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We study the process of fully nonlinear dynamical scalarization starting from a charged black hole or a
naked singularity in asymptotically flat spacetime in the Einstein-Maxwell-dilaton theory. Initially, the
dilaton field is negligible compared to the gravitational and the Maxwell field. Then the dilaton field
experiences an immediate growth, later it oscillates with damping amplitude and finally settles down to a
finite value. For a hairy black hole that develops from an original Reissner-Nordström black hole, since the
dilaton oscillation and decay are almost independent of the coupling parameter, unlike the anti–de Sitter
spacetime it is not easy to distinguish the resulting hairy black hole from the original asymptotically flat
charged hole. For a hairy black hole evolves from an original naked singularity, the resulting hairy black
hole has rich structures. In the scalarization process, the naked singularity is soon enveloped by one outer
horizon, then another horizon is developed and in the end, a stable hairy black hole forms and two horizons
degenerate into one protecting the singularity. The hairy black hole mass saturates exponentially in the
scalarization.
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I. INTRODUCTION

The Einstein-Maxwell-dilaton (EMD) theory origins
from the Kaluza-Klein compactification [1] and also
appears as the low energy limit of string theory and is
ubiquitous in supergravity [2,3]. Dropping all the fields
except the metric g̃μν, the dilaton ϕ and the Maxwell field
F̃μν ¼ ∇̃μAν − ∇̃νAμ, we consider the generalized EMD
theory with the following action in the Jordan frame [4]

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g̃

p
e−2aϕ

× ðR̃þ ð6a2 − 2Þ∇̃μϕ∇̃μϕ − F̃μνF̃μνÞ; ð1Þ

in which R̃ is the Ricci scalar of the metric g̃μν. When
a ¼ 0, this action reduces to the Einstein-Maxwell theory
minimally coupled to a free scalar. When a ¼ 1, this action
is the low energy limit of superstring theory. When
a ¼ ffiffiffi

3
p

, the theory gives the four dimensional reduction
of the Kaluza-Klein theory. By a conformal transformation
gμν ¼ e−2aϕg̃μν, we get another convenient representation

of EMD theory in the Einstein frame, in which the action
now reads

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 2∇μϕ∇μϕ − e−bϕFμνFμν�: ð2Þ

Here R is the Ricci scalar of the metric gμν and b ¼ 2a
controls the coupling strength between the dilaton and the
Maxwell field.
The EMD theory has been widely studied in holography

due to the rich phase structures and dynamics of charged
black holes in asymptotic anti–de Sitter (AdS) spacetimes
[5–11]. In the asymptotic flat spacetime, it has also
attracted heavy attention since it admits hairy black hole
solutions with the scalar, vector radiative modes, in
addition to the tensor channels. It is a well-motivated
theoretical laboratory to explore the impact of new degrees
of freedom in the context of testing the no-hair conjecture.
The exact static charged dilaton black hole solutions of the
action (2) were found in [12,13]. These black holes always
carry scalar hair and their charge to mass ratio could exceed
unity. The linear studies show that these solutions are stable
for generic values of the dilaton coupling and the black hole
charge [14–19]. The existence of the dilaton breaks the
isospectrality between the axial and polar sectors of the
linear perturbations. At the nonlinear level, the dynamical
evolution of an individual black hole and the binary black
hole merger were studied numerically [20]. The binary
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system was also analyzed by post-Newtonian approxima-
tion [4,21]. The results show that these black hole systems
are difficult to distinguish from their analogs within general
relativity when the black hole charge is small, dramatic
changes occur only for nearly-extremal charged black holes
on very compact orbits.
The scalarization of black hole has attracted a lot of

attentiondue to the discovery of spontaneous scalarization in
the Einstein-scalar-Gauss-Bonnet (ESGB) theory [22–28]
and Einstein-Maxwell-scalar theory recently [29].
Spontaneous scalarization endows black hole with scalar
hair without altering the predictions from general relativity
in the weak field limit. This mechanism was first studied in
scalar-tensor theories [30–35] and has been found in many
other theories [36–41].Most of the studies focus on the static
properties or the linear stability of the hairy black holes
[42–57]. Several works focused on the nonlinear dynamics
of individual black hole scalarization [58–60] and binary
black hole merger in ESGB theory [61–66]. The nonlinear
equations of motion in ESGB theory may not be well
posed, while the Einstein-Maxwell-scalar (EMS) or EMD
models have no higher curvature corrections and allow
a technical simplification for the nonlinear studies
[20,29,67–72].
In this paper, we focus on the nonlinear dynamical

scalarization in spherically symmetric spacetime in the
EMD theory. When the initial dilaton is small enough, we
observe that the resulting configuration is very close to the
Reissner-Nordström (RN) black hole solution.
Interestingly, we find that our numerical method works
well not only for simulations starting from initial black
holes, but also naked singularities. We show that a naked
singularity can be protected after the scalarization and a
hairy black hole can be formed finally. But for a hairy black
hole that evolves from the original RN black hole through
scalarization, we find difficulty in distinguishing them
since the spectrum of the dilaton oscillation is almost
independent of the coupling parameter. This is different
from the observation in the AdS spacetimes [70].
This paper is organized as follows. In Sec. II, we present

the equations of motion in the EMD model. In Sec. III, we
describe our numerical method and show the numerical
results. In Sec. IV, we summarize the results.

II. EQUATIONS OF MOTION

Varying the action (2) with respect to gμν;ϕ and Aμ, we
get the equations of motion for the metric, dilaton and
gauge field, respectively.

Rμν −
1

2
Rgμν ¼ 2

�
∂μϕ∂νϕ −

1

2
gμν∇ρϕ∇ρϕ

þ e−bϕ
�
FμρFν

ρ −
1

4
gμνFρσFρσ

��
; ð3Þ

∇μ∇μϕ ¼ −
b
4
e−bϕFμνFμν; ð4Þ

∇μðe−bϕFμνÞ ¼ 0: ð5Þ
The theory has a symmetry ðb;ϕÞ ↔ −ðb;ϕÞ. In the
following we consider the cases with b < 0. To simulate
the dynamic scalarization in spherically symmetric space-
time, we adopt the Painlevé-Gullstrand (PG)-like coordi-
nates ansatz

ds2 ¼ −ð1 − ζ2Þα2dt2 þ 2ζαdtdr

þ dr2 þ r2ðdθ2 þ sin2 θdϕ2Þ: ð6Þ
Here ζ, α are functions of t, r. The apparent horizon
locates at ζ ¼ 1. The PG coordinates are regular on the
apparent horizon, and have been used to study the black
hole formation both analytically and numerically
[59,60,73–76]. For RN black hole, the metric functions

read α ¼ 1, ζ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
r − Q2

r2

q
. Here M is the black hole mass

and Q the black hole charge. Note that the Arnowitt-Deser-
Misner mass in PG coordinates always evaluates to be
zero, and does not capture the correct physical mass of the
spacetime [77]. Hence, we use the Misner-Sharp mass [78]
which is defined as

mMSðt; rÞ ¼
r
2
ð1 − gμν∂μr∂νrÞ ¼

r
2
ζðt; rÞ2: ð7Þ

The Misner-Sharp mass can be thought as the radially
integrated energy density of the stress-energy tensor and
the spacetime mass M ¼ limr→∞mMSðt; rÞ is evaluated at

the spatial infinity. The black hole irreducible mass Mh ¼ffiffiffiffi
A
4π

q
in which A is the area of the apparent horizon.

We take the gauge potential Aμdxμ ¼ Aðt; rÞdt and the
dilaton field ϕðt; rÞ. Introducing auxiliary variables

Φ ¼ ∂rϕ; P ¼ 1

α
∂tϕ − ζΦ; E ¼ 1

α
∂rA; ð8Þ

the Maxwell equations give

E ¼ Qebϕ

r2
; ð9Þ

in which Q is a constant interpreted as the electric charge.
The field strength of the Maxwell field is always singular at
the center. This prevents the study of gravitational collapse
starting from the regular initial spherically symmetric
condition in the whole space in this model. The Einstein
equations give

α0 ¼ −
rPΦα

ζ
; ð10Þ
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ζ0 ¼ r
2ζ

�
Φ2 þ P2 þQ2ebϕ

r4

�
−

ζ

2r
þ rPΦ; ð11Þ

∂tζ ¼ rα
ζ
ðPþΦζÞðPζ þΦÞ: ð12Þ

The scalar equation becomes

∂tϕ ¼ αðPþΦζÞ; ð13Þ

∂tP ¼ ððPζ þΦÞαr2Þ0
r2

−
bα
2

Q2ebϕ

r4
: ð14Þ

III. THE NUMERICAL RESULTS

We focus on the dynamic evolution of the black hole
irreducible mass Mh and the value of the dilaton on the
apparent horizon ϕh in this work. We can simulate the
nonlinear evolution starting from spacetimes with black
holes or naked singularities at the center. The results are
reliable both from the physics and the convergence of the
numerical method.

A. The numerical setup

Let us consider the boundary conditions at first. Due to
the auxiliary freedom in the metric ansatz (6), we could
always fix

αjr→∞ ¼ 1; ð15Þ
by rescaling the time coordinate. From (11) we see that

ζ →
ffiffiffiffiffi
2M
r

q
when r → ∞. Here M is the Misner-Sharp mass

at infinity and is a constant. We thus replace ζ by a new
variable s ¼ ffiffiffi

r
p

ζ in the numerical simulation and set the
boundary condition for s as

sjr→∞ ¼
ffiffiffiffiffiffiffi
2M

p
: ð16Þ

We take the initial condition

ϕ ¼ κe−ðr−6MM Þ2 ; P ¼ 0; ð17Þ
in which κ is of order 10−10 such that the initial energy of
the dilaton can be neglected compared to the whole initial
spacetime. Other types of initial conditions would not
change the results qualitatively.
Given the above boundary and initial conditions, we can

work out the initialΦ from (8), ζ from (11) and α from (10).
The initial metric functions α, ζ are very close to those of
the RN black hole solution due to the small ϕ. Thus our
simulation can be considered as a perturbation to the RN
black hole and then study its evolution in some sense,
though the RN black hole is not the exact solution of the
EMD theory. This strategy is often adopted in the dynamic
simulation, such as [59,69].

Using (12), (13), (14), we can derive the values of ζ, ϕ, P
on the next time slice. Then from (8), (10) we obtain the
corresponding Φ, α. Iterating this procedure, we can write
the metric functions α, ζ and dilaton field ϕ, Φ, P on all the
following time slices. The nonlinear equation (11) is used
only once to solve the initial ζ and will not be used again,
since it is expensive to solve it.
The radial computational region ranges from r0 to ∞.

Here r0 ≃ 0.8M typically in our simulation. In fact, the
initial apparent horizon locates at rh ≃M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
.

So r0 always lies in the apparent horizon and the informa-
tion there would not affect the outside world in principle.
We compactify the space by a coordinate transformation
z ¼ r

rþM and the computational region becomes z ∈ ðz0; 1Þ.
We use the finite difference method in the radial direction
and the fourth-order Runge-Kutta method in the time
direction. The radial direction is discretized by a uniform
grid with 211 ∼ 212 points. The Kreiss-Oliger dissipation is
employed to stabilize numerical evolution. For the first
step, the Eq. (11) is solved by the Newton-Raphson
method.

1. The evolution starting from a naked singularity

It is known that the charge to mass ratio Q=M of the
hairy black hole in EMD theory can exceed unity. To have a
hairy black hole with Q=M > 1 in the end, we can only
start the simulation from a spacetime with naked singu-
larity, since the Eq. (9) tells us that the charge does not
change in the evolution.1 Surprisingly, our numerical code
works well in this case. In Fig. 1, we show the evolution of
the metric component−gtt ¼ ð1 − ζ2Þα2 at early times. The
right panel tells that an apparent horizon forms at t ¼
0.76M (the yellow line). The initial naked singularity is
enveloped by a single horizon at first. With the further
evolution of the nonlinear perturbation, we observe some
interesting phenomena for the resulting hairy black hole in
the EMD theory. The hairy black hole can gradually
develop two horizons to protect the central singularity.
However this configuration is not stable, after further
scalarization, the hairy black hole grows and finally settles
down to a hole with only one horizon left surrounding the
singularity. Our simulation is reliable since the apparent
horizon forms fast. There is no time for the information on
the inner cutoff r0 to affect the region outside the horizon.
In fact, one can estimate the region that can be affected.
From the metric (6) we see that the light propagates with
dr
dt ¼ 1−ζ2

2ζ α, which decreases with both t and r near the

cutoff. It turns out that the largest value of dr
dt is about 0.04.

So the information on r0 propagates at most Δr ≃ 0.03
when the apparent horizon forms. This region is surrounded
by the horizon so that our simulation is safe. Furthermore,

1To change the charge, a complex scalar should be included in
the model, as it did in [72] for example.
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we can check the convergence and accuracy of our
numerical code, as shown in the following subsection.

2. Convergence

For finite difference method, one often uses V2N−VN
V4N−V2N

¼
2p þOð1NÞ to estimate the convergence order p. Here VN

is the quantity obtained with N grid points. In Fig. 2, we
show the convergence of our simulation. The evolution of
both the irreducible mass Mh and dilaton ϕh show that
p ≃ 4. This is expected since our numerical method is of
fourth-order. The accuracy of the simulation with N ¼
1024 descends when t≳ 150M, at where the outgoing
wave has reached the far region and the uniform gird is
insufficient for high resolution. Using a denser grid can
improve the resolution. However, it is impossible and
unnecessary to simulate the system forever, since we are
interested only in the phenomenon in the near horizon
region and the outgoing wave will not affect the inner
region again in the asymptotic flat spacetime. It is good
enough to use 211 ∼ 212 grid points in our work. Note that

the accuracy is also good enough for the evolution starting
from a naked singularity.

B. Effects of b on the scalarization

In the left panel of Fig. 3, we show the final value of the
black hole irreducible massMf and the final value ϕf of the
dilaton on the apparent horizon with respect to −b.
The final ϕf increases with −b at first and then decreases

with −b. This can be understood by two competing factors.
On one hand, the dilaton field absorbs the energy from the
Maxwell field through the nonlinear coupling term
e−bϕFμνFμν in the action. ϕf increases with −b as the
coupling becomes stronger. This argument is supported by
Eq. (9) in which we see that the field strength of the
Maxwell field becomes weaker for stronger coupling. On
the other hand, resembling the static Schrödinger equation,
there is an effective repulsive potential near the black hole
which can be derived from the perturbation equation for the
dilaton field∇μ∇μδϕ ¼ Vδϕ, in which V ¼ b2

4
e−bϕFμνFμν.

FIG. 1. The evolution of the metric component −gtt at early times starting from a black hole (left) or a naked singularity configuration
(right). The time step between adjacent lines is Δt ≃ 0.38M.

FIG. 2. Left: the convergence and truncation error estimate for the irreducible mass of the black holeMh (right) and the dilaton field on
the apparent horizon ϕh (right). The results show that both M2N−MN

M4N−M2N
and ϕ2N−ϕN

ϕ4N−ϕ2N
are approximately equal to 24. HereMN;ϕN stand for the

corresponding results obtained by using N grid points. Note that there is no value of Mh;ϕh for the simulation with Q ¼ 1.2 when
t < 0.35M since the apparent horizon has not been formed.
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For bigger −b, the potential barrier becomes bigger which
leads to the weaker dilaton field near the horizon. The left
panel of Fig. 3 reflects the results of such competition with
the increase of the coupling parameter −b. In the region
away from the black hole boundary, the factor e−bϕ

decreases rapidly with r and forms a steep effective
potential away from the horizon so that the dilaton is
driven away from the black hole. In the right panel of Fig. 3
we observe that in the large r region, ϕðrÞ decreases
monotonically and sharply away from the horizon because
e−bϕ decreases rapidly so that the gravity dominates and the
dilaton ϕ will not diverge. Dilaton field with b ¼ −25 has a
bit higher value than that of b ¼ −4 at large r, but the
difference is tiny.
The above argument can also shed light on understand-

ing the distribution of the Misner-Sharp mass. When the
dilaton absorbs more energy from the Maxwell field for
stronger coupling, then the dilaton field with higher energy
is further swallowed by the black hole, so thatMf increases
with −b monotonically. For small coupling −b, the dilaton
can accumulate around the black hole so that the Misner-
Sharp mass increases rapidly near the black hole. For large
−b, the dilaton distributes more smoothly in a wider region
so that the Misner-Sharp mass increases slower with r.
The evolution of the value ϕh of the dilaton on the

apparent horizon can be divided into two stages roughly, as
shown in Fig. 4. At early times, the dilaton grows abruptly
and then oscillates with damping amplitude, which can be
estimated by ϕhðtÞ ∝ ϕf þ e−ωI t sinωRt. Here ωI is the
damping rate and ωR is the oscillating frequency. This
behavior resembles the quasinormal mode. At late times, it

converges to ϕf exponentially and can be fitted as
ϕhðtÞ ∝ ϕf − e−ηt, in which η is a constant. Fitting the
curves shows that ωI ≃ 0.12M and η ≃ 0.022M. Note that
ωR is sensitive to the parameter b, while ωI and η are
insensitive to b. The perturbation analysis also reveals that
ωI is almost independent of b in EMD theory [16–18].
These behaviors are qualitatively different from those in
asymptotic AdS spacetime in which ωI is sensitive to b
[70]. This is because in asymptotically flat spacetime there
is no potential wall like the AdS boundary to bounce back
the perturbation and magnify the difference caused by the
coupling b.
The evolution of black hole irreducible massMh can also

be divided into two stages. At an early time, it increases
exponentially in a steplike form which coincides with the
pulse of the dilaton growth. The growth of the irreducible
mass can be fitted by MhðtÞ ∝ Mf − e−γit. At late times, it
saturates smoothly to Mf with MhðtÞ ∝ Mf − e−γft. Here
both γi;f are constants that are insensitive to b. Furthermore,
there are relations

γi ¼ 2ωI; γf ¼ 2η: ð18Þ

This can be seen explicitly from the inset of Fig. 4.
Though these relations are obtained from fully nonlinear
evolution, they can be understood from the viewpoint of the
linear perturbation analysis. The perturbation of the scalar
field invokes the backreaction of the metric only at the
second-order [79], or from the Einstein equation (3), there
is δζ ∼ δϕ2. The black hole irreducible mass Mh is directly
related to the radius of the apparent horizon rh, which is the

FIG. 3. Left: the final value ϕf of the dilaton on the apparent horizon andMf of the black hole irreducible mass with various b. Right:
the distribution of ϕ and the Misner-Sharp mass in the radial direction with various b. Here we fix Q ¼ 0.9M.
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zero point of ζ − 1 ¼ 0. So we can expect that δrh ∼ δϕ2

during the evolution which implies (18). This argument is
independent of the special theory and should hold in
general. Indeed, these relations were also observed in
asymptotic AdS spacetime [70,71].
We also studied the effect of b on the dynamic scala-

rization starting from spacetime with naked singularity. For
large −b, the apparent horizon forms quickly so that the
naked singularity can be protected immediately. The
following evolution is qualitatively similar to that starting
from spacetime with charged black holes. For small −b, the
coupling between the Maxwell field and the dilaton is

weak, it needs a longer period of time to form the apparent
horizon, as shown in Fig. 5. It should be noted that −b
cannot be too small, otherwise the spacetime geometry
changes too slowly to form the apparent horizon. The
information from the inner cutoff would affect the outside
world and this makes our numerical simulation crash.

IV. SUMMARY AND DISCUSSION

We have studied the fully nonlinear dynamic scalariza-
tion in spherically symmetric spacetime in EMD theory,
starting from initial charged black holes or naked singu-
larities at the center. The energy of the initial dilaton is very
small compared to those of the gravitational and Maxwell
field. Due to the coupling between the dilaton and the
Maxwell field, part of the energy is transferred from the
Maxwell field to the dilaton, resulting in a nontrivial dilaton
field at the end. The black holes absorb some of the energy
from the dilaton, such that their irreducible mass also
increases. On the other hand, the coupling between the
dilaton and the Maxwell field provides an effective repul-
sive force to the dilaton and drives the dilaton away from
the black hole. When the initial configuration is a naked
singularity, apparent horizon can be developed immediately
to protect the singularity. The naked singularity evolves
into a hairy hole with one horizon, further scalarization can
accommodate a black hole with two horizons. Finally, the
hairy black hole evolves into a stable configuration with
only one horizon left. The following evolutions are quali-
tatively the same as those starting from spacetimes with
ordinary black holes.

FIG. 4. The evolution of the black hole irreducible massMh and the value of the dilaton on the apparent horizon ϕh when Q ¼ 0.9M.
The right panel shows the evolution of ln jMhðtÞ −Mfj and ln jϕhðtÞ − ϕfj in which Mf is the saturation value of Mh at late times.

FIG. 5. The time needed to form the apparent horizon starting
from a naked singularity when Q ¼ 1.2M with respect to b.
When −b≲ 3.7, the numerical codes does not work well.
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At early times, the dilaton grows abruptly. Then it
oscillates with damping amplitude. At late times, it con-
verges to a nonvanishing final value exponentially. Both the
damping rate and the converging rate are almost indepen-
dent of the coupling parameter and the black hole charge to
mass ratio. The irreducible mass of the black hole also
grows exponentially at early times and then saturates to the
final value at late times. The saturating rates are just twice
the damping rate and the convergence rate of the dilaton.
Though these behaviors are found from fully nonlinear
evolutions, they can be understood intuitively from the
viewpoint of linear perturbation. Our study showed that it is
hard to distinguish the charged dilaton black hole from the
RN black hole by studying the wave spectrum.
This paper focused on the configuration with negligibly

small initial matter perturbation. As an extension, one can
generalize the discussion with large initial perturbation.
The initial black hole at the center could be taken as a small
seed black hole. The model can then be considered as a
dynamical process of gravitational collapse of the matter.

Since the PG coordinate is horizon penetrating, we can
evolve the system until the black hole becomes stable and
confirm whether a hairy black hole forms or not in the end.
This could compensate the disadvantages of the method
used in [58]. These works are in progress.
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