703364ζ4g101 þ 477675504ζ5g101

− 244715400ζ6g101 þ 478556883ζ7g101 þ 51299720g101 − 95135040ζ23g
8
1g

2
2

þ 67944576ζ3g81g
2
2 − 58571856ζ4g81g

2
2 þ 436374792ζ5g81g

2
2

− 185686200ζ6g81g
2
2 þ 132821262ζ7g81g

2
2 þ 65570260g81g

2
2

− 33305664ζ23g
6
1g

4
2 þ 4391772ζ3g61g

4
2 þ 11955510ζ4g61g

4
2

þ 488006400ζ5g61g
4
2 − 191654400ζ6g61g

4
2 þ 182895489ζ7g61g

4
2

þ 68689768g61g
4
2 − 56834400ζ23g

4
1g

6
2 þ 17416644ζ3g41g

6
2 þ 13417866ζ4g41g

6
2

þ 355043472ζ5g41g
6
2 − 148764000ζ6g41g

6
2 þ 185914575ζ7g41g

6
2

þ 57667904g41g
6
2 − 8778000ζ23g

2
1g

8
2 þ 74925900ζ3g21g

8
2

− 25903458ζ4g21g
8
2 þ 72513168ζ5g21g

8
2 − 15015000ζ6g21g

8
2

þ 25239312g21g
8
2 þ 7953120ζ23g

10
2 þ 73803996ζ3g102 − 37210698ζ4g102

þ 145634664ζ5g102 − 72765000ζ6g102 þ 143832591ζ7g102 þ 15933036g102 �g1 þOðg13i Þ ð8:6Þ

together with
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β2ðgiÞjN¼3 ¼ ½3g21 þ 7g22�g2 þ
2

3
½−30g41 − 21g21g

2
2 − 49g42�g2

þ 1

9
½828ζ3g61 þ 660g61 − 630ζ3g41g

2
2 þ 2331g41g

2
2 þ 294g21g

4
2 þ 1722ζ3g62 þ 1715g62�g2

þ 2

27
½−30144ζ3g81 þ 9522ζ4g81 − 30840ζ5g81 − 11950g81 − 2856ζ3g61g

2
2

− 6930ζ4g61g
2
2 − 26880ζ5g61g

2
2 − 14938g61g

2
2 þ 13818ζ3g41g

4
2 − 2205ζ4g41g

4
2

− 77280ζ5g41g
4
2 − 41503g41g

4
2 − 16548ζ3g21g

6
2 þ 10332ζ4g21g

6
2

− 60270ζ3g82 þ 18081ζ4g82 − 77000ζ5g82 − 21609g82�g2
þ 1

324
½2017008ζ23g101 þ 12023784ζ3g101 − 6277068ζ4g101 þ 17472048ζ5g101

− 10639800ζ6g101 þ 20806821ζ7g101 þ 2440520g101 − 6471360ζ23g
8
1g

2
2

þ 8625792ζ3g81g
2
2 − 1047312ζ4g81g

2
2 þ 30972984ζ5g81g

2
2 − 9815400ζ6g81g

2
2

þ 9205434ζ7g81g
2
2 þ 7490700g81g

2
2 − 5869248ζ23g

6
1g

4
2 − 92316ζ3g61g

4
2

þ 2862090ζ4g61g
4
2 þ 60678240ζ5g61g

4
2 − 24460800ζ6g61g

4
2

þ 18920223ζ7g61g
4
2 þ 3823176g61g

4
2 − 5540640ζ23g

4
1g

6
2 þ 5826828ζ3g41g

6
2

− 2235618ζ4g41g
6
2 þ 44301264ζ5g41g

6
2 − 13524000ζ6g41g

6
2

þ 28014525ζ7g41g
6
2 þ 13341328g41g

6
2 − 2310000ζ23g

2
1g

8
2 þ 7958580ζ3g21g

8
2

− 9122526ζ4g21g
8
2 þ 17502576ζ5g21g

8
2 − 12705000ζ6g21g

8
2 − 806736g21g

8
2

þ 2651040ζ23g
10
2 þ 24601332ζ3g102 − 12403566ζ4g102 þ 48544888ζ5g102

− 24255000ζ6g102 þ 47944197ζ7g102 þ 5311012g102 �g2 þOðg13i Þ ð8:7Þ

for the MS β-functions.
One property of the tensorOðNÞmodel that was present in the six-dimensional nonsupersymmetric cubic theory [50] and

was illuminated in more detail in [52] was an emergent symmetry. When N ¼ 3 then NA ¼ 5 giving a total of eight fields.
This is the same dimension as the adjoint representation of SUð3Þ and it was shown in [52] that there is an emergent SUð3Þ
symmetric in the tensorOð3Þ cubic theory in six dimensions. Given that this is an observation at the level of group theory it
is no surprise that there is a similar emergent SUð3Þ symmetry in (8.1). This occurs when the couplings are equal as then the
action can be reorganized into one that is formally equivalent to (6.1). In particular the field anomalous dimensions become
equal since

γΦðgiÞjN¼3;g1¼g2 ¼ γσðgiÞjN¼3;g1¼g2

¼ 20

3
g21−

400

9
g41þ

80

27
½48ζ3þ125�g61þ

1600

81
½72ζ4−240ζ3−530ζ5−225�g81

þ800

243
½36840ζ3−9702ζ23−17640ζ4þ137170ζ5−59625ζ6þ78057ζ7þ19750�g101 þOðg121 Þ ð8:8Þ

as well as the β-functions which is apparent from (8.6) and (8.7) since

βðgiÞjN¼3;g1¼g2 ¼ βðgiÞjN¼3;g1¼g2

¼ 10g31 −
200

3
g51 þ

40

9
½48ζ3 þ 125�g71 þ

800

27
½72ζ4 − 240ζ3 − 530ζ5 − 225�g91

þ 400

81
½36840ζ3 − 9702ζ23 − 17640ζ4 þ 137170ζ5 − 59625ζ6 þ 78057ζ7 þ 19750�g111 þOðg131 Þ ð8:9Þ

FIVE LOOP RENORMALIZATION OF THE WESS-ZUMINO … PHYS. REV. D 105, 025004 (2022)

025004-29



to five loops. These are clearly consistent with the direct
evaluation of the same quantities given in (6.16) and (6.17)
which affirms the emergent SUð3Þ symmetry.
While the emergent SUð3Þ theory from the Oð3Þ theory

is not a surprise given that it runs parallel to the same
observation in six-dimensional ϕ3 theory, the SUð3Þ Wess-
Zumino model itself already had connections to other
supersymmetric models in three dimensions [41–46]. For
instance in [44] a duality was observed in three dimensions
between an N ¼ 2 supersymmetric Uð1Þ gauge theory or
supersymmetric quantum electrodynamics which had an
infrared enhancement of flavor symmetry to SUð3Þ and
an N ¼ 1 supersymmetric Wess-Zumino model with an
adjoint SUð3Þ symmetry corresponding to the action
(6.1). It was proposed that the latter theory has an
N ¼ 2 supersymmetry in the infrared in three dimensions.
This symmetry enhancement had been observed earlier in
[41,43] and explored further in [44–46]. That the Oð3Þ
tensor model has also this connection with the SUð3Þ
Wess-Zumino model is perhaps not surprising as [46]

studied various breakings and enhancement of this group
to SUð2Þ ×Uð1Þ.
We close by noting that one can in principle construct a

nonsupersymmetric Lagrangian with Oð3Þ symmetry that
has both SUð3Þ and supersymmetry emerging simultane-
ously at the same fixed point. Such a Lagrangian would
need the field content of both the Φi and σa superfields and
their conjugates. Consequently, the interaction Lagrangian
would have a large number of terms. A nonexhaustive
representative set of the formal 3-point vertices is, for
example,

fςaψ iΛa
ijψ

j;πaψ iΛa
ijγ

5ψ j;ϕiψ jΛa
ijχ

a;ϕiψ jΛa
ijγ

5ξag ð8:10Þ

where we have temporarily dropped the Dirac conjugate on
the fermions briefly to avoid confusion with the chiral
aspect of the underlying supermultiplets. Here ϕi and ψ i are
the fields that would be in the Φi supermultiplet while ςa,
χa and ξa are the analogous ones for the σa multiplet with
the latter two being fermions. Similarly

fðϕiϕiÞ2; dabc3 ςbςcΛa
ijϕ

iϕj;Λa
ikΛb

jkς
aςbϕiϕj; ςbςcΛa

ijϕ
iϕj; ðdabc3 ςbςcÞ2g ð8:11Þ

are several formal quartic vertex structures. Such a Lagrangianwith distinct couplings would be nontrivial andwould therefore
require a large computation to determine its renormalization group functions even at low loop order in order to explore this
double emergence conjecture further.

IX. GENERAL ACTION

While we considered a generalization of the Wess-Zumino model to include interactions with group valued tensor
couplings which were real in (6.1) that was not the most general cubic supersymmetric chiral theory. Instead the most
general action involves tensors that themselves undergo renormalization which we will determine to five loops in this
section extending thereby the four loop work of [92]. In other words the bare action has the form

S ¼
Z

d4x

�Z
d2θd2θ̄Φ̄i

0ðx; θ̄Þe−2θ∂θ̄Φi
0ðx; θÞ þ

dijk0
3!

Z
d2θΦi

0Φ
j
0Φk

0 þ
d̄ijk0
3!

Z
d2θ̄Φ̄i

0Φ̄
j
0Φ̄k

0

�
ð9:1Þ

where the tensor couplings are bare in contrast to (6.1). The
corresponding renormalized quantities are defined by

Φi
0 ¼ ZijΦj; Φ̄i

0 ¼ Zij
ΦΦ̄j ð9:2Þ

for the superfields and

dijk0 ¼ Zijkjpqr
d dpqr; d̄ijk0 ¼ Zijkjpqr

d̄
d̄pqr ð9:3Þ

for the tensor couplings. However, the tensor renormaliza-
tion constants are not independent due to the supersym-
metry Ward identity which implies that Zijkjpqr

d and its
conjugate are constrained to satisfy

Zil
ΦZ

jm
Φ Zkn

Φ Zlmnjpqr
d dpqr ¼ dijk: ð9:4Þ

We have determined the conditions these place on the
vertex counterterms to five loops and implemented them
within our automatic FORM program to renormalize (9.1).
Once Zij

Φ has been calculated to this order in either the MS
or MOM schemes then the renormalization group functions
are deduced from

γikΦZ
kj
Φ ¼ βpqr

∂
∂dpqr Z

ij
Φ þ β̄pqr

∂
∂d̄pqr Z

ij
Φ ð9:5Þ

where the β-functions are defined by

βijk ¼ μ
d
dμ

dpqr; β̄ijk ¼ μ
d
dμ

d̄pqr: ð9:6Þ
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The explicit form of the tensor β-function is found via the
supersymmetry Ward identity (9.4) which implies [92]

βijk ¼ −ϵdijk þ dijpγkpΦ þ dipkγjpΦ þ dpjkγipΦ : ð9:7Þ

We have followed this prescription and as a check have
reproduced the four loopMS result of [92] for γijΦ. That result
was expressed as a sum of tensors which have a close
correspondence with the individual four loop graphs of the
superfield 2-point function. In other words it contained
19 tensors which were presented in a relatively compact
way.At five loops there are 63 five loopgraphs as indicated in
Table I and we take a similar approach here. First if we
formally define the field anomalous dimension tensor by

γijΦ ¼
X5
L¼1

XkL
r¼1

cSLrT
ij
Lr ð9:8Þ

where S denotes the renormalization scheme, cSLr are the
numerical coefficients of the tensors Tij

Lr, L labels the loop
order and r identifies the specific tensor. The explicit
expression for each tensor is provided in Appendix Awhich
also records the connection to theunderlying five loopgraphs
of the 2-point function.
Having set this notation we have determined the values

for each of the coefficients. For the MS scheme to four
loops we have

cMS
11 ¼ 1

2
; cMS

21 ¼ −
1

2
; cMS

31 ¼ 3

2
ζ3; cMS

32 ¼ −
1

8
; cMS

33 ¼ −
1

4
; cMS

34 ¼ 1;

cMS
41 ¼ −10ζ5; cMS

42 ¼ 3

4
ζ4 −

3

2
ζ3; cMS

43 ¼ 3

4
ζ4 −

3

2
ζ3; cMS

44 ¼ 3

2
ζ4 − 3ζ3;

cMS
45 ¼ −

1

8
þ 1

4
ζ3; cMS

46 ¼ 1

3
; cMS

47 ¼ −
3

4
ζ4 −

3

2
ζ3; cMS

48 ¼ 5

24
; cMS

49 ¼ 1

3
;

cMS
410 ¼

1

3
; cMS

411 ¼ −
1

8
þ 1

4
ζ3; cMS

412 ¼
5

12
−
1

2
ζ3; cMS

413 ¼ −
5

2
ð9:9Þ

which are in agreement with [47,92]. At five loops we find

cMS
51 ¼ 9

2
ζ23; cMS

52 ¼ −
143

16
ζ5 −

9

32
ζ4 þ

1

16
ζ3; cMS

53 ¼ −
143

16
ζ5 −

9

32
ζ4 þ

1

16
ζ3;

cMS
54 ¼ −

1

32
þ 3

32
ζ4 −

1

16
ζ3; cMS

55 ¼ 67

4
ζ5 −

9

8
ζ4 þ

1

4
ζ3; cMS

56 ¼ 3

16
þ 3

32
ζ4 −

5

16
ζ3;

cMS
57 ¼ 18ζ5 −

9

8
ζ4 þ

1

4
ζ3; cMS

58 ¼ 18ζ5 −
9

8
ζ4 þ

1

4
ζ3; cMS

59 ¼ −
25

4
ζ6 þ

25

2
ζ5 þ

1

2
ζ23;

cMS
510 ¼ −

25

4
ζ6 þ

25

2
ζ5 þ

1

2
ζ23; cMS

511 ¼
441

8
ζ7; cMS

512 ¼ −
25

4
ζ6 þ

25

2
ζ5 þ

1

2
ζ23;

cMS
513 ¼ −

79

4
ζ5 −

9

16
ζ4 þ

1

8
ζ3; cMS

514 ¼
441

16
ζ7; cMS

515 ¼
1

6
;

cMS
516 ¼ −

25

4
ζ6 þ

25

2
ζ5 −

5

2
ζ23; cMS

517 ¼ −
25

4
ζ6 þ

25

2
ζ5 −

5

2
ζ23;

cMS
518 ¼ −

25

8
ζ6 þ

25

4
ζ5 −

11

4
ζ23; cMS

519 ¼ 9ζ23; cMS
520 ¼ 9ζ23;

cMS
521 ¼ −

153

8
ζ5 −

9

16
ζ4 þ

1

8
ζ3; cMS

522 ¼ −
153

8
ζ5 −

9

16
ζ4 þ

1

8
ζ3;

cMS
523 ¼ −

143

8
ζ5 −

21

16
ζ4 þ

31

8
ζ3; cMS

524 ¼ −
143

8
ζ5 −

21

16
ζ4 þ

31

8
ζ3;

cMS
525 ¼ 18ζ5 −

9

8
ζ4 þ

1

4
ζ3; cMS

526 ¼ 18ζ5 −
9

8
ζ4 þ

1

4
ζ3;

cMS
527 ¼ −

143

8
ζ5 −

9

16
ζ4 þ

1

8
ζ3; cMS

528 ¼ −
143

8
ζ5 −

9

16
ζ4 þ

1

8
ζ3;

cMS
529 ¼

41

2
ζ5 −

9

8
ζ4 þ

1

4
ζ3; cMS

530 ¼
41

2
ζ5 −

21

8
ζ4 þ

31

4
ζ3;
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cMS
531 ¼

1

2
ζ5 þ

3

32
ζ4 −

13

16
ζ3; cMS

532 ¼ 0; cMS
533 ¼

3

16
þ 3

32
ζ4 −

5

16
ζ3;

cMS
534 ¼

3

16
þ 3

32
ζ4 −

5

16
ζ3; cMS

535 ¼ −
1

16
þ 3

16
ζ4 −

1

8
ζ3; cMS

536 ¼ −
3

32
ζ4 −

1

16
ζ3;

cMS
537 ¼ −

7

6
; cMS

538 ¼
1

3
; cMS

539 ¼
25

4
ζ6 þ

15

2
ζ5 −

1

2
ζ23; cMS

540 ¼
1

8
ζ5 þ 2ζ3;

cMS
541 ¼

1

8
ζ5 þ 2ζ3; cMS

542 ¼ −
9

4
ζ5 þ 4ζ3cMS

543 ¼
3

16
−

3

16
ζ4 −

1

4
ζ3; cMS

544 ¼ −
5

6
;

cMS
545 ¼

1

2
ζ5 þ

3

32
ζ4 −

13

16
ζ3; cMS

546 ¼
1

2
ζ5 þ

3

32
ζ4 −

13

16
ζ3; cMS

547 ¼ 0; cMS
548 ¼ 0;

cMS
549 ¼

3

16
þ 3

32
ζ4 −

5

16
ζ3; cMS

550 ¼
3

16
þ 3

32
ζ4 −

5

16
ζ3; cMS

551 ¼ −
3

32
ζ4 −

1

16
ζ3;

cMS
552 ¼ −

3

32
ζ4 −

1

16
ζ3; cMS

553 ¼ −
7

6
; cMS

554 ¼ −
7

6
; cMS

555 ¼ −
1

16
þ 3

16
ζ4 −

1

8
ζ3;

cMS
556 ¼

3

16
þ 3

32
ζ4 −

5

16
ζ3; cMS

557 ¼ −ζ5 þ
21

16
ζ4 þ

25

8
ζ3; cMS

558 ¼ −
1

8
;

cMS
559 ¼ −

5

6
−

3

16
ζ4 þ

7

8
ζ3; cMS

560 ¼ −
5

6
−

3

16
ζ4 þ

7

8
ζ3; cMS

561 ¼
3

16
−
3

8
ζ4 þ

1

8
ζ3;

cMS
562 ¼ −

1

4
þ 3

16
ζ4 þ

9

8
ζ3; cMS

563 ¼ 7: ð9:10Þ

We have repeated this exercise for the MOM scheme and found to four loops

cMOM
11 ¼ 1

2
; cMOM

12 ¼ −
1

2
; cMOM

31 ¼ 3

2
ζ3; cMOM

32 ¼ 1

4
; cMOM

33 ¼ 1

2
;

cMOM
34 ¼ 1;

cMOM
41 ¼ −10ζ5; cMOM

42 ¼ −
3

2
ζ3; cMOM

43 ¼ −
3

2
ζ3; cMOM

44 ¼ −3ζ3;

cMOM
45 ¼ −

3

4
þ 1

2
ζ3; cMOM

46 ¼ −
5

4
þ 1

2
ζ3; cMOM

47 ¼ −
3

2
ζ3; cMOM

48 ¼ −
3

4
;

cMOM
49 ¼ −

5

4
; cMOM

410 ¼ −
5

4
; cMOM

411 ¼ −
3

4
; cMOM

412 ¼ −
3

2
;

cMOM
413 ¼ −

5

2
: ð9:11Þ

To two loops the respective coefficients are the same as those of the MS scheme consistent with earlier expectations. At
three and four loops a few of the coefficients also match between schemes aside from the primitive graphs. At next order the
coefficients are

cMOM
51 ¼ 9

2
ζ23; cMOM

52 ¼ −
75

8
ζ5 þ

3

4
ζ3; cMOM

53 ¼ −
75

8
ζ5 þ

3

4
ζ3;

cMOM
54 ¼ 3

4
−
1

2
ζ3; cMOM

55 ¼ 15ζ5 þ 3ζ3; cMOM
56 ¼ 9

4
−
3

2
ζ3; cMOM

57 ¼ 15ζ5 þ 3ζ3;

cMOM
58 ¼ 15ζ5 þ 3ζ3; cMOM

59 ¼ 10ζ5; cMOM
510 ¼ 10ζ5; cMOM

511 ¼ 441

8
ζ7;

cMOM
512 ¼ 10ζ5; cMOM

513 ¼ −
175

8
ζ5 þ

3

2
ζ3; cMOM

514 ¼ 441

16
ζ7; cMOM

515 ¼ 7

4
− ζ3;

cMOM
516 ¼ 10ζ5 − 3ζ23; cMOM

517 ¼ 10ζ5 − 3ζ23; cMOM
518 ¼ 5ζ5 − 3ζ23; cMOM

519 ¼ 9ζ23;

cMOM
520 ¼ 9ζ23; cMOM

521 ¼ −
85

4
ζ5 þ

3

2
ζ3; cMOM

522 ¼ −
85

4
ζ5 þ

3

2
ζ3;
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cMOM
523 ¼ −

75

4
ζ5 þ 3ζ3; cMOM

524 ¼ −
75

4
ζ5 þ 3ζ3; cMOM

525 ¼ 15ζ5 þ 3ζ3;

cMOM
527 ¼ −

75

4
ζ5 þ

3

2
ζ3; cMOM

528 ¼ −
75

4
ζ5 þ

3

2
ζ3; cMOM

529 ¼ 65

4
ζ5 þ 3ζ3;

cMOM
530 ¼ 65

4
ζ5 þ 6ζ3; cMOM

531 ¼ 3

2
ζ3; cMOM

532 ¼ 9

8
−
1

2
ζ3; cMOM

533 ¼ 9

4
−
5

4
ζ3;

cMOM
534 ¼ 9

4
−
5

4
ζ3; cMOM

535 ¼ 3

2
−
3

4
ζ3; cMOM

536 ¼ 9

4
− ζ3; cMOM

537 ¼ 7

2
−
3

2
ζ3;

cMOM
538 ¼ 7

2
; cMOM

539 ¼ 10ζ5; cMOM
540 ¼ 3ζ3; cMOM

541 ¼ 3ζ3; cMOM
542 ¼ 6ζ3;

cMOM
543 ¼ 3 −

1

2
ζ3; cMOM

544 ¼ 9

2
−
1

2
ζ3; cMOM

545 ¼ 3

2
ζ3; cMOM

546 ¼ 3

2
ζ3;

cMOM
547 ¼ 9

8
; cMOM

548 ¼ 9

8
; cMOM

549 ¼ 9

4
; cMOM

550 ¼ 9

4
; cMOM

551 ¼ 9

4
;

cMOM
552 ¼ 9

4
; cMOM

553 ¼ 7

2
; cMOM

554 ¼ 7

2
; cMOM

555 ¼ 3

2
; cMOM

556 ¼ 9

4
;

cMOM
557 ¼ 3ζ3; cMOM

558 ¼ 9

4
; cMOM

559 ¼ 9

2
; cMOM

560 ¼ 9

2
; cMOM

561 ¼ 3;

cMOM
562 ¼ 9

2
; cMOM

563 ¼ 7: ð9:12Þ

To assist with the derivation of both sets of coefficients from
the value ofZij

Φ in each schemewe have recorded the explicit
expression in Appendix B. Indeed by providing them for
each specific tensor means the divergence structure of all the
individual diagrams are provided to five loops. More tensors
appear inZij

Φ than γijΦ. The extra ones arise in termswith poles
in ϵ higher than the simple one. They correspond to
connected one-particle reducible Feynman graphs of the
Φ 2-point function. Such topologies and hence tensors
clearly cannot appear in the final expression for γijΦ in either
schemewhich is a nontrivial check on the overall expression.
This is because it is the generalization of the observation that
in a conventional coupling constant renormalization the
coefficients of the nonsimple poles in ϵ are determined by
the lower order renormalization constants.

X. XYZ MODEL

As an application of the general tensor renormalization
we consider a particular theory that is connected to the
Wess-Zumino model which was examined in [40,104]. It
was investigated in [40] due to its connection with a one
dimensional conformal manifold. In particular several
theories are of interest for the case when the Wess-
Zumino model has three chiral superfields as they lie on
the manifold. These are the XYZmodel and a version of the
model itself with three copies. First we recall the relevant
properties of the more general model in order to extend the
four loop analysis of [92] to five loops here. As indicated in
[40] the model involves three chiral superfields and their
antichiral counterparts with superpotential

WðΦiÞ ¼ g1Φ1Φ2Φ3 þ
g2
6
ðΦ3

1 þΦ3
2 þΦ3

3Þ ð10:1Þ

and its conjugate where g1 and g2 are complex coupling
constants. Therefore the nonzero tensor coupling entries are

d123 ¼ g1; d111 ¼ d222 ¼ d333 ¼ g2;

d̄123 ¼ ḡ1; d̄111 ¼ d̄222 ¼ d̄333 ¼ ḡ2: ð10:2Þ

These variables were mapped to others which are similar to
polar coordinates in geometry through [40,105]

r2 ¼ 2g1ḡ1 þ g2ḡ2; τ ¼ g2
g1

; τ̄ ¼ ḡ2
ḡ1

ð10:3Þ

where the parameter τ takes values in CPð1Þ [105]. Using
these combinations certain values of τ and τ̄ allow one to
define various different theories with the justification
recorded in [40]. We have provided these in Table V where
the first three were given in [40] and cWZ3 is used as
shorthand to denote the three copy Wess-Zumino model.

TABLE V. Definition of various models from the values of τ
and τ̄.

τ τ̄ Theory

0 0 XYZ model
1 1 cWZ3

ð1 − ffiffiffi
3

p Þω2 ð1 − ffiffiffi
3

p Þω̄2 Z2 × Z2 symmetric
∞ ∞ Wess-Zumino model (2.1)
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This is also equivalent to the parameter choice of the final
row of Table V which was not noted in [40] and will be
another useful limit for checking results. For the Z2 × Z2

symmetric model the complex number ω and its conjugate
appear are

ω ¼ −
1

2
þ

ffiffiffi
3

p

2
i; ω̄ ¼ −

1

2
−

ffiffiffi
3

p

2
i: ð10:4Þ

With (10.3) the anomalous dimension is formally
written as

γΦðr; τ; τ̄Þ ¼
X∞
i¼1

fiðτ; τ̄Þr2i ð10:5Þ

where the coefficients are given by

f1ðτ; τ̄Þ ¼
1

2
; f2ðτ; τ̄Þ ¼ −

1

2
; f3ðτ; τ̄Þ ¼

5

8
þ 3

2

½ðτ3 þ 2Þðτ̄3 þ 2Þ þ 18ττ̄�
½2þ ττ̄�3 ζ3;

f4ðτ; τ̄Þ ¼ −
9

8
þ
�
9

4
ζ4 −

15

2
ζ3

� ½ðτ3 þ 2Þðτ̄3 þ 2Þ þ 18ττ̄�
½2þ ττ̄�3 − 10

½ð2þ ττ̄Þ4 − 8ð1 − τ3Þð1 − τ̄3Þ�
½2þ ττ̄�4 ζ5;

f5ðτ; τ̄Þ ¼
79

32
þ
�
3

8
þ 423

16

½ðτ3 þ 2Þðτ̄3 þ 2Þ þ 18ττ̄�
½2þ ττ̄�3

�
ζ3 −

441

32

½ðτ3 þ 2Þðτ̄3 þ 2Þ þ 18ττ̄�
½2þ ττ̄�3 ζ4

þ
�
305

4

½ð2þ ττ̄Þ4 − 8ð1 − τ3Þð1 − τ̄3Þ�
½2þ ττ̄�4 −

153

8

½ðτ3 þ 2Þðτ̄3 þ 2Þ þ 18ττ̄�
½2þ ττ̄�3

�
ζ5

−
225

8

½ð2þ ττ̄Þ4 − 8ð1 − τ3Þð1 − τ̄3Þ�
½2þ ττ̄�4 ζ6

−
�
45

4
−
9

2

½ð2þ ττ̄Þ4 − 8ð1 − τ3Þð1 − τ̄3Þ�
½2þ ττ̄�4 −

45

2

½ðτ3 þ 2Þðτ̄3 þ 2Þ þ 18ττ̄�
½2þ ττ̄�3

�
ζ23

þ 1323

16

½ð2þ ττ̄Þ4 − 10ð1 − τ3Þð1 − τ̄3Þ�
½2þ ττ̄�4 ζ7 ð10:6Þ

with f1 to f4 in accord with [40]. It is straightforward to check that fið1; 1Þ ¼ fið∞;∞Þ for i ¼ 1 to 5. Moreover the
fið1; 1Þ correspond to the respective coefficients of (5.1). While we have checked the values fiðτ; τ̄Þ to four loops and found
f5ðτ; τ̄Þ using (10.2) and (10.3) they could also have been derived from (6.3) from the simple identifications

T2 ¼ 1; T5 ¼
½ðτ3 þ 2Þðτ̄3 þ 2Þ þ 18ττ̄�

½2þ ττ̄�3 ;

T71 ¼
½ð2þ ττ̄Þ4 − 8ð1 − τ3Þð1 − τ̄3Þ�

½2þ ττ̄�4 ; T94 ¼
½ð2þ ττ̄Þ4 − 10ð1 − τ3Þð1 − τ̄3Þ�

½2þ ττ̄�4 ð10:7Þ

thereby making the connection with the primitive graphs
for the conformal manifold case. It is worth remarking that
given this relation between the Ti invariants one could in
principle repeat the analysis of [40] and that which follows
here for nonsupersymmetric scalar ϕ3 theory. While that
theory is renormalizable in six dimensions the four loop
renormalization group functions have been expressed in
terms of the four Ti that appear here for chiral ϕ3 theory.
The main topic of study in [40] was the evaluation of the

critical exponents of the dimension 2 bilinear operators
denoted by Δi where i ∈ f1; 2; 20; 200; 2000g correspond to
the different representations of the 3 ⊗ 3̄ decomposition of
the nine operators. These operator dimensions were deter-
mined in three dimensions using conformal bootstrap
methods as well as resumming four-dimensional perturba-
tion theory. For the latter the matrix of operator anomalous

dimensions was computed to four loops prior to being
evaluated at the Wilson-Fisher fixed point. The critical
point eigenvalues of this matrix then corresponded to the
critical exponents Δi [40]. We are now in a position to
extend the four loop analysis of [40] to five loops in order to
compare with the bootstrap exponent estimates. First, the
location of the Wilson-Fisher fixed point has to be found.
Since the β-function is synonymous with γΦðr; τ; τ̄Þ in this
model then the ϵ expansion of the critical value of r,
denoted by r�, is given by solving γΦðr�; τ; τ̄Þ ¼ 1

3
ϵ. From

(10.5) and defining

r2� ¼
X∞
i¼1

hiϵi ð10:8Þ
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the various coefficients of the critical coupling are

h1 ¼
1

3f1
; h2 ¼ −

f2
9f31

; h3 ¼
2f22
27f51

−
f3

27f41
; h4 ¼

5f2f3
81f61

−
5f32
81f71

−
f4

81f51
;

h5 ¼
14f42
243f91

−
7f22f3
81f81

þ f23
81f71

þ 2f2f4
81f71

−
f5

243f61
: ð10:9Þ

The 3 × 3 matrix of mass anomalous dimensions that was constructed in [40] is defined by

γijM ¼ μ
dMij

dμ
ð10:10Þ

where the matrix Mij corresponds to the mass dimension 2 matrix ðm2Þij of [40] which is computed from γijϕ using

γijM ¼ −2Mij þ ½Mpsdsqr þMqsdpsr þMrsdpqs� ∂γ
ij
Φ

dpqr
þ ½Mpsd̄sqr þMqsd̄psr þMrsd̄pqs� ∂γ

ij
Φ

d̄pqr
: ð10:11Þ

The next stage is to construct the 9 × 9matrix,Δijkl, the eigenvalues of which produce the scaling dimensions of the bilinear
operators. It has 81 elements since the matrix is labeled by the pairs of indices ðijÞ and ðklÞ and defined by

Δijkl ¼ dδikδjl þ ∂γijM
∂Mkl : ð10:12Þ

Following the prescription given in [40] we have extended the four loop expressions for the five critical exponents Δi to the
next order. In particular we found

Δ1 ¼ 2−
4

3
ϵ2 þ

�
4

9
þ 16

3

½ðτ3 þ 2Þðτ̄3 þ 2Þ þ 18ττ̄�
½2þ ττ̄�3

�
ζ3ϵ

3

−
�
28

27
þ 112

9

½ðτ3 þ 2Þðτ̄3 þ 2Þ þ 18ττ̄�
½2þ ττ̄�3 ζ3 − 8

½ðτ3 þ 2Þðτ̄3 þ 2Þ þ 18ττ̄�
½2þ ττ̄�3 ζ4 þ

320

9

½ðττ̄þ 2Þ4 − 8ð1− τ3Þð1− τ̄3Þ�
½2þ ττ̄�4 ζ5

�
ϵ4

þ
�
76

81
þ
�
496

27

½ðτ3 þ 2Þðτ̄3 þ 2Þ þ 18ττ̄�
½2þ ττ̄�3 þ 32

27

�
ζ3 −

56

3

½ðτ3 þ 2Þðτ̄3 þ 2Þ þ 18ττ̄�
½2þ ττ̄�3 ζ4

þ
�
3520

27

½ðττ̄þ 2Þ4 − 8ð1− τ3Þð1− τ̄3Þ�
½2þ ττ̄�4 −

544

9

½ðτ3 þ 2Þðτ̄3 þ 2Þ þ 18ττ̄�
½2þ ττ̄�3

�
ζ5 −

800

9

½ðττ̄þ 2Þ4 − 8ð1− τ3Þð1− τ̄3Þ�
½2þ ττ̄�4 ζ6

þ
�
256

81

�
9

2

½ð2þ ττ̄Þ4 − 8ð1− τ3Þð1− τ̄3Þ�
½2þ ττ̄�4 −

45

4
þ 45

2

½ðτ3 þ 2Þðτ̄3 þ 2Þ þ 18ττ̄�
½2þ ττ̄�3

�
−
64

3

½ðτ3 þ 2Þðτ̄3 þ 2Þ þ 18ττ̄�2
½2þ ττ̄�6

�
ζ23

þ 784

3

½ð2þ ττ̄Þ4 − 10ð1− τ3Þð1− τ̄3Þ�
½2þ ττ̄�4 ζ7

�
ϵ5 þOðϵ6Þ ð10:13Þ

for the singlet operator as well as
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Δ2 ¼ 2 −
4

½2þ ττ̄� ϵþ
4

3
ττ̄

½1 − ττ̄�
½2þ ττ̄�2 ϵ

2 þ ττ̄

�
4

9

½1 − ττ̄�½10 − ττ̄�
½2þ ττ̄�3 þ 16

3

½3ð1 − ττ̄Þ2 þ ð1 − τ3Þð1 − τ̄3Þ�
½2þ ττ̄�4 ζ3

�
ϵ3

þ ττ̄

�
4

27

½7τ2τ̄2 − 26ττ̄ þ 100�½1 − ττ̄�
½2þ ττ̄�4 −

16

9

½2ð1 − ττ̄Þð2þ ττ̄Þ2 þ ½3ð1 − ττ̄Þ2 þ ð1 − τ3Þð1 − τ̄3Þ�ð2þ 7ττ̄Þ�
½2þ ττ̄�5 ζ3

þ 8
½3ð1 − ττ̄Þ2 þ ð1 − τ3Þð1 − τ̄3Þ�

½2þ ττ̄�4 ζ4 −
320

27

½3ττ̄ð2þ ττ̄Þð1 − ττ̄Þ2 þ 8ð1 − τ3Þð1 − τ̄3Þ�
½2þ ττ̄�5 ζ5

�
ϵ4

þ ττ̄

�
4

81

½19τ2τ̄2 − 38ττ̄ þ 100�½1 − ττ̄�½10 − ττ̄�
½2þ ττ̄�5

þ 16

27
½31τ2τ̄2ð1 − τ3Þð1 − τ̄3Þ − 32ττ̄ð1 − τ3Þð1 − τ̄3Þ þ 28ð1 − τ3Þð1 − τ̄3Þ

−ð2τ4τ̄4 þ 85τ3τ̄3 − 237τ2τ̄2 þ 148ττ̄ − 52Þð1 − ττ̄Þ� ζ3
½2þ ττ̄�6

−
8

3
½7ð1 − τ3Þð1 − τ̄3Þττ̄ þ 21ττ̄ð1 − ττ̄Þ2 þ 12ð1 − ττ̄Þþ2ð1 − τ3Þ þ 2ð1 − τ̄3Þ� ζ4

½2þ ττ̄�5

−
16

81
½3ð70τ3τ̄3 − 386τ2τ̄2 − 566ττ̄ þ 207Þð2þ ττ̄Þð1 − ττ̄Þ − 144τ2τ̄2ð1 − τ3Þð1 − τ̄3Þ þ 1916ττ̄ð1 − τ3Þð1 − τ̄3Þ

þ1336ð1 − τ3Þð1 − τ̄3Þ� ζ5
½2þ ττ̄�6 −

800

27

½8ð1 − τÞð1 − τ̄Þð1þ τ þ τ2Þð1þ τ̄ þ τ̄2Þ þ 3ττ̄ð2þ ττ̄Þð1 − ττ̄Þ2�
½2þ ττ̄�5 ζ6

þ 128

27
½ð18τ4τ̄4 − 72τ3τ̄3 þ 137τ2τ̄2 − 205ττ̄ − 34Þð1 − ττ̄Þ þ 6τ3τ̄3ð1 − τ3Þð1 − τ̄3Þ þ 46τ2τ̄2ð1 − τ3Þð1 − τ̄3Þ

− 77ττ̄ð1 − τ3Þð1 − τ̄3Þ þ 9ð1 − τ3Þ2 þ 9ð1 − τ̄3Þ2þ52ð1 − τ3Þ þ 52ð1 − τ̄3Þ� ζ23
½2þ ττ̄�7

þ 392

3

½ττ̄ð1þ 2ττ̄Þð1 − ττ̄Þ2 þ 4ð1 − τ3Þð1 − τ̄3Þ�
½2þ ττ̄�5 ζ7

�
ϵ5 þOðϵ6Þ: ð10:14Þ

Electronic expressions for these are included in the Supplemental Material [91]. While we have also calculated expressions
for Δ20, Δ200 and Δ2000 explicitly they can also be deduced from the following mappings given in [40],

Δ2 → Δ20∶ τ →
½τ þ 2�
½τ − 1� ; τ̄ →

½τ̄ þ 2�
½τ̄ − 1� ;

Δ2 → Δ200∶ τ →
½ωτ þ 2�
½ωτ − 1� ; τ̄ →

½ω̄ τ̄þ2�
½ω̄ τ̄−1� ;

Δ2 → Δ2000∶ τ →
½ω2τ þ 2�
½ω2τ − 1� ; τ̄ →

½ω̄2τ̄ þ 2�
½ω̄2τ̄ − 1� : ð10:15Þ

We note that each expression resulting from applying the mappings to Δ2 is consistent with the direct five loop evaluation
which provides a useful check on the critical exponents. Another consistency check is that setting both τ and τ̄ to be equal to
1 or∞ in Δ1 reproduces the coefficients of ϵ in (6.8). The discrepancy in theOðϵÞ term is due to the canonical part of Δijkl.
Having determined the five loop corrections to Δi we can now extract estimates for them in three dimensions. First we

record the explicit expressions for the ϵ expansion of the various exponents for each of the three theories. We have
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ΔXYZ
1 ¼ 2 −

4

3
ϵ2 þ 4ð6ζ3 þ 1Þ ϵ

3

9
þ 4ð27ζ4 − 42ζ3 − 120ζ5 − 7Þ ϵ

4

27

þ 2ð72ζ23 þ 420ζ3 − 378ζ4 þ 1416ζ5 − 1800ζ6 þ 3969ζ7 þ 38Þ ϵ
5

81
þOðϵ6Þ;

ΔXYZ
2 ¼ 2 − 2ϵ;

ΔXYZ
20 ¼ ΔXYZ

200 ¼ ΔXYZ
2000

¼ 2 −
2

3
ϵ −

4

9
ϵ2 þ 4ð12ζ3 − 1Þ ϵ

3

27
þ 4ð54ζ4 − 56ζ3 − 160ζ5 − 3Þ ϵ

4

81

þ 2ð528ζ23 þ 248ζ3 − 504ζ4 þ 1467ζ5 − 2400ζ6 þ 5292ζ7 − 14Þ ϵ5

243
þOðϵ6Þ; ð10:16Þ

ΔcWZ3

1 ¼ ΔcWZ3

20

¼ 2 −
4

3
ϵ2 þ 4ð12ζ3 þ 1Þ ϵ

3

9
þ 4ð54ζ4 − 84ζ3 − 240ζ5 − 7Þ ϵ

4

27

þ 4ð576ζ23 þ 396ζ3 − 378ζ4 þ 1416ζ5 − 1800ζ6 þ 5292ζ7 þ 19Þ ϵ
5

81
þOðϵ6Þ

ΔcWZ3

2 ¼ ΔcWZ3

200 ¼ ΔcWZ3

2000 ¼ 2 −
4

3
ϵ ð10:17Þ

and

ΔZ2×Z2

1 ¼ 2 −
4

3
ϵ2 þ 4ð9ζ3 þ 1Þ ϵ

3

9
þ 2ð81ζ4 − 126ζ3 − 300ζ5 − 14Þ ϵ

4

27

þ ð2376ζ23 þ 2424ζ3 − 2268ζ4 þ 5856ζ5 − 9000ζ6 þ 22491ζ7 þ 152Þ ϵ5

162
þOðϵ6Þ;

ΔZ2×Z2

2 ¼ ΔZ2×Z2

200

¼ 2þ 2
ð26 − 15

ffiffiffi
3

p Þ
ð71 ffiffiffi

3
p

− 123Þ ϵþ
ð265 − 153

ffiffiffi
3

p Þ
3ð71 ffiffiffi

3
p

− 123Þ ϵ
2 þ ð1590

ffiffiffi
3

p
ζ3 − 41

ffiffiffi
3

p
− 2754ζ3 þ 71Þ ϵ3

9ð71 ffiffiffi
3

p
− 123Þ

þ ð14310
ffiffiffi
3

p
ζ4 − 17452

ffiffiffi
3

p
ζ3 − 53000

ffiffiffi
3

p
ζ5 − 1011

ffiffiffi
3

p
þ 30228ζ3 − 24786ζ4

þ 91800ζ5 þ 1751Þ ϵ4

54ð71 ffiffiffi
3

p
− 123Þ

þ ð177624
ffiffiffi
3

p
ζ23 þ 107664

ffiffiffi
3

p
ζ3 − 157068

ffiffiffi
3

p
ζ4 þ 451070

ffiffiffi
3

p
ζ5 − 795000

ffiffiffi
3

p
ζ6

þ 1912617
ffiffiffi
3

p
ζ7 − 1602

ffiffiffi
3

p
− 307656ζ23 − 186480ζ3 þ 272052ζ4 − 781293ζ5

þ 1377000ζ6 − 3312792ζ7 þ 2774Þ ϵ5

324ð71 ffiffiffi
3

p
− 123Þ þOðϵ6Þ;

ΔZ2×Z2

20 ¼ ΔZ2×Z2

2000

¼ 2þ 2
ð97 − 56

ffiffiffi
3

p Þ
ð71 ffiffiffi

3
p

− 123Þ ϵþ
ð11 ffiffiffi

3
p

− 19Þ
3ð71 ffiffiffi

3
p

− 123Þ ϵ
2 þ ð114

ffiffiffi
3

p
ζ3 þ 41

ffiffiffi
3

p
− 198ζ3 − 71Þ ϵ3

9ð71 ffiffiffi
3

p
− 123Þ

þ ð1026
ffiffiffi
3

p
ζ4 − 724

ffiffiffi
3

p
ζ3 − 3800

ffiffiffi
3

p
ζ5 þ 301

ffiffiffi
3

p
þ 1260ζ3 − 1782ζ4 þ 6600ζ5 − 521Þ ϵ4

54ð71 ffiffiffi
3

p
− 123Þ

þ ð6408
ffiffiffi
3

p
ζ23 þ 1392

ffiffiffi
3

p
ζ3 − 6516

ffiffiffi
3

p
ζ4 þ 48983

ffiffiffi
3

p
ζ5 − 57000

ffiffiffi
3

p
ζ6

þ 122598
ffiffiffi
3

p
ζ7 þ 2170

ffiffiffi
3

p
− 11160ζ23 − 2448ζ3 þ 11340ζ4 − 84996ζ5

þ 99000ζ6 − 213003ζ7 − 3758Þ ϵ5

324ð71 ffiffiffi
3

p
− 123Þ þOðϵ6Þ: ð10:18Þ
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We note that both ΔcWZ3

1 and ΔcWZ3

2 are indeed consistent
with (6.8) as expected after allowance is made for the
canonical dimension contribution of 2 − 2ϵ. For several
exponents the series truncates at OðϵÞ and no order symbol
is included. This is because these are exact to all orders in ϵ
and their three-dimensional values tally precisely with
those of [40]. In deriving (10.16), (10.17) and (10.18)
we have encoded (10.13) and (10.14) together with the τ
and τ̄ dependent expressions for Δ20, Δ200 and Δ2000 in one

program and then evaluated each explicitly. For the XYZ
and the cWZ3 cases we find that several nonexact
exponents are equal and this agrees with [40]. However
in the Z2 × Z2 case we disagree with the equivalences
recorded in Table 2 of [40] for the 200 and 2000 dimensions.
Instead we found ΔZ2×Z2

2 ¼ ΔZ2×Z2

200 and ΔZ2×Z2

20 ¼ ΔZ2×Z2

2000 .
To see the alternating sign pattern and the magnitude of
the coefficients the numerical values of the nonexact
exponents are

ΔXYZ
1 ¼ 2 − 1.333333ϵ2 þ 3.649929ϵ3 − 22.621480ϵ4 þ 95.728196ϵ5 þOðϵ6Þ;

ΔXYZ
20 ¼ ΔXYZ

200 ¼ ΔXYZ
2000

¼ 2 − 0.666667ϵ − 0.444444ϵ2 þ 1.988842ϵ3 − 8.779169ϵ4 þ 40.471457ϵ5 þOðϵ6Þ;
ΔcWZ3

1 ¼ ΔcWZ3

20

¼ 2 − 1.333333ϵ2 þ 6.855415ϵ3 − 44.205924ϵ4 þ 290.935250ϵ5 þOðϵ6Þ;
ΔZ2×Z2

1 ¼ 2 − 1.333333ϵ2 þ 5.252672ϵ3 − 28.805134ϵ4 þ 145.920995ϵ5 þOðϵ6Þ;
ΔZ2×Z2

2 ¼ ΔZ2×Z2

200

¼ 2 − 1.577350ϵþ 0.051567ϵ2 þ 0.278877ϵ3 − 0.888082ϵ4 þ 5.331310ϵ5 þOðϵ6Þ;
ΔZ2×Z2

20 ¼ ΔZ2×Z2

2000

¼ 2 − 0.422650ϵ − 0.718233ϵ2 þ 2.926608ϵ3 − 16.028343ϵ4 þ 78.326933ϵ5 þOðϵ6Þ: ð10:19Þ

For the exponents which have an OðϵÞ term the series are
alternating when the canonical value of (2 − 2ϵÞ is allowed
for.
In [44] the perturbative expansion was used to estimate

the exponents in three dimensions in order to compare them
with the conformal bootstrap calculation. Therefore we
have extended that study here using the same method. This
was to construct the Padé approximants for the five loop
nonexact exponents. The results for each of the three
theories are given in Tables VI, VII and VIII where the
Padé approximants for three and four loops are also given.
The ½L; 0� and ½0; L� approximants at each loop order L are

excluded as they either do not converge or are singular in
2 < d < 4. There are no entries in each table for some
operator dimensions. This is because for those cases the
Padé approximant is also singular above three dimensions.
So because there is no continuous connection down from
four dimensions to three in these cases any evaluation at the
latter dimension is unreliable. What is generally evident for
each of the theories is that the five loop Padé approximants
are similar especially in the cases where there are no
singularities. Table IX summarizes the situation at three,
four and five loops for each of the three theories and also
records the conformal bootstrap results of [40]. Each loop

TABLE VI. Padé approximants at three, four and five loops for
nonexact operator dimensions in the XYZ model.

Padé Δ1 Δ20

[2, 1] 1.859277 1.632346
[1, 2] 1.868528 1.660704

[3, 1] 1.777975 1.633073
[2, 2] � � � 1.633070
[1, 3] 1.797562 1.639170

[4, 1] 1.669152 1.638139
[3, 2] � � � 1.632229
[2, 3] � � � 1.637434
[1, 4] 1.705650 1.637537

TABLE VII. Padé approximants at three, four and five loops for
the nonexact operator dimensions in cWZ3 model.

Padé Δ1

[2, 1] 1.906650
[1, 2] 1.910813

[3, 1] 1.869530
[2, 2] � � �
[1, 3] 1.874821

[4, 1] 1.879670
[3, 2] 1.877593
[2, 3] 1.879319
[1, 4] 1.879929
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estimate is the average of the Padé approximants in the
individual table of each theory. In [40] the three loop Padé
approximants were used to compare with the bootstrap. By
providing the same data for the next two loop orders gives
an overall indication of the trend of including higher order
loops. For the XYZ model the Δ1 estimates are decreasing
toward the bootstrap value and is a significant improvement
on the three loop estimate. The estimates for the other
exponents are slowly decreasing away from the value given
in [40]. It might be tempting to surmise that the operator
dimensions in the XYZ model have been interchanged
since swapping them would give agreement to a few
percent. However this is not the case from analyzing
(10.16). A similar feature occurs for the nonexact exponent
of the cWZ3 theory although the five loop value is within
2% of the bootstrap value. The situation for the three
nonexact dimensions for the Z2 × Z2 case is somewhat
mixed. Clearly the estimate for ΔZ2×Z2

2 is within less than a
percentage of the value of [40] and is stable at each loop
order. For the other operators the tolerance is around 5%
but the trend with loop order is not as settled.

XI. BEYOND FIVE LOOPS

While our focus to this point has been on the five loop
renormalization group functions, the next stage in studying
(2.1) would be to extend this to six loops. Given what we
have established here it is worth giving guidance on what

would be required for that as several common features
emerged. First, at six loops there are 324 Feynman graphs
contributing to the Φ 2-point function. The content of
γΦðaÞ at that order will involve rationals as well as what we
term irrationals. The majority of these will be ζn for n ¼ 3

to 9. In addition their products such as ζ3ζ5 and ζ33, which
are both present in the six loop ϕ4 β-function [32,34],
should appear if the structure of the renormalization group
functions of this nonsupersymmetric paradigm theory is
valid. That would therefore imply the potential additional
presence of the multiple zeta ζ3;5. As noted earlier the
Oð1=N3Þ expression for the exponent η [49] may indicate
that such an irrational is actually absent. However if it
were present it would have to arise in a primitive graph
whose OðNÞ group theory factor is beyond Oð1=N3Þ.
Alternatively candidate primitive graphs from ϕ4 theory
may be excluded because of the restriction the chiral
symmetry places on the graph topologies.
Of the 324 graphs it turns out that 17 of these are

primitive. One feature to emerge from the five loop
evaluation of the Feynman graphs was the appearance of
what was termed the product primitives. These are 2-point
graphs with vertex subgraphs. As the vertex function is
finite, we noted that the simple pole can be deduced from
the finite value of the vertex itself. At six loops we have
illustrated the eight graphs of the total primitives that are
product primitives in Fig. 12 where the vertex V3 is defined
in Fig. 13. The residue of the simple pole in ϵ of each of the
graphs will be proportional to ζ3ζ5 and have a group factor
of T2T5T71 for (6.1). The explicit coefficient of this residue
requires the implementation of the D-algebra. This is also
an issue for the remaining nonproduct primitives especially
as the power of the irreducible scalar products increases
with loop order. The remaining graphs intermediate to
those with rational contributions and the primitives corre-
spond to the decoration of the lower loop primitives with
an extra one loop bubble. A subset of these should be
calculable with the use of subtractions and FORCER. The
remainder of this type, similar to the nonproduct primitives,
could only be reliably evaluated with a five loop version of
FORCER.
Next we note that the concept of product primitives

naturally continues at higher loop order. We have provided
several examples in Fig. 14 to illustrate the point. A new
vertex function V4 has been defined in Fig. 15 where the
actual 3-point function is isolated by amputating the right
external vertex. In Fig. 14 the graphs are 8, 10, 9 and 13
loops respectively from top left to bottom right. The simple
pole residue of each would be ζ23ζ5, ζ

3
5, ζ3ζ

2
5 and ζ3ζ

2
5ζ7 in

the same respective order with the equally associated group
factors of T2T2

5T71, T2T3
71, T2T5T2

71 and T2T5T2
71T94. So

there is a clear association of each group factor with a
specific ζn.
Finally we return to the rational part of γΦðaÞ and note

that it is possible to deduce the contribution in the MS

TABLE VIII. Padé approximants at three, four and five loops
for the nonexact operator dimensions in Z2 × Z2 model.

Padé Δ1 Δ2 Δ20

[2, 1] 1.887757 � � � 1.729559
[1, 2] 1.893722 1.253242 1.747789

[3, 1] 1.842132 1.237664 1.706973
[2, 2] � � � 1.237098 1.702425
[1, 3] 1.850355 � � � 1.716789

[4, 1] 1.813663 1.245205 1.684017
[3, 2] � � � 1.255392 � � �
[2, 3] � � � 1.243920 � � �
[1, 4] 1.821597 1.253878 1.692667

TABLE IX. Averages of three, four and five loop Padé
approximants for nonexact operator dimensions compared with
conformal bootstrap results.

Model Dimension Three loop Four loop Five loop [40]

XYZ Δ1 1.863902 1.787768 1.687401 1.639
Δ20 1.646525 1.635104 1.636335 1.681

cWZ3 Δ1 1.908732 1.872175 1.879128 1.910

Z2 × Z2 Δ1 1.890740 1.846243 1.817630 1.898
Δ2 1.253242 1.237381 1.249599 1.259
Δ20 1.738674 1.708729 1.688342 1.727
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scheme purely from the five loop computation. This is
because the rational part of the six loop MOM scheme is
known from the Hopf algebra solution of the Dyson-
Schwinger equation given in [81]. As we showed earlier
the five loop MOM expression for γΦðaÞ could be deduced
from the MS expression by using the coupling constant
map (5.6) and the formalism of (5.8) and (5.9). To extract
the rational part at six loops requires one ingredient
which is the finite part of the Φ 2-point function at five
loops. This is because the coupling constant mapping at L
loops determines the (Lþ 1) loop renormalization group

FIG. 12. Six loop product primitive graphs.

FIG. 13. Three loop planar vertex correction.

FIG. 14. Higher order product primitive graphs.
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functions from (5.8) and (5.9) once they are available at L
loops in one specific scheme. Previously theMOM five loop
β-function was deduced from the MS one. Here we reverse
the process given the result of [81]. So all that is required is

the rational part of the Φ 2-point function at five loops. As
these are the bubble graphs which are simple to evaluate to
the finite part we have applied the formalism to find the
rational piece of the six loop MS β-function which is

βðaÞ ¼ 3

2
a2 −

3

2
a3 þ ½36ζ3 þ 15� a

4

8
þ ½54ζ4 − 180ζ3 − 240ζ5 − 27� a

5

8

þ ½1512ζ23 þ 2574ζ3 − 1323ζ4 þ 5484ζ5 − 2700ζ6 þ 7938ζ7 þ 237� a
6

32

þ
�
−
369

20
þ nonrational contribution

�
a7 þOða8Þ ð11:1Þ

and we note that the alternating sign pattern of the rationals
is maintained. To determine the nonrational contribution of
(11.1) is of course a more strenuous exercise.

XII. DISCUSSION

We have completed a comprehensive study of the Wess-
Zumino model at five loops. This has proceeded in two
phases with the initial one outlining the algorithm for
carrying out the computation of the five loop Feynman
graphs that are required for the β-function of the original
model of [1]. Once established the second part addressed
applications to various extensions of the core theory by
allowing the fields to lie in various symmetry groups or take
the couplings to be general tensors. One consequence was
to extend the precision of the ϵ expansion of critical
exponents to a new order. This is important in the context
of other methods such as the conformal bootstrap and the
functional renormalization group techniques. These have
been applied to several problems like the emergent super-
symmetric fixed point that is present in Gross-Neveu-
Yukawa systems which relate to materials in nature and
could be the first manifestation of supersymmetry in reality.
As a corollary the five loop Wess-Zumino renormalization
could be a useful independent check on any future higher
order renormalization of that system. However, to effect
such a calculation in the Gross-Neveu-Yukawa model in
four dimensions at five loops would be a massive under-
taking especially given the number of graphs that would

need to be evaluated. At four loops either 7384 or 188531
Feynman graphs were determined in [15] where the two
totals depend on whether real or complex scalars were used
together with their respective Dirac or left- and right-
handed Weyl fermions. These are substantially larger
numbers than the four loop ones given in Table I. This
is primarily due to the fact that unlike the component Wess-
Zumino model each interaction of the Gross-Neveu-
Yukawa system has an independent coupling constant.
Consequently all the 3- and 4-point vertices have to be
renormalized separately in the absence of any Ward
identities. One interesting aspect of the ϵ expansion
analysis was the close agreement of the five loop estimates
with other methods for the Gross-Neveu-Yukawa system as
is evident from Table III. While the five loop results
appear competitive with the latest bootstrap estimates there
is still not precise agreement. Whether this is an indication
of some discrepancy or not, such as nonperturbative
contributions outside the scope of perturbation theory, is
worth pursuing. If so it should not violate the underlying
supersymmetry in the extension from four to three dimen-
sions in an ϵ expansion approach. The other case where we
produced exponent estimates to compare with bootstrap
methods, which concerned the one-dimensional conformal
manifold connected to the XYZ model, we found values
that in some instances were close to the values quoted in
[40]. This suggests that perhaps higher orders in ϵ would be
necessary to produce a more accurate comparison. While
we have sketched out some basic ideas as to how a six loop

FIG. 15. Definition of four loop primitive vertex.
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computation could proceed again such a task is not trivial.
Perhaps the graphical function methods of [31–33] offers
the best direction to follow especially if the method could
be adapted to superspace in the first instance rather than
have to use a component Lagrangian. Such a six loop
renormalization would give insight into whether there are
multiple zetas in the β-function of the Wess-Zumino model.
This is the order where ζ3;5 first appears in its non-
supersymmetric cousin ϕ4 theory which also has no chiral
symmetry. If it was present at this order in (2.1) then there
would be no more debate.

ACKNOWLEDGMENTS

We thank I. Jack for useful discussions at various stages
of this work, H. Osborn for pointing out Ref. [40] and
valuable comments, D. Poland for discussions on the
conformal bootstrap formalism as well as G. Dunne for
posing several questions. It is also a pleasure to thank D. J.
Broadhurst for enlightening discussions over many years
concerning multiple zetas in primitive Feynman integrals at
very high loop order. This work was supported by a DFG
Mercator Fellowship and in part through the STFC
Consolidated Grants No. ST/J000493/1 and No. ST/
T000988/1. The graphs were drawn with the AXODRAW

package [106].

APPENDIX A: TENSOR DEFINITIONS

In this appendix we define the tensors Tij
Lr that appear in

the anomalous dimension of the general action (9.1). Each
of these tensors depends on the tensor couplings dijk and
d̄ijk. The subscript of each dummy index jn in each of the
definitions is in direct correspondence to the label used in
the QGRAF electronic output that defines the underlying
graph. In particular the bridge between Tij

Lr and the settings
of the qgraf.dat file in partnership with the form.sty
style file is to use the onepi and nosnail options. To
three loops the first set of tensors is

dij1j2 d̄jj1j2 ¼ Tij
11;

dij1j2dj3j4j5 d̄jj1j3 d̄j2j4j5 ¼ Tij
21;

dij1j2dj3j5j7dj4j6j8 d̄jj3j4 d̄j1j5j6 d̄j2j7j8 ¼ Tij
31;

dij1j2dj3j5j6dj4j7j8 d̄jj3j4 d̄j1j5j6 d̄j2j7j8 ¼ Tij
32;

dij1j2dj3j6j7dj4j5j8 d̄jj1j3 d̄j2j4j5 d̄j8j6j7 ¼ Tij
33;

dij1j2dj3j4j6dj5j7j8 d̄jj1j3 d̄j2j4j5 d̄j6j7j8 ¼ Tij
34: ðA1Þ

For orientation Tij
11 and Tij

21 correspond to the graphs of
Figs. 1 and 2 respectively while Tij

31 is the nonplanar graph
of Fig. 4. We note that in [92] a factor of 1

2
was included in

the definition of the tensor corresponding to Tij
11. At four

loops the 13 tensors are

dij1j2dj3j5j9dj4j7j10dj6j8j11 d̄jj3j4 d̄j1j5j6 d̄j2j7j8 d̄j9j10j11 ¼ Tij
41;

dij1j2dj3j5j9dj4j6j10dj11j7j8 d̄jj3j4 d̄j1j5j6 d̄j2j7j8 d̄j9j10j11 ¼ Tij
42;

dij3j4dj1j5j6dj2j7j8dj9j10j11 d̄jj1j2 d̄j3j5j9 d̄j4j6j10 d̄j11j7j8 ¼ Tij
43;

dij1j2dj3j5j7dj4j6j9dj8j10j11 d̄jj3j4 d̄j1j5j6 d̄j2j7j8 d̄j9j10j11 ¼ Tij
44;

dij1j2dj3j5j6dj4j9j10dj7j8j11 d̄jj3j4 d̄j1j5j6 d̄j2j7j8 d̄j11j9j10 ¼ Tij
45;

dij1j2dj3j5j6dj4j7j9dj8j10j11 d̄jj3j4 d̄j1j5j6 d̄j2j7j8 d̄j9j10j11 ¼ Tij
46;

dij1j2dj3j6j7dj4j8j9dj5j10j11 d̄jj1j3 d̄j2j4j5 d̄j6j8j10 d̄j7j9j11 ¼ Tij
47;

dij1j2dj3j6j7dj4j8j9dj5j10j11 d̄jj1j3 d̄j2j4j5 d̄j6j8j9 d̄j7j10j11 ¼ Tij
48;

dij1j2dj3j6j7dj4j5j8dj9j10j11 d̄jj1j3 d̄j2j4j5 d̄j7j10j11 d̄j8j6j9 ¼ Tij
49;

dij1j3dj2j4j5dj7j10j11dj8j6j9 d̄jj1j2 d̄j3j6j7 d̄j4j5j8 d̄j9j10j11 ¼ Tij
410;

dij1j2dj3j6j7dj4j5j8dj9j10j11 d̄jj1j3 d̄j2j4j5 d̄j6j7j9 d̄j8j10j11 ¼ Tij
411;

dij1j2dj3j4j6dj5j7j8dj11j9j10 d̄jj1j3 d̄j2j4j5 d̄j6j9j10 d̄j7j8j11 ¼ Tij
412;

dij1j2dj3j4j6dj5j7j8dj9j10j11 d̄jj1j3 d̄j2j4j5 d̄j6j7j9 d̄j8j10j11 ¼ Tij
413

ðA2Þ

where Tij
44 and T

ij
41 respectively correspond to the graphs in

the bottom row of Fig. 6.

At five loops the 63 different tensors are

dij1j2dj3j9j10dj4j11j12dj5j7j13dj6j8j14 d̄jj3j4 d̄j1j5j6 d̄j2j7j8 d̄j13j9j11 d̄j14j10j12 ¼ Tij
51;

dij1j2dj3j9j10dj4j11j12dj5j6j13dj7j8j14 d̄jj3j4 d̄j1j5j6 d̄j2j7j8 d̄j13j9j11 d̄j14j10j12 ¼ Tij
52;

dij3j4dj1j5j6dj2j7j8dj13j9j11dj14j10j12 d̄jj1j2 d̄j3j9j10 d̄j4j11j12 d̄j5j6j13 d̄j7j8j14 ¼ Tij
53;

dij1j2dj3j9j10dj4j11j12dj5j6j13dj7j8j14 d̄jj3j4 d̄j1j5j6 d̄j2j7j8 d̄j13j9j10 d̄j14j11j12 ¼ Tij
54;

dij1j2dj3j5j9dj4j10j11dj6j12j13dj7j8j14 d̄jj3j4 d̄j1j5j6 d̄j2j7j8 d̄j9j14j12 d̄j13j10j11 ¼ Tij
55;

dij1j2dj3j5j9dj4j10j11dj6j12j13dj7j8j14 d̄jj3j4 d̄j1j5j6 d̄j2j7j8 d̄j9j12j13 d̄j14j10j11 ¼ Tij
56;

dij1j2dj3j5j9dj4j10j11dj6j7j12dj8j13j14 d̄jj3j4 d̄j1j5j6 d̄j2j7j8 d̄j9j13j14 d̄j12j10j11 ¼ Tij
57;
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dij3j4dj1j5j6dj2j7j8dj9j13j14dj12j10j11 d̄jj1j2 d̄j3j5j9 d̄j4j10j11 d̄j6j7j12 d̄j8j13j14 ¼ Tij
58;

dij1j2dj3j5j9dj4j10j11dj6j7j12dj8j13j14 d̄jj3j4 d̄j1j5j6 d̄j2j7j8 d̄j9j12j13 d̄j14j10j11 ¼ Tij
59;

dij3j4dj1j5j6dj2j7j8dj9j12j13dj14j10j11 d̄jj1j2 d̄j3j5j9 d̄j4j10j11 d̄j6j7j12 d̄j8j13j14 ¼ Tij
510;

dij1j2dj3j5j9dj4j10j11dj6j7j12dj8j13j14 d̄jj3j4 d̄j1j5j6 d̄j2j7j8 d̄j9j10j13 d̄j12j11j14 ¼ Tij
511;

dij1j2dj3j5j9dj4j10j11dj6j7j12dj8j13j14 d̄jj3j4 d̄j1j5j6 d̄j2j7j8 d̄j9j12j10 d̄j11j13j14 ¼ Tij
512;

dij1j2dj3j5j9dj4j7j10dj6j11j12dj8j13j14 d̄jj3j4 d̄j1j5j6 d̄j2j7j8 d̄j9j13j14 d̄j10j11j12 ¼ Tij
513;

dij1j2dj3j5j9dj4j7j10dj6j11j12dj8j13j14 d̄jj3j4 d̄j1j5j6 d̄j2j7j8 d̄j9j11j13 d̄j10j12j14 ¼ Tij
514;

dij1j2dj3j5j9dj4j7j10dj6j11j12dj8j13j14 d̄jj3j4 d̄j1j5j6 d̄j2j7j8 d̄j9j11j12 d̄j10j13j14 ¼ Tij
515;

dij1j2dj3j5j9dj4j7j10dj6j8j11dj12j13j14 d̄jj3j4 d̄j1j5j6 d̄j2j7j8 d̄j9j11j12 d̄j10j13j14 ¼ Tij
516;

dij3j4dj1j5j6dj2j7j8dj9j11j12dj10j13j14 d̄jj1j2 d̄j3j5j9 d̄j4j7j10 d̄j6j8j11 d̄j12j13j14 ¼ Tij
517;

dij1j2dj3j5j9dj4j7j10dj6j8j11dj12j13j14 d̄jj3j4 d̄j1j5j6 d̄j2j7j8 d̄j9j10j12 d̄j11j13j14 ¼ Tij
518;

dij1j2dj3j5j9dj4j6j10dj7j11j12dj8j13j14 d̄jj3j4 d̄j1j5j6 d̄j2j7j8 d̄j9j11j13 d̄j10j12j14 ¼ Tij
519;

dij3j4dj1j5j6dj2j7j8dj9j11j13dj10j12j14 d̄jj1j2 d̄j3j5j9 d̄j4j6j10 d̄j7j11j12 d̄j8j13j14 ¼ Tij
520;

dij1j2dj3j5j9dj4j6j10dj7j11j12dj8j13j14 d̄jj3j4 d̄j1j5j6 d̄j2j7j8 d̄j9j11j12 d̄j10j13j14 ¼ Tij
521;

dij3j4dj1j5j6dj2j7j8dj9j11j12dj10j13j14 d̄jj1j2 d̄j3j5j9 d̄j4j6j10 d̄j7j11j12 d̄j8j13j14 ¼ Tij
522;

dij1j2dj3j5j9dj4j6j10dj8j13j14dj11j7j12 d̄jj3j4 d̄j1j5j6 d̄j2j7j8 d̄j9j10j11 d̄j12j13j14 ¼ Tij
523;

dij3j4dj1j5j6dj2j7j8dj9j10j11dj12j13j14 d̄jj1j2 d̄j3j5j9 d̄j4j6j10 d̄j8j13j14 d̄j11j7j12 ¼ Tij
524;

dij1j2dj3j5j9dj4j6j10dj7j8j11dj12j13j14 d̄jj3j4 d̄j1j5j6 d̄j2j7j8 d̄j9j11j12 d̄j10j13j14 ¼ Tij
525;

dij3j4dj1j5j6dj2j7j8dj9j11j12dj10j13j14 d̄jj1j2 d̄j3j5j9 d̄j4j6j10 d̄j7j8j11 d̄j12j13j14 ¼ Tij
526;

dij1j2dj3j5j9dj4j6j10dj7j8j11dj12j13j14 d̄jj3j4 d̄j1j5j6 d̄j2j7j8 d̄j9j10j12 d̄j11j13j14 ¼ Tij
527;

dij3j4dj1j5j6dj2j7j8dj9j10j12dj11j13j14 d̄jj1j2 d̄j3j5j9 d̄j4j6j10 d̄j7j8j11 d̄j12j13j14 ¼ Tij
528;

dij1j2dj3j5j7dj4j6j9dj8j10j11dj14j12j13 d̄jj3j4 d̄j1j5j6 d̄j2j7j8 d̄j9j12j13 d̄j10j11j14 ¼ Tij
529;

dij1j2dj3j5j7dj4j6j9dj8j10j11dj12j13j14 d̄jj3j4 d̄j1j5j6 d̄j2j7j8 d̄j9j10j12 d̄j11j13j14 ¼ Tij
530;

dij1j2dj3j5j6dj4j9j10dj7j11j12dj8j13j14 d̄jj3j4 d̄j1j5j6 d̄j2j7j8 d̄j9j11j13 d̄j10j12j14 ¼ Tij
531;

dij1j2dj3j5j6dj4j9j10dj7j11j12dj8j13j14 d̄jj3j4 d̄j1j5j6 d̄j2j7j8 d̄j9j11j12 d̄j10j13j14 ¼ Tij
532;

dij1j2dj3j5j6dj4j9j10dj7j8j11dj12j13j14 d̄jj3j4 d̄j1j5j6 d̄j2j7j8 d̄j10j13j14 d̄j11j9j12 ¼ Tij
533;

dij3j4dj1j5j6dj2j7j8dj10j13j14dj11j9j12 d̄jj1j2 d̄j3j5j6 d̄j4j9j10 d̄j7j8j11 d̄j12j13j14 ¼ Tij
534;

dij1j2dj3j5j6dj4j9j10dj7j8j11dj12j13j14 d̄jj3j4 d̄j1j5j6 d̄j2j7j8 d̄j9j10j12 d̄j11j13j14 ¼ Tij
535;

dij1j2dj3j5j6dj4j7j9dj8j10j11dj14j12j13 d̄jj3j4 d̄j1j5j6 d̄j2j7j8 d̄j9j12j13 d̄j10j11j14 ¼ Tij
536;

dij1j2dj3j5j6dj4j7j9dj8j10j11dj12j13j14 d̄jj3j4 d̄j1j5j6 d̄j2j7j8 d̄j9j10j12 d̄j11j13j14 ¼ Tij
537;

dij1j2dj3j6j7dj4j8j9dj5j10j11dj12j13j14 d̄jj1j3 d̄j2j4j5 d̄j6j8j12 d̄j7j13j14 d̄j9j10j11 ¼ Tij
538;

dij1j2dj3j6j7dj4j8j9dj5j10j11dj12j13j14 d̄jj1j3 d̄j2j4j5 d̄j6j8j12 d̄j7j10j13 d̄j9j11j14 ¼ Tij
539;

dij1j2dj3j6j7dj4j8j9dj5j10j11dj12j13j14 d̄jj1j3 d̄j2j4j5 d̄j6j8j12 d̄j7j9j13 d̄j14j10j11 ¼ Tij
540;

dij1j3dj2j4j5dj6j8j12dj7j9j13dj14j10j11 d̄jj1j2 d̄j3j6j7 d̄j4j8j9 d̄j5j10j11 d̄j12j13j14 ¼ Tij
541;

dij1j2dj3j6j7dj4j8j9dj5j10j11dj12j13j14 d̄jj1j3 d̄j2j4j5 d̄j6j8j10 d̄j7j9j12 d̄j11j13j14 ¼ Tij
542;
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dij1j2dj3j6j7dj4j8j9dj5j10j11dj14j12j13 d̄jj1j3 d̄j2j4j5 d̄j6j8j9 d̄j7j12j13 d̄j10j11j14 ¼ Tij
543;

dij1j2dj3j6j7dj4j8j9dj5j10j11dj12j13j14 d̄jj1j3 d̄j2j4j5 d̄j6j8j9 d̄j7j10j12 d̄j11j13j14 ¼ Tij
544;

dij1j2dj3j6j7dj4j5j8dj9j11j13dj10j12j14 d̄jj1j3 d̄j2j4j5 d̄j6j9j10 d̄j7j11j12 d̄j8j13j14 ¼ Tij
545;

dij1j3dj2j4j5dj6j9j10dj7j11j12dj8j13j14 d̄jj1j2 d̄j3j6j7 d̄j4j5j8 d̄j9j11j13 d̄j10j12j14 ¼ Tij
546;

dij1j2dj3j6j7dj4j5j8dj9j10j13dj14j11j12 d̄jj1j3 d̄j2j4j5 d̄j6j9j10 d̄j7j11j12 d̄j8j13j14 ¼ Tij
547;

dij1j3dj2j4j5dj6j9j10dj7j11j12dj8j13j14 d̄jj1j2 d̄j3j6j7 d̄j4j5j8 d̄j9j10j13 d̄j14j11j12 ¼ Tij
548;

dij1j2dj3j6j7dj4j5j8dj9j10j11dj12j13j14 d̄jj1j3 d̄j2j4j5 d̄j6j9j10 d̄j7j11j12 d̄j8j13j14 ¼ Tij
549;

dij1j3dj2j4j5dj6j9j10dj7j11j12dj8j13j14 d̄jj1j2 d̄j3j6j7 d̄j4j5j8 d̄j9j10j11 d̄j12j13j14 ¼ Tij
550;

dij1j2dj3j6j7dj4j5j8dj9j12j13dj10j11j14 d̄jj1j3 d̄j2j4j5 d̄j7j10j11 d̄j8j6j9 d̄j14j12j13 ¼ Tij
551;

dij1j3dj2j4j5dj7j10j11dj8j6j9dj14j12j13 d̄jj1j2 d̄j3j6j7 d̄j4j5j8 d̄j9j12j13 d̄j10j11j14 ¼ Tij
552;

dij1j2dj3j6j7dj4j5j8dj9j10j12dj11j13j14 d̄jj1j3 d̄j2j4j5 d̄j7j10j11 d̄j8j6j9 d̄j12j13j14 ¼ Tij
553;

dij1j3dj2j4j5dj7j10j11dj8j6j9dj12j13j14 d̄jj1j2 d̄j3j6j7 d̄j4j5j8 d̄j9j10j12 d̄j11j13j14 ¼ Tij
554;

dij1j2dj3j6j7dj4j5j8dj9j12j13dj10j11j14 d̄jj1j3 d̄j2j4j5 d̄j6j7j9 d̄j8j10j11 d̄j14j12j13 ¼ Tij
555;

dij1j2dj3j6j7dj4j5j8dj9j10j12dj11j13j14 d̄jj1j3 d̄j2j4j5 d̄j6j7j9 d̄j8j10j11 d̄j12j13j14 ¼ Tij
556;

dij1j2dj3j4j6dj5j7j8dj9j11j13dj10j12j14 d̄jj1j3 d̄j2j4j5 d̄j6j9j10 d̄j7j11j12 d̄j8j13j14 ¼ Tij
557;

dij1j2dj3j4j6dj5j7j8dj9j11j12dj10j13j14 d̄jj1j3 d̄j2j4j5 d̄j6j9j10 d̄j7j11j12 d̄j8j13j14 ¼ Tij
558;

dij1j2dj3j4j6dj5j7j8dj10j13j14dj11j9j12 d̄jj1j3 d̄j2j4j5 d̄j6j9j10 d̄j7j8j11 d̄j12j13j14 ¼ Tij
559;

dij1j3dj2j4j5dj6j9j10dj7j8j11dj12j13j14 d̄jj1j2 d̄j3j4j6 d̄j5j7j8 d̄j10j13j14 d̄j11j9j12 ¼ Tij
560;

dij1j2dj3j4j6dj5j7j8dj9j10j12dj11j13j14 d̄jj1j3 d̄j2j4j5 d̄j6j9j10 d̄j7j8j11 d̄j12j13j14 ¼ Tij
561;

dij1j2dj3j4j6dj5j7j8dj9j12j13dj10j11j14 d̄jj1j3 d̄j2j4j5 d̄j6j7j9 d̄j8j10j11 d̄j14j12j13 ¼ Tij
562;

dij1j2dj3j4j6dj5j7j8dj9j10j12dj11j13j14 d̄jj1j3 d̄j2j4j5 d̄j6j7j9 d̄j8j10j11 d̄j12j13j14 ¼ Tij
563: ðA3Þ

Again to assist with orientation the graphs in the top row of Fig. 11 are respectively Tij
511 and T

ij
514. Those of the lower row

correspond to the tensors Tij
51 and Tij

519.

APPENDIX B: RENORMALIZATION CONSTANTS

In this appendix we record the explicit form of the wave function renormalization constant for the action with the general
tensor couplings (9.1). This is primarily to illustrate the structure of such a tensor renormalization constant as well as to
provide the numerical value of each pole in ϵ for each tensor. To record the result in a compact way we decompose the
renormalization constant Zij

Φ into a basis of tensors as well as the residues of the respective poles giving

Zij
Φ ¼ δij þ

X5
L¼1

XL
q¼0

XkL
r¼1

aSLqjLrT
ij
Lr

1

ϵq
þ
X5
L¼2

XL
q¼0

XdL
r¼1

bSLqjLrD
ij
Lr

1

ϵq
ðB1Þ

where kL is defined in the last column of Table I. The coefficients aSLqjLr and bSLqjLr have pairs of labels. The first pair

identifies the loop order and the power of the ϵ pole while the second pair relates to the relevant tensor. The label S denotes

either the MS or MOM scheme. Clearly aMS
L0jLr ¼ 0 and bMS

L0jLr ¼ 0 as q ¼ 0 would indicate the finite part of the

renormalization constant.
In addition to the tensors Tij

Lr that ultimately appear in the related renormalization group functions, other ones arise for
poles in ϵ of order higher than the simple one. These are denoted by Dij

Lr and those that arise to five loops are
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Dij
21 ¼ ðT2

11Þij; Dij
31 ¼ ðT3

11Þij; Dij
32 ¼ ðT21T11Þij;

Dij
41 ¼ ðT4

11Þij; Dij
42 ¼ ðT2

21Þij; Dij
43 ¼ ðT21T2

11Þij; Dij
44 ¼ ðT31T11Þij;

Dij
45 ¼ ðT32T11Þij; Dij

46 ¼ ðT33T11Þij; Dij
47 ¼ ðT34T11Þij;

Dij
51 ¼ ðT5

11Þij; Dij
52 ¼ ðT2

21Þij; Dij
53 ¼ ðT21T3

11Þij; Dij
54 ¼ ðT2

21T11Þij;
Dij

55 ¼ ðT31T21Þij; Dij
56 ¼ ðT32T21Þij; Dij

57 ¼ ðT33T21Þij; Dij
58 ¼ ðT34T21Þij;

Dij
59 ¼ ðT31T2

11Þij; Dij
510 ¼ ðT32T2

11Þij; Dij
511 ¼ ðT33T2

11Þij; Dij
512 ¼ ðT34T2

11Þij;
Dij

513 ¼ ðT41T11Þij; Dij
514 ¼ ðT42T11Þij; Dij

515 ¼ ðT43T11Þij; Dij
516 ¼ ðT44T11Þij;

Dij
517 ¼ ðT45T11Þij; Dij

518 ¼ ðT46T11Þij; Dij
519 ¼ ðT47T11Þij; Dij

520 ¼ ðT48T11Þij;
Dij

521 ¼ ðT49T11Þij; Dij
522 ¼ ðT410T11Þij; Dij

523 ¼ ðT411T11Þij; Dij
524 ¼ ðT412T11Þij;

Dij
525 ¼ ðT413T11Þij: ðB2Þ

Graphically these correspond to the product of one-particle irreducible graphs. Their coefficients in the Laurent expansion
in ϵ are determined by lower loop orders consistent with the renormalization group function.
For the MS scheme the residue of the poles to three loops are

aMS
11j11 ¼ −

1

4
; aMS

22j21 ¼ −
1

8
; aMS

21j21 ¼
1

8
; aMS

33j32 ¼ −
1

48
; aMS

33j33 ¼ −
1

24
;

aMS
33j34 ¼ −

1

24
; aMS

32j32 ¼
1

48
; aMS

32j33 ¼
1

24
; aMS

32j34 ¼
1

8
; aMS

31j31 ¼ −
1

4
ζ3;

aMS
31j32 ¼

1

48
; aMS

31j33 ¼
1

24
; aMS

31j34 ¼ −
1

6
ðB3Þ

with those at four loop being given by

aMS
44j45 ¼ −

1

64
; aMS

44j46 ¼ −
1

64
; aMS

44j48 ¼ −
1

192
; aMS

44j49 ¼ −
1

64
;

aMS
44j410 ¼ −

1

64
; aMS

44j411 ¼ −
1

64
; aMS

44j412 ¼ −
1

96
; aMS

44j413 ¼ −
1

96
;

aMS
43j45 ¼

1

64
; aMS

43j46 ¼
1

24
; aMS

43j48 ¼
1

64
; aMS

43j49 ¼
1

24
; aMS

43j410 ¼
1

24
;

aMS
43j411 ¼

1

64
; aMS

43j412 ¼
1

32
; aMS

43j413 ¼
1

16
;

aMS
42j42 ¼ −

1

16
ζ3; aMS

42j43 ¼ −
1

16
ζ3; aMS

42j44 ¼ −
1

8
ζ3; aMS

42j45 ¼
1

64
;

aMS
42j46 ¼ −

5

192
; aMS

42j47 ¼ −
3

16
ζ3; aMS

42j48 ¼ −
1

192
; aMS

42j49 ¼ −
5

192
;

aMS
42j410 ¼ −

5

192
; aMS

42j411 ¼
1

64
; aMS

42j412 ¼ −
1

96
; aMS

42j413 ¼ −
19

96
;

aMS
41j41 ¼

5

4
ζ5; aMS

41j42 ¼ −
3

32
ζ4 þ

3

16
ζ3; aMS

41j43 ¼ −
3

32
ζ4 þ

3

16
ζ3;

aMS
41j44 ¼ −

3

16
ζ4 þ

3

8
ζ3; aMS

41j45 ¼
1

64
−

1

32
ζ3; aMS

41j46 ¼ −
1

24
;

aMS
41j47 ¼

3

32
ζ4 þ

3

16
ζ3; aMS

41j48 ¼ −
5

192
; aMS

41j49 ¼ −
1

24
; aMS

41j410 ¼ −
1

24
;

aMS
41j411 ¼

1

64
−

1

32
ζ3; aMS

41j412 ¼ −
5

96
þ 1

16
ζ3; aMS

41j413 ¼
5

16
: ðB4Þ

The coefficients of the connected higher pole tensors are
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bMS
22j21 ¼ −

1

32
; bMS

33j31 ¼ −
1

128
; bMS

33j32 ¼ −
1

32
; bMS

32j32 ¼
1

32
;

bMS
44j41 ¼ −

5

2048
; bMS

44j42 ¼ −
1

128
; bMS

44j43 ¼ −
3

256
; bMS

44j45 ¼ −
1

192
;

bMS
44j46 ¼ −

1

96
; bMS

44j47 ¼ −
1

96
;

bMS
43j42 ¼

1

64
; bMS

43j43 ¼
3

256
; bMS

43j45 ¼
1

192
; bMS

43j46 ¼
1

96
; bMS

43j47 ¼
1

32
;

bMS
42j42 ¼ −

1

128
; bMS

42j44 ¼ −
1

16
ζ3; bMS

42j45 ¼
1

192
; bMS

42j46 ¼
1

96
; bMS

42j47 ¼ −
1

24
; ðB5Þ

where obviously there can be no one loop coefficient.
Given that there are more tensors at five loops we record the data for this part of Zij

Φ by the order of the pole. First, the
leading pole coefficients are

aMS
55j54 ¼ −

1

320
; aMS

55j56 ¼ −
1

160
; aMS

55j515 ¼ −
1

320
; aMS

55j532 ¼ −
1

480
;

aMS
55j533 ¼ −

1

160
; aMS

55j534 ¼ −
1

160
; aMS

55j535 ¼ −
1

160
; aMS

55j536 ¼ −
1

240
;

aMS
55j537 ¼ −

1

240
; aMS

55j538 ¼ −
1

160
; aMS

55j543 ¼ −
1

320
; aMS

55j544 ¼ −
1

320
;

aMS
55j547 ¼ −

1

480
; aMS

55j548 ¼ −
1

480
; aMS

55j549 ¼ −
1

160
; aMS

55j550 ¼ −
1

160
;

aMS
55j551 ¼ −

1

240
; aMS

55j552 ¼ −
1

240
; aMS

55j553 ¼ −
1

240
; aMS

55j554 ¼ −
1

240
;

aMS
55j555 ¼ −

1

160
; aMS

55j556 ¼ −
1

160
; aMS

55j558 ¼ −
1

960
; aMS

55j559 ¼ −
1

320
;

aMS
55j560 ¼ −

1

320
; aMS

55j561 ¼ −
1

320
; aMS

55j562 ¼ −
1

480
; aMS

55j563 ¼ −
1

480
ðB6Þ

then

aMS
54j54 ¼

1

320
; aMS

54j56 ¼
1

64
; aMS

54j515 ¼
1

80
; aMS

54j532 ¼
11

1920
;

aMS
54j533 ¼

1

64
; aMS

54j534 ¼
1

64
; aMS

54j535 ¼
1

160
; aMS

54j536 ¼
11

960
;

aMS
54j537 ¼

11

480
; aMS

54j538 ¼
1

40
; aMS

54j543 ¼
3

320
; aMS

54j544 ¼
1

60
;

aMS
54j547 ¼

11

1920
; aMS

54j548 ¼
11

1920
; aMS

54j549 ¼
1

64
; aMS

54j550 ¼
1

64
;

aMS
54j551 ¼

11

960
; aMS

54j552 ¼
11

960
; aMS

54j553 ¼
11

480
; aMS

54j554 ¼
11

480
;

aMS
54j555 ¼

1

160
; aMS

54j556 ¼
1

64
; aMS

54j558 ¼
1

160
; aMS

54j559 ¼
1

60
;

aMS
54j560 ¼

1

60
; aMS

54j561 ¼
3

320
; aMS

54j562 ¼
1

80
; aMS

54j563 ¼
1

48
ðB7Þ

are the quartic pole ones. Continuing the triple pole coefficients are
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aMS
53j563 ¼ −

11

96
; aMS

53j562 ¼ −
13

480
; aMS

53j561 ¼ −
1

320
; aMS

53j560 ¼ −
11

320
;

aMS
53j559 ¼ −

11

320
; aMS

53j558 ¼ −
13

960
; aMS

53j556 ¼ −
1

160
; aMS

53j555 ¼
1

160
;

aMS
53j554 ¼ −

7

120
; aMS

53j553 ¼ −
7

120
; aMS

53j550 ¼ −
1

160
; aMS

53j549 ¼ −
1

160
;

aMS
53j544 ¼ −

11

320
; aMS

53j543 ¼ −
1

320
; aMS

53j538 ¼ −
17

480
; aMS

53j537 ¼ −
7

120
;

aMS
53j535 ¼

1

160
; aMS

53j534 ¼ −
1

160
; aMS

53j533 ¼ −
1

160
; aMS

53j515 ¼ −
17

960
;

aMS
53j56 ¼ −

1

160
; aMS

53j54 ¼
1

320
; aMS

53j557 ¼ −
3

40
ζ3; aMS

53j546 ¼ −
9

160
ζ3;

aMS
53j545 ¼ −

9

160
ζ3; aMS

53j542 ¼ −
3

40
ζ3; aMS

53j541 ¼ −
3

80
ζ3; aMS

53j540 ¼ −
3

80
ζ3;

aMS
53j531 ¼ −

9

160
ζ3; aMS

53j530 ¼ −
1

40
ζ3; aMS

53j529 ¼ −
1

40
ζ3; aMS

53j528 ¼ −
1

80
ζ3;

aMS
53j527 ¼ −

1

80
ζ3; aMS

53j526 ¼ −
1

40
ζ3; aMS

53j525 ¼ −
1

40
ζ3; aMS

53j524 ¼ −
1

80
ζ3;

aMS
53j523 ¼ −

1

80
ζ3; aMS

53j522 ¼ −
1

80
ζ3; aMS

53j521 ¼ −
1

80
ζ3; aMS

53j513 ¼ −
1

80
ζ3;

aMS
53j58 ¼ −

1

40
ζ3; aMS

53j57 ¼ −
1

40
ζ3; aMS

53j55 ¼ −
1

40
ζ3; aMS

53j53 ¼ −
1

160
ζ3;

aMS
53j52 ¼ −

1

160
ζ3 ðB8Þ

with

aMS
52j52 ¼ −

3

320
ζ4 þ

3

160
ζ3; aMS

52j53 ¼ −
3

320
ζ4 þ

3

160
ζ3; aMS

52j54 ¼
1

320
−

1

160
ζ3;

aMS
52j55 ¼ −

3

80
ζ4 þ

3

40
ζ3; aMS

52j56 ¼ −
3

320
−

1

160
ζ3; aMS

52j57 ¼ −
3

80
ζ4 þ

3

40
ζ3;

aMS
52j58 ¼ −

3

80
ζ4 þ

3

40
ζ3; aMS

52j59 ¼
1

4
ζ5; aMS

52j510 ¼
1

4
ζ5; aMS

52j512 ¼
1

4
ζ5;

aMS
52j513 ¼ −

3

160
ζ4 þ

3

80
ζ3; aMS

52j515 ¼
1

120
; aMS

52j516 ¼
1

4
ζ5; aMS

52j517 ¼
1

4
ζ5;

aMS
52j518 ¼

1

8
ζ5; aMS

52j521 ¼ −
3

160
ζ4 þ

3

80
ζ3; aMS

52j522 ¼ −
3

160
ζ4 þ

3

80
ζ3;

aMS
52j523 ¼ −

3

160
ζ4 þ

7

80
ζ3; aMS

52j524 ¼ −
3

160
ζ4 þ

7

80
ζ3; aMS

52j525 ¼ −
3

80
ζ4 þ

3

40
ζ3;

aMS
52j526 ¼ −

3

80
ζ4 þ

3

40
ζ3; aMS

52j527 ¼ −
3

160
ζ4 þ

3

80
ζ3; aMS

52j528 ¼ −
3

160
ζ4 þ

3

80
ζ3;

aMS
52j529 ¼ −

3

80
ζ4 þ

3

40
ζ3; aMS

52j530 ¼ −
3

80
ζ4 þ

7

40
ζ3; aMS

52j531 ¼
3

320
ζ4 þ

9

160
ζ3;

aMS
52j532 ¼ −

19

1920
; aMS

52j533 ¼ −
3

320
−

1

160
ζ3; aMS

52j534 ¼ −
3

320
−

1

160
ζ3;

aMS
52j535 ¼

1

160
−

1

80
ζ3; aMS

52j536 ¼ −
19

960
þ 1

160
ζ3; aMS

52j537 ¼
19

480
; aMS

52j538 ¼
1

60
;

aMS
52j539 ¼ ζ5; aMS

52j540 ¼ −
9

160
ζ4 þ

3

16
ζ3; aMS

52j541 ¼ −
9

160
ζ4 þ

3

16
ζ3;
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aMS
52j542 ¼ −

9

80
ζ4 þ

3

8
ζ3; aMS

52j543 ¼ −
1

320
−

3

160
ζ3; aMS

52j544 ¼
1

240
;

aMS
52j545 ¼

3

320
ζ4 þ

9

160
ζ3; aMS

52j546 ¼
3

320
ζ4 þ

9

160
ζ3; aMS

52j547 ¼ −
19

1920
;

aMS
52j548 ¼ −

19

1920
; aMS

52j549 ¼ −
3

320
−

1

160
ζ3; aMS

52j550 ¼ −
3

320
−

1

160
ζ3;

aMS
52j551 ¼ −

19

960
þ 1

160
ζ3; aMS

52j552 ¼ −
19

960
þ 1

160
ζ3; aMS

52j553 ¼
19

480
;

aMS
52j554 ¼

19

480
; aMS

52j555 ¼
1

160
−

1

80
ζ3; aMS

52j556 ¼ −
3

320
−

1

160
ζ3;

aMS
52j557 ¼

3

40
ζ4 þ

9

40
ζ3; aMS

52j558 ¼
1

240
; aMS

52j559 ¼
1

240
þ 1

80
ζ3;

aMS
52j560 ¼

1

240
þ 1

80
ζ3; aMS

52j561 ¼ −
1

320
−

1

160
ζ3; aMS

52j562 ¼
1

120
þ 1

20
ζ3; aMS

52j563 ¼
19

48
ðB9Þ

as the coefficients for the double pole. Finally the simple poles that lead to γijΦ are

aMS
51j51 ¼ −

9

20
ζ23; aMS

51j52 ¼
143

160
ζ5 þ

9

320
ζ4 −

1

160
ζ3; aMS

51j53 ¼
143

160
ζ5 þ

9

320
ζ4 −

1

160
ζ3;

aMS
51j54 ¼

1

320
−

3

320
ζ4 þ

1

160
ζ3; aMS

51j55 ¼ −
67

40
ζ5 þ

9

80
ζ4 −

1

40
ζ3;

aMS
51j56 ¼ −

3

160
−

3

320
ζ4 þ

1

32
ζ3; aMS

51j57 ¼ −
9

5
ζ5 þ

9

80
ζ4 −

1

40
ζ3;

aMS
51j58 ¼ −

9

5
ζ5 þ

9

80
ζ4 −

1

40
ζ3; aMS

51j59 ¼
5

8
ζ6 −

5

4
ζ5 −

1

20
ζ23;

aMS
51j510 ¼

5

8
ζ6 −

5

4
ζ5 −

1

20
ζ23; aMS

51j511 ¼ −
441

80
ζ7; aMS

51j512 ¼
5

8
ζ6 −

5

4
ζ5 −

1

20
ζ23;

aMS
51j513 ¼

79

40
ζ5 þ

9

160
ζ4 −

1

80
ζ3; aMS

51j514 ¼ −
441

160
ζ7; aMS

51j515 ¼ −
1

60
;

aMS
51j516 ¼

5

8
ζ6 −

5

4
ζ5 þ

1

4
ζ23; aMS

51j517 ¼
5

8
ζ6 −

5

4
ζ5 þ

1

4
ζ23;

aMS
51j518 ¼

5

16
ζ6 −

5

8
ζ5 þ

11

40
ζ23; aMS

51j519 ¼ −
9

10
ζ23; aMS

51j520 ¼ −
9

10
ζ23;

aMS
51j521 ¼

153

80
ζ5 þ

9

160
ζ4 −

1

80
ζ3; aMS

51j522 ¼
153

80
ζ5 þ

9

160
ζ4 −

1

80
ζ3;

aMS
51j523 ¼

143

80
ζ5 þ

21

160
ζ4 −

31

80
ζ3; aMS

51j524 ¼
143

80
ζ5 þ

21

160
ζ4 −

31

80
ζ3;

aMS
51j525 ¼ −

9

5
ζ5 þ

9

80
ζ4 −

1

40
ζ3; aMS

51j526 ¼ −
9

5
ζ5 þ

9

80
ζ4 −

1

40
ζ3;

aMS
51j527 ¼

143

80
ζ5 þ

9

160
ζ4 −

1

80
ζ3; aMS

51j528 ¼
143

80
ζ5 þ

9

160
ζ4 −

1

80
ζ3;

aMS
51j529 ¼ −

41

20
ζ5 þ

9

80
ζ4 −

1

40
ζ3; aMS

51j530 ¼ −
41

20
ζ5 þ

21

80
ζ4 −

31

40
ζ3;

aMS
51j531 ¼ −

1

20
ζ5 −

3

320
ζ4 þ

13

160
ζ3; aMS

51j533 ¼ −
3

160
−

3

320
ζ4 þ

1

32
ζ3;

aMS
51j534 ¼ −

3

160
−

3

320
ζ4 þ

1

32
ζ3; aMS

51j535 ¼
1

160
−

3

160
ζ4 þ

1

80
ζ3;
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aMS
51j536 ¼

3

320
ζ4 þ

1

160
ζ3; aMS

51j537 ¼
7

60
; aMS

51j538 ¼ −
1

30
;

aMS
51j539 ¼ −

5

8
ζ6 −

3

4
ζ5 þ

1

20
ζ23; aMS

51j540 ¼ −
1

80
ζ5 −

1

5
ζ3; aMS

51j541 ¼ −
1

80
ζ5 −

1

5
ζ3;

aMS
51j542 ¼

9

40
ζ5 −

2

5
ζ3; aMS

51j543 ¼ −
3

160
þ 3

160
ζ4 þ

1

40
ζ3; aMS

51j544 ¼
1

12
;

aMS
51j545 ¼ −

1

20
ζ5 −

3

320
ζ4 þ

13

160
ζ3; aMS

51j546 ¼ −
1

20
ζ5 −

3

320
ζ4 þ

13

160
ζ3;

aMS
51j549 ¼ −

3

160
−

3

320
ζ4 þ

1

32
ζ3; aMS

51j550 ¼ −
3

160
−

3

320
ζ4 þ

1

32
ζ3;

aMS
51j551 ¼

3

320
ζ4 þ

1

160
ζ3; aMS

51j552 ¼
3

320
ζ4 þ

1

160
ζ3; aMS

51j553 ¼
7

60
; aMS

51j554 ¼
7

60
;

aMS
51j555 ¼

1

160
−

3

160
ζ4 þ

1

80
ζ3; aMS

51j556 ¼ −
3

160
−

3

320
ζ4 þ

1

32
ζ3;

aMS
51j557 ¼

1

10
ζ5 −

21

160
ζ4 −

5

16
ζ3; aMS

51j558 ¼
1

80
; aMS

51j559 ¼
1

12
þ 3

160
ζ4 −

7

80
ζ3;

aMS
51j560 ¼

1

12
þ 3

160
ζ4 −

7

80
ζ3; aMS

51j561 ¼ −
3

160
þ 3

80
ζ4 −

1

80
ζ3;

aMS
51j562 ¼

1

40
−

3

160
ζ4 −

9

80
ζ3; aMS

51j563 ¼ −
7

10
ðB10Þ

from which it is straightforward to see the connection with cMS
5r .

For the coefficients of Dij
Lr we have

bMS
55j51 ¼ −

7

8192
; bMS

55j53 ¼ −
5

1024
; bMS

55j54 ¼ −
3

512
; bMS

55j56 ¼ −
1

384
;

bMS
55j57 ¼ −

1

192
; bMS

55j58 ¼ −
1

192
; bMS

55j510 ¼ −
1

512
; bMS

55j511 ¼ −
1

256
;

bMS
55j512 ¼ −

1

256
; bMS

55j517 ¼ −
1

256
; bMS

55j518 ¼ −
1

256
; bMS

55j520 ¼ −
1

768
;

bMS
55j521 ¼ −

1

256
; bMS

55j522 ¼ −
1

256
; bMS

55j523 ¼ −
1

256
; bMS

55j524 ¼ −
1

384
; bMS

55j525 ¼ −
1

384
ðB11Þ

for the 1
ϵ5
coefficients and

bMS
54j53 ¼

5

1024
; bMS

54j54 ¼
3

256
; bMS

54j56 ¼
1

192
; bMS

54j57 ¼
1

96
;

bMS
54j58 ¼

1

48
; bMS

54j510 ¼
1

512
; bMS

54j511 ¼
1

256
; bMS

54j512 ¼
3

256
;

bMS
54j517 ¼

1

256
; bMS

54j518 ¼
1

96
; bMS

54j520 ¼
1

256
; bMS

54j521 ¼
1

96
;

bMS
54j522 ¼

1

96
; bMS

54j523 ¼
1

256
; bMS

54j524 ¼
1

128
; bMS

54j525 ¼
1

64
ðB12Þ

for the next order. The remaining two sets of coefficients are
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bMS
53j54 ¼ −

3

512
; bMS

53j55 ¼ −
1

32
ζ3; bMS

53j58 ¼ −
7

192
; bMS

53j59 ¼ −
3

128
ζ3;

bMS
53j510 ¼

1

512
; bMS

53j511 ¼
1

256
; bMS

53j512 ¼ −
1

64
; bMS

53j514 ¼ −
1

64
ζ3;

bMS
53j515 ¼ −

1

64
ζ3; bMS

53j516 ¼ −
1

32
ζ3; bMS

53j517 ¼
1

256
; bMS

53j518 ¼ −
5

768
;

bMS
53j519 ¼ −

3

64
ζ3; bMS

53j520 ¼ −
1

768
; bMS

53j521 ¼ −
5

768
; bMS

53j522 ¼ −
5

768
;

bMS
53j523 ¼

1

256
; bMS

53j524 ¼ −
1

384
; bMS

53j525 ¼ −
19

384
ðB13Þ

and

bMS
52j55 ¼

1

32
ζ3; bMS

52j56 ¼ −
1

384
; bMS

52j57 ¼ −
1

192
; bMS

52j58 ¼
1

48
; bMS

52j513 ¼
5

16
ζ5;

bMS
52j514 ¼ −

3

128
ζ4 þ

3

64
ζ3; bMS

52j515 ¼ −
3

128
ζ4 þ

3

64
ζ3; bMS

52j516 ¼ −
3

64
ζ4 þ

3

32
ζ3;

bMS
52j517 ¼

1

256
−

1

128
ζ3; bMS

52j518 ¼ −
1

96
; bMS

52j519 ¼
3

128
ζ4 þ

3

64
ζ3;

bMS
52j520 ¼ −

5

768
; bMS

52j521 ¼ −
1

96
; bMS

52j522 ¼ −
1

96
; bMS

52j523 ¼
1

256
−

1

128
ζ3;

bMS
52j524 ¼ −

5

384
þ 1

64
ζ3; bMS

52j525 ¼
5

64
: ðB14Þ

The analogous expressions for aMOM
LqjLr and bMOM

LqjLr are available in the Supplemental Material [91].
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