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We classify radial timelike geodesic motion of the exterior nonextremal Kerr spacetime by performing a
taxonomy of inequivalent root structures of the first-order radial geodesic equation, using a novel compact
notation and by implementing the constraints from polar, time, and azimuthal motion. Four generic root
structures with only simple roots give rise to eight nongeneric root structures when either one root becomes
coincident with the horizon, one root vanishes, or two roots becomes coincident. We derive the explicit
phase space of all such root systems in the basis of energy, angular momentum, and Carter’s constant and
classify whether each corresponding radial geodesic motion is allowed or disallowed from the existence of
polar, time, and azimuthal motion. The classification of radial motion within the ergoregion for both
positive and negative energies leads to six distinguished values of the Kerr angular momentum. The
classification of null radial motion and near-horizon extremal Kerr radial motion are obtained as limiting
cases and compared with the literature. We explicitly parametrize the separatrix describing root systems
with double roots as the union of the following three regions that are described by the same quartic
respectively obtained when (1) the pericenter of bound motion becomes a double root, (2) the eccentricity
of bound motion becomes zero, and (3) the turning point of unbound motion becomes a double root.
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I. INTRODUCTION

The direct observation of gravitational waves from
binary black hole mergers [1] and the prospects of future
observatories, such as LISA [2], the Einstein Telescope [3],
TianQin [4,5], or Taiji [6,7], strongly encourage the
development of more accurate waveform models within
general relativity. In particular, self-force methods [8,9]
model binaries for small (or not that small [10]) mass ratios
in terms of perturbed timelike Kerr geodesics. Besides,
timelike Kerr geodesics are directly relevant for the study of
dark matter spikes around Kerr black holes [11]. The phase
space of negative energy geodesics is also relevant to
estimate the energy released from the ergoregion from the
Penrose process [12,13] in the approximation where the
electromagnetic field and gravitational backreaction can be
neglected. The direct imaging of the supermassive black
hole M87* by the Event Horizon Telescope [14] and future
black hole imaging prospects also encourage the compre-
hensive description of null Kerr geodesics. Furthermore,
recent interest in two-body scattering [15] motivates an
inclusive study of unbounded timelike Kerr geodesics.
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The study of Kerr geodesics has a long history. The Kerr
solution found in 1963 [16] describes the stationary axially
symmetric solution of the vacuum Einstein equations,
describing a spinning black hole. In 1968, Carter discussed
the global structure of the Kerr spacetime [17] and found a
nontrivial Killing tensor, which implies the existence of a
third conserved quantity, the Carter constant Q, along
geodesic orbits besides the energy E, and the (component
along the Kerr axis of the) angular momentum #. In 1972,
Wilkins studied the bound geodesics in Kerr spacetime [18]
and described them in terms of their azimuthal, radial, and
polar frequencies, which were later given in explicit form
by Schmidt [19], Drasco and Hughes [20], and Fujita and
Hikida [21]. In 1973, Bardeen [22] initiated the study of
equatorial timelike geodesics and general null geodesics,
which were further analyzed in [23-32]. Negative energy
geodesics within the ergoregion were studied in [33-35]
where it was established that only trapped orbits (i.e.,
emerging from the white hole and plunging into the black
hole) are allowed. The decoupling of radial and polar
motion was accomplished by Mino, using what is now
called Mino time [36]. The geodesics in the near-horizon
region of high-spin Kerr were analyzed in [37-50]. Part of
the complete separatrix, as defined below, namely the
separatrix between plunging and bounded orbits, was
reduced to a fourth-order polynomial in terms of semilatus
rectum and eccentricity [51,52] and was further described

© 2022 American Physical Society


https://orcid.org/0000-0003-4728-1519
https://orcid.org/0000-0002-5407-123X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.024075&domain=pdf&date_stamp=2022-01-31
https://doi.org/10.1103/PhysRevD.105.024075
https://doi.org/10.1103/PhysRevD.105.024075
https://doi.org/10.1103/PhysRevD.105.024075
https://doi.org/10.1103/PhysRevD.105.024075

GEOFFREY COMPERE, YAN LIU, and JIANG LONG

PHYS. REV. D 105, 024075 (2022)

in [53-55]. Algorithmic codes implementing (a subset of
the) Kerr geodesics are publicly available [56,57].

In the last two years, several novel analytic results on
Kerr geodesics were achieved [47,48,58-69]. Explicitly
real, fully explicit, “initial data-dependent” analytical
solutions, in terms of elliptic functions, were given for
(1) radial and polar motion for timelike bounded orbits [59],
(i) generic (i.e., excluding zero measure sets) polar motion
for null or timelike orbits [47,48], (iii) generic radial motion
for null orbits [60], and (iv) general (i.e., including zero
measure sets) radial near-horizon motion in the high-spin
limit [47,48]. The only missing piece of information, in
order to complete such a state-of-the-art analytical standard
for all Kerr orbits, is the nongeneric polar motion and
general (generic and nongeneric) radial motion for timelike
geodesics, which is the main interest of this paper.

A necessary condition to obtain such analytic formulae
for radial motion is to first classify the possible classes of
radial motion and derive their domain of existence in the
phase space of parameters. In order to describe all geodesic
classes, a relevant basis of the phase space is simply the set
of conserved quantities (E, Q, ¢). The classification of the
roots of the radial potential is nontrivial since its discrimi-
nant is a quintic in Q, a polynomial of degree 10 in Z, and
of degree 12 in E, which admits a priori no analytic
solution in radials. Following different routes, partial
results in this endeavor were recently obtained. Constant
radial motion (i.e., spherical orbits) was comprehensively
analyzed by Teo [67] based on earlier results [58,70-74],
and the resulting phase space was partially implicitly
derived using Q as the main parameter, even though more
information is required to derive the full phase space,
namely the bound on Q implied by the existence of polar
motion for |E| > 1 [17], the bound on ¢ from orbits
threading the ergosphere [33], and the classes of orbits
with a root coincident with the horizon. It was also
independently shown by Stein and Warburton [61] that
the subset of unstable spherical orbits with |[E| < 1 that
describes the separatrix between bounded and plunging
orbits is described by a twelveth-order polynomial in the
semilatus rectum and eccentricity.

Building upon this earlier work, we classify in this paper
the radial motion of timelike geodesics of the exterior
nonextremal Kerr spacetime, and we describe, in particular,
the complete separatrix, i.e., the codimension 1 region in
phase space-containing spherical orbits. We will achieve
this goal by first classifying the roots of the quartic
potential controlling the radial motion as a function of
the conserved geodesic quantities (E, Q,#) for all non-
generic root systems, taking into account the existence of
polar motion, thereby inferring the generic cases as the
codimension 0 domains bounded by the codimension 1
(and codimension 2) nongeneric cases. Second, we will use
the bounds on radial motion implied by the existence of
time and azimuthal motion within the ergoregion to infer

the allowed radial geodesic classes for each generic or
nongeneric root system. We will use the energy E as our
main parameter for our classification, and we will treat both
non-negative and negative energies.

This paper is organized as follows. In Sec. II, we first
review the bound on Carter’s constant Q inferred from the
existence of polar motion, and we derive the bounds on ¢
inferred from the existence of time and azimuthal motion
within the ergoregion for both signs of the energy. In
Sec. III, we introduce a novel convenient notation for
labelling the qualitatively distinct root structures of the
radial geodesic potential. We first derive the list and
properties of root structures in particular subcases: large
E, Q, or ¢ charges, the case where one root coincides with
the outer horizon, the double root case where spherical
orbits occur, the marginal case £ =1 where one root
disappears due to the lowering of the polynomial order of
the radial potential and, finally, the generic case. We
conclude with the null case obtained as a limit of infinite
energy. In Sec. IV, we introduce the position of the
ergosphere and discuss the radial root systems and allowed
radial motion within the ergoregion, first on the equator and
then generically. We also obtain the classification of radial
motion within the near-horizon region of near-extremal
Kerr black holes. In Sec. V, we obtain an explicit para-
metrization of the complete separatrix, and we finally
conclude in Sec. VI. Several useful reviews are relegated
to appendices. In Appendix A, we review the theory of
discriminants of a polynomial. In Appendix B, we review
the classification of geodesic orbits of Schwarzschild in our
notation.

II. BOUNDS ON THE CONSTANTS OF MOTION

The Kerr geodesics are essentially determined by the
radial and polar potentials,

R(r) = (E2 = j2)1 + 2Mp2r + (2 (B> = 1) = Q = )1

+2M((aE - £)* + Q)r —a*Q, (2.1)
V(u) = a*(* = E*)u* = (&(* = E*) + Q + £*)u?
+ 0, (2.2)

with u = cos 8. Here E, ¢, and Q are the conserved energy,
angular momentum, and Carter constant, associated with
the two Killing vectors and the nontrivial Killing tensor; M
and a are the mass and dimensionless spin of the Kerr black
hole; u is the mass of the test object.

The constants of motion (E, Z, Q) are constrained by the
polar motion and, for the orbits entering the ergoregion, by
the time and azimuthal motion within the ergoregion. We
derive these constraints in the following.
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A. Polar motion: Bound on Carter’s constant

The well-known bound on Carter’s constant is
Q > —(aE —¢)*. Let us discuss the stronger bound on
Q imposed by the reality of polar motion in Kerr, a # 0.
Such bound was first discussed in [17,18]. In this section,
we allow the energy E to be of any sign.

The potential V() defined in Eq. (2.2) has the property

V(0) =0, V(1) = -¢2. (2.3)
Therefore, if Q >0, there is always one root u = u,
V(ug) = 0. Then, there is a range of u around u,, for
which motion exists for Q > 0.

In order to discuss Q < 0, we first rewrite the potential as
2

a quadratic in z = u* as
V(z) = Vo = a*(E* = 1?)(z = 20)?, (2.4)
where
1 2+ 0
=5 m , (2.5)
Vo = 0 ; & + %az(E2 —p1?) + 7451?(;—2{;2,):2) . (2.6)

For E?> <y? and ¢ #0, the parabola has positive
curvature, V”(z) > 0 but is negative at both z =0 and

= 1. Therefore, it is negative in the range 0 < z < 1, and
there is no possible motion. The only exception is £ = 0
and u? = 1, for which V =0. The non-negative Carter
constant is k = Q + a’E”. Polar motion on the north or
south pole is therefore allowed for E> < > when £ = 0
and Q > —a’E>.

For E? > y?, the parabola has negative curvature,
V”(z) <0, and its endpoints at z =0, 1 have V <0.
The existence of motion requires that the maximum of
V(z) be non-negative in the range 0 < z < 1. The bound
zg = 1 is reached only for £ =0, for which Q = Q) =
—a*(E* — y?) > —a*E? and V,, > 0. Motion on the north
and south pole is therefore allowed in that range.

For E?>>y? and 7 #0, this implies V, >0 and
0 < zg < 1. The first inequality implies either

0> —<|f| —01\/E2—,uz)2 or

Q§—<|f|+a\/E2—u2)2. (2.7)
The second set of inequalities is equivalent to
—a*(E>—p?) - > < Q < a*(E>—pu?) -2 (2.8)

Now the second condition of (2.7) is incompatible with
(2.8). Therefore, for Q < 0, £ # 0, we can only consider

0> —(It - ay[E — 2. 29)
For E? =%, the potential reduces to V(u)=

—(£* 4 Q)u? + Q. Its roots are u3 = -2, Existence of

0= gt
motion requires 0 < u3 < 1. This is equivalent to either

Q>0 or Q<0 with #=0. For Q >0, the roots are

uy ==+ #: du.. In this case, the orbit librates

between 6, = arccos u,. and 7 — ;. The angular becomes
largest for £ = 0. In this case, 0 < 8 < z. For Q < 0 and
£ =0, we find V(u) = Q(1 — u?) is negative except for
u = +£1. This corresponds to the north pole @ = 0 or 0 = x.
We still have Q > —a?F>.

Therefore, so far, we have the bounds for E> > /2,

—a’E? =0,
0> —(|f] —a/E? —,42)2 0<|f] <aV/E -2,
0 12| > a\/E* — u.

(2.10)

For E? < u?, we have the bounds

—-a’E? ¢ =0,
02> (2.11)
0 ¢ #0.
Now, there is another bound from the definition of Q.
One can easily check that for 6§ # 0, z,

2

'“ﬂz 9), (2.12)

sin

0 = v} + cos? G(az(,uz -E’)+

where vy = ggpd0/dr = £d6/dz is the velocity along
the polar coordinate and X = r> + a’cos>’d. When
0<|E| <u, we find Q >0. This tightens the bound
(2.11) for £ = 0. The equality Q = 0 is only reached for
equatorial geodesics, 6 = 3. When |E| > u, we find the
lower bound

Q> —a*(E* - u?). (2.13)
The equality is asymptotically reached for #Z = 0, vy = 0,
and 0 +— 0, z. For 8 = 0, 7 exactly, V =0, vy = 0, and Q
is strictly unconstrained, but we constrain it as (2.13) by
continuity. This tightens the bound (2.10) for =0
since —a?(E? — p*) > —a’E?. In summary, we have the
bounds
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0
02240

~(1¢1 - av/E = @)’

0<I[E| <p,
E| > p&|t] > a/E? — 2,
|E| > u &0 < |£] < ay/E* — u?.

(2.14)

The lowest bound for |E| > pand 0 < |£| < a\/E* — y? is
only reached for @ constant and |£| = a+/E? — u? sin® 6.
We will refer to these bounds as Q > Q(E, £). For the null

geodesic case y = 0 and # # 0, the bound reduces to the
one stated in Eq. (24) of [60].

B. Time and azimuthal motion: Constraints
from the ergoregion

From now on, we set M = u = 1." Kerr spacetime is
characterized by an ergosphere with radial range

ri 1< rggo(f;a) =1+ V1 —a*cos? 6.

The region between the horizon and the ergosphere is called
the ergoregion. Since 0, is spacelike in the ergosphere,
negative energy E < 0 is allowed within the ergoregion.
This ergoregion leads to constraints on geodesic motion in
the ¢, ¢ directions for both signs of the energy which, in turn,
restrict radial motion. We will derive a complete set of such
constraints in this section. We consider a > O since the
ergoregion disappears when a = 0.

A feature of the ergoregion is that V¥#¢ is past directed
timelike and g,, < 0, which implies that % > 0 and % >0
are strictly inside the ergoregion as reviewed, e.g., in [75].
*
may have fI—T = 0 on the ergosphere. Timelike geodesics are
therefore moving forward in coordinate time ¢ and corotat-
ing along the spin direction of the black hole. This gives the
explicit two conditions valid for any E,

(2.15)

Since =£ can have either sign outside the ergoregion, we

E(r*+a®)—af

at —a*Esin®> 0+ (r* + a?) A >0, (2.16)
E(r* +ad®) —af

—aE >0, 2.17

e ¢ A 20, @217

where A = r? — 2r + a® and r belongs to the region (2.15).
The condition (2.17) is explicitly violated at the ergosphere
for E < 0 butis obeyed for £ > 0. It implies that no motion
with £ < 0 is allowed to reach the ergosphere, i.e., all
negative energy motion takes place strictly within the
ergoregion.

We note that the constraints (2.16) and (2.17) are odd
under the flip (E,?) — —(E,Z). It implies that if one

'"These quantities can be restored by noting that E ~ y,
r~a~M, Q~u*M?, and £ ~uM.

motion is allowed for a given radial range and given values
of (E, ¢), it will be disallowed for the same radial range and
opposite values —(E, £), and vice versa. There is therefore a
central symmetry breaking in the phase space of radial
motion in the (E,?) plane: each radial motion is either
allowed or disallowed for either (E,¢) or —(E, ¢).

Orbits that reach the horizon r — r, have special
properties. Since A — 0, the second term in Egs. (2.16)
or (2.17) dominates. This implies E(r% + a*) — a > 0 or,
equivalently,

¢ <t (E) (2.18)

E
Q.
for any E € R. This bound coincides with the first and
second laws of black hole thermodynamics, 78S =
oM —Q,6J > 0, upon substituting the variations of the
parameters of the black hole with the plunging probe
energy and angular momentum oM = E and oJ =7.
The thermodynamic bound in Eq. (2.18) therefore applies
for any plunging orbit. Moreover, by contraposition, if an
orbit has # > ¢ (E), it cannot reach the horizon. In
particular, positive energy trapped orbits with £ > 7, (E)
are disallowed.

Negative energy geodesics have necessarily ¢ < 0.
Indeed, using f:gt¢u’+g¢¢u¢, E = —g,u' — g,¢u‘f’ <0,
9pp9u=r

we find Z < u' < 0. Since sin? @ < 1, we then have

—a’E > —a’Esin? @ and £ > £/ sin? 0. Therefore, for any
negative energy orbit, the bounds in Egs. (2.16) and (2.17)
imply the same bounds at the equator 8 = /2. In turn, the
inequalities In Egs. (2.16) and (2.17) evaluated at 6 = /2
are equivalent for £ < 0 to

2aF
< .
“2-r

(2.19)

Since r, < r < 2, itimplies, in particular, for all orbits with
E < 0O that

24E  2¢aE E
az 4= _ = (2.20)
2—r"2-r, Q

¢ <
The thermodynamic bound in Eq. (2.18) is therefore
obeyed for all orbits with E < 0. The upper bound 7 =
¢ (E) corresponds to root structures with one root at the
horizon, see Sec. III B.
Further detailed constraints on negative energy geodesics
will be discussed in Sec. IV B.
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III. CLASSIFICATION OF RADIAL GEODESIC
MOTION IN KERR

In this section, we classify the categories of radial motion
of Kerr geodesics by classifying the distinct root structures
of the quartic radial potential R(r) defined in Eq. (2.1). We
will concentrate, for the sake of simplicity, on E >0
geodesics. The negative energy geodesics will be studied
in detail in Sec. IV. For our purposes, we introduce the
following convenient notation, see Table 1. The four
symbols |, +, —, and ) label, respectively, the black hole
outer horizon, a region where motion is allowed (R > 0), a
region where motion is disallowed (R < 0), and radial
infinity. The four symbols e, ee, eee, and + label, respec-
tively, the distinct root degeneracies: simple, double, or
triple root, and root touching the outer horizon. The triple
root is physically associated with the Innermost Stable
Spherical Orbit (ISSO).

Because of the bounds in Egs. (2.16) and (2.17), root
structures which admit a positive R(r) > 0 region might be
disallowed. In that case, we will denote the + and e
symbols within the root structure as # and ¢. In this
section, the disallowed region will be assigned to £ > 0
orbits, see Sec. IV for the case of E < 0 orbits.

Our final classification to be proven in this section is
given in Tables IT and III. Generic root structures occur in
codimension O regions of phase space. Imposing one
constraint leads to the root structures of codimension 1,

TABLE 1. Notations for the root structures.

Notation Denotes

| Outer horizon
+ Allowed region
— Disallowed region
) Radial infinity
Notation Denotes

° Simple roots (turning points)
L) Double roots (spherical orbits)
oo0 Triple roots (ISSO)

+ Roots touching the horizon
TABLE II. The two generic and two nongeneric inequivalent

root structures and their associated six distinct geodesic classes of
E > 1 timelike/null geodesics outside the horizon (of which,
three are continuous with 0 < E < 1 geodesic classes).

Number of
E > 1 or Null Root structure geodesic classes
Generic |4+) 1
[to—ot) 2
Codimension 1 ’ + oo _|_> 3
1

b o)

TABLE III. The two generic and six nongeneric inequivalent
root structures and their associated eight distinct geodesic classes
of 0 < E < 1 timelike geodesics outside the horizon (of which,
three are continuous with £ > 1 geodesic classes).

Number of
0<E<I1 Root structure geodesic classes
Generic |+ o) 1

| + e —0+ o —> 2

Codimension 1 + —> 0
¢ ) !

¢ —oteo—) 2

o te ) ;

Codimension 2 *— o0 ) 1
[+ oo ) :

while imposing two constraints leads to the root structures
of codimension 2. Each root structure may correspond to
distinct geodesic classes: for each allowed radial region of
motion + there is a corresponding class (which can be
further refined by the initial sign of the radial velocity), and
for each double or triple root there are, in addition,
spherical orbits. Simple roots correspond to turning points
of motion where the velocity vanishes but not the accel-
eration. Double or triple roots correspond to either spherical
orbits or “whirling” orbits that asymptotically approach or
leave the corresponding radial location. We define a generic
geodesic class as a geodesic class where both endpoints are
either a simple root, the horizon, or infinity. A nongeneric
geodesic class is defined as a geodesic class such that at
least one endpoint differs from a simple root, the horizon,
or infinity.

In Sec. Il A, we discuss the root structures with large
charges. In Secs. III B and III D, we investigate the two
special cases where the orbits touch the horizon with zero
velocity and the so-called marginal orbits with £ = 1. In
Sec. IIIE, we finally classify the generic nonmarginal
orbits in the phase space, taking into account the bound on
Carter’s constant.

A. Root structures for large charges

In this section, we detail the root structure of Kerr orbits
for large values of either the angular momentum ¢, Carter’s
constant Q, or the energy E.

1. Large € limit

In the limit £ — oo, we consider the following cases:
(1) E > 1. There are four real roots:

14 Qa?

(=
4aE 4
r3:2—7—|—0(5_2), r4=ﬁ+0(fo),

024075-5
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which obey r| <0 < r, <r, <r; <ry This gives
the root structure |+o — e +).
(2) E = 1. There are three real roots:

Qa? _
ry _ﬁ—F 0(f 3),
4
r=2— 24 0(2),
4
LﬂZ
r3 —74-0({0), (31)

which obey 0 < r; < r, < r, < r;. This gives the
root structure |+ — o ).
|

(4af = 8)(1 = V1 —a?) — a*(¢* — 4)

(3) 0 < E < 1. There are only two real roots:

— -3
r 2f2 ""_0( )’
4E
ry=2— 7“ L o), (3.2)

which obey 0 < r| < r, < r,. This gives the root
structure |+ o —).

2. Large Q limit

In large Q limit, all the roots are real except for the bound
orbits £ < 1, where there are only two real roots.
(1) E=1,0<a < 1. The roots are

=1-V1-d 0(0™).
" “r Wi-a0 rowes
(8 —4at)(1 + V1 —a?) +a*(¢* - 4) B
=1+Vl-a 0(07),
=1+ a’ + i—2o +0(07)
r3 = % +0(Q°), (3.3)

which obey 0 < r; <r, <r,<r3; <oo for £+#7¢,(E).

This gives the root structure |[+e — e +) for £ # £ (E).

Note the solution is invalid for ¢ = 1, which is the extreme

Kerr black hole. It has another scaling for extreme Kerr.
(2) E>1,0<a < 1. The four roots are

VO
71:—\/EQ—_1+0(Q0),
—4a?\E2 — 22
r2:r_—(8r_ 4a ;E 1_4;12réEf—|—a 4 +o(0™).
— 42 E2— 22
r3:r+—|—(8r+ 4a ;E 1_452r5Ef+a 4 +0(0),
=Y o) 3:4)

which obey —oco<r|<0<r<r,<r;<ry<oo.
We have r; =r, for £ =7¢_(E) as defined in
(3.9). This gives the root structure |+e — e-)

for £/ # ¢, (E) and ¢ — e +) for £ =7 (E).
(3) 0 < E < 1,0 < a < 1. There are only two real roots,

8r_—4a?)E*—4ar_Ef+a*¢?
(8r_—4a*) ar_E¢+a Lo

r :r_— Q_2 £
I Wisaio (07™)
(8r, —4a®)E*—dar E¢+a*¢?

r2=r++
2V1-a*Q
+0(07?), (35)

whichobey 0 < ry <r, <ry < oo. Equality r, = r
occurs for £ =7 (E) as defined in (2.18). This
gives the root structure |+ @ —) for generic ¢ and the
root structure ¢ —) for # = £, (E).
The large Q root structure is consistent with the analysis of
Sec. Il B and, in particular, with Fig. 2.

3. Large E limit

In large E limit, there are only two real roots. When
0 < a < 1, the real roots are

=323a2 4+ 313(a(=9 + V3V2T + *))*?

"o 3(a*(=9 +V3V2T +a?))'?
+O(E™),
_9 -3
ry =5+ O(E?), (3.6)

which obey —co < r; <0 < ry < 1. Instead when a = 0,
the real roots are

r==2"3(2+ Q) PE? P+ O(E™P), =0, (37)

which obey —o0 < r; < r, = 0. In both cases, this gives
the root structure |+).

B. Orbital classes with one root at the horizon

For Schwarzschild, R(r,) = 16E? > 0. Motion is there-
fore generically (E # 0) allowed just outside the horizon.
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A root touches the horizon if and only if £ = 0. In that case,
R(r) = —r(r —2)(r* + k) with k > 0: the horizon root is
always simple, and there is no other root outside the
horizon. Since for E = 0, R'(r,.) < 0, motion is disallowed
just outside the horizon. We denote the root structure as
¢ —). There is therefore no allowed motion for E = 0. For
E = 0, the root structure is therefore |+ o —).

For generic Kerr with 0 < a < 1, we have at the horizon

R(r.) = (af —=2Er,.)*> > 0. (3.8)
There is a root touching the horizon if and only if
E  2Er
r=—="t 3.9
o, 4 (3.9)

Note that this condition is independent of Q. Motion is
generically (¢ # ¢, (E)) allowed just outside the horizon.
The horizon root is a double root if and only if, moreover,

(2+r (B> 1))
r.—2 ’

2
0=0.(E)="

(3.10)

Since 7, (E) > aV E* — 1, the positivity bound is Q > 0
for £ = ¢, (E). We readily obtain that O, (E) < 0. We
conclude that the double horizon root lies outside the phase
space. After checking the sign of %R’ (r,), we conclude
that for £ = 7, (E) and Q > Q. (E) the root structure takes
the form ¢ — - - - ). We do not discuss Q < Q, (E) since it
is irrelevant. For further analysis, it is useful to note that the
horizon root is a triple root if, moreover,

V1-a? \/1—_1
- = —7r N
1+ V 2

1—a

(3.11)

with 0 < E, < 1/+/2. This horizon triple root lies outside
the phase space since it was already the case for the horizon
double root. The horizon root cannot be a quadrupole
root. We conclude that for £ = ¢ (E) and Q > 0 there is a
single root at the horizon without any further horizon-
touching root.

Let us now study the occurrence of double roots outside
the horizon. For that purpose we impose Eq. (3.9) and
consider the reduced polynomial Y (r) = R(r)/(r—ry). It
is cubic for E # 1 and quadratic for £ = 1. Double roots
occur for Y(r,) =7Y'(r,) =0. There is a single real
solution branch given by

Ay =22 4+ 287+ (r, = 2))

A PO | = o P
(3.12)
E=FE(r,)= \/Z(r*+r+—2) , (3.13)

Ve +r) 4+ (r =3)r.+ry)

for all r, <r, < 0. Since R"(r,) <0, the double root
corresponds to stable spherical orbits, here with the super-
script °. Of course for r, = r,, one recovers the triple root
at the horizon with Q = Q%(r,) = Q,(E,.) <0 and E =
E*(r.) = E,, which lies outside the phase space. The
function E*(r,) is monotonously increasing along r,. We
call the inverse function r,(E) and Q*(E) = Q*(r.(E)). For
ry <r, <oo, we have E, < E5(r,) < 1. The positivity
bound Q%(r,) > 0 is obeyed for rM" < r, < oo, where

rmin:”+(”++2\/r+_1)

min —
2—-r,

(3.14)

The function Q%(r,) is monotonic between Q°(r™") = 0
and Q%(+00) = +oo0. We denote the critical energy

ro+2yr, =1
\/r+(r++4\/r+—1+2)

This function of a is plotted on Fig. 1. It obeys £, < E, for
al0<a<l.

We, therefore, obtain that for £ = ¢, (E), Q = Q°(E)
with E, < E < 1, spherical orbits exist in the phase space
with root structure ¢ — e —). For # = £, (E), Q < Q%(E),
the root structure becomes + — o} o —>. Since there is no
other double root outside the horizon and no horizon-
touching root, the root structurc ¢ — @ + @ —) is valid
in the entire range 0< Q < Q%(E). For ¢ =7¢_(E),
0 2 O°(E), the root structure becomes ¢ —). Again, since
there are no further double roots and no horizon-touching
root, this root structure is valid for the entire range
0 > max{0, Q°(E)}. For # = ¢, (E) and E > 1 and any
QO > 0, there is a single root structure since the roots never
cross in the exterior region r, < r < co and never become
double. After explicit evaluation for a particular case, we find
the root structure ¢ — @ +).

E, = ES(rin) = (3.15)

— Ersco-

FIG. 1. Energy E. (corresponding to the existence of a horizon
touching root and a stable double root on the equatorial plane),
prograde ISCO energy Egco+ and retrograde ISCO energy
Eisco- as a function of a. The critical rotation a, is defined at
the intersection between Ejgco- and E..
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Q Q=Q(E)
o0
o
iy £=1,(E)
0 : E
0
Q
o0
? |+o—o+)
y £50.(E)
+
0 E
0
Q )
%0
T )
. 02 0,.(E)
i+
0 E
0 E, E 1

FIG. 2. Phase space of root structures that admit at least one
root at or close to the horizon and that obey the positivity bounds.

For? = ¢, (E)or¢ < ¢ (E) [£ close to but not equal to
¢ (E)], the root at the horizon moves towards positive
radius, which allows orbits close to the horizon. The phase
space of root structures that admit at least one root at or
close to the horizon is summarized on Fig. 2.

We finally note that there is a special value

a. ~0.8109337526 (3.16)

of a such that the energy E . coincides with the energy Ejgco-
at the retrograde innermost stable circular orbit (ISCO) as
defined in (3.28) in Sec. III C. For that special value of @ and
the corresponding special energy E = E,. = Egco- &
0.9598057008, both orbit classes ¢ — ee —) and
| + eee —) are equatorial (Q = 0) orbit classes (with a
distinct angular momentum). In the Schwarzschild and
extreme Kerr limit, the energy Ejgco: and E. are shown
in Table IV. When a = 0, the two ISCO branches merge as
they should for the Schwarzschild black hole.

TABLE IV. Energy E. and Egco+ in the Schwarzschild and
extreme Kerr limit.

E. Escot Ersco-
a=0 1 2v2 2v2
i ¥ 3
a=1 7 7 Wi

C. Spherical orbits

The timelike spherical orbits of Kerr, defined from
R(r) = R'(r) =0, were elegantly summarized by Teo
[67] based on earlier results [58,70-74]. There are four
classes of solutions (E;,¢;), i = a',b’,c’,d’. The first two
are given by

P(r=2) - a(aQ F v/T(0.1)

Ea’, /(Q9 I’) = ’
’ rz\/r3(r—3)—2a(aQ:F VY(0, 7))
(3.17)
£on(0.1) = — 2ar® + (r* + a®)(aQ F /Y(0, 1)) ’
’ rz\/r3(r—3)—2a(aQ:F VY(0,r))
(3.18)
where
Y(Q,r)=r —0r(r-3)+a*Q>  (3.19)

The third and fourth are given by (Eyy,lvq)=
—(Ey v,y ). The first and second classes continuously
join. They have positive energy in the range of parameters
where they exist. The range of existence is dictated by the
radii of the prograde and retrograde photon orbits, respec-
tively, r; and r,,

ri,=2 [1 + cos <§arccos (F a))} . (3.20)

They lie in the range 1 < r; < 3 < r, <4 and are the two
largest roots of E=r’—6r> +9r — 4a>. The range of
existence is also determined by

2

T 24

0,(r) (r(r=3) = VrE). (3.21)
In the nonextremal case, the solution a’ exists for r > r;: for
any 0 < Q0 < oo between r; <r<r, but for 0 < Q <
O, (r) for r > r,. The solution b’ exists for r > r, in the
range 0 < Q < Q(r). In the extremal case a = 1, the
Boyer-Linquist radius does not resolve the near-horizon
region and does not lead to a rightful parametrization at
r =1, see [67] for a discussion.

1. Prograde and retrograde orbits

The solution &’ is either prograde or retrograde while the
solution b’ is retrograde. The subset of polar orbits (£ = 0)
within the solution a’ set are given by Q = Qy(r)
where

(A2 +4r2(r-1))

Qo(r) = (r?+a®)(rA = (r* —d®))’

(3.22)
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The angular momentum is £ > 0 for Q < Qy(r), while
¢ <0 for Q > Qy(r). In the range r > r,, where Q;(r) is
real, obeys Q¢ (r) < Q(r). We have Qy(r) > 0 for r > ry,

where
-a’ 1 1-a®
ro=1+42 3a cos(garccos(?’g_aaz) 3_3,02)).
(3.23)
2. Marginally stable spherical orbits
The marginally stable spherical orbits R(r) = R'(r) =
R"(r) =0 obey Q = Q,,,(r), where
PR2I(VA = 27)? — 4a?
Qps(r) == K Vi) —da] (3.24)

( 3/2 _

Vi-VB)

In the range r > r,, where Q;(r) is real, Q,,(r) < Q;(r).
The locus where Q,,,(r) = Q,(r) is r = rj},,, where

o7 143 + 2004
Fis = {4 +2COS(3 arccos(T>>]. (3.25)

When Q = 0, the prograde and retrograde marginally

stable orbits are located at r = r;.,, where

re =342, F VB -2)3+2Z, +22,),
Zi=1+(1-a®)"P[(1+a)P+(1-a)/3,

E\/3612+Z%.

The class a’ of marginally stable orbits lie in the range
rihs < <. Stability occurs for 0 < Q < Q,,,(r) and
unstability for Q,,,(r) < Q < oo. The class b’ of margin-
ally stable orbits smoothly joins in the next range
rhs <1 <. Unstability occurs for 0 < Q < Q,,,(r)
and stability for Q,,,(r) < Q < Q(r). The energy of the
prograde and retrograde ISCO (Q = 0) orbits are respec-
tively given by

(3.26)

Eiscor = Ey(0,754). (3.27)
Ersco- = Ey(0,75)- (3.28)
3. Marginally bound spherical orbits
The marginally bound spherical orbits R(r) = R'(r) =0
and E2 = 1 obey Q = Q,,,(r), where
r2r —2)2 — 42
Qp(r)=— r(vr=-2) ] (3.29)

(=1

When Q =0, the prograde and retrograde marginally
bound circular orbits lie at r = r}, = (141 —a)? and
r=rp,=0+VI+a)

In the range r>r,, where Q;(r) 1is real,

me( ) < Ql(r)' Equality me(r) = Ql(r) occurs  at
r = r,, Where r, is the largest real root of the quintic

22— A? = 0. Note that the largest root flips only at
a=gn5V12977 -

The class a’ of marginally bound orbits lie in the range
ri, <r<r:,. Bound orbits have 0 < Q < Q,,,(r), and
unbound spherical orbits have Q,,,(r) < Q < oo. The
class b’ of marginally bound orbits lie in the range
ryp, <r<r,,. Unbound spherical orbits occur for
0<0<0,y,(r), and bound spherical orbits occur

for Q,.,(r) < @ < Q4(r).

83. It obeys r, <rt, <r-

mb = "mb = "mb*

D. Marginal orbits

Marginal orbits are by definition orbits such that £ = 1.
The radial potential is

31 2Y,2 2y, _ @0
R(r)—2<r —§(Q+f)r +(Q+ (¢ —a) )r—T>

(3.30)

The horizon is located at r, =1+ V1 —a? Since
R(o0) > 0, the root structure always takes the form

|---4). The potential has the cubic discriminant
Ay = —108(‘1’ ) where
1
=0+ (f-a) -5 Q@+ (3.31)
4= o5 0+ )+ (Q+P)(Q+ (¢ -aP)
' 108 6
) Qaz. (3.32)

1. Double root structure

Double roots r, (where R(r,) = R'(r,) =0 or A; = 0)
occur for two solution branches denoted as a, b (a is
associated with the upper sign):

Vz(az - (\/Zi 2)27‘*)

Q= Q,(r.) = INERY (3.33)
_a2:t2ri/2—|—r£
= fa’b(r*) = Q(T\/Z) (334)

These branches exist for the range r, <r, < co. The
branches intersect in the exterior region only at the horizon,
2 4

where fa.b(r+) = %9 Qa,b(r+> = 2(2 + ry — r+) <.
Outside the horizon we have Q,(r,) < Qy(r.). In terms
(T2,

e
each solution branch. In both cases, this root is below 7
and therefore irrelevant to the motion. The root structure is

of the double root r,, the third real root is
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therefore given for both these branches as | + ee +) for

r.>r, and d +) for r, = r,.
Orbits of either branch belong to the phase space only if
the bound Q,}, > 0 is obeyed. We have ¢, (r,) > 0. Now

Q,(r,) >0 only in the range 0 <r, <2+ a—2v1+aq,
which lies below the horizon. Such solution is then
disallowed in the exterior region. With a notation that will
match the one of Sec. III E, we define

AV=2440+4+2V/1+a,

P =2-a+2/1—a, (3.35)

with r, < rg.z) <4< rgl) for 0 < a < 1. For the branch b,

Oy(r.) = Owithr, > r, issatisfied for rg ) < r, < r(c ) The
root structure + —i—> is therefore disallowed. We have

Oy (re ( ’2)) = 0. One can check that #},(r, ) is a monotonically
decreasing function in the range rg ) < r* < r(c ) . It admits an

inverse r,(¢). At the endpoints Qb(rc ) = Qb(rgl)) =0,
and we have fb(r(cz)) =2(14++V1-a), fb(rgl)) _

—2(1 4+ +/1 4+ a). The maximum occurs at r, = 4, where
0,(4) = 16 and £,(4) = —a.

Since R”(r,) > 0, spherical orbits are unstable. We
define the function Q"(¢) = Qy(r.(¢)). For Q = Q"(¢),
the root structure is | 4 ee +). The root structure for
distinct values of Q is given on Fig. 3.

2. General root structure

Since A; = —4a® for # = Q =0, the double root
becomes complex for Q < Q"(¢) (i.e., the root structure
is |4+)) while there are three distinct real roots for
Q0 > Q"(?) (i.e., the root structure is |+ e — ®+) which
can be read from large Q expansion).

[#6-e)

b=ot)

0 14

o,

0
Forbidden

FIG. 3. Root structures of marginal orbits E = 1.

The root structure changes when one root touches the
horizon, which occurs at £ = 2% as derived in Sec. III B.

We have 2, (rt)) < % Therefore the curve 0= 0"?)

does not intersect the line # = 2=, For # > 22, one also has
the root structure |+ e — 0—|—> Now, trapped orbits are
disallowed for positive energy orbits with £ > ¢, (E), see
Sec. IIB. The root structure is therefore |f# — ®+).
The large ¢ and large Q limit are in agreement with the
analysis of Sec. III A. We conclude that the phase space is
complete for E = 1. The classification is depicted in
Fig. 3.

E. Generic nonmarginal orbits

The radial potential (2.1) is quartic in r for E # 1. The
root structure for £ > 1 takes the form |- --+), while for
E < 1 it takes the form | - - - =). For £ = £ (E) it takes the
form ¢ — ---), while for £ # £, (E) it takes the form
| + - --). The discriminant takes the form

16(1 — a?)
(E*—1)°
+by(¢,E)Q* + b (£,E)Q + by(Z, E).

Ay = Q>+ by(¢,E)Q* + bs3(¢,E) Q3

(3.36)

It is a quintic function of Q for a nonextremal black hole.

1. Double root structure

The general solution of double roots at » = r, has been
solved in [67] by expressing E and ¢ as a function of r, and
Q as we review in Sec. III C. However, the analysis of the
positivity bound on Q is not straightforward for E > 1.
Here, we will solve for the double roots by expressing Q
and Z as a function of r, and E.

Branches a and b.—The two branches of the solution are (a
is the upper sign)

Q= Q.(E,T.)
r*—12( P 432 4 (- 4)r, +a?
ro(1— E2)(r — 412 4 5r. — 2a2)
F 2EA(r)\Jr. (1 + (B2 - E-1)r)), (3.37)
£ =to(E.r.)
EE(rz—a a(:*\irl) (E*=1)r, +1)’ (3.38)

where A(r) = r? —2r+a®. These solutions formally
match with Eqgs. (3.33) and (3.34) for £ = 1. The solution
is not valid for r, = 1, which coincides with the near
horizon extremal kerr (NHEK) region at extremality. Since
we are discussing a < 1, the solutions are always real in the
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exterior region as long as E > E,(r,), where E (r,) =
/1 = r;!is the energy at which the two branches meet. We
have E_ < E.u(r,) <1, where E, was defined in
Eq. (3.11). Alternatively, the two branches a, b meet at
r. = raw(E) = (1 — E?>)7'. For E > 1, the solutions a, b
both exist for r, < r, < 0. For E, < E < 1, both solu-
tions exist in the range r, <r, < ru(E). For E <1,
Q.b(E. raxp(E)) <0, which violates the bound in
Eq. (2.14). Therefore, the two branches do not meet inside
the phase space for E<1. For E>1, ry.(E)<0 and,
therefore, the branches meet outside the phase space as well.

Analysis  of Q.p > 0.—~We have |£,,]>aVE?—1.
Therefore, the positivity bound (2.14) for both branches
a, bis O,y > 0. The roots of Q,;, might only occur at
(upper sign corresponds to a)

(r.=2)/r.—a

(1

EV(r) =7 . (339

a,b( ) ri/4\/(r*—3)\/ﬁ—2a ( )
(r,=2)/r.+a

EQ(r) =7 7 (3.40)

V(. =3)r +2a

We denote by ' the only root of (r. —3)\/T + 2a above

the horizon, by r? the only root of (r,—3),/7, —2a
above the horizon. Explicitly,

2 arcsi 2 arcsi
rg) =24cos <4arc3sm a) —/3sin (_arc;ma) , (3.41)

2arcsi 2arcsi
r? =2+ cos <arc3sma> +/3sin (arc;ma) . (342)

We have r, < PV < < 4for0 < a < 1. Note that Eglg

is a real root in the range riz) fg

. 1
root in the range r5< ) < r, < oo.

Let us now analyze the positivity of Q in the relevant
ranges of r,. In the range r, <r, < ril), there is no real
root for Q,, and Q,, is negative, Q,}, < 0. In the range

) < r, < riz), Ez(ilg is complex, but Egzg is real. We have

Ef) < 0, while Egz) > 0. In the entire range Ef) <0<E,
we have Q, < 0. For branch b, Qy > 0 only for £ > Eéz).

Finally, in the range rS}) 3,152)

<r, < oo,while E" is areal

1
X

< r, < 00, both roots E are
real for each branch. We find E;(il’z) < 0. Then, in the entire
range Egl’z) <0< E, we find O, <0. Instead, we have
0< Ef) < E,(Jl), and we find that Q, > 0 in the range
EY <E<E.

We conclude that the branch a lies outside the phase
space and we, therefore, discard it. In the range EE,Z) <E,

(1)

branch b is allowed for r; 562)

<r,<ry. In the range

Elgz) <EXZ Elgl), branch b is allowed for r'” < r, < oo.
The final allowed range is therefore the union of the regions

Wer<r? & EY<E (3.43)

and

P <r <o & E}(Jz) <EXZ Egl). (3.44)

Decomposition of the region Qn, >0 for E>1 and
E < 1.—The slicing of the allowed region with fixed
energy E will be performed on Fig. 5. As a preparation,
let us derive the allowed region Q > Ofor £ > land E < 1.

Let us denote r£1’2>

horizon. We have

as the only root of Eﬁll) — 1 above the

M =24a+2/1+a (3.45)
P =2-a+2V1-a. (3.46)

This definition agrees with (3.35). We have Eg) > 1 for

rf) <r,< rﬁl), while Ef) > 1 for ril) <r,< r£.2>. The

four special functions ri?) , rﬁll) of a are plotted on

Fig. 4. There is a single a where there is an intersection

of two such functions. We denote a. =~ 0.313708, the

critical a such that rsﬁz) = rg.z). For 0 <a < a,, we have

r&l) < rg) < r£2> < rgl), while for a. <a <1, we have

rQ) < r£2> < r,@ < r&”.
From now on, we discard branch a and drop the labels b
in all quantities. Instead of Egs. (3.39) and (3.40), we now

denote

o0

FIG. 4. Several critical radii of interest for the analysis of O > 0
in the presence of double roots.
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* _2 *
EN(r,) = 3/4(r Wrime (3.47)
r"\/(r. =3)\/r, = 2a
* _2 *
EQ(r,) = 3/4(r Wrhta g4
r"\/(r. = 3)\/rs +2a
Finally, for £ < 1 the only allowed range is
PP <r <0&E® <E<min(1,ED).  (3.49)

For E > 1, the range such that O > 0 is

<r <Y &E> max(1, E?)), (3.50)
together with
PP <r <V &max(1L,LE?)<E<EV.  (351)

For r, — oo, both E(") and E) approach 1 from below.

Additional simple roots.—After imposing Eqgs. (3.37) and
(3.38) (for the branch b), the residual potential Y(r) =
R(r)/(r —r,)? is quadratic in r. Its discriminant is quartic
in E and vanishes for

r(r,=2)(r2+r,— 1) +a*(r, — 1)2r, + 1) +a* £2/—(1 = a®)r.,A(r,)
E=+ YRNPAV) 2 ’
(rs +a°)° —4r:

which are always complex numbers for r, > r, since
(1 —a®)r,A(r,) > 0. Since the discriminant is positive for
any particular choice of parameters with r, > r., it implies
that the two residual roots are always real for r, > r,. In
the large Q limit, one of these roots is always below the
horizon and the other one, which we will call r,, is always
above the horizon or at the horizon in the special case
¢ =1¢,(E). Since the horizon touching only occurs at
|

¢ = ¢ (E) as studied in Sec. III B and, in particular, does
not occur at specific Q, we deduce that the root structure is
general: only one additional root r; is above the horizon for
¢#¢,(E), and it coincides with the horizon for
¢ =¢ (E). The separatrix between the position of the
roots, ry, < r, or ry > r,, is determined by the triple root
ry = r,, which will be analyzed below.

Triple roots (ISSO).—Triple roots occur for

4_ 123 2 _ 2 2 32
E = Eone(r.) El VT (4rd =15 +21r; = (10 4+ 3a°)r, + 3a”) + (A(r,)) ’ (3.52)
2 ro(r =3r2 4+ 3r, — a?)
4 2.2 3/2 _642r. —3/4 3
£ = FRE(r ) = ERe(r) a* + 6a*r? tZ(r*A(r*))z 6a*r, —3rt +2r3 ’ (3.53)
a +ar,(—4r; +9r, — 6)
22,4 _ 2.3 _12,5/2 3/2 6 _ 2,5 4
0 — Q) = 3a°ri —a rz* 23r* (A(r))*+1r2=3r 4+ 6r; (3.54)
da*(a* = r.((r, =3)r. +3))

There are no quadrupole roots. The argument of the square
root is positive in the exterior region r, > r, . The function
EUP js monotonically increasing along r, and asymptotes
to 1 as r, — oo. For E < 1, the positivity bound is Q > 0.
The triple root is physically associated with the ISSO. It
belongs to the allowed range in Eq. (3.49) as long as
E? < Erirle < E(D - which amounts to r™" < r, < pmax
where r™" is the only radius above r, such that
EviPle — E(?)and 7™ is the only radius above r, such
that EWPle — E(D We have r2) < pmin < pmax_Since 0=0
and £ >0 at E = E® (™), the critical radius r™" is
nothing else than the prograde ISCO radius rigeg: = ™.
Since Q=0 and # <0 at E = EW (™), the critical

[
radius ™ is nothing else than the retrograde ISCO radius
risco- = ™. We denote Eigco = E® (risco+ )s Eisco- =
EW(rgco-). The standard expressions for rgeo: are
recalled in Sec. 111 C.

In the range i) < r, < oo, the function E™PE(r,) is
monotonically increasing. We denote its inverse as
risso(E) = P (E). In the allowed range riscor <
risso(E) < risco-» the root system is finally | + eee —).
It describes the ISSO as well as plunging orbits.

Double roots with ¢ = 0.—Branch b has ¢, (r,) = 0 for

A(r)/rs

— g0 =
E=E (r*)_\/r§+a2\/r2—3r$+a2r*+a2

. (3.55)
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(0)

Here r. ©)

< r,, where r,’ is the real root of r3 —3r2 +

a’r, + a* above the horizon. The function A0

monotonically decreasing from A =3fora=0tor” =

1++/2 for a = 1. The condition 1+ (E2 —1)r, >0 is
precisely rio) < r.. The phase space therefore contains the
branch ¢ =0, E=E9(r,), Q=Qy(EV(r,).r,)=

QSFO)(r*) for r¥ < r, < oo, where

of a is

r2(r} +2a°r,(r, = 2) +a*)
(r+a)(rl-3ritd’r. +a?)

0 (r.) = (3.56)

There is a radius r, = 7\’ such that EP(r,) = EO)(r,).

The value of r£0> could be found by searching the solution

£ (r, ) = 0 between rigco, and rigeo-. It turns out that

r s the unique real solution of the equation

1o —6r +3a*r* +4a*r +3a*r* —6a*r+a® =0, (3.57)

which is larger than r_ . It is monotonically decreasing from

ra=0)=6t ra=1)=14+V3+3+2V3.

Structure of double roots.—We can now deduce the root
structure of the roots that contain a double root as follows.
Only branch b exists in the phase space. Figure 5 shows the
allowed region for the double and triple roots. When E < 1,
the branch E®) denotes the energy of the inner unstable
prograde circular orbits (iUCO™), whose locations are

i riugo+ Trsco+

OO Ol

i Touco- :TISCO-

denoted as r;yco+ in the region rg.z) < riyco+ < rsco+»
and the energy of the outer stable prograde circular orbits
(0SCO™), whose locations are denoted as r,gco+ in the
region riscot < Foscot < 0. The branch EMV) denotes the
energy of the inner stable retrograde circular orbits (iSCO™),
whose locations are denoted as r;gco- in the region
rsco- < Fisco- < o0, and the energy of the outer unstable

retrograde circular orbits (oUCO™), whose locations are

. . 1
denoted by r,yco- in the region rg) < royyco- < Msco--

When E > 1, the branch E(!) denotes the energy of
oUCO™ in the region r&z) < Trouco- < rgl), while the

branch E®) denotes the energy of iUCO™" in the region

PV < rivco+ < r£2’. We discuss the structure according to

the energy E (which intersects as straight lines the allowed
region of Fig. 5) as follows:
(i) For 0 < E < Eigco+, there is no double root. By
continuity with the large Q limit, the root structure is
|+ e—) for £ # ¢, (E) and ¢ —) for £ = ¢ (E).
(ii) For Egco+ < E < Eisco-, Op(E, r,) is non-negative
for riyco+ < re < ryosco+, and it vanishes at r;pco+
and r,5co+. The double root r, becomes a triple root
if and only if r, = rgso(E) with root structure
| 4 oo —).
For r, in the range riyco+ < r, < rigso(E), the
root structure is | + ee + @ —). The double root r,
corresponds to unstable circular orbits since
R"(r,) > 0. The angular momentum is monoto-

i ToSCO+
10 : 12 14
T

FIG. 5. Functions E®1?)(r,) and E"P(r,) depicted for a = 1/2 without loss of generality. The double roots are allowed both in the
orange region (retrograde orbits: £ < 0) and the yellow region (prograde orbits: £ > 0). The orbits corresponding to triple roots exist
(i.e., obey the positivity bound) only in the interval rgcor < 7, < rigco- O Eigcor < E < Eigco-- We also depicted the four roots

rivco+ < rouco- < Fisco- < ¥ysco+ for a SpeCiﬁC EISCO’ <E<]1.
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nously decreasing for ryco+ < r, < rigso(E). In
this region, one can define a unique inverse solution
PU(¢,E) of ¢ = ¢,(E, r,) at fixed E. The function
Q'(E,¢) is defined by substituting the inverse
solution #(#, E) into Q,(E,r,),
Q'(E.€) = Q)(E. (£, E)).  (3.58)
For r, in the range rigso(E) < r, < rosco+» the
root structure is | 4 e» + e —). The double root r,
corresponds to stable circular orbits since
R’(r,) <0. The angular momentum is monoto-
nously increasing for riggo(E) < 7. < rosco+ In
this region, one can define another unique inverse
solution 75(¢, E) for £ = ¢,(E, r,) at fixed E. The
function Q°(E,7) is defined by substituting the
inverse function 7(¢, E) into Q,(E,r,),
O'(E.£) = Q,(E.(£.E)).  (3.59)
The root structures containing only simple roots is
straightforwardly deduced by continuity, see Fig. 7.
(iii) For FEco- < E <1, Qu(E,r,) admits four real
roots r, with the order

rivcor < rouco- < risco- < rosco+-  (3.60)
The region Q,(E,r,) >0 consists of two discon-
nected regions, riyco+ < rv < Foyco- and rigco- <
r, < rysco+- The function ¢, (r,) is monotonously
decreasing in the region riyco+ <. < T'yuco-
where R”(r,) > 0, and monotonously increasing
in the region risco- <r.<r,5co0+» Where
R"(r,) < 0. Therefore, one can extend the inverse
74(Z, E) as the inverse solution of

| 4§~ o)
—aVE?2 -1 0 aVE? -1 I €
0
Q= —(€+am /_ —(t - aVE?2 - 1)?
—a*(E?-1)
Forbidden

¢="¢(E.r.), rivcor < Te S Toyco-  (3.61)
at fixed E. Similarly, one can extend the inverse

(¢, E) as the inverse solution of

=7y (E,r,), risco- < T < Toscot- (3.62)
Then Q"*(E,?¢) are still defined as Egs. (3.58)
and (3.59).

(iv) For E>1, Qu(E,r,) is non-negative for

rivco+ < 1« < royco-» and it vanishes at 7;yco+
and 7,y co-- The location of the double root structure
| + e +) is again determined by the function
Q=Q"E,¢). We find for larger Q the root
structure | + ® — @ +) and for smaller Q the root
structure |+). Since E > 1, this latter root structure
is now bounded Q > min{0, —(|¢| — aVE* — 1)?}
according to (2.14). We denote the positive and
negative values of Z such that Q“(E,Z) =0 as
Civco+(E) and Z,yco-(E), respectively. We have

avVE*—1<|f| < ¢, (E) for both Z;yco- and
Z,uco-- The root structure for Q <0 is |+) by
continuity.

The final classification of radial motion of £ < 1 timelike
Kerr orbits can be found in Fig. 6. The classification of radial
motion of £ > 1 orbits is shown in Fig. 7. Moreover, we
display the classification of radial motion of equatorial orbits
in the (E, #) plane in Fig. 8. As discussed in Sec. I B, in the
case E > 0 and £ > 7, the trapped orbits are disallowed,
and the root structures have the form | #- - -). The final list
of 11 qualitatively distinct geodesic orbit classes (sometimes
evaluated on specific subcases) is given in Table V, follow-
ing the notations introduced for Schwarzschild in
Appendix B. The 11 distinct geodesic orbit classes already
appear around the Schwarzschild background.

[ $-e)

0
Q(H%% ~(¢-aB)?

—a’E?

Forbidden

FIG. 6. Classification of radial motion of E > 1 timelike Kerr orbits (left) and E > 0 null orbits (right).
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0<a<l1

0<a<1

o]

a < ac& Ersco+ < E < Ersco-

o0
0< E < Brscor Q E = Ersco+ Q a>a. & Erscor < E < E.
o0
[+e-) Q [+$-)
|+-) T e o 140
0 ¢l 0 | + oo —) VJ ¢
Forbidden 0 yan Forbidden 0 n Forbidden 0 B
a=ac (o] a> ae (o]
E = Ejsco- = Ec Q E=E, Q
I 4£9-) [+9-) | #$-) [+e) [+$-)
~ P
J 54 L2
/ \\p X%
\7(. %9 - N | to —eo+e—) Q\\ -
[+o—e+e—) o - [+ o) X.X Dw+
P . @
x* v Q\\ 2
R Yo, .o;
e \Z, =
=
(1 o) ‘ o) 0 p-w-) £ 0 p-e) ¢
Forbidden 0 4y Forbidden 0 [ Forbidden 0 Ly
a<ac ] a>ae o
Eisco- <E<E, Q E. < E < Esco- Q
[+em) [#%-) [+er) [#$-)
el
N QEQED
. $-e-)
¢ [#§—ete-)
Forbidden 0 £ Forbidden 0 Ly
a<a © a>ac oo a<a. & E.<E<1
E=E, Q E= Ersco- Q a>a.& Ersco- <E<1
+ —_ - —
[+e5) | #9$-) ‘ x Q
[+e-) e [#$-) I — 2403
Yy +o— -
'/ Q - |
y \
% p; T
i
~ |+e—ote—) = -
./\
Ky Q\\p
N l+e0) NG N,
0 z - £ | £$—ete-N ¢
Ferbien 0 1 Forbidden 0 £y Forbidden

FIG. 7. Classification of radial motion of 0 < FE < 1 timelike Kerr orbits.

F. Null geodesics Fig. 6. In this section, we briefly review the classification of
radial root structures as performed by Gralla and Lupsasca
[60] (restricting our analysis to r > r,) and extend it,

using the constraints on motion within the ergoregion

The classification of radial motion for null geodesics can
be simply obtained from the timelike classification in the
limit £ — oo. The corresponding phase space is provided in
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discussed in Sec. II B, to the classification of allowed radial
motion.

In this subsection, we assume no mass, 4 = 0, and
positive energy E > 0. It is convenient to define

4 0

- (3.63)

The radial potential is then given by

R(r) = r* +(a® == 22)r +2(a> + 1 = 2ad + 2)r

—a’y. (3.64)
The positivity bound (2.14) reduces to
. {O for |1| > a; (3.65)
T=1 <= for 4] <a. '

The only double root that may obey the positivity bound is

ri(=4a® +r.(r, = 3)?)

’7:’7*(’”*):_ (12(7'*—1)2 ’
() = r2(r, =3) +a*(r, + 1)

In the radial range where |4,(r,)| < a, we have n,(r,) > 0.
The bound for double roots therefore reduces to , (r*) >0,
which amounts to

Classification of radial motion of equatorial timelike Kerr orbits, where #* and ¢* are defined in Egs. (4.39) and (4.40).

(3.66)

Tpnt SV S Fpp=s

with

2 4z
rowt =2+ 2cos garccosa—k? ,

2
ron- =2+ 2cos {5 arccos a] .

The angular momentum obeys 4,,- <4, <4,,+ with
Appt = A (7 ppt). At the horizon, R = (2r, —al)* >0,
and there is a root touching the horizon if and only if

_2ry

A=1, = (3.67)

a

One has 4, < A, for 0 < a < 1. Since 4,(r,) is mono-
tonic between r,;, < r, < r,;_, one can define an inverse
function r,(4), and the double root is described by

Q — QHUH(E, f) = E2]1null (g) ,
4
nnull <E) = '7*(’* (’1))

The function #™"'(1) reaches a maximum at A = —2a with
n™'(=2a) = 27 independently of a. The corresponding

(3.68)
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TABLE V. Taxonomy of the 11 qualitatively distinct classes of radial geodesic motion of timelike Kerr geodesics with £ > 0. The
locations of the roots are labeled in increasing order r; < r, < ---. The four generic geodesic classes are the following: trapped orbits
7T (E,¢, Q) originating from the white hole, turning back at finite radius and plunging into the black hole; bounded orbits B(E, #, Q)
oscillating between the turning points; plunging orbits (or outward directed orbits with initially negative radial velocity) P(E, ¢, Q)
plunging into the black hole from infinity; and deflecting orbits D(E, ¢, Q) coming from infinity and bouncing back to infinity. The
seven nongeneric geodesic classes (such that at least one endpoint differs from a simple root, the horizon, or infinity) are the following:
the stable spherical orbits S*(E, ¢), the innermost stable spherical orbits Sisso(E), and the unstable spherical orbits S (E, ¢); the
whirling trapped orbits W7 " (E, £) either originating from the white hole and asymptotically approaching the unstable spherical orbits
or originating asymptotically from the unstable spherical orbits and plunging into the black hole; the homoclinic orbits H*(E, )
originating from and approaching the unstable spherical orbits after bouncing on a turning point; the whirling deflecting orbits
WDH(E, £) asymptotically approaching the spherical orbits and infinity; the whirling trapped ISSO orbits W7 550 (E) either originating
from the white hole and asymptotically approaching the ISSO or originating asymptotically from the ISSO and plunging into the black
hole. Note that when # > ¢, the trapped orbits become disallowed, which we denote as |+ ®--- > |48 - .

Root structure Energy range Radial range Name
Generic |+ =) 0<E<I1 ry <r<n T(E,?,0Q)
|+.—.+.—> E]SC0+<E<1 r+§r§r1 T(E,K,Q)
rZSrsr3 B(E7£7Q)
H‘) E>1 ry <r<oo P(E,f»Q)
|+ o —o+4) E>1 ry <r<n T(E.Z, Q)
ry <r<oo D(E, 2, Q)
Codimension 1 + _> 0<E<1 %) %]
+_._|_._> E.<E<1 r,<r<n B(E,?.,Q)
’+._~_> EISCO+ <E<1 r+§r§r1 T(E,f,QY(E,Lp))
r=r S*(E,?)
|_|_.._|_._> Eicor <E<1 rp<r<r WT'(E,?)
r=r S“(E,?)
r<r<n H“(E,?)
|+..+> E>1 rp <r<r WT"(E,?)
r=r S“(E,?)
r<r<oo WD'(E,¢)
+_._|_> E>1 ry <r<oo D(E.?Z,,0Q)
Codimension 2 ¢ — o0 ) E.<E<l1 r=r, S*(E,7,.0)
| + oo —) Eisco+ < E < Ejsco- ry Sr<r WT ss0(E)
r=n Sisso(E)

radius is r, = 3, which coincides with the photon sphere of
the Schwarzschild solution.

Now, the bound (2.18) rules out trapped orbits within the
ergoregion. This implies that the root structure | + ® — o +)
for > ¢, (E) = E/Q, contains disallowed trapped orbits,
|# # — @ +). This condition was not analyzed in [60]. This
completes the result on the classification of radial root
structures by the classification of allowed radial motion.
The final root structure is depicted in Fig. 6.

IV. CLASSIFICATION OF RADIAL GEODESIC
MOTION WITHIN THE ERGOREGION

In the previous section, we did not consider the exact
location of the ergosphere in the classification of radial root
systems. In the following section, we will introduce the
location of the ergosphere, denoted with the symbol),
discuss where it appears within each root system, and
present the classification of root systems and radial

geodesic motion within the ergoregion, i.e., between the
horizon and the ergosphere. We will start with a complete
classification of such root systems and corresponding
allowed radial geodesic motion on the equator, which will
lead to the identification of six distinguished values of the
Kerr angular momentum a. We will then briefly discuss the
nonequatorial radial motion and finally derive the classi-
fication of radial motion within the near-horizon region of
near-extremal Kerr.

A. Root structures and allowed radial motion
on the equator

We consider the root structures with roots between the
horizon and the ergosphere. There can be maximally three
such roots for E? # 1 and maximally two such roots for
E? =1. The root structures have the generic form
|+---)---) when £ +# ¢, (E)=E/Q_ or the particular
form ¢ —---)-..) when ¢ = ¢, (E). The root structure
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outside the ergosphere can be ignored for the classification
within the ergoregion, but it is useful as a comparison with
our earlier classification.

Since

Fego(030) <2 < 142 < r\%(a), (4.1)

where rio) is defined below in Eq. (3.55), all root structures
with a double root have necessarily negative angular
momentum, £ <0 for £ <0 and positive £ > 0 for
E > 0. By continuity, root structures with sign(¢) #
sign(E) and with two simple roots within the ergosphere
are also discarded.

From now on, we will only discuss the equatorial case
0 = 7 where, accordingly, QO = 0 and rg,, = 2. The poten-
tial has a root r = 0 which can be factored out. The relevant
potential becomes

Ro(r) = (E*=1)r* + 27 + (a®*(E*> = 1) = 2)r

+2(¢ - aE)?. (4.2)

We consider only nonvanishing energy orbits £ # 0 in Kerr
with 0 <a < 1.

1. Inequalities

The inequalities in Eqgs. (2.16) and (2.17) reduce for
E <0to

(2-r)¢ <2aE < 0. (4.3)

Negative energy orbits that reach the ergosphere r = 2 are
discarded. Moreover, all timelike orbits within the equa-
torial ergoregion have a negative angular momentum. The
inequality in Eq. (4.3) can be solved by

2aE
2—r

£ <t,(E.r)= (4.4)
for negative energy orbits in the ergoregion. Since
r, <r <2, it implies, in particular, for all orbits with
E < 0 that

2aES 2aE zziEzi,
2—-r"2-r, a Q,

£ < (4.5)

The thermodynamic bound (2.18) is therefore obeyed for
all orbits with E < 0. The upper bound ¢ =7¢_(E)
corresponds to root structures with one root at the horizon.

The inequalities in Egs. (2.16) and (2.17) reduce for
E>0to

3 2 2
£ < tAEr) = ’*rg—“aE (4.6)
a

For timelike geodesics, we have u,u* < 0, which also
implies the independent inequalities

—Jip — SIN VAN - de¢ - —0ip + SIn VAN

(4.7)
o dt o

in the ergoregion. Here, % = —(% Gt + 9rp)/ (§ Gip T Ipp)-

The bound in Eq. (4.7) becomes

2a—|—r\/z

2a — rvA d¢
—_— <
& —|—a2(r—|—2)

0<———+—"—<
r3+a2(r—|—2) dt

(4.8)

where % =—%gu+94)] %914+ 9pp)- We define the

quantities

2 A
_2a¥ VAL

¢12) (E,r) 5
—r

(4.9)
For E < 0, they obey 7% (E,r) < C4(E,r) < ¢(E, r),
while for E>0 they obey Z(E,r)<?,(E,r)<
??)(E,r). We deduce from Eq. (4.8) that for E < 0 the
angular momentum should satisfy

¢ <P (E,r) <0, (4.10)
and Eq. (4.4) is automatically obeyed, while for £ > 0 the
angular momentum should satisfy

¢ < W(E,r), (4.11)
and Eq. (4.6) is automatically obeyed.

Finally, we impose that the potential Ry(r) is non-
negative. This condition can be solved for £ as

>0V ) or £<fP(Er)  (412)
within the ergoregion, where we have defined
2aF + 2+ (E>-1)r)A
A ) =22 Vr@+ (B2 = DAl (4.13)

2—r
From the definition (4.13), we can directly derive that
f(()l)(E, r) > f(()z)(E, r). Moreover, for E > 0, féw(E, r) +
£ (E.r) > 2¢.(E), which implies for E > 0

AV(E. r) > ¢, (E). (4.14)

while implies for E < 0, fél)(E, r) + ff)z) (E,r) <2¢,(E)
which

£P(E.r) < ¢.(E). (4.15)
When E < 0, we find
EE ) <tO(E. ) <£(E ).  (4.16)
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When E > 0, we find

C(E.r) < £V, r) < &(Er).  (417)

Combining with Egs. (4.10) and (4.11), the bound becomes

¢ <¢$(E.r) (4.18)
for both positive and negative energy equatorial orbits
within the ergoregion. This is the final inequality that
supersedes all previous inequalities. In particular, for
plunging orbits, the bound has to be obeyed at r =r,.

Since f(()z)(E, ry) :%E:f+(E), we obtain for all
trapped orbits
<t (E). (4.19)
From Egs. (4.18) and (4.15), this bound is moreover
obeyed for any E < 0 orbit.
Both prograde and retrograde orbits are therefore
allowed for E > 0. The condition in Egs. (4.18) and

(4.19) impose constraints, which will be discussed below.
In the limit £ = 0, the bound in Eq. (4.18) reduces to

rA
< —
- 2—r

<0, (4.20)

and orbits are retrograde as they should.

From Eq. (4.19), root structures of the form |+e —) for
¢ > ¢ (E) will be denoted as |£ & —).

A corollary from the inequalities in Eqgs. (4.14) and
(4.12) is that for all root structures with E > 0 and
¢ <¢,(E), the region Ry(r) >0 necessarily obeys the
bound in Eq. (4.18). Therefore, all motion denoted as + in
root structures with £ < ¢, (E) and E > 0 are allowed.
Root structures such as |+ — ®+) for £ > ¢, (E) and
E > 0 require more care. From Eq. (4.19), one deduces that
the plunging orbits are disallowed. However, the orbits
entering and escaping the ergoregion are not constrained by
this inequality. We will check that such orbits obey the
bound in Eq. (4.18). We will therefore denote orbits with
E>0and ¢ > ¢, (E) as |f# & — e+).

2. Special values of a: Roots at the horizon
or at the ergosphere

In the following section, we will define six particular
values of a, which we will order in increasing values as

(1) )

0<d () 2 4@ 5 4O

<al’ <ai <al’ <al <a; <1, (4.21)
where distinctive root structures will emerge.

We define the angular momentum ¢ = Z,(E;a) such
that

RO(rerg()) =0. (422)

At the equator, the solution is unique and given by

(4 +2a*)E* — a?
2aE ’

¢ =¢,(E;a)= (4.23)

For such angular momentum, the local root structure is

given by ---¢--. For E <O only, the constraint
¢.(E;a) <0 is obeyed only for
E<-—2 . (4.24)
V4 + 2a?

A double root at the ergosphere can occur only for a > agl),

where

m_ 1
aV = — ~0.707107.
V2

The double root at the ergosphere corresponding to
- -4e - - - then occurs when

(4.25)

= Ef(a) = R .
E = EX(a) iz S (4.26)
¢t B = YA E 4

\/\/Ea—l .

We have sign(Z,(E£(a);a)) = sign(E) for a > a\”, in

accordance with our discussion that only orbits with

sign(¢) = sign(E) occur in the presence of double roots

within the ergoregion. With respect to our discussion in

Sec. T E, we have EX(a) = +E?)(2), where E?)(r,) is

defined in Eq. (3.48). The function E,(a) crosses E = £1
(2)

at a = a;’, where

a? =2(vV2 - 1) ~0.828427. (4.28)

The function Z,(E; a) crosses £ (E; a) defined in Eq. (3.9)

only for a > a£.3) at

a

E=Ef,(a)==+ , (4.29)
V2V a2 =2V1 - a?
where
a) =1/2(vV2-1)~ 091018, (4.30)

The root structures ¢ —  with one root at the horizon and

one root at the ergosphere therefore occur for £ given by
Eq. (4.29) and ¢ given by

ptt(@= e Y2V
a? -2v1 - d?
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The energy in Eq. (4.29) reaches E2 = 1 ata = aﬁs), where
al =21/V5-2~0971737. (4.32)

The special root structures ¢ — e —) occur at the equator
for ¢ =¢,(E;a) and E = £E_.(a), where E.(a) is given
in Eq. (3.15). We have £E,(a) = E(a) ata = a®), where

2
ad® = = \/7 247" ~0.996175,
V3

Z=3'53(9+7V33)'/3, (4.33)

For that special value of a, ¢ = ¢ (E;a) and E = E£(a),
the double root is at the ergosphere, leading to the root
structure ¢ —de —).

Finally, a triple root at the ergosphere occurs for the
particular value a = a.’, where

@ _2V2

e =73

~ 0.942809. (4.34)

It is also the unique solution to the equation rigco+ (a) = 2.
The unique triple root structure at the ergosphere | + epe
therefore occurs at the two special values [sign(E) =

sign(#)],

E::t\/i, f:iﬂ, a:a£4).
3 3v3

The summary of the six distinguished values agi) of the
Kerr angular momentum is given in Table VI.

3. Double roots

So far we only defined the root structures with a double
root located on the ergosphere. More generally, the double
roots occur for equatorial orbits for E = +E?)(r,) as given
by (3.48), and £ = +£,(E®(r,), r,) as given by (3.38) in
terms of the radius of the double root r,. We can rewrite
these equations as

TABLE VI. Exact and approximate values of a(ci).

Mo OB 5) O

¢ dac
5 2(v2-1)
0.707 0.828

Lvi-1) 22 2VV5-2 ZVZ-2477
0910 0943 0972 0.996

(r.=2)/r.+a
\/rz/z((r* - 3)ri/2 + 2a)
r2=2a./r, + da*
VP =3 1 20)

E=E*(r;;a)=+

s

£ =7¢*(ry;a) =+ (4.36)

Such double roots may lie in the ergoregion for a > agl).

We have

2aE™(r,;
az —(rr* D eiria)

(2- r*)\/ri/2 -3/r. +2a

(4.37)

Therefore, negative energy orbits with double roots are
disallowed by the condition (2.19). This implies, in
particular, that no circular orbit with negative energy is
allowed in the ergoregion. By continuity, no bounded
motion is allowed and only trapped orbits are allowed.
The bound in Eq. (4.19) therefore applies for any orbit
with £ < 0.
On the other hand, we have identically

E(E*(raa).r.) = £+ (r.;a), (4.38)

where L”E)z) was defined in (4.13). Therefore, positive energy
orbits with double roots are allowed by the condition (4.18)

(for a > agl) ). In particular, circular orbits with positive
energy are allowed in the ergoregion. However, since

rﬁz) > 3, circular orbits with # <0 and E > 0 do not
appear in the ergoregion.

The triple root occurs at the ISCO radius r, = rigcot,
which has sign(E) =sign(¢) = +1. In the range
PV < r, < ot one can invert E£(r,) to r*(E) and
define

£"(E;a) = ¢*(r'(E)). (4.39)
As discussed in Sec. IIIE, the corresponding double
root is unstable: the root structure takes the local form
---+ e+ . ... Since we only consider the ergoregion in
this section, we will only define # when r,(E) < 2. In the
range rigcos < r. < 00, one caninvert EX(r,) to r$(E) and
define

(E;a) == (ri(E)). (4.40)
The corresponding double root is stable: the root structure
takes the local form - -- — @ — - - .. Since we only con-

sider the ergoregion in this section, we will only define #*
when r3(E) < 2.
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Let us discuss the root systems which admit both a root
at the ergosphere and double roots. This occurs at the
intersection of the lines ¢ =¢,(E;a) and £ = either
¢“(E;a) or ¢°(E;a). Algebraically, it amounts to find
the roots r, of £*(r,;a) = ¢,(E*(r,);a). After analysis,
there are three main cases depending upon the value of a.

(i) For a < agl) , there is no solution within the ergo-

region. Instead, there is one real solution r, = zaL; -
1 > 2 intersecting £ = ¢, Which corresponds to the
root structure | —1—?
(i) For a Yy <a;’, there is the solution at the
ergosphere r, = 2 intersecting £ = £*, correspond-
ing to the root structure | + @e +). This structure
degenerates to the triple root at the ergosphere

] —|— oo —)ata = a. ) The other real solution r, =

— 1 is outside the ergosphere for a < aE ) In that
case the curve £ = ¢, intersects £ = £*, and the root
structure is | + ¢ — oo —).

(iii) For a§4) < a <1, there is the new solution r, =
e intersecting ¢ = ¢*, but which now corre-
, and there is
still the solution r, = 2 intersecting now ¢ = £*,

which corresponds to the root structure | + o — Qo

fora # aﬁé). The latter solution degenerates to ¢ — @

for a = agﬁ).

4. Construction of the phase diagrams

We defined four relevant curves to classify the root
structures:
(i) ¢ = ¢, (E).—The root structure takes the local form

+_...

(i) ¢ = ¢,(E).—The root structure takes the local form

(iii) ¢ = ¢"(E).—The root structure takes the local form
et
(iv) f ¢*(E).—The root structure takes the local form
— o — -
The pattem of 1ntersecti0n of these lines depends upon the
value of the spin a relatively to the special values in
Eq. (4.21). Moreover, one has to impose the constraints in
Egs. (4.18) and (4.19), which qualitatively differ for £ > 0
and E < 0 orbits. We, therefore, discuss the phase spaces
for E > 0 and E < 0 separately.

5. Phase diagram for E > 0

The rich phase dlagram for £ > 0 is depicted in Fig. 9.
For 0 < a <al", ¢.(E) and ¢,(E) are defined. There
are no double roots within the ergoregion. Indeed, for
double root systems to exist within the ergoregion, they
need to cross the ergosphere upon increasing a, and this

only occurs for a > adV At =¢ . (E) the root structure is

|4+». Since 2 = —4aE < 0 at £ = ¢,(E) and r = 2, the
root structure forf > £,(E) is |+e—), while for £ < Z,(E)
itis |[+). At the special value # = 7 (E) > ¢,(E) the latter
root structure degenerates to  — ), and for £ > ¢, (E), the
root structure is again |4 e —) but it is not allowed by
condition (4.19) and, therefore, we denote it as |# 8 —).
Fora > agl), there is a double root structure touching the
ergosphere at E = EJ (a) as defined in Eq. (4.26). The
corresponding root structure is | + ¢e. It continuously
connects to the unstable double root branch | -+ e® +)
defined for # = £“(E). The root structure | + ¢e occurs for

E>laslongasa < a(cz), but it obeys E < 1 for a > a£2>.

The root structure on the line ¢ =£,(E) is |+# for
E<E[(a) and | +  — ¢ for E > Ej(a). For £'(E) <
¢ < ¢,(E), the root structure is |+e — e-+) with all
motion allowed [see the corollary below Eq. (4.20)]. For
E > 1, the outer + denotes deflecting orbits, while for E <
1 it denotes bounded orbits that enter the ergoregion.
For a > a'”, the lines ¢,(E) and Z,(E) cross at
Eq. (4.29), which leads to the root structure ¢ —¢. This

root structure occurs at £ > 1 in the range a?) <a< a£5>

butatE<lmtherangea>aC At =7¢,(E) for E >
E7,(a) the root structure is | £ ¢ — &, while for £} (a) <
E<E,(a) the root structure is |-+ e —¢. For
¢, (E)<?¢ <¢,(E), the root structure is |f & — @ +).
Indeed, one can numerically check on one particular value

that the first root r; obeys ¢ = fél) (E, ry) while the second

root r, obeys £ = fg)(E, r5). The bounds in Egs. (4.12)—
(4.18) then imply that r < ry is discarded while r > r, is
allowed.
For a = a£4), the triple root crosses the ergosphere at
2/3, where the root structure | + epe appears.
For a > a£4), the triple root structure is within the
ergoregion, which corresponds to | 4 ese —), and the
stable branch with root structure \ + o — e —> therefore

appears within the ergoregion. For a > a£4), we start to

have a triangular-shaped region delimited by £ > £,(E),
¢£>¢"(E), and ¢ <¢*(E) with root structure
|+ ®—e+e—) which contains, in particular, bounded
orbits. The boundary of the triangular-shaped region
contains several special root structures depicted in the
figure.

At a = a9, the special root structure ¢ —ee occurs
because the line £ = #*(E) crosses both £ = ¢,(E) and
¢=¢.(E)at E=E,(a?).

For a > acﬁ, a new triangular-shaped region occurs
bounded by ¢ > ¢ (E), ¢>¢,(E), and ¢ < ¢*(E).
Within the triangular-shaped region, the root structure is

|## — ® + o—). Indeed, the first root r; obeys ¢ =

f(()l)(E, r1) by continuity with previous cases, while the
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FIG. 9. Classification of radial root structures with positive energy in the equatorial ergoregion of Kerr.
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second and third roots r,; obey ¢ = féz) (E,rp3) by
continuity with the double root. The conditions (4.12)—
(4.18) then imply that trapped orbits are disallowed while
bounded orbits are allowed. The boundary of the triangular-
shaped region contains several special root structures
depicted in the figure, which are continuously joined with
the now square-shaped region.

Note that all 4 orbits in root structures with £ < ¢, are
allowed, while for > ¢, all trapped orbits in root
structures are disallowed and nontrapped orbits are allowed.

0<a< a(nl) e
E — 0
Forbidden
n
.
Le |+e-)
(n —o0
l
+0oo
af:3) <a< aé‘l)
E < 0
o0
Forbidden
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E 0
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U,
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S +42)
Z R4
+ N x
eﬁ

6. Phase diagram for E < 0

The simpler phase diagram for E < 0 is depicted in
Fig. 10. Due to (E,?¢) — —(E,¢) symmetry, Fig. 10 is
related by a central flip of Fig. 9 but now with the
disallowed region in Eq. (4.18), which implies the bound
in Eq. (4.19) for all orbits. The region ¢ > ¢, (E) is
therefore always discarded. Trapped orbits automatically
obey the bound in Eq. (4.18). Nontrapped orbits will
always violate the bound in Eq. (4.18) as we will
derive below.
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FIG. 10. Classification of radial root structures with negative energy in the equatorial ergoregion of Kerr.
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For 0<a<al, ¢, (E) and £,(E) are defined,
but Z,(E) > £, (E), and this curve is not relevant. At
¢ =¢,(E) we have the root structure ¢ —), while for
¢ < ¢, (E) we have the root structure |+ e —).

For a > acl , there is a double root structure, but it is
within the forbidden region, and it can be ignored.

For a > a”), the lines ¢, (E) and ¢,(E) cross at E7,(a)
defined in Eq. (4.29), which leads to the root structure
¢ —». This root structure occurs at E < —1 in the range

a£-3) <a< aE-S) but at £ > —1 in the range a > asj). For

¢=¢.(E) and E <E7,(a), the root structure is
¢ — ¢ f). Indeed, one can check on one particular
numerical value that the largest root r, within the ergo-
region obeys ¢ = fél)(E, ry), and the region r > r, is
therefore discarded from Egs. (4.12) and (4.18). In the
region 7 (E)<¢ <?¢,(E), the root structure is
|+ — #4£). The largest root r, still obeys 7=
f(()”(E ,72) by continuity. One can check on one particular
numerical value that the smallest root r| instead obeys £ =
f(()2>(E , 1) and, therefore, the region r < r; is allowed. The
root structure degenerates to | + e —¢ at £ = Z,(E).

For a = aff‘), the triple root crosses the ergosphere at
E = —./2/3, but it is within the forbidden region, and it
can be ignored. For a > a'Y, the line ¢ = ¢*(E) appears
within the forbidden region.

At a=a?, the special root structure ¢ —ep occurs
because the line ¢ = ¢*(E) crossesboth# = £,(E) and £ =
£ (E)atE = Ee(a§6)). The double root r, at the ergosphere
obeys £ = fé:)(E ,7,.) by continuity with previous cases.

For a > a;’, a new triangular-shaped region appears
bounded by ¢ < ¢, (E), £ <¢.(E), and ¢ > ¢*(E). By
continuity, the second and third roots of all root structures
involved obey ¢ = f(()l)(E, r,) by continuity with the root
structure + —* and, therefore, motion is discarded from
Egs. (4.12) and (4.18) except for trapped orbits.

In conclusion, only trapped orbits are allowed, consis-
tently with the analysis of [33].

7. Final classification of radial motion

The taxonomy of radial motion of positive energy Kerr
geodesics in the equatorial ergoregion is listed in Tables VII
and VIII, while the taxonomy of allowed radial motion of
negative energy Kerr geodesics in the equatorial ergoregion
is listed in Table IX. The taxonomy is consistent with the
generic Kerr taxonomy in the complete exterior region as
listed in Table V.

B. Nonequatorial orbits within the ergoregion

Let us first discuss Q < O orbits. From the analysis of
Sec. 111, all such orbits have E? > 1. From Fig. 6 the root
structure of such orbits is |[+). Since the ergosphere needs

to be crossed, negative energies are discarded, and the root
structure taking into account the ergoregion is |+)-+).
There is therefore a single root structure within the
ergoregion for Q < 0 namely |+) valid for E > 1. The
bound on Q in Eq. (2.14) needs to be obeyed. The polar
motion is Vortical(E, Q) in the denomination of Ref. [48]
(see also Ref. [47]).

In the following, we will only discuss Q > 0 orbits. The
polar motion of all orbits Q > 0 is librating around the
equator. These are the Pendular(E, Q) in the terminology of
[48], see their Figs. 1 and 3 (see also Ref. [47]).
Nonequatorial Q = 0 orbits also exist for E> > 1 and
are asymptotically approaching the equator at early and
late proper times. These are the Equator-attractive(E) in the
terminology of Ref. [48]. In both cases, the classification of
radial motion will necessarily match the equatorial case
from continuity or as a limiting behavior from Q = 0. The
phase diagram displayed in Figs. 9 and 10 therefore directly
extend to Q > 0 orbits.

More precisely, the potential R(r) is quadratic in . The
coefficient of #% is (2 — r)r, which is positive strictly inside
the ergoregion. Since R(r) >0, the angular momentum
then obeys

¢ <tP(E. Q) or ¢20(EQ,r), (441
where
2aE £+ \/A(r)y/(2 - r)(rJr%) + E?r?
fél’z)(E, 0,r)= \/

(2-71)
(4.42)

are manifestly real for Q >0, obey f(()z) (E,Q,r) <
f(()])(E, Q. r) inside the ergoregion, and #\"(E,Q,r,) =
¢P(E,Q,r,) ="2E=¢,(E) <0 at the horizon. Note
that there is another solution fél) = f(()z) for 0=Q(E,r)<0,
but it is irrelevant since Q < 0 orbits were already
discussed and are now disregarded. For Q = 0, we dem-
onstrated that the bound (4.18) is always valid. By
continuity or as a limiting case from Q = 0, this implies
that allowed motion for any Q > 0 also obeys

¢ <tP(E.Q.r). (4.43)

In particular, for E =0, the bound 7 sféz)(Q, E,r)
reduces to

se_ P+ 0)A

<\ ez <° (4.44)

Therefore, the orbits for £ = 0 are allowed only for negative

angular momentum £ < 0. Since f(()z)(E, 0,r.)=7¢,(E),

024075-24



CLASSIFICATION OF RADIAL KERR GEODESIC MOTION

PHYS. REV. D 105, 024075 (2022)

TABLE VIL

Taxonomy of radial motion of positive energy Kerr geodesics in the equatorial ergoregion: codimension 0 and 1 root

structures. The range of a such that all quantities are real can be deduced from Fig. 9. As a matter of convention, whether bounds are
complex or there is no corresponding curve in Fig. 9, they do not lead to constraints.

Root structure Angular momentum Radial range Name
Generic |+) ¢ < min(¢", ¢,) ry <r<2 T(E<1,2,0)
P(E > 1.£.0)
|+ o—) lo<tC<¢,and (£ >¢ or £ <) ro<r<n T(E.Z.0)
|#%-) ¢>max(¢,,¢,, (%) @ @
|+ o — o) /< ¢ <min(Z,.7,) r.<r<r T(E.?,0)
rp<r<2 B(E < 1,¢,0)
D(E>1,¢,0)
|£ 8 — o+) o<t <t, rp<r<2 B(E < 1,¢,0)
D(E > 1,¢,0)
|+ e -0+ o) max(£*,¢,) < £ <min(¢*,£.,) ro <r<n T(E,2,0)
rp Sr< B(E,?,0)
|f0— o+ o) max(£,.£,) < < {* r<r<n B(E,¢,0)
Codimension 1 |_|_> £=¢, <t rp<r<2 T(E,?,,0)
| +o—o max (£, ") < =¢, < (., r.<r<rn T(E.¢,,0)
|7(_¢_> =7, >max(¢,.,¢*) %) @
|+e—eo+e < C=¢, <min(¢5, 7)) ry <r<n 7(E,?,,0)
rp<r<2 B(E,?,,0)
£ §—o+e lo<tl=¢,<0 r<r<2 B(E.Z,.0)
+ _) ¢=7¢, <min(¢,,¢,) @ @
¢—oto—) <=0, <t, ry<r<r; B(E,Z.,0)
¢ —o+) C=C¢. >, r,<r<?2 B(E <1,¢.,0)
DE=>1,72,)
| + o +) £=0">¢, r,<r<r WTH(E, ")
r=r C*(E,¢")
rp<r<2 HY(E < 1,¢")
WD(E > 1, ")
|+-+.—> fISCO+<f:£M<fe I’+SI"<I"1 M”(E,fu)
r=r; C"(E, ")
r<r<n H"(E, ")
‘—i_._. _> f”<f:z,ﬂx<min(f+,fe(E2‘)) ry <r<n T(E,fs,())
r=r, CS(E, ¢*)
|7F#_.._) . <=0 <t, r=r, CS(E, &)

all trapped orbits obey # < ¢, (E). This rules out the trapped
orbits for # > ¢, (E). Since #?)(E, Q,r) < ¢, (E) < 0 for
E < 0 orbits within the ergoregion, the bound £ < 7 (E) is
obeyed for all £ < 0 orbits.

Remember that the potential R(r) is invariant under the
symmetry (E,¢)+ (—E,=¢). Since z,”f)l)(E, 0,r) =
~¢$(-E,0,r) or, ¢$(E Q.r) =
—fél) (-E,Q,r), a given allowed orbit labeled by
(E, 2, Q, r) will be disallowed for (—E, —¢, Q, r) and vice
versa. For any value of (r, Q) there is therefore a single pair
(E, ¢) corresponding to allowed motion. This explains why
opposite roots are respectively allowed in the root struc-
tures depicted in the diagrams E >0 and E <0. In
particular, since spherical orbits are allowed for E > 0,
they are disallowed for £ < 0. In addition, since rio) as
defined after Eq. (3.55) is larger than the radius of the

equivalently,

ergosphere, spherical orbits within the ergoregion have
necessarily positive angular momentum, # > 0.

C. (near-)NHEK orbits

The (near-)NHEK limit [76-79] consists in a near-
extremal limit @ — 1 combined with a near-horizon limit
r — 1 and a corotating limit. In the (near-)NHEK limit, all
orbits lie entirely within the ergoregion and, therefore, the
(near-)NHEK orbits are a subset of the orbits studied earlier
in this section. In the NHEK limit the finite energy and
radius are

R=(r—1)A"23,

E=QE-0)23, (4.45)

where 1= V1 —a?. In the near-NHEK limit the finite
energy and radius are
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TABLE VIII. Taxonomy of radial motion of positive energy Kerr geodesics in the equatorial ergoregion: codimension 2 and 3 root
structures. The range of a such that all quantities are real can be deduced from Fig. 9. As a matter of convention, whether bounds are

complex or there is no corresponding curve in Fig. 9, they do not lead to constraints.

Root structure Angular momentum Radial range Name
Codimension 2 + _> C=C, =0, >0 %) @
+_.+> C=C, =0, < rp<r<2 B(E,?.,0)
|_|_* f:fe:fu (a<a£4)) r+$r<2 M”(E,fe)
r=2 C'(E.?,)
|+ o+ 9 £=¢,=¢" (a>a?) rpSr<r WT(E.?,)
r=r; C'(E,?,)
rp<r<2 H“(E,Z,)
|_|_._* f:l/ﬂg:l/ﬂs<£+ r+5r5r1 T(E*fe»)
r=2 C:(E,?,)
|7#¢_§. C=¢,=¢">¢, r=2 C:(E.?,)
— e ) £=¢, =0 r=r, C'(E.£.)
| + eoe —) ¢ = C1scot ry <r <rigcot WT 1sco(E)
r = rsco Cisco(E)
Codimension 3 ¢ —o C=C¢,=0"=¢, r=2 C(E.?.)
| 4 ope ¢ ="¢.=tiscor re<r<2 WTsco(E)
r=2 Cisco(E)

TABLE IX. Taxonomy of allowed radial motion of negative energy Kerr geodesics in the equatorial ergoregion. Root structure with
only disallowed motion are not listed. As a matter of convention, whether bounds are complex, they do not lead to constraints.

Root structure Angular momentum Radial range Name
Generic |+ o) £ <min(¢,, 2., ¢%) rp<r<r T(E,7,0)
|+ o — 84 L, <t <t
|+ o0 — sf8-) £ < ¢ <min(Z,,72,)
Codimension 1 ’ 7(_ °— * ¢=¢,<min(?,,¢")
|_|_._’5_) C=0,0, <0<,
|+o—6+4¢ C=0,0 <0<,

Codimension 2

oo

C=t,=0<C,

F=x(r—ry)/4, e=x(2E-20)/A. (4.46)
Therefore, the (near-)NHEK region can be identified as an
infinitesimally narrow band around the line £ = 7, (E) =

2F in the last Figs. 9 and 10 for aﬁG) < a < 1. Note that
negative (near)-NHEK energy orbits £ <0 or & <0
correspond to orbits with £ > ¢ (E), which have neces-
sarily £ > 0. The ISSO angular momentum at extremality
is given by

_ Eso(l) 2
=y = sVITe (4.47)

As deduced in Proposition 2 of [48], the classification of
radial motion can be obtained from the classification of
equatorial motion since all dependence on Q is through the
dependence in 7. We will therefore specialize to equatorial

motion Q =0, § = x/2 in the following without loss of
generality. We will reproduce the classification of [48] for
the NHEK case. For the near-NHEK case, we will
reproduce the classification of [48] up to a correction in
the range of deflecting orbits, which is in fact larger than
previously stated.

1. NHEK orbits

In the NHEK region, the radial potential on the equa-
torial plane is

. . R?
vn(R) = E* + 2E¢R + T (372 —4), (4.48)

where R and E were defined in Eq. (4.45). The limit of
¢ < f(()z) (E, r) becomes
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. 1
fo+<E+fR—§ 4+f2R>/12/3+o(/12/3). (4.49)

This equation is satisfied only for

“ 1
E+fR—§\/4+f2R >0, (4.50)
which is solved for
2(VE? +3R? = 2F
ry2VET ). (4.51)

3R
This condition implies vy (R) > 0 and L > 0 and rules out,
in particular, past-oriented motion. As a consequence of our
derivation for the general equatorial case in Sec. IV A, the
bound in Eq. (4.51) is the strongest bound imposed on
radial motion from the existence of time and azimuthal
motion.
The inequality £ < £, (E) is equivalent in the NHEK
limit to
E>o. (4.52)
From the discussion of Sec. IVA, we infer that when
E > 0, all orbits plunging into the black hole are allowed;
when £ = 0, all orbits plunging into the black hole are
disallowed for # < 0; when E < 0, all orbits plunging into
the black hole are disallowed.
The two simple roots of vy(R) are

_ —AEC£2EWNE +4 (4.53)
b2 32— 4 ' '
When ¢ = +¢, = j:\/%, the radial potential is
., 4ER
on(R) = B+ —, 4.54
v(R) N (4.54)

and the simple root is R} =7F @.

For E > 0,

(i) When ¢ >¢,, R, <R, <0, then vy(R) >0 for
R > 0. The root structure is |+|y.

(i) When ¢ < —7,, 0 < R, < Ry, then vy(R) > 0 for
0 <R <R, and R > R,. However, when R > R,
the orbits disobey the bound (4.51). The root
structure is |+ — &4|y.

(iii) When ¢ =-¢,, R, >0, then wy(R)>0 for
0 < R < R,. The root structure is |[+® — |y.

(iv) When £ =7¢,, R| <0, then vy(R) > 0 for R > 0.
The root structure is |+]y.

(v) When || <Z,, Ry <0 < R,, then vy(R) > 0 for
0 < R < R,. The root structure is |+ o — |,.

For E < 0,

(i) When ¢ > ¢,, Ry > R, > 0, then vy(R) > 0 for
0 <R <R, and R > R;. Only when R > R, the
orbits obey the bound (4.51). The root structure
is [ A8 — o +|y.

(i) When ¢ < —¢,, R, < R, <0, then vy(R) > 0 for
R > 0. The root structure is |A£|y-

(iii) When ¢ = —¢,, R| <0, then vy(R) > 0 for R > 0.
The root structure is |£|y.

(iv) When Z=¢,, R, >0, then wvy(R)>0 for
0 < R < R;. The root structure is |£# & — |y.

(v) When || < Z,, R; <0 < R,, then vy(R) > 0 for
0 < R < R,. The root structure is |# 8 — |.

For £ = 0, the potential is

(R = X3 — 4.

0 (4.55)

It is easy to see the following:
(i) When |[¢| > Z,,vy(R) > 0forR > 0. When? > £,
the root structure is @ + | y. When £ < —¢, the root

structure is ¢ + | .

(ii) When |¢| =7¢,, vy(R) =0 for any R. We denote
this special root structure as |0| since the potential
is always 0. When £ = ¢, the root structure is |0|.
When ¢ = -7, the root structure is |(J] y.

(ili) When |£]| < ?,, vy(R) <0 for R > 0. The root
structure is ¢® — | .

We display the root structure in Fig. 11. This classification
exactly matches with the classification obtained in [48] (see
their Fig. 5).

2. near-NHEK orbits

In the near-NHEK region, the radial potential on the
equatorial plane is

1
v,(7) = Z?(ff +2K) (362 —4) + 227 + (e +«£)?,  (4.56)
where 7, ¢ were defined in (4.46).
The limit of £ < f(()z) becomes
e+ 7 —3\/1(F+2c)(4+ 2
ppy O3V D140, (@s7)
K
This is satisfied only for
. 2(=22(7 4 k) +/#(7 +2()(&% + A)) @)
A
where
A = 372 + 67k + 4. (4.59)

The condition (4.58) implies v, (7) > 0 and g—i >0. As a
consequence of our derivation for the general equatorial
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NHEK ¢
lFg—etly |+
4 ol
g* | L6 —|n |+
I##—In & [+o—Iv
b E
0|
EXE I+o— v
—1; 4] |+te—]
i
, iy 1915 3] [+o—$#ln
Forbidden
FIG. 11.

case in Sec. IVA, the bound in Eq. (4.58) is the strongest
bound imposed on radial motion from the existence of time
and azimuthal motion.
The inequality £ < 7, (E) is equivalent in the near-
NHEK limit to
e
‘+ p >0. (4.60)
From the discussion of Sec. IVA, we infer that when
4 —l—f > 0, all orbits plunging into the black hole are
allowed; when ¢ + f = 0, all orbits plunging into the black
hole are disallowed for Z < 0; when ¢ +% < 0, all orbits

plunging into the black hole are disallowed.
Solving v,(#) = 0, the two simple roots are

L Al k(4=-32) 1 /(44 P) (4% + kP (4-307))
127 3074

(4.61)

Here 7, are real when -7, </ <7?,, where ¢, =

[r2 | 2 o
2 \j-J’K > ¢,. Note that when 7, =0, £ = — £
3k K

When ¢ = +7,, there is a double root at

y
e K<KA” + 1).
e

It is positive (and therefore relevant) only for £ = £, and
e <Qorfor£ =-7¢,and e > 0. When ¢ = +7,, the radial

potential is
2k \2  4er
v, (F) = <e i—K) L7

(4.62)

%) * 5 (4.63)

(2V/3k+3e)?
12v3e
We conclude that when ¢ > 0,

and the simple root is 7| = F

near-NHEK ¢ ¢
é
£=——
" [+ In
[#9—0+]n [+n
=] _ bl
$=ln
[+e—1In
0 (&
[#$=1In
_e* |4
[#1n
' |l
Forbidden

Classification of radial root structures in NHEK and near-NHEK.

(i) When |¢| > ¢, v,(7) > 0 for # > 0, the root struc-
ture is | + |,

(ii)) When? = ¢, 7, <0, then v, (#) > 0 for # > 0, the
root structure is | + |,

(ili) When?, <?¢ < ?,,%, < #; <0, then v,(#) > 0 for
7> 0, the root structure is | + |,,.

(iv) When? =¢,, #; <0, then v, (#) > 0 for 7 > 0, the
root structure is | + |,

(v) When —¢, < ¢ < ¢,, 71 <0 < 7, then v,(7) >0
for 0 < 7 < 7, the root structure is | + & — |,

(vi) When ¢ =-¢,, # >0, then v,(?)>0 for
0 < 7 < 74, the root structure is | + ® — |,,.

(vil) When -2, < ¢ < =¢,,0 <, < 7, thenv,(?) >0
for 0 <7 <7 and 7> 7, the root structure
is |+._.+|n'

(viii) When ¢ = ¢, 7, > 0, then v,(#) >0 for 7> 0,
the root structure is | + o® + |,.

When é < 0,
(i) When |¢| > ¢, v,(7) > 0 for # > 0, the root struc-
ture is | + |,

(i) When ¢ = ¢, #, > 0, then v,(7) > 0 for # > 0, the
root structure is | 4 e® -+ |,

(iii) When Z, < <¢,, 0 <#, <7, then v,(7) >0
for 0 <7 <7 and 7> 7, the root structure is
| te—eo+ |n

(iv) When ¢=¢,, 7 >0, then wv,(7)>0 for
0 < 7 < 74, the root structure is | + ® — |,,.

(v) When ~¢, < £ < £,, 7, <0 < 5, then v,(7) > 0
for 0 < 7 < 7, the root structure is | + & — |,

(vi) When ¢ = —¢,, 7 <0, then v,(#) > 0 for 7> 0,
the root structure is | + |,,.

(vil) When—-¢, < ¢ < =¢,, %, < #; <0,thenv,(?) >0
for # > 0, the root structure is | + |,.

When ¢ = 0,

(i) When ¢ =¢, =7¢,, there is no root. The root
structure is | + |,

(il) When || > 7,, v,(#) > 0 for # > 0, the root struc-
ture is | + |,
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(ili) When —¢, < ¢ < ¢,, #; <0 < 7, then v,(7) >0
for 0 < 7 < 7, the root structure is | + & —|,,.
Considering the bound in Eq. (4.58), we display the root
structure including the slashed code for disallowed orbits in
Fig. 11. Comparing with the results of [48], we find one
forgotten range for deflecting orbits.” In fact, deflecting
orbits are allowed in the range ¢ < —«?7,, ¢, < ¢ < —%.3

V. SEPARATRIX BETWEEN GENERIC
RADIAL GEODESIC CLASSES

The separatrix is defined as the codimension 1 region in
phase space such that the root structure contains a double
root. Since negative energy orbits admit no double root, we
assume E > 0 in this section. In the following, we will
show that the separatrix can be entirely described in terms
of a single quartic that appeared previously in related
contexts in Refs. [51-54],

PH(p—2e—6)2—-2a2(1+e)p((3—e)p + 14 +2¢2)
+a*(3-e)*(1+¢)?=0. (5.1)

The interpretation of p and e will differ depending upon the
region of the phase space considered. As we will discuss,
the separatrix is the union of three distinct regions
respectively obtained when (1) the pericenter of bound
motion becomes a double root (in the region E < 1), (2) the
eccentricity of bound motion becomes zero (in the region
E < 1), and (3) the turning point of unbound motion
becomes a double root (in the region E > 1). Only in
region (1), p is the standard semilatus rectus and e the
eccentricity of the bound geodesics existing in that region.

A. Bounded orbits: Pericenter becoming
a double root

Bounded orbits occur when the root structure contains
the structure e + o, where the bullets indicate the turning
points, namely, the pericenter r, and apocenter r, that
radially bound the orbit. Given our classification of
bounded orbits, we can now simply read off Fig. 7 to
deduce in the phase space spanned by the parameters
(E, ¢, Q) which are the root structures that bound the root

“The reason for this forgotten range is that the classification of
equatorial orbits in Eq. [43] (consequently used in Ref. [48])
assumed that the parametrization of such deflecting orbits was
given in generality as in Eq. (2.17) of [41], which is only valid in
the region ¢ > —é/x while a parametrization of larger range
exists covering the region 7, < ¢ < —&/k as well as what we
now showed.

3Here is the following correction in the notation of Ref. [48]. In
Table 5 of Ref. [48] the range of the class Deflecting(e, #) should
be —o0 <e<—kV-C<0, not —x€ <e <—-kv—-C<0. In
Table 7, the upper left red triangle ¢ > 7,, e < —«¢ should
not be disallowed but instead is allowed with the class
Deflecting (e, ).

structures that contain the sequence ® + @ corresponding to
bounded orbits. Bounded orbits around a Kerr black hole
only occur in the three-dimensional region bounded as

max (0, Q“(E. 7)) < Q < Q*(E.?), (5.2)
which is defined for Ejgcg+ < E < 1. The phase space
boundary of bound motion, which is the part of the
separatrix for E < 1, is therefore the union of the locations
0 =max(0,0“(E,?)) and Q = Q°(E,¢), which were
implicitly defined in Eqgs. (3.58) and (3.59).

We will discuss in this section the lower separatrix
0 = max(0, Q“(E, ¢)), while the upper separatrix will be
discussed in Sec. V B. The radial phase angle v, eccen-
tricity e, and semilatus rectum p are defined by para-
metrizing bounded orbits as quasi-Keplerian orbits,

P

=2 53
" 1+ ecosy (53)

rp STy,

with 0 < e < 1. The pericenter and apocenter radii are
defined as

Lo P L= P
P 4e’ “Tl-e

(5.4)
The condition r, > r, translates into the range of p,

(1+e)(1+V1-d®)<p<oco. (5.5)

The radial potential vanishes exactly at the turning points r,,
and r,,

(5.6)

In order to write the lower separatrix Q =
max (0, Q“(E,£)) in simplest terms, we will use the
parameters (e, p, Q). The bound 0 < Q < oo is then

trivially enforced. (We can think of the inclination cos: =
£/+/¢*+ Q* as an auxiliary parameter.) At the location
QO =Q"E,f) in phase space, the root structure
|+ —e+e—) becomes | + e + e —). The pericenter
therefore becomes a double root,
R'(r,) = 0. (5.7)

The three equations (5.6) and (5.7) lead to a unique solution
for (Q, E, ) in terms of the parameters (p, e). Indeed, the
equations R(r,) = R'(r,) = 0 are equivalent to

Q:Qh(Evr*:rp)’ f:fb(E’r*:rp)v (58)
as shown in Sec. Il E, see Eq. (3.37). Upon substitution of
Q and 7 in R(r,) =0, and after some manipulations
involving taking a square, we find a quadratic equation
for E?, 16A(E?)? — 8BE? + C* = 0 where
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Ale.p)=p{-a’(1-e)*(1+ )’ + p((1 + )’ (3 —4de +2¢?) = (1 + €)(3 —2¢ + &*)p + p*) };
Ble,p) = p2a(1 — €)(1 + el (1 4+ €)(3 —2¢) = 3p) + p(=2(1 = &)(1 + eP¥(5 — Se + 2¢2)
+(B3=e)(1+e)*(7T—Te+2e*)p — (1 +e)(15—10e + 3¢?)p? + 4p3);

Cle,p)=—-a*(1-e)*(1+e)+p2B—e)(1—e)(1+e)>=(3—e)*(1 +e)p+4p?).

The discriminant

A(e, p) = B*(e, p) — A(e, p)C?(e. p)

=1 -e)'(1+e)p’(a®(1+e)’ + p(-2—2e+p))*(a’(1 - e)* + p(-2+2e + p))

is always positive in the range (5.5). Only the solution

E-Ee.p) = f?(& p) s Jale ]

(5.11)

is physical because the other solution of the quadratic
equation does not obey the equation R(r,) = 0. It only
appeared from taking a square to obtain the quadratic
equation. The solution is therefore unique. Note that for

Schwarzschild, a = 0, we have correctly E“(0,6) = 23ﬁ
Upon substituting £ in Eq. (5.8), we also obtain explicitly

0-0en=0Eenity) 612
£ = (e, p) th<E”(e,p),$>. (5.13)

The bound Q%(e, p) > 0 is obeyed if and only if p is
restricted to a finite interval,
pa(e;a) < p < pi(esa). (5.14)
The upper and lower bounds are obtained at Q“(e, p) = 0,
which corresponds to equatorial orbits. Now, the roots of
Oy (E, r,) only occur at Elgl) or Elgz) given in Egs. (3.39) and
(3.40). We deduce that the functions p;(e;a), i = 1, 2 are
the only solutions outside the horizon of

E'(e, pi(e)) = EY <”"<6)), =12

5.15
1+e ( )

with the dependence in a understood. (One can easily
disentangle the cases i =1 from i =2 by studying a
special case, see below.) These two expressions involve
nested square roots. After taking twice the square in an
appropriate fashion, one can reduce these equalities in
terms of two polynomials in p. After factoring out poly-
nomials with unphysical roots, one is left in both cases
i =1, 2 with a single fourth-order polynomial, which is
exactly given by Eq. (5.1).

(5.10)

There are exactly two roots outside the horizon, which
are precisely p;(e) and p,(e). This fourth-order polyno-
mial in p precisely agrees with Eq. (22) of Ref. [54], which
was obtained earlier in Refs. [51-53]. The reason why the

same fourth-order polynomial is found is simply that E1(>1>

and Egz) are related by a flip of a, while E“(e, p) and the
polynomial (5.1) are invariant under a + —a. The two
functions p(e) and p,(e), with 0 < e < 1, are plotted on
Fig. 12. This completely specifies this branch of the
separatrix in its simplest form. Special cases of these
functions are the following:
(1) For Schwarzschild, a =0, p;(e;0) = p,(e;0) =
6 + 2e¢ and the finite region (5.14) degenerates into
a line. In this case,

e 2
Q"(e,p12;a=0) = (3“}6)%, (5.16)

(e, p1a;a=0)=0,

(5.17)

FIG. 12. Part of the separatrix with root structure
| + e ++ @ —) occurring for Eisco+ < E < 1. The correspond-
ing bounded orbits are infinitely whirling around the limiting
spherical orbit. The parameters (e, p) obey the bound Q > 0 in
the region p,(e;a) < p < p(e;a) for 0 < e < 1. The allowed
region expands with increasing spin a.
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E'(e,p1pia=0) =

oo (5.18)
Note that for the Schwarzschild black hole, the
geodesics only depend upon the combination
k= Q + ¢2. Upon performing a SO(3) rotation,
one can reach the equatorial plane with Q = 0, and
the angular momentum becomes

23+e¢)

e pia=0)=—m=rars

(5.19)

(2) At the edges of the domain (5.14): for circular orbits
without eccentricity, e = 0, we find the ISCO,

pile =0,a) = rgco-(a), (5.20)

pa(e =0,a) = rigco-(a). (5.21)

In this case, we recover the standard values

p2-2
“(e=0,pya)= ay/prta . (5.23)
3/2
\/2ap/ +(P2=3)p3
-2
(e =0, pyia)=— VP22 50y
\/2017 +(p2=3)p3
and
Q"(e =0.p1;a) =0, (5.25)
—p3-2
£(e=0,py2a WP (5 96)
\/ 2ap3/2 +(p1=3)pt
—2)—
Fie=0.pja)=—YPP1IZD =0 (55

~2ap” +(p,-3)p}

Inside the domain (5.14): for spherical orbits without
eccentricity, e = 0, we have the generic expressions

Q"(e =0.pyia) =0, (5.22) (5.12) and (5.13), while
|
-2 -1 10 4p —11)) = 34>
-3)+3)—a°)
(3) In the parabolic limit ¢ — 1, we have at the edges of E'(e =1,pya) =1, (5.32)
the domain
and
pile=1;a)=2(a+2V1+a+2)= 2rY,
Q"e=1,p;;a) =0, (5.33)

prle=1a)=2(—a+2vV1-a+2)= 2r?, (5.29)

where rgi) were defined in Eq. (3.35). In this case,

Q“(e = 1, py;a) =0, (5.30)

e=1,pya)=2(1+V1-a), (5.31)

e=1,pa)=-2(1+V1+a), (534)
E'(e=1,p;;a)=1. (5.35)

In the domain, we have the expressions

p*(8a® — 16p +4a*p + 6p* — p* +2v/2,/p(4a* + (=4 + p)p))
8a*(=2+ p)? '

Q"(e=1,p;a) = (5.36)

2p? — 84> o 4 + p (p—4)) (4) In the extremal case, a = 1, we have exactly

(e =1,p;a) = o :
dalp=2) (5.37) pileca=1)=5+e+4V1+e, (5.39)
E'(e=1,p;a) =1. (5.38) paesa=1)=1+e. (5.40)
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For p = p(e;a = 1), we find

Q“(e,p1;a=1)=0, (5.41)

£'(e.pria=1)
211+ V1I+e)+e(8+e+3VI+e)
VB=e)(l+e)3+e+3V1+e)

(5.42)
3- 21
E'(e.prra=1)= T2 (543)
V3—e2+V1+e)
For p = p,(e;a = 1),onehasr, = 1,r, = %, and

the solution for (Q, Z, E) is not uniquely determined
in terms of e. Solving instead (5.6)—(5.7), one finds
the two-parameter family

(1+e)((3—e)?—4(1 +e))
4(1—e)? ’
(5.44)

Q"(e.pysa=1) =

E'(e,pr;a=1) :%f, (5.45)
which is parametrized by (e, ¢). Positivity of Q
requires £ > 2+v/1 +e/v/3 —e. Since r, = 1, the
pericenter lies in the NHEK region. At zero eccen-
tricity e = 0, the apocenter also lies in the NHEK
region and Carter’s constant reduces to the value for
the NHEK separatrix Q = 3£2/4 —1 [48] since
the entire geodesics lies in the NHEK region.
At nonzero eccentricity, the orbit is partly in the
NHEK region and partly in the exterior extremal
Kerr region. When ¢ <2/v2-—e, we have
Q“(e,pryia=1)<3f%/4—1ort > ¢, with?, =
% v 14+ Q. Such orbits can match with the

Deflecting(E, ) NHEK orbits as denoted in [48],
during their motion within the NHEK region.

(5) Finally, note that the linear approximation in e is
around 5% accurate,

pile;a) X rigco- + (zr(cl) - rsco-)e,  (5.46)

2
palera)  rigcor + (20 ) - riscorJe.  (5.47)
In summary, the lower separatrix is spanned by (e, p) in the
range

0<e<l, pa(esa) < p < pie;a), (5.48)
where p;(e;a) are the two solutions to the quartic (5.1)
outside the horizon. The explicit manifestly real values of

(Q,¢,E) are given in terms of (e, p) by

0= e =0y (B e ).

“ _ ’ p
£=7 (e,p)=fb(E (e,p),He),
1 [B+VA
E=E'(e.p)=5 +A : (5.49)

where Oy, ¢}, are defined in Eqgs. (3.37) and (3.38), and A,
B, A are defined in Eqgs. (5.9) and (5.10). Special cases are
shown above. This provides a more explicit parametrization
of this branch of the separatrix than in terms of the
twelveth-order polynomial defined in [61].

B. Bounded orbits: Zero eccentricity limit

Let us now discuss the separatrix Q = Q*(E, ). At this
location in phase space, the root structure |+ o — o + o —)
turns into \ + o — e —). The double root gives spherical
orbits. The pericenter and apocenter coincide, the eccen-
tricity goes to 0, e = 0, r, = r, = p. The parametrization
in terms of (e, p) therefore degenerates and becomes
inappropriate. In the parametrization (E, p), the upper
limit of the separatrix is simply given by Q = Qy(E, p),
¢ = ¢, (E, p), which are defined in (3.37)—(3.38).

The root system | + o — e —) admits a simple root
and the larger double root that labels the radial location of
the spherical orbits. We can therefore parametrize the three
roots as

~1<e<0, (5.50)

Tdouble = 1 s Fsimple = s

+e l—e

where (p, e) are new parameters. The new parameter e is
now exactly minus the relative distance between the
simple and the double root, e = —(rgouble = Fsimple)/
(Fdouble + rsimple). The roots degenerates to a triple root
at e = 0. The potential should satisfy

R(rdouble) = Rl(rdouble) =0, R(rsimple) =0. (551)
The explicit solution of these equations is exactly (5.49)
as before with the new interpretation of (p,e) and super-
scripts " to ° since the spherical orbits are now stable.
Explicitly,

0 = 0(e.p) =0y (ES(e,pxl’i),

S — S p
=1 (e,p)=fb<E (e,p),He),
1 /B+ VA
E=E(e.p)=5 +A , (5.52)
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for —1 < e <0. We have that A > 0 and E is real. The
separatrix obeying Q > 0 is therefore given by the range
-1 <e<0, pa(e;a) < p < pile;a), (5.53)
where p;(e; a) are the two real solutions to the quartic (5.1).
The same quartic therefore controls this part of the
separatrix. This is shown in Fig. 13. We note the following
special values:
(1) For a = 0, the shaded region degenerates to a line

pi(e;a=0)=py(e;a=0)=6+2e. (554)

(ii) For a = 1, we have exactly
pilesa=1)=5+e+4/T+e,  (555)
palea=1)=5+e—4/T+e.  (556)

When e = 0 the orbit lies in the NHEK region, and
we have E = 1/\/5, £ =12, Q =1/2. Since
=20, E%m, such orbits are critical in
the sense of [48].

(iii) For e = 0, we have

pi(e = 0;a) = risco- (5.57)
p2(e = 0;a) = rigcoq- (5.58)

(iv) For e —» —1, we have
pile=—lia) = pyle=—-l;a) =4, (559)

which is independent of a. In that limit, £ — 1,

__2 16
£ — m+0(1) andQeam+0(1).
p
pa=1) _.
85- =TT
P pi(a=1/2)
6.5 ——_,4'— ................... p1,2(a=0)
B ma=1/2)
\s ........................................................
25 IR
s T T pa(a=1)
05/
1 1 L 1 1 n L 1 1 L 1 1 1 e
-1.0 -0.8 -0.6 -0.4 -0.2 0.0
FIG. 13. Part of the separatrix containing a stable double root:

| + o — o0 —>. This occurs in the range Ejgcor < E < 1. The
bound Q >0 is obeyed in the region p, < p <p; for
—1 < e <£0. The allowed region expands with the spin a of
the black hole.

C. Unbounded orbits: Turning point becoming
a double root

Unbounded motion occurs for E > 1. The phase space is
depicted in Fig. 6. Generic unbound motion has either no
turning point (which corresponds to the root structure |+))
or one turning point (which corresponds to the root
structure |+ ® — e +)). The separatrix between these
two classes of orbits is given by the root structure
| + e +). In this case, there must be a double root and
one real root which is less than 0. We parametrize the three
roots as

p p

l+e rnegative:]_e9 e> 1.

T'double = (560)
The interpretation of e is now the inverse of the relative
distance between the absolute value of the negative
root and the double root: e = (|Fnegative| + Tdouvlc)/
(|7negative| = Tdouble)- The deflecting point is located at
r = T'gouple- At the deflecting point, we have

R(rdouble) = R,<rd0uble) =0,

while we also have

(5.61)

R(rnegative) =0. (562)
The solution to these equations is exactly (5.49) but with
now e > 1. One can check that A > 0 and E is real. The
condition Q > 0 amounts to the bound for p,

prlesa) <p<pilesa), e>1,  (5.63)
where p; and p, are the two solutions to the same quartic
equation (5.1), as derived previously.

When e — oo, the two bounds approach p;,(e;a) —
r.e + 0(e%), and the orbit approaches to r — . In the
parabolic limit e — 1, one recovers the values (5.29).
The values p;,(e;a) are depicted in Fig. 14. The summary
P p12(a=0)
100 Pi(a=1/2)
A nala=172)

.-
.-
-

-="
-
-
-
-
-

FIG. 14. Part of the separatrix with root structure | + eo® +>
occurring for E > 1. The parameters (e, p) range in the intervals
e>1, pa(e;a) < p < py(e;a). The region grows with increas-
ing spin a. In the large e limit, p;,(e;a) — r e + O(e).
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P Ersco+ <E<1 E>1 pl(a=1)
14 stable spherical orbits : unstable spherical orbits P
f#l+(E):|+-—u—)/\\ | +o+o—) T |+nj—_}—"—
L i 3 --n a=1/2
120 | 0=t,(E):p-e-) +i .- pl( / )

FIG. 15. Complete Kerr separatrix where a double root occurs. It is the union of the root structures ‘ + o — o0 — >, | + o0 |+ @ —>,
| + @00 —). ¢ — @@ —), and | + ee ). The allowed range is —1 < ¢ < o0 and p,(e;a) < p < p;(e;a), where p; and p, are the
two real solutions of the quartic (5.1). The cusp for the lower bound p, occurs in the near-horizon extremal Kerr (NHEK) region
a = r = 1, which can be resolved after introducing the NHEK radius (r — 1)/v/'1 — a?. It leads to the NHEK separatrix, which requires
a distinct treatment [48]. The large e behavior is depicted in Fig. 14.

of the three distinct regions of the separatrix is given
in Fig. 15.

VI. CONCLUSION

We performed the taxonomy of inequivalent root struc-
tures of the quartic potential determining the radial Kerr
geodesic motion using the reality of polar motion as
constraints. Distinct generic root structures are separated
by codimension 1 boundaries in phase space that are of
three types: (1) the complete separatrix, i.e., the root
structures containing a double root whose geodesic classes
contain, correspondingly, spherical orbits and “whirling
orbits” that asymptotically approach or leave spherical
orbits, (2) the region where one root coincides with the
outer horizon, and (3) the marginal case where the energy is
|E| = 1 such that the order of the radial potential degen-
erates to three since one root disappears. The classification
was achieved by establishing the phase space for these
degenerate cases, taking into account the bound on Carter’s
constant arising from the reality of polar motion. We further
established which radial motion is allowed due to the
constraints in the ergoregion on the existence of time and
azimuthal motion.

The result reads as follows. For 0 < E < 1, the eight
inequivalent root structures are summarized in Table III,
and their phase space in (E, Q, £) basis is given in Fig. 7.
For E > 1, the four inequivalent root structures are sum-
marized in Table II, and the corresponding phase diagram
in (E, Q. ¢) basis is given in Figs. 3 and 6. The large E limit
reproduces the null case [60]. The near-horizon near-
extremal limit reproduces the (near-)NHEK classification

of [48] up to one correction (the range of existence of near-
NHEK deflecting orbits has to be extended), see Fig. 11.
The resulting 11 distinct classes of radial motion for £ > 0
(which are coinciding between Kerr and Schwarzschild) are
explicitly listed in Table V and Tables X—XII. We distin-
guished generic orbital classes where both radial endpoints
are either a turning point, the horizon, or infinity from
nongeneric orbital classes, where at least one endpoint is a
double, or triple root, or a root at the horizon. Negative
energy orbits only exist within the ergoregion and are
trapped orbits, consistently with [33]. Explicitly real, fully
explicit, initial data-dependent analytical solutions in terms
of elliptic functions are known for specific radial motion,
such as bounded radial motion, see [59]. The derivation of
such a solution for all types of radial motion is also beyond
the scope of this paper.

We further classified the inequivalent root structures on
the equator strictly within the ergoregion by explicitly
evaluating the position of the ergosphere with respect to the
radial roots, see Figs. 9 and 10. This led to the identification
of six distinguished values of the angular momentum of the
black hole listed in Table VI. We also provided a qualitative
description of nonequatorial orbits.

Furthermore, we obtained an explicit description of the
complete separatrix. We showed that it can be algebraically
described in terms of a single quartic in appropriate
variables (e, p) as the union of three distinct regions
respectively obtained when (1) the pericenter of bound
motion becomes a double root (this occurs in the range
Eiscor £ E <1 and the associated spherical orbits are
unstable), (2) the eccentricity of bound motion becomes
zero (this also occurs in the range Ejgco+ < E < 1 but the
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associated spherical orbits are stable), and (3) the turning
point of unbound motion becomes a double root (this
occurs in the range £ > 1 and the associated spherical
orbits are unstable). The phase space of the separatrix is
summarized in Fig. 15. In the range 0 <e < 1, the
parameters (e, p) are interpreted as usual as the eccentricity
and semilatus rectum of corresponding bounded orbits,
while for —1 < e < 0 or e > 1 the interpretation is given in
terms of relative distance between roots of the correspond-
ing root system. This completes the result of [61] to the
complete separatrix using a single fourth-order polynomial
in (e, p).

The classification, tables, and figures provided in this
work may lead to further insights on the properties of
matter surrounding astrophysical black holes. In particular,
the distinguished values of a listed in Table VI might be of
astrophysical significance. For example, for highly spin-

ning black holes with a > a£2> ~ 0.83, equatorial bounded

motion starts to occur within the ergoregion, while for
a> a(f) ~ 0.94, equatorial bounded motion completely
occurs within the ergoregion, see Fig. 9. Accretion disks
then contribute to a collisional Penrose process due to
collision of particles within the disk even in the absence of
magnetic fields [80-88]. On a different note, the thermo-
dynamic bound 7 < E/Q_ is always obeyed for trapped
geodesics. This illustrates that geodesics can be used to test
the fundamental laws of thermodynamics of black holes.
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APPENDIX A: DISCRIMINANT AND ROOTS
OF A POLYNOMIAL

The roots of a polynomial can be characterized by the
discriminant of the polynomial. For a polynomial with
degree n,

Pn('x) :xn+a”_1xn—1 +"'+a07 (Al)

we define the discriminant

A, =[x =x)% (A2)
i<j
where x;,i =1,...,n are the n roots of the equation

P(x)=0.

024075-35

(1) n = 2. The discriminant is
A2 = a% - 4610. (A3)

(a) A, > 0, two distinct real roots.
(b) A, < 0, two distinct complex roots.
(c) A, =0, two equal real roots.

(2) n = 3. The discriminant is

Az = =27a3 + 18apa,a, — 4aya3
—4a3 + aia3, (A4)
2 3
q P
=—-108( —+—= A
08(4 +27>, (AS)

a3 aa, | 24
where P = a — 3 q :aO_T—’_W'
(a) Ay > 0, three distinct real roots. We define

3
P 1 q
~ .
v=1/ 57> 0, 0= 5 arccos < 20) (A06)

Then the three roots are
aj N 271'] .
xj:—?+2\‘/z_)cos 9+T s ]:0,1,2 (A7)

(b) A; < 0, one real root and two complex roots.
The real root is

+ —g— =3 (A8)

(c) Ay =0, three real roots with at least two equal.
(i) p = g =0, three equal real roots. The three
real roots are

a

2 (a9

X1 = Xp = X3 = —

(i) ¢ # 0, two and only two equal. The three
real roots are

X = —%Jrzf/—%, (A10)

x2:x3:—%— : —g. (A1)
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(3) n = 4. The discriminant is

Ay =-27a} - 4aga? + 18aya3a3 —4a3a? + asa3a?
—6ayalal + 144aya,a? + 18agayaia,
—192a3asa, — 80agazasza, + 16aya;
—27a}a% + 256a3 — 128a3a3 — 4agaia3

+ 144a}a,a3. (A12)

The reduced form of the polynomial is

a
Py(x) =y +py2+qy+s, y=x+-—, (Al3)

4 9
where
3 2
p=a - (A14)
1,
q :§(a3 —4dasaz + 8ay), (A15)
1 3
s =ag— ﬁa3(3a3 — 16aya; + 64a;). (Al6)

Using p, ¢, and s, we find

A, = 16p*s —4p3q® — 128p2s® + 144pg’s
—27¢* + 256s°. (A17)

We define the resolvent cubic equation as

Res(y) =y — py?> —4dsy +4ps—qg> =0. (Al8)

The discriminant of the resolvent cubic equation is
Az, = Ay. (A19)

Then the general four roots are

as 1 1 2
Xy :—f+§m+§\/—Y1—P——,

Yi—Pp
(A20)

xz_—%Jrl Vi—=P—35¢/~Vi—P— 24
4 2 2 Y —p
(A21)

a; 1 1 2
X3 _—Z}—E\/H‘FE\/—M —P+4ﬁ,

(A22)
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(A23)

for y; # p. We always choose y; to be the largest
real root of the resolvent cubic equation. Since

Res(p) = —¢*> <0. (A24)
By definition, we have
yi 2> p. (A25)

When y; = p, we have ¢ = 0. The four roots can
then be written as

/ 2
- Vpr—4
x| :_%_f_ %, (A26)

as —p+\/p*—4s
=-3_ . (A27
X2 4 2 ( )
G\ [ZPoVPT oA g
X3 = —— ,
3 4 2
as iy 2 p2 - 4S (A29)
Xy=——"=\—
4 4 2

The following discussion is borrowed from [89]:
(a) Ag > 0, roots distinct, all real or all complex.

(1) p<0ands > Z, roots complex.

(i) p<O0ands < %2, roots real.

(iii) p >0, roots complex.

(b) A4 <0, roots distinct, two real and two
complex.

(i) ¢ > 0. Itis clear that x5, x4 are real and x;,
X, are complex, x3 > x4.

(i) ¢g=0. Since A4 <0, it leads to s <O.
Therefore, x;, x, are real and x;, x, are
complex, x; > x,.

(i) g < 0. Itis clear that x4, x, are real and x3,
x4 are complex, x; > x,.

(c) Ay, =0, at least two 2equal roots.

i) p<Oands> ”7, two equal real roots, two
complex. , ,

() p<0and —% <s <%, roots real, two
and only two qual.

(iii) p <0 and s = £, two pairs of equal real
roots. The four real roots are

m:@:—%+d—§ (A30)
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T p
Xy =Xy = —— — - .

A3l
| ) (A31)
It is clear that x; > x;.

(iv) p <0 and s = -2, triple roots and one

real root.
i ¢>0,
3
)CIZXZ:X:;:—%"’g, (A32)
3 3
Xy = —%— \2/6_’. (A33)
It is clear that
x| > Xy (A34)
(i) ¢g <0,
a; 3
xlz—f—z’Wb (A35)
as 1
Xy = X3 :X4:—Z+Eﬁ (A36)

It is clear that x; > x4.
(v) p=0and s > 0, two equal real roots and
two complex.
i ¢g>0,

as 3/ 4
=x4=-— -, A37
X3 = X4 1 +4/ A (A37)

while x;, x, are complex.
(i) g <O,

as 3/ 4
=xy=-—— -, A38
x| =X 1 +4/ 1 (A38)

while x3, x, are complex.
(vi) p =0and s = 0, four equal real roots. The
four real roots are

X1:XQ:)C3:X4:—@ (A39)
(vil) p > 0and s > 0 and g # 0, two equal real
roots and two cozmplex.
(viii) p > 0 and s=4- and ¢=0, two pairs of
equal complex roots.
(1) ¢ > 0.x3 = x4 are real, while x, x, are
complex.
(i) g < 0. x; = x, are real, while x5, x4 are
complex.
(ix) p > 0 and s = 0, two equal real roots and

two complex. The two real roots are

as

;- (A40)

X1 =Xy = —

APPENDIX B: SCHWARZSCHILD GEODESICS

The radial function is

R(r) = r((E* = 1)r* +2r> —kr +2k),  (B1)
where k = Q + £? is the square of the angular momentum
along the direction orthogonal to the plane of motion. The
reality of polar motion only requires k > 0. The horizon is
located at r = r, = 2. There is no ergosphere and, con-
sequently, £ > 0.

1. Marginal orbits

Marginal orbits are by definition orbits such that £ = 1.
This condition reduces R(r) to a cubic polynomial with
roots ro = 0 and

Fia = % (k+ /k(k=16)).

The orbits are classified according to the sign of the
discriminant k(k — 16). We distinguish

(1) 0 <k < kjpe, = 16. Then r;, are generically com-
plex, while r; = r, = 0 for kK = 0. The orbit class is
denoted as |+). There are only two types of orbits
both with r, < r < oo. The orbit is either plunging
to the horizon or escaping to infinity, depending
upon the initial velocity. They are unbounded with
respect to the black hole. We denote them as
P(k’ Eibco)'

(2) k=16. This leads to a double root r; =
ry=ripeo =4 and the root structure | + ee +).
There are three types of orbits:

(a) ry £r < rye,. For positive initial velocity, the
orbit originates from the white hole and reaches
the radius r;,., asymptotically. For negative
initial velocity, the orbit originates asymptoti-
cally from r;,., and reaches the black hole in
finite affine time. We label these two trapped
orbits that are whirling in spacetime around ;.
as WT" (Eibca)'

(b) r = rye- This is a circular orbit, which we label
as C"(Eipe,)- Since R"(ry.,) > 0 the orbit is
unstable.

(€) Fipeo < r < oo. The radius ry,., 1s reached
asymptotically, either in the infinite past or
future affine time. Both types of whirling de-
flecting orbits are labeled as WD"(Ey.,)-

(3) 16 <k < o0. We have r, < r, <r; and the root
structure | + @ — o). There are two types of orbits:
(a) ry <r < r,. This orbitis trapped in between the

white hole and the black hole while reaching an

(B2)
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TABLE X. Radial taxonomy of marginally bound orbits. Here E;;,

=, kipeo = 16M?p?, and ry,., = 4M.

Energy Carter constant Root structure Radial range Name
E=Eipeo 0 <k <kipeo |+> rySr<eo ,P(kv Eibco)
k= kipco | + oo +> Iy 27 <Tipeo WT”(Eibco)
= Tipco Cu(Eihcn)
Tibeo < T < wD (Eihco)
kibco <k<oo | + e - .+> Iy <r< r T(kv Eibc())
ry <r<o D(k, Eibco)
intermediate turning point at r,. We call it  where
T(k’ Eibco)'
(b) r; <r < oo. This is a deflecting orbit starting . , 32
i infini i . ) 27E* -36+ 8 F |E|(9E~ -8
and ending at infinity. We call it D(k, E;;.,)- k= k() = F |E|( ) . (B4)

This leads to the taxonomy displayed in Table X, which
will smoothly join with the taxonomy of E > E;;,., orbits
derived below.

2. Generic nonmarginal orbits
For E # 1, the radial potential R(r)/r is cubic in r.

a. Discriminant

The discriminant A5 is given by

4k[(1 — E*)k* + (27E* — 36E* + 8)k + 16]
(£ - 1)*

= k(= k) (k= k), (B3)

2(E*-1)

The discriminant vanishes for three special values of k.
Note that k*" are real (and therefore relevant) only for
E> Ejpo =22 ALE = Ejyp, k* = k" = ki = 12. The
bound £* > 0 is obeyed for any E > E,,,, but k&* >0 is
only obeyed for E;., < E < Ej., = 1.

The discriminant vanishes for three subcases:
k = 0,k*, k. For k = 0, the double root of R(r)/r occurs
at r = 0, while the simple root occurs at r = r| = ZEZ For
E > 1, it is inside the horizon and therefore 11Televant For
0 <E <1, it is outside the horizon. Since R'(r;) <0,
motion is allowed in r, <r <ry.

For k = k*" real, the three real roots are given by

o 2V9E? — 2
= \/ +9E(3E? -2) — (9E* —2)V 9E* — 8 —

WAE ) QR >
P == - \/i9E 3E2—2) — (9E> —2)\V/9E? — 8 — 2 (B6)

3f (E2

where +/x is the real cube of x.

b. Classification of orbits

We discuss the orbits according to the range of £. When
E? < 1, there is always one positive root since the function

R(r)/r evaluated at 0 is positive, while evaluated at oo is
negative.

ForO0<E < 2‘/_ , we have A; < 0 and therefore only one
real root | (not glven explicitly here), which is outside the
horizon, r; > r,. The only allowed motionis r, <r <ry,
and the root structure is | + ® —). We call this trapped orbit
as T (k,E).

For E = E;,., = 2{, k® = k* = kj., = 12 and all three
radial roots coincide, r; = r, = r3 = rj., = 6, leading to
| + ee® —). The constant r = r;., =6 orbit, where

3(E?-1)’

|
R"(ris,) = 0 is the outermost unstable circular orbit or
the innermost stable circular orbit C;.,. The whirling
trapped orbit ri <1< rie called WT ., is also allowed.

For 2Y2 == 2 < E < 1, we have k* < k’. Therefore, we have
Az < 0 (one real root) for either k < k" or k > k*, while
Az > 0 (three real roots) for k* < k < k*, which leads to
the root structure |+ o — @ + e —).

For the branch k = k* existing in the range ¥ <E<LI,
we have 6 < r§ =7 <ocoand 2 < rf <6 with r§ = r} =
ry=~6atE = %ﬁ The potential R(r)/r is positive at r = 0
and negative at large r, leading to the root structure
| + o — e —). Since (B)"(r: )<Ofor2‘/.<E<1 the
constant radius orbits » = r§ = rj are stable circular orbits,
which we denote as C*(E). There are trapped orbits
7 (k*,E) in the range r, <r <r}, which continuously
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TABLE XI. Radial taxonomy of bound orbits. Here Ej., = %ﬁ U, kigeo = 12M%p%, and 1y, = 6M.

Energy Carter constant Root structure Radial range Name
E < Eiy, 0<k<o |+ o—) ry <r<r T(k,E)
E = Ej, 0 <k < kiseo | + e _> ry Srr T(k’ Eisco)
k= kisco | -+ eo® —> ry <1 <o WTisco

I = Tisco Cisco
kisco<k<°° |+._> r+§r§r1 T(k’Eiscn)

Eisco<E<Eibco 0<k<k |+._> I‘+SI’S}’1 T(k’E)
k= k" |_|_.. ._> ro <r<rj WTY(E)

r=rj C"(E)

ry<r<r H"(E)

kKt < k <k |+ o —o 4 o) rs<r<r B(k,E)

ry <r<n T (k,E)

k=K |—|-.—.—> r:ri CS(E)

ro <r<r T5(k*,E)

k* <k <o |+ o) ro <r< T (k,E)

TABLE XII. Radial taxonomy of unbound orbits. It reduces for E = E;;., to the taxonomy of marginal orbits, see Table X.

Energy Carter constant Root structure Radial range Name
E > Ejpe, 0<k< k" [+) rp<r<o P(k,E)
k= k" |—|—oo—|—> ry <r<rj WT"(E)

r=rj C"(E)
ry<r<oo WD"(E),

k> ke |+ o~ o) rn<r<o D(k. E)

rp <r<rs 7T (k,E)

k
M2p2

|+.4.+-4>

kibca _
M2p2
|+o—)
Kisco
=12
M?2p? | + ooo —)
*
Fisco _ 2V2 Eipco _ 1 E
] 1 p

FIG. 16. Phase space diagram representing the eight distinct root diagrams (four generic and four nongeneric) for Schwarzschild with
E > 0and k > 0. Here | represents the horizon, ) spatial infinity, + an allowed radial range, — a disallowed radial range, ® aroot (turning
point/no velocity), e® a double root (attractor point/no velocity nor acceleration), and eee a triple root.
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k

M22
T(k,E)
. )
Kibeo _ 16 %@
M22
T"(Eibeo)
c CU &E\
k‘bscn _ isco .
M2 12 Wisco 8
) P(k,E)
3
Q
Eisco 22 Eipeo _ E
I 3 72 1 H

FIG. 17.
Tables X, XI, and XII.

join to the class found for E < E;,.,. For k > k°, the double
root becomes complex, and only the trapped orbit 7 (k, E)
exists, corresponding to the root structure | + ® —), which
again continuously join to the class found for E < Ej,.,.

For the branch k = k* valid in the range %5 < E < o0,
we have 3 < rj = r§ <6. In the range gsEz <1, we
have 6 <r{ <co. This leads to the root structure
| + e@ + @ —). Also R”(r4) >0 and therefore constant
r = r4 orbits denoted as C"(E) are unstable circular orbits.
The orbits r, <e <rjy are whirling trapped orbits
WT"(E), while the orbits rj < r < r| are homoclinic
orbits H*(E). For 0 < k < k“, the double root becomes
complex, and there are only the trapped orbits 7 (k, E)
corresponding to | + e —).

For E>1, we have k* <0 and k" > k;,., = 16.
Therefore, we have A; <0 for 0 < k < k" and A; >0
for k > k". In the range E? > 1, we have ¥ < 0. Since
R"(ry) > 0, constant r = r4 are unstable circular orbits

Phase space diagram representing all 11 distinct classes of Schwarzschild orbits. The 11 distinct classes of orbits are listed in

C"(E). For k = k", we have the root structure | + o0 —|—>.
There are whirling trapped orbits WT"(E), r, <r <r}
and whirling deflecting orbits WD"(E), ry < r < oo. For
k > k", the double root becomes two simple roots with, as a
convention, r; < r, (which can be obtained numerically),
and there are two types of orbits: trapped 7 (k, E) with
ry < r <r; or deflecting D(k, E) with r, < r < co. This
corresponds to | + ® — e ). For k < k“, the double root
becomes imaginary. Since r; remains below the horizon,
we have |+). There is a single plunging orbit P(k, E)
(which is instead moving outwards in case of positive initial
velocity) with r, <r < 0.

This leads to the taxonomy displayed in Tables XI and
XII. There are 11 distinct geodesic orbit classes, counting as
separate classes all orbits with qualitatively distinct end-
points (simple, double, or triple root, horizon or infinity).

The classification of the root structures is displayed in
Fig. 16. The full classification is displayed in Fig. 17.
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