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We consider unconstrained formulation of the higher spin gauge theory in anti–de Sitter (AdS)
spacetime, given by actions [A. Y. Segal, arXiv:0103028; M. Najafizadeh, Phys. Rev. D 98, 125012
(2018)], and provide on-shell supersymmetry transformations for the N ¼ 1 unconstrained massless
higher spin supermultiplet in four-dimensional AdS4. Such an irreducible supermultiplet ðΦ1;Φ2;Ψ1;Ψ2Þ
contains a pair of bosonic fields, with opposite parity, which are generating functions (infinite collection of
totally symmetric real tensor fields of all integer rank s ¼ 0; 1;…;∞), as well as two fermionic fields,
which have opposite signs of the AdS radius, that are spinorial generating functions (infinite tower of
totally symmetric Majorana spinor-tensor fields of all half-integer spin s ¼ 1

2
; 3
2
;…;∞).

DOI: 10.1103/PhysRevD.105.025001

I. INTRODUCTION

Among all unconstrained Lagrangian formulations for
the higher spin gauge field theory, there exists a simple
model describing massless free bosonic higher spin fields in
d-dimensional ðAÞdSd spacetime, proposed by Segal in
2001 [1]. Later on, in 2018, this formulationwas extended to
massless free fermionic higher spin fields in d-dimensional
ðAÞdSd spacetime [2], which we refer to both as “Segal
formulations”.1 These formulations are given (in the metric-
like approach) by the local and covariant action principles in
which there are no constraints on the gauge fields and the
gauge parameters, unlike Fronsdal [5,6] and Fang-Fronsdal
[7,8] formulations involving some constraints on the gauge
fields and parameters, in both Minkowski and AdS space-
times. Reformulating the higher spin theory using the Segal
formulationmay have some advantages and simplifies some
(un)solved problems, something that made us interested in
extending and developing this formulation. To make clear
simplicity of this formalism, let us focus on the Segal action
[1] and present some features to compare them with the
Fronsdal action [5]:

(i) The Fronsdal action describes an arbitrary totally
symmetric tensor field Φμ1…μsðxÞ of integer

rank s, while the Segal action describes a tower
of totally symmetric tensor fields Φμ1…μsðxÞ of
all integer rank s, packed using an auxiliary vector
ημ into a single generating function Φðx; ηÞ ¼P∞

s¼0
1
s!Φμ1…μsðxÞημ1…ημs .

(ii) At the level of equations of motion, the Fronsdal and
Segal equations are equivalent and can be conven-
iently converted to each other [2,9,10], while at the
level of the action this equality has been shown in
the Euclidean signature [3] (the problem is still open
for Lorentzian signature [11]).

(iii) In the Segal action, there is a derivative of the Dirac
delta function which at first glance it may seem
complicated. However, it makes simple calculations
due to the property xδðxÞ ¼ 0, and its existence can
be naively thought of as a constraint, since it means
that dynamical fields live on a hypersurface in
auxiliary space.

(iv) The Fronsdal action leads to the Euler-Lagrange
equation which, in comparison to the spin-two case,
is an Einstein-like equation which in turn reduces to
a Ricci-like equation. However, the Euler-Lagrange
equation of the Segal action directly leads to a Ricci-
like equation, that is why the form of its action
seems to be simpler than the Fronsdal one and
consequently fewer calculations are needed.

As one of applications of this formalism simplifying
calculations, we could find, in component formalism,
supersymmetry (SUSY) transformations for the N ¼ 1
unconstrained higher spin supermultiplet in four-dimen-
sional Minkowski spacetime [12] so that the form of
transformations were simple and compact. Nevertheless,
the result was included the supersymmetry transformations
of the Wess-Zumino supermultiplet ð0; 1=2Þ as well as
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1In the context of the continuous spin gauge field theory, there
exist “Segal-like formulations” describing bosonic [3] and
fermionic [4] continuous spin particles (CSPs) which respectively
reduce to [1,2] in the helicity limit.

PHYSICAL REVIEW D 105, 025001 (2022)

2470-0010=2022=105(2)=025001(13) 025001-1 Published by the American Physical Society

https://orcid.org/0000-0003-4100-8749
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.025001&domain=pdf&date_stamp=2022-01-04
https://arXiv.org/abs/0103028
https://doi.org/10.1103/PhysRevD.98.125012
https://doi.org/10.1103/PhysRevD.98.125012
https://doi.org/10.1103/PhysRevD.105.025001
https://doi.org/10.1103/PhysRevD.105.025001
https://doi.org/10.1103/PhysRevD.105.025001
https://doi.org/10.1103/PhysRevD.105.025001
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


half-integer ðs; sþ1=2Þ and integer ðsþ 1=2; sþ 1Þ spin
supermultiplets [13]. We note that in the framework of
superspace formalism the off-shell N ¼ 1, d ¼ 4 higher
superspin massless multiplets were studied first in [14,15],
while its generalization to AdS space was given in [16] (see
also [17,18] for component decomposition).
As another application, the present work is devoted to

study supersymmetrization of Segal formulation in four-
dimensional AdS4. In the unconstrained supermultiplet
which we will refer to it as the so-called “Segal super-
multiplet,” we observe that the bosonic part contains two
fields that have opposite parity and each one are a
generating function which is an infinite tower of totally
symmetric real tensor fields of all integer rank
s ¼ 0; 1;…;∞, while the fermionic part includes two
spinorial generating function, which have opposite signs
of the AdS radius, and are an infinite tower of totally
symmetric Majorana spinor-tensor fields of all half-integer
spin s ¼ 1

2
; 3
2
;…;∞:

N ¼ 1 AdS4 Segal supermultiplet

⇒ ðΦ1ðx; ηÞ;Φ2ðx; ηÞ;Ψ1ðx; ηÞ;Ψ2ðx; ηÞÞ: ð1Þ

In flat spacetime limit, which AdS radius goes to infinity,
two Majorana fields can construct a Dirac field and
therefore the supermultiplet (1) reduces to the one we
obtained in [12], i.e., the bosonic part becomes a
complex field while the fermionic one comes to be a
Dirac field.
We note that, in supersymmetrization of massive higher

spins in flat spacetime [19] (see also its generalization to
AdS [20] and references therein), the author considered two
massive fermions with opposite signs of mass terms.
Motivated by this consideration, for massless higher spins
in AdS space, we take into account two massless fermions
with opposite signs of AdS radius.
The layout of this paper is as follows. In Sec. II, we will

independently review the unconstrained supersymmetric
higher spins in flat spacetime, which was obtained from the
helicity limit (μ ¼ 0) of the supersymmetric continuous
spin gauge theory [12]. Supersymmetry transformations
will obtain in a rotated basis as well. In Sec. III, which
includes our main results, we present supersymmetry
transformations which leave invariant the supersymmetric
unconstrained higher spin action in AdS4. The conclusions
are displayed in Sec. IV. In the appendixes, we present our
conventions in the appendix A; in appendix B, we review
the Wess-Zumino multiplet in AdS4 which includes a
manner that we followed to find unconstrained supersym-
metry transformations in this work; in appendix C, we
illustrate how the SUSY algebra closes on-shell in flat
spacetime. Useful relations concerning supersymmetry in
AdS and so on will be presented in the appendix D.

II. UNCONSTRAINED HIGHER SPINS
IN FLAT SPACE

In this section, we review the supersymmetrization of
unconstrained higher spins in flat spacetime using Segal
formulation which was obtained from the helicity limit of
the continuous spin gauge theory in [12]. However, here,
we include more details such as expressing the supersym-
metry action and SUSY transformations in terms of real
fields. Results in a rotated fermionic system are presented
as well.

A. Bosonic and fermionic actions

In flat spacetime, Segal formalism can be given by the
bosonic [1] and fermionic [2] unconstrained higher spin
actions (in the mostly plus signature for the metric)
respectively

SbFlat ¼
Z

d4x d4η δ0ðη2 − 1Þϕ†ðx; ηÞBϕðx; ηÞ;

B ≔ □ − ðη · ∂Þðη̄ · ∂Þ þ 1

2
ðη2 − 1Þðη̄ · ∂Þ2 ð2Þ

SfFlat ¼
Z

d4x d4η δ0ðη2 − 1Þψ̄ðx; ηÞð=η − 1ÞFψðx; ηÞ;

F ≔ ∂ − ð=ηþ 1Þðη̄ · ∂Þ; ð3Þ

where ημ is a 4-dimensional auxiliary Lorentz vector
localized to the unit hyperboloid of one sheet η2 ¼ 1, γμ

are the 4-dimensional Dirac gamma matrices, δ0 is the
derivative of the Dirac delta function with respect to its
argument, i.e., δ0ðaÞ ¼ d

da δðaÞ, and

η̄μ ≔ ∂=∂ημ; ∂μ ≔ ∂=∂xμ; □ ≔ ∂2; ð4Þ

=η ≔ γμημ; ∂ ≔ γμ∂μ; ψ̄ ≔ ψ†iγ0: ð5Þ

The bosonic complex field ϕ is unconstrained and intro-
duces by a collection of totally symmetric complex tensor
fields ϕμ1…μsðxÞ of all integer rank s, packed into a single
generating function

ϕðx; ηÞ ¼
X∞
s¼0

1

s!
ημ1…ημsϕμ1…μsðxÞ: ð6Þ

The fermionic Dirac field ψ is unconstrained and intro-
duces by a tower of totally symmetric Dirac spinor-tensor
fields ψμ1…μsðxÞ of all half-integer spin sþ 1

2
, given by the

generating function

ψðx; ηÞ ¼
X∞
s¼0

1

s!
ημ1…ημsψμ1…μsðxÞ; ð7Þ
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where the spinor index is left implicit. The bosonic action
(2) is invariant under gauge transformations

δξ1ϕðx; ηÞ ¼
�
η · ∂ −

1

2
ðη2 − 1Þðη̄ · ∂Þ

�
ξ1ðx; ηÞ; ð8Þ

δξ2ϕðx; ηÞ ¼ ðη2 − 1Þ2ξ2ðx; ηÞ; ð9Þ

where ξ1, ξ2 are two arbitrary unconstrained complex gauge
transformation parameters. The fermionic action (3) is
invariant under spinor gauge transformations

δζ1ψðx; ηÞ ¼ ½∂ð=ηþ 1Þ − ðη2 − 1Þðη̄ · ∂Þ�ζ1ðx; ηÞ; ð10Þ
δζ2ψðx; ηÞ ¼ ðη2 − 1Þð=η − 1Þζ2ðx; ηÞ; ð11Þ

where ζ1, ζ2 are two arbitrary unconstrained spinor gauge
transformation parameters.

B. Supersymmetry transformations

As one can see, the bosonic (6) and fermionic (7)
unconstrained fields in Segal formulation include a tower
of all spins, therefore equalizing bosonic and fermionic
degrees of freedom in the supermultiplet does not make
sense. However, for such supermultiplet we found that the
number of real bosonic and fermionic fields should be
equal. Indeed, the N ¼ 1 Segal supermultiplet in 4-dimen-
sional flat spacetime can be denoted by

ðϕðx; ηÞ;ψðx; ηÞÞ ð12Þ
where the complex bosonic field ϕ and the Dirac fermionic
field ψ have equal real fields. It is then convenient and
straightforward to demonstrate that the unconstrained
SUSY higher spin action

SSUSYFlat ¼ SbFlat½ϕ� þ SfFlat½ψ � ð13Þ
which is a sum of the bosonic (2) and fermionic (3)
unconstrained actions is invariant under the following
supersymmetry transformations

δϕðx; ηÞ ¼ 1ffiffiffi
2

p ϵ̄ð1þ γ5Þð=ηþ 1Þψðx; ηÞ;

δψðx; ηÞ ¼ −
1ffiffiffi
2

p Xð1 − γ5Þϵϕðx; ηÞ; ð14Þ

where ϵ is global supersymmetry parameter, which is a
Dirac spinor, and the operator X defines as

X ≔ −=∂ þ 1

2
ð=η − 1Þðη̄ · ∂Þ: ð15Þ

We then can simply find that the commutator of
supersymmetry transformations (14) on the bosonic and
fermionic fields become respectively

½δ1; δ2�ϕðx; ηÞ ¼ 2ðϵ̄2∂ϵ1Þϕðx; ηÞ; ð16Þ

½δ1; δ2�ψðx; ηÞ ≈ 2ðϵ̄2∂ϵ1Þψðx; ηÞ þ G:T:; ð17Þ

where “≈ ” means that we have used the Euler-Lagrange
equation of the fermionic action (3), i.e.,

δ0ðη2 − 1Þð=η − 1ÞFψ ¼ 0; ð18Þ

and “G.T.” denotes a term proportional to the fermionic
gauge transformation (10) (see appendix C for more detail).
Theses together indicate that the SUSY algebra is closed
on-shell up to a fermionic gauge transformation.
SUSY transformations in terms of real fields:
For later purposes, let us take into account the complex

bosonic field ϕ in terms of two real bosonic fields ϕ1;ϕ2

which would have opposite parity, and consider the Dirac
spinor field ψ in terms of two Majorana spinor fields
ψ1;ψ2, i.e.,

ϕ ¼ 1ffiffiffi
2

p ðϕ1 − iϕ2Þ; ψ ¼ 1ffiffiffi
2

p ðψ1 − iψ2Þ: ð19Þ

By this consideration, one can plug (19) into (13), so as the
SUSY higher spin action (13) converts to2

SSUSYFlat ¼ 1

2

Z
d4x d4η δ0ðη2 − 1Þ½ϕ1Bϕ1 þ ϕ2Bϕ2

þ ψ̄1ð=η − 1ÞFψ1 þ ψ̄2ð=η − 1ÞFψ2�; ð20Þ

where the bosonic B and fermionic F operators were
introduced in (2), (3), and the gauge fields ϕi;ψ i
(i ¼ 1, 2) are generating functions with a similar form
as (6), (7), except that they are now real fields. It is
then convenient to find that the rewritten SUSY
action (20) is invariant under the following supersymmetry
transformations

δϕ1 ¼
1ffiffiffi
2

p ε̄½ð=ηþ 1Þψ1 − iγ5ð=ηþ 1Þψ2�;

δψ1 ¼ −
1ffiffiffi
2

p Xðϕ1 þ iγ5ϕ1Þε; ð21Þ

δϕ1 ¼
1ffiffiffi
2

p ε̄½ð=ηþ 1Þψ2 þ iγ5ð=ηþ 1Þψ1�;

δψ2 ¼ −
1ffiffiffi
2

p Xðϕ1 − iγ5ϕ1Þε; ð22Þ

where the operator X was given by (15). We note that since
we are dealing here with real fields, the supersymmetry

2By inserting (19) into (13), a factor of 1=2 was appeared in
(20), stating that in comparison with (2), (3) we are now dealing
with real fields.
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parameter ε is a Majorana spinor, unlike the previous case
in which the supersymmetry parameter ϵ was a Dirac
spinor.
It is again useful to check the closure of the SUSY

algebra using superaymmetry transformations in (21), (22).
We will then find that the commutator of supersymmetry
transformations (21), (22) on the bosonic ϕi and fermionic
ψ i fields become

½δ1; δ2�ϕi ¼ 2ðε̄2∂ε1Þϕi; i ¼ 1; 2 ð23Þ

½δ1; δ2�ψ i ¼ 2ðε̄2∂ε1Þψ i þ
X2
j¼1

ðG:T:ðψ jÞ þ E:O:M:ðψ jÞÞ;

i ¼ 1; 2 ð24Þ

where G:T:ðψ jÞ denotes a term proportional to gauge
transformation of ψ j

δψ jðx; ηÞ ¼ ½∂ð=ηþ 1Þ − ðη2 − 1Þðη̄ · ∂Þ�ζðx; ηÞ; ð25Þ

and E:O:M:ðψ jÞ stands for a term proportional to the
equation of motion of ψ j

δ0ðη2 − 1Þð=η − 1ÞFψ j ¼ 0: ð26Þ

As one can see, by applying the equation of motion for both
fermionic fields ψ1, ψ2, the algebra closes up to two spinor
gauge transformations. We note that the difference beetwin
two fermionic equations of motion in (18) and (26) is
related to the fermionic fields. The former (18) includes a
Dirac spinor ψ, while the latter (26) contains a Majorana
spinor ψ j.
Matrix notation:
Let us employ a matrix notation which not only makes

notation pretty, but also enable us to present supersym-
metry transformations in a new basis conveniently. In a
matrix notation, bosonic and fermionic parts of the SUSY
higher spin action (20) can be written in terms of column
and row vectors

SSUSYFlat ¼ 1

2

Z
d4xd4η δ0ðη2 − 1Þ

�
ðϕ1 ϕ1 Þ

�
B 0

0 B

��
ϕ1

ϕ1

�

þ
�
ψ̄1 ψ̄2

�
ð=η− 1Þ

�
F 0

0 F

��
ψ1

ψ2

��
; ð27Þ

thus, supersymmetry transformations (21), (22) in terms of
column vectors3 will take a compact form as the following

δ

�
ϕ1

ϕ2

�
¼ −

1ffiffiffi
2

p ε̄

�
1 −iγ5
iγ5 1

�
ð=ηþ 1Þ

�
ψ1

ψ2

�
;

δ

�
ψ1

ψ2

�
¼ −

1ffiffiffi
2

p X

�
1 iγ5

−iγ5 1

��
ϕ1

ϕ2

�
ε: ð29Þ

where the operators B, F, X were introduced in (2), (3), (15)
respectively. Moreover, the algebra of supersymmetry
transformations (23), (24) in matrix notation can be
written as

½δ1; δ2�
�
ϕ1

ϕ1

�
¼

�Δ0 0

0 Δ0

��
ϕ1

ϕ1

�
;

½δ1; δ2�
�
ψ1

ψ2

�
≈
�Δ0 0

0 Δ0

��
ψ1

ψ2

�
þ G:T:; with

Δ0 ≔ 2ðε̄2∂ε1Þ ð30Þ

which is closed on-shell (≈) up to gauge transforma-
tions (G.T.).
SUSY transformations in a new basis:
To close this section, and for later purposes, let us present

above results in a new basis. To this end, if one rotates
bosonic or fermionic column vectors, one then gets them in
a new basis. For example, let us rotate fermionic column
vector by an angle of θ

�Ψ1

Ψ2

�
¼

�
cos θ − sin θ

sin θ cos θ

��
ψ1

ψ2

�
; ð31Þ

where Ψ1;Ψ2 are fermionic higher spin fields in rotated
basis. In this new basis, it is easy to see that the form of the
supersymmetric action (27), for any θ, will not change,
except that we will have to substitute ψ i by Ψi (i ¼ 1, 2).
However, supersymmetry transformations (29) in the new
basis (31) become

δ

�
ϕ1

ϕ1

�
¼ 1ffiffiffi

2
p ε̄

�
cos θ þ iγ5 sin θ sin θ − iγ5 cos θ

− sin θ þ iγ5 cos θ cos θ þ iγ5 sin θ

�

× ð=ηþ 1Þ
�Ψ1

Ψ2

�
; ð32aÞ

δ

�Ψ1

Ψ2

�
¼ −1ffiffiffi

2
p X

�
cos θþ iγ5 sin θ − sin θþ iγ5 cos θ

sin θ − iγ5 cos θ cos θþ iγ5 sin θ

�

×

�
ϕ1

ϕ1

�
ε; ð32bÞ

Nevertheless, one may check that the algebra of rotated
supersymmetry transformations (32), for any θ, will close
and would be as before (30), upon substituting ψ i by Ψi
(i ¼ 1, 2). Therefore, we conclude that in flat spacetime
two set of non-rotated (29) and rotated (32) supersymmetry
transformations satisfy the SUSY algebra. The reason we

3Note that, for example, a row vector for bosonic trans-
formations becomes

δðϕ1 ϕ2 Þ ¼ −
1ffiffiffi
2

p ð ψ̄1 ψ̄2 Þð=η − 1Þ
�

1 iγ5

−iγ5 1

�
ε: ð28Þ
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here discussed rotated supersymmetry transformations is
related to the next section. In fact, when we present
supersymmetry transformations in anti–de Sitter space,
we will see that its flat spacetime limit would coincide
with rotated transformations (32) with θ ¼ π=4.

C. Relation to the Fronsdal formalism

As we discussed in the Introduction, Segal formulation
seems to be so simple and its results can be translated into
constrained formalism, i.e., Fronsdal formalism. Indeed,
one can show that the Segal multiplet (12) which is an
irreducible multiplet can be written in terms of constrained
fields, and then such an obtained multiplet would be
reducible and can be decomposed into a direct sum of
the Wess-Zumino multiplet ð0; 1

2
Þ; all half-integer spin

supermultiplets ðs; sþ 1
2
Þ, s ≥ 1; and all integer spin super-

multiplets ðsþ 1
2
; sþ 1Þ, s ≥ 0, i.e.,

ðϕðx; ηÞ;ψðx; ηÞÞ ⇒ ðϕðx;ωÞ;ψðx;ωÞÞ

≡
�
0;
1

2

�
⊕

X∞
s¼1

�
s; sþ 1

2

�
⊕

X∞
s¼0

�
sþ 1

2
; sþ 1

�
:

By making a relationship between the Segal multiplet
and the Fronsdal one, we indeed demonstrated [12] that
unconstrained supersymmetry transformations (14), which
have a very simple compact form will include the well-
known supersymmetry transformations of chiral multiplet.
Moreover, they will contain supersymmetry transforma-
tions of the half-integer spin supermultiplet ðs; sþ1=2Þ [13]

δϕsðx;ωÞ ¼
ffiffiffi
2

p
ε̄ψ sðx;ωÞ; ð33Þ

δψ sðx;ωÞ ¼ −
1ffiffiffi
2

p
�
2∂ −=ω

1

ðN þ 1Þ ðω̄ · ∂Þ þ=ω∂ 1

ðNþ 1Þ =̄ω

−=ωðω · ∂Þ 1

2ðNþ 2Þ ω̄
2

�
εϕsðx;ωÞ; ð34Þ

as well as the supersymmetry transformations of the integer
spin supermultiplet ðsþ1=2; sþ 1Þ [13]

δϕsþ1ðx;ωÞ ¼ ε̄=ω
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN þ 1Þp ψ sðx;ωÞ; ð35Þ

δψ sðx;ωÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN þ 1Þp

�
∂=̄ω − ðω̄ · ∂Þ − 1

2
ðω · ∂Þω̄2

�

× εϕsþ1ðx;ωÞ: ð36Þ

Here, we reviewed and brought our attention to the fact that
in flat spacetime there exists a relationship between
supersymmetry transformations of the Segal formulation
and the Fronsdal one. This equality can be generally made
in anti-de Sitter space where we present supersymmetry

transformations in the next section, however, we will leave
making this connection in current work.

III. UNCONSTRAINED HIGHER SPINS
IN AdS4 SPACE

In this section, which is the main part of the current
work, we first present the bosonic and fermionic uncon-
strained higher spin actions in anti–de Sitter space, and then
provide supersymmetry transformations.

A. Bosonic action

In four-dimensional AdS4 spacetime, the unconstrained
massless bosonic higher spin action can be given by [1]4

SbAdS ¼
1

2

Z
d4x d4η eΦðx; ηÞδ0ðη2 − 1ÞðBþ BlÞΦðx; ηÞ;

ð37Þ

with

B ≔ □AdS − ðη ·∇Þðη̄ ·∇Þ þ 1

2
ðη2 − 1Þðη̄ ·∇Þ2;

Bl ≔ −l2ðN2 − 2N − 2þ η2η̄2 − 2η̄2Þ; ð38Þ

where ηa is a 4-dimensional auxiliary Lorentz vector
localized to the unit hyperboloid of one sheet η2 ¼ 1, δ0
is the derivative of the Dirac delta function with respect to
its argument, i.e., δ0ðaÞ ¼ d

da δðaÞ, and e ≔ det eaμ where eaμ
stands for vielbein of AdS4 space. The l ≔ 1=Rwhere R is
the AdS radius, ∇a is the Lorentz covariant derivative,
□AdS is the d’Alembert operator of AdS, andN ≔ η · η̄ (see
appendix A for conventions). The gauge field Φ is real and
unconstrained given by the generating function

Φðx; ηÞ ¼
X∞
s¼0

1

s!
ηa1…ηasΦa1…asðxÞ; ð39Þ

where Φa1…as are covariant totally symmetric real tensor
fields of anti–de Sitter spacetime with all integer rank
s ¼ 0; 1;…;∞, such that flat and curved indices are related
to each other as: Φa1…asðxÞ ¼ eμ1a1…eμsasΦμ1…μsðxÞ. The
action (37) is invariant under the following two gauge
transformations

δξ1Φðx; ηÞ ¼
�
η ·∇ −

1

2
ðη2 − 1Þðη̄ · ∇Þ

�
ξ1ðx; ηÞ; ð40Þ

δξ2Φðx; ηÞ ¼ ðη2 − 1Þ2ξ2ðx; ηÞ; ð41Þ

4In AdS space, there was a typo in the operator V11 of the
action presented in [1] which is corrected in this paper and [2].
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where there are no constraints on two gauge transformation
parameters ξ1 and ξ2. Varying the action (37) with respect
to the gauge field yields the Euler-Lagrange equation

δ0ðη2 − 1ÞðBþ BlÞΦðx; ηÞ ¼ 0: ð42Þ

B. Fermionic action

In four-dimensional AdS4 spacetime, the unconstrained
massless fermionic higher spin action can be given by [2]

SfAdS¼
1

2

Z
d4xd4ηeΨ̄ðx;ηÞδ0ðη2−1Þð=η−1ÞðFþFlÞΨðx;ηÞ;

ð43Þ

with

F ≔ D − ð=ηþ 1Þðη̄ ·DÞ;

Fl ≔
l
2
ð2N þ =η=̄ηþ 3=̄ηÞ; ð44Þ

where, in addition to the common relations in the bosonic
case, here, γa are the 4-dimensional Dirac gamma matrices,
Da is spinorial covariant derivative (appendix A) and

D≔ γaDa; =η≔ γaηa; =̄η≔ γa
∂
∂ηa ; Ψ̄≔Ψ†iγ0: ð45Þ

The fermionic field Ψ is real and unconstrained defined by
the generating function

Ψðx; ηÞ ¼
X∞
s¼0

1

s!
ηa1…ηasΨa1…asðxÞ; ð46Þ

whereΨa1…as are totally symmetric Majorana spinor-tensor
fields of anti-de Sitter spacetime with all half-integer rank
sþ1=2, so as flat and curved indices are related to each
other via Ψa1…asðxÞ ¼ eμ1a1…eμsasΨμ1…μsðxÞ, and the spinor
index is left implicit. The action (43) is invariant under the
following two spinor gauge transformations

δζ1Ψðx;ηÞ¼
�
Dð=ηþ1Þ− ðη2−1Þðη̄ ·DÞ

þl
2
½2=ηþð=η−1Þ2=̄η− ð=η−1Þð2Nþ4Þ�

�
ζ1ðx;ηÞ;

ð47Þ

δζ2Ψðx; ηÞ ¼ ðη2 − 1Þð=η − 1Þζ2ðx; ηÞ; ð48Þ

where two spinor gauge transformation parameters ζ1, ζ2
are unconstrained. If one varies the action (43) with respect
to the gauge field Ψ̄, we will arrive at the equation of
motion

δ0ðη2 − 1Þð=η − 1ÞðFþ FlÞΨðx; ηÞ ¼ 0: ð49Þ

As we discussed in the introduction, we note that
the form of the bosonic and fermionic actions in Segal
formulation seem simpler than Fronsdal formalism.
However, by taking a look at gauge transformations
(40), (41), (47), (48), one can see that, unlike the actions,
gauge transformations in Segal formalism look like more
complicated than Fronsdal one.

C. Killing spinors

In flat spacetime, global supersymmetry transformation
parameter ϵ is a constant, satisfying ∂μϵ ¼ 0. In anti–de
Sitter space,5 the supersymmetry transformations of the
fields are proportional to a spinor parameter εðxÞ, which is a
Killing spinor in the anti–de Sitter space, i.e., εðxÞ must
satisfy the Killing spinor equation [22] (see [23] for a
review of supersymmetry in AdS). Therefore, in the mostly
plus signature for the metric, the Majorana Killing spinor
equation in four dimensions can be defined in a straightfor-
ward manner

�
Da þ

l
2
γa

�
εðxÞ ¼ 0; ð50Þ

where Da is spinorial covariant derivative, l is the inverse
of AdS radius, and ε is a Majorana Killing spinor. By
defining a modified covariant derivative as D̂aε≡
ðDa þ l

2
γaÞε ¼ 0, one can check the integrability condition

½D̂a; D̂b�ε ¼ 0, provided choosing the curvature in anti–de
Sitter space as Rabcd ¼ −l2ðηacηbd − ηadηbcÞ.
Now let us discuss the case we are dealing with in this

paper. As we mentioned, to formulate supersymmetric
unconstrained massless higher spins in AdS, we will have
to choose two Majorana fermions with opposite signs of
AdS radius. For this purpose, let us consider a form of the
action (43) for each Majorana fermion which are distin-
guished through their AdS radius. Therefore, for two
fermions Ψ1, Ψ2 there would be respectively two
Majorana Killing spinors ε, χ satisfying the following
Killing spinor equations

�
Da þ

l1

2
γa

�
εðxÞ ¼ 0; ð51Þ

�
Da þ

l2

2
γa

�
χðxÞ ¼ 0; ð52Þ

where l1, l2 are inversed AdS radius of fermions Ψ1, Ψ2

respectively. If one multiplies the equation (51) by γ5 to
the left

5For a discussion about de Sitter supersymmetry refer to this
paper [21].

MOJTABA NAJAFIZADEH PHYS. REV. D 105, 025001 (2022)

025001-6



�
Da −

l1

2
γa

�
ðγ5ÞεðxÞ ¼ 0; ð53Þ

and compare it with (52), it gives us a relationship between
two Killing spinors

χ ¼ γ5ε; ð54Þ

provided we choose l1 ¼ −l2 ¼ l. Making use of this
relationship which illustrates that two Killing spinors are
not independent is the fact we will apply in the next
subsection. We note that, in flat spacetime, where
l1;l2 → 0, both Killing spinors become identical to each
other ε ¼ χ.

D. Supersymmetry transformations

Now we are in a position to find supersymmetry
transformations. As we already discussed, to super-
symmetrize unconstrained formulation of the higher spin
gauge theory in 4-dimensional AdS4 spacetime for the
N ¼ 1 supermultiplet, we will consider a supermultiplet
ðΦ1;Φ2;Ψ1;Ψ2Þ containing two bosonic higher spin fields
Φ1, Φ2 which have opposite parity to each other, as well as
two Majorana higher spin fields Ψ1, Ψ2 with opposite signs
of AdS radius.6 Thus, let us take into account the super-
symmetric unconstrained higher spin action for such a
supermultiplet in AdS4 as the following

SSUSYAdS ¼SbAdS½Φ1�þSbAdS½Φ2�þSfAdS½Ψ1�þSfAdS½Ψ2�; ð55Þ

¼ 1

2

Z
d4x d4η eδ0ðη2 − 1Þ½Φ1ðBþBlÞΦ1

þΦ2ðBþ BlÞΦ2 þ Ψ̄1ð=η − 1ÞðFþ FlÞΨ1

þ Ψ̄2ð=η − 1ÞðF − FlÞΨ2�; ð56Þ

where the bosonic and fermionic fields Φi, Ψi (i ¼ 1, 2)
were defined as generating functions in (39), (46), while
operators B;Bl;F;Fl were introduced in (38), (44)
respectively, and the condition l1 ¼ −l2 ¼ l for two
fermions has been applied by flipping the sign of Fl in
the last term of (56).
We find that the above action (56) is invariant under the

following SUSY-like transformations

δΦ1 ¼
1ffiffiffi
2

p ε̄½ð=ηþ 1ÞΨ1 − iγ5ð=ηþ 1ÞΨ2�;

δΨ1 ¼ −
1ffiffiffi
2

p ðXþXlÞðεΦ1 þ iγ5χΦ2Þ; ð57aÞ

δΦ2 ¼
1ffiffiffi
2

p χ̄½ð=ηþ 1ÞΨ2 þ iγ5ð=ηþ 1ÞΨ1�;

δΨ2 ¼ −
1ffiffiffi
2

p ðX −XlÞðχΦ2 − iγ5εΦ1Þ; ð57bÞ

where

X ≔ −Dþ 1

2
ð=η − 1Þðη̄ ·DÞ;

Xl ≔ l
�
N − 1þ 1

4
=η=̄η −

5

4
=̄η

�
; ð57cÞ

and ε, χ, which can be related to each other through (54),
are local supersymmetry transformation parameters satis-
fying the Killing spinor equations (51), (52) with
l1 ¼ −l2 ¼ l. In a matrix notation, the SUSY-like trans-
formations (57) will take the following form

δ

�Φ1

Φ2

�
¼ 1ffiffiffi

2
p

�
ε̄ −iε̄γ5

i χ̄ γ5 χ̄

�
ð=η−1Þ

�Ψ1

Ψ2

�
;

δ

�Ψ1

Ψ2

�
¼−

1ffiffiffi
2

p
� ðXþXlÞε iðXþXlÞγ5 χ
−iðX−XlÞγ5ε ðXþXlÞχ

��Φ1

Φ2

�

ð58Þ
One can then find that the commutator of SUSY-like
transformations (58) [or (57)] on the bosonic fields would
be closed. However, the commutator on the fermionic fields
cannot be closed, which is why we called them SUSY-like
transformations. Nevertheless, if one rotates the fermionic
column vector, the commutator will close on fermionic
fields as well.
Therefore, to obtain supersymmetry transformations, let

us go to a rotated basis in which fermionic column vector
(31) has rotated by an angle of π=4. In this basis, super-
symmetric unconstrained higher spin action is

SSUSYAdS ¼ 1

2

Z
d4xd4ηδ0ðη2 − 1Þ

×

�
ðΦ1 Φ2 Þ

�
BþBl 0

0 BþBl

��Φ1

Φ2

�

þðΨ̄1 Ψ̄2 Þð=η−1Þ
�

F Fl

Fl F

��Ψ1

Ψ2

��
; ð59Þ

where the bold symbols Ψi denote rotated fermionic fields,
and operators B;Bl;F;Fl were introduced in (38), (44)
respectively. We then find that the supersymmetric action
(59) would be invariant under the following supersymmetry
transformations

6Note that having opposite signs of AdS radius may not be
interpreted as the result of a parity transformation. In fact, if one
considers such an interpretation, then it breaks in the flat
spacetime limit, in which the AdS radius vanishes. Instead, it
can be interpreted as two fermionic fields having opposite mass-
like terms vanishing in flat spacetime. We note that, in the
bosonic case, two fields have opposite parity and it holds in both
flat and AdS spaces.
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where operators X;Xl were introduced in (57c). As one
can see in flat spacetime (l → 0) two local supersymmetry
parameters ε, χ become global and identical to each other
ε ¼ χ, in such a way that local supersymmetry trans-
formations (60) turn into global rotated transformations
(32) with θ ¼ π=4.
To demonstrate invariance of the supersymmetric action

(59) under supersymmetry transformations (60), one can
conveniently apply the following obtained identities

ðBþ BlÞεΦi ¼ −ðFþ FlÞðXþXlÞεΦi;

ðBþBlÞγ5εΦi ¼ −ðF − FlÞðX −XlÞγ5εΦi; ð61Þ

ðBþ BlÞχΦi ¼ −ðF − FlÞðX −XlÞχΦi;

ðBþBlÞγ5χΦi ¼ −ðFþ FlÞðXþXlÞγ5χΦi; ð62Þ

where the Killing spinor equations (51), (52) with l1 ¼
−l2 ¼ l have been applied on the right-hand sides. For the
reader’s convenience, we have presented useful relations in
(D5)–(D12), which using them one can straightforwardly
demonstrate the above identities (61), (62).
Finally, to show the closure of the supersymmetry

algebra in AdS4, let us first focus on the bosonic fields.
By applying some Majorana flip relations (see, e.g., [24]),
we find that the commutator of supersymmetry trans-
formations (60) on the bosonic fields Φi becomes

½δ1;δ2�Φi¼2½ε̄2γaε1∇aþ
l
2
ε̄2γ

abε1Mab�Φi; i¼1;2 ð63Þ

which is indeed the supersymmetry algebra in anti-de Sitter
spacetime. The covariant derivative ∇a, the operator Mab

and γab are given in (A3), (A5). We note that the
commutator (63) was written in terms of ε. If one uses
the relation between two Killing spinors (54) and calculate
the commutator in terms of χ, one finds again a relation like
(63) in which ε; ε̄;l have substituted by χ; χ̄;−l respec-
tively. This illustrates that, in terms of χ, the sign of l
would be flipped, as one expects. The commutator of
supersymmetry transformations (60) on the fermionic fields
would be closed upon using two fermionic equations of
motion (49) (for Ψ1 and Ψ2), up to two spinor gauge
transformations (related to Ψ1 and Ψ2) which are propor-
tional to (47) (see the form of the closure for fermions (24)

in flat space case). In matrix notation, the commutator of
supersymmetry transformations (60) on the fermionic fields
reads

½δ1; δ2�
�Ψ1

Ψ2

�
≈
�Δþl 0

0 Δ−l

��Ψ1

Ψ2

�
þ G:T:; ð64Þ

where

Δþl ¼ 2

�
ε̄2γ

aε1∇a þ
l
2
ε̄2γ

abε1Mab

�
;

Δ−l ¼ 2

�
χ̄2γ

aχ1∇a −
l
2
χ̄2γ

abχ1Mab

�
: ð65Þ

This illustrates, unlike the flat space case (30), if one rotates
the fermionic column vector, then the SUSY algebra does
not hold (recall the SUSY-like transformations). This in
turn comes from the fact that here two fermionic fields
Ψ1;Ψ2 are respectively related to two Killing spinors ε, χ,
having opposite sign of the AdS radius. However, by taking
the flat spacetime limit (l → 0) two Killing spinors become
identical to each other ε ¼ χ, such that ðliml→0 Δ�lÞ ¼ Δ0,
and thus (64) results in (30). To be more precise, by taking
the limit l → 0, the SUSY-like transformations (57) will
then satisfy the SUSYalgebra and reduc to (32) with θ ¼ 0,
while the supersymmetry transformations (60) lead to (32)
with θ ¼ π=4.

IV. CONCLUSIONS AND OUTLOOK

In this work, we took into account the unconstrained
formalism of the higher spin gauge field theory given by the
bosonic [1] and fermionic [2] actions in 4-dimensional flat
Minkowski and anti-de Sitter spacetimes. For the reader’s
convenience, we first reviewed flat spacetime case inde-
pendently, which was already discussed by taking a limit
from the continuous spin gauge theory in [12]. The Segal
supermultiplet was included a complex bosonic field and a
Dirac spinor field given by the generating functions.
Supersymmetry transformations (14) were found so as
the supersymmetry action (13) (a sum of the complex
bosonic higher spin action and the Dirac higher spin action)
left invariant and the supersymmetry algebra was closed
on-shell. In order to compare our results with the AdS space

δ

�
Φ1

Φ2

�
¼ 1

2

�
ε̄ð1þ iγ5Þ ε̄ð1 − iγ5Þ
χ̄ð−1þ iγ5Þ χ̄ð1þ iγ5Þ

�
ð=ηþ 1Þ

�
Ψ1

Ψ2

�
; ð60aÞ

δ

�
Ψ1

Ψ2

�
¼ − 1

2

� ðXþXlÞεþ iðX −XlÞγ5ε −ðX −XlÞχ þ iðXþXlÞγ5χ
ðXþXlÞε − iðX −XlÞγ5ε ðX −XlÞχ þ iðXþXlÞγ5χ

��
Φ1

Φ2

�
; ð60bÞ
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case, we decomposed the complex and Dirac fields and
presented supersymmetry transformations (21), (22) in
terms of two Majorana fields, and two real bosonic fields
which have opposite parity. Employing a matrix notation,
supersymmetry transformations were given in a rotated
basis as well (32a).
Afterwards, we considered a generalization of the super-

symmetric unconstrained higher spin formalism to the anti-
de Sitter space case. In this case, we took into account the
bosonic [1] and fermionic [2] higher spin actions in 4-
dimensional AdS4 space and realized that the supermultiplet
should comprise of two bosonic real higher spin fields (with
opposite parity) as well as a pair of Majorana-spinor higher
spin fields which have opposite sign of the AdS radius.
Having opposite radii as well as Majorana Killing spinor
equations (51), (52) with l1 ¼ −l2 ¼ l were necessary to
find supersymmetry transformations. We illustrated that the
supersymmetry action (56) (containing four actions) is
invariant under SUSY-like transformations (58), but the
SUSY algebra cannot be closed. To close the algebra, we
rotated SUSY-like transformations and obtained supersym-
metry transformations (60) leaving invariant the supersym-
metry action (59). The algebra closes on-shell up to spinor
gauge transformations. We demonstrated that in flat space-
time (l → 0), two Killing spinors became identical and thus
supersymmetry transformations (60) will reproduce super-
symmetry transformations in a rotated basis (32a).
Let us briefly discuss the possible further works related to

obtained results. As wementioned, Segal formulation is one
of unconstrained higher spin formalism which is local and
covariant, and gave us so simple results in context of
supersymmetry. There are other unconstrained higher spin
formulations in the literature (see, e.g., [25–30] and refer-
ences therein) that examining of their supersymmetry may
be interesting. There is also a different formulation in which
similar infinite sets of higher spin fields appear [31].
Supersymmetric higher spin models constructed in hyper-
space [32–35] describe infinite-dimensional higher spin
supermultiplets and thus differ from the conventional higher
spin supermultiplets in this work and [12]. Cubic interaction
vertices for theN ¼ 1 arbitrary spin massless supermultip-
lets were discussed in [36,37] and it is interesting to study
such interactions using Segal formulation (see [38,39] for
interacting massive and massless arbitrary spin fields and
N ¼ 2 supermultiplets in 3d flat space).Onemaygeneralize
Segal formulation tomassive higher spins inwhich on-shell/
off-shell supersymmetry transformations will probably take
a simple form as themassless ones, discussed in thiswork. In
this regards, we note that recently an off-shell description of
massive supermultiplets was found for the first time for half-
integer supermultiplets [40].
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APPENDIX A: CONVENTIONS

We work in 4-dimensional AdS4 spacetime and use
the mostly plus signature for the flat metric tensor ηab.
We denote coordinates with xa and momenta with
pa ≔ −i∂=∂xa, while we define “auxiliary coordinates”
with ηa and “auxiliary momenta” with ωa ≔ i∂=∂ηa. The
Latin (flat) indices take values: a ¼ 0, 1, 2, 3. Derivatives
with respect to ηa are defined as:

η̄μ ≔
∂
∂ημ η̄a ≔

∂
∂ηa ≔ eμaη̄μ N ≔ η · η̄ ðA1Þ

where

½η̄a; ηb� ¼ ηab; ½ηa; ηb� ¼ 0; ½η̄a; η̄b� ¼ 0: ðA2Þ

The bosonic covariant derivative ∇a is given by

∇a ≔ eμa∇μ; ∇μ ≔ ∂=∂xμ þ 1

2
ωab
μ Mab;

Mab ≔ ηaη̄b − ηbη̄a; ðA3Þ

where eμa is inverse vielbein of AdS4 space,∇μ stands for
the Lorentz covariant derivative, ωab

μ is the Lorentz con-
nection of AdS4 space, and Mab denotes the spin operator
of the Lorentz algebra, while the Greek (curved) indices
take values: μ ¼ 0, 1, 2, 3. The D’Alembert operator of
AdS4 space □AdS is defined by

□AdS ≔ ∇a∇a þ eμaωab
μ ∇b: ðA4Þ

Flat and curved indices of the covariant totally symmetric
tensor fields of AdS4 spacetime are related to each other
as: Φa1…asðxÞ ¼ eμ1a1…eμsasΦμ1…μsðxÞ.
The fermionic (spinorial) covariant derivative Da is

given by

Da ≔ eμaDμ; Dμ ≔ ∂=∂xμ þ 1

2
ωab
μ Mbc;

Mab ≔ Mab þ 1

2
γab; γab ≔

1

2
ðγaγb − γbγaÞ; ðA5Þ
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where γa are the 4-dimensional Dirac gamma matrices
satisfying the Clifford algebra fγa; γbg ¼ 2ηab, and

ðγaÞ† ¼ γ0γaγ0; γ5 ¼ iγ0γ1γ2γ3

ðγ0Þ† ¼ −γ0; ðγiÞ† ¼ þγi; ði ¼ 1; 2; 3Þ: ðA6Þ

APPENDIX B: WESS-ZUMINO MULTIPLET
IN AdS4

In this appendix, we briefly review the Wess-Zumino
model in AdS4 in a way that is base of what we followed to
find SUSY transformations in this work, and thus may be
helpful for reader. The Wess-Zumino model in anti–de
Sitter space was first formulated using superspace tech-
niques in [41], and then studied in the framework of off-
shell component formalism in [22].
Let us consider a free massless real scalar field AðxÞ, and

a free massless Majorana field ψðxÞ in a general curved
background given by actions7

SA ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
∇μA∇μAþ R

6
A2

�
;

Sψ ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ðψ̄γμDμψÞ; ðB1Þ

where R is the scalar curvature, ∇μ ≔ ∂μ is the “covariant
derivative”, Dμ ≔ ∂μ þ 1

4
wab
μ γab is the “spinorial covariant

derivative”, and ψ̄ ¼ ψ†iγ0. Now let us consider the Wess-
Zumino multiplet in AdS4, which is the maximally sym-
metric solution of Einstein’s equations, in which the scalar
curvature is R ¼ −12l2. Due to the equality of degrees of
freedom in a multiplet, one should add a free massless
pseudo-scalar field BðxÞ, and thus the free action of the on-
shell massless Wess-Zumino multiplet in anti-de Sitter
space should have form [42]

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ð−∇μA∇μAþ 2l2A2 −∇μB∇μB

þ 2l2B2 − ψ̄γμDμψÞ: ðB2Þ
To begin our method, let us rewrite the latter action, by
using integration by parts and using flat indices, in the
following form

S ¼ 1

2

Z
d4x e½Að□AdS þ 2l2ÞA

þ Bð□AdS þ 2l2ÞB − ψ̄γaDaψ �; ðB3Þ
where e ≔ det eaμ such that eaμ stands for vielbein of AdS4
space, □AdS ≔ ∇μ∇μ ¼ ∇a∇a þ wab

a ∇b while ∇a ≔ ∂a,

andDa ≔ ∂a þ 1
4
wbc
a γbc. We then vary the action (B3) with

respect to fields A, B, ψ , which is proportional to

δS ∝ ½δAð□AdS þ 2l2ÞAþ δBð□AdS þ 2l2ÞB
− ψ̄γaDaδψ þ � � ��; ðB4Þ

in which we have kept variation of bosonic fields which are
on the left-hand-side, as well as variation of fermionic field
which is in the right-hand-side, while other variations will
appear in dotted terms. By this approach, we will see later
that the remnant variations (denoted by the dotted terms in
the latter) would be Hermitian conjugation of previous
terms, which will appear in the final step. In this sense, it is
enough to demonstrate that existing terms in (B4) cancel
each other by choosing suitable supersymmetry trans-
formations. For this purpose, we consider variation of
bosonic fields as ones in the flat space case

δA ¼ ψ̄ϵ; δB ¼ iψ̄γ5ϵ; ðB5Þ

with the difference that supersymmetry parameter ϵ ¼ ϵðxÞ
is local here, and take into account variation of fermionic
field as the following ansatz

δψ ¼ XðAϵÞ þ iγ5YðBϵÞ; ðB6Þ

where X and Y are unknown spinorial operators which we
would like to find. In (B4), if one wants the dotted terms
appear at the end as Hermitian conjugation of their previous
terms, one needs to choose a property for X, Y as X† ¼
−γ0Xγ0 and Y† ¼ −γ0Yγ0, and define the Hermitian con-
jugation rule as ð∂aÞ† ≔ −∂a. This guides us to consider
the most general forms for X, Y as

X ¼ aDþ bl; Y ¼ cDþ dl; ðB7Þ

where a, b, c, d are real parameters that should be
determined so that the variation of the action vanishes.
Plugging (B5) and the ansatz (B6) [with considering X, Y
as (B7)] into (B4), one arrives at

δS ∝ ½ψ̄ϵð□AdS þ 2l2ÞAþ iψ̄γ5ϵð□AdS þ 2l2ÞB
− ψ̄ðaD2 þ blDÞAϵþ iψ̄γ5ðcD2 þ dlDÞBϵ
þ � � ��: ðB8Þ

In this stage, one should act the spinorial covariant
derivative Da on Aϵ (and Bϵ) yielding

DaðAϵÞ ¼ ð∇aAÞϵþ A

�
−
l
2
γaϵ

�
; ðB9Þ

such that we have used the Killing spinor equation

7Majorana spinor is real and has half as many degrees of
freedom in comparison to the Dirac spinor, thus the overall factor
of 1=2 compared to the Dirac action appears.
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Daϵ ¼ −
l
2
γaϵ: ðB10Þ

This makes us able to compute the action of operator D
(and D2) on Aϵ (and Bϵ) which yields following identities

DðAϵÞ ¼ ð=∇AÞϵ − 2lAϵ; ðB11Þ

D2ðAϵÞ ¼ ðDaDa þ wa
abDb þ 3l2ÞðAϵÞ

¼ ð□AdSAÞϵþ 4l2Aϵ − lð=∇AÞϵ: ðB12Þ

Therefore, given these identities, the relation (B8) with
considering of the dotted terms results in

δS ∝ fψ̄ ½ð1 − aÞð□AdSAÞ þ ð2 − 4aþ 2bÞAl2

þ lða − bÞð=∇AÞ�ϵ
þ iψ̄γ5½ð1þ cÞð□AdSBÞ þ ð2þ 4c − 2dÞBl2

þ lðd − cÞð=∇BÞ�ϵþ H:c:g: ðB13Þ

As we already mentioned, the dotted terms in (B4), (B8)
were appeared here as Hermitian conjugation (H.c.) of
their previous terms. Finally, at a glance, one finds that
the action’s variation (B13) vanishes by setting real
parameters as

a ¼ b ¼ 1; c ¼ d ¼ −1: ðB14Þ

Substituting these parameters in (B7), we find operators X,
Y, and consequently the ansatz (B6), which together with
bosonic variations (B5)

δA ¼ ψ̄ϵ ¼ ϵ̄ψ ; ðB15Þ

δB ¼ iψ̄γ5ϵ ¼ iϵ̄γ5ψ ; ðB16Þ

δψ ¼ D½ðAþ iγ5BÞϵ� þ lðA − iγ5BÞϵ
¼ ½∂ðAþ iγ5BÞ�ϵ − lðA − iγ5BÞϵ; ðB17Þ

are supersymmetry transformations of the Wess-Zumino
action (B3) in AdS4. This strategy (i.e., keeping variation of
the left-hand-side-bosons, and considering variation of the
right-hand side fermions) is the base of what we followed in
this work to find unconstrained SUSY transformations.

APPENDIX C: COMMUTATOR
OF SUSY TRANSFORMATIONS

The commutator of supersymmetry transformations (14)
on the bosonic field is simple and obvious (16), while the
one on the fermionic field becomes

½δ1; δ2�ψðx; ηÞ ¼ 2ðϵ̄2∂ϵ1Þψðx; ηÞ þ ½∂ð=ηþ 1Þ − ðη2 − 1Þðη̄ · ∂Þ�
�
1

2
ϵ̄1γμϵ2γ

μð1 − γ5Þψðx; ηÞ
�

þ 1

4
ðϵ̄2γμϵ1Þ½γμ=η − 3γμ þ 2ημ þ γμ=ηγ5 þ 2ημγ5 þ γμγ5�½∂ − ð=ηþ 1Þη̄ · ∂�ψðx; ηÞ: ðC1Þ

In the first line of the latter, if one chooses a field dependent
fermionic gauge transformation parameter as

ζðψÞ ¼ 1

2
ϵ̄1γμϵ2γ

μð1 − γ5Þψ ;

then the fermionic gauge transformation (10) will appear. In
the second line of (C1), the Euler-Lagrange equation of the
fermionic action (3), i.e.,

δ0ðη2 − 1Þð=η − 1Þ½∂ − ð=ηþ 1Þðη̄ · ∂Þ�ψðx; ηÞ ¼ 0; ðC2Þ

can be easily emerged, if one multiplies the commutator
(C1) by δðη2 − 1Þ to the left and uses the following property
of the Dirac delta function

δðη2 − 1Þ ¼ −ð=ηþ 1Þδ0ðη2 − 1Þð=η − 1Þ:

We note that after applying the fermionic equation of
motion (C2) the second line in (C1) vanishes, and the Dirac

delta function δðη2 − 1Þ can be dropped from both sides of
(C1), thus the commutator will look like as the one in (17).

APPENDIX D: USEFUL RELATIONS

Since the Killing spinor equation is given by

Daε ¼ −
l
2
γaε; ðD1Þ

one can write the following relations

DεðxÞ ¼ −2lεðxÞ; ðD2Þ

DaDaεðxÞ ¼ l2εðxÞ þ l
2
wa

acγcεðxÞ; ðD3Þ

DaDaðABÞ ¼ ðDaDaAÞBþ 2ðDaAÞðDaBÞ
þ AðDaDaBÞ: ðD4Þ

In 4-dimensional AdS4, one can act the following operators
(including the spinorial covariant derivative Da) on Φε
which gives us the following useful relations:
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DðΦεÞ ¼ ½=∇ − 2l�Φε ðD5Þ

ðη̄ ·DÞðΦεÞ ¼
�
η̄ ·∇ −

l
2
=̄η

�
Φε ðD6Þ

▪AdSðΦεÞ ¼ ½□AdS þ l2 − l=∇�Φε ðD7Þ

D=̄ηðΦεÞ ¼ ½=∇=̄ηþ l=̄ηþ wabcγaγbη̄c�Φε ðD8Þ

ðη̄ ·DÞ2ðΦεÞ ¼
�
ðη̄ ·∇Þ2 − l=̄ηðη̄ · ∇Þ þ l2

4
η̄2
�
Φε ðD9Þ

ðη ·DÞ=̄ηðΦεÞ ¼
�
ðη ·∇Þ=̄ηþ l

2
=η=̄η − lN − wabcγaηbη̄c

�
Φε

ðD10Þ

Dðη̄ ·DÞðΦεÞ ¼
�
=∇ðη̄ · ∇Þ − l

2
=∇=̄η − 2lη̄ · ∇

−
l2

2
=̄η −

l
2
wabcγaγbη̄c

�
Φε ðD11Þ

ðη ·DÞðη̄ ·DÞðΦεÞ ¼
�
ðη · ∇Þðη̄ ·∇Þ − l

2
=ηðη̄ ·∇Þ

−
l
2
ðη ·∇Þ=̄η − l2

4
=η=̄ηþ l2

2
N

þ l
2
wabcγaηbη̄c

�
Φε ðD12Þ

We note that in the right-hand side of above relations, the
appeared covariant derivative ∇a just acts on the bosonic
field Φ, not the Killing spinor ε.
One can also show

=∇2 ¼ ∇a∇a þ 1

4
γabRabcdMcd ðD13Þ

¼ ∇a∇a −
1

2
l2γabMab ðD14Þ

¼ ∇a∇a − l2ð=η=̄η − NÞ ðD15Þ

D2 ¼ DD ¼ DaDa þ wa
abDb þ

1

4
γabRabcdMcd ðD16Þ

¼ ▪AdS −
1

2
l2γabMab ðD17Þ

¼ ▪AdS − l2½=η=̄η − N − 3� ðD18Þ

where

▪AdS ≔ DaDa þ wa
abDb: ðD19Þ

In addition, we have the following useful commutation
relations

½∂a; ∂b� ¼ Ωab
c∂c ðD20Þ

½∇a;∇b� ¼ Ωab
c∇c þ

1

2
RabcdMcd ðD21Þ

¼ Ωab
c∇c − l2Mab ðD22Þ

½η̄ ·∇; η · ∇� ¼ ∇a∇a þ wa
ab∇b −

1

4
MabRabcdMcd ðD23Þ

¼ □AdS − l2½N2 þ 2N − η2η̄2� ðD24Þ

½∇a;ηb� ¼−wa
bcηc; ½η2;∇b� ¼ 0; ½η̄2;η ·∇� ¼ 2η̄ ·∇;

ðD25Þ

½∇a; η̄b� ¼−wa
bcη̄c; ½η̄2;∇b� ¼ 0; ½η̄ ·∇;η2� ¼ 2η ·∇:

ðD26Þ

½Da; ηb� ¼ −wabcηc; ½Da; η̄b� ¼ −wabcη̄c;

½Da; γb� ¼ −wabcγc: ðD27Þ

½η̄2; η ·D� ¼ 2η̄ ·D; ½η̄ ·D; η2� ¼ 2η ·D;

½=̄η; η ·D� ¼ D; ½η̄ ·D;=η� ¼ D: ðD28Þ

fD;=ηg ¼ 2η ·D; fD; =̄ηg ¼ 2η̄ ·D: ðD29Þ

½Da;Db� ¼ Ωab
cDc þ

1

2
RabcdMcd ðD30Þ

¼ Ωab
cDc − l2Mab ðD31Þ

¼ Ωab
cDc − l2Mab −

1

2
l2γab ðD32Þ

½η̄ ·D; η ·D� ¼ DaDa þ wa
abDb −

1

4
MabRabcdMcd ðD33Þ

¼ ▪AdS þ
1

2
l2MabMab ðD34Þ

¼▪AdSþl2

�
η2η̄2þ1

2
=η=̄η−N2−

5

2
N

�
ðD35Þ

½D; η ·D� ¼ 1

2
γaηbRabcdMcd ¼ −l2

�
=η

�
N þ 3

2

�
− η2=̄η

�
;

ðD36Þ

½η̄ ·D;D� ¼ −
1

2
γaη̄bRabcdMcd ¼ −l2

��
N þ 3

2

�
=̄η − =ηη̄2

�
:

ðD37Þ
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