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In relativistic quantum field theory (QFT) ideal measurements of certain observables are physically
impossible without violating causality. This prompts two questions: (i) can a given observable be ideally
measured in QFT, and (ii) if not, in what sense can it be measured? Here we formulate a necessary and
sufficient condition that any measurement, and more generally any state update (quantum operation), must
satisfy to respect causality in real scalar QFT. We argue that for unitary ‘kicks’ and operations involving
1-parameter families of Kraus operators, e.g., Gaussian measurements, the only causal observables are
smeared fields and the identity—the basic observables in real scalar QFT. We provide examples with more
complicated operators such as products of smeared fields, and show that the associated state updates are
acausal, and hence impossible. Despite this, one can still recover expectation values of such operators, and
we show how to do this using only causal measurements of smeared fields.
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I. INTRODUCTION

While quantum theory is mathematically and philosophi-
cally disparate from general relativity, it is nonetheless
understood that it too must obey the universal speed limit of
causal influence. The relativistic setting of quantum field
theory (QFT) has this speed limit hard-coded into the
spacetime commutation relations, i.e., any pair of spacelike
operators commute [1]. Most discussions of causality in
QFT end here (e.g., [2]), as local operations on the state
cannot affect expectation values of observables at spacelike
points, that is, points in space and time that are causally
disconnected.

This is not the end of the story for causality in QFT,
however. In 1993 Sorkin pointed out that local operations
must satisfy a further causality condition regarding their
properties under composition [3]. It is not enough to say
that a local operation, contained in spatial extent and
duration in some portion of spacetime K, cannot affect
measurements occurring at points spacelike to K. To
respect causality it must also not transmit the effects of
some other local operation, contained in K’, to a region
spacelike to K’ (Fig. 1). In other words, it cannot enable
other local operations to violate causality.

This puts an additional, but physically justified, con-
straint on the allowed quantum operations, or state updates
in QFT. Surprisingly, some standard state updates in
nonrelativistic quantum mechanics (NRQM) and quantum
information (QI) fail this causality condition when applied
to the relativistic setting of QFT, e.g., ideal measurements
of certain observables, including projectors onto wave-
packet states [3—5] and Wilson loops in gauge theory [6].
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To avoid any causality violations, such ideal measurements
in QFT must be impossible to implement experimentally,
by any measurement apparatus [7]. Related questions of
causality in QFT have also been studied using Unruh-
DeWitt detectors [8—12], and are of broader relevance to
QI [13,14].
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FIG. 1. Spacetime diagram with time and space coordinates x°

and x! respectively. The compact (closed and bounded) subset K’
is spacelike, or causally disconnected from the region R, as can be
seen from the lightcones (dashed lines). K’/R is also partly to the
past/future of the compact subset K. Any local operations
occurring at points in time and space within K should not be
able to transmit the effects of any local operations occurring in K’
to measurements in R. While the diagrams in this paper are for
spacetime dimension d = 2, they are only illustrative, as the
discussions apply more generally to all d > 2.
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The fact that not all self-adjoint operators in QFT can be
measured in the standard sense of quantum theory prompts
two questions: which operators are measurable in QFT,
and to what extent? For example, if an ideal measurement
is not possible, then perhaps something less sharp is. One
route to answering this is to construct specific measurement
models which do not superluminally signal, e.g., using
local probes [15] or probe fields [16], although this trans-
forms the question into what measurements are possible on
probes. Alternatively, one can remain agnostic to the details
of the measurement apparatus, and ask more generally
which state updates are possible with respect to this
additional causality constraint [5].

In this paper we precisely characterise the class of state
updates that are causal (Sec. II), and we provide several
simple examples of causal and acausal maps using local
unitary kicks (Sec. III) and Gaussian measurements
(Section IV), a less sharp alternative to ideal measurements.
Furthermore, the acausal examples presented here, unlike
those presented in [3,4], will be local update maps,
thus eliminating the worry that the acausality of a
given map is entirely due to its nonlocality. Specifically,
in [3,4] they considered ideal measurements of a projector
of the form P = |¥)(¥|, for some spatially compact wave-
packet state |¥). While the shape of the wave-packet is
local (in the sense that it is of finite spatial extent),
the projector P is a nonlocal operator, in the precise
sense that it is not localizable in any subregion of
spacetime [17].

Surprisingly, our results suggest that the only causality
respecting observables (those for which the corresponding
measurement is described by a causal update map) are the
smeared fields and the identity—the basic observables of
real scalar QFT. This also seems to be the case for unitary
kicks and operations described by a 1-parameter family of
Kraus operators. Conversely, to update the state according
to the measurement of, or unitary kick with, some other
more complicated observable, e.g., the product of two
smeared fields, it appears one must violate causality, and
thus such operations must be physically impossible. Our
calculations also suggest that ideal measurements of
smeared fields are acausal, which motivates our focus on
the less sharp Gaussian measurements.

It is important to note that this conclusion, that only
measurement updates for smeared fields are possible with
respect to causality, does not preclude the recovery of
correlation functions and other expectation values of
products of smeared fields, and in Sec. IV G we describe
how this can be done with causal measurements of smeared
fields alone. Alternatively, expectation values can also be
recovered through some other measurement prescription,
e.g., using probes [16,18-20].

In Sec. V we extend our results to interacting QFT, and
show that in the case of a compact self-interaction smeared
fields can still be measured in a causal manner. In Sec. VI

we briefly comment on their relevance to continuous
measurement models [21,22], and discuss the potential
philosophical implications to the ontology of QFT. Lastly,
in Sec. VII we summarize our results.

In what follows some definitions and results will be
generalizable to complex scalar and fermionic QFT, since
they rely only on certain basic concepts in Algebraic (A)
QFT [23], namely that there is a net of subalgebras of
observables associated to regions of spacetime satisfying
certain properties. We will be careful to highlight at which
points such generalizations are possible.

II. SETUP

A. Spacetime geometry

Here we consider some potentially curved spacetime M
with a Lorentzian metric. M must be globally hyperbolic,
meaning that it contains a Cauchy surface £ C M. Recall
that a spatial surface X is a Cauchy surface if all inex-
tendible timelike curves, i.e., all slower than light trajecto-
ries with no future or past endpoints, intersect £ exactly
once. This, and the other concepts below, are illustrated in
Fig. 2. See [24] for more details.

The causal future/past of some subset of spacetime
N C M is denoted by J*(N), e.g., J*(K') and J~(R)
in Fig. 1. A subset N C M is causally convex if any
causal curve, i.e., any timelike (slower than light)
or lightlike curve, with endpoints in N is itself contained
in N.

In the following we reserve the word region for any open
causally convex subset R C M which, if treated as a
spacetime in its own right, is globally hyperbolic.

For a subset N, the domain of dependence is given
by D(N) = D" (N) U D~(N), where D(N) denotes the
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FIG. 2. Spacetime diagram with a Cauchy surface Z. All
inextendible timelike curves, e.g., y, cross X exactly once. Also
illustrated are examples of subsets that are (not) causally convex.

Finally, for the subset N we have shown its future and past
domains of dependence (which both include N).
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FIG. 3. Spacetime diagram of a compact subset K C M, and the
corresponding in/out-region K;, /K, (all points below/above the
dotted/dashed line). The causal complement, K, consisting of all
spacelike points to K, has also been illustrated (shaded with
gradient).

future/past domain of dependence, and consists of all
spacetime points x € M for which all past/future inex-
tendible causal curves from x pass through N.

The causal complement of a subset N is denoted by
N+t =M\(J"(N)UJ=(N)), and consists of all points
spacelike to, or causally disconnected from, N.

To a compact (closed and bounded) subset K we
associate an in-region and an out-region, consisting of
points not to the future and past of K respectively (see
Fig. 3). We denote these regions (so called because they are
open, causally convex, and constitute globally hyperbolic
spacetimes in their own right) as K;, = M\J"(K) and
Ko = M\J™(K) respectively. Note these regions intersect
at points spacelike to K, i.e., in K*.

For any function over spacetime, f: M >R
(or valued in C), we denote its support as suppf =
{x e M:f(x) # 0}, and we say f is compactly supported
if suppf is compact, i.e., suppf has compact closure (where
we use S to denote the closure of a set S).

B. QFT

1. Smeared field operators

Consider free real scalar QFT in M, with the field
operator ¢(x) acting on the bosonic Fock space in the
usual way. We are working in the Heisenberg picture where
the fields carry the dynamics. Technically speaking, the
field ‘operator’ ¢(x) is really an operator-valued distribu-
tion, and hence we must integrate it against a test function f
to form a proper operator on the Fock space. Recall that test
functions must be smooth and compactly supported.
The result of this integration, or smearing, with f gives
the smeared field operator

$(f) = /M dxf (1)p(x). (1)

where dx denotes the spacetime volume element. Note we
have used the symbol “¢” again for the smeared field. Any
ambiguity between the smeared field ¢(f) and the oper-
ator-valued distribution ¢b(x) can be resolved by inspecting
whether the argument is a test function or a spacetime
point respectively. If suppf C R for some spacetime region
R, the operator ¢(f) is said to be localizable in R. This is
shown in Fig. 4. Similarly to the position operator in
NRQM, ¢(f) is self-adjoint (for real-valued f) and
unbounded.

The identity, 1, together with the set of all smeared fields
¢(f) for all test functions f, form the generators of the
QFT operator algebra 2. That is, any operator in 2 is some
complex algebraic combination of the identity and the
smeared fields. As an analogy, in a lattice of qubits the
identity and the Pauli matrices local to each site generate
the entire algebra of operators in the same way. We can also
generate the subalgebra 2(R) C A associated to some
region R by only considering algebraic combinations of
smeared fields supported in R.

Note that a¢(f) + bop(g) = ¢p(af + bg) for any test
functions f and g, and any a,b € C. The dynamics
of the theory—that ¢(x) satisfies the wave equation
(O+ m?)¢p = 0—imply that ¢((O+m?)f)=0 for
any test function f. This can be seen using (1) and
integration by parts. Alternatively, ¢(f) = ¢(g) whenever
f—g=(0+m*h for some compactly supported /. In
this case we say that f and g are equivalent.

Given some f, it is always possible to find an equivalent
g supported in a region R that contains suppf in its domain
of dependence, that is, D(R) 2 suppf. An example of this
is shown in Fig. 14, and a procedure for doing this is
described in Sec. V. Since suppg can be different from
suppf, and even disjoint, this means that ¢(f) is localizable
in different, possibly disjoint regions.

See [23] for an introduction to AQFT. It should be noted
that in AQFT one usually starts with an abstract algebra of
observables, such as the algebra of smeared fields, and then
represents that algebra as operators on some Hilbert space.
Here we have implicitly assumed such a representation, and
hence we work entirely at the level of operators on a
Hilbert space.

2. Covariant commutation relations

The causal structure of the spacetime is encoded via the
covariant commutation relations (CCR’s) for smeared
fields:

[#(f), #(9)] = iA(F, 9)1, (2)

where

A(f.g) = A vy A ()
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is the smeared Pauli-Jordan function (smeared with f
and ¢), and A(x,y) = Gg(x,y) — G4(x,y) is the usual
Pauli-Jordan function, i.e., the difference between the
retarded and advanced Green functions of the classical
field theory. That is, (O + m?)Gg/a(x,y) = 8(x,y) and
Ggyalx, y) = 0 whenever x is not to the future/past of y.
Note we use the notation “A(-, -)” for both the smeared and
standard Pauli-Jordan functions. Any ambiguity can again
be resolved by inspecting whether the arguments are
functions or spacetime points respectively.

Some readers may be more used to expressing the
spacetime commutation relations as

[#(x), p(y)] = iA(x, )T, (4)

in terms of the operator-valued distribution ¢(x). Indeed,
the CCR’s in (2) follow from these relations by integrating
over the spacetime points x and y, weighted by the
smearing functions f(x) and g(y). To have a concrete
picture in mind, we plot the functional form of A(x,y) in
Fig. 5 for the simple case of the massless theory in 1 4 1
Minkowski spacetime. To visualize A(f, g) for this exam-
ple, one can imagine integrating A(x,y) against two
functions f(x) and g(y).

In Fig. 4, f and g have spacelike supports. In this case
A(f,g) = 0, and hence ¢(f) and ¢(g) commute. For a test
function 4 that does not overlap with f, but is also not
spacelike to f (see Fig. 4), A(f,h) may not vanish, and
hence ¢(f) and ¢(h) may not commute. Therefore, the fact
that ¢(f) and ¢(h) are localizable in disjoint regions does
not imply they commute.
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FIG. 4. Spacetime diagram illustrating the supports of three
test, or smearing, functions f, ¢, and h. The smeared field
operator ¢(f) is constructed by integrating ¢(x) with f over
suppf (contained in the region R), and similarly for the smeared
fields ¢(g) and ¢(h). suppf is spacelike to suppg, but not to
supph. Therefore, ¢(f) and ¢(g) commute, while ¢(f) and ¢p(h)
may not.
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FIG. 5. Plot of A(x,y) for a massless scalar field in 1+ 1

Minkowski spacetime. The spacetime point x has been fixed and
A(x,y) has been plotted as a function of the spacetime point y,
i.e., as a function of the time and space coordinates y° and y'
respectively. Note that, for x and y spacelike, A(x,y) = 0. The
massless 1 + 1 case is especially simple in that A(x, y) is constant
inside the lightcone. This is not the case for nonzero mass, or in
higher dimensional Minkowski (or other curved) spacetimes.
What is true in any spacetime, however, is that A(x,y) = 0 for x
and y spacelike.

3. General properties

The above properties of the smeared fields imply
the FEinstein causality property, namely that spacelike
subalgebras commute, ie., [2A(R),2A(R)] =0 for any
spacelike regions R and R’. Additionally, we have
the isotony property: 2(R) C 2A(R’) whenever R C R'.
We also have the useful time-slice property: A(R) =
A(R’) whenever RC R and R contains a Cauchy
surface for R'. These properties are usually assumed at
the algebraic level in AQFT, before any representation of
the algebra on a Hilbert space is given. Importantly, they
also apply more generally to complex scalar and fermionic
QFT, but only to the physical subalgebras in each case,
namely the even degree combinations of the fields
which are invariant under any unobservable gauge trans-
formations. For this reason these general properties
are often taken as a starting point for constructing physical
QFT’s.

Given some subalgebra B C 2, we denote the commu-
tant as B+, i.e., the set of all operators that commute with
everything in B. We will assume the Haag property [25]
(proved for scalar fields in [26]): for any compact subset
K C M, and every region R D K, then 2(K+)* C 2A(R).
That is, the subalgebras 2A(R), for all regions R that
contain K, contain all operators that commute with those
spacelike to K. This property is sometimes weakened to
only apply to any connected compact K, though we do not
do this here.
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C. Causality conditions on update maps

Given some state, or density matrix, p, and some self-
adjoint operator X € 2, its expectation value is given by
tr(pX) [27].

Any quantum operation is described by a completely
positive (CP) update map, £(+), on the state: p > p' = E(p).
Under expectation values we can instead consider the dual

update map on the operators: tr(p'X) = tr(E(p)X) =
tr(p€(X)). In what follows we will mostly be concerned
with update maps, £(+), acting on the operators instead of
the state.

Note that under a composition of two maps on the state,
e.g., p> E(E(p)), the composition on the operators is
order-reversed, e.g., X — E£(&'(X)).

Our focus will usually be on trace-preserving maps, such
that £(1) = 1. In the case of an ideal measurement this
amounts to the nonselective case where no outcome is
conditioned on. Recall that for any compact self-adjoint
operator, X, with projectors E, onto the eigenspaces
associated to distinct eigenvalues x,,, the update map for
an ideal measurement of X is given by

gg)((Y) = ZEnYEm (5)

for any operator Y € 2. Note that £%(1) = 1 since the
projectors square to themselves and resolve the identity.
Furthermore, if X € 2A(R), i.e., it is localizable in a region
R CM, and Y € A(R') where R’ is spacelike to R, then
[X,Y] =0 and [E,, Y] = 0. Therefore, £%(Y) =Y.

This property of an update map, that it acts trivially on
operators that are spacelike to some subset of spacetime,
can be concisely stated as

Definition (local): An update map £(-) is local to a
compact subset K if

EO) sy = 1. (6)

That is, £(+) acts trivially on operators spacelike to its
associated subset K. This ensures that expectation values of
any Y € A(K~) are the same in the updated state as the
original state.

Furthermore, if we impose that the expected value of any
operator Y € A(K*) is unchanged under the update
Y — £(Y), in any state p, we arrive at the above locality
condition on £(-). To see this let Y/ = £(Y) — Y. For any
pure state |y) we then have (w|Y’|w) = 0 by assumption.
If, for any orthonormal states |1), |2), we pick |y) = a|l) +
b|2) and |p) = a|l) + ib|2), for any a, b € R, the fact that
(w|Y'lw) = (@|Y'|) = 0 implies that (1|Y’|2) = 0. Since
this is true for any orthonormal states, we have that Y/ = 0,
in the sense that, as an operator, its matrix elements vanish.
This then implies the operator equation £(Y) =Y.

So long as &(+) is constructed through functions of an
operator X € 2(R), for some region R C K, then the map

E(+) is local to K. In the above example of an ideal
measurement of X, the projectors E, are functions of X,
specifically indicator functions, and hence they commute
with all operators spacelike to X, and thus £(-) acts trivially
on such operators.

As discussed above, many local update maps fail a
further causal constraint regarding compositions with other
local maps. To make this precise we make the following

Definition (causal with respect to): An update map
&(), local to a compact subset K, is causal with respect to a
map &'(+), local to some compact K’ C Kj,, if

EE) luxtnr,,) = EC)- (7)

In other words, £'(+) drops out when the pair of maps act
on operators localizable in K., and spacelike to K'.
This implies that £'(+) drops out of any expectation values
of operators Y € A(K'* N Kyy), ie., tr(pf'(E(Y))) =
tr(p€(Y)). See Fig. 6 for an illustration of the intersection
K"t N Ky used in the definition. Similarly to above, if we
impose this condition on expectation values for all states we
find that it must be true at the operator level, that is, we
arrive at (7).

In the following we remove the dependence of the
map &'(-).

Definition (strongly causal): An update map &(-),
local to a compact subset K, is strongly causal if it is causal
with respect to all maps &'(+) local to all compact K’ C K.

We use the term “strongly causal” (and apologize for
doing so, given the standard meaning in Lorentzian
geometry) because this property may seem too strong at
a first glance. For instance, it could be too much to ask of a
map to be causal with respect to all local maps, especially if

A

1:0

Kout

L

9 /AN J\
K n Kout N

FIG. 6. Spacetime diagram of a compact subset K, its corre-
sponding out-region K, (all points above the dashed line), and a
compact subset K’ C Kj, (note that K;, is not shown, but it should
be clear that K’ is not in the future of K). The dotted lines
illustrate the causal complement K’*, and the areas shaded with a
gradient show the intersection K'+ N K used in the definition
of the term causal with respect to This definition encodes the fact
that any expectation values measured in K+ N K, and hence
measured in a region spacelike to K’, should only depend on the
map &(+) local to K and not on &'(+) local to K'.

N
N >
> o

{L'l

025003-5



I. JUBB

PHYS. REV. D 105, 025003 (2022)

those local maps are themselves not causal with respect to
some other maps. With this in mind we make the following
weaker definition.

Definition (weakly causal): An update map £(+), local
to a compact subset K, is weakly causal if it is causal with
respect to all strongly causal maps &£'(-) local to all
compact K’ C K.

Any strongly causal map is causal with respect to all
local maps, and so is clearly causal with respect to the
subset of local maps which are strongly causal themselves.
That is, any strongly causal map is also weakly causal;
hence why the latter condition is weaker.

It seems physically reasonable to think that strong
causality is as strong as it gets for update maps, since,
on the contrary, it seems physically unreasonable to
demand that a map &(-) is causal with respect to maps
that are not even local (as well as all local maps). Strong
causality being the strongest condition then implies that
weak causality is the weakest condition, as to define a
weaker condition on a map £(-) requires a smaller set of
local maps (smaller than the set of strongly causal maps)
with which £(-) must be causal with respect to. In this way
strong and weak causality seem to determine natural upper
and lower limits of what one can expect from causality
respecting maps under composition.

In Sec. I1I B we will sketch an argument as to why strong
and weak causality are in fact the same, and hence we will
simply refer to maps as causal if they satisfy strong/weak
causality. Furthermore, we will also argue that the causal
maps are precisely those that have the physically intuitive
past-support nonincreasing (PSNI) property, where

Definition (PSNI): An update map £(-), local to a
compact subset K, is past-support nonincreasing (PSNI) if
it satisfies

E(AR.)) € AR-), (8)

for all regions R, C K, and R_ C K;, with R, C D(R_).

This is physically intuitive as for any operator X,
localizable in some region R, within the out-region for
E(+), if we localise £(X) in the in-region for £(-), then the
PSNI property says that its support is not pushed outside
the past lightcone of R . Conversely, imagine for some
R, C Ky there exists some R_ C K;, with R, C D(R_)
for which E(A(R,))ZA(R_). Any valid localization
region containing a Cauchy surface for R_, that is, any
R_ C K, with D(R_) C D(R") and E(A(R,)) C A(R.),
must be strictly larger in spatial extent than R_, in the
sense that D(R_) € D(R"). This is required since we need
A(R_) C A(R.) to have any hope of localizing E(A(R..))
in R_. Given that R, C D(R_), R_ necessarily extends
outside the past lightcone of R, and hence any such R
must do as well, e.g., Fig. 7. This PSNI property is almost
exactly that given in [16,18] in the case of a scattering map

~—D"(R_)

-
>
xt

FIG. 7. Tllustration of the past-support nonincreasing (PSNI)
property for an update map £(+) local to some compact K. For any
region R, in the out-region for K, and any region R_ in the in-
region for K, such that the closure of R, is contained in the
domain of dependence of R_ (as can be seen in the figure), then
(8) must be satisfied for £(-) to be PSNI. Heuristically, £(-)
cannot “push” operators outside their past lightcone.

for an interaction of a quantum field with another probe
quantum field.

One can consider the n-map generalization of (7), where
a given map drops out if it is spacelike to the operator that
the composition acts on. For a sequence of n PSNI maps
Ei()y.rsE,(), local to Ky, ...,K, respectively, where
K, C (K,);, whenever r <s, this n-map generalization
of (7) is satisfied. This can be shown by starting from
the innermost map and working outwards. Applying any
map can only change the operator it acts on in a way that
keeps its support in the past lightcone of X, and hence, at
any stage of the composition, the application of a map
spacelike to X will be trivial. Given this n-map property
follows from the PSNI property, which (we will show)
follows from the 2-map causality conditions above, we see
that further n-map causality conditions for n > 2 are
redundant.

It should also be noted that the above definitions (local,
strongly/weakly causal, and PSNI) apply more generally to
maps on the physical subalgebra of a complex scalar or
fermionic QFT. That being said, the argument in Sec. III B
for the equivalence of the different causality conditions
does not generalise so straightforwardly, and is left for
future work.

D. Analogous picture in lattice systems

The above locality and causality conditions on update
maps are even more transparent in a lattice, or multipartite,
system.

Consider a lattice of N sites. Recall that an operator X is
local to site n if it can be expressed as X =1, ® ... ®
1.1 ®X,® ... ® 1y, ie, it is only nontrivial (not the
identity) on site n. Similarly, an update map, &(+) is local to
some subset of sites if, when expressed in terms of
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operators,
those sites.

Furthermore, &£(+) is PSNI if, for any operator X local to
some subset of sites, £(X) is also local to the same subset of
sites; otherwise the support of X has been increased.

Update maps that increase support can be used to
(subluminally) signal between parts of a multipartite
system [5,13,14], and are routinely considered in QI
Causality is not violated in these cases because any
experimental realizations of the update maps take at least
the light-travel time between the sites to complete.

That is, in NRQM if an update map is support increasing,
or signalling, we do not need to rule it out as physically
unrealizable by any experiment. It is only physically
unrealizable on timescales shorter than the relevant light-
travel time. On the other hand, in QFT certain update maps
must be ruled out completely. Essentially, the relativistic
setting necessitates the specification of the spacetime
regions in which any quantum operations take place.
The causal relations between the specified regions then,
potentially, adds additional constraints [e.g., (7)] on the
physically allowed update maps.

it is only nontrivial (not the identity) on

III. UNITARY KICKS
A. Smeared field Kicks

Let us consider one of the simplest update maps—a local
unitary kick. Specifically, for some self-adjoint operator A,
localizable in some compact K, we consider the map

B+ U, (B) = eABe™, 9)

for any operator B € 2. Clearly, if B is localizable in a
region spacelike to K, then [A,B]=0 and hence
U, (B) = B. Thus, the map U, (-) is local to K for any A
in K. It is also clear that ¢/, (1) = 1. First we consider the
simplest case of smeared field kick, i.e., A = ¢(f) for f
supported in K.

For any region R, the subalgebra 2(R) is generated by
algebraic combinations of smeared fields in R, i.e., by
smeared fields ¢(g) for test functions g supported in R.

Alternatively, one can construct any B € 2[(R) through
suitable derivatives of linear combinations of the unitary
Weyl generators ¢'?(%), where again g is any test function
supported in R [28]. For instance, to recover the smeared
field ¢(g) we can consider the 1-parameter family of Weyl
generators /(%) = ¢*(19) where r € R. We can then write
$(g) = —i0, (el )| _o- Similarly, for the square we have
#(g)* = —0%(e"9)|,_,. To recover a product of
two smeared fields, ¢(g)¢p(h) say, we instead consider
the 2-parameter family of Weyl generators e/®("9+s/) —
i) +isd(h) where ¢, s € R. Using the Baker-Campbell-
Hausdorff (BCH) formula [29-32] and the CCR’s in (2)
one can verify that

eiP9)+isp(h) — G5A(g.h)is pitd(g) pish(h) (10)
and hence
_ a o ( gh)ts itp(t.g+s. h))l 0,520
= —0,0,(e"D et M| o g
= (- 19(6’¢ Nio) (=0, (e47M)] )
= ¢(g)p(h), (11)

as desired. In a similar fashion one can recover any
B € A(R), i.e., any algebraic combination of smeared
fields, through appropriate complex sums and derivatives
of Weyl generators.

We will say that any complex linear combination of Weyl
generators, e.g., » | c;e9) for ¢; € C, is localizable in a
given region R if it contains the supports of all the functions
g;- This ensures that localization regions are unchanged
when taking derivates of the Weyl generators to recover
sums and products of smeared fields.

Since U (+) is linear we can also recover U, (B), for any
B € A(R), through suitable complex sums and derivatives
of terms of the form U, (e/?(9)). Therefore, we need only
determine the action of U, (-) on a general Weyl gener-
ator !9(9),

Using the Baker-Campbell-Hausdorff (BCH) formula
one can verify that

Uy (e"P19)) = i) ¢i1d(9) =i )
— LitA(g.f) pitlg) (12)

Since the right-hand side (rhs) is proportional to the
original Weyl generator ¢#%), which is localizable in R,
we see that Uy s (e™9)) is also localizable in R. From
this we see that if B is any complex sum of Weyl
generators in 2A(R), then Uy (B) € A(R), and hence
Ugyp)(UA(R)) € A(R). This then implies that, for any
&'(+) local to some compact K’ C Kj,,

Uy (B)) = Uy (B), (13)
for any B localizable in K'* N K. This follows as
Ugyp)(-) does not change the localization of B, thus
Uy (B) is also localizable in K'*+ N Ky, € K'*, and
hence also localizable in K'*. Since £'(-) is local to K,
&'(+) then acts trivially on Uy s (B).

This argument holds for all maps local to any compact
K’ C K;y, and hence U ) (-) is strongly causal. Since this
is the strongest (physically reasonable) causality condition
we can impose on a given map, there is no reason (at least at
the level of the theory) to think that Uy (-) is not
physically realizable in experiments. Of course, this may
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not be surprising to many readers given the simple form of
the map.

B. Kicking causality conditions into shape

We will now use these strongly causal smeared field
kicks to show that any weakly causal map satisfies the
PSNI property. Following this we will show that the PSNI
property implies strong causality. Since strongly causal
maps are also weakly causal, this implies that weak
causality is in fact equivalent to strong causality, and to
the PSNI property. Thus, for real scalar QFT, causal maps
are precisely those that are PSNI.

1. Weak causality = PSNI for real scalar QFT

Recall that a weakly causal map &(-) is causal with
respect to all strongly causal maps. This means any weakly
causal map, local to some compact K, must be causal with
respect to all smeared field kicks U, (+) with f compactly
supported in K;,. That is,

Up(r) (Elairrnr) = EC)s (14)

for all f supported in any compact K’ C Kj,. In particular,
this implies that £(-) is causal with respect to the
I-parameter family of smeared field kicks Uy 5)(-) =
Ujpp)(-) for A € R. Substituting Uy (+) into (14) we
see that the rhs does not depend on A, and hence derivatives
with respect to A must kill both sides. Using this as a
condition on the lhs gives, for any B € A(K'* N Koy),

i0,(Upg(r,)(E(B))) 120
— i, (eI E(B))e= M),

= [E(B), (/). (15)

The vanishing of this commutator is also sufficient for (14),
as it implies that £(B) commutes with e() and
hence Uy (E(B)) = Uys)(1)E(B) = E(B).

In short, for any weakly causal map £(-) (local to
compact K), any f supported in any compact K’ C Kj,,
and any B localizable in K'*nK,, we have
[E(B),¢(f)] =0. For any region R C K, any operator
A € A(R) is some algebraic combination of smeared fields
in K’, and hence [£(B),A] = 0. Since this is true for all
A and B, localizable in their respective regions, we get
[EQAK' N Koy)), A(R)] = 0. In other words,

0

8(2[([(”— N Kout)) g 2[(R)J_7 (16)

for any region R C K’, and any compact K’ C K;,. To help
visualise these subsets one can imagine Fig. 6 but with the
addition of a region R C K'.

Importantly, (16) is true if we pick K’ in a way that
matches the setup of the PSNI property. To do this we first

3 , \
~">¥K//R’ =T+N K, "

FIG. 8. An illustration of the surfaces X (thin line), S (medium
thickness line), and T (thick line lying over the part of S to the past
of R,). The past-directed lightlike dashed lines from R indicate
the boundaries of the past set J~ (R ) (note J~ (R, ) contains these
boundary points). The region T consists of all points to the left
and right of the dotted lightlike lines (not including the dotted
lines) emanating from the endpoints of 7. The region K;, lies
strictly to the past of the dotted and dashed line. The area shaded
with a gradient is the region R’ = T+ n K, used in the proof. Note
that the position of K in this example means that R’ is not the
entirety of 7. This is not always the case, however, and for certain
setups R’ = T. Finally, examples of the subsets K’ C R’ and R C
K’ have been shown to help illustrate the proof.

pick any pair of regions R, C K, and R_ C K, such that
R, c D(R_) (cf. the PSNI condition). Since R_ is a region
it is globally hyperbolic in its own right, and hence it has a
Cauchy surface S. Given that R, C D(R_), we know
that all past causal curves from R, pass through S,
specifically through the surface 7 =J~(R,) n S. Note
that 7 c S C R_. See Fig. 8 for an illustration of these
surfaces.

Working toward (16) we now define the region
R =T+ nK,, CT* (see Fig. 8), which we will use
shortly to introduce the subsets K’ and R C K’ that appear
in (16).

Before doing that, however, it will be useful to show that
A(R') = A(T+), which can be seen as follows. As R’ is a
region it contains a Cauchy surface X. Importantly, X is also
a Cauchy surface for T+, since any inextendible timelike
curve y C T+ will either be entirely contained in R’ (in
which case it must intersect X by virtue of it being Cauchy
surface for R’) or it passes into J™(K) (note it cannot lie
entirely in J*(K) as K is compact and y must be past
inextendible), in which case the curve ¥ = y\J"(K) is a
timelike curve in R’ (with no endpoints in R’, and hence
inextendible in R’) and hence intersects X, thus implying y
also intersects X. One can get an intuition for this result via
Fig. 8. By the time-slice property of subalgebras we then
have A(R') = A(T+) as desired.

We are now ready to apply (16). Specifically, if we pick
any compact K’ C R, and any region R C K’ (see Fig. 8),
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equation (16) holds. From the setup we also have that
R, C K'*, and in particular, R, C K'* N Ky, since R, C
K o by construction. Therefore, A(R,) € (K"t N Koy,
and hence E(A(R.)) CEUA(K'' N Kyy)) CAR)E by
(16). Since this is true for all bounded regions R C R’
we have E(A(R.)) CAR)* =A(T+H)*. Finally,
using the Haag property, we know that 2(7+)+ C A(R_),
since R_ is a region containing 7. Therefore,
E(AR,)) CA(R_), c.f- the PSNI condition.

2. PSNI = strong causality

Above we used strongly causal smeared fields kicks to
show that any weakly causal map is PSNI. To complete the
argument that weak and strong causality are the same in
real scalar QFT, and equivalent to PSNI, we will now show
that PSNI implies strong causality. Such an argument
renders the three properties equivalent as strong causality
already implies weak causality.

First, we pick any compact K’ C Kj,. For any region
R, C Ky, with compact closure R, C K'*, we follow
Lemma’s 3 and 4 of [16] to show that I_'(’+ is contained in the
domain of dependence of the region K'* n Kj,. Setting
R_ = K'* n K;, we then have E(A(R,)) C A(K'* N Ky,)
by PSNL As K'*+ n K, € K'* we then have E(2A(R,)) C
A(K'+), and hence any map &'(-) local to K’ act trivially on
E(A(R,)). This argument holds for any region R, C K
whose compact closure is spacelike to K’, and hence it
holds on the subalgebra 2A(K'+ N K,). That is, any map
E'(+) local to K" acts trivially on E(A(K'+ N Koy))- This is
precisely the condition of strong causality, and thus PSNI
implies strong causality.

Notably, this last argument that PSNI implies strong
causality uses only the spacetime causal structure and the
basic properties of a physical algebra in AQFT, namely
Einstein causality, isotony, and the time-slice property.
Thus, the argument straightforwardly generalizes to the
physical subalgebras of complex scalar and fermionic
QFT’s. That is, the chain of implications PSNI =
strong causality = weak causality holds more gener-
ally. The implication weak causality = PSNI, on the
other hand, was only shown above for real scalar fields. We
leave the extension of this latter implication to other fields
for future work.

Going forward we will consider unitary kicks with other,
more complicated operators in real scalar QFT, and then
Gaussian measurement maps and other 1-parameter fam-
ilies of Kraus operators in Sec. IV. In every case we will
determine if the respective map is causal using the PSNI
property. In many cases the update maps will not be PSNI,
despite being local. In such cases the update maps must be
ruled out as physically impossible to implement in experi-
ments. Conversely, to implement them is to open the door
to potential causality violations.

C. Other unitary kicks

Let us now consider the slightly more complicated case
of A= ¢(f)?. Using the BCH formula again, one can
verify that U s (+) acts on the 1-parameter family of Weyl

generators, ¢#(9) as

z,{(/)(f)z(eitaﬁ(g)) = 7iPA9) =M1 pithl9)  (17)

If f is supported in some compact K C M, and g is
supported in some compact K’ C K.y, then A(f,g) is
not necessarily zero. In such a case U f)z(ei’¢(9)) may not
be localizable in the support of g, as it now depends on
¢(f), which may not be localizable in suppg if
suppf¢Zsuppg. Crucially, suppf may contain points that
are spacelike to suppg, and hence the past-support can now
include the past lightcone of the support of f. Thus
Uy (+) is not PSNI, and hence not causal.

For clarity let us show explicitly how a causality
violation can arise. Consider the setup in Fig. 1: two
compact subsets K, K’, and some region R, such that K is
spacelike to the compact closure of R, K’ C K;, and
R C K. Consider three test functions f, g, h, where f
is supported in K, g in R, and /4 in K’. Let the initial state of
the system be p.

Now consider three independent agents, Alice, Charlie,
and Bob, who perform actions in K/, K, and R respectively.
Alice kicks in K’ with the smeared field ¢(1.h) = A¢p(h)
(for some kick strength 4 € R), and hence the state gets
updated as p > p' = 1;145(,,)(,0), where we have used the
dual map U, (-) since we are updating the state. In K
Charlie enacts the operation under question, U, (-), and
hence the state is further updated as p’ > p” = Z:{(ﬁ( 2 (P).
Note that Charlie’s update is applied after Alice’s, as K’
has some points to the past of K (if K is spacelike to K’ then
the order does not matter as the maps commute). In R Bob
measures the expected value of ¢(g), which is given by

tr(p"P(g)) = tw(pUyyy Uy 12 (¢(9)))), (18)

where we have reverted to the update maps on the operators
instead of the state. Focusing on U, s12(¢(g)) we have

U¢<f)2(¢(g)) = _iat(u(/}(f)z(eit{/)(g)))|t:0
= _iat(e—itzA(f.g)ze—i2rA(f,g)¢(f>eit(ﬁ(g))|

t=0

= ¢(9) = 2A(f. 9)9(f). (19)

using (17). Since R is not spacelike to K, A(f, g) is nonzero
in general. To compute Bob’s expectation value we then
need to act with Alice’s kick, U ;) (-), where we recall that
[#p(h),d(g)] =0 (since K’ is spacelike to R), and that
[p(h),d(f)] = iA(h, f), which is nonzero in general since
K’ is not spacelike to K. We find
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qus(h)(uzf)(f')z((ﬁ(g))) = Z’l/1¢(h)(¢(g)
=¢(9)
=¢(9) +
=¢(g) +
=¢(9)

where we have used (12) and the fact that [¢(h), ¢(g)] = 0
to say that Alice’s kick acts trivially on ¢(g). To achieve a
violation of causality we now need to show that there is
some initial state p for which Bob’s expectation value
depends on A—the strength of Alice’s kick. An obvious
choice is the usual vacuum state, p = |Q)(Q|, for which
odd n-point functions vanish, and hence tr(p¢(f)) = 0 for
any test function f. For Bob’s expectation value we then
find

tr(p"#(g)) = t(p(p(g) — 2A(f, 9)(@(f) + 2A(f, h))))

= 2AA(h. f)A(f. 9)- (21)

The fact that this depends on A (Alice’s kick strength)
enables Alice to superluminally signal Bob, provided they
have an agreed-upon “code,” e.g., to send the bit “0” Alice
does not kick (4 = 0), which Bob can discern from the
vanishing of his expectation value; to send the bit ‘1’ Alice
kicks with some sufficient strength (1 # 0), which Bob can
pick up from his nonzero expectation value. Note that this
signal is statistical, since Bob picks it up at the level of an
expectation value. In each realization of the experiment this
value will fluctuate. To make this protocol more robust to
fluctuations many copies of the system can be setup in
parallel, such that Bob receives a statistically significant
amount of data in R to be able to discern, up to some
desired accuracy, whether his expected value vanishes
or not.

Since Alice (in K’) and Bob (in R) are spacelike
separated, this transmission of information is faster than
light! This violates causality, and hence this protocol must
be impossible. We know that Alice’s kick is causal, and we
assume Bob can measure his expectation value without
violating causality (in Sec. IV G we will offer one way to
achieve this). Therefore, the only conclusion we can draw is
that Charlie’s operation, Uy (+), is impossible to imple-
ment in K.

To avoid any causality violations we must therefore rule
out the map U ;2 (+) as physically unrealizable via experi-
ments. This may seem somewhat surprising, given that we
have simply unitarily kicked with an operator that is
localizable in some bounded region, i.e., ¢(f)?, and given
that analogous unitary kicks are standard in NRQM and
lattice systems. We will comment further on why this

—2A(£,9)(9(f) + AA(f, h)),

—2A(f. 9)¢(f))

= 2A(f. Uy (B(f ))

2iA(f,
2iA(f,

90 Upy (")) 1=

)t(emm f.h) m/) ))| 0

(20)

[
distinction arises between NRQM and the relativistic
setting of QFT in Sec. VL.

One can further investigate unitary kicks with other self-
adjoint operators. For many simple cases, where A is not a
sum of generators, i.e., not of the form ¢(f) + ¢1 (for some
¢ € R), we find that the unitary kicks increase past-support,
similarly to A = ¢(f)2. This suggests that only kicks with
generators (smeared fields and the identity) are permissible
with respect to causality. We will not provide a more
rigorous argument for this claim here. Instead, we postpone
that more rigorous discussion for the next section, wherein
we will argue the analogous conclusion that Gaussian
measurements of smeared fields are the only permissible
Gaussian measurements. The arguments used there can
then be readily applied to unitary kicks.

IV. MEASUREMENTS

A. Preliminaries

Consider some self-adjoint operator C € (R), localiz-
able in the region R. Consider some function G:R — C.
Provided G is a measurable function the operator G(C)
can be defined through functional calculus [33], even
if C is unbounded. Specifically, via the Spectral
Theorem [33] we can write C using its projection-valued
measure, P., as

C= / 2dPc(2), (22)

from which any measurable function of C is defined as

G(C) = /R G(A)dP(2). (23)

Note that the satisfies

JudPc(z) = 1.
For any measurable G that is normalized in L*(R),
that is,

projection-valued measure

AdaG(a)*G(a) =1, (24)

we can define the corresponding update map for C:
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£6(B) — /R daG(C—a)'BG(C—a),  (25)

for any B € 2. The operators G(C — a), for all @ € R,
furnish a 1-parameter family of Kraus operators. One can
also consider a discrete family of Kraus operators, e.g., a
discrete set of projectors in an ideal measurement, but we
will see it is more beneficial to consider a continuum of
Kraus operators.

The fact that G is normalized, and that (24) holds even if we
change G(a)*G(a) = G(c —a)*G(c — a) for any ¢ € R,
implies that £%(1) = 1. Furthermore, since G(C — a)
commutes with everything that C commutes with, we
have that £5(B) = B for all B localizable in some region
spacelike to C. That is, the map E%(-) is local for any choice
of G.

Note that the dual map that acts on the state p is
given by

ES(p) = A daG(C = )pG(C—a)'.  (26)

We will often consider the specific case of Gaussian
measurements involving the Gaussian Kraus operators

(C=a)?
e 4?

G°(C—a) =

(2m6?)i 27)

where ¢ > 0 is interpreted as the measurement accuracy.
For convenience we denote the corresponding update
map as &%(-). Note that G°(C—a)' = G°(C - a).
Such Gaussian update maps are ubiquitous in weak
measurements and continuous measurement models
[21,22].

EZ(-) describes a nonselective measurement, where
no outcome is conditioned on. If one instead conditions
on some measurement outcome, say « landing in some
interval [a,b] C R, then the associated selective update
map is

1 b
i (B) = / daG?(C = a)BG™(C—a),  (28)

where P, ;) denotes the probability for a to land in the
interval [a, b]. The appearance of P, p) in the denominator
ensures that the wupdated state is normalized, i.e.,
tr(g"a[aﬁ] (p)) = 1. The probability Py, is given by

Py = tr(p[zb daG”(C—a)z) = Lb dap(a), (29)

where we have written the last line in terms of the
probability density function (pdf) for a:

p(a) = w(pG°(C - a)?)
= lzﬂtr(pe_%). (30)

The average outcome is then given by the usual formula in
terms of this pdf:

E(a) —Adaap(a), (31)

and similarly for higher moments.

If C has eigenvectors in the Hilbert space, e.g.,
if C is compact self-adjoint, then the ¢ — 0 limit of
EZ(-) describes an ideal measurement of C. That is,
lim,_ E(-) = EX(+) [using the notation from (5)]. To
see this, we first spectrally decompose C as

C=> ¢k, (32)

where the sum runs over some countable set labelling
the distinct eigenvalues ¢, and the associated orthogonal
projectors E,. For any function F':R — C we can compute
that same function of the operator C. Specifically, F(C) is
the sum over the projectors E, multiplied by that
same function of the eigenvalues, F(c,). We can therefore
write

G(C—a)=> G(c, - )E,. (33)

The wupdate map, acting on any operator B, then
simplifies to

£.(B) = /_ " day 67 (¢, - )G7(¢,, - a)E, BE,

o0 n,m

_("n—f’m)z
=> ¢« E,BE,. (34)

after evaluating the integral over a in the first line.
(fn*"m)2

We then note that e s

— O,m as 0 — 0, leaving
lime(B) = ZEBE (35)

which matches the form of a nonselective ideal measure-
ment of C, i.e., EX(+). Since £%(-) has this limit, one often
thinks of this Gaussian measurement as a less sharp ideal
measurement, though if C is not compact (but still self-
adjoint) then this limit may not be well-defined.

In what follows it will be useful to determine
U,p(e)(G(C)) for any smeared field ¢(g) and 7€ R.

First, it is easy to see that
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Uspig) (P(f)) = e VD (f)e= P10
= ¢(f) +1A(f.9)

for any ¢(f). This can be verified by expanding the
exponentials. Similarly, for two smeared fields, ¢(f;)
and ¢(f,), we have

Uip(o) (1) (f2))

= "I P(f1)b(f2)e” 0

= "I P(f))e D)) p(f,)e ")

= (¢(f1) + tA(f1.9))(@(f2) + tA(f2. 9)).

(36)

(37)

where we have inserted T = ¢~ #(9)¢"%(9) in the second last
line. It is then clear that, for any polynomial in smeared

fields P(¢(f1). .. d(fn)),
(o) (P@(f1) - (f2)))
= P(@(f1) +tA(f1.9)s . p(f0) + 1A(f1.9)).  (38)
Below we consider operators C of this form,
e.g.,C=P(p(f1),...,¢(f,)). Therefore, defining C(tg) =
U, p(9)(C), we have
C(tg) =P(p(f1) +1A(f1.9)- - d(f) +1A(f09)).  (39)
G,(e) = [ daG((s)
~ [ dac(a(r)

= 3

(1A(f. g))e"?

where we have defined the function H in terms of G as

H() = [ b6 G(p ) (43)
for any t€R, and we have used (41) to write
"OG((f) — a)e ™9 = G(¢p(f) + tA(f, g) —a). To

get the last line we used (23). Specifically, using (23)
we can write

A daG((f) — @) G($(f) + 1A(f.g) —a)

_ A /R daG(2—a)' G+ 1A(f.g) - a)dP (), (44)

— ) e"IG(¢(f) —a)e

We can similarly show that U,y (C?) = C(1g)?
inserting 1 = e~"¢(9) ¢/"?(9) between the C’s. Going further,
for any polynomial Q in a single variable we have

U,p5)(0(C)) = O(C(19)).

This can be extended to any analytic function, G:R — C,
using the Taylor expansion for G and inserting
1 = e "9)¢"9) between any two C’s. We now have

(40)

(41)

Since Hermite functions (the basis for the quantum har-
monic oscillator) form an analytic orthonormal basis that is
dense in L*(R), we can extend the above action of U, ()

on G(C) to all L? functions G, i.e., to all square-integrable
functions.

B. Operations with a smeared field

1. A general 1-parameter family of Kraus operators

Consider the simplest case of C = ¢(f), for f supported
in some compact K. Given some L? function, G, and the
corresponding update map, Eg( f>(-), we can determine

whether it is causal by acting on Weyl generators e!¢(¢)
for some ¢ supported in K. We have

— )T e 9IG(p(f) — a)

—=itd(9) pitp(9)

daG(p(f) — a)lG(@p(f) + tA(f. g) — a)e"?9)

(42)

The interior integral in the last line does not depend on 4, as
for any 1 € R we have

AdaG(/l —a)*G(A+tA(f.g) — a)

— A dpG(B)*G(p + tA(f.g))

— H(A(f. 9)). (45)
where we have changed variables from a to f=1—a.
Note that H(tA(f, g)) is finite as G is an L? function, and
hence it has a finite L? product with any other L? function
(by the Cauchy-Schwarz inequality), including a shifted
version of itself.
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Now (44) becomes
A daG(@(f) = @) G($(f) +1A(f.g) - )
= /RH(fA(f’ 9)dPy(s)(4)

— H(A(f. 9)) / AP (2)
= H(tA(f, g)1, (46)

where H(tA(f, g)) can be moved outside the integral as it
does not depend on A. The last line of (42) now follows.

From (42) we can see that £¢ ) (e i$(9)) is proportional to
the original Weyl generator ¢"?(9), with proportionality
constant H(tA(f,g)), and hence we know that
Egip e #$9)) is localizable in the same region as /),
Therefore, for any region R C K, ng (A(R)) € A(R),
and thus £ () is causal.

Notably, this is true for any L? function G. The precise
form of G will determine the precise form of H, and hence
the exact effect of the operation on any future measure-
ments. Importantly, the support is never increased for any
choice of G, and hence maps of this form are always causal.

We also note that the addition of a real constant to ¢(f)
does not change the causal nature of these update maps.

This can be seen my repeating (44) with C = ¢(f) + c1 for
some ¢ € R:

gg(einﬁ(g))
= / daG(p(f) + ¢ — a) e IDG((f) + ¢ — a)
R

_ A dG(p(f) - @) e IG((f) - )
= H(tA(f, g))e™9), (47)

where we changed variables to « = a — ¢ in line 3, and to
get the last line we used (44). Via the linearity of the
smeared fields, any linear combination of smeared fields
and the identity, i.e., any generator, is of the form
&(f) + cl1. Thus, the maps E4(-) are causal for any
generator C.

2. Gaussian measurements

In the specific case of a Gaussian measurement we get

2A(f.9)

g (e99) = 2 E o) (g

By taking derivatives with respect to ¢ at t = 0 we find

) (B(9)) = =0, (€9))] g
S .
= ¢(9). (49)
and
£ (b(9)?) = =02 (€ (€)1
= (e ),
2
= ¢(9)* + (i;’zg) : (50)

Therefore, the update map 8:/’) ( f>(-) does not alter a single

smeared field ¢(g), but it does alter its square by the addition
of a constant. This of course does not change the localization

region of ¢(g)?, since ¢(g)> + 214~ <f 9° still commutes with
any smeared field ¢(h) that commutes with ¢(g).

3. Toward ideal measurements

Given that the above derivation applies to L? functions
G, one might hope that we can address the case of an
ideal measurement by considering indicator functions
G(a) = 1j,)(a), where 1y, ,(a) =1 if a € [a,b] and O
otherwise. This does not yet amount to an ideal measure-
ment, however, as we are still integrating over a, rather than
summing over a discrete set {a, },.

Fortunately, this hints at an obvious generalization of the
above derivation. Specifically, we can replace the constant
integration measure, da, by some more general measure
du(a), which can depend on @, and may even be a discrete
point measure. In the latter case the integral over a becomes
a sum over some discrete set, {a, },. We can further replace
the function G(1— ) by some function G(A,a) of two
variables (which still satisfies the relevant normalization
condition).

In this more general picture ideal measurements corre-
spond to using a discrete measure over some set {a, },, and
the choice G(4,a,) = 14 (1), where we associate to each
a, a subset A, C R, such that all subsets are mutually
disjoint and their union covers R.

Repeating (46) with these choices gives

/ / du(a a)*G(A+ tA(f, g), a)dPy(s)(2)
- / S G4 @) GO+ 1A(f. 9). a,) APy (2)
— [ YL@, G )Py @ 5D

The final sum does not obviously simplify to some function
that is independent of A. If it does then we know [following
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(42) and (46)] that the resulting update map is causal. If it
does not simplify then H in (42) will, in general, depend on
@(f). That is, the action of the associated update map on a
Weyl generator will be of the form

Epp) (") = H(p(f).1A(f, 9))e™). (52)

where H(¢(f), tA(f, g)) is some nontrivial function of the
operator ¢(f), and hence the localization region of
the Weyl generator may have been increased to include
the localization region of ¢(f). In general, the update map
will be acausal in this case, as suppf may contain points
that are spacelike to suppg.

This argument suggests that ideal measurements of
smeared fields may not be causal, and hence not possible
to realise experimentally. In [4] it was argued (though no
explicit calculation was given) that ideal measurements of
smeared fields are in fact causal. The new insight coming
from (51), that indicates the contrary, is that the discrete
measure arising in an ideal measurement [essentially the
sum in (51)] is “incompatible,” in a certain sense, with the
continuous spectrum of a smeared field [34]. While we
postpone a more thorough investigation of this conjecture
that ideal measurements of smeared fields are acausal, we
note that this calculation further motivates the use of 1-
parameter families, rather than discrete sets, of Kraus
operators.

C. Operations for other operators

Let us now consider the general case, where C is some
algebraic combination of smeared fields (and the identity)
localizable in some compact K. For any L? function G, the
associated map acts on a Weyl generator ¢#(9) € 2A(R), for
a region R C K, as

EG(e9))

= / daG(C — a)"e™9G(C - a)
R

= / daG(C - a)Tei"/’(g)G(C — a)e—i"/)(.f/)eitf/)(y)
R

= / daG(C — a)'G(C(tg) — a)e'9), (53)
R

using (41).

At this point, if C is such that [C, C(7g)] = 0, then the
remainder of the calculation is fairly simple. If
[C,C(tg)] # 0O, then further computation is more challeng-
ing without specifying C. In Sec. IV F we cover one of the
simplest such cases, specifically C = ¢(f1) © ¢(f>),
where A(f},f,) #0. Here © denotes the symmetric
Jordan product: X © Y =1 (XY 4 YX), and is required
to make C self-adjoint in this case.

For now we continue the calculation in the case where
[C, C(tg)] = 0, and for concreteness we will also focus on
the Gaussian case involving G°. We have

1 _c? _(Clg-a?
G"(C—a)G”(C(tg)—a): e 4% e 4t
oV 2n
(Cil9-2a7  _C_(19)?
= ] e = v . e_c 8("5) . (54)
oV2rx
_(C(9)-20)?
where C(tg) = C(tg) = C.Only e~ s> dependsona,

_C=(1g? . .
and hence e s can be brought outside the integral when

computing S‘é(ei"/’(g)). The integral over a then evaluates to
1 and we have

C_(19)?

E‘é(ei[(/’(g)) — ¢ 32 i) (55)

For some generic C (for which [C, C(tg)] = 0) then C_(tg)
is some nontrivial operator localizable in K. Therefore,
£2(e'""9)) is not necessarily contained in the subalgebra
2A(R) to which ¢(g) is localizable, and hence the locali-
zation region of the Weyl generator may have been
increased to points spacelike to R. In such a case £Z(-)
is not causal.

In Sec. IVE we will argue that, for a large class of
operators, only the generators (smeared fields and the
identity) give rise to Gaussian measurements that are
causal, and hence they are the only operators that are
measurable in this way. Before doing that, however, it will
be helpful to go through a specific example which is not
causal.

D. A simple acausal example

Consider the operator C = ¢(f)p(f»), where f,
and f, are supported in mutually spacelike compact
subsets K; and K, (Fig. 9). Let K = K; U K,. Since
[d(f1),d(f>)] = 0, there is no need to invoke the Jordan
product © to ensure C is self-adjoint. Furthermore, the
vanishing of the commutator implies that [C, C(tg)] = 0 for

A

20

® ®

>
2!

FIG. 9. Spacetime diagram of the setup in the simple acausal
example. The compact subset K’ is spacelike to K,, and K| is
spacelike to the region R.
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any test function g supported in some region R C K. One
can also verify that

C_(tg) = t(A(f2, 9)p(f1) + A(f1,9)d(f>))
+ 2A(f1. 9)A(f2. 9). (56)

Note that the appearance of ¢(f;) and ¢(f,) (which are
localizable in regions that are potentially spacelike to R)
means that C_(7g) ¢ 2(R) in general, and hence we are not
a priori guaranteed that a measurement of C is causal.
Now, consider the action of £%(-) on ¢(g). We have

E2(bla) = —i0,E()] g
= —i0 (e e)

= ¢(9), (57)

and hence the map £Z(-) does not increase the support of
#(g). If, however, we act on ¢(g)?, we get

E2(4(9) = ~REL D),
= 907 + 3 (A2 9B
AL 9D (53)

In this case, the support has been increased to include that
of f, and f,. If suppf, and/or suppf, are outside the past
lightcone of suppg, and if suppg lies partly to the future of
suppf; and/or suppf,, then £Z(-) increases the support of
#(g)? outside its past lightcone.

To highlight the acausal nature of this map we can repeat
the protocol with Alice in some compact K’ C Kj;,, Charlie
in K, and Bob in R. Alice unitarily kicks with ¢(h)
for h supported in K’, Charlie makes the Gaussian
measurement under question, £Z(-) for C = ¢(f1)p(f>),
and Bob measures the expected value of ¢(g)* for g
supported in R.

To simplify the situation we can pick /& such that
it is supported in some compact K’ that is spacelike/
timelike to f,/f, and g supported in some region R that
is spacelike/timelike to f,/f, (Fig. 9). We therefore have
A(h. f2) = Alg. f1) = 0, but A(h, f) and A(g. f>) non-
zero in general.

Working through the example as we did in Sec. III C, we
find (taking the initial state as the vacuum state p = |Q)(Q]|)
that Bob’s expected value of ¢(g)? is given by

062+ (B2 (ot + 2atnnr). (9

where we have used (X) = tr(pX) to denote the vacuum
expectation value for brevity. Again, we see it explicitly

depends on Alice’s kick strength, 4, and hence Alice and
Bob can exploit this to superluminally signal each other
(specifically from Alice to Bob). This Gaussian measure-
ment of C = ¢(f)p(f>) is therefore not causal, and hence
it cannot be physically realizable in any experiment
contained in spatial extent and duration in K.

It is also not clear in what compact subset, K, such a
measurement of C = ¢(f)¢(f>) is physically realizable.
Specifically, it does not seem possible to find a compact K
such that the map EZ(-), when restricted to the subalgebra
A(K ), is PSNL

Alternatively, we can try and find the “largest” out-
region, K, such that the update map is causal when acting
on any B € A(K,y), and from that reverse engineer K
using the definition Ko, = M\J~(K). One such candidate
for K, is the total future of K. That is, the set of points
x € M such that K C J~(x). This is shown in Fig. 10. If
Koy is the total future of K (specifically its interior to
ensure we have an open set), then K must, at the very least,
be some sort of thickened future lightcone under K, (see
Fig. 10). This ensures that K, = M\J~(K). This choice of
K is not unique, and we can even enlarge K to the past in
Fig. 10 such that it includes a Cauchy surface for M. In fact,
if the spacetime M is spatially compact, e.g., the 1+ 1
cylinder spacetime M = R x S, then the thickened light-
cone will “wrap around,” meaning that K will in fact
contain a Cauchy surface. In any case, K appears have the
property that K;, N Ko, = @, i.e., its in- and out-regions
are disjoint. Furthermore, its past and future sets cover the
entire spacetime. This differs from the case where K is
compact and does not contain a Cauchy surface.

Allowing the operation to occur throughout such a K
washes out any causality considerations, as every point
(outside K) is either to the past or future of K. The area of
spacetime in which the measurement takes place is also not
of finite spatial and temporal extent—a crucial requirement
for any locally realizable experiment. In the absence of a
less trivial candidate subset K, it seems that a Gaussian
measurement of C = ¢(f)¢(f>) is not only impossible in
K, but is also impossible in any compact region that does
not contain a Cauchy surface.

On the other hand, one intuitively expects a measure-
ment of C = ¢(f;)p(f>) to be possible in some local
sense; surely we do not need to resign to a global operation
over all of space just to measure this localizable operator. In
this vein it is worth highlighting that we have only ruled out
the update map EZ(-). Perhaps some modification of £Z(-)
would make it causal, and would align better with our
intuition of a local measurement of C = ¢(f)¢(f,). The
exact modification may depend upon the details of the
measurement apparatus, for example, it may involve probe
fields as in [18]. Nevertheless, for now we can be sure that
EZ(-) is not physically realizable.
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FIG. 10. Spacetime diagram of a compact subset K and its total
future, denoted here by K. The total future of K is the set of
points that contain the entirety of K in their pasts. Also shown is
an example subset K such that K, = M\J~(K).

Following Sec. IV B we can say however that
the measurements and &9 (-), for the
single smeared fields (/)(f 1) and ¢(f,) respectively, are
physically realizable. Given these smeared fields commute,
their update maps also commute, ie., £ f,)(gi;)(fz)(')) =

Zg(fz)(gg( f])(-)), meaning that the measurements can be

thought of as occurring in either order. This physically
makes sense, as their associated regions are spacelike, and
hence there is no causal ordering between them. Therefore,
while a Gaussian measurement of C = ¢(f)¢(f,) appears
not to be realizable, independent measurements of ¢(f )
and ¢(f,) are.

It is also worth noting that the signal from Alice to Bob
gets “weaker” as o increases. Physically this corresponds to
a decreasing measurement accuracy. The limit of no
measurement accuracy whatsoever, i.e., ¢ — o0, is equiv-
alent to no measurement at all. In this limit the past-support
increasing term above vanishes, as expected.

At this point one could argue that, if a future measure-
ment of B = ¢(g)? is somehow limited in its accuracy, then
this Gaussian measurement of C = ¢(f)¢(f,) is possible
in K, provided its accuracy is low enough (or equivalently if
o is large enough) to make the second term in the last line of
(58) smaller than a future experimenter can detect. This
connection between the possibility of some measurement
and its accuracy was also noted in [5]. This resolution is
somewhat suspect however, as the allowed accuracy of the
Gaussian measurement of C is determined by the accu-
racies of all future measurements. How can someone
measuring C = ¢(f)p(f,) know the measurement limi-
tations of all future experiments? It makes more sense to
turn this restriction around and instead constrain the
accuracy of all measurements to the future of K, given
the accuracy of the measurement of C = ¢(f)¢(f»). How
this would work in practice is not clear. One would have to
introduce some mechanism preventing anyone in the future
from obtaining some more accurate measurement than is
allowed by causality.

E. A reasonably general argument

We will now argue that if C is not a generator then £%.(-)
is not causal. We will only show this, however, for the
following restricted class of operators.

Consider any set of smeared fields that are localizable in
compact subsets whose closures are mutually spacelike.
This is shown in Fig. 11. One can then construct the
associated commutative subalgebra, consisting of all alge-
braic combinations of the identity and the commuting
smeared fields. For our general argument we will only
consider operators C belonging to some such commutative
subalgebra formed from smeared fields in some compact K.
Furthermore, we restrict to the case in which C only
involves a finite number of sums and products of smeared
fields.

For example, ¢(f)p(f,) satisfies this criteria if f,
and f, have spacelike supports. On the other hand,
d(f1) © ¢(f>), for the supports of f; and f, not totally
spacelike, does not satisfy this criteria.

Let Ky, ..., Ky C K be N compact subsets whose clo-
sures are mutually spacelike, as in Fig. 11, and ¢(f,), ...,
¢(fy) the associated smeared fields localizable in the
respective subsets. We then set C = P(¢(f1), ..., d(fn)),
where P(-) is some polynomial in N independent variables.
For such a C it is then clear that [C, C(7g)] = 0, as

C(tg) = P(@(f1) +1A(f1.9). - d(fn) + 1A(fN- 9)).
(60)

and ¢(f;) + tA(f;. g) commutes with any other ¢(f;).
Given that [C, C(rg)] = 0, we can apply the derivation in
Sec. IV C to get

Ee (")) = e‘C}g) ei(9) (61)

where we recall that C_(7g) = C(tg) —
 we get

C. By expanding in

= (it)"
9= ) CF M. @
-

where Ady(Y) = [X, Y], and Adx""!(-) = Ady(Adx"(-)).
The sum terminates at some finite n as, at some point, any
additional commutators with ¢(g) vanish. For an example
see equation (56). In fact, if N is the degree of
the polynomial P(:), then the sum terminates after
N + 1 terms.

Given the regions K; are all spacelike, and their closures
do not touch, we can always pick g supported in some
region R that it is spacelike to all but one of the regions K.
This is shown in Fig. 11. For convenience we let X = ¢(f)
denote the associated smeared field. ¢(g) then commutes
with all the other smeared fields used in the construction
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FIG. 11. Spacetime diagram of compact subsets K,

7zl

..., Ky with mutually spacelike closures, within which the smeared fields

¢(f1),---»d(fy) are localizable. In the general argument we choose the region R to be spacelike to all but one K, as can be seen from
the past lightcone of R. In case (ii) we also pick another K; to show that the update map has increased the support to points spacelike

to R.

of C. The action of Ady"(-) on C then resembles n
derivatives of the polynomial P(-) with respect to X, up to
factors of iA(f;, g). In this way C_(tg) looks very similar to
a Taylor expansion in X of the polynomial P(-), but with
the constant term (n = 0) thrown away from the sum.

By assumption, C contains some term that is at least
quadratic in smeared fields. That is, the degree of the
polynomial P(-) is at least 2. Therefore, our choice of X can
always be made such that C can be written as

C=Cy+CiX+C,X"+ O(Xmt1), (63)

where m > 2, and where either (i) C,, # 0, or (ii)) C,, =0
and all higher order terms vanish, but C; is some poly-
nomial, Q(-), of degree at least 1 in the other varia-

bles ¢(f;) # X.
We then have

C_(tg) = tA(fi. 9)(C + mC,, X"~ + O(X™)) + O(#*),
(64)

and hence

ELP(g)?) = —0FEL(e"9)]
= ¢(f3)?

A(f,. 9)?
+ 7(2729) (Cy 4+ mC, X" + O(X™))*.

(65)

For case (i) we know that C,, # 0, and hence the term on
the last line is O(X*"~!), which is at least O(X?) given that
m > 2. This means that £%(¢(g)?) has past support which
includes that of X = ¢(f;), and since we can always pick g
such that suppf; has points that are spacelike to suppg, this
means that £%(-) has increased the past support of ¢(g)? to
outside its past lightcone. Therefore £Z(-) is not causal.

For case (i1) C,, = 0 for all m > 2, but C; is of degree at
least 1 in the other smeared fields ¢(f ;) (j # i). Therefore,

we can always pick some Y = ¢(f;) (j # i) such that C, is
at least O(Y), and hence the last line above is at least
O(Y?). From our initial setup the support of g is spacelike
to the support of f;, and hence, in this case, £¢(-) has
increased the past support of ¢(g)? to include the past
lightcone of f;. Again, the map £Z(-) is then not causal.

F. An example with noncommuting smeared fields

We have just argued for a reasonably wide class of
operators that only the generators can be measured in this
way. One case we did not consider is when [C, C(tg)] # 0.
In this situation the calculation becomes more complicated,
and we do not have a general argument. We can, however,
work through one of the simplest examples, namely
C=¢(f1) © ¢(f,), where the supports of f; and f,
are not mutually spacelike, as shown in Fig. 12. In this
case ¢(f;) and ¢(f,) do not commute, and hence the
Jordan product, ®, has appeared in C to keep it self-adjoint.
In the following calculations we will show that this choice
of C=¢(f) © ¢(f,) gives rise to an acausal Gaussian

FIG. 12. Spacetime diagram of an example pair of smearing
functions, f and f,, whose supports are not mutually spacelike.
Here we have also illustrated that their supports can overlap,
though this is not necessary for their supports to not be spacelike.
The smeared fields ¢(f) and ¢(f,) do not commute. We have
also illustrated the support of the function g used in the
calculation. Its support is spacelike to that of f, but not to f;.

>
iEl
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measurement, thus adding more evidence to the claim that
only generators can be measured in this way.

To show that a Gaussian measurement of C = ¢(f,) ©
¢(f,) is acausal we only need to show that, for some choice
of operator, £Z(-) increases its support. In this vein we
consider ¢(g), where the support of g is spacelike to the
support of f,, but not to the support of f| (see Fig. 12).
Therefore, A(f,g) # 0 and A(f,,g) = 0. We then have

C(tg) = Uy (C)
Uipig)(d(f1)) © Uppi) (¢ (f2))
= (p(f1) +1A(f1,9)) © ¢(f2)
= C+1tA(f1.9)p(f2). (66)
Thus,
) (C-a)? (C=a+1A(f1.9)0(f2))> .
€”‘/’<g)e 2 = e 402 61t¢(y), (67)
and hence
. 1 ) 5 .
£0.((9)) — / dae" o~ (4B itdla) (68
C( ) 0\/2—” . ( )

where we have defined

C—-a
A= , 69
7 (69)

A ’
B — M (70)

20
for convenience.
As
o / " dxe 5 emivy (71)
e = N xe Te Y,

for any y € R, and since A + 7B is self-adjoint, we can use
the associated projection-valued measure to write

1 0 2
e—(A+1B)* — NG /_oo dxe™e~ix(A+B) (72)
Now, since
[A,B] = irB, (73)

where we have defined the nonzero real number

(fl Jf2)

r= , the BCH formula gives

X1

o—X(A+1B) _ ,—ixA il =UB (74)

By inserting the rhs into (72), and the result into (68),
we get

1
o/ 22x

gu( ith(g ) / dadxe—%e—A(A—HxA)eit(g_irfl)Beitzj)(g).
RZ

(75)

Given that the operators in the integrand are bounded, and

hence the norm of the integrand is bounded by e‘% we can
swap the order of the double integral (by the Fubini-Tonelli
Theorem) and evaluate the « integral first. For the parts of
the integrand that depend on a this gives

/oo dae™Te~AA+MA) = 26 [re=51, (76)

(So]

leaving

er(es) = (15D i) e, ()

where we have defined the function

n(r) = \/2_77/ dxe™5 i« =), (78)

While we do not have a closed form for 7(t), we note that
the integral exists and is bounded for any 7€ R.
This follows as the absolute value of the integrand is

e‘% which integrates to a constant. Therefore, the operator
n(tx A/1.9) 7¢(f2)) is bounded. Furthermore, as 7(0) = 1, we

A(f1.f2)
get (0 x o gh(f,)) =

Since the flnal result for E"( $(9)) in (77) depends on
¢(f,)—a smeared field localizable in a region spacelike to
the support of g—the map £Z(-) has increased the past
support of g outside the past-lightcone to include that of f,.
For completeness we can also take derivatives with respect

to ¢ to evaluate £%(¢(g)). Explicitly, since

7 \/2_7[/ dxe~5 (e —1) = i(e7 — 1),  (79)
one can verify that
E2(d(e) = dla) + (EF 1) 2Dy (s0)

A(fl’f2)

which further highlights the increase in support.

We have just shown that a Gaussian measurement of
C = ¢(f1) © ¢(f>) is not causal, and hence is not physi-
cally realizable in K. One can also verify that the support is
increased for higher powers of ¢(g) using further deriv-
atives with respect to ¢. It is worth noting that as
A(fy,f2) =0, ie., in the limit that ¢(f,) and ¢(f>)
become commuting, we get EZ(¢(g)) = ¢(g). This is
consistent with our results in Sec. IV D.
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G. Extracting expectation values from
measurements of smeared fields

The causality conditions we have imposed on update
maps (Sec. I C) all assume that it is possible to measure
expectation values of operators that are more complicated
than smeared fields (plus the identity), e.g., ¢(f)> or
¢ (f)p(g). Given the evidence presented above that we
can only kick with and/or enact Gaussian measurements of
smeared fields and the identity, one may question whether it
is even possible to measure such expectation values. While
it may be possible to read out expectation values through
some other description of measurement such as in [16,18],
here we argue that it can be done using only Gaussian
measurements of smeared fields, which were shown to be
causal above.

Consider a Gaussian measurement of some operator C
localizable in some compact K. As noted in Sec. [IVA, the
average outcome is given by

(@ = [ daap(a). (81)
R
in terms of the pdf for a, which we recall is given by
1 _(c=a?
pla) = tr(pe” 27, (82)
o\ 2rx

where p is the state. If there are any other measurements
occurring in Kj,, then this state should really include the
update maps for them. For the present discussion this is
irrelevant, however, and hence we will omit any other
update maps here for brevity. Substituting this pdf into the
expression for E(a) one can evaluate the integral over a to
find

E(a) = tr(pC). (83)

That is, the expected value of the outcome @ matches the
expectation value of C coming from quantum theory. One
can also verify that

E(a?) = tr(pC?) + o2, (84)
and hence
Var(a) = E(a?) — E(a)?
= tr(pC?) + 6> — tr(pC)?
= AC? + &2, (85)

Therefore, the variance, Var(«), of the Gaussian measure-
ment is always greater than the variance, AC?, computed in
the quantum theory. For a perfect measurement, i.e., 6 — 0,
the two agree.

After repeated Gaussian measurements of the operator C
(which can happen simultaneously if multiple copies of the
system are set up in parallel) one can compute the average
outcome, or the average of the square of the outcomes etc.
In the limit of a large number of experimental realizations
this number will approach E(a), or E(a?) respectively. In
this way one can estimate tr(pC) and tr(pC?) (up to the
constant ¢°), and all higher moments.

This is important for our purposes as it means that one only
needs to make Gaussian measurements of the smeared field
¢(g) in order to determine the expectation values needed for the
causality conditions in Sec. (59), e.g., tr(p¢(g)?). In other
words, our above arguments for violations of causality did not
require violations of causality to begin with. In fact, someone
attempting to measure the expected value of ¢)(¢g)? may only be
able to determine [E(a?), and hence will only know tr(p¢(g)?)
up to the (potentially unknown) constant ¢2. This is not a
problem however, as, just like tr(p¢(g)?), E(a?) must remain
unchanged whenever p — &'(p) for some &£'(-) dual to the
update map &'(+) local to K, and spacelike to ¢(g), and hence
our causality conditions from Sec. II C still go through.

This argument can be applied not only to tr(p¢(g)?), but
also to other more complicated expectation values. For
higher powers of ¢(g) one simply computes expectation
values of higher powers of a coming from the Gaussian
measurement of ¢(g).

For correlation functions, such as tr(pg(g;)d(g.))
(where we restrict g; and ¢, to be supported in
mutually spacelike subsets for now), one can do two
Gaussian measurements of the smeared fields ¢(g,) and
¢(g,). Following these two measurements the state is
updated via the composition of the two update maps:
P> 5;(!]1)(5’;@2)(,0)). The order of these maps does not
matter since they commute (this follows from the fact that
[#(g1),#(g2)] = 0). The probability of measuring some
value a € [ay, a,] for the measurement of ¢ (g, ), and some
value 8 € [by, b,] for the measurement of ¢(g,), is given by

a, by
P[alsQZ]X[bl’bZ] :/ da/b dﬁp(a,ﬂ), (86)
a 1

where the joint pdf is given by

1 o=  _(dlor)=p?

str(pe 27 e ), (87)

Any correlations encoded in the state p are revealed here in
the sense that the joint pdf p(a, /) is not necessarily given
by the product of the two marginal pdf’s for a and f. Over
many realizations of the two measurements one can
compute the average value of the product of the two
separate measurement outcomes, i.e., the average of
a x f. In the limit of a large number of realizations this
number will approach
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FIG. 13. [llustration of totally timelike subsets K| and K,.
Every point in K is to the past of every point in K,. We have also
shown two subsets, K| and K7, that are not totally timelike. While
K/ is contained in J~(K}%), and K} is contained in J* (K} ), there
are still points from each subset, e.g., x € K| and y € K}, that are
spacelike.

E(ax p) = [ dadpappla.p)
= w(pd(91)¢(92))- (88)

That is, the correlation function tr(p¢g(g;)$(g,)) can be
estimated by making repeated Gaussian measurements of
¢(g;) and ¢p(g,) and computing the average product
of the outcomes. One can also verify that E(a+ f) =
tr(p(P(g1) + ¢(92)) = tw(pd(g1 + 92))-

If g, and g, are supported in subsets which are not totally
spacelike, the recovery of the correlation function
tr(pp(g1)p(g>)) is slightly more complicated. Since
[#(g1), P(92)] # O, the update maps acting on p do not
necessarily commute in the expression for the probability
P4, ay)x[b, b, 1f the supports of g; and g, are not totally
timelike then there is no canonical order for the update
maps. A natural option in any case (which agrees with the
totally spacelike case) is the symmetrized Jordan compo-
sition, where we average over the two possible orders.

Computing the joint pdf in this case we find

1
pla.p) = 5 (q12(@. B) + qa1(a. B)) (89)
where
@W9)=p> (o= _(dlg2)-H?
qia(a, p) = tr(pe” 2 e 2 e ), (90)

2762

and ¢, (a, f) is the same expression but with the replace-
ments g > = ¢/ and a/f — f/a. Computing the integral
of a x § against ¢, (a, ) one finds

(l/)(Jz) #?

Eilaxp) = —= [ pptoe

_(#g)-p?
T plgr)e ),

(1)

where we have evaluated the integral over a. Using (10) we
can push ¢(g;) through the exponential to its right.
Following this we can then compute the integral over f.
We find

Dt LA, (92)

Epp(ax p) = tr(pd(92) (91 >

If we add to this the analogous expression, E,;(a X f3),
computed using the measure g,;(a, ) associated to the
other ordering, we then find (after dividing by 2)

E(axp) = ([E12(axﬁ) + By (a x B))

= r(pfﬁ(g]) © (). (93)

and thus the symmetrized correlation function is recovered
exactly. This last result follows from the fact that A(-, ) is
antisymmetric, and hence the A(-, -) terms vanish under the
symmetrization of the Jordan composition.

To recover the correlation function without any symmet-
rization, i.e., tr(pg(g;)#(g-)), we can then add to (93) the
antisymmetrized expression

SEOH0). $a)) =380 0m) (94

which can be computed from the classical theory.

It seems then that one can in principle recover any
desired expectation value using only Gaussian measure-
ments of smeared fields, even when they do not commute.
This is reassuring, as our above arguments suggest that the
smeared fields (and the identity) are the only operators
which can be measured in this Gaussian manner while still
respecting causality. Furthermore, the way in which we
tested the causality respecting nature of a given update
map, i.e., by using expectation values of products of
smeared fields (59) for example), can be achieved without
any causality violations in and of itself. Thus, it seems, we
have an internally consistent and causality respecting
model of measurements and unitary kicks in which only
generators of the operator algebra can be measured
and/or kicked with. Note, this analysis implies that the
addition of measurements/kicks for more complicated
operators not only introduces causality violations, it is
also unnecessary, as any expectation values can already be
recovered from the causality respecting smeared field
operations.

H. Selective measurements and classical
communication

We have so far been concerned with the causal properties
of the nonselective map £Z(-). We did not consider the
selective map £¢., (-) as the fact that the outcome a €

[a,b] is conditioned on in this case implies some
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communication between the person measuring C and
anyone else, specifically that their outcome landed in
[a, b]. By assumption we assumed that the person meas-
uring C in K does not communicate with anyone else.

That said, the selective map £7. (+) can still turn up in
protocols where no information is communicated from
inside K to other parties, precisely in protocols where
information is communicated within K. For example, the
person in K can first make a selective measurement, then,
depending on the outcome, choose whether or not to make
a second nonselective measurement in K. This is just
one example of a local operations and classical commu-
nications (LOCC) protocol. Here we will show that such a
LOCC protocol, using selective and nonselective Gaussian
measurements of smeared fields, amounts to a causal
update map.

Specifically, we consider two functions f; and f,
supported in the compact subsets K; and K, respectively
(Fig. 13). We then selectively measure the smeared field
¢(f1) in K, and if the outcome is in [a,b] we non-
selectively measure the smeared field ¢(f,) in K,, other-
wise we do nothing in K,. For this to be possible K| must
be totally timelike to K,. That is, K; /K, is contained in the
total past/future of K,/K;. Such a setup is necessary
because we need to collect all the data from our measure-
ment of ¢(f) in K, first, before using the outcome to
determine our actions at any point in K,. Put another way, if
some point x; € Ky is spacelike to some point x, € K5,
then how would we know what to do at x,? Do we measure
or not? The outcome from the measurement at x; will not
have reached x,.

In the case where the outcome of the first measurement
of ¢(f1) in K; lands in [a, b], which happens with prob-
ability P, ), the state is updated as p g;(fl),[a,b](p)‘
Following this we make a nonselective measurement of
¢(f,) in K,, and hence the state is updated as

ECab) (p) = 52(;'2>(5g(f]),[a.b] (»))-

In the other case, where the first outcome lands in
R\[a, b] (with probability Qy, ;] = 1 — P[,;)), the state is
only updated as p > g&f]).m[a’b] (p), as following this
outcome we do nothing in K,.

The final updated state, E(p), after the LOCC
protocol has been completed, is given by the sum of
these two possibilities, each weighted by its respective
probability:

E(0) = Pln€air) €10 () + Qb5 1\ ) (P)-
(95)

The dual map on some operator X € U is then

EX) = Pani€5s,) 0 (€ (X))
+ Q7)) (X)- (96)

Before arguing that &£(-) is causal, we first note
that if X is localizable in (K,);, (not in the future of K5)
then &7 m(X) =X, and hence the total update map

reduces to

EX) = (Prs€r,) fan) T Llab€r,) 1 fa) (X)
= & X): (o7)

which we know to be causal. Physically, if X is not in the
future of K,, then it does not see the effects of any
conditional measurements happening in K,, and hence
the update map looks like a nonselective measurement of
¢(f1) in K.

Let us now consider the case where X lies partly to the
future of K,. To show that £(-) is causal in this case we can,
as above, act with £(-) on a Weyl generator, "9 where g
is compactly supported in some region in (K,),, (and
partly to the future of K, if we want something less trivial).
Before attempting this explicit calculation however, we can
reason more generally as to why £(+) is causal in this case.

We first note that £ . () does not change the locali-
zation region of any operator it acts on. This was shown in
Sec. IV B, specifically (42). This means that, for any region
R C (K3)oy> and any X € A(R), then ¥ = £, /(X) is also

localizable in R. We then have

out?

EX) = Plan€5) a1 (V) + Qi€ mypes)(X): - (98)

where X, Y € (R). Let us denote the two terms on the rhs
as ¥ and X respectively. Both ¥, X will depend on ¢(f;) in
general. This does not make &£(-) acausal, however, as we
now argue.

If R overlaps in any way with the future of K, then, given
that K, is totally timelike to K, we know that K is entirely
contained in the past of R. Therefore, any region
R C (K| UK,);, = (K);, and spacelike to R, is also
spacelike to K;, and hence any A € A(R’) commutes,
not only with X and Y, but also with ¢(f), and therefore
with X and Y. That is, any A € 2(R’) commutes with £(X).
This means that unitary kicks with ¢(h) € 2(R’) act
trivially on £(X). From Sec. IIIB we know that this
implies the map &(-) is causal.

For completeness, we will now compute E(e¢09)
to explicitly show the causality of £(-). From (48) we have
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E(e"9)) = P[a’b]gg

- _[2A(/
= P, ]5(/; (1) [ah](e

dae” 82

e

where C(1) = ¢(f1) + (t/2)A(f1.g), and where 1(, ()
is an indicator function for a € [a, b]. The Weyl generator,
€9 can be moved to the right, outside the integral, as it
does not depend on «. The integral can then be evaluated,
resulting in

g(eit(/)(g)) _ (1 + % (1 _ e_ﬁA(fz’g)z)D> e—;y—zzA(fl;g)zeit(/)(g)’
(100)

where the operator

D= erf(w> —erf(w), (101)
V2o V2o
is nontrivial in the localization region for ¢(f ). Here erf(-)
denotes the standard error function.

It is clear from (100) that if ¢ is supported in (K,);, (not
in the future of K,), then A(f,, g) = 0 and hence &(e/?(9)
reduces to the term on the rhs after the brackets, i.e., a
Gaussian measurement of ¢(f;). This agrees with our
earlier discussion. As previously stated, the fact that D is
nontrivial in K; does not cause any causality violations. As
can be seen from (100), the term involving D only appears
when A(f», g) # 0, and hence when g is supported partly to
the future of K. In such a case the support of g contains the
entirety of K in its past (owing to the fact that K| and K,
are totally timelike). Thus the past-support of e#(9) has not
been increased.

V. INTERACTIONS

In [5] it was mentioned that the situation for causality
violations could be worse in an interacting theory. For
example, it may be the case that even smeared fields cannot
be measured. Here we sketch an argument as to why this is
not the case, at least for interactions that are only turned on
in a compact subset L. The general idea is to construct a
scattering map from smeared fields in the in-algebra 2[(L;,)
to smeared fields in the out-algebra 2[(L,,, ), both of which
are isomorphic to the entire algebra 2 as L;, and L, both
contain Cauchy surfaces for M. While this mapping is
nonlinear in the smearing functions, it does not increase the
support in an acausal manner, which, as we will see,
ensures that measurements/kicks with smeared fields are
still causal.

(110 o, (e'w(g)

(@A(f2.9°+A(f1.9)%)

) + Q[a,b]gg(fl),R\[a,b] (emp(g))

el )+Qab b(f )R\[ab]( At(/)(g))

_(C(-a?
e 27

ei19) (99)

One can either consider self-interactions or interactions
with another field. In both cases the argument is very
similar, and can be formulated for the most part in the
classical theory. In that regard let us briefly review some
relevant points about the classical theory and its connection
to the quantum theory.

Consider the free equation of motion for the classical
field ¢:

(O+m*)p=0. (102)
Any spatially compact solution (e.g., a wave packet with
finite spatial extent) can be written as

o) = A dyA(x.y)f (). (103)

for some smooth and compactly supported test function f.
We say that f generates the classical solution ¢, and by
writing (103) as ¢ = Af we can think of A as an operator
on test functions f. Recall that x and y denote spacetime
points, and that the Pauli-Jordan function, A(x,y), is the
difference between the retarded and advanced Green
functions, Gga(x,y). We can therefore decompose the
solution as ¢ = @r — @4, Where

oralx) = A BGrax)fB).  (104)

is a past/future compact solution to the inhomogeneous
equation

(O +m*)par = 1. (105)
We can similarly write g /4 = Gg/af. The support of gr /4
is contained in the future/past of the support of f, as shown
in Fig. 14. f can therefore be thought of as the generator of
the solution ¢ = Af to the homogeneous equation, and as
the source of either a past or future compact solution to the
inhomogeneous equation.

There is no unique f that generates a spatially compact
solution ¢ via ¢ = Af. Two different test functions f and g
that generate the same solution, i.e., Af = Ag, can even be
supported in disjoint regions, as shown in Fig. 14. This lack
of uniqueness appears in the quantum theory too, e.g.,
O(f) = ¢p(g) for any two test functions satisfying the
classical equation Af = Ag. In Sec. II B this was stated
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FIG. 14. Spacetime diagram of the solution ¢ generated by f.
The support of ¢p/4 is contained in the future/past of the support
of f, as shown by the dotted/dashed lines. The support of ¢ is the
union supp@, U suppgpg, and hence ¢(x) = 0 at points x that are
spacelike to suppf. Also illustrated is an example of another
function g that generates the same solution ¢. Note how the wave
packet generated by f (or g) is of compact spatial support, since it

only has a finite width in the x! direction at any time x.

in a different, but equivalent way, as f — g = ({0 + m?)h
for some test function h. As stated in Sec. II B, this is
equivalent to imposing the homogeneous equations of
motion on the operator-valued distribution ¢(x) in (1).

Given that the smeared field operators can be the same
for different test functions, the region within which a
smeared field is localizable is clearly not unique. The
two regions in Fig. 14 are examples of possible localization
regions. This nonuniqueness is not completely arbitrary;
starting from the smearing function f for example, we
cannot move the localization region to a region spacelike
to suppf.

In practice we can “move” the smeared field in the
following way. Consider the test function f supported in
some compact subset K, and the classical solution ¢ = Af
that it generates. Now consider some compact K’ such that
K C D(K’) (Fig. 15), in which we want to localise ¢(f).
This amounts to the classical problem of finding some g
supported in K’ that generates ¢ as ¢ = Ag. To do this we
first choose any smooth partition of ¢, i.e., ¢ = ¢, —¢_,
where the supports of ¢, and ¢_ only intersect in K’, and
@,/ vanishes to the past/future of K'. This is shown in
Fig 15. Given the supports of ¢, ,_ it is clear that, to the
future/past of K’, we have +¢, ,_ = @. Since ¢ satisfies the
homogeneous equation in (102), then ¢ ,_ also satisfies
(102) to the future/past of K’. Furthermore, ¢ ,_ trivially
satisfies (102) to the past/future of K’ as it vanishes there.
Inside K', however, ¢ ,_ may not satisfy (102). Let g be the
function capturing this inability of ¢, ,_ to satisfy (102)
inside K, i.e., g = (O + m?)g, ,_. Note that g is the same
for both ¢, and ¢_, as the difference ¢ = ¢_ — ¢ satisfies
the homogeneous equation everywhere, including inside

A

SUpp@4

FIG. 15. TIllustration of the partition ¢ = ¢, — ¢_. The support
of ¢, ,_ vanishes to the past/future of K’, shown by the dotted/
dashed lines. The supports of ¢_ and ¢ only overlap in K’. Note
that K C D™(K’), as can be seen by the dotted-and-dashed lines.

K’. By our previous arguments we also know that ¢ is
compactly supported in K’. Furthermore, it is by definition
a source for the past/future compact solution ¢, ,_ of
the inhomogeneous equation, and hence we can write
@+ /- = Ggyag. Therefore, we have

Ag = Grg—Gug
QL — -

= @. (106)
That is, ¢ = Ag, and so g is equivalent to f in that they
generate the same solution to the homogeneous equation.
We therefore have the operator equality ¢(f) = ¢(g), and
hence this smeared field operator is localizable in K’ as
desired. The above argument has glossed over some
technical details explained more thoroughly in [18].

Let us now turn on a self-interaction in some compact
subset L. Specifically, we modify the classical homo-
geneous equation to

O+ m*)p = kxe?, (107)
where x € R is the interaction parameter, and y is some
smooth function, supported in L, which controls the
interaction. Here we have picked a ¢? interaction (a ¢°
interaction in the associated action) as an example. The
explicit form of the interaction is not so important for our
discussion, however, and so one can substitute in some
other interaction in what follows.

From this compact L we get the associated in- and out-
regions L, /,,,- This is illustrated in Fig. 16. In L;,,,, the
interaction is turned off, and hence the theory matches the
free case. L;,/,,, is also globally hyperbolic in its own right,
and hence the quantum theory restricted to L, /., goes
through as in Sec. II B. In particular, for any functions f
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FIG. 16. Spacetime diagram of the coupling zone L. The
in/out-region, denoted L;,/L,,, consists of all the points
below/above the dotted/dashed line in the figure, i.e., all the
points not to the future/past of L. Therefore, the in/out-region also
contains points spacelike to L. Also shown are the supports of the
smearing functions f and g, whose causal interval intersects the
coupling region L. Through the argument in the text we can map
the smeared field ¢(f) from the in algebra to the smeared field
¢(h) in the out algebra, after which we can compute the
commutator with ¢(g). Note that supph lies entirely in the
out-region. It also does not need to be disjoint from suppg,
although this is the case in the figure.

and g both supported in either L;, or L., we have
[D(f), d(g)] = iA(f,g), where A(f,g) is the same as in
the free theory. Similarly, for any sequence of measure-
ments/kicks all contained in either L;, or L, our previous
results go through unchanged.

There will be a change, however, if f is supported in L;,
say, and g is supported in L, as shown in Fig. 16. Crucial
to our discussion on measurements and kicks is the
commutator [¢(f), ¢(g)]. Currently, this commutator is
undefined, as ¢(f) belongs to the algebra of operators
in the in-region L;,, and ¢(g) to algebra in the out-region
Ly To define this commutator we first have to map ¢(f)
to some operator in the algebra for the out-region. This can
be done as follows.

Given the test function f supported in L;, we
can generate ¢, = Af which solves the free homogeneous
equation throughout the entirety of M. Furthermore,
@ = @, trivially solves the interacting equation (107) in
L;, as the interaction vanishes there. The only region where
we do not yet know the interacting solution ¢ is the future
of L, J©(L). There we can perturbatively construct the
interacting solution ¢ = ¢, + k¢, + O(x?) order by order
in k. For instance, for ¢; we get the equation
(O + m?)@, = y@o*, and hence ¢, = Gg(y¢,?). Note that
@, =0 for n>0in L;,.

We now have the perturbative solution ¢ throughout all
of M, and hence all of L. Since the theory is free in L,
we can perturbatively find some h = hy + kh; + O(k?),
supported in L, that generates the solution as ¢ = Ah in
L. Order by order we have ¢, = Ah,,, where each h, can
be found using the above prescription, i.e., we partition

@y = Qp+ — @, —, where the supports of ¢,, . and ¢,, _ only
intersect in some compact subset of L, and then set
h, = (O + m?)@, .. A example of h is shown in Fig. 16.
Note that 4 is not linearly dependent on f. That is, if
f — Af, then it is not the case that h — Ah.

In the quantum theory we then have the map ¢(f) <>
¢(h) between the smeared field operators for the in- and
out-regions respectively. We have used the double-ended
arrow as we can also map smeared fields from the out- to
the in-region following the above procedure. Note this map
is nonlinear in the test functions. The full scattering map is
an algebra homomorphism between the algebra of
operators for the in- and out-regions, and is defined by
extending the map between smeared fields to all sums and
products in the obvious way. For example, ¢(f)? <> ¢(h)>.
The commutator [¢(f), p(g)], for g supported in the out
region, is then defined by first mapping ¢(f) + ¢(h), and
then computing [¢(h),p(g)] = iA(h,g) within L.
Essentially, [(f). $(9)] = iA(h. g).

One may worry that the nonlinear dependence of A(4, g)
on f affects our previous results on causality. In fact, this
nonlinear dependence is not relevant to the question of
causality when measuring/kicking a smeared field.
Consider Eq. (42) where we showed that smeared field
operations do not increase the support of some Weyl
generator. There f was supported in some compact subset,
K say, and g was supported in a region R C K. Imagine
now that the compact subset L, where the interaction is
turned on, is situated between K and R as in Fig. 16.
Specifically, K C L;, and R C L. To take this interaction
into account in (42) we simply need to swap A(f,g) for
A(h, g), where h is supported in L, and is related to f via
the above scattering map. This can be done perturbatively,
i.e., order by order in «, if convergence is not guaranteed.
This changes the precise form of the RHS of (42) as a
function of f, and hence the precise effect of the operation
on any future measurements. Crucially, however, it does not
change the fact that the support of the Weyl generator has
not increased, and hence the operation is still causal, even
in the presence of this self-interaction. We can similarly
argue, using (12), that self-interactions do not make
smeared field kicks acausal.

This argument can be readily applied to other self-
interactions, and even to interactions with other fields via
the scattering map in [18]. In each case the precise form of
A(h,g) changes, but importantly the support is never
increased. In this sense we can say that interactions do
not make the situation for causality violations “worse” than
the free case.

VI. DISCUSSION

A. Future directions

Before discussing the implications of our results, there
are a number of future directions to note. While we touched
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on the case of ideal measurements, the fact that they seem
acausal for the simplest operators, i.e., the smeared fields,
warrants further study. Many of our results also seem
transformable into the probe framework in [16,18,19]. It
would be useful to construct an explicit dictionary between
update maps and specific probe models, and to determine
whether this is possible in general. The latter would be
analogous to Stinespring’s dilation theorem [35], but with
the added restrictions of locality and causality on the
unitary map. On this point we note that our discussion
of update maps using only the main field of interest, i.e.,
with no additional probe fields, is still useful in that it
allows us to say which operators of the main (and only)
field can be causally measured (in the standard sense of
quantum theory) without reference to another probe field,
specifically because we can associate to any operator C an
update map £Z(-). Finally, it would be illuminating to also
translate our results from the canonical picture into the path
integral framework for quantum theory.

B. Relation to continuous measurement models

We briefly note the relevance of the above results to
continuous measurement models [21,22]. In these models
Gaussian measurements of a chosen operator are enacted
repeatedly, in intervals of duration Az. The At — 0 limit is
then taken to make the sequence of measurements effec-
tively continuous. These models are useful in many
applications, including feedback control (e.g., [36]), where
the results of the measurements are used to continuously
update the Hamiltonian. For a lattice system one of the
simplest cases to study is continuous measurements of
operators local to a single site, e.g., local number operators
as in [37]. Since such operators are local, in the sense that
they commute with operators on different sites, their
associated Gaussian measurements do not increase support,
and hence are causal, cf. Gaussian measurements of
smeared fields. One can also consider models involving
Gaussian measurements of operators that couple neighbor-
ing sites. In this case the Gaussian measurements increase
support, and are therefore acausal. For a nonrelativistic
lattice system this means that the Gaussian measurements
cannot be implemented faster than the light-travel time
between the neighboring sites. This furnishes a fundamen-
tal lower bound on the measurement duration At. That is,
“continuous” measurement models such as these can only
ever be approximately continuous on timescales much
larger than this lower bound. In practice this lower bound
may be negligible compared to the timescales present in the
lattice model, and hence the assumption of a continuum of
measurements is justified.

C. Physical implications

Returning to QFT, from a philosophical perspective our
claim that only the generators can be measured may have
important implications for the ontology of the theory. The

conventional picture in quantum mechanics is that one can
associate to any physical observable a self-adjoint (and
gauge invariant) operator. In measuring this observable we
usually expect two things from quantum theory: (i) a
probability distribution over the possible measurement
outcomes of the observable, and (ii) a map to update the
state of the system. The latter is crucial in accurately
reflecting the effect of the current measurement on any
future measurements.

For a smeared field operator ¢(f) we meet these two
requirements: the pdf over possible measurement outcomes
is given explicitly in (30), and we can update the state via
the associated Gaussian update map, 52(”(-), since it is

causal.

In the case of more complicated self-adjoint operators
requirement (ii) is not obviously met, as it seems the
associated Gaussian update maps cannot be implemented
without violating causality. In this way these operators do
not correspond to observables in the usual sense.
Requirement (i) is still be met however, as expectation
values and higher moments of any self-adjoint operators
can be recovered from Gaussian measurements of smeared
fields a la Sec. IV G.

While the update map E£Z(-) for some self-adjoint
operator C may not be possible, we can nevertheless meet
requirement (ii) by instead composing the (causality
respecting) update maps 5; ( f,_)(') for the relevant smeared
fields ¢(f;) used in the construction of C (potentially with
some symmetrization).

In this way we can in fact associate to any self-adjoint
operator a causality respecting update map, thus meeting
the conventional requirements, (i) and (ii), of an observable
in quantum theory. In doing this, however, we must
understand that our use of the update maps &7 >() for
the relevant smeared fields implies that, physical%} speak-
ing, we are really measuring the smeared fields ¢(f;), and
not C. The measurement of C should be thought
of as secondary to the measurement of the smeared fields
¢(f;), in the sense that any expectation values, or higher
moments, of C are actually constructed after the fact, d la
Sec. IV G, using the outcomes of the measurements of
each (f,).

Depending on one’s preferred interpretation of quantum
mechanics, or one’s preferred outlook on QFT, this may
amount to a different ontology—a different picture of what
is physically there. Specifically, one way to interpret (and
extrapolate from) the above results is that smeared fields
(and the identity) are the only physical observables, and
that other self-adjoint operators in the algebra simply
correspond to different ways to combine the outcomes
resulting from measurements of smeared fields. This
unconventional viewpoint, where all self-adjoint operators
except the smeared fields and the identity are “culled”
from the list of QFT observables, necessitates further
justification.
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To illustrate how one could take this viewpoint we focus
on the example in Sec. [V D. That is, we have two smeared
fields ¢(f,) and ¢(f>), localizable in spacelike regions. If
we perform two Gaussian measurements, one for ¢(f) and
one for ¢(f5), the respective measurement outcomes, « and
B, are distributed according to the joint pdf p(a, f) in (87).
Now consider the self-adjoint operator C = ¢(f)p(f>)-
We know from Sec. IV D that £7(-) is acausal. From the
above discussion we can instead take the update map to be
the composition of Eg(f])(-) and &7 , | (+), in which case the

pdf over the possible outcome values for this measurement
of C, denoted by p(y), is the product pdf over the variable
y = aff (determined by the joint pdf p(a,f) over the
dependent random variables a and f3). In this precise sense
one could argue that C is not an “independent” observable
in its own right. It does not, for example, come with its own
pdf of the form (30).

D. Comparison with nonrelativistic quantum mechanics

To highlight how this deviates from our usual intuition,
let us examine the analogous situation in nonrelativistic
quantum mechanics (NRQM). Consider the operator
Z = XY, where X and Y are two commuting operators
local to separate parts of a bipartite system, e.g., X=X ®1
and Y = 1 ® ¥ for some X and ¥ local to different parts of
the system. In this case there is no reason to rule out the
map £%(-) in favor of the composition E4(E5(-)) =
ET(E%(+)). In the QFT setting this is precisely what we
have done.

To further emphasise the distinction between the QFT
and NRQM, recall that the 6 — 0 limit of a Gaussian map is
an ideal measurement (for compact self-adjoint operators).
Therefore, for some sufficiently small o, the analogous
statement in NRQM is that we cannot make an ideal
measurement of Z = XY, but we can make two ideal
measurements of X and Y (in either order). This is
demonstrably not the case; ideal measurements of product
operators such as Z are routinely considered in QI.

We have to be careful, though, in making this con-
nection, as we are applying infinite dimensional continuum
QFT results to the finite dimensional Hilbert space of the
bipartite system. To properly emulate our support increas-
ing Gaussian measurement of C = ¢(f)¢(f,) in NRQM
we should at least consider an operator Z whose ideal
measurement is support increasing, or equivalently, is one
that enables a (subluminal) signal. Accordingly, we con-
sider the operator Z = |1)(1| ® 6% on two qubits A and B
(where ¢ =|0)(0] — [1)(1| denotes the Pauli-z matrix).
Note that X = |1){1| ® 1 and ¥ = 1 ® ¢° here. In [5] it
was shown that an ideal measurement of Z = |1)(1| ® o°
enables a signal.

Even with this choice of Z it is still the case that we can
perform the associated ideal measurement, and we do not
need to resort to a composition of ideal measurements of

X=[1){1|®1 and Y =1Q® o°. This nonrelativistic
example, therefore, still differs from the QFT case. In
the latter, a Gaussian measurement of @(f1)P(f>) is
physically impossible, and one can only do Gaussian
measurements of ¢(f;) and ¢(f,) separately. Why, then,
are these two situations different, and how can we reconcile
this? Furthermore, such a reconciliation seems necessary if
NRQM is to arise as an effective description of QFT.

To answer these questions we must focus on how an
ideal measurement of Z is realized experimentally. As
mentioned in [5], one can use the following 2 step LOCC
(local operations and classical communication) protocol:
(1) The experimenter first measures the z-spin on qubit A.
(2) If it is down then they do nothing on qubit B, and if it is
up then they measure the z-spin of qubit B. One can verify
that the associated sequence of update maps amounts to the
update map for an ideal measurement of Z.

Notably, this realization requires information about the
measurement outcome on qubit A to be sent to qubit B
before qubit B is (potentially) measured. The spacetime
regions in which the measurements of each qubit take place
are therefore timelike related, and not spacelike. This is the
crucial distinction to the QFT case. There the operators
¢(f1) and @(f,) are localizable in spacelike regions, and
even if we “move” the smeared fields around to ¢(f})
and ¢(f%) say, using the procedure in Sec. V, we can never
make them rotally timelike related, i.e., such that there are
no pairs of points, x € suppf} and y € suppf5, that
are spacelike. This is essentially why the two situations
are different; why an ideal measurement of Z is possible in
NRQM but a Gaussian measurement of ¢(f)¢p(g) in QFT
is not.

Given that the two qubit measurements are totally
timelike, the NRQM example is then more comparable
to the Gaussian LOCC protocol in Sec. IV H, which we
found to be causal. This should provide some reassurance
as to why our QFT results are not contradictory with
standard NRQM experiments. From a QFT perspective, the
update map for an ideal measurement of Z is physically
realizable because it is simply an effective description of
some underlying causal update map in the QFT setting.

This is not obvious from the form of the operator,
Z = |1)(1] ® 0%, however. Given that |[1)(1| and ¢° are
local to separate parts of the tensor product we get the
impression that they are analogous to spacelike observables
in QFT. This led us to incorrectly compare Z with
¢(f1)p(f2), where f| and f, are spacelike. ‘Hidden’ in
the ideal measurement of Z is knowledge that the mea-
surements of the two qubits happen in timelike regions. To
make the situation more comparable to ¢(f)p(f,) we can
instead ask if the measurement of Z can be performed using
spacelike qubit measurements. In other words, can we
perform an ideal measurement of Z faster than the light-
travel time between the qubits? This, like a Gaussian
measurement of ¢(f)p(f,), is impossible. As shown in

025003-26



CAUSAL STATE UPDATES IN REAL SCALAR QUANTUM FIELD ...

PHYS. REV. D 105, 025003 (2022)

[5], if we were to make such a measurement of Z we would
enable a superluminal signal, and hence it is impossible.
In this way, the conclusion that a Gaussian measurement
of ¢(f1)p(f>) is impossible, and hence why ¢(f)p(f>)
(and many other operators) fail requirement (ii) for a typical
observable in quantum theory, is more reasonable. Ruling
out ¢(f1)¢(f>) as unobservable is analogous to ruling out
Z as unobservable on timescales shorter than its light-travel
time—the latter being perfectly reasonable to those in QI.

VII. CONCLUSION

Above we precisely formulated Sorkin’s additional
causality condition that any state update in QFT should
obey to respect causality. Through the use of unitary kicks
with smeared fields we showed that causal state updates in
real scalar QFT are precisely those that are past-support
nonincreasing (PSNI). Moreover, we argued that PSNI
state updates are causal more generally, specifically for the
physical subalgebras of complex scalar and fermionic QFT.
We then went on to consider a variety of update maps in
real scalar QFT with a focus on Gaussian measurements.
Our calculations suggest that only Gaussian measurements/
unitary kicks with the generators (the smeared fields and
the identity) are causal, while measurements/kicks with
other more complicated operators are acausal. Additionally,
ideal measurements of smeared fields appear to be acausal,
though a more thorough analysis needs to be done. Using
Gaussian measurements of smeared fields alone we then
sketched how one could recover expectation values of

products of smeared fields, and following this we discussed
the addition of a compactly supported interaction.

In the last section we discussed some future directions
and relations to continuous measurement models. We then
went on to discuss the physical implications of our
findings, arguing that the generators of the algebra seem
to be the only physical observables, at least in the usual
sense of quantum physics. Despite our above reasoning, a
shift in ontology as radical as culling all self-adjoint
operators, bar smeared fields and the identity, from the
list of QFT observables certainly requires further scrutiny
before it should be taken seriously. In particular, we have
only focused on a few particular classes of update maps,
and even within the set of these maps there are more LOCC
protocols that can be investigated.

Lastly, while this potential shift in ontology would not
obviously be of any practical importance, it may be relevant
in the construction of more fundamental theories.
Specifically, a clearer understanding of what is physical
in curved spacetime QFT will, most likely, better inform
our decisions as to which physical principles to retain in
quantum gravity.
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