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In relativistic quantum field theory (QFT) ideal measurements of certain observables are physically
impossible without violating causality. This prompts two questions: (i) can a given observable be ideally
measured in QFT, and (ii) if not, in what sense can it be measured? Here we formulate a necessary and
sufficient condition that any measurement, and more generally any state update (quantum operation), must
satisfy to respect causality in real scalar QFT. We argue that for unitary ‘kicks’ and operations involving
1-parameter families of Kraus operators, e.g., Gaussian measurements, the only causal observables are
smeared fields and the identity—the basic observables in real scalar QFT. We provide examples with more
complicated operators such as products of smeared fields, and show that the associated state updates are
acausal, and hence impossible. Despite this, one can still recover expectation values of such operators, and
we show how to do this using only causal measurements of smeared fields.
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I. INTRODUCTION

While quantum theory is mathematically and philosophi-
cally disparate from general relativity, it is nonetheless
understood that it too must obey the universal speed limit of
causal influence. The relativistic setting of quantum field
theory (QFT) has this speed limit hard-coded into the
spacetime commutation relations, i.e., any pair of spacelike
operators commute [1]. Most discussions of causality in
QFT end here (e.g., [2]), as local operations on the state
cannot affect expectation values of observables at spacelike
points, that is, points in space and time that are causally
disconnected.
This is not the end of the story for causality in QFT,

however. In 1993 Sorkin pointed out that local operations
must satisfy a further causality condition regarding their
properties under composition [3]. It is not enough to say
that a local operation, contained in spatial extent and
duration in some portion of spacetime K, cannot affect
measurements occurring at points spacelike to K. To
respect causality it must also not transmit the effects of
some other local operation, contained in K0, to a region
spacelike to K0 (Fig. 1). In other words, it cannot enable
other local operations to violate causality.
This puts an additional, but physically justified, con-

straint on the allowed quantum operations, or state updates
in QFT. Surprisingly, some standard state updates in
nonrelativistic quantum mechanics (NRQM) and quantum
information (QI) fail this causality condition when applied
to the relativistic setting of QFT, e.g., ideal measurements
of certain observables, including projectors onto wave-
packet states [3–5] and Wilson loops in gauge theory [6].

To avoid any causality violations, such ideal measurements
in QFT must be impossible to implement experimentally,
by any measurement apparatus [7]. Related questions of
causality in QFT have also been studied using Unruh-
DeWitt detectors [8–12], and are of broader relevance to
QI [13,14].

FIG. 1. Spacetime diagram with time and space coordinates x0

and x1 respectively. The compact (closed and bounded) subset K0
is spacelike, or causally disconnected from the region R, as can be
seen from the lightcones (dashed lines). K0=R is also partly to the
past/future of the compact subset K. Any local operations
occurring at points in time and space within K should not be
able to transmit the effects of any local operations occurring in K0
to measurements in R. While the diagrams in this paper are for
spacetime dimension d ¼ 2, they are only illustrative, as the
discussions apply more generally to all d ≥ 2.
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The fact that not all self-adjoint operators in QFT can be
measured in the standard sense of quantum theory prompts
two questions: which operators are measurable in QFT,
and to what extent? For example, if an ideal measurement
is not possible, then perhaps something less sharp is. One
route to answering this is to construct specific measurement
models which do not superluminally signal, e.g., using
local probes [15] or probe fields [16], although this trans-
forms the question into what measurements are possible on
probes. Alternatively, one can remain agnostic to the details
of the measurement apparatus, and ask more generally
which state updates are possible with respect to this
additional causality constraint [5].
In this paper we precisely characterise the class of state

updates that are causal (Sec. II), and we provide several
simple examples of causal and acausal maps using local
unitary kicks (Sec. III) and Gaussian measurements
(Section IV), a less sharp alternative to ideal measurements.
Furthermore, the acausal examples presented here, unlike
those presented in [3,4], will be local update maps,
thus eliminating the worry that the acausality of a
given map is entirely due to its nonlocality. Specifically,
in [3,4] they considered ideal measurements of a projector
of the form P ¼ jΨihΨj, for some spatially compact wave-
packet state jΨi. While the shape of the wave-packet is
local (in the sense that it is of finite spatial extent),
the projector P is a nonlocal operator, in the precise
sense that it is not localizable in any subregion of
spacetime [17].
Surprisingly, our results suggest that the only causality

respecting observables (those for which the corresponding
measurement is described by a causal update map) are the
smeared fields and the identity—the basic observables of
real scalar QFT. This also seems to be the case for unitary
kicks and operations described by a 1-parameter family of
Kraus operators. Conversely, to update the state according
to the measurement of, or unitary kick with, some other
more complicated observable, e.g., the product of two
smeared fields, it appears one must violate causality, and
thus such operations must be physically impossible. Our
calculations also suggest that ideal measurements of
smeared fields are acausal, which motivates our focus on
the less sharp Gaussian measurements.
It is important to note that this conclusion, that only

measurement updates for smeared fields are possible with
respect to causality, does not preclude the recovery of
correlation functions and other expectation values of
products of smeared fields, and in Sec. IVG we describe
how this can be done with causal measurements of smeared
fields alone. Alternatively, expectation values can also be
recovered through some other measurement prescription,
e.g., using probes [16,18–20].
In Sec. V we extend our results to interacting QFT, and

show that in the case of a compact self-interaction smeared
fields can still be measured in a causal manner. In Sec. VI

we briefly comment on their relevance to continuous
measurement models [21,22], and discuss the potential
philosophical implications to the ontology of QFT. Lastly,
in Sec. VII we summarize our results.
In what follows some definitions and results will be

generalizable to complex scalar and fermionic QFT, since
they rely only on certain basic concepts in Algebraic (A)
QFT [23], namely that there is a net of subalgebras of
observables associated to regions of spacetime satisfying
certain properties. We will be careful to highlight at which
points such generalizations are possible.

II. SETUP

A. Spacetime geometry

Here we consider some potentially curved spacetime M
with a Lorentzian metric. M must be globally hyperbolic,
meaning that it contains a Cauchy surface Σ ⊂ M. Recall
that a spatial surface Σ is a Cauchy surface if all inex-
tendible timelike curves, i.e., all slower than light trajecto-
ries with no future or past endpoints, intersect Σ exactly
once. This, and the other concepts below, are illustrated in
Fig. 2. See [24] for more details.
The causal future/past of some subset of spacetime

N ⊂ M is denoted by J�ðNÞ, e.g., JþðK0Þ and J−ðRÞ
in Fig. 1. A subset N ⊆ M is causally convex if any
causal curve, i.e., any timelike (slower than light)
or lightlike curve, with endpoints in N is itself contained
in N.
In the following we reserve the word region for any open

causally convex subset R ⊆ M which, if treated as a
spacetime in its own right, is globally hyperbolic.
For a subset N, the domain of dependence is given

by DðNÞ ¼ DþðNÞ ∪ D−ðNÞ, where D�ðNÞ denotes the

FIG. 2. Spacetime diagram with a Cauchy surface Σ. All
inextendible timelike curves, e.g., γ, cross Σ exactly once. Also
illustrated are examples of subsets that are (not) causally convex.
Finally, for the subset N we have shown its future and past
domains of dependence (which both include N).
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future/past domain of dependence, and consists of all
spacetime points x ∈ M for which all past/future inex-
tendible causal curves from x pass through N.
The causal complement of a subset N is denoted by

N⊥ ¼ MnðJþðNÞ ∪ J−ðNÞÞ, and consists of all points
spacelike to, or causally disconnected from, N.
To a compact (closed and bounded) subset K we

associate an in-region and an out-region, consisting of
points not to the future and past of K respectively (see
Fig. 3). We denote these regions (so called because they are
open, causally convex, and constitute globally hyperbolic
spacetimes in their own right) as Kin ¼ MnJþðKÞ and
Kout ¼ MnJ−ðKÞ respectively. Note these regions intersect
at points spacelike to K, i.e., in K⊥.
For any function over spacetime, f∶M ↦ R

(or valued in C), we denote its support as suppf ¼
fx ∈ M∶fðxÞ ≠ 0g, and we say f is compactly supported
if suppf is compact, i.e., suppf has compact closure (where
we use S̄ to denote the closure of a set S).

B. QFT

1. Smeared field operators

Consider free real scalar QFT in M, with the field
operator ϕðxÞ acting on the bosonic Fock space in the
usual way. We are working in the Heisenberg picture where
the fields carry the dynamics. Technically speaking, the
field ‘operator’ ϕðxÞ is really an operator-valued distribu-
tion, and hence we must integrate it against a test function f
to form a proper operator on the Fock space. Recall that test
functions must be smooth and compactly supported.
The result of this integration, or smearing, with f gives
the smeared field operator

ϕðfÞ ¼
Z
M
dxfðxÞϕðxÞ; ð1Þ

where dx denotes the spacetime volume element. Note we
have used the symbol “ϕ” again for the smeared field. Any
ambiguity between the smeared field ϕðfÞ and the oper-
ator-valued distribution ϕðxÞ can be resolved by inspecting
whether the argument is a test function or a spacetime
point respectively. If suppf ⊆ R for some spacetime region
R, the operator ϕðfÞ is said to be localizable in R. This is
shown in Fig. 4. Similarly to the position operator in
NRQM, ϕðfÞ is self-adjoint (for real-valued f) and
unbounded.
The identity, 1, together with the set of all smeared fields

ϕðfÞ for all test functions f, form the generators of the
QFToperator algebraA. That is, any operator in A is some
complex algebraic combination of the identity and the
smeared fields. As an analogy, in a lattice of qubits the
identity and the Pauli matrices local to each site generate
the entire algebra of operators in the same way. We can also
generate the subalgebra AðRÞ ⊆ A associated to some
region R by only considering algebraic combinations of
smeared fields supported in R.
Note that aϕðfÞ þ bϕðgÞ ¼ ϕðaf þ bgÞ for any test

functions f and g, and any a; b ∈ C. The dynamics
of the theory—that ϕðxÞ satisfies the wave equation
ð□þm2Þϕ ¼ 0—imply that ϕðð□þm2ÞfÞ ¼ 0 for
any test function f. This can be seen using (1) and
integration by parts. Alternatively, ϕðfÞ ¼ ϕðgÞ whenever
f − g ¼ ð□þm2Þh for some compactly supported h. In
this case we say that f and g are equivalent.
Given some f, it is always possible to find an equivalent

g supported in a region R that contains suppf in its domain
of dependence, that is, DðRÞ ⊇ suppf. An example of this
is shown in Fig. 14, and a procedure for doing this is
described in Sec. V. Since suppg can be different from
suppf, and even disjoint, this means that ϕðfÞ is localizable
in different, possibly disjoint regions.
See [23] for an introduction to AQFT. It should be noted

that in AQFT one usually starts with an abstract algebra of
observables, such as the algebra of smeared fields, and then
represents that algebra as operators on some Hilbert space.
Here we have implicitly assumed such a representation, and
hence we work entirely at the level of operators on a
Hilbert space.

2. Covariant commutation relations

The causal structure of the spacetime is encoded via the
covariant commutation relations (CCR’s) for smeared
fields:

½ϕðfÞ;ϕðgÞ� ¼ iΔðf; gÞ1; ð2Þ

where

Δðf; gÞ ¼
Z
M×M

dxdyfðxÞΔðx; yÞgðyÞ; ð3Þ

FIG. 3. Spacetime diagram of a compact subset K ⊂ M, and the
corresponding in/out-region Kin=Kout (all points below/above the
dotted/dashed line). The causal complement,K⊥, consisting of all
spacelike points to K, has also been illustrated (shaded with
gradient).

CAUSAL STATE UPDATES IN REAL SCALAR QUANTUM FIELD … PHYS. REV. D 105, 025003 (2022)

025003-3



is the smeared Pauli-Jordan function (smeared with f
and g), and Δðx; yÞ ¼ GRðx; yÞ −GAðx; yÞ is the usual
Pauli-Jordan function, i.e., the difference between the
retarded and advanced Green functions of the classical
field theory. That is, ð□þm2ÞGR=Aðx; yÞ ¼ δðx; yÞ and
GR=Aðx; yÞ ¼ 0 whenever x is not to the future/past of y.
Note we use the notation “Δð·; ·Þ” for both the smeared and
standard Pauli-Jordan functions. Any ambiguity can again
be resolved by inspecting whether the arguments are
functions or spacetime points respectively.
Some readers may be more used to expressing the

spacetime commutation relations as

½ϕðxÞ;ϕðyÞ� ¼ iΔðx; yÞ1; ð4Þ

in terms of the operator-valued distribution ϕðxÞ. Indeed,
the CCR’s in (2) follow from these relations by integrating
over the spacetime points x and y, weighted by the
smearing functions fðxÞ and gðyÞ. To have a concrete
picture in mind, we plot the functional form of Δðx; yÞ in
Fig. 5 for the simple case of the massless theory in 1þ 1
Minkowski spacetime. To visualize Δðf; gÞ for this exam-
ple, one can imagine integrating Δðx; yÞ against two
functions fðxÞ and gðyÞ.
In Fig. 4, f and g have spacelike supports. In this case

Δðf; gÞ ¼ 0, and hence ϕðfÞ and ϕðgÞ commute. For a test
function h that does not overlap with f, but is also not
spacelike to f (see Fig. 4), Δðf; hÞ may not vanish, and
hence ϕðfÞ and ϕðhÞmay not commute. Therefore, the fact
that ϕðfÞ and ϕðhÞ are localizable in disjoint regions does
not imply they commute.

3. General properties

The above properties of the smeared fields imply
the Einstein causality property, namely that spacelike
subalgebras commute, i.e., ½AðRÞ;AðR0Þ� ¼ 0 for any
spacelike regions R and R0. Additionally, we have
the isotony property: AðRÞ ⊆ AðR0Þ whenever R ⊆ R0.
We also have the useful time-slice property: AðRÞ ¼
AðR0Þ whenever R ⊆ R0 and R contains a Cauchy
surface for R0. These properties are usually assumed at
the algebraic level in AQFT, before any representation of
the algebra on a Hilbert space is given. Importantly, they
also apply more generally to complex scalar and fermionic
QFT, but only to the physical subalgebras in each case,
namely the even degree combinations of the fields
which are invariant under any unobservable gauge trans-
formations. For this reason these general properties
are often taken as a starting point for constructing physical
QFT’s.
Given some subalgebra B ⊆ A, we denote the commu-

tant as B⊥, i.e., the set of all operators that commute with
everything in B. We will assume the Haag property [25]
(proved for scalar fields in [26]): for any compact subset
K ⊂ M, and every region R ⊃ K, then AðK⊥Þ⊥ ⊆ AðRÞ.
That is, the subalgebras AðRÞ, for all regions R that
contain K, contain all operators that commute with those
spacelike to K. This property is sometimes weakened to
only apply to any connected compact K, though we do not
do this here.

FIG. 4. Spacetime diagram illustrating the supports of three
test, or smearing, functions f, g, and h. The smeared field
operator ϕðfÞ is constructed by integrating ϕðxÞ with f over
suppf (contained in the region R), and similarly for the smeared
fields ϕðgÞ and ϕðhÞ. suppf is spacelike to suppg, but not to
supph. Therefore, ϕðfÞ and ϕðgÞ commute, while ϕðfÞ and ϕðhÞ
may not.

FIG. 5. Plot of Δðx; yÞ for a massless scalar field in 1þ 1
Minkowski spacetime. The spacetime point x has been fixed and
Δðx; yÞ has been plotted as a function of the spacetime point y,
i.e., as a function of the time and space coordinates y0 and y1

respectively. Note that, for x and y spacelike, Δðx; yÞ ¼ 0. The
massless 1þ 1 case is especially simple in thatΔðx; yÞ is constant
inside the lightcone. This is not the case for nonzero mass, or in
higher dimensional Minkowski (or other curved) spacetimes.
What is true in any spacetime, however, is that Δðx; yÞ ¼ 0 for x
and y spacelike.
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C. Causality conditions on update maps

Given some state, or density matrix, ρ, and some self-
adjoint operator X ∈ A, its expectation value is given by
trðρXÞ [27].
Any quantum operation is described by a completely

positive (CP) updatemap, Ẽð·Þ, on the state: ρ ↦ ρ0 ¼ ẼðρÞ.
Under expectation values we can instead consider the dual
update map on the operators: trðρ0XÞ ¼ trðẼðρÞXÞ ¼
trðρEðXÞÞ. In what follows we will mostly be concerned
with update maps, Eð·Þ, acting on the operators instead of
the state.
Note that under a composition of two maps on the state,

e.g., ρ ↦ Ẽ0ðẼðρÞÞ, the composition on the operators is
order-reversed, e.g., X ↦ EðE0ðXÞÞ.
Our focus will usually be on trace-preserving maps, such

that Eð1Þ ¼ 1. In the case of an ideal measurement this
amounts to the nonselective case where no outcome is
conditioned on. Recall that for any compact self-adjoint
operator, X, with projectors En onto the eigenspaces
associated to distinct eigenvalues xn, the update map for
an ideal measurement of X is given by

E0
XðYÞ ¼

X
n

EnYEn; ð5Þ

for any operator Y ∈ A. Note that E0
Xð1Þ ¼ 1 since the

projectors square to themselves and resolve the identity.
Furthermore, if X ∈ AðRÞ, i.e., it is localizable in a region
R ⊂ M, and Y ∈ AðR0Þ where R0 is spacelike to R, then
½X; Y� ¼ 0 and ½En; Y� ¼ 0. Therefore, E0

XðYÞ ¼ Y.
This property of an update map, that it acts trivially on

operators that are spacelike to some subset of spacetime,
can be concisely stated as
Definition (local): An update map Eð·Þ is local to a

compact subset K if

Eð·ÞjAðK⊥Þ ¼ 1: ð6Þ

That is, Eð·Þ acts trivially on operators spacelike to its
associated subset K. This ensures that expectation values of
any Y ∈ AðK⊥Þ are the same in the updated state as the
original state.
Furthermore, if we impose that the expected value of any

operator Y ∈ AðK⊥Þ is unchanged under the update
Y ↦ EðYÞ, in any state ρ, we arrive at the above locality
condition on Eð·Þ. To see this let Y 0 ¼ EðYÞ − Y. For any
pure state jψi we then have hψ jY 0jψi ¼ 0 by assumption.
If, for any orthonormal states j1i; j2i, we pick jψi ¼ aj1i þ
bj2i and jφi ¼ aj1i þ ibj2i, for any a; b ∈ R, the fact that
hψ jY 0jψi ¼ hφjY 0jφi ¼ 0 implies that h1jY 0j2i ¼ 0. Since
this is true for any orthonormal states, we have that Y 0 ¼ 0,
in the sense that, as an operator, its matrix elements vanish.
This then implies the operator equation EðYÞ ¼ Y.
So long as Eð·Þ is constructed through functions of an

operator X ∈ AðRÞ, for some region R ⊂ K, then the map

Eð·Þ is local to K. In the above example of an ideal
measurement of X, the projectors En are functions of X,
specifically indicator functions, and hence they commute
with all operators spacelike to X, and thus Eð·Þ acts trivially
on such operators.
As discussed above, many local update maps fail a

further causal constraint regarding compositions with other
local maps. To make this precise we make the following
Definition (causal with respect to): An update map

Eð·Þ, local to a compact subsetK, is causal with respect to a
map E0ð·Þ, local to some compact K0 ⊂ Kin, if

E0ðEð·ÞÞjAðK0⊥∩KoutÞ ¼ Eð·Þ: ð7Þ

In other words, E0ð·Þ drops out when the pair of maps act
on operators localizable in Kout and spacelike to K0.
This implies that E0ð·Þ drops out of any expectation values
of operators Y ∈ AðK0⊥ ∩ KoutÞ, i.e., trðρE0ðEðYÞÞÞ ¼
trðρEðYÞÞ. See Fig. 6 for an illustration of the intersection
K0⊥ ∩ Kout used in the definition. Similarly to above, if we
impose this condition on expectation values for all states we
find that it must be true at the operator level, that is, we
arrive at (7).
In the following we remove the dependence of the

map E0ð·Þ.
Definition (strongly causal): An update map Eð·Þ,

local to a compact subset K, is strongly causal if it is causal
with respect to all maps E0ð·Þ local to all compact K0 ⊂ Kin.
We use the term “strongly causal” (and apologize for

doing so, given the standard meaning in Lorentzian
geometry) because this property may seem too strong at
a first glance. For instance, it could be too much to ask of a
map to be causal with respect to all local maps, especially if

FIG. 6. Spacetime diagram of a compact subset K, its corre-
sponding out-region Kout (all points above the dashed line), and a
compact subset K0 ⊂ Kin (note thatKin is not shown, but it should
be clear that K0 is not in the future of K). The dotted lines
illustrate the causal complement K0⊥, and the areas shaded with a
gradient show the intersection K0⊥ ∩ Kout used in the definition
of the term causal with respect to This definition encodes the fact
that any expectation values measured in K0⊥ ∩ Kout, and hence
measured in a region spacelike to K0, should only depend on the
map Eð·Þ local to K and not on E0ð·Þ local to K0.
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those local maps are themselves not causal with respect to
some other maps. With this in mind we make the following
weaker definition.
Definition (weakly causal): An update map Eð·Þ, local

to a compact subset K, is weakly causal if it is causal with
respect to all strongly causal maps E0ð·Þ local to all
compact K0 ⊂ Kin.
Any strongly causal map is causal with respect to all

local maps, and so is clearly causal with respect to the
subset of local maps which are strongly causal themselves.
That is, any strongly causal map is also weakly causal;
hence why the latter condition is weaker.
It seems physically reasonable to think that strong

causality is as strong as it gets for update maps, since,
on the contrary, it seems physically unreasonable to
demand that a map Eð·Þ is causal with respect to maps
that are not even local (as well as all local maps). Strong
causality being the strongest condition then implies that
weak causality is the weakest condition, as to define a
weaker condition on a map Eð·Þ requires a smaller set of
local maps (smaller than the set of strongly causal maps)
with which Eð·Þ must be causal with respect to. In this way
strong and weak causality seem to determine natural upper
and lower limits of what one can expect from causality
respecting maps under composition.
In Sec. III B we will sketch an argument as to why strong

and weak causality are in fact the same, and hence we will
simply refer to maps as causal if they satisfy strong/weak
causality. Furthermore, we will also argue that the causal
maps are precisely those that have the physically intuitive
past-support nonincreasing (PSNI) property, where
Definition (PSNI): An update map Eð·Þ, local to a

compact subset K, is past-support nonincreasing (PSNI) if
it satisfies

EðAðRþÞÞ ⊆ AðR−Þ; ð8Þ

for all regions Rþ ⊆ Kout and R− ⊆ Kin with R̄þ ⊂ DðR−Þ.
This is physically intuitive as for any operator X,

localizable in some region Rþ within the out-region for
Eð·Þ, if we localise EðXÞ in the in-region for Eð·Þ, then the
PSNI property says that its support is not pushed outside
the past lightcone of Rþ. Conversely, imagine for some
Rþ ⊆ Kout there exists some R− ⊆ Kin with R̄þ ⊂ DðR−Þ
for which EðAðRþÞÞ⊈AðR−Þ. Any valid localization
region containing a Cauchy surface for R−, that is, any
R0
− ⊆ Kin with DðR−Þ ⊆ DðR0

−Þ and EðAðRþÞÞ ⊆ AðR0
−Þ,

must be strictly larger in spatial extent than R−, in the
sense that DðR−Þ ⊂ DðR0

−Þ. This is required since we need
AðR−Þ ⊂ AðR0

−Þ to have any hope of localizing EðAðRþÞÞ
in R0

−. Given that R̄þ ⊂ DðR−Þ, R− necessarily extends
outside the past lightcone of R̄þ, and hence any such R0

−
must do as well, e.g., Fig. 7. This PSNI property is almost
exactly that given in [16,18] in the case of a scattering map

for an interaction of a quantum field with another probe
quantum field.
One can consider the n-map generalization of (7), where

a given map drops out if it is spacelike to the operator that
the composition acts on. For a sequence of n PSNI maps
E1ð·Þ;…; Enð·Þ, local to K1;…; Kn respectively, where
Kr ⊂ ðKsÞin whenever r < s, this n-map generalization
of (7) is satisfied. This can be shown by starting from
the innermost map and working outwards. Applying any
map can only change the operator it acts on in a way that
keeps its support in the past lightcone of X, and hence, at
any stage of the composition, the application of a map
spacelike to X will be trivial. Given this n-map property
follows from the PSNI property, which (we will show)
follows from the 2-map causality conditions above, we see
that further n-map causality conditions for n > 2 are
redundant.
It should also be noted that the above definitions (local,

strongly/weakly causal, and PSNI) apply more generally to
maps on the physical subalgebra of a complex scalar or
fermionic QFT. That being said, the argument in Sec. III B
for the equivalence of the different causality conditions
does not generalise so straightforwardly, and is left for
future work.

D. Analogous picture in lattice systems

The above locality and causality conditions on update
maps are even more transparent in a lattice, or multipartite,
system.
Consider a lattice of N sites. Recall that an operator X is

local to site n if it can be expressed as X ¼ 11 ⊗ … ⊗
1n−1 ⊗ Xn ⊗ … ⊗ 1N , i.e., it is only nontrivial (not the
identity) on site n. Similarly, an update map, Eð·Þ is local to
some subset of sites if, when expressed in terms of

FIG. 7. Illustration of the past-support nonincreasing (PSNI)
property for an update map Eð·Þ local to some compactK. For any
region Rþ in the out-region for K, and any region R− in the in-
region for K, such that the closure of Rþ is contained in the
domain of dependence of R− (as can be seen in the figure), then
(8) must be satisfied for Eð·Þ to be PSNI. Heuristically, Eð·Þ
cannot “push” operators outside their past lightcone.

I. JUBB PHYS. REV. D 105, 025003 (2022)

025003-6



operators, it is only nontrivial (not the identity) on
those sites.
Furthermore, Eð·Þ is PSNI if, for any operator X local to

some subset of sites, EðXÞ is also local to the same subset of
sites; otherwise the support of X has been increased.
Update maps that increase support can be used to

(subluminally) signal between parts of a multipartite
system [5,13,14], and are routinely considered in QI.
Causality is not violated in these cases because any
experimental realizations of the update maps take at least
the light-travel time between the sites to complete.
That is, in NRQM if an update map is support increasing,

or signalling, we do not need to rule it out as physically
unrealizable by any experiment. It is only physically
unrealizable on timescales shorter than the relevant light-
travel time. On the other hand, in QFT certain update maps
must be ruled out completely. Essentially, the relativistic
setting necessitates the specification of the spacetime
regions in which any quantum operations take place.
The causal relations between the specified regions then,
potentially, adds additional constraints [e.g., (7)] on the
physically allowed update maps.

III. UNITARY KICKS

A. Smeared field kicks

Let us consider one of the simplest update maps—a local
unitary kick. Specifically, for some self-adjoint operator A,
localizable in some compact K, we consider the map

B ↦ UAðBÞ ¼ eiABe−iA; ð9Þ

for any operator B ∈ A. Clearly, if B is localizable in a
region spacelike to K, then ½A; B� ¼ 0 and hence
UAðBÞ ¼ B. Thus, the map UAð·Þ is local to K for any A
in K. It is also clear that UAð1Þ ¼ 1. First we consider the
simplest case of smeared field kick, i.e., A ¼ ϕðfÞ for f
supported in K.
For any region R, the subalgebra AðRÞ is generated by

algebraic combinations of smeared fields in R, i.e., by
smeared fields ϕðgÞ for test functions g supported in R.
Alternatively, one can construct any B ∈ AðRÞ through

suitable derivatives of linear combinations of the unitary
Weyl generators eiϕðgÞ, where again g is any test function
supported in R [28]. For instance, to recover the smeared
field ϕðgÞ we can consider the 1-parameter family of Weyl
generators eitϕðgÞ ¼ eiϕðt:gÞ, where t ∈ R. We can then write
ϕðgÞ ¼ −i∂tðeitϕðgÞÞjt¼0. Similarly, for the square we have
ϕðgÞ2 ¼ −∂2

t ðeitϕðgÞÞjt¼0. To recover a product of
two smeared fields, ϕðgÞϕðhÞ say, we instead consider
the 2-parameter family of Weyl generators eiϕðt:gþs:hÞ ¼
eitϕðgÞþisϕðhÞ, where t; s ∈ R. Using the Baker-Campbell-
Hausdorff (BCH) formula [29–32] and the CCR’s in (2)
one can verify that

eitϕðgÞþisϕðhÞ ¼ e
i
2
Δðg;hÞtseitϕðgÞeisϕðhÞ; ð10Þ

and hence

− ∂t∂sðe−i
2
Δðg;hÞtseitϕðt:gþs:hÞÞjt¼0;s¼0

¼ −∂t∂sðeitϕðgÞeisϕðhÞÞjt¼0;s¼0

¼ ð−i∂tðeitϕðgÞÞjt¼0Þð−i∂tðeisϕðhÞÞjs¼0Þ
¼ ϕðgÞϕðhÞ; ð11Þ

as desired. In a similar fashion one can recover any
B ∈ AðRÞ, i.e., any algebraic combination of smeared
fields, through appropriate complex sums and derivatives
of Weyl generators.
Wewill say that any complex linear combination of Weyl

generators, e.g.,
P

n
i¼1 cie

iϕðgiÞ for ci ∈ C, is localizable in a
given region R if it contains the supports of all the functions
gi. This ensures that localization regions are unchanged
when taking derivates of the Weyl generators to recover
sums and products of smeared fields.
Since UAð·Þ is linear we can also recover UAðBÞ, for any

B ∈ AðRÞ, through suitable complex sums and derivatives
of terms of the form UAðeitϕðgÞÞ. Therefore, we need only
determine the action of UAð·Þ on a general Weyl gener-
ator eitϕðgÞ.
Using the Baker-Campbell-Hausdorff (BCH) formula

one can verify that

UϕðfÞðeitϕðgÞÞ ¼ eiϕðfÞeitϕðgÞe−iϕðfÞ

¼ eitΔðg;fÞeitϕðgÞ: ð12Þ

Since the right-hand side (rhs) is proportional to the
original Weyl generator eitϕðgÞ, which is localizable in R,
we see that UϕðfÞðeitϕðgÞÞ is also localizable in R. From
this we see that if B is any complex sum of Weyl
generators in AðRÞ, then UϕðfÞðBÞ ∈ AðRÞ, and hence
UϕðfÞðAðRÞÞ ⊆ AðRÞ. This then implies that, for any
E0ð·Þ local to some compact K0 ⊂ Kin,

E0ðUϕðfÞðBÞÞ ¼ UϕðfÞðBÞ; ð13Þ

for any B localizable in K0⊥ ∩ Kout. This follows as
UϕðfÞð·Þ does not change the localization of B, thus
UϕðfÞðBÞ is also localizable in K0⊥ ∩ Kout ⊆ K0⊥, and
hence also localizable in K0⊥. Since E0ð·Þ is local to K0,
E0ð·Þ then acts trivially on UϕðfÞðBÞ.
This argument holds for all maps local to any compact

K0 ⊂ Kin, and hence UϕðfÞð·Þ is strongly causal. Since this
is the strongest (physically reasonable) causality condition
we can impose on a given map, there is no reason (at least at
the level of the theory) to think that UϕðfÞð·Þ is not
physically realizable in experiments. Of course, this may
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not be surprising to many readers given the simple form of
the map.

B. Kicking causality conditions into shape

We will now use these strongly causal smeared field
kicks to show that any weakly causal map satisfies the
PSNI property. Following this we will show that the PSNI
property implies strong causality. Since strongly causal
maps are also weakly causal, this implies that weak
causality is in fact equivalent to strong causality, and to
the PSNI property. Thus, for real scalar QFT, causal maps
are precisely those that are PSNI.

1. Weakcausality ⇒PSNI for real scalar QFT

Recall that a weakly causal map Eð·Þ is causal with
respect to all strongly causal maps. This means any weakly
causal map, local to some compact K, must be causal with
respect to all smeared field kicks UϕðfÞð·Þ with f compactly
supported in Kin. That is,

UϕðfÞðEð·ÞÞjAðK0⊥∩KoutÞ ¼ Eð·Þ; ð14Þ

for all f supported in any compact K0 ⊂ Kin. In particular,
this implies that Eð·Þ is causal with respect to the
1-parameter family of smeared field kicks Uϕðλ:fÞð·Þ ¼
UλϕðfÞð·Þ for λ ∈ R. Substituting UλϕðfÞð·Þ into (14) we
see that the rhs does not depend on λ, and hence derivatives
with respect to λ must kill both sides. Using this as a
condition on the lhs gives, for any B ∈ AðK0⊥ ∩ KoutÞ,

0 ¼ i∂λðUλϕðf1ÞðEðBÞÞÞjλ¼0

¼ i∂λðeiλϕðf1ÞEðBÞÞe−iλϕðf1ÞÞjλ¼0

¼ ½EðBÞ;ϕðfÞ�: ð15Þ

The vanishing of this commutator is also sufficient for (14),
as it implies that EðBÞ commutes with eiϕðfÞ, and
hence UϕðfÞðEðBÞÞ ¼ UϕðfÞð1ÞEðBÞ ¼ EðBÞ.
In short, for any weakly causal map Eð·Þ (local to

compact K), any f supported in any compact K0 ⊂ Kin,
and any B localizable in K0⊥ ∩ Kout, we have
½EðBÞ;ϕðfÞ� ¼ 0. For any region R ⊂ K0, any operator
A ∈ AðRÞ is some algebraic combination of smeared fields
in K0, and hence ½EðBÞ; A� ¼ 0. Since this is true for all
A and B, localizable in their respective regions, we get
½EðAðK0⊥ ∩ KoutÞÞ;AðRÞ� ¼ 0. In other words,

EðAðK0⊥ ∩ KoutÞÞ ⊆ AðRÞ⊥; ð16Þ

for any region R ⊂ K0, and any compact K0 ⊂ Kin. To help
visualise these subsets one can imagine Fig. 6 but with the
addition of a region R ⊂ K0.
Importantly, (16) is true if we pick K0 in a way that

matches the setup of the PSNI property. To do this we first

pick any pair of regions Rþ ⊆ Kout and R− ⊆ Kin such that
R̄þ ⊂ DðR−Þ (cf. the PSNI condition). Since R− is a region
it is globally hyperbolic in its own right, and hence it has a
Cauchy surface S. Given that R̄þ ⊂ DðR−Þ, we know
that all past causal curves from R̄þ pass through S,
specifically through the surface T ¼ J−ðR̄þÞ ∩ S. Note
that T ⊂ S ⊂ R−. See Fig. 8 for an illustration of these
surfaces.
Working toward (16) we now define the region

R0 ¼ T⊥ ∩ Kin ⊆ T⊥ (see Fig. 8), which we will use
shortly to introduce the subsets K0 and R ⊂ K0 that appear
in (16).
Before doing that, however, it will be useful to show that

AðR0Þ ¼ AðT⊥Þ, which can be seen as follows. As R0 is a
region it contains a Cauchy surface Σ. Importantly, Σ is also
a Cauchy surface for T⊥, since any inextendible timelike
curve γ ⊂ T⊥ will either be entirely contained in R0 (in
which case it must intersect Σ by virtue of it being Cauchy
surface for R0) or it passes into JþðKÞ (note it cannot lie
entirely in JþðKÞ as K is compact and γ must be past
inextendible), in which case the curve γ0 ¼ γnJþðKÞ is a
timelike curve in R0 (with no endpoints in R0, and hence
inextendible in R0) and hence intersects Σ, thus implying γ
also intersects Σ. One can get an intuition for this result via
Fig. 8. By the time-slice property of subalgebras we then
have AðR0Þ ¼ AðT⊥Þ as desired.
We are now ready to apply (16). Specifically, if we pick

any compact K0 ⊂ R0, and any region R ⊂ K0 (see Fig. 8),

FIG. 8. An illustration of the surfaces Σ (thin line), S (medium
thickness line), and T (thick line lying over the part of S to the past
of R̄þ). The past-directed lightlike dashed lines from Rþ indicate
the boundaries of the past set J−ðR̄þÞ (note J−ðR̄þÞ contains these
boundary points). The region T⊥ consists of all points to the left
and right of the dotted lightlike lines (not including the dotted
lines) emanating from the endpoints of T. The region Kin lies
strictly to the past of the dotted and dashed line. The area shaded
with a gradient is the regionR0 ¼ T⊥ ∩ Kin used in the proof. Note
that the position of K in this example means that R0 is not the
entirety ofT⊥. This is not always the case, however, and for certain
setups R0 ¼ T⊥. Finally, examples of the subsetsK0 ⊂ R0 and R ⊂
K0 have been shown to help illustrate the proof.
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equation (16) holds. From the setup we also have that
R̄þ ⊆ K0⊥, and in particular, Rþ ⊆ K0⊥ ∩ Kout, since Rþ ⊆
Kout by construction. Therefore, AðRþÞ ⊆ AðK0⊥ ∩ KoutÞ,
and hence EðAðRþÞÞ ⊆ EðAðK0⊥ ∩ KoutÞÞ ⊆ AðRÞ⊥ by
(16). Since this is true for all bounded regions R ⊂ R0

we have EðAðRþÞÞ ⊆ AðR0Þ⊥ ¼ AðT⊥Þ⊥. Finally,
using the Haag property, we know that AðT⊥Þ⊥ ⊆ AðR−Þ,
since R− is a region containing T. Therefore,
EðAðRþÞÞ ⊆ AðR−Þ, c.f. the PSNI condition.

2. PSNI ⇒ strong causality

Above we used strongly causal smeared fields kicks to
show that any weakly causal map is PSNI. To complete the
argument that weak and strong causality are the same in
real scalar QFT, and equivalent to PSNI, we will now show
that PSNI implies strong causality. Such an argument
renders the three properties equivalent as strong causality
already implies weak causality.
First, we pick any compact K0 ⊂ Kin. For any region

Rþ ⊂ Kout, with compact closure R̄þ ⊂ K0⊥, we follow
Lemma’s 3 and 4 of [16] to show that R̄þ is contained in the
domain of dependence of the region K0⊥ ∩ Kin. Setting
R− ¼ K0⊥ ∩ Kin we then have EðAðRþÞÞ ⊆ AðK0⊥ ∩ KinÞ
by PSNI. As K0⊥ ∩ Kin ⊆ K0⊥ we then have EðAðRþÞÞ ⊆
AðK0⊥Þ, and hence any map E0ð·Þ local to K0 act trivially on
EðAðRþÞÞ. This argument holds for any region Rþ ⊂ Kout
whose compact closure is spacelike to K0, and hence it
holds on the subalgebra AðK0⊥ ∩ KoutÞ. That is, any map
E0ð·Þ local to K0 acts trivially on EðAðK0⊥ ∩ KoutÞÞ. This is
precisely the condition of strong causality, and thus PSNI
implies strong causality.
Notably, this last argument that PSNI implies strong

causality uses only the spacetime causal structure and the
basic properties of a physical algebra in AQFT, namely
Einstein causality, isotony, and the time-slice property.
Thus, the argument straightforwardly generalizes to the
physical subalgebras of complex scalar and fermionic
QFT’s. That is, the chain of implications PSNI ⇒
strong causality ⇒ weak causality holds more gener-
ally. The implication weak causality ⇒ PSNI, on the
other hand, was only shown above for real scalar fields. We
leave the extension of this latter implication to other fields
for future work.
Going forward we will consider unitary kicks with other,

more complicated operators in real scalar QFT, and then
Gaussian measurement maps and other 1-parameter fam-
ilies of Kraus operators in Sec. IV. In every case we will
determine if the respective map is causal using the PSNI
property. In many cases the update maps will not be PSNI,
despite being local. In such cases the update maps must be
ruled out as physically impossible to implement in experi-
ments. Conversely, to implement them is to open the door
to potential causality violations.

C. Other unitary kicks

Let us now consider the slightly more complicated case
of A ¼ ϕðfÞ2. Using the BCH formula again, one can
verify that UϕðfÞ2ð·Þ acts on the 1-parameter family of Weyl

generators, eitϕðgÞ, as

UϕðfÞ2ðeitϕðgÞÞ ¼ e−it
2Δðf;gÞ2e−i2tΔðf;gÞϕðfÞeitϕðgÞ: ð17Þ

If f is supported in some compact K ⊂ M, and g is
supported in some compact K0 ⊂ Kout, then Δðf; gÞ is
not necessarily zero. In such a case UϕðfÞ2ðeitϕðgÞÞ may not
be localizable in the support of g, as it now depends on
ϕðfÞ, which may not be localizable in suppg if
suppf⊈suppg. Crucially, suppf may contain points that
are spacelike to suppg, and hence the past-support can now
include the past lightcone of the support of f. Thus
UϕðfÞ2ð·Þ is not PSNI, and hence not causal.
For clarity let us show explicitly how a causality

violation can arise. Consider the setup in Fig. 1: two
compact subsets K, K0, and some region R, such that K is
spacelike to the compact closure of R, K0 ⊂ Kin and
R ⊂ Kout. Consider three test functions f, g, h, where f
is supported in K, g in R, and h in K0. Let the initial state of
the system be ρ.
Now consider three independent agents, Alice, Charlie,

and Bob, who perform actions in K0, K, and R respectively.
Alice kicks in K0 with the smeared field ϕðλ:hÞ ¼ λϕðhÞ
(for some kick strength λ ∈ R), and hence the state gets
updated as ρ ↦ ρ0 ¼ ŨϕðhÞðρÞ, where we have used the
dual map ŨϕðhÞð·Þ since we are updating the state. In K
Charlie enacts the operation under question, UϕðfÞ2ð·Þ, and
hence the state is further updated as ρ0 ↦ ρ00 ¼ ŨϕðfÞ2ðρ0Þ.
Note that Charlie’s update is applied after Alice’s, as K0
has some points to the past ofK (ifK is spacelike toK0 then
the order does not matter as the maps commute). In R Bob
measures the expected value of ϕðgÞ, which is given by

trðρ00ϕðgÞÞ ¼ trðρUλϕðhÞðUϕðfÞ2ðϕðgÞÞÞÞ; ð18Þ

where we have reverted to the update maps on the operators
instead of the state. Focusing on UϕðfÞ2ðϕðgÞÞ we have

UϕðfÞ2ðϕðgÞÞ ¼ −i∂tðUϕðfÞ2ðeitϕðgÞÞÞjt¼0

¼ −i∂tðe−it2Δðf;gÞ2e−i2tΔðf;gÞϕðfÞeitϕðgÞÞjt¼0

¼ ϕðgÞ − 2Δðf; gÞϕðfÞ; ð19Þ

using (17). Since R is not spacelike toK,Δðf; gÞ is nonzero
in general. To compute Bob’s expectation value we then
need to act with Alice’s kick, UλϕðhÞð·Þ, where we recall that
½ϕðhÞ;ϕðgÞ� ¼ 0 (since K0 is spacelike to R), and that
½ϕðhÞ;ϕðfÞ� ¼ iΔðh; fÞ, which is nonzero in general since
K0 is not spacelike to K. We find
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UλϕðhÞðUϕðfÞ2ðϕðgÞÞÞ ¼ UλϕðhÞðϕðgÞ − 2Δðf; gÞϕðfÞÞ
¼ ϕðgÞ − 2Δðf; gÞUλϕðhÞðϕðfÞÞ
¼ ϕðgÞ þ 2iΔðf; gÞ∂tðUλϕðhÞðeitϕðfÞÞÞjt¼0

¼ ϕðgÞ þ 2iΔðf; gÞ∂tðeitλΔðf;hÞeitϕðfÞÞjt¼0

¼ ϕðgÞ − 2Δðf; gÞðϕðfÞ þ λΔðf; hÞÞ; ð20Þ

where we have used (12) and the fact that ½ϕðhÞ;ϕðgÞ� ¼ 0
to say that Alice’s kick acts trivially on ϕðgÞ. To achieve a
violation of causality we now need to show that there is
some initial state ρ for which Bob’s expectation value
depends on λ—the strength of Alice’s kick. An obvious
choice is the usual vacuum state, ρ ¼ jΩihΩj, for which
odd n-point functions vanish, and hence trðρϕðfÞÞ ¼ 0 for
any test function f. For Bob’s expectation value we then
find

trðρ00ϕðgÞÞ ¼ trðρðϕðgÞ − 2Δðf; gÞðϕðfÞ þ λΔðf; hÞÞÞÞ
¼ 2λΔðh; fÞΔðf; gÞ: ð21Þ

The fact that this depends on λ (Alice’s kick strength)
enables Alice to superluminally signal Bob, provided they
have an agreed-upon “code,” e.g., to send the bit “0” Alice
does not kick (λ ¼ 0), which Bob can discern from the
vanishing of his expectation value; to send the bit ‘1’ Alice
kicks with some sufficient strength ðλ ≠ 0Þ, which Bob can
pick up from his nonzero expectation value. Note that this
signal is statistical, since Bob picks it up at the level of an
expectation value. In each realization of the experiment this
value will fluctuate. To make this protocol more robust to
fluctuations many copies of the system can be setup in
parallel, such that Bob receives a statistically significant
amount of data in R to be able to discern, up to some
desired accuracy, whether his expected value vanishes
or not.
Since Alice (in K0) and Bob (in R) are spacelike

separated, this transmission of information is faster than
light! This violates causality, and hence this protocol must
be impossible. We know that Alice’s kick is causal, and we
assume Bob can measure his expectation value without
violating causality (in Sec. IVG we will offer one way to
achieve this). Therefore, the only conclusion we can draw is
that Charlie’s operation, UϕðfÞ2ð·Þ, is impossible to imple-
ment in K.
To avoid any causality violations we must therefore rule

out the map UϕðfÞ2ð·Þ as physically unrealizable via experi-
ments. This may seem somewhat surprising, given that we
have simply unitarily kicked with an operator that is
localizable in some bounded region, i.e., ϕðfÞ2, and given
that analogous unitary kicks are standard in NRQM and
lattice systems. We will comment further on why this

distinction arises between NRQM and the relativistic
setting of QFT in Sec. VI.
One can further investigate unitary kicks with other self-

adjoint operators. For many simple cases, where A is not a
sum of generators, i.e., not of the form ϕðfÞ þ c1 (for some
c ∈ R), we find that the unitary kicks increase past-support,
similarly to A ¼ ϕðfÞ2. This suggests that only kicks with
generators (smeared fields and the identity) are permissible
with respect to causality. We will not provide a more
rigorous argument for this claim here. Instead, we postpone
that more rigorous discussion for the next section, wherein
we will argue the analogous conclusion that Gaussian
measurements of smeared fields are the only permissible
Gaussian measurements. The arguments used there can
then be readily applied to unitary kicks.

IV. MEASUREMENTS

A. Preliminaries

Consider some self-adjoint operator C ∈ AðRÞ, localiz-
able in the region R. Consider some function G∶R → C.
Provided G is a measurable function the operator GðCÞ
can be defined through functional calculus [33], even
if C is unbounded. Specifically, via the Spectral
Theorem [33] we can write C using its projection-valued
measure, PC, as

C ¼
Z
R
λdPCðλÞ; ð22Þ

from which any measurable function of C is defined as

GðCÞ ¼
Z
R
GðλÞdPCðλÞ: ð23Þ

Note that the projection-valued measure satisfiesR
R dPCðλÞ ¼ 1.
For any measurable G that is normalized in L2ðRÞ,

that is,

Z
R
dαGðαÞ�GðαÞ ¼ 1; ð24Þ

we can define the corresponding update map for C:
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EG
CðBÞ ¼

Z
R
dαGðC − αÞ†BGðC − αÞ; ð25Þ

for any B ∈ A. The operators GðC − αÞ, for all α ∈ R,
furnish a 1-parameter family of Kraus operators. One can
also consider a discrete family of Kraus operators, e.g., a
discrete set of projectors in an ideal measurement, but we
will see it is more beneficial to consider a continuum of
Kraus operators.
The fact thatG is normalized, and that (24) holds even ifwe

change GðαÞ�GðαÞ ↦ Gðc − αÞ�Gðc − αÞ for any c ∈ R,
implies that EG

Cð1Þ ¼ 1. Furthermore, since GðC − αÞ
commutes with everything that C commutes with, we
have that EG

CðBÞ ¼ B for all B localizable in some region
spacelike to C. That is, the map EG

Cð·Þ is local for any choice
of G.
Note that the dual map that acts on the state ρ is

given by

ẼG
CðρÞ ¼

Z
R
dαGðC − αÞρGðC − αÞ†: ð26Þ

We will often consider the specific case of Gaussian
measurements involving the Gaussian Kraus operators

GσðC − αÞ ¼ e−
ðC−αÞ2
4σ2

ð2πσ2Þ14 ; ð27Þ

where σ > 0 is interpreted as the measurement accuracy.
For convenience we denote the corresponding update
map as Eσ

Cð·Þ. Note that GσðC − αÞ† ¼ GσðC − αÞ.
Such Gaussian update maps are ubiquitous in weak
measurements and continuous measurement models
[21,22].
Eσ
Cð·Þ describes a nonselective measurement, where

no outcome is conditioned on. If one instead conditions
on some measurement outcome, say α landing in some
interval ½a; b� ⊂ R, then the associated selective update
map is

Eσ
C;½a;b�ðBÞ ¼

1

P½a;b�

Z
b

a
dαGσðC − αÞBGσðC − αÞ; ð28Þ

where P½a;b� denotes the probability for α to land in the
interval ½a; b�. The appearance of P½a;b� in the denominator
ensures that the updated state is normalized, i.e.,
trðẼσ

C;½a;b�ðρÞÞ ¼ 1. The probability P½a;b� is given by

P½a;b� ¼ tr

�
ρ

Z
b

a
dαGσðC − αÞ2

�
¼

Z
b

a
dαpðαÞ; ð29Þ

where we have written the last line in terms of the
probability density function (pdf) for α:

pðαÞ ¼ trðρGσðC − αÞ2Þ

¼ 1

σ
ffiffiffiffiffiffi
2π

p trðρe−ðC−αÞ2
2σ2 Þ: ð30Þ

The average outcome is then given by the usual formula in
terms of this pdf:

EðαÞ ¼
Z
R
dααpðαÞ; ð31Þ

and similarly for higher moments.
If C has eigenvectors in the Hilbert space, e.g.,

if C is compact self-adjoint, then the σ → 0 limit of
Eσ
Cð·Þ describes an ideal measurement of C. That is,

limσ→0 Eσ
Cð·Þ ¼ E0

Cð·Þ [using the notation from (5)]. To
see this, we first spectrally decompose C as

C ¼
X
n

cnEn; ð32Þ

where the sum runs over some countable set labelling
the distinct eigenvalues cn and the associated orthogonal
projectors En. For any function F∶R ↦ C we can compute
that same function of the operator C. Specifically, FðCÞ is
the sum over the projectors En multiplied by that
same function of the eigenvalues, FðcnÞ. We can therefore
write

GσðC − αÞ ¼
X
n

Gσðcn − αÞEn: ð33Þ

The update map, acting on any operator B, then
simplifies to

Eσ
CðBÞ ¼

Z
∞

−∞
dα

X
n;m

Gσðcn − αÞGσðcm − αÞEnBEm

¼
X
n;m

e−
ðcn−cmÞ2

8σ2 EnBEm; ð34Þ

after evaluating the integral over α in the first line.

We then note that e−
ðcn−cmÞ2

8σ2 → δnm as σ → 0, leaving

lim
σ→0

Eσ
CðBÞ ¼

X
n

EnBEn; ð35Þ

which matches the form of a nonselective ideal measure-
ment of C, i.e., E0

Cð·Þ. Since Eσ
Cð·Þ has this limit, one often

thinks of this Gaussian measurement as a less sharp ideal
measurement, though if C is not compact (but still self-
adjoint) then this limit may not be well-defined.
In what follows it will be useful to determine

U tϕðgÞðGðCÞÞ for any smeared field ϕðgÞ and t ∈ R.
First, it is easy to see that
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U tϕðgÞðϕðfÞÞ ¼ eitϕðgÞϕðfÞe−itϕðgÞ
¼ ϕðfÞ þ tΔðf; gÞ ð36Þ

for any ϕðfÞ. This can be verified by expanding the
exponentials. Similarly, for two smeared fields, ϕðf1Þ
and ϕðf2Þ, we have

U tϕðgÞðϕðf1Þϕðf2ÞÞ
¼ eitϕðgÞϕðf1Þϕðf2Þe−itϕðgÞ
¼ eitϕðgÞϕðf1Þe−itϕðgÞeitϕðgÞϕðf2Þe−itϕðgÞ
¼ ðϕðf1Þ þ tΔðf1; gÞÞðϕðf2Þ þ tΔðf2; gÞÞ; ð37Þ

where we have inserted 1 ¼ e−itϕðgÞeitϕðgÞ in the second last
line. It is then clear that, for any polynomial in smeared
fields Pðϕðf1Þ;…;ϕðfnÞÞ,

U tϕðgÞðPðϕðf1Þ;…;ϕðfnÞÞÞ
¼ Pðϕðf1Þ þ tΔðf1; gÞ;…;ϕðfnÞ þ tΔðfn; gÞÞ: ð38Þ

Below we consider operators C of this form,
e.g.,C ¼ Pðϕðf1Þ;…;ϕðfnÞÞ. Therefore, definingCðtgÞ¼
U tϕðgÞðCÞ, we have

CðtgÞ¼Pðϕðf1Þþ tΔðf1;gÞ;…;ϕðfnÞþ tΔðfn;gÞÞ: ð39Þ

We can similarly show that U tϕðgÞðC2Þ ¼ CðtgÞ2 by

inserting 1 ¼ e−itϕðgÞeitϕðgÞ between the C’s. Going further,
for any polynomial Q in a single variable we have

U tϕðgÞðQðCÞÞ ¼ QðCðtgÞÞ: ð40Þ

This can be extended to any analytic function, G∶R → C,
using the Taylor expansion for G and inserting
1 ¼ e−itϕðgÞeitϕðgÞ between any two C’s. We now have

U tϕðgÞðGðCÞÞ ¼ GðCðtgÞÞ: ð41Þ

Since Hermite functions (the basis for the quantum har-
monic oscillator) form an analytic orthonormal basis that is
dense in L2ðRÞ, we can extend the above action of U tϕðgÞð·Þ
on GðCÞ to all L2 functions G, i.e., to all square-integrable
functions.

B. Operations with a smeared field

1. A general 1-parameter family of Kraus operators

Consider the simplest case of C ¼ ϕðfÞ, for f supported
in some compact K. Given some L2 function, G, and the
corresponding update map, EG

ϕðfÞð·Þ, we can determine

whether it is causal by acting on Weyl generators eitϕðgÞ
for some g supported in Kout. We have

EG
ϕðfÞðeitϕðgÞÞ ¼

Z
R
dαGðϕðfÞ − αÞ†eitϕðgÞGðϕðfÞ − αÞ

¼
Z
R
dαGðϕðfÞ − αÞ†eitϕðgÞGðϕðfÞ − αÞe−itϕðgÞeitϕðgÞ

¼
Z
R
dαGðϕðfÞ − αÞ†GðϕðfÞ þ tΔðf; gÞ − αÞeitϕðgÞ

¼ HðtΔðf; gÞÞeitϕðgÞ: ð42Þ

where we have defined the function H in terms of G as

HðtÞ ¼
Z
R
dβGðβÞ�Gðβ þ tÞ; ð43Þ

for any t ∈ R, and we have used (41) to write
eitϕðgÞGðϕðfÞ − αÞe−itϕðgÞ ¼ GðϕðfÞ þ tΔðf; gÞ − αÞ. To
get the last line we used (23). Specifically, using (23)
we can write

Z
R
dαGðϕðfÞ−αÞ†GðϕðfÞþ tΔðf;gÞ−αÞ

¼
Z
R

Z
R
dαGðλ−αÞ�Gðλþ tΔðf;gÞ−αÞdPϕðfÞðλÞ; ð44Þ

The interior integral in the last line does not depend on λ, as
for any λ ∈ R we have

Z
R
dαGðλ − αÞ�Gðλþ tΔðf; gÞ − αÞ

¼
Z
R
dβGðβÞ�Gðβ þ tΔðf; gÞÞ

¼ HðtΔðf; gÞÞ; ð45Þ

where we have changed variables from α to β ¼ λ − α.
Note that HðtΔðf; gÞÞ is finite as G is an L2 function, and
hence it has a finite L2 product with any other L2 function
(by the Cauchy-Schwarz inequality), including a shifted
version of itself.
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Now (44) becomesZ
R
dαGðϕðfÞ − αÞ†GðϕðfÞ þ tΔðf; gÞ − αÞ

¼
Z
R
HðtΔðf; gÞÞdPϕðfÞðλÞ

¼ HðtΔðf; gÞÞ
Z
R
dPϕðfÞðλÞ

¼ HðtΔðf; gÞÞ1; ð46Þ

where HðtΔðf; gÞÞ can be moved outside the integral as it
does not depend on λ. The last line of (42) now follows.
From (42) we can see that EG

ϕðfÞðeitϕðgÞÞ is proportional to
the original Weyl generator eitϕðgÞ, with proportionality
constant HðtΔðf; gÞÞ, and hence we know that
EG
ϕðfÞðeitϕðgÞÞ is localizable in the same region as eitϕðgÞ.

Therefore, for any region R ⊆ Kout, EG
ϕðfÞðAðRÞÞ ⊆ AðRÞ,

and thus EG
ϕðfÞð·Þ is causal.

Notably, this is true for any L2 function G. The precise
form of G will determine the precise form of H, and hence
the exact effect of the operation on any future measure-
ments. Importantly, the support is never increased for any
choice ofG, and hence maps of this form are always causal.
We also note that the addition of a real constant to ϕðfÞ

does not change the causal nature of these update maps.
This can be seen my repeating (44) with C ¼ ϕðfÞ þ c1 for
some c ∈ R:

EG
CðeitϕðgÞÞ

¼
Z
R
dαGðϕðfÞ þ c − αÞ†eitϕðgÞGðϕðfÞ þ c − αÞ

¼
Z
R
dα0GðϕðfÞ − α0Þ†eitϕðgÞGðϕðfÞ − α0Þ

¼ HðtΔðf; gÞÞeitϕðgÞ; ð47Þ

where we changed variables to α0 ¼ α − c in line 3, and to
get the last line we used (44). Via the linearity of the
smeared fields, any linear combination of smeared fields
and the identity, i.e., any generator, is of the form
ϕðfÞ þ c1. Thus, the maps EG

Cð·Þ are causal for any
generator C.

2. Gaussian measurements

In the specific case of a Gaussian measurement we get

Eσ
ϕðfÞðeitϕðgÞÞ ¼ e−t

2Δðf;gÞ2
8σ2 eitϕðgÞ: ð48Þ

By taking derivatives with respect to t at t ¼ 0 we find

Eσ
ϕðfÞðϕðgÞÞ ¼ −i∂tðEσ

ϕðfÞðeitϕðgÞÞÞjt¼0

¼ −i∂tðe−t
2Δðf;gÞ2

8σ2 eitϕðgÞÞjt¼0

¼ ϕðgÞ; ð49Þ

and

Eσ
ϕðfÞðϕðgÞ2Þ ¼ −∂2

t ðEσ
ϕðfÞðeitϕðgÞÞÞjt¼0

¼ −∂2
t ðe−t

2Δðf;gÞ2
8σ2 eitϕðgÞÞjt¼0

¼ ϕðgÞ2 þ Δðf; gÞ2
4σ2

: ð50Þ

Therefore, the update map Eσ
ϕðfÞð·Þ does not alter a single

smeared fieldϕðgÞ, but it does alter its square by the addition
of a constant. This of course does not change the localization

region of ϕðgÞ2, since ϕðgÞ2 þ Δðf;gÞ2
4σ2

still commutes with
any smeared field ϕðhÞ that commutes with ϕðgÞ.

3. Toward ideal measurements

Given that the above derivation applies to L2 functions
G, one might hope that we can address the case of an
ideal measurement by considering indicator functions
GðαÞ ¼ 1½a;b�ðαÞ, where 1½a;b�ðαÞ ¼ 1 if α ∈ ½a; b� and 0
otherwise. This does not yet amount to an ideal measure-
ment, however, as we are still integrating over α, rather than
summing over a discrete set fαngn.
Fortunately, this hints at an obvious generalization of the

above derivation. Specifically, we can replace the constant
integration measure, dα, by some more general measure
dμðαÞ, which can depend on α, and may even be a discrete
point measure. In the latter case the integral over α becomes
a sum over some discrete set, fαngn. We can further replace
the function Gðλ − αÞ by some function G̃ðλ; αÞ of two
variables (which still satisfies the relevant normalization
condition).
In this more general picture ideal measurements corre-

spond to using a discrete measure over some set fαngn, and
the choice G̃ðλ; αnÞ ¼ 1An

ðλÞ, where we associate to each
αn a subset An ⊂ R, such that all subsets are mutually
disjoint and their union covers R.
Repeating (46) with these choices gives

Z
R

Z
R
dμðαÞG̃ðλ; αÞ�G̃ðλþ tΔðf; gÞ; αÞdPϕðfÞðλÞ

¼
Z
R

X
n

G̃ðλ; αnÞ�G̃ðλþ tΔðf; gÞ; αnÞdPϕðfÞðλÞ

¼
Z
R

X
n

1An
ðλÞ1An

ðλþ tΔðf; gÞÞdPϕðfÞðλÞ: ð51Þ

The final sum does not obviously simplify to some function
that is independent of λ. If it does then we know [following
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(42) and (46)] that the resulting update map is causal. If it
does not simplify thenH in (42) will, in general, depend on
ϕðfÞ. That is, the action of the associated update map on a
Weyl generator will be of the form

EϕðfÞðeitϕðgÞÞ ¼ HðϕðfÞ; tΔðf; gÞÞeitϕðgÞ: ð52Þ
where HðϕðfÞ; tΔðf; gÞÞ is some nontrivial function of the
operator ϕðfÞ, and hence the localization region of
the Weyl generator may have been increased to include
the localization region of ϕðfÞ. In general, the update map
will be acausal in this case, as suppf may contain points
that are spacelike to suppg.
This argument suggests that ideal measurements of

smeared fields may not be causal, and hence not possible
to realise experimentally. In [4] it was argued (though no
explicit calculation was given) that ideal measurements of
smeared fields are in fact causal. The new insight coming
from (51), that indicates the contrary, is that the discrete
measure arising in an ideal measurement [essentially the
sum in (51)] is “incompatible,” in a certain sense, with the
continuous spectrum of a smeared field [34]. While we
postpone a more thorough investigation of this conjecture
that ideal measurements of smeared fields are acausal, we
note that this calculation further motivates the use of 1-
parameter families, rather than discrete sets, of Kraus
operators.

C. Operations for other operators

Let us now consider the general case, where C is some
algebraic combination of smeared fields (and the identity)
localizable in some compact K. For any L2 function G, the
associated map acts on a Weyl generator eitϕðgÞ ∈ AðRÞ, for
a region R ⊆ Kout, as

EG
CðeitϕðgÞÞ

¼
Z
R
dαGðC − αÞ†eitϕðgÞGðC − αÞ

¼
Z
R
dαGðC − αÞ†eitϕðgÞGðC − αÞe−itϕðgÞeitϕðgÞ

¼
Z
R
dαGðC − αÞ†GðCðtgÞ − αÞeitϕðgÞ; ð53Þ

using (41).
At this point, if C is such that ½C;CðtgÞ� ¼ 0, then the

remainder of the calculation is fairly simple. If
½C;CðtgÞ� ≠ 0, then further computation is more challeng-
ing without specifying C. In Sec. IV F we cover one of the
simplest such cases, specifically C ¼ ϕðf1Þ ⊙ ϕðf2Þ,
where Δðf1; f2Þ ≠ 0. Here ⊙ denotes the symmetric
Jordan product: X ⊙ Y ¼ 1

2
ðXY þ YXÞ, and is required

to make C self-adjoint in this case.
For now we continue the calculation in the case where

½C;CðtgÞ� ¼ 0, and for concreteness we will also focus on
the Gaussian case involving Gσ. We have

GσðC−αÞGσðCðtgÞ−αÞ¼ 1

σ
ffiffiffiffiffiffi
2π

p e−
ðC−αÞ2
4σ2 e−

ðCðtgÞ−αÞ2
4σ2

¼ 1

σ
ffiffiffiffiffiffi
2π

p e−
ðCþðtgÞ−2αÞ2

8σ2 e−
C−ðtgÞ2
8σ2 ; ð54Þ

whereC�ðtgÞ ¼ CðtgÞ � C. Only e−
ðCþðtgÞ−2αÞ2

8σ2 depends on α,

and hence e−
C−ðtgÞ2
8σ2 can be brought outside the integral when

computing Eσ
CðeitϕðgÞÞ. The integral over α then evaluates to

1 and we have

Eσ
CðeitϕðgÞÞ ¼ e−

C−ðtgÞ2
8σ2 eitϕðgÞ: ð55Þ

For some generic C (for which ½C;CðtgÞ� ¼ 0) then C−ðtgÞ
is some nontrivial operator localizable in K. Therefore,
Eσ
CðeitϕðgÞÞ is not necessarily contained in the subalgebra

AðRÞ to which ϕðgÞ is localizable, and hence the locali-
zation region of the Weyl generator may have been
increased to points spacelike to R. In such a case Eσ

Cð·Þ
is not causal.
In Sec. IV E we will argue that, for a large class of

operators, only the generators (smeared fields and the
identity) give rise to Gaussian measurements that are
causal, and hence they are the only operators that are
measurable in this way. Before doing that, however, it will
be helpful to go through a specific example which is not
causal.

D. A simple acausal example

Consider the operator C ¼ ϕðf1Þϕðf2Þ, where f1
and f2 are supported in mutually spacelike compact
subsets K1 and K2 (Fig. 9). Let K ¼ K1 ∪ K2. Since
½ϕðf1Þ;ϕðf2Þ� ¼ 0, there is no need to invoke the Jordan
product ⊙ to ensure C is self-adjoint. Furthermore, the
vanishing of the commutator implies that ½C;CðtgÞ� ¼ 0 for

FIG. 9. Spacetime diagram of the setup in the simple acausal
example. The compact subset K0 is spacelike to K2, and K1 is
spacelike to the region R.
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any test function g supported in some region R ⊆ Kout. One
can also verify that

C−ðtgÞ ¼ tðΔðf2; gÞϕðf1Þ þ Δðf1; gÞϕðf2ÞÞ
þ t2Δðf1; gÞΔðf2; gÞ: ð56Þ

Note that the appearance of ϕðf1Þ and ϕðf2Þ (which are
localizable in regions that are potentially spacelike to R)
means that C−ðtgÞ ∉ AðRÞ in general, and hence we are not
a priori guaranteed that a measurement of C is causal.
Now, consider the action of Eσ

Cð·Þ on ϕðgÞ. We have

Eσ
CðϕðgÞÞ ¼ −i∂tEσ

CðeitϕðgÞÞjt¼0

¼ −i∂tðe−
C−ðt;gÞ2

8σ2 eitϕðgÞÞjt¼0

¼ ϕðgÞ; ð57Þ

and hence the map Eσ
Cð·Þ does not increase the support of

ϕðgÞ. If, however, we act on ϕðgÞ2, we get

Eσ
CðϕðgÞ2Þ ¼ −∂2

t Eσ
CðeitϕðgÞÞjt¼0

¼ ϕðgÞ2 þ 1

4σ2
ðΔðf2; gÞϕðf1Þ

þ Δðf1; gÞϕðf2ÞÞ2: ð58Þ

In this case, the support has been increased to include that
of f1 and f2. If suppf1 and/or suppf2 are outside the past
lightcone of suppg, and if suppg lies partly to the future of
suppf1 and/or suppf2, then Eσ

Cð·Þ increases the support of
ϕðgÞ2 outside its past lightcone.
To highlight the acausal nature of this map we can repeat

the protocol with Alice in some compact K0 ⊂ Kin, Charlie
in K, and Bob in R. Alice unitarily kicks with ϕðhÞ
for h supported in K0, Charlie makes the Gaussian
measurement under question, Eσ

Cð·Þ for C ¼ ϕðf1Þϕðf2Þ,
and Bob measures the expected value of ϕðgÞ2 for g
supported in R.
To simplify the situation we can pick h such that

it is supported in some compact K0 that is spacelike/
timelike to f2=f1, and g supported in some region R that
is spacelike/timelike to f1=f2 (Fig. 9). We therefore have
Δðh; f2Þ ¼ Δðg; f1Þ ¼ 0, but Δðh; f1Þ and Δðg; f2Þ non-
zero in general.
Working through the example as we did in Sec. III C, we

find (taking the initial state as the vacuum state ρ ¼ jΩihΩj)
that Bob’s expected value of ϕðgÞ2 is given by

hϕðgÞ2i þ
�
Δðf2; gÞ

2σ

�
2

ðhϕðf1Þ2i þ λ2Δðf1; hÞ2Þ; ð59Þ

where we have used hXi ¼ trðρXÞ to denote the vacuum
expectation value for brevity. Again, we see it explicitly

depends on Alice’s kick strength, λ, and hence Alice and
Bob can exploit this to superluminally signal each other
(specifically from Alice to Bob). This Gaussian measure-
ment of C ¼ ϕðf1Þϕðf2Þ is therefore not causal, and hence
it cannot be physically realizable in any experiment
contained in spatial extent and duration in K.
It is also not clear in what compact subset, K̃, such a

measurement of C ¼ ϕðf1Þϕðf2Þ is physically realizable.
Specifically, it does not seem possible to find a compact K̃
such that the map Eσ

Cð·Þ, when restricted to the subalgebra
AðK̃outÞ, is PSNI.
Alternatively, we can try and find the “largest” out-

region, K̃out, such that the update map is causal when acting
on any B ∈ AðK̃outÞ, and from that reverse engineer K̃
using the definition K̃out ¼ MnJ−ðK̃Þ. One such candidate
for K̃out is the total future of K. That is, the set of points
x ∈ M such that K ⊆ J−ðxÞ. This is shown in Fig. 10. If
K̃out is the total future of K (specifically its interior to
ensure we have an open set), then K̃ must, at the very least,
be some sort of thickened future lightcone under K̃out (see
Fig. 10). This ensures that K̃out ¼ MnJ−ðK̃Þ. This choice of
K̃ is not unique, and we can even enlarge K̃ to the past in
Fig. 10 such that it includes a Cauchy surface forM. In fact,
if the spacetime M is spatially compact, e.g., the 1þ 1

cylinder spacetime M ¼ R × S1, then the thickened light-
cone will “wrap around,” meaning that K̃ will in fact
contain a Cauchy surface. In any case, K̃ appears have the
property that K̃in ∩ K̃out ¼ ∅, i.e., its in- and out-regions
are disjoint. Furthermore, its past and future sets cover the
entire spacetime. This differs from the case where K is
compact and does not contain a Cauchy surface.
Allowing the operation to occur throughout such a K̃

washes out any causality considerations, as every point
(outside K̃) is either to the past or future of K̃. The area of
spacetime in which the measurement takes place is also not
of finite spatial and temporal extent—a crucial requirement
for any locally realizable experiment. In the absence of a
less trivial candidate subset K̃, it seems that a Gaussian
measurement of C ¼ ϕðf1Þϕðf2Þ is not only impossible in
K, but is also impossible in any compact region that does
not contain a Cauchy surface.
On the other hand, one intuitively expects a measure-

ment of C ¼ ϕðf1Þϕðf2Þ to be possible in some local
sense; surely we do not need to resign to a global operation
over all of space just to measure this localizable operator. In
this vein it is worth highlighting that we have only ruled out
the update map Eσ

Cð·Þ. Perhaps some modification of Eσ
Cð·Þ

would make it causal, and would align better with our
intuition of a local measurement of C ¼ ϕðf1Þϕðf2Þ. The
exact modification may depend upon the details of the
measurement apparatus, for example, it may involve probe
fields as in [18]. Nevertheless, for now we can be sure that
Eσ
Cð·Þ is not physically realizable.
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Following Sec. IV B, we can say however that
the measurements Eσ

ϕðf1Þð·Þ and Eσ
ϕðf2Þð·Þ, for the

single smeared fields ϕðf1Þ and ϕðf2Þ respectively, are
physically realizable. Given these smeared fields commute,
their update maps also commute, i.e., Eσ

ϕðf1ÞðEσ
ϕðf2Þð·ÞÞ ¼

Eσ
ϕðf2ÞðEσ

ϕðf1Þð·ÞÞ, meaning that the measurements can be

thought of as occurring in either order. This physically
makes sense, as their associated regions are spacelike, and
hence there is no causal ordering between them. Therefore,
while a Gaussian measurement of C ¼ ϕðf1Þϕðf2Þ appears
not to be realizable, independent measurements of ϕðf1Þ
and ϕðf2Þ are.
It is also worth noting that the signal from Alice to Bob

gets “weaker” as σ increases. Physically this corresponds to
a decreasing measurement accuracy. The limit of no
measurement accuracy whatsoever, i.e., σ → ∞, is equiv-
alent to no measurement at all. In this limit the past-support
increasing term above vanishes, as expected.
At this point one could argue that, if a future measure-

ment of B ¼ ϕðgÞ2 is somehow limited in its accuracy, then
this Gaussian measurement of C ¼ ϕðf1Þϕðf2Þ is possible
inK, provided its accuracy is low enough (or equivalently if
σ is large enough) to make the second term in the last line of
(58) smaller than a future experimenter can detect. This
connection between the possibility of some measurement
and its accuracy was also noted in [5]. This resolution is
somewhat suspect however, as the allowed accuracy of the
Gaussian measurement of C is determined by the accu-
racies of all future measurements. How can someone
measuring C ¼ ϕðf1Þϕðf2Þ know the measurement limi-
tations of all future experiments? It makes more sense to
turn this restriction around and instead constrain the
accuracy of all measurements to the future of K, given
the accuracy of the measurement of C ¼ ϕðf1Þϕðf2Þ. How
this would work in practice is not clear. One would have to
introduce some mechanism preventing anyone in the future
from obtaining some more accurate measurement than is
allowed by causality.

E. A reasonably general argument

We will now argue that if C is not a generator then Eσ
Cð·Þ

is not causal. We will only show this, however, for the
following restricted class of operators.
Consider any set of smeared fields that are localizable in

compact subsets whose closures are mutually spacelike.
This is shown in Fig. 11. One can then construct the
associated commutative subalgebra, consisting of all alge-
braic combinations of the identity and the commuting
smeared fields. For our general argument we will only
consider operators C belonging to some such commutative
subalgebra formed from smeared fields in some compactK.
Furthermore, we restrict to the case in which C only
involves a finite number of sums and products of smeared
fields.
For example, ϕðf1Þϕðf2Þ satisfies this criteria if f1

and f2 have spacelike supports. On the other hand,
ϕðf1Þ ⊙ ϕðf2Þ, for the supports of f1 and f2 not totally
spacelike, does not satisfy this criteria.
Let K1;…; KN ⊂ K be N compact subsets whose clo-

sures are mutually spacelike, as in Fig. 11, and ϕðf1Þ;…;
ϕðfNÞ the associated smeared fields localizable in the
respective subsets. We then set C ¼ Pðϕðf1Þ;…;ϕðfNÞÞ,
where Pð·Þ is some polynomial in N independent variables.
For such a C it is then clear that ½C;CðtgÞ� ¼ 0, as

CðtgÞ ¼ Pðϕðf1Þ þ tΔðf1; gÞ;…;ϕðfNÞ þ tΔðfN; gÞÞ;
ð60Þ

and ϕðfiÞ þ tΔðfi; gÞ commutes with any other ϕðfjÞ.
Given that ½C;CðtgÞ� ¼ 0, we can apply the derivation in

Sec. IV C to get

Eσ
CðeitϕðgÞÞ ¼ e−

C−ðtgÞ2
8σ2 eitϕðgÞ; ð61Þ

where we recall that C−ðtgÞ ¼ CðtgÞ − C. By expanding in
t we get

C−ðtgÞ ¼
X∞
n¼1

ðitÞn
n!

AdϕðgÞnðCÞ; ð62Þ

where AdXðYÞ ¼ ½X; Y�, and AdXnþ1ð·Þ ¼ AdXðAdXnð·ÞÞ.
The sum terminates at some finite n as, at some point, any
additional commutators with ϕðgÞ vanish. For an example
see equation (56). In fact, if N is the degree of
the polynomial Pð·Þ, then the sum terminates after
N þ 1 terms.
Given the regions Ki are all spacelike, and their closures

do not touch, we can always pick g supported in some
region R that it is spacelike to all but one of the regions Ki.
This is shown in Fig. 11. For convenience we let X ≡ ϕðfiÞ
denote the associated smeared field. ϕðgÞ then commutes
with all the other smeared fields used in the construction

FIG. 10. Spacetime diagram of a compact subset K and its total
future, denoted here by K̃out. The total future of K is the set of
points that contain the entirety of K in their pasts. Also shown is
an example subset K̃ such that K̃out ¼ MnJ−ðK̃Þ.
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of C. The action of AdϕðgÞnð·Þ on C then resembles n
derivatives of the polynomial Pð·Þ with respect to X, up to
factors of iΔðfi; gÞ. In this wayC−ðtgÞ looks very similar to
a Taylor expansion in X of the polynomial Pð·Þ, but with
the constant term (n ¼ 0) thrown away from the sum.
By assumption, C contains some term that is at least

quadratic in smeared fields. That is, the degree of the
polynomial Pð·Þ is at least 2. Therefore, our choice of X can
always be made such that C can be written as

C ¼ C0 þ C1X þ CmXm þOðXmþ1Þ; ð63Þ

where m ≥ 2, and where either (i) Cm ≠ 0, or (ii) Cm ¼ 0
and all higher order terms vanish, but C1 is some poly-
nomial, Qð·Þ, of degree at least 1 in the other varia-
bles ϕðfjÞ ≠ X.
We then have

C−ðtgÞ ¼ tΔðfi; gÞðC1 þmCmXm−1 þOðXmÞÞ þOðt2Þ;
ð64Þ

and hence

Eσ
CðϕðgÞ2Þ ¼ −∂2

t Eσ
CðeitϕðgÞÞjt¼0

¼ ϕðf3Þ2

þ Δðfi; gÞ2
4σ2

ðC1 þmCmXm−1 þOðXmÞÞ2:
ð65Þ

For case (i) we know that Cm ≠ 0, and hence the term on
the last line isOðX2m−1Þ, which is at least OðX2Þ given that
m ≥ 2. This means that Eσ

CðϕðgÞ2Þ has past support which
includes that of X ¼ ϕðfiÞ, and since we can always pick g
such that suppfi has points that are spacelike to suppg, this
means that Eσ

Cð·Þ has increased the past support of ϕðgÞ2 to
outside its past lightcone. Therefore Eσ

Cð·Þ is not causal.
For case (ii) Cm ¼ 0 for all m ≥ 2, but C1 is of degree at

least 1 in the other smeared fields ϕðfjÞ (j ≠ i). Therefore,

we can always pick some Y ≡ ϕðfjÞ (j ≠ i) such that C1 is
at least OðYÞ, and hence the last line above is at least
OðY2Þ. From our initial setup the support of g is spacelike
to the support of fj, and hence, in this case, Eσ

Cð·Þ has
increased the past support of ϕðgÞ2 to include the past
lightcone of fj. Again, the map Eσ

Cð·Þ is then not causal.

F. An example with noncommuting smeared fields

We have just argued for a reasonably wide class of
operators that only the generators can be measured in this
way. One case we did not consider is when ½C;CðtgÞ� ≠ 0.
In this situation the calculation becomes more complicated,
and we do not have a general argument. We can, however,
work through one of the simplest examples, namely
C ¼ ϕðf1Þ ⊙ ϕðf2Þ, where the supports of f1 and f2
are not mutually spacelike, as shown in Fig. 12. In this
case ϕðf1Þ and ϕðf2Þ do not commute, and hence the
Jordan product,⊙, has appeared in C to keep it self-adjoint.
In the following calculations we will show that this choice
of C ¼ ϕðf1Þ ⊙ ϕðf2Þ gives rise to an acausal Gaussian

FIG. 11. Spacetime diagram of compact subsets K1;…; KN with mutually spacelike closures, within which the smeared fields
ϕðf1Þ;…;ϕðfNÞ are localizable. In the general argument we choose the region R to be spacelike to all but one Ki, as can be seen from
the past lightcone of R. In case (ii) we also pick another Kj to show that the update map has increased the support to points spacelike
to R.

FIG. 12. Spacetime diagram of an example pair of smearing
functions, f1 and f2, whose supports are not mutually spacelike.
Here we have also illustrated that their supports can overlap,
though this is not necessary for their supports to not be spacelike.
The smeared fields ϕðf1Þ and ϕðf2Þ do not commute. We have
also illustrated the support of the function g used in the
calculation. Its support is spacelike to that of f2 but not to f1.
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measurement, thus adding more evidence to the claim that
only generators can be measured in this way.
To show that a Gaussian measurement of C ¼ ϕðf1Þ ⊙

ϕðf2Þ is acausal we only need to show that, for some choice
of operator, Eσ

Cð·Þ increases its support. In this vein we
consider ϕðgÞ, where the support of g is spacelike to the
support of f2, but not to the support of f1 (see Fig. 12).
Therefore, Δðf1; gÞ ≠ 0 and Δðf2; gÞ ¼ 0. We then have

CðtgÞ ¼ U tϕðgÞðCÞ
¼ U tϕðgÞðϕðf1ÞÞ ⊙ U tϕðgÞðϕðf2ÞÞ
¼ ðϕðf1Þ þ tΔðf1; gÞÞ ⊙ ϕðf2Þ
¼ Cþ tΔðf1; gÞϕðf2Þ: ð66Þ

Thus,

eitϕðgÞe−
ðC−αÞ2
4σ2 ¼ e−

ðC−αþtΔðf1 ;gÞϕðf2ÞÞ2
4σ2 eitϕðgÞ; ð67Þ

and hence

Eσ
CðeitϕðgÞÞ ¼

1

σ
ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dαe−A

2

e−ðAþtBÞ2eitϕðgÞ; ð68Þ

where we have defined

A ¼ C − α

2σ
; ð69Þ

B ¼ Δðf1; gÞϕðf2Þ
2σ

; ð70Þ

for convenience.
As

e−y
2 ¼ 1

2
ffiffiffi
π

p
Z

∞

−∞
dxe−

x2
4 e−ixy; ð71Þ

for any y ∈ R, and since Aþ tB is self-adjoint, we can use
the associated projection-valued measure to write

e−ðAþtBÞ2 ¼ 1

2
ffiffiffi
π

p
Z

∞

−∞
dxe−

x2
4 e−ixðAþtBÞ: ð72Þ

Now, since

½A;B� ¼ irB; ð73Þ

where we have defined the nonzero real number
r ¼ Δðf1;f2Þ

2σ , the BCH formula gives

e−ixðAþtBÞ ¼ e−ixAeit
ðe−xr−1Þ

r B: ð74Þ

By inserting the rhs into (72), and the result into (68),
we get

Eσ
CðeitϕðgÞÞ¼

1

σ
ffiffiffi
2

p
2π

Z
R2

dαdxe−
x2
4 e−AðAþixAÞeit

ðe−xr−1Þ
r BeitϕðgÞ:

ð75Þ

Given that the operators in the integrand are bounded, and

hence the norm of the integrand is bounded by e−
x2
4 , we can

swap the order of the double integral (by the Fubini-Tonelli
Theorem) and evaluate the α integral first. For the parts of
the integrand that depend on α this gives

Z
∞

−∞
dαe−

x2
4 e−AðAþixAÞ ¼ 2σ

ffiffiffi
π

p
e−

x2
4 1; ð76Þ

leaving

Eσ
CðeitϕðgÞÞ ¼ η

�
t
Δðf1; gÞ
Δðf1; f2Þ

ϕðf2Þ
�
eitϕðgÞ; ð77Þ

where we have defined the function

ηðtÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dxe−

x2
2 eiðe−xr−1Þt: ð78Þ

While we do not have a closed form for ηðtÞ, we note that
the integral exists and is bounded for any t ∈ R.
This follows as the absolute value of the integrand is

e−
x2
2 , which integrates to a constant. Therefore, the operator

ηðt Δðf1;gÞ
Δðf1;f2Þϕðf2ÞÞ is bounded. Furthermore, as ηð0Þ ¼ 1, we

get ηð0 × Δðf1;gÞ
Δðf1;f2Þϕðf2ÞÞ ¼ 1

Since the final result for Eσ
CðeitϕðgÞÞ in (77) depends on

ϕðf2Þ—a smeared field localizable in a region spacelike to
the support of g—the map Eσ

Cð·Þ has increased the past
support of g outside the past-lightcone to include that of f2.
For completeness we can also take derivatives with respect
to t to evaluate Eσ

CðϕðgÞÞ. Explicitly, since

η0ð0Þ ¼ iffiffiffiffiffiffi
2π

p
Z

∞

−∞
dxe−

x2
2 ðe−xr − 1Þ ¼ iðer2

2 − 1Þ; ð79Þ

one can verify that

Eσ
CðϕðgÞÞ ¼ ϕðgÞ þ ðe

Δðf2 ;f1Þ2
8σ2 − 1Þ Δðf1; gÞ

Δðf1; f2Þ
ϕðf2Þ; ð80Þ

which further highlights the increase in support.
We have just shown that a Gaussian measurement of

C ¼ ϕðf1Þ ⊙ ϕðf2Þ is not causal, and hence is not physi-
cally realizable in K. One can also verify that the support is
increased for higher powers of ϕðgÞ using further deriv-
atives with respect to t. It is worth noting that as
Δðf1; f2Þ → 0, i.e., in the limit that ϕðf1Þ and ϕðf2Þ
become commuting, we get Eσ

CðϕðgÞÞ ¼ ϕðgÞ. This is
consistent with our results in Sec. IV D.
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G. Extracting expectation values from
measurements of smeared fields

The causality conditions we have imposed on update
maps (Sec. II C) all assume that it is possible to measure
expectation values of operators that are more complicated
than smeared fields (plus the identity), e.g., ϕðfÞ2 or
ϕðfÞϕðgÞ. Given the evidence presented above that we
can only kick with and/or enact Gaussian measurements of
smeared fields and the identity, one may question whether it
is even possible to measure such expectation values. While
it may be possible to read out expectation values through
some other description of measurement such as in [16,18],
here we argue that it can be done using only Gaussian
measurements of smeared fields, which were shown to be
causal above.
Consider a Gaussian measurement of some operator C

localizable in some compact K. As noted in Sec. IVA, the
average outcome is given by

EðαÞ ¼
Z
R
dααpðαÞ; ð81Þ

in terms of the pdf for α, which we recall is given by

pðαÞ ¼ 1

σ
ffiffiffiffiffiffi
2π

p trðρe−
ðC−αÞ2
2σ2 Þ; ð82Þ

where ρ is the state. If there are any other measurements
occurring in Kin, then this state should really include the
update maps for them. For the present discussion this is
irrelevant, however, and hence we will omit any other
update maps here for brevity. Substituting this pdf into the
expression for EðαÞ one can evaluate the integral over α to
find

EðαÞ ¼ trðρCÞ: ð83Þ

That is, the expected value of the outcome α matches the
expectation value of C coming from quantum theory. One
can also verify that

Eðα2Þ ¼ trðρC2Þ þ σ2; ð84Þ

and hence

VarðαÞ ¼ Eðα2Þ − EðαÞ2
¼ trðρC2Þ þ σ2 − trðρCÞ2
¼ ΔC2 þ σ2: ð85Þ

Therefore, the variance, VarðαÞ, of the Gaussian measure-
ment is always greater than the variance, ΔC2, computed in
the quantum theory. For a perfect measurement, i.e., σ → 0,
the two agree.

After repeated Gaussian measurements of the operator C
(which can happen simultaneously if multiple copies of the
system are set up in parallel) one can compute the average
outcome, or the average of the square of the outcomes etc.
In the limit of a large number of experimental realizations
this number will approach EðαÞ, or Eðα2Þ respectively. In
this way one can estimate trðρCÞ and trðρC2Þ (up to the
constant σ2), and all higher moments.
This is important for our purposes as it means that one only

needs to make Gaussian measurements of the smeared field
ϕðgÞ inorder todetermine theexpectationvaluesneeded for the
causality conditions in Sec. (59), e.g., trðρϕðgÞ2Þ. In other
words, our above arguments for violations of causality did not
require violations of causality to begin with. In fact, someone
attempting tomeasure the expected value ofϕðgÞ2mayonly be
able to determineEðα2Þ, and hencewill only know trðρϕðgÞ2Þ
up to the (potentially unknown) constant σ2. This is not a
problem however, as, just like trðρϕðgÞ2Þ, Eðα2Þ must remain
unchanged whenever ρ ↦ Ẽ0ðρÞ for some Ẽ0ð·Þ dual to the
update map E0ð·Þ local toKin and spacelike toϕðgÞ, and hence
our causality conditions from Sec. II C still go through.
This argument can be applied not only to trðρϕðgÞ2Þ, but

also to other more complicated expectation values. For
higher powers of ϕðgÞ one simply computes expectation
values of higher powers of α coming from the Gaussian
measurement of ϕðgÞ.
For correlation functions, such as trðρϕðg1Þϕðg2ÞÞ

(where we restrict g1 and g2 to be supported in
mutually spacelike subsets for now), one can do two
Gaussian measurements of the smeared fields ϕðg1Þ and
ϕðg2Þ. Following these two measurements the state is
updated via the composition of the two update maps:
ρ ↦ Ẽσ

ϕðg1ÞðẼσ
ϕðg2ÞðρÞÞ. The order of these maps does not

matter since they commute (this follows from the fact that
½ϕðg1Þ;ϕðg2Þ� ¼ 0). The probability of measuring some
value α ∈ ½a1; a2� for the measurement of ϕðg1Þ, and some
value β ∈ ½b1; b2� for the measurement of ϕðg2Þ, is given by

P½a1;a2�×½b1;b2� ¼
Z

a2

a1

dα
Z

b2

b1

dβpðα; βÞ; ð86Þ

where the joint pdf is given by

pðα; βÞ ¼ 1

2πσ2
trðρe−

ðϕðg1Þ−αÞ2
2σ2 e−

ðϕðg2Þ−βÞ2
2σ2 Þ: ð87Þ

Any correlations encoded in the state ρ are revealed here in
the sense that the joint pdf pðα; βÞ is not necessarily given
by the product of the two marginal pdf’s for α and β. Over
many realizations of the two measurements one can
compute the average value of the product of the two
separate measurement outcomes, i.e., the average of
α × β. In the limit of a large number of realizations this
number will approach
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Eðα × βÞ ¼
Z
R2

dαdβαβpðα; βÞ

¼ trðρϕðg1Þϕðg2ÞÞ: ð88Þ

That is, the correlation function trðρϕðg1Þϕðg2ÞÞ can be
estimated by making repeated Gaussian measurements of
ϕðg1Þ and ϕðg2Þ and computing the average product
of the outcomes. One can also verify that Eðαþ βÞ ¼
trðρðϕðg1Þ þ ϕðg2ÞÞ ¼ trðρϕðg1 þ g2ÞÞ.
If g1 and g2 are supported in subsets which are not totally

spacelike, the recovery of the correlation function
trðρϕðg1Þϕðg2ÞÞ is slightly more complicated. Since
½ϕðg1Þ;ϕðg2Þ� ≠ 0, the update maps acting on ρ do not
necessarily commute in the expression for the probability
P½a1;a2�×½b1;b2�. If the supports of g1 and g2 are not totally
timelike then there is no canonical order for the update
maps. A natural option in any case (which agrees with the
totally spacelike case) is the symmetrized Jordan compo-
sition, where we average over the two possible orders.
Computing the joint pdf in this case we find

pðα; βÞ ¼ 1

2
ðq12ðα; βÞ þ q21ðα; βÞÞ ð89Þ

where

q12ðα; βÞ ¼
1

2πσ2
trðρe−

ðϕðg2Þ−βÞ2
4σ2 e−

ðϕðg1Þ−αÞ2
2σ2 e−

ðϕðg2Þ−βÞ2
4σ2 Þ; ð90Þ

and q21ðα; βÞ is the same expression but with the replace-
ments g1=2 ↦ g2=1 and α=β ↦ β=α. Computing the integral
of α × β against q12ðα; βÞ one finds

E12ðα × βÞ ¼ 1

σ
ffiffiffiffiffiffi
2π

p
Z
R
dββtrðρe−

ðϕðg2Þ−βÞ2
4σ2 ϕðg1Þe−

ðϕðg2Þ−βÞ2
4σ2 Þ;

ð91Þ

where we have evaluated the integral over α. Using (10) we
can push ϕðg1Þ through the exponential to its right.
Following this we can then compute the integral over β.
We find

E12ðα × βÞ ¼ trðρϕðg2Þϕðg1ÞÞ þ
i
2
Δðg1; g2Þ: ð92Þ

If we add to this the analogous expression, E21ðα × βÞ,
computed using the measure q21ðα; βÞ associated to the
other ordering, we then find (after dividing by 2)

Eðα × βÞ ¼ 1

2
ðE12ðα × βÞ þ E21ðα × βÞÞ

¼ trðρϕðg1Þ ⊙ ϕðg2ÞÞ; ð93Þ

and thus the symmetrized correlation function is recovered
exactly. This last result follows from the fact that Δð·; ·Þ is
antisymmetric, and hence the Δð·; ·Þ terms vanish under the
symmetrization of the Jordan composition.
To recover the correlation function without any symmet-

rization, i.e., trðρϕðg1Þϕðg2ÞÞ, we can then add to (93) the
antisymmetrized expression

1

2
trðρ½ϕðg1Þ;ϕðg2Þ�Þ ¼

i
2
Δðg1; g2Þ; ð94Þ

which can be computed from the classical theory.
It seems then that one can in principle recover any

desired expectation value using only Gaussian measure-
ments of smeared fields, even when they do not commute.
This is reassuring, as our above arguments suggest that the
smeared fields (and the identity) are the only operators
which can be measured in this Gaussian manner while still
respecting causality. Furthermore, the way in which we
tested the causality respecting nature of a given update
map, i.e., by using expectation values of products of
smeared fields (59) for example), can be achieved without
any causality violations in and of itself. Thus, it seems, we
have an internally consistent and causality respecting
model of measurements and unitary kicks in which only
generators of the operator algebra can be measured
and/or kicked with. Note, this analysis implies that the
addition of measurements/kicks for more complicated
operators not only introduces causality violations, it is
also unnecessary, as any expectation values can already be
recovered from the causality respecting smeared field
operations.

H. Selective measurements and classical
communication

We have so far been concerned with the causal properties
of the nonselective map Eσ

Cð·Þ. We did not consider the
selective map Eσ

C;½a;b�ð·Þ as the fact that the outcome α ∈
½a; b� is conditioned on in this case implies some

FIG. 13. Illustration of totally timelike subsets K1 and K2.
Every point in K1 is to the past of every point in K2. We have also
shown two subsets,K0

1 andK
0
2, that are not totally timelike. While

K0
1 is contained in J−ðK0

2Þ, and K0
2 is contained in JþðK0

1Þ, there
are still points from each subset, e.g., x ∈ K0

1 and y ∈ K0
2, that are

spacelike.
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communication between the person measuring C and
anyone else, specifically that their outcome landed in
½a; b�. By assumption we assumed that the person meas-
uring C in K does not communicate with anyone else.
That said, the selective map Eσ

C;½a;b�ð·Þ can still turn up in
protocols where no information is communicated from
inside K to other parties, precisely in protocols where
information is communicated within K. For example, the
person in K can first make a selective measurement, then,
depending on the outcome, choose whether or not to make
a second nonselective measurement in K. This is just
one example of a local operations and classical commu-
nications (LOCC) protocol. Here we will show that such a
LOCC protocol, using selective and nonselective Gaussian
measurements of smeared fields, amounts to a causal
update map.
Specifically, we consider two functions f1 and f2

supported in the compact subsets K1 and K2 respectively
(Fig. 13). We then selectively measure the smeared field
ϕðf1Þ in K1, and if the outcome is in ½a; b� we non-
selectively measure the smeared field ϕðf2Þ in K2, other-
wise we do nothing in K2. For this to be possible K1 must
be totally timelike to K2. That is, K1=K2 is contained in the
total past/future of K2=K1. Such a setup is necessary
because we need to collect all the data from our measure-
ment of ϕðf1Þ in K1 first, before using the outcome to
determine our actions at any point inK2. Put another way, if
some point x1 ∈ K1 is spacelike to some point x2 ∈ K2,
then how would we know what to do at x2? Do we measure
or not? The outcome from the measurement at x1 will not
have reached x2.
In the case where the outcome of the first measurement

of ϕðf1Þ in K1 lands in ½a; b�, which happens with prob-
ability P½a;b�, the state is updated as ρ ↦ Ẽσ

ϕðf1Þ;½a;b�ðρÞ.
Following this we make a nonselective measurement of
ϕðf2Þ in K2, and hence the state is updated as
Ẽσ
C;½a;b�ðρÞ ↦ Ẽσ

ϕðf2ÞðẼσ
ϕðf1Þ;½a;b�ðρÞÞ.

In the other case, where the first outcome lands in
Rn½a; b� (with probability Q½a;b� ¼ 1 − P½a;b�), the state is

only updated as ρ ↦ Ẽσ
ϕðf1Þ;Rn½a;b�ðρÞ, as following this

outcome we do nothing in K2.
The final updated state, ẼðρÞ, after the LOCC

protocol has been completed, is given by the sum of
these two possibilities, each weighted by its respective
probability:

ẼðρÞ ¼ P½a;b�Ẽσ
ϕðf2ÞðẼσ

ϕðf1Þ;½a;b�ðρÞÞ þQ½a;b�Ẽσ
ϕðf1Þ;Rn½a;b�ðρÞ:

ð95Þ

The dual map on some operator X ∈ A is then

EðXÞ ¼ P½a;b�Eσ
ϕðf1Þ;½a;b�ðEσ

ϕðf2ÞðXÞÞ
þQ½a;b�Eσ

ϕðf1Þ;Rn½a;b�ðXÞ: ð96Þ

Before arguing that Eð·Þ is causal, we first note
that if X is localizable in ðK2Þin (not in the future of K2)
then Eσ

ϕðf2ÞðXÞ ¼ X, and hence the total update map

reduces to

EðXÞ ¼ ðP½a;b�Eσ
ϕðf1Þ;½a;b� þQ½a;b�Eσ

ϕðf1Þ;Rn½a;b�ÞðXÞ
¼ Eσ

ϕðf1ÞðXÞ; ð97Þ

which we know to be causal. Physically, if X is not in the
future of K2, then it does not see the effects of any
conditional measurements happening in K2, and hence
the update map looks like a nonselective measurement of
ϕðf1Þ in K1.
Let us now consider the case where X lies partly to the

future of K2. To show that Eð·Þ is causal in this case we can,
as above, act with Eð·Þ on a Weyl generator, eitϕðgÞ, where g
is compactly supported in some region in ðK2Þout (and
partly to the future of K2 if we want something less trivial).
Before attempting this explicit calculation however, we can
reason more generally as to why Eð·Þ is causal in this case.
We first note that Eσ

ϕðf2Þð·Þ does not change the locali-
zation region of any operator it acts on. This was shown in
Sec. IV B, specifically (42). This means that, for any region
R ⊆ ðK2Þout, and any X ∈ AðRÞ, then Y ¼ Eσ

ϕðf2ÞðXÞ is also
localizable in R. We then have

EðXÞ ¼ P½a;b�Eσ
ϕðf1Þ;½a;b�ðYÞ þQ½a;b�Eσ

ϕðf1Þ;Rn½a;b�ðXÞ; ð98Þ

where X; Y ∈ AðRÞ. Let us denote the two terms on the rhs
as Ỹ and X̃ respectively. Both Ỹ; X̃ will depend on ϕðf1Þ in
general. This does not make Eð·Þ acausal, however, as we
now argue.
If R overlaps in any way with the future ofK2 then, given

thatK2 is totally timelike toK1, we know thatK1 is entirely
contained in the past of R. Therefore, any region
R0 ⊆ ðK1 ∪ K2Þin ¼ ðK1Þin, and spacelike to R, is also
spacelike to K1, and hence any A ∈ AðR0Þ commutes,
not only with X and Y, but also with ϕðf1Þ, and therefore
with X̃ and Ỹ. That is, any A ∈ AðR0Þ commutes with EðXÞ.
This means that unitary kicks with ϕðhÞ ∈ AðR0Þ act
trivially on EðXÞ. From Sec. III B we know that this
implies the map Eð·Þ is causal.
For completeness, we will now compute EðeitϕðgÞÞ

to explicitly show the causality of Eð·Þ. From (48) we have
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EðeitϕðgÞÞ ¼ P½a;b�Eσ
ϕðf1Þ;½a;b�ðEσ

ϕðf2ÞðeitϕðgÞÞÞ þQ½a;b�Eσ
ϕðf1Þ;Rn½a;b�ðeitϕðgÞÞ

¼ P½a;b�Eσ
ϕðf1Þ;½a;b�ðe

−t2Δðf2 ;gÞ
2

8σ2 eitϕðgÞÞ þQ½a;b�Eσ
ϕðf1Þ;Rn½a;b�ðeitϕðgÞÞ

¼ 1

σ
ffiffiffiffiffiffi
2π

p
Z
R
dαe−

t2

8σ2
ð1½a;b�ðαÞΔðf2;gÞ2þΔðf1;gÞ2Þe−

ðC̃ðtÞ−αÞ2
2σ2 eitϕðgÞ; ð99Þ

where C̃ðtÞ ¼ ϕðf1Þ þ ðt=2ÞΔðf1; gÞ, and where 1½a;b�ðαÞ
is an indicator function for α ∈ ½a; b�. The Weyl generator,
eitϕðgÞ, can be moved to the right, outside the integral, as it
does not depend on α. The integral can then be evaluated,
resulting in

EðeitϕðgÞÞ ¼
�
1þ 1

2
ð1 − e−

t2

8σ2
Δðf2;gÞ2ÞD

�
e−

t2

8σ2
Δðf1;gÞ2eitϕðgÞ;

ð100Þ

where the operator

D ¼ erf

�
C̃ðtÞ − bffiffiffi

2
p

σ

�
− erf

�
C̃ðtÞ − affiffiffi

2
p

σ

�
; ð101Þ

is nontrivial in the localization region for ϕðf1Þ. Here erfð·Þ
denotes the standard error function.
It is clear from (100) that if g is supported in ðK2Þin (not

in the future of K2), then Δðf2; gÞ ¼ 0 and hence EðeitϕðgÞÞ
reduces to the term on the rhs after the brackets, i.e., a
Gaussian measurement of ϕðf1Þ. This agrees with our
earlier discussion. As previously stated, the fact that D is
nontrivial in K1 does not cause any causality violations. As
can be seen from (100), the term involving D only appears
whenΔðf2; gÞ ≠ 0, and hence when g is supported partly to
the future of K2. In such a case the support of g contains the
entirety of K1 in its past (owing to the fact that K1 and K2

are totally timelike). Thus the past-support of eitϕðgÞ has not
been increased.

V. INTERACTIONS

In [5] it was mentioned that the situation for causality
violations could be worse in an interacting theory. For
example, it may be the case that even smeared fields cannot
be measured. Here we sketch an argument as to why this is
not the case, at least for interactions that are only turned on
in a compact subset L. The general idea is to construct a
scattering map from smeared fields in the in-algebraAðLinÞ
to smeared fields in the out-algebra AðLoutÞ, both of which
are isomorphic to the entire algebra A as Lin and Lout both
contain Cauchy surfaces for M. While this mapping is
nonlinear in the smearing functions, it does not increase the
support in an acausal manner, which, as we will see,
ensures that measurements/kicks with smeared fields are
still causal.

One can either consider self-interactions or interactions
with another field. In both cases the argument is very
similar, and can be formulated for the most part in the
classical theory. In that regard let us briefly review some
relevant points about the classical theory and its connection
to the quantum theory.
Consider the free equation of motion for the classical

field φ:

ð□þm2Þφ ¼ 0: ð102Þ

Any spatially compact solution (e.g., a wave packet with
finite spatial extent) can be written as

φðxÞ ¼
Z
M
dyΔðx; yÞfðyÞ; ð103Þ

for some smooth and compactly supported test function f.
We say that f generates the classical solution φ, and by
writing (103) as φ ¼ Δf we can think of Δ as an operator
on test functions f. Recall that x and y denote spacetime
points, and that the Pauli-Jordan function, Δðx; yÞ, is the
difference between the retarded and advanced Green
functions, GR=Aðx; yÞ. We can therefore decompose the
solution as φ ¼ φR − φA, where

φR=AðxÞ ¼
Z
M
dyGR=Aðx; yÞfðyÞ: ð104Þ

is a past/future compact solution to the inhomogeneous
equation

ð□þm2ÞφA=R ¼ f: ð105Þ

We can similarly write φR=A ¼ GR=Af. The support of φR=A

is contained in the future/past of the support of f, as shown
in Fig. 14. f can therefore be thought of as the generator of
the solution φ ¼ Δf to the homogeneous equation, and as
the source of either a past or future compact solution to the
inhomogeneous equation.
There is no unique f that generates a spatially compact

solution φ via φ ¼ Δf. Two different test functions f and g
that generate the same solution, i.e., Δf ¼ Δg, can even be
supported in disjoint regions, as shown in Fig. 14. This lack
of uniqueness appears in the quantum theory too, e.g.,
ϕðfÞ ¼ ϕðgÞ for any two test functions satisfying the
classical equation Δf ¼ Δg. In Sec. II B this was stated
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in a different, but equivalent way, as f − g ¼ ð□þm2Þh
for some test function h. As stated in Sec. II B, this is
equivalent to imposing the homogeneous equations of
motion on the operator-valued distribution ϕðxÞ in (1).
Given that the smeared field operators can be the same

for different test functions, the region within which a
smeared field is localizable is clearly not unique. The
two regions in Fig. 14 are examples of possible localization
regions. This nonuniqueness is not completely arbitrary;
starting from the smearing function f for example, we
cannot move the localization region to a region spacelike
to suppf.
In practice we can “move” the smeared field in the

following way. Consider the test function f supported in
some compact subset K, and the classical solution φ ¼ Δf
that it generates. Now consider some compact K0 such that
K ⊆ DðK0Þ (Fig. 15), in which we want to localise ϕðfÞ.
This amounts to the classical problem of finding some g
supported in K0 that generates φ as φ ¼ Δg. To do this we
first choose any smooth partition of φ, i.e., φ ¼ φþ − φ−,
where the supports of φþ and φ− only intersect in K0, and
φþ=− vanishes to the past/future of K0. This is shown in
Fig 15. Given the supports of φþ=− it is clear that, to the
future/past of K0, we have�φþ=− ¼ φ. Since φ satisfies the
homogeneous equation in (102), then φþ=− also satisfies
(102) to the future/past of K0. Furthermore, φþ=− trivially
satisfies (102) to the past/future of K0 as it vanishes there.
InsideK0, however, φþ=− may not satisfy (102). Let g be the
function capturing this inability of φþ=− to satisfy (102)
inside K0, i.e., g ¼ ð□þm2Þφþ=−. Note that g is the same
for both φþ and φ−, as the difference φ ¼ φ− − φþ satisfies
the homogeneous equation everywhere, including inside

K0. By our previous arguments we also know that g is
compactly supported in K0. Furthermore, it is by definition
a source for the past/future compact solution φþ=− of
the inhomogeneous equation, and hence we can write
φþ=− ¼ GR=Ag. Therefore, we have

Δg ¼ GRg −GAg

¼ φþ − φ−

¼ φ: ð106Þ

That is, φ ¼ Δg, and so g is equivalent to f in that they
generate the same solution to the homogeneous equation.
We therefore have the operator equality ϕðfÞ ¼ ϕðgÞ, and
hence this smeared field operator is localizable in K0 as
desired. The above argument has glossed over some
technical details explained more thoroughly in [18].
Let us now turn on a self-interaction in some compact

subset L. Specifically, we modify the classical homo-
geneous equation to

ð□þm2Þφ ¼ κχφ2; ð107Þ

where κ ∈ R is the interaction parameter, and χ is some
smooth function, supported in L, which controls the
interaction. Here we have picked a φ2 interaction (a φ3

interaction in the associated action) as an example. The
explicit form of the interaction is not so important for our
discussion, however, and so one can substitute in some
other interaction in what follows.
From this compact L we get the associated in- and out-

regions Lin=out. This is illustrated in Fig. 16. In Lin=out the
interaction is turned off, and hence the theory matches the
free case. Lin=out is also globally hyperbolic in its own right,
and hence the quantum theory restricted to Lin=out goes
through as in Sec. II B. In particular, for any functions f

FIG. 14. Spacetime diagram of the solution φ generated by f.
The support of φR=A is contained in the future/past of the support
of f, as shown by the dotted/dashed lines. The support of φ is the
union suppφA ∪ suppφR, and hence φðxÞ ¼ 0 at points x that are
spacelike to suppf. Also illustrated is an example of another
function g that generates the same solution φ. Note how the wave
packet generated by f (or g) is of compact spatial support, since it
only has a finite width in the x1 direction at any time x0.

FIG. 15. Illustration of the partition φ ¼ φþ − φ−. The support
of φþ=− vanishes to the past/future of K0, shown by the dotted/
dashed lines. The supports of φ− and φþ only overlap in K0. Note
that K ⊆ D−ðK0Þ, as can be seen by the dotted-and-dashed lines.
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and g both supported in either Lin or Lout, we have
½ϕðfÞ;ϕðgÞ� ¼ iΔðf; gÞ, where Δðf; gÞ is the same as in
the free theory. Similarly, for any sequence of measure-
ments/kicks all contained in either Lin or Lout, our previous
results go through unchanged.
There will be a change, however, if f is supported in Lin

say, and g is supported in Lout, as shown in Fig. 16. Crucial
to our discussion on measurements and kicks is the
commutator ½ϕðfÞ;ϕðgÞ�. Currently, this commutator is
undefined, as ϕðfÞ belongs to the algebra of operators
in the in-region Lin, and ϕðgÞ to algebra in the out-region
Lout. To define this commutator we first have to map ϕðfÞ
to some operator in the algebra for the out-region. This can
be done as follows.
Given the test function f supported in Lin we

can generate φ0 ¼ Δf which solves the free homogeneous
equation throughout the entirety of M. Furthermore,
φ ¼ φ0 trivially solves the interacting equation (107) in
Lin as the interaction vanishes there. The only region where
we do not yet know the interacting solution φ is the future
of L, JþðLÞ. There we can perturbatively construct the
interacting solution φ ¼ φ0 þ κφ1 þOðκ2Þ order by order
in κ. For instance, for φ1 we get the equation
ð□þm2Þφ1 ¼ χφ0

2, and hence φ1 ¼ GRðχφ0
2Þ. Note that

φn ¼ 0 for n > 0 in Lin.
We now have the perturbative solution φ throughout all

of M, and hence all of Lout. Since the theory is free in Lout

we can perturbatively find some h ¼ h0 þ κh1 þOðκ2Þ,
supported in Lout, that generates the solution as φ ¼ Δh in
Lout. Order by order we have φn ¼ Δhn, where each hn can
be found using the above prescription, i.e., we partition

φn ¼ φn;þ − φn;−, where the supports of φn;þ and φn;− only
intersect in some compact subset of Lout, and then set
hn ¼ ð□þm2Þφn;�. A example of h is shown in Fig. 16.
Note that h is not linearly dependent on f. That is, if
f ↦ λf, then it is not the case that h ↦ λh.
In the quantum theory we then have the map ϕðfÞ ↔

ϕðhÞ between the smeared field operators for the in- and
out-regions respectively. We have used the double-ended
arrow as we can also map smeared fields from the out- to
the in-region following the above procedure. Note this map
is nonlinear in the test functions. The full scattering map is
an algebra homomorphism between the algebra of
operators for the in- and out-regions, and is defined by
extending the map between smeared fields to all sums and
products in the obvious way. For example, ϕðfÞ2 ↔ ϕðhÞ2.
The commutator ½ϕðfÞ;ϕðgÞ�, for g supported in the out
region, is then defined by first mapping ϕðfÞ ↦ ϕðhÞ, and
then computing ½ϕðhÞ;ϕðgÞ� ¼ iΔðh; gÞ within Lout.
Essentially, ½ϕðfÞ;ϕðgÞ� ¼ iΔðh; gÞ.
One may worry that the nonlinear dependence of Δðh; gÞ

on f affects our previous results on causality. In fact, this
nonlinear dependence is not relevant to the question of
causality when measuring/kicking a smeared field.
Consider Eq. (42) where we showed that smeared field
operations do not increase the support of some Weyl
generator. There f was supported in some compact subset,
K say, and g was supported in a region R ⊆ Kout. Imagine
now that the compact subset L, where the interaction is
turned on, is situated between K and R as in Fig. 16.
Specifically, K ⊂ Lin and R ⊆ Lout. To take this interaction
into account in (42) we simply need to swap Δðf; gÞ for
Δðh; gÞ, where h is supported in Lout and is related to f via
the above scattering map. This can be done perturbatively,
i.e., order by order in κ, if convergence is not guaranteed.
This changes the precise form of the RHS of (42) as a
function of f, and hence the precise effect of the operation
on any future measurements. Crucially, however, it does not
change the fact that the support of the Weyl generator has
not increased, and hence the operation is still causal, even
in the presence of this self-interaction. We can similarly
argue, using (12), that self-interactions do not make
smeared field kicks acausal.
This argument can be readily applied to other self-

interactions, and even to interactions with other fields via
the scattering map in [18]. In each case the precise form of
Δðh; gÞ changes, but importantly the support is never
increased. In this sense we can say that interactions do
not make the situation for causality violations “worse” than
the free case.

VI. DISCUSSION

A. Future directions

Before discussing the implications of our results, there
are a number of future directions to note. While we touched

FIG. 16. Spacetime diagram of the coupling zone L. The
in=out-region, denoted Lin=Lout, consists of all the points
below/above the dotted/dashed line in the figure, i.e., all the
points not to the future/past of L. Therefore, the in/out-region also
contains points spacelike to L. Also shown are the supports of the
smearing functions f and g, whose causal interval intersects the
coupling region L. Through the argument in the text we can map
the smeared field ϕðfÞ from the in algebra to the smeared field
ϕðhÞ in the out algebra, after which we can compute the
commutator with ϕðgÞ. Note that supph lies entirely in the
out-region. It also does not need to be disjoint from suppg,
although this is the case in the figure.
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on the case of ideal measurements, the fact that they seem
acausal for the simplest operators, i.e., the smeared fields,
warrants further study. Many of our results also seem
transformable into the probe framework in [16,18,19]. It
would be useful to construct an explicit dictionary between
update maps and specific probe models, and to determine
whether this is possible in general. The latter would be
analogous to Stinespring’s dilation theorem [35], but with
the added restrictions of locality and causality on the
unitary map. On this point we note that our discussion
of update maps using only the main field of interest, i.e.,
with no additional probe fields, is still useful in that it
allows us to say which operators of the main (and only)
field can be causally measured (in the standard sense of
quantum theory) without reference to another probe field,
specifically because we can associate to any operator C an
update map Eσ

Cð·Þ. Finally, it would be illuminating to also
translate our results from the canonical picture into the path
integral framework for quantum theory.

B. Relation to continuous measurement models

We briefly note the relevance of the above results to
continuous measurement models [21,22]. In these models
Gaussian measurements of a chosen operator are enacted
repeatedly, in intervals of duration Δt. The Δt → 0 limit is
then taken to make the sequence of measurements effec-
tively continuous. These models are useful in many
applications, including feedback control (e.g., [36]), where
the results of the measurements are used to continuously
update the Hamiltonian. For a lattice system one of the
simplest cases to study is continuous measurements of
operators local to a single site, e.g., local number operators
as in [37]. Since such operators are local, in the sense that
they commute with operators on different sites, their
associated Gaussian measurements do not increase support,
and hence are causal, cf. Gaussian measurements of
smeared fields. One can also consider models involving
Gaussian measurements of operators that couple neighbor-
ing sites. In this case the Gaussian measurements increase
support, and are therefore acausal. For a nonrelativistic
lattice system this means that the Gaussian measurements
cannot be implemented faster than the light-travel time
between the neighboring sites. This furnishes a fundamen-
tal lower bound on the measurement duration Δt. That is,
“continuous” measurement models such as these can only
ever be approximately continuous on timescales much
larger than this lower bound. In practice this lower bound
may be negligible compared to the timescales present in the
lattice model, and hence the assumption of a continuum of
measurements is justified.

C. Physical implications

Returning to QFT, from a philosophical perspective our
claim that only the generators can be measured may have
important implications for the ontology of the theory. The

conventional picture in quantum mechanics is that one can
associate to any physical observable a self-adjoint (and
gauge invariant) operator. In measuring this observable we
usually expect two things from quantum theory: (i) a
probability distribution over the possible measurement
outcomes of the observable, and (ii) a map to update the
state of the system. The latter is crucial in accurately
reflecting the effect of the current measurement on any
future measurements.
For a smeared field operator ϕðfÞ we meet these two

requirements: the pdf over possible measurement outcomes
is given explicitly in (30), and we can update the state via
the associated Gaussian update map, Eσ

ϕðfÞð·Þ, since it is

causal.
In the case of more complicated self-adjoint operators

requirement (ii) is not obviously met, as it seems the
associated Gaussian update maps cannot be implemented
without violating causality. In this way these operators do
not correspond to observables in the usual sense.
Requirement (i) is still be met however, as expectation
values and higher moments of any self-adjoint operators
can be recovered from Gaussian measurements of smeared
fields a la Sec. IVG.
While the update map Eσ

Cð·Þ for some self-adjoint
operator C may not be possible, we can nevertheless meet
requirement (ii) by instead composing the (causality
respecting) update maps Eσ

ϕðfiÞð·Þ for the relevant smeared

fields ϕðfiÞ used in the construction of C (potentially with
some symmetrization).
In this way we can in fact associate to any self-adjoint

operator a causality respecting update map, thus meeting
the conventional requirements, (i) and (ii), of an observable
in quantum theory. In doing this, however, we must
understand that our use of the update maps Eσ

ϕðfiÞð·Þ for
the relevant smeared fields implies that, physically speak-
ing, we are really measuring the smeared fields ϕðfiÞ, and
not C. The measurement of C should be thought
of as secondary to the measurement of the smeared fields
ϕðfiÞ, in the sense that any expectation values, or higher
moments, of C are actually constructed after the fact, á la
Sec. IVG, using the outcomes of the measurements of
each ϕðfiÞ.
Depending on one’s preferred interpretation of quantum

mechanics, or one’s preferred outlook on QFT, this may
amount to a different ontology—a different picture of what
is physically there. Specifically, one way to interpret (and
extrapolate from) the above results is that smeared fields
(and the identity) are the only physical observables, and
that other self-adjoint operators in the algebra simply
correspond to different ways to combine the outcomes
resulting from measurements of smeared fields. This
unconventional viewpoint, where all self-adjoint operators
except the smeared fields and the identity are “culled”
from the list of QFT observables, necessitates further
justification.
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To illustrate how one could take this viewpoint we focus
on the example in Sec. IV D. That is, we have two smeared
fields ϕðf1Þ and ϕðf2Þ, localizable in spacelike regions. If
we perform two Gaussian measurements, one for ϕðf1Þ and
one for ϕðf2Þ, the respective measurement outcomes, α and
β, are distributed according to the joint pdf pðα; βÞ in (87).
Now consider the self-adjoint operator C ¼ ϕðf1Þϕðf2Þ.
We know from Sec. IV D that Eσ

Cð·Þ is acausal. From the
above discussion we can instead take the update map to be
the composition of Eσ

ϕðf1Þð·Þ and Eσ
ϕðf2Þð·Þ, in which case the

pdf over the possible outcome values for this measurement
of C, denoted by p̃ðγÞ, is the product pdf over the variable
γ ¼ αβ (determined by the joint pdf pðα; βÞ over the
dependent random variables α and β). In this precise sense
one could argue that C is not an “independent” observable
in its own right. It does not, for example, come with its own
pdf of the form (30).

D. Comparison with nonrelativistic quantummechanics

To highlight how this deviates from our usual intuition,
let us examine the analogous situation in nonrelativistic
quantum mechanics (NRQM). Consider the operator
Z ¼ XY, where X and Y are two commuting operators
local to separate parts of a bipartite system, e.g., X¼X̃⊗1
and Y ¼ 1 ⊗ Ỹ for some X̃ and Ỹ local to different parts of
the system. In this case there is no reason to rule out the
map Eσ

Zð·Þ in favor of the composition Eσ
XðEσ

Yð·ÞÞ ¼
Eσ
YðEσ

Xð·ÞÞ. In the QFT setting this is precisely what we
have done.
To further emphasise the distinction between the QFT

and NRQM, recall that the σ → 0 limit of a Gaussian map is
an ideal measurement (for compact self-adjoint operators).
Therefore, for some sufficiently small σ, the analogous
statement in NRQM is that we cannot make an ideal
measurement of Z ¼ XY, but we can make two ideal
measurements of X and Y (in either order). This is
demonstrably not the case; ideal measurements of product
operators such as Z are routinely considered in QI.
We have to be careful, though, in making this con-

nection, as we are applying infinite dimensional continuum
QFT results to the finite dimensional Hilbert space of the
bipartite system. To properly emulate our support increas-
ing Gaussian measurement of C ¼ ϕðf1Þϕðf2Þ in NRQM
we should at least consider an operator Z whose ideal
measurement is support increasing, or equivalently, is one
that enables a (subluminal) signal. Accordingly, we con-
sider the operator Z ¼ j1ih1j ⊗ σz on two qubits A and B
(where σz ¼ j0ih0j − j1ih1j denotes the Pauli-z matrix).
Note that X ¼ j1ih1j ⊗ 1 and Y ¼ 1 ⊗ σz here. In [5] it
was shown that an ideal measurement of Z ¼ j1ih1j ⊗ σz

enables a signal.
Even with this choice of Z it is still the case that we can

perform the associated ideal measurement, and we do not
need to resort to a composition of ideal measurements of

X ¼ j1ih1j ⊗ 1 and Y ¼ 1 ⊗ σz. This nonrelativistic
example, therefore, still differs from the QFT case. In
the latter, a Gaussian measurement of ϕðf1Þϕðf2Þ is
physically impossible, and one can only do Gaussian
measurements of ϕðf1Þ and ϕðf2Þ separately. Why, then,
are these two situations different, and how can we reconcile
this? Furthermore, such a reconciliation seems necessary if
NRQM is to arise as an effective description of QFT.
To answer these questions we must focus on how an

ideal measurement of Z is realized experimentally. As
mentioned in [5], one can use the following 2 step LOCC
(local operations and classical communication) protocol:
(1) The experimenter first measures the z-spin on qubit A.
(2) If it is down then they do nothing on qubit B, and if it is
up then they measure the z-spin of qubit B. One can verify
that the associated sequence of update maps amounts to the
update map for an ideal measurement of Z.
Notably, this realization requires information about the

measurement outcome on qubit A to be sent to qubit B
before qubit B is (potentially) measured. The spacetime
regions in which the measurements of each qubit take place
are therefore timelike related, and not spacelike. This is the
crucial distinction to the QFT case. There the operators
ϕðf1Þ and ϕðf2Þ are localizable in spacelike regions, and
even if we “move” the smeared fields around to ϕðf01Þ
and ϕðf02Þ say, using the procedure in Sec. V, we can never
make them totally timelike related, i.e., such that there are
no pairs of points, x ∈ suppf01 and y ∈ suppf02, that
are spacelike. This is essentially why the two situations
are different; why an ideal measurement of Z is possible in
NRQM but a Gaussian measurement of ϕðfÞϕðgÞ in QFT
is not.
Given that the two qubit measurements are totally

timelike, the NRQM example is then more comparable
to the Gaussian LOCC protocol in Sec. IV H, which we
found to be causal. This should provide some reassurance
as to why our QFT results are not contradictory with
standard NRQM experiments. From a QFT perspective, the
update map for an ideal measurement of Z is physically
realizable because it is simply an effective description of
some underlying causal update map in the QFT setting.
This is not obvious from the form of the operator,

Z ¼ j1ih1j ⊗ σz, however. Given that j1ih1j and σz are
local to separate parts of the tensor product we get the
impression that they are analogous to spacelike observables
in QFT. This led us to incorrectly compare Z with
ϕðf1Þϕðf2Þ, where f1 and f2 are spacelike. ‘Hidden’ in
the ideal measurement of Z is knowledge that the mea-
surements of the two qubits happen in timelike regions. To
make the situation more comparable to ϕðf1Þϕðf2Þ we can
instead ask if the measurement of Z can be performed using
spacelike qubit measurements. In other words, can we
perform an ideal measurement of Z faster than the light-
travel time between the qubits? This, like a Gaussian
measurement of ϕðf1Þϕðf2Þ, is impossible. As shown in
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[5], if we were to make such a measurement of Z we would
enable a superluminal signal, and hence it is impossible.
In this way, the conclusion that a Gaussian measurement

of ϕðf1Þϕðf2Þ is impossible, and hence why ϕðf1Þϕðf2Þ
(and many other operators) fail requirement (ii) for a typical
observable in quantum theory, is more reasonable. Ruling
out ϕðf1Þϕðf2Þ as unobservable is analogous to ruling out
Z as unobservable on timescales shorter than its light-travel
time—the latter being perfectly reasonable to those in QI.

VII. CONCLUSION

Above we precisely formulated Sorkin’s additional
causality condition that any state update in QFT should
obey to respect causality. Through the use of unitary kicks
with smeared fields we showed that causal state updates in
real scalar QFT are precisely those that are past-support
nonincreasing (PSNI). Moreover, we argued that PSNI
state updates are causal more generally, specifically for the
physical subalgebras of complex scalar and fermionic QFT.
We then went on to consider a variety of update maps in
real scalar QFT with a focus on Gaussian measurements.
Our calculations suggest that only Gaussian measurements/
unitary kicks with the generators (the smeared fields and
the identity) are causal, while measurements/kicks with
other more complicated operators are acausal. Additionally,
ideal measurements of smeared fields appear to be acausal,
though a more thorough analysis needs to be done. Using
Gaussian measurements of smeared fields alone we then
sketched how one could recover expectation values of

products of smeared fields, and following this we discussed
the addition of a compactly supported interaction.
In the last section we discussed some future directions

and relations to continuous measurement models. We then
went on to discuss the physical implications of our
findings, arguing that the generators of the algebra seem
to be the only physical observables, at least in the usual
sense of quantum physics. Despite our above reasoning, a
shift in ontology as radical as culling all self-adjoint
operators, bar smeared fields and the identity, from the
list of QFT observables certainly requires further scrutiny
before it should be taken seriously. In particular, we have
only focused on a few particular classes of update maps,
and even within the set of these maps there are more LOCC
protocols that can be investigated.
Lastly, while this potential shift in ontology would not

obviously be of any practical importance, it may be relevant
in the construction of more fundamental theories.
Specifically, a clearer understanding of what is physical
in curved spacetime QFT will, most likely, better inform
our decisions as to which physical principles to retain in
quantum gravity.
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