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We develop a general formalism for treating radiative degrees of freedom near Z* in theories with an
arbitrary Ricci-flat internal space. These radiative modes are encoded in a generalized news tensor which
decomposes into gravitational, electromagnetic, and scalar components. We find a preferred gauge which
simplifies the asymptotic analysis of the full nonlinear Einstein equations and makes the asymptotic
symmetry group transparent. This asymptotic symmetry group extends the Bondi-Metzner—Sachs (BMS)
group to include angle-dependent isometries of the internal space. We apply this formalism to study
memory effects, which are expected to be observed in future experiments, that arise from bursts of higher-
dimensional gravitational radiation. We outline how measurements made by gravitational wave observa-
tories might probe properties of the compact extra dimensions.
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I. INTRODUCTION

Perhaps the most robust prediction of string theory is the
existence of extra spatial dimensions. Perturbative string
theory requires ten spacetime dimensions while nonpertur-
bative string theory predicts an eleventh dimension. In this
era of gravitational wave astronomy, it is exciting to explore
ways of probing the extra dimensions found in either string
theory, or other theories of higher-dimensional gravity.
Gravitational wave observatories, like LIGO, measure fea-
tures of the gravitational radiation produced by mergers of
compact objects like black holes, neutron stars or even more
exotic possibilities. The goal of this work is to begin to
explore which features of the internal compactification space
might be accessible through gravitational signatures. Probing
the structure of compactified dimensions usually requires
high energies. Unlike our usual intuition from particle
physics correlating high energy with small wavelengths,
gravity offers potential probes of short distance physics via
black holes, where higher energy means larger objects.

The goal of this work is two-fold: first we will describe
how LIGO and future gravitational wave observatories can
see universal signatures of new physics at very low frequen-
cies. By new physics we mean sources of stress-energy
which can be treated as effectively null; for example, highly
energetic low mass particles. At zero frequency, there is an
observable called gravitational memory which is sensitive to
new sources of stress-energy. Future experiments have a
reasonable likelihood of measuring the memory effect [1-3].
This is certainly not the only potential observable of interest.
The gravitational waveform itself encodes more data about
new physics, including any potential extra dimensions.
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However, analyzing the full waveform typically requires
more model-dependent inputs and a numerical study.

The second goal is defining gravitational radiation in a
reasonably precise way in compactified spacetimes. Defining
gravitational radiation is a nontrivial exercise which was
solved in four-dimensional asymptotically flat spacetime in
the classic work of Bondi, Metzner and Sachs [4—6]. One of
the outcomes of that work was the enlargement of the
asymptotic Poincaré group to the infinite-dimensional
Bondi—Metzner—Sachs (BMS) group that includes super-
translations, which we will review shortly.! A complete
analysis of gravitational radiation in all noncompact space-
time dimensions appears in [7], building on the earlier work
of [8,9]. Somewhat surprisingly, gravitational radiation for
spacetimes with compact dimensions has not yet been
studied beyond linearized gravity, or in the special case of
a circle compactification [10-12]. As in the noncompact
case, a full nonlinear analysis is needed to define a notion of
radiated power per unit angle, which gives energy-momen-
tum loss as well as the null memory contribution to the total
memory effect [13].

The simplest compactified space we might imagine is a
circle or a torus. From that example studied in Sec. VIB we
will unify scalar [14], electromagnetic [15—17] and gravi-
tational [13,18] notions of memory in the spirit of Kaluza
and Klein. In Sec. VI C we sketch how this approach can be
used to derive memory for non-Abelian gauge theories,
discussed for example in [19], from a higher-dimensional

1 . .
These supertranslations have no connection to supersym-
metry. This is just an unfortunate clash of nomenclature.
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gravity theory compactified on a space with a non-Abelian
isometry group. String theory suggests a richer class of
compactification spaces, described below in Sec. I B, with a
first generalization from tori to Ricci-flat spaces. In their
full glory, however, the vacuum solutions are quite intricate
warped spacetimes. In this analysis we largely focus on the
case of unwarped Ricci-flat spacetimes where the analysis
is more tractable. Well-known examples of this type
include manifolds of special holonomy like G, manifolds
used in M-theory compactifications and Calabi-Yau three-
folds used in string compactifications. However we are not
restricting our discussion to supersymmetric vacuum con-
figurations in this analysis. We consider general Ricci-flat
compactifications, which do not necessarily have special
holonomy. For a recent discussion about Ricci-flat spaces
which do not have special holonomy, see [20].2 For warped
compactifications where four-dimensional effective field
theory still makes sense, we expect a qualitatively similar
picture to the Ricci-flat case with a suitable change in the
effective null stress-energy generated from the compact
dimensions.

To introduce the memory observable, consider 3 + 1
spacetime dimensions and pure FEinstein-Hilbert gravity
with no additional sources of stress-energy:

|
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ds®> = {n,w + zﬂ:%}dx"dx ,
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where e = rd#* and my is the Bondi mass aspect. The
radiative degrees are encapsulated by the “news” tensor
which is given by

1
Nyp(u,0) = <QACCIBD _quBqCD>8uh(C}L))(u79)' (1.3)

Memory can be viewed as the displacement of an array of
freely floating test masses located near null infinity created

*While less familiar than the special holonomy Ricci-flat
spaces which preserve supersymmetry, it is not hard to construct
nonsupersymmetric examples along the following lines: take a
K3 surface that admits an involution which does not preserve the
holomorphic two-form and may have fixed points. Consider the
space (K3 x T¥)/G where the quotient group G acts on the K3
surface as just described, and simultaneously on the torus by
translations so that G is freely acting. Similar examples can be
constructed without tori, sometimes at the expense of the spin
structure, by taking special holonomy spaces that admit fixed-
point free involutions and considering the resulting quotient
space; the Enriques surface, constructed as a Z, quotient of a K3
surface, is of that type.

FIG. 1.

Depiction of Bondi coordinates.

1
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d*x\/=gR. (1.1)

An asymptotically flat metric is conveniently written in
terms of Bondi coordinates (u, r,0) adapted to outgoing
null directions. This coordinate system is depicted in
Fig. 1. The §* are coordinates for the two-sphere at null
infinity with unit round metric g, 5. In Bondi gauge, g,, =
94 = 0 and 0,{det(gsp)} = 0. The metric with signature
(=, +,+,+) then takes the form

) (1.2)

by the passage of a gravitational wave. The full memory
effect is given in terms of the news tensor:

Ap(0) = % /_ : d'N 5t 0). (1.4)

Memory can be decomposed into two contributions [21]:
the first is an “ordinary” contribution produced by the
change in the mass multipole moments of the radiation
source; for example, a black hole binary merger. This
contribution can be seen in a weak field linearized gravity
approximation [18]. There is also a more subtle “null”
memory effect produced by the energy flux that reaches
null infinity [13].

A. Four-dimensional effective field theory

The first question we might ask is how a gravitational
wave detector might see a sign of new physics. Let us
suppose that far away from sources and near the detector,
the vacuum FEinstein equations are applicable. On the one
hand, the memory effect is given by the news tensor via
(1.4). Let us model the detector as a collection of test
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particles near null infinity. At leading order in % the

displacement of the test particles in the angular directions
is given by

(1
£ =E7(0) +Lr”’9)+ 0<%>, (1.5)

where the initial positions are given by 520). Near null

infinity, fgl)(u, 0) is determined by the geodesic deviation
equation which implies that the relative accelerations of the
test particles with respect to retarded time is given by

825(1)
5= _R(ix)ug‘ffo)- (1.6)

Ou? a

This component of the Riemann tensor at leading order in 1
can be expressed in terms of the Bondi news giving the
relation,

825(1) 1
aué =3 OyuN ap(u, 9)51(30) (0).

(1.7)

An elementary derivation of this formula can be found in
Sec. VI. The displacement of the “arms” of the detector as a
function of retarded time is

1 u
a8l w0 =5 [ dinptw 0 0)

—00

(1.8)

For convergence of this integral for all retarded time, we

assume the news tensor decays in the far past/future as
1 . .

Nyp ~ O(W) for ¢ > 0. The memory effect is given by

lim A (u,0) = Aap(6)EF) (6). (1.9)

On the other hand, assuming the vacuum Einstein equations
one finds that

1 )
DADHA 1y = 28my (6) + / duN (0, O)NAB (1, 0),

—00

(1.10)

where D, is the covariant derivative on the unit two-sphere.
In principle this formula can be inverted to get the memory
tensor A 4. The first term on the right-hand side of (1.10) is
the change in the Bondi mass aspect, which captures the
ordinary memory contribution. In principle, the ordinary
memory can be determined from data by comparison with
simulated waveforms. The second term is the null memory
contribution. This is proportional to the power radiated per
unit angle. For a binary black hole merger the contribution
of the null memory is roughly ~10° times larger than the

ordinary memory [22]. Therefore, the dominant contribu-
tion to Eq. (1.10) is the null memory term.

The upshot is that the news can be extracted from the arm
motion via (1.8) and then used for a second evaluation of
the expected memory using (1.10), which assumes the
vacuum Einstein equations. If this computation of the
memory disagrees with observation, there must be some
other physics affecting the detector.

1. Minimally coupled stress-energy

First imagine a situation with a single distinguished
metric, namely the Einstein-frame metric g, and some
matter stress-energy 7, which might, for example, be
governed by an action S, coupled to this metric:

d*x\/=gR + Sy(9). (1.11)

S=——
167G

As usual, the

_ 2 )5S,
T = =(75) 5

by a contribution from null stress-energy given below,

Hilbert stress tensor is given by
In this situation, (1.10) is augmented

DADBAAB(Q) — 2Am3(9)

o0 1
+ 871'/ du( T +—N*N,p ),
o 32

(1.12)
where Tf,zu) (u,0) = lim,_,,r*T,,(u,r,0). In addition to
(3.4), the derivation of (1.12) assumes that the stress tensor
decays like O(ﬁ) and obeys the dominant energy condition:
namely, that 72" is timelike or null for any timelike or
null vector »*. This modified relation has been proposed as
a way of detecting the contribution of neutrino radiation to
the memory effect [23].

2. Jordan-frame stress-energy

The other case of interest to us is the situation where
there are scalar fields, collectively denoted ¢, and the
matter sector couples to a Jordan-frame metric g/) distinct
from the Einstein metric. We can model this situation by the
action

1 1
S=1ec / d*x\/=gR + / d4x(—§6"¢3ﬂ¢—V(¢)>
+ Sy (g, (1.13)

where g,(z) = e“’(‘p)gﬂy and w(¢) is a scale factor that
depends on the scalar fields ¢. For example, Brans-
Dicke theory is of this type with a single scalar field ¢,
and a function @ proportional to ¢; a nice discussion of
memory and asymptotically flat solutions for Brans-Dicke
theories can be found in [24]. The choice of Jordan frame
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metric is ambiguous up to a shift of the scale factor w by a
constant. For convenience we will choose this constant so
that w(¢) vanishes as r — .

It is worth commenting on masses at this point. Any real
detector is obviously not located at Z* so a sufficiently
energetic flux of low mass particles will effectively behave
like null stress-energy. With this caveat in mind, our
analysis will usually assume an idealized situation where
the detector lives near Z* and we can treat particles near Z+
as massless. To derive an expression for memory, we again
assume that the stress tensor obeys the dominant energy
condition with O(r]—z) decay for large r. Similarly any scalar
field ¢ has the following expansion near Z,

(
¢~¢<°>+M+ 0(%), (1.14)

r

where ¢(©) is a constant. Our detector is constructed from
the matter sector governed by S,,(g"’)). Geodesic deviation
determines how the detector reacts to a burst of gravita-
tional radiation. For stationary test particles situated near
I+, the geodesic deviation is again described by

8251&1;]) (15J)
o —RAup ](30;1)' (1.15)

Here the two superscripts denote the power in the 1/r

expansion and Jordan frame. Although the Jordan frame

metric is not in Bondi gauge described in Eq. (3.4), it is still

true that hﬁi;” and hﬁk” vanish. For metrics of this form,

the relevant component of the Riemann tensor takes the
form

1. 1 1.
RE{Au%B == Eaghgw )

1
= —Eaﬁ(h% + W gap)
1
= _Eau(NAB + 0,0 q,p).

(1.16)
where in the last line we used the fact that g*? hilg =0in
Bondi gauge. The arm displacement is now given by

. 1 [u
28 w0) = [ Nas0l.0) + 0,0 015)¢0,0).

(1.17)

Equation (1.17) gives the motion of the arms of the detector
moving on a geodesic of the Jordan frame metric. This
motion has a transverse piece due to the contribution of
N 4p and a longitudinal piece due to the contribution of the
conformal mode 0,w!"). This extra piece is also known as
the breathing mode of the gravitational radiation.

If the scalar charge, defined by o) (u, §) in analogy with
(1.14), does not change then the second term in Eq. (1.17)
vanishes. In the Jordan frame, the memory effect is again
given by

1im A (u,0) = ALY (0)E (0).  (1.18)

The news tensor appearing in (1.17) can again be related to
the square of the news tensor via Einstein’s equations,

J
DADEAY) = 2Am)(0)

% 1
+ 87:/ du (Tﬁﬁ)(u,e) —1—371\72(”,«9)),

0 T

(1.19)

where T\ (1, 0) is again defined by lim,_ T, (u, r,0)

and m")(0) = mg(0) + 1 D*w). The frame dependence
can therefore contribute to the memory in competition with
null stress-energy as long as the associated scalar fields can
be treated as massless.

3. Higher-derivative interactions

Any effective description for a theory of quantum gravity
will have higher derivative interactions. These interactions
are crucial for constructing vacuum solutions with flux in
string theory, which we will discuss in Sec. IB. In this
work, we will not take into account higher derivative
interactions in the full higher-dimensional theory. That is
a very difficult problem to address. Rather we will consider
higher derivative interactions in the four-dimensional
effective theory. As long as we can reduce to an effective
four-dimensional description, this should cover any pos-
sible observable effects from these couplings.

Let us consider purely gravitational corrections to the
Einstein-Hilbert action, which take the schematic form

1
S =
162G

/d4x(\/—_gR—|—0(R2)+O(R3)—I—...). (1.20)

The higher derivative corrections are suppressed by some
scale. We want to answer the question: which combinations
of curvatures could possibly affect memory? Memory is
determined by terms that decay at O(%) near Z*. The
Riemann tensor for the metric (3.4) decays like } Any
contractions of Riemann with metrics will also decay at
O(Y) or faster. This means that terms of O(R?) are already
decaying too fast to affect memory. On the other hand,
terms of O(R?) deserve further investigation.

At the four derivative order there are two topological
couplings, the Pontryagin density and the Euler density,
proportional to
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/Tr(fe AR), /Tr(fi’ AxR),  (121)

where R is the curvature two-form. These terms do not
affect either the equations of motion, or memory. One
might imagine adding an axion coupling of the sort
J #Tr(R A R) for an axion ¢, but such a coupling decays
at O(%) because the nonconstant behavior of the axion is

O(1). That leaves the combinations

/ V —ng, / vV _ng/RMD? / V _gR;w/lpRﬂylp‘

(1.22)

However the first two terms can be field redefined away.
The third term is related to the Euler density, which is
proportional to R? —4R,,R* + R,,,,R**, and therefore
the third term can also be ignored. Based on this discussion,
it appears that memory is insensitive to higher derivative
corrections.

B. Compactified spacetimes

There are really three separate facets to the question of
exploring compactified dimensions using gravitational
radiation. The first question one might ask is what class
of spacetimes should we consider? The simplest Kaluza-
Klein spacetime is higher-dimensional Minkowski space
compactified on a torus, for example, five-dimensional
Minkowski space compactified on a circle of radius R. This
is a very useful example for exploring basic phenomena
encountered in higher dimensions. String theory, however,
suggests a richer class of spacetimes used in the con-
struction of the string landscape. While there is much
debate about the string landscape, we will stick with
elements of the underlying string constructions that are
most likely to survive in the future.

The main surprise that string theory offers to a general
relativist interested in radiation is the need to consider
warped compactifications to four dimensions with vacuum
configurations of the form

ds? = e 0y + et/}(y>ds%wim (v), (1.23)

where 7 is the D =4 Minkowski metric, dsfw‘ is the

metric for a Ricci-flat internal space M;,; with coordinates
y, and ¢(y) is the warp factor [25]. There are also higher
form flux fields that thread both the internal space and
spacetime, which can be viewed as conventional sources of
stress-energy. Gravitational waves in warped backgrounds
of this type have been studied in [26,27]. For a compact
My, this metric does not solve the spacetime Einstein
equations without the inclusion of exotic ingredients like
orientifold planes and higher derivative interactions. These
ingredients exist in string theory. At higher orders in the

derivative expansion of the spacetime effective action, the
conformally Ricci-flat form of the internal space metric
(1.23) is not preserved, but this form is a sufficiently good
approximation for our discussion of radiation.

Without some additional quantum ingredient, the semi-
classical background (1.23) is part of a family of solutions
obtained by rescaling the internal space ds3, — Ads%,

for any 4 > 0 with an accompanying change in the warp
factor. So there is a large volume limit for the internal space
when 4/ is large. In this limit, the warp factor approaches a
constant, and the higher-dimensional spacetime approaches
a product manifold. It is important to note, however, that
the warp factor can still have regions of large variation
in ./\/lim.

The most tractable and heavily studied backgrounds M
preserve spacetime supersymmetry. The expectation is that
spacetime supersymmetry is spontaneously broken below
the compactification scale. For a set of examples of this
type, M, is obtained from the geometry of a Calabi-Yau
four-fold with some additional structure. Such spaces are
complex Kihler Ricci-flat manifolds with potentially many
shape and size parameters, which correspond to massless
scalar fields in spacetime. The scalar fields that determine
the complex structure of M, typically get a mass from the
fluxes that thread the space [25].% This mass scale, M s
can be significantly lighter than the Kaluza-Klein scale of
the compactification, denoted M g.

Let us get a rough feel for the numbers involved. If we
assume an upper bound on the size of any compact
dimension of roughly order microns, or equivalently eV,
from gravitational bounds [29] to approximately 10~'% m
or a TeV from collider bounds [30], and six compact
dimensions then the ten-dimensional Planck scale takes the
range M7)='0~ 10 keV — 10 TeV. Of course, the size of
any compact dimensions might be much smaller than this
upper bound. We expect scalars from the complex structure
moduli to get masses of order

, (1.24)

where M is the string scale. For a string coupling of order
one, the string scale and Planck scale are comparable:
M ~MB=1° In this case,

(MKK>3/2

Mﬂux NW?
p

(1.25)

where M, is the observed four-dimensional Planck
scale. The scalars then have a mass in the range of

3See [28] for evidence that this might not be generically true
for all the complex structure moduli when the number of such
moduli is large.
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1074 — 10* eV for a Kaluza-Klein scale ranging from
1eV—1TeV." This is a huge range of masses but it
certainly includes masses light enough that we can simply
ignore the mass and treat the scalar as massless for the
purposes of detection by a gravitational wave detector. The
last point to mention about the complex structure moduli is
the number of such moduli. From known constructions of
Calabi-Yau four-fold geometries, there are examples with
of 0(10%) such moduli [34,35].

There is one other notable feature of the flux compacti-
fications described by (1.23). Namely they are warped
compactifications with a warp factor e#*") which can have a
very large variation. Such compactifications can look very
asymmetric because of the presence of strongly warped
throats in the geometry [38]. The primary reason for
interest in such throats is to generate small scales from
the Planck scale to solve the hierarchy problem in the spirit
of the Randall-Sundrum model [39], although in the
context of an actual compactification from string theory.

In addition to generating hierarchies in the four-dimen-
sional effective theory, this has potentially interesting
consequences for exotic compact objects, specifically
objects localized in higher dimensions. There is no com-
plete understanding of how large the warp factor might
become in flux vacua, largely because it is very difficult to
find semiclassical compact flux solutions, which are
necessarily supersymmetric backgrounds. However, it is
reasonable to expect a variation in the warp factor at least
large enough to account for the O(10'%) hierarchy between
weak scale physics of O(10°) GeV and Planck scale
physics of O(10') GeV. In principle, the variation of
the warp factor could be much larger because the D3-brane
tadpole found in F-theory on a Calabi-Yau four-fold
[40,41], which determines the maximum amount of back-
ground flux, can be as large as O(10%) in known examples.
The background flux, together with gravitational curvature
terms, source the harmonic equation satisfied by the warp
factor.

The upshot of this stringy top down look at compactified
extra dimensions is that there can be many scalar fields with
masses potentially below the Kaluza-Klein scale. We now
turn to what kinds of compact objects might be sensitive to
either these scalar fields, or directly to the existence of
additional dimensions.

*Masses at the very low end of this range will be constrained
by bounds from superradiant instabilities from spinning black
holes. This lower bound is in the range of 107!l eV; see, for
example [31,32]. For a recent discussion of superradiance in
string theory, see [33].

The currently largest known value of the Hodge number, /43!,
which determines the number of complex structure moduli for a
Calabi-Yau four-fold is 303148 found in [36,37]. We would like
thank Wati Taylor and Jim Halverson for discussions on moduli
bounds.

C. Compact objects in higher dimensions

1. Delocalized compact objects

In this work we want to study dynamical spacetimes
which arise from the motion of compact objects. These
objects might be stars or black holes in manifolds with
compact extra dimensions. At a coarse level, there are two
distinct categories of compact object we might study. The
first are objects constructed strictly from the light degrees
of freedom with masses below the Kaluza-Klein scale, for
example, from the potentially light scalars discussed in
Sec. IB. This class of compact object is essentially
delocalized in the internal dimensions. We should be able
to study the physics of these modes in four-dimensional
effective field theory discussed in Sec. [ A.

Surprisingly, even in this setting there are exotic compact
objects that can support scalar hair, which is our basic
signature of extra dimensions. The first are Bose stars
reviewed in [42]: no particularly exotic ingredients are
needed to construct Bose stars other than a complex scalar
field. The scalar field is not static but the associated
spacetime metric is static. It is interesting to note that
the moduli scalar fields that arise in most string compacti-
fications are naturally complex scalar fields because most
such vacua give a low-energy supergravity theory.
Gravitational radiation from binary boson star systems
has been studied in [43].

Closely related to Bose stars are gravitational atoms and
molecules, which are clouds of scalar fields or massive
vector fields surrounding a black hole, or a black hole
binary [44,45]. Included in these configurations are Kerr
black holes with scalar hair, which interpolate between Kerr
black holes and rotating Bose stars [46]. This is already a
rich phenomenology of exotic compact objects, which are
sensitive to light scalar fields.

2. Circle compactification

The second category of compact object is at least
partially localized in the internal directions. Our basic
intuition follows from compactification on a circle of radius
R. Black hole uniqueness theorems are considerably
weaker above four dimensions, and it is useful to character-
ize the black objects we wish to study based on their
localization properties. A black string solution is simply a
D = 4 black hole which knows nothing about the internal
space. It is a delocalized solution admitting a spacelike
Killing vector generating rotations of the S'.

The other extreme is a black hole which is highly
localized on the internal space, breaking the U(1) isometry.
Black holes with a size small compared to R look locally
like a D =5 Myers-Perry solution [47]. Solutions with
mass M are dynamically stable only for a certain range of
the ratio M /R because of the Gregory-Laflamme instability
[48]. The entropy serves as a thermodynamic diagnostic for
stability. For a fixed mass M, black strings have an entropy
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that scales like Sgzg ~ M? while D = 5 black holes have an

entropy that scales like Sgy ~ M?+/R/M [49]. For large R,
the localized black hole configuration is the preferred
solution.

Astrophysical black hole mergers detectable by LIGO
have constituent masses of roughly O(10) solar masses,
which corresponds to a distance scale of O(10*) m. This is
ten orders of magnitude larger than the best upper bound on
the Kaluza-Klein scale. M is clearly much greater than the
range of Kaluza-Klein scales discussed in Sec. IB, and
therefore one should expect that the generic compact object
will be delocalized.

For circle compactifications, the binary merger of black
holes localized at a point was studied in [50,51] using a
point particle approximation. With no other ingredients, the
massless degrees of freedom in four dimensions are a
graviton, a Kaluza-Klein scalar and a graviphoton. The
luminosity of gravitational waves released in the merger
process is about 20% less than the merger of four-
dimensional black holes mainly because of scalar radiation
produced in the merger.

To see this consider R*x S' with coordinates
(t,x1,%2,x3,y) and flat metric ds® = 7,,dx"dx* + dy?*,
where y ~ y 4+ 2zR. In linearized gravity, the stress-energy
for a point particle of mass m and world-line given by
XM(z) with affine parameter 7 is given by

TN (X) = m / deXMXV50) (X - X(2)). (1.26)

The indices (M, N, ...) run over all the spacetime dimen-
sions while (y, v, ...) run over four-dimensional quantities
in accord with the conventions spelled out later in Sec. I E.
For a particle moving only in R*, X”(z) = 0.

The massless scalar field in four dimensions is the zero
mode of 6g,, = hy, where g,y is the full spacetime metric.
By this we mean Fourier expand the fluctuation h.vy in the y
direction and restrict to the zero mode. We will denote the
zero mode by a barred quantity f_zyy. In linearized gravity,
this is sourced by the zero mode of the stress tensor,

O,hyy = =8a(Ty, = T,,). (1.27)
where [, = #*¥0,0,. For the stress tensor given in (1.26),
Tyy =0 and the right-hand side of (1.27) is nonzero,
leading to the mismatch with experiment. The situation
gets worse with more compact dimensions. Taken at face
value, this would seem to rule out this simple model of
compact extra dimensions.

However, we do not expect astrophysical black holes to
be localized in a model like this because of the Gregory-
Laflamme instability: the black holes are much larger than
any extra dimension. Much more likely is a completely
delocalized black string wrapping the y direction. For a

string with induced metric y,, = 9,XY0,XN gyn and
tension y, the stress-energy tensor is given by

TN = /4/dadr,/—yy“baaXMabXNﬁ(S)(X - X(o,7)).
(1.28)

Choosing g,, = 1, and fixing static gauge for the wrapped
string (6 ~y, 7~ 1) gives

T = 2zuR / dré™ (X - X (1)), (1.29)

with 2zuR = m. This makes the right-hand side of (1.27)
vanish as we expect for a model that replicates a standard
D = 4 black hole.

Using this observation we can actually construct a model
for a D = 4 particle, at the level of hydrodynamics, which
interpolates between the black string and the completely
localized black hole. Consider the stress tensor with affine
parameter 7 given by

T (X) = m / deX'X*65) (X - X (1)),

TV (x) = em / drs™® (X — X (1)). (1.30)

This is conserved. It is a hybrid of a D = 5 point particle
with a uniform stress on the y circle. For ¢ = 0, this is the
D = 5 point particle while for € = 1, the right-hand side of
(1.27) vanishes and the zero mode of 7#(X) coincides with
the black string (1.28). For intermediate e, this will result in
a D = 4 particle with some scalar charge that will generate
some scalar radiation. However, the amount is tunable. We
would expect more complicated stress-energy distributions
in the y direction for configurations corresponding to arrays
of D = 5 black holes and nonuniform black strings. The
upshot is that there are many potential stress tensors that
could describe black objects in R* x §' with varying
amounts of scalar charge from the D =4 perspective,
whose dynamics can be made consistent with current
observation.

The circle is a very special example of a compactifica-
tion. For the more general warped backgrounds described
in Sec. 1B, there is an exciting possibility of novel
phenomena. One might imagine localized black objects,
analogous to the D = 5 black hole just discussed, which are
globally unstable because of a Gregory-Laflamme type
argument, but which are nonetheless long lived because of
the local behavior of the warp factor. It would be interesting
to explore this possibility further.

D. Signatures of compact dimensions

In Sec. I A we saw that memory can be used to detect
new physics. More precisely, given a particular model of
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the stress-energy in a theory, gravitational observatories can
make independent measurements of arm motion and of
gravitational memory, and then compare these measure-
ments; disagreement indicates a missing contribution to the
stress-energy. Such a missing contribution could come
from various sources, including additional light fields in the
theory or a matter coupling to a Jordan frame metric which
differs from the Einstein frame metric. However, for the
purposes of the current work, we are most interested in the
possibility that a discrepancy in these measurements could
arise from the presence of compact extra dimensions.

In a theory with extra dimensions, we will show that the
radiative degrees of freedom near Z* are encoded in a
generalized news tensor written as ', where the indices
a, b now run over both the asymptotic two-sphere S> and
the internal space Mjy,. The components A 45 will encode
the familiar Bondi news contribution N5 as well as an
additional scalar breathing mode N which give rise to
gravitational radiation in the noncompact directions.
However, we will see that a generic internal manifold will
support additional radiative modes encoded in A ,,, and
N un» Which involve fluctuations in the directions of the
internal manifold M;,. Viewed from the perspective of a
macroscopic observer in R*, the additional modes in A4,
and \V,,, are precisely the radiative degrees of freedom for
electromagnetic gauge fields and light scalars, respectively.
This implies that there is an electromagnetic memory effect
and a scalar memory effect associated with these addi-
tional modes.

In theories with these extra modes arising from compact
dimensions, the null stress-energy appearing in Eq. (1.12)
receives additional contributions; one now has

DADBAAB = ZAm(Q)

% 1
487 / du( T (u,0) + —— N, zNAE ),
o 32

T (u.0)=TE (u,0)
1
Am mn 2
+—32ﬂ(/\/AmN + N, N™ 4 N?).
(1.31)

Here N is associated with a breathing mode of the internal
space which is a scalar degree of freedom. Therefore, for a
particular model for the null stress-energy T&ZJ that should
contribute to memory, the presence of extra compact
dimensions will generate a discrepancy between the pre-
dicted and measured memory effects. This discrepancy is

captured in the four-dimensional effective stress tensor

TE,%,), which includes the electromagnetic and scalar con-
tributions from the higher-dimensional gravity modes.
We can extract more data about these contributions from
a different class of measurements. The ordinary electro-
magnetic and scalar memory effects generate a velocity

kick for a suitable charged test particle. Even without any
Abelian charge or extra dimensions, gravity generates a
similar velocity kick for a test particle. Likewise, in theories
with extra dimensions, a particle with velocity in the
internal directions will experience a velocity kick in R*
because of the passage of gravitational radiation in the
internal space.

Measuring these velocity kicks requires a different
experimental design than is typical for current gravitational
observatories, which study geodesic deviation for pairs of
point particles. Instead, if one can measure the trajectory of
point particles—even a single point particle—undergoing
geodesic motion, relative to a lab frame which is stationary
in an appropriate sense, then one can in principle extract all
of N4, and a part of N\, described in Sec. VI. These
additional sources of news are the primary signatures of
extra dimensions we might hope to see with memory
measurements alone.

E. Conventions

Unless otherwise specified, we work in units where
G = c¢ = h =1, and follow the conventions of [52]. Our
metric signature is mostly positive and our sign convention
for curvature is such that the scalar curvature of the round
sphere metric is positive. The full D-dimensional spacetime
manifold, denoted M, has the topology M = R* x M,
where R* is a four-dimensional Lorentzian manifold and
M, 1s a (D — 4)-dimensional compact Riemannian mani-
fold. Our index conventions are listed below:

(i) Indices (M,N,L,...) run over the full spacetime
manifold M with metric gy and covariant deriva-
tive V,,. The Riemann tensor associated to the
metric gyn 1S Rynp.

(i) Indices (u,v,A,...) run over R*, and are raised and
lowered with the asymptotic Minkowski metric 7, .
We denote the covariant derivative compatible with
Ny bY O

(iii) Indices (m,n,1,...) run over M,,, and are raised
and lowered with metric §,,,. The covariant deriva-
tive compatible with g, is D,,. The Riemann
tensor of g,,, is R,,,,? which has vanishing Ricci:
PR opp? = 0.°

(iv) Indices (A, B, C, ...) run over S?, and are raised and

lowered with the round metric g4z. The covariant
derivative compatible with g,z is D,.

(v) Lastly indices (a, b, c,...) run over $? x My, and
are raised and lowered with the product metric q,
given by q =q @ g

Indices for tensors on M are raised and lowed with the
asymptotic Ricci-flat product metric which we denote by a
hat,

®That Jmn 18 Ricci-flat follows from our falloff ansatz given in
Eq. (3.5) and the Einstein equations.
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QMNddexN = nﬂvdxﬂdxb + gmn (y>dymdyn’ (132)
where xM = {x#,y™} are arbitrary coordinates on R* and
My, respectively. We also use these conventions to denote
coordinates on submanifolds like S or §? x M, as well
as components in a coordinate basis. We will use the same
index notation for tensors which are intrinsic to a sub-
manifold and the components of an ambient tensor along a
submanifold; for example, the tensor 7™V defined on the
full spacetime M has angular components 745 (x, y) while
the intrinsic tensor #8(0) lives on S2. We do not feel the
potential confusion that might arise from doing this justifies
introducing a new alphabet.

To simplify keeping track of powers of %, we will expand
tensors in a normalized basis, which in Bondi coordinates is
{du,dr,e* = rd®*,dy™}. This is a little different from the
more common convention found in [24,53-55]. As an
explicit example consider the one-form on the sphere with
coordinates 64,

(1.33)

V,dx' = v,(0)do" = (”A—’@> (rde"),

for some v,4(6). With this choice of basis, the O(1) term
Vgl) = v,(0) is nonzero. When we perform asymptotic
expansions near Z, as in Eq. (3.4), we will use a super-
script to indicate a term at a given order in }, keeping in
mind the preceding convention for angular directions. For
example, a scalar field ¢ would be expanded as follows:

°°¢(n)
¢:; -

Lastly, given a tensor on M;,, we can expand in
eigenmodes of the appropriate Laplacian. It will be useful
to denote the zero mode in such a harmonic expansion by a
bar. For example, given a function #(x*, y") on M the zero
mode is denoted by 7(x). This zero mode solves D?*t = 0
where D?> = §""D,,D,, is the scalar Laplacian on M.
Similarly for a one-form 7, (x, y) we denote the zero modes
by (7,(x.y).7,(x,y)), while the zero modes of a symmetric
two-tensor tyy(x,y) are denoted (7,,(x,y).%,,(x.y),
T, (x,y)). For Ricci-flat manifolds, this kind of harmonic
decomposition simplifies considerably as we review
in Sec. IL.

(1.34)

II. REVIEW OF LINEARIZED DIMENSIONAL
REDUCTION

The topics under discussion in this work are of potential
interest to multiple communities, including string theorists,
general relativists, quantum field theorists and gravitational
wave astronomers. To make the work as self-contained as

possible, we will review techniques that are more familiar
to a specific community.

The usual procedure of dimensional reduction is to
start with a vacuum configuration which we take to be a
D-dimensional product manifold,

M = R* x My, (2.1)
where R* is the noncompact Lorentzian spacetime, and
My is the (D —4)-dimensional compact Riemannian
internal space. We will also take M, to be connected
and closed (i.e., compact without boundary). M is equipped
with the product metric

gundxM dxN =, dxtdxt + g, (y)dy"dy".  (2.2)

where 7, is the Minkowski metric, §,,,(y) is a Ricci-flat

metric on M, and x¥ = {x#, y"} are coordinates on R*
and M, respectively. Our discussion does not involve
fermions so we will not worry about issues like a spin
structure.

Let us consider pure gravity with the Einstein-Hilbert
action on the total spacetime manifold M:

1
S=— [ dPx\/=gR. (2.3)
2K M

The supergravity theories that describe low-energy limits of
string theory have additional fields, which we will ignore
for the moment, to focus on the graviton. We will discuss
dimensional reduction for linearized metric perturbations,
which is the usual approach. This should be contrasted with
our later discussion in Sec. IVA near Z*, which is for the
full nonlinear theory.

Consider a linearized perturbation of g,y denoted /1,y .

Let @M be the covariant derivative operator compatible
with g,,v. Imposing the gauge conditions’

VWMhyny =0 and  §MVhyy =0 (2.4)

yields the linearized Einstein equation in Lorenz gauge:

Oyhun + 2Ry yChpo = 0. (2.5)

7Equation (2.4) is a special case of the Lorenz gauge. While
Lorenz gauge is useful in studying radiation in linearized gravity
with no null sources, we note that it is incompatible with the }
falloff of the metric in asymptotically null directions in a general
radiating spacetime [7]. The proof of [7] shows that harmonic
gauge, which is the nonlinear generalization of Lorenz gauge, is
incompatible with the falloff conditions in D-dimensional non-
compact spacetimes, but the proof straightforwardly generalizes
to cases with compact extra dimensions using the techniques and
formulas in this paper.
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Here [, = §"VV,,Vy, Rypy? is the Riemann tensor of
the background metric §,sy, and indices are raised and
lowered with the background metric. The residual gauge
freedom that preserves (2.4) is given by

hMN - hMN + @(M(SN) where D@&M =0, @M{EM =0.
(2.6)

Note that the exact (not asymptotic) symmetry group of
Eq. (2.2) is trivially the direct product of the Poincaré group
(P) and the isometry group () of (Min, Gimn):

PxS. (2.7)
For background metric Eq. (2.2), the only nonvanishing
components of the Riemann tensor are the internal com-
ponents; therefore the Riemann tensor is equivalent to
7—\)'mnpq on (gmnv Mint)-

Consider the projection of Eq. (2.5) into R* and rewrite
[J; in terms of the derivative operator d, compatible with
Nuw» and the covariant derivative operator D,, compatible
with §,,,. This yields

D?h,, +0,h,, =0, (2.8)
where D* = gD, D, and O, = #**9,,0,. Expanding h,, in
terms of eigenfunctions of the Laplacian on M;,, Eq. (2.8)
yields an infinite tower of massive modes (one for each
eigenvalue). The mass scale is set by the size of the compact
extra dimensions. Since the goal of this paper is to study
radiation with compact extra dimensions we are interested in
either massless fields, or fields with masses below the
Kaluza-Klein scale; see the discussion in Sec. I B.

The massless modes Euv are annihilated by the Laplacian
and correspondingly satisfy a massless wave equation in R*:

D*h,, =0= 0O,h,

=0. (2.9)

The zero-mode }_z}w is harmonic on M, and therefore
independent of the internal coordinates y. Projecting both
indices of Eq. (2.6) into R* shows that diffeomorphisms act
on the zero mode i_t,w by

]:l/w(xﬂ) - Ijlm/(xﬂ) + a(ﬂgu) (Xﬂ)

where (J,€, =0, 9", =0, (2.10)

and Eﬂ is the zero mode of the projection of &, into R*. The
massless spin-2 graviton arising from this reduction is l_zﬂ,,.

A. Vector modes

Analogously, we can study the vector perturbation 4,
using the linearized FEinstein equation (2.5). We again

collect results here on the massless mode f_zﬂm which
satisfies
Dh,,, = 0. (2.11)

Viewing h,, as a one-form on Mjy,, we note that solutions
to Eq. (2.11) are spanned by the space of one-forms V,, on
M, that satisfy
D*V,, = 0. (2.12)
Equation (2.12) is a condition on V,, in terms of the
coordinate Laplacian D?. For any compact manifold,
the coordinate Laplacian on a one-form V,, is related to
the Hodge Laplacian (A")) on V,, by the well-known
Weitzenbock identity for one-forms:
DV, =-A"V, +§"R,V,. (2.13)
Here V,, is a one-form on M, and R, , is the Ricci tensor
of (Jyun> Min). Therefore on any Ricci-flat manifold, the
coordinate Laplacian can be replaced by (minus) the Hodge
Laplacian when acting on one-forms. Solutions to
Eq. (2.12) are harmonic one-forms. We now investigate
the properties of solutions to Eq. (2.12). First recall the
well-known Hodge decomposition of a one-form.

Proposition 1. Let (M, §,.,) be a compact
Riemannian manifold. Any globally defined one-form
V,, can be uniquely decomposed as follows:

Vi =D, S+ v, (2.14)
where D"v,, = 0. We refer to v,, and S as the vector and
scalar parts of V,,, respectively.

If V,, is harmonic then § must be a constant and
consequently, V,, is divergence-free. Further a harmonic
ym = g™V, is a Killing vector if M, is Ricci flat. To see
this, let &" be a Killing vector on M, i.e., &, = §,.&"
satisfies D(,,¢,) = 0. Applying D™ to Killing’s equation
and commuting the derivatives yields

D*, +D,D"¢, —R,"&, = 0. (2.15)
The second and third terms of Eq. (2.15) both vanish since
R, = 0 and &, is divergence-free by Killing’s equation.
Therefore if §"™"¢&, is a Killing vector then &, is indeed
harmonic.

To complete the correspondence we now show that if a
one-form V,, is harmonic then §""V, is also a Killing
vector [56]. Contracting Eq. (2.12) with V" and integrating
over M, gives

/ D"V'D,V,=0=D,V,=0. (2.16)
Minl
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Consequently, solutions to Eq. (2.12) are covariantly
constant and therefore Killing. The space of solutions to
Eq. (2.12) is therefore the space of Killing vectors on M.
The number of linearly independent harmonic one-forms
on M, is counted by the first Betti number, »;, which is a
topological invariant. The preceding observations can be
summarized in the following lemma [56]:

Lemma 1. (Bochner) Let (M, §,,,) be a compact
Ricci-flat Riemannian manifold. The space of harmonic
one-forms is then in one-to-one correspondence with the
space of Killing vectors, which are covariantly constant.
The dimension of the space of Killing vectors is b (M;y).

In the case where b| > 0, the Ricci-flat space M, of
dimension D — 4 can be written as a free quotient of TX x
MP* where MP=4=* is also Ricci flat [57]. We can now
give the general solution to Eq. (2.11),

(x4, ™) ZA ) ®@ VW™, (2.17)

where { Vﬁ,’;)} are the b, linearly independent Killing
vectors. The coefficients A,(f) (x) define a set of b; grav-
iphoton vector fields on R*. Furthermore, it follows from
Egs. (2.5) and (2.4) that each vector field A,(f) (x#) satisfies
the wave equation and is divergence-free on R*:

0,AY =0 and 4’ =o0. (2.18)

Projecting one index of Eq. (2.6) into R* and one index into
M., and using (2.11) implies that the gauge freedom of
iy is

um

by

By = B+ 10,20 ()] V5 (),

i=1

(2.19)

where A(x*) is a smooth function on R*, which satisfies the
wave equation. This is equivalent to an Abelian gauge

transformation on A f,i) s

Ay - AV ) + 0,40 (), 0,20 =0, (2.20)
The Lie algebra for these spin-1 massless gauge fields is
determined by the isometry group of M;,,. The isometry
group is clearly Abelian for Ricci-flat M, since, by
Lemma 1, any Killing vector is also covariantly constant
and therefore the commutator of any two Killing vectors

vanishes.

B. Scalar modes

We finally consider the perturbations #,,, which satisfy

Dhyy + 2Ry g + Oyhyy = (2.21)

Therefore massless perturbations /,,, are spanned by the
tensor fields on 7,,,(y") which satisfy

DT,,, + 2R,," T ,, = 0. (2.22)
The operator acting on T,, in Eq. (2.22) is the
Lichnerowicz Laplacian. Equation (2.4) implies a further
constraint on the allowed solutions to Eq. (2.22).
Expanding the divergence of £,y in terms of harmonic
one-forms implies that

D"T,, = 0. (2.23)

The space of solutions to Egs. (2.22) and (2.23) is the
moduli space of infinitesimal deformations that preserve
the vanishing of the Ricci tensor. This moduli space is
known to be finite dimensional [58].

To further investigate the implications of Egs. (2.22) and
(2.23), we first recall a well-known result about the
decomposition of symmetric tensors [59]:

Proposition 2. Let (M, §,,) be a compact
Riemannian Einstein space with dimension D —4, i.e.,
Ry = €Gn, for some constant ¢, which includes the
Ricci-flat case. Then any second rank, symmetric tensor
field T,,, can be uniquely decomposed as

1

Tmn = Imn +D(mWn) + <DmDn - —_4§mnD2>S

1

U,
D 4 gmn

(2.24)

where D"'t,,, = 0 = g""t,,,, D"W,, =0 and U = §*T ,,
We refer to 1,,,, W,, and (S, U) as the tensor, vector and
scalar parts of T,,,, respectively.

In keeping with our notation, we denote the tensor,
vector and scalar parts of T,,, as 7,,,, W,,, S and U. This is
in accord with our prior notation of denoting harmonic
functions and harmonic one-forms with a bar since, as we
shall see, the scalar and vector parts of T, are indeed
harmonic. Taking the trace of Eq. (2.22) yields

D*U =0, (2.25)
which implies that U is a constant. Taking the divergence of
Eq. (2.24) using Egs. (2.25) and (2.23) then gives

1 D-5

~D’W, = ——D,D?S.

5 P (2.26)

Taking another divergence of Eq. (2.26) and using the fact
that W, is divergence free gives
(D —5)D*S = 0. (2.27)

The case D =5 corresponds to a one-dimensional
Ricci-flat compact space, namely S'. In this case,
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fn = W, = S = 0 and the only modulus is a rescaling of
the metric. If D > 5 then Eq. (2.27) implies that S is a
constant. Equation (2.26) then requires that W, be har-
monic and, by Lemma 1, it is therefore also Killing.
Consequently, 7,,, has no vector part. In addition, its
scalar part is constant and determined by its trace. Any
solution to Egs. (2.22) and (2.23) can be uniquely decom-
posed in the form

1

5 (2.28)

Tmn = imn + gmn U’
where U is a constant while 7,,, is both trace-free and
satisfies Egs. (2.22) and (2.23). The mode U is the overall
breathing mode of the space. The 7,, are the volume-
preserving moduli.

Finally, we note the enormous simplification for the case
of a torus where M,,, = TP~*. In this case, the Riemann
tensor R,,,,7 vanishes and the T,,, are constant. Including
the overall volume modulus, there are 1 (D —4)(D —3)
metric moduli. We summarize these statements about the
moduli space of Ricci-flat Riemannian manifolds in the
following lemma:

Lemma 2. Let (M, §,,) be a compact, Ricci-flat
Riemannian manifold. The solution T, to Eq. (2.22) can
be uniquely decomposed as in Eq. (2.28) where U is a
constant and 7,,, satisties D"'7,,, = 0 = §""%,,,. If M, =
TP-* then 7,,, is constant.

Therefore, the space of massless linearized perturbations
h,,, can be decomposed into a set of d; + 1 scalar fields

7. gmn

P = +ZCI>

where the scalar field ¢(x) is associated with the volume
mode or breathing mode U, and d;_is the dimension of the
moduli space of volume preserving deformations. It is
important to stress that these modes are guaranteed to be
massless only in the linearized approximation with the
exception of the volume mode ¢ which is exactly massless.
Finally, the linearized Einstein equations imply that the
scalars ¢ and ®) satisfy the massless wave equation,

tmn (v), (2.29)

0,6 =0 and 0O,00 =0. (2.30)
Diffeomorphisms of £,,, can only be generated by one-forms
&n which change the perturbation by D ,,£,,). Using Eq. (1),
we decompose ¢, =1, +D,, ¢ with D"y, =0, which
shows that 7,, can only affect W,, of (2.24). Similarly, &
cannot affect the zero mode of U. Consequently the scalar
fields ¢ and @) in Eq. (2.29) have no diffeomorphism
freedom.

The preceding discussion is a general analysis of the
moduli space of linearized deformations of M. However,
the precise enumeration of solutions to Egs. (2.22) and
(2.23) must be treated on a case-by-case basis for each

choice of M. In many cases of interest in string theory,
M, has special holonomy and one can say more about the
count of solutions to Egs. (2.22) and (2.23). For example, if
the internal manifold M, is Calabi-Yau, one can use
Kihler geometry to compute the dimension of the moduli
space of metric deformations in terms of the Hodge
numbers h74 of M, specifically A'"! and A*2"!

There is a separate question of whether infinitesimal
deformations can be promoted to finite deformations. For
Calabi-Yau, G, and Spin(7) spaces, all zero modes seen in
a linear analysis survive to the full nonlinear theory [60]. In
this work, we only need the existence of a finite number of
solutions for Eqgs. (2.22) and (2.23); we make no additional
assumptions about (M, §,.,) besides Ricci flatness. For
general Ricci-flat M;,, it is hard to determine whether the
zero modes found at linear order remain massless in a fully
nonlinear analysis.

To either reach Z™ or the actual physical location of the
detector, a scalar mode must be either exactly massless or
of sufficiently light mass and high energy that we can
approximate the mode as massless. For our analysis, we
will need to use the condition that R,,,(§ + k) = 0 to third
order in 4 where we only fluctuate the internal metric. This
plays a role in Appendix A for the asymptotic expansion of
the solution in powers of % near Z1. However, it is important
to note that the asymptotic expansion is only applicable for
metric fluctuations that are unobstructed and correspond to
exactly massless fields. Let us denote the number of exactly

massless volume-preserving scalar modes by ZiL in contrast
with the number of massless modes d; in the linearized
approximation.

III. COMPACTIFIED ISOLATED SYSTEMS

We first need to define the class of Lorentzian space-
times that we will study. Although we are motivated by
string theory, we do not restrict our study to 10- or 11-
dimensional spacetimes. Rather we consider D-dimen-
sional spacetimes with four noncompact spacetime dimen-
sions and D —4 compact Riemannian extra dimensions,
which represent “gravitational lumps” or localized metric
configurations whose curvature grows weak in asymptotic
null directions. Following standard terminology in the
general relativity community, we refer to such spacetimes
as compactified isolated systems, or simply as isolated
systems. As discussed in Sec. IB, this class of metrics
describes string compactifications on Ricci-flat spaces and
approximates warped compactifications in the limit of large
internal volume where the warping becomes small.

First note that any metric g,y on M = R* x M,,, is of
the form

ds> = G (X, y)dxtdx" 4 24, (x, y)dx"dy"
+ @ (X, y)dy" dy",

(3.1)
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where x# and y™ are arbitrary local coordinates on R* and
My, respectively. We define the notion of an isolated
system on a manifold M = R* x M;,, by introducing a
geometric gauge in coordinates adapted to outgoing null
hypersurfaces. In these coordinates, we define a class of
metrics which suitably tend to g,y in asymptotically large
null directions. These coordinates are defined in a manner
analogous to the standard Bondi coordinates in four-
dimensional asymptotically flat spacetimes. Since these
coordinates are essential for the analysis of gravitational
radiation, we briefly review their construction here.

The Bondi coordinates are denoted (u,r,04,y™). In
Bondi gauge u is a function on spacetime such that sur-
faces of constant u are outgoing null hypersurfaces. The
coordinates @4 are two arbitrary angular coordinates
on S, and the y™ are D —4 arbitrary coordinates on
M- In Bondi gauge, the normal covector Vyu is null
"™ (Vyu)(Vyu) =0 and we define the corresponding
future directed null vector KM = —¢g"NVu. The r coor-
dinate is a “radial” coordinate which varies along the
null rays. Note this is not a spacelike coordinate but a
null coordinate. In this gauge, the tangent to the null
rays corresponds to the radial coordinate vector field.
In summary, in Bondi gauge

M
Ky =-Vyu, KM = <§> and
r

The angular coordinates & and the internal coordinates y¥
are both chosen to be constant along these outgoing
null rays so that KYV,04 = —g"N(Vyu)(Vy0) =0
and KMV,y" = —gMN(V,u)(Vyy™) = 0. These Bondi
gauge conditions imply that the metric g,,y satisfies

ga=0 and A,,=0,

9rr = 0, (33)

where A, is defined in Eq. (3.1). The metric gy in these
coordinates is adapted to outgoing null hypersurfaces. Now
we define an isolated system with compact extra dimen-
sions which tends to the Ricci-flat metric (2.2). In coor-
dinates (u, r,0*,y™) adapted to outgoing null directions,
the asymptotic metric is given by

GyundxMdxN = N dX'dx” + gy, dy™ dy",
= —du® — 2dudr + r*q,5d0*d9®

+ Gundy™ dy". (34)
We define an isolated system as a metric g,y given by
Eq. (3.1) which, in coordinates x* = (u,r,6) and y™,
approaches the flat metric g,y given by Eq. (3.4) in
powers of % in the orthonormal frame described in
Sec. I E:

o0 (o9
G ~ M + Z r‘"hf,'l'), Ay~ Z r‘"A;(,',i) and
n=1 n=1

P ~ G + D 7" - (3.5)
n=1

This is gauge equivalent to the Bondi gauge choice®

AW =0, A% =0 and Al =0. (3.6)

for all n. The symbol “~” in Eq. (3.5) denotes an
asymptotic expansion. For convenience we have assumed
an asymptotic expansion in } to all orders with the upper
limit of the sums in Eq. (3.5) taken to be oo. This is not
strictly necessary for most of this analysis. The results
obtained in Secs. [V A-IV C require only that Eq. (3.5) be
valid at order n = 1. The results obtained in Sec. VA
require that Eq. (3.5) be valid up to order n = 3.

A full analysis of the validity of this ansatz would require
examining global stability for a suitable class of initial data.
Such an analysis was undertaken in [61,62] where stability
was proven in the case of supersymmetric compactifica-
tions. It would be interesting to study the asymptotic
behavior of such solutions near null infinity and compare
with the ansatz assumed here.

As noted in Eq. (1.5), our conventions for expanding the
metric coefficients in powers of % differs from more
common conventions. Usually the expansion coefficients
refer to the powers of % which arise from the components of
guy 1n a coordinate basis. In our conventions spelled out in

Eq. (1.5), the metric expansion coefficients g,(j;), A,(,]i,l and

(pSr]:;)z all contribute to the physical falloff rate of the metric

gy at order %, as seen in any orthonormal frame. From the
preceding discussion, Bondi gauge has a preferred geo-
metric status in constructing the notion of an isolated
system. We shall see, however, that Bondi gauge does not
appear to be the preferred gauge when asymptotically
solving the leading order Einstein equations with compact
spatial directions, studied in Egs. (4.2) and (5.1).

We also need to specify the asymptotic falloff of the
stress-energy tensor. The inclusion of massive sources is
straightforward since their stress-energy vanishes near 7.
For massless sources, we demand that

[Se]

Tyy = Z ”_nT%Vv

n=2

(3.7)

where the nonvanishing component of the leading order

stress tensor are Tffu), T£,2,,)1 and TS,%Z This is consistent with

¥The original Bondi gauge conditions also impose that the
“radial” coordinate correspond to an areal coordinate which
imposes that 0,(det(gsz)). Additionally, the falloff g,, in Bondi
gauge is such that g,alr) vanishes. We shall not impose these
conditions in the general falloff given by Eq. (3.5).
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the dominant energy condition. As we will see, the falloff
of T, and T,,, ensure finiteness of the energy flux and
charge-current flux to Z*. The falloff of T,,, agrees with
the intuition from Kaluza-Klein reduction.

There is one further condition we will impose, which
turns out to be easily satisfied by the most common forms

of stress-energy. From our ansatz (3.5) and the analysis

found in Appendix A, we see that f My, gm"GS,f,i = (0. This

turns out to be surprisingly nontrivial to demonstrate.

Einstein’s equations then imply that the zero mode,

f M, @’””Tf,f,)l, vanishes. In fact, Gf,f,)l is orthogonal to every

exactly massless scalar fluctuation ™", not just the breath-
ing mode of M. Similarly, we will impose a stronger

condition on the stress-energy tensor that f M_ltm”Tf,f,)l

vanishes for every exactly massless scalar fluctuation
™. This stronger version is also motivated from the
analysis found in Appendix A.

We can see whether this is a reasonable condition by
examining a few typical sources of stress-energy. If one
considers a D-dimensional scalar field ¢ with stress tensor

1
Tyy = VudpVye — EQMNVPfIva(ﬁ» (3-8)
and
(1)
= g0 P00.)) (ur,e,y)er’ (3.9)

then in this simple case, ¢(!) is harmonic on M;,
and therefore constant in y. The leading nonvanishing

stress-tensor component is then 7'y = (9,41)? and

TS,%,)l = 0. If one generalizes this case by considering a

p-form field strength F with D-dimensional action
— [y ﬁ F,..a, FMMr, the stress tensor takes the form

1
_ M..M,
Tyy = 21! <FMM]...M,,1FN 1p

1

M,..M,
_EQMNFMI‘..M,,FI ’)-

(3.10)
In Kaluza-Klein reduction near Z, F = dA gives rise to
massless spacetime fields associated to harmonic forms on
My as

1 1
Al (0.0.5) = B, (0O (), (B.11)
where @ € HP~9"'(M;,,R) is a harmonic represen-
tative of the cohomology class. The field strength F(1) =
dp") A @, where at this order d¢pV) = -9, A K and
the one-form K is defined in (3.2). As noted in (3.2), K is

null with respect to the asymptotic metric so Tﬁf,), = 0 again

as in the case of the scalar field. For these sources of stress-
energy commonly found in string theory, we see a much
stronger constraint on the asymptotic stress tensor than we
assume; namely that

@ _ 1 (12 .
TMN - 2([) _ 1)' (au¢ ) KMKN |CU

2, (3.12)

where |o]> = o @™+ Although in these
cases of physical interest the stress tensor satisfies stronger
conditions, in the body of this work we will only use the
weaker assumptions of falloff given by Eq. (3.7).

Finally while we have defined isolated systems in the
case where the spacetime is a product manifold, one can
straightforwardly extend this definition to include a wider
class of fibered metrics, including some gravitational
instantons. For example, we could consider R x TN where
TN refers the multi-Taub-NUT metric and R is time. This
example is a particularly nice generalization of the circle
compactification, which we will discuss in Sec. VIB. The
total space M is topologically R, but the TN metric at
spatial infinity is a Hopf fibration S§' < $3 — §%. The
Chern number of the fibration corresponds to the magnetic
charge for the Kaluza-Klein gauge-field found from reduc-
ing the metric on the asymptotic S'. The picture under
Kaluza-Klein reduction on the asymptotic S' is a collection
of particles located at the NUT singularities of the TN
metric, which are magnetically charged under the Kaluza-
Klein gauge field. While in this construction, TN appears
only in the spatial metric and time is completely factorized,
there have been studies of asymptotic symmetries and dual
supertranslations where TN appears with the fibered S'
identified with time [63].

While we will primarily focus on the case of product
manifolds, many of our results only require that the metric
satisfy Eq. (3.5) locally in some neighborhood of null
infinity. In particular, our results about the asymptotic
dimensional reduction of the Weyl tensor, the local con-
straints on the radiative order metric and asymptotic
symmetries, found in Secs. IVA-IV C remain valid as
long as the metric asymptotes to g,y at Z*. On the other
hand, arguments that involve inversion of elliptic operators
on the sphere or integrating FEinstein’s equations over
retarded time, found in Secs. VA-VI, will need to be
modified in the fibered case. In order to extend these results
to the fibered case, it is more useful to work with manifestly
gauge invariant quantities. In Appendix B, we provide an
alternative, manifestly gauge invariant derivation of our
results in linearized gravity using the Bianchi identity.

Mgiy...Mp_;

IV. ASYMPTOTICS NEAR NULL INFINITY

In this section we will analyze the asymptotic behavior of
the spacetime for an isolated system near null infinity. We
first collect some results regarding the asymptotic behavior
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of the Weyl tensor for any isolated system without impos-
ing decay conditions. Unless stated otherwise, we consider
a metric gyy which satisfies the asymptotic expansion
Eq. (3.5) near null infinity and obeys Einstein’s equations:

1
Run — EgMNR = 8xTyy-

(4.1)
In Eq. (4.1) we show that the Bianchi identity implies that
the “electric” part of the Weyl tensor, defined in Eq. (4.9), at
order ! admits a dimensional reduction in a manner exactly
analogous to the dimensional reduction given in Eq. (2).
In Eqgs. (5.1) and (4.2) we examine, in detail, the change
in the metric caused by a “burst” of gravitational radiation.
We characterize this burst by requiring that the metric
be stationary at asymptotically early and late times. In
Eq. (4.2), we analyze Einstein’s equations during the
radiative epoch. In Eq. (5.1), we investigate the implica-
tions of Finstein’s equations during the stationary eras.

A. Asymptotic reduction in nonlinear gravity

As shown in Sec. II, linearized metric perturbations in
Lorenz gauge with background metric (2.2) reduce to a
collection of gravitons, graviphotons and scalars. In the
full nonlinear theory, we will show that the leading
order electric Weyl tensor for any isolated system at null
infinity admits a harmonic decomposition in a way analo-
gous to linearized Kaluza-Klein analysis. This provides a
gauge invariant description of radiation, Kaluza-Klein
|

decomposed into spin-0, spin-1 and spin-2 components,
in full nonlinear general relativity.
We remind the reader that the Weyl tensor is related to
the Riemann tensor,
Cunpo = Runpro — 29[M[PSQ]N]’ (4.2)
where S,y is the Schouten tensor which, in terms of the
Ricci tensor, is given by

2 1

Sun = ——=Ryn — ———F—=9unR. 4.3

MN = 5 tMN (D—l)(D—Z)gMN (4.3)
Since the Einstein tensor is divergence-free, the Schouten
tensor satisfies VMS,,y = VxS where S = ¢g"VS,,y. The
uncontracted Bianchi identity is

v[MCNP]QR = —29[Q[NVMSP]R]- (4.4)

The nested notation appearing on the right-hand side of
(4.4) means antisymmetrize over (N, M, P) and antisym-
metrize over (Q, R) separately. We will use this notation
below. Contracting over M and Q and using the trace-
lessness of the Weyl tensor yields
Applying "'V to Eq. (4.4), commuting the derivatives
and using Egs. (4.5) and (4.2) implies

Oy Crror = 2(D = 2)VixVioSrip, = 2910y Seir) + 26" 910w Vir VP Sriu
- (D- 2)gTMST[NCP]MQR + 2gTMST[QCR][NP]M - 290M9RT50R9[Q[NCP]\M\R]T

1
+ EQMTSMTCNPQR + 20" S v Cryoryr + 29"° 9" CrvpirCokor

+ 490 g"K Crriomir CriixIRI0-

where [, = g™V, V. Therefore in any spacetime, the
Weyl tensor satisfies the wave equation with source given
by terms that are either products of the Weyl tensor,
products of the Weyl tensor with the Schouten tensor or
derivatives of the Schouten tensor. The asymptotic expan-
sion of the metric given by (3.5) implies the % expansion for
the Weyl tensor:

) (1)
c
Crnpor~ > Nr’; oR (4.7)
n=0

After imposing Einstein’s equations the only nonvanishing

components of Cg\%QR is the Riemann tensor R, of the
Ricci-flat asymptotic internal space M;,, with metric §,,,.

Further, the Schouten tensor is defined in terms of the Ricci

(4.6)

|
tensor in Eq. (4.3) which, in turn, can be written in terms of
the stress-energy tensor by Einstein’s equation (4.1).

The asymptotic falloff condition on the stress tensor is
given in Eq. (3.7). This stress tensor falloff directly implies
an asymptotic expansion of the Schouten tensor,

(4.8)

where the sum starts at O(-%) and S\ = 525 Thak. We now
show that Eqgs. (4.6) and (4.5) place strong constraints on
the asymptotic behavior of the “electric part” of the Weyl
tensor near null infinity. In particular, the leading order
electric part of the Weyl tensor can be dimensionally

reduced in exactly the same manner as reviewed in
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Eq. (2), but now in the full nonlinear theory. The electric
part of the Weyl tensor is defined as
EPR = CNPQRI’INI’ZQ, (49)
where n = (9/0u)M. The properties of the Weyl tensor
imply that the electric Weyl tensor is symmetric, trace-free
and that its # components vanish:
We note that lim,_ ., E,,y vanishes at fixed u, 6* and y™,
and therefore the leading order electric Weyl tensor
given by

Epn(u, 04, y™) = im rEyy (r, u, 04, y™) (4.11)

is gauge invariant. From the above relations, we now prove
the following key lemma regarding the asymptotic dimen-
sional reduction of Ejy.

Lemma 3. (Asymptotic reduction of electric Weyl). Let
(M, g) be an isolated system whose metric g,y has an
asymptotic expansion given by Eq. (3.5) and let £,y be the
leading order, electric Weyl tensor defined by Egs. (4.9)
and (4.11). £y satisfies the following properties:

(1) The components &, and &,y vanish for any

isolated system.

(2) The nonvanishing components satisfy

gAB = (Z;AB(M,H), SAm = ng)(u’e) ® ‘_/Srll)(ym)’

i=1

o gmn AB© i =(i) m
Emn——D_4q 5AB(u,9)+ZE()(u,9)tmn(y )

i=1

(4.12)

The ‘7,(1;) are a basis for the »; harmonic one-forms
on M, where b, is the first Betti number of M;,,.
The i,% are a basis of the d; symmetric, rank 2
tensors which satisfy the Lichnerowicz equation on
M, and D", = i), = 0, where d; + 1 is the
dimension of the moduli space.

Proof.—That &£,,, vanishes follows directly from the
definition and properties of the electric Weyl tensor given in
Egs. (4.9) and (4.10). To prove that &£,), vanishes we note
that contracting Eq. (4.6) on the N and Q indices with n"
and n? gives the following equations for the electric Weyl
tensor at order &:

D%, =0, D%, =0

and D2E,, + 2R, 9€,, =0.  (4.13)

Pq —

Since &y is gauge invariant we assume, without loss of
generality, that the metric g,y is in a gauge such that the

metric expansion coefficents hw, hg}‘) and hgl,f all vanish. A
straightforward calculation of the electric Weyl tensor using
the metric in Bondi gauge implies that
Ea=0, E,=0 and &,,=0. (4.14)
Since &)y is gauge invariant we conclude that &,
vanishes for any isolated system. Applying n” and n® to
the P and R components of Eq. (4.5) at order% and using the
fact that £, vanishes gives
D"¢,,=0 and D"E,, =0. (4.15)
Equations (4.13) and (4.15) together with Lemmas 1 and 2
imply that £, and §"™"E,,,, are harmonic on My, £, 1S
spanned by harmonic one-forms V,(,i) on M;,, and the

trace-free part of £,,, is spanned by f,(,i),, Finally we note that

gmngmn = _qABgABv (416)
which follows from the tracelessness of £,y as well as the
vanishing of &£,,, and &£,,. m
Lemma 3 implies that the nonvanishing components of
the leading order electric Weyl tensor, &y, can be viewed
as a tensor on $? x M;,. Let q,;, be a (D — 2)-dimensional
product metric on S x M, which, for arbitrary coordi-
nates x¢ = {60, y"} on §2 x M, is defined by’
qupdxdx’ = q,5d04dOP + §,,,dy"dy". (4.17)

It is convenient to define a “news tensor” on S x M,
which we denote N,

_ 1 _
Nap = lim r(qacqbd - mqahq“{) Oufear  (4.18)

where g, is the zero mode of g,y along the S? x M,
directions. The components of A, satisfy

DzNAB - 0, DZNAm - 0,

Dszn + 27?’mpnq-/\/pq =0, @mnNmn = _qABNABv

(4.19)

and the news therefore admits the decomposition,

"We faced an unfortunate choice in labeling combined coor-
dinates for the sphere and the internal space. Either introduce a
new letter or use x“, which we hope the reader will not confuse
with x#. We hope this choice is the lesser of two evils. All
conventions are spelled out in Sec. TE.
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1
Nyap = Nap(u,0) + EQABN(uve)v

b] . o
Nanw =Y Ny @ Vil ("), (4.20)
i=1
g & ()
— _ Y () 70 (ym
N o D_4N(u,0)+Z/\f (u, 0)Eh(y™), (4.21)

where N4z is the trace-free projection of N yz(u, ) and N
is the trace of V45 on S given by
c p_1 cD
9a 498" — 549489

N:
= (a0

N = qABNAB(”’ ‘9)-

)./\/CD(u, 0) and
(4.22)

Equations (4.20) and (4.21) give a decomposition of
radiation in the full spacetime M into spin-2, spin-1 and
spin-0 components. The four-dimensional Bondi news is
related to the trace-free part N4z, but note that N, here is
computed in D-dimensional Einstein frame. In Sec. VI D,
we will discuss how the news and related observables are
affected by the choice of frame.

The decomposition of the radiative modes given by
Eq. (4.21) corresponds to the exactly massless modes
arising from M,,,. The decomposition given by Lemma
3 is a consequence of the leading order Bianchi identity and
Einstein’s equations. However, as we have spelled out in
Eq. (2.2), the space of truly massless modes is a subset of
the modes enumerated in Lemma 3. The spin-2 mode, spin-
1 modes and the scalar volume mode are truly massless.

|

However, the number of truly massless volume-preserving
scalars are ZlL < d;.. Therefore in Eq. (4.21), we replaced dy,
with d; . As we show in Appendix A, if we had not done
this truncation then our ansatz would not be consistent with
Einstein’s equations.

Finally, a direct calculation of £,y in terms of the metric
implies that the nonvanishing components of &,y can be
compactly expressed in terms of N

1
gab - —zauNab. (423)

We refer to V;, as the “news” tensor which is analogous to
the Bondi news tensor in four-dimensional asymptotically
flat spacetimes. In such spacetimes, the null memory effect
is determined by the squared Bondi news tensor integrated
over retarded time, as discussed in Sec. I A. In Sec. VI, we
prove that analogous statements hold for isolated systems
with compact extra dimensions.

B. Asymptotic analysis of the metric

We now analyze the leading order solution of Einstein’s
equations in the neighborhood of null infinity. We assume
that the metric is initially in Bondi gauge which implies, in
particular,

() _

hg.},) = O7 hiz) — O and Arm - Y (424)

where A,,, is defined in (3.1). Einstein’s equation at leading
order in % gives the following constraints:

(uu; 1) D2hly) +20,D" A% — 32(q B RSy + ™) = 0, (4.25)
(ur;1) D*hYY =0, (4.26)
(uA;1) DAY +0,0mAY) —o, (4.27)
(AB;1) D*h{) =0, (4.28)
(um:1) DAL —D,D"AY)) + 0,D" k) + 0,D,,(hY) — g"Bh)) = 0.D,, 57904 = 0. (4.29)
(Am;1) DAY —p, DA’ =0, (4.30)
(mn:1) D) + 2R, %9 — 2D,D"¢\}) —2D,D, 1Y) + DD, (4" ks + ")) = 0. (4.31)

The notation on the left-hand side (MN; k) refers to the MN components of Einstein’s equations at order % To solve these
equations we want to find gauge choices, in a manner compatible with Eq. (3.5), so that the following equations are true:

DAl =0, D"AY) =0 and ol

A

gmn

b (4.32)

gmn 2
= D,D,———D" |¥
’"’”L( T D —4 ) *
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where D"®,,, = 0 = §""®,,,, and ¢(u, ) is constant on M;,.. We want to construct a diffeomorphism, specified by a
vector field, that preserves our asymptotic falloff conditions and implements (4.32). So we assume that the vector field has
the form

(n
A L) 0(%), (4.33)

r r
where we assume no O(r°) term in &,,. Under this diffeomorphism, the metric shifts by gyn = gyv + 2V (1&y). In order to
achieve the gauge conditions of Eq. (4.32) the components of 55‘;) must satisfy

I
D&y = -Aly 08 +D,8) = =Am. Dty =5 om. (4.34)

To ensure that we preserve the Bondi gauge conditions at leading order, we set ngl) = 0. The first equation in (4.34) implies
that Dzégl) = —D’”A/glrzl. The right side of this equation has no zero mode, and so we can solve for (5511). Next, using

Proposition 2, we can decompose (pﬁnl,)l into tensor, vector and scalar parts:

1
—4

gmn

D 445 (4.35)

(p£V:7)1 =, +D(mz:n) + (DmDn gmnD2>lP +
where ¢"'®,,, = D"®,,, =0 and D"{,, = 0. Using Eq. (1), .»:S,i ) = D, ¢ +n,, where D"y, = 0. Using these decom-
positions and taking the trace of the third equation in (4.34) gives D*£ = —%qﬁ. The zero mode of ¢ is the obstruction to

solving for £ Subtracting out the zero mode, we can solve D*& = —% (¢ — ¢). With this choice of &, we can replace ¢ by

¢(u,0). Furthermore, we can choose 7,, = —%Cm, which eliminates the vector part of qog,},),. Finally, we consider the

divergence of the second equation in (4.34), Dziil) = —D’"AE},,), + 0,D?*¢E. Since the right side of this equation has no zero

mode, we can solve for 55,”. This completes the specification of the diffeomorphism which implements (4.32).
The leading order Einstein equations [Eqgs. (4.25)—(4.31)] can now be directly solved. In this gauge, Eqs. (4.26)—(4.28)

imply that hE}), hyA} and hgll)g are constant on M. Therefore,

Wy = w o). BN =rNwe. B} =r\u.0). (4.36)
Equations (4.32) and (4.36) imply that Eq. (4.25), which takes the form
Dzhuu %(q ABhAB +¢), (4.37)

can be directly solved. Since the right-hand side of Eq. (4.37) is in the kernel of the Laplacian D?, the left- and right-hand
sides must both vanish implying

nis) = Al (u,0) and 83,(61/‘37121; +¢)=0. (4.38)
Applying ™" to Eq. (4.31) and using Egs. (4.32) and (4.36) yields
(D-5)D*¥ =0, (4.39)

which, by Proposition 2, implies that the trace-free scalar part of ®,,, vanishes. '’ Using our gauge conditions, harmonicity

of the spacetime components h,(,ly) and that Eq. (4.39) implies Dm(ps,l,)l =0, the (um;1) and (Am;1) components of
(1)

Einstein’s equation imply that A,,,; and Aglnl are harmonic with decomposition

bl . — [
A =Y AN (,0) ® V) (y") and Al = ZA“ 0) ® Vi (). (4.40)
i=1

10Equation (4.39) looks unconstrained for D = 5 but that case is very special since the internal space is S! and the only term in (4.35)
is proportional to ¢.
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where \75,? are a basis for harmonic one-forms on M. Finally, Egs. (4.32), (4.36) and (4.39) imply that

D’®,, +2R,7,4®,, =0 = @,, = > &0 (u 0)7m(y"). (4.41)

where f,(,lli, are the ZiL trace-free, divergence-free, unobstructed deformations of M. Finally Eq. (4.38) implies that the sum
q*Bhsp + ¢ can have, at most, linear dependence on retarded time u. Einstein’s equations at order rlz, however, place a
stronger constraint on the time dependence of this quantity. In particular, a direct calculation of g*? applied to the zero

mode of the trace-reversed Einstein equations implies that
3, (¢ Bh) + ¢) = 0. (4.42)

We summarize our findings on the asymptotic behavior of the metric in the following lemma:

Lemma 4. Let (M, g) be an isolated system in a gauge which satisfies our ansatz Eq. (3.5). There exists a unique
diffeomorphism which preserves our ansatz such that the leading order expansion coefficients of the metric have the
following properties:

(1) The R* metric components are harmonic on M;,, and therefore satisfy

ha = h w0). B =aNwe). BN =rNwe. n))=r\)u.0). (4.43)

and the hg,), hSA) components vanish.
(2) The components AE,,,), and Airzl admit the decomposition

um_ZA“ 0) ® Vi) (™), ZA“ 0) ® Vi (y™), (4.44)

and Ai},f vanishes. The \7,(,? are a complete basis of b, linearly independent Killing vectors of M, where b, is the
first Betti number of M.
(3) The components @, satisfy

N a
(1) Ymn i =) /om
Pmn = D _445(”,9) + ;:1 ®! )<u’9)tmn(y ), (4.45)

|
— ~mn, (1) -(i) . This expression for the news tensor identifies the gauge
z;hzre s¢n:n?etri(im'rlairllqdzﬁzr:;ngraf;zlz:(\)x?i)itiat;iassfls invariant radiative degrees of freedom of the leading order
_%) y ) y metric, and manifestly satisfies the relations spelled out
D"ty =0, §™Twn =0 and Eq. (2 22). Further-  jp (4.19).
more, the metric satisfies 9, (g% Al AB )+ ¢) =0.
Without loss of generality, we will assume this gauge in
the remainder of this work. This gauge choice dramatically
simplifies the analysis of the higher-dimensional Einstein
equations by gauging away higher harmonics in the internal
space. We note that any metric which admits an asymptotic
expansion (3.5), and which satisfies the Einstein equations,
can be put into this gauge. In this sense, our gauge choiceis  the gauge choice of Lemma 4. Note that the trace ¢
not an additional assumption but actually a consequence of  is constrained by Eq. (4.42) so that qABth),(u 0) =
the falloff conditions and equations of motion. —(u,0)
In this gauge the news tensor, defined in (4.18), is very
nicely related to the leading order metric by

C. Asymptotic symmetries of compactified
spacetimes

In this section we investigate the asymptotic sym-
metries of spacetimes with compact extra dimensions.
Before doing so, it will be convenient to further refine
AB h(l)

¢(0). We now show that there exists a residual
gauge transformation, compatible with Lemma 4, which
allows us to set ¢ =0. Performing a diffeomorphism
W parametrized by &, = ¢(0)K,;, where Ky, is defined in
Nap = Ouhyy. (4.46) Eq. (3.2), we see that the metric changes by
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hEtX - hEtX + DAC<0)’
(4.47)

hiy = hiy +2¢(8)gap.

where D, is the covariant derivative compatible with ¢,p,

defined in Sec. I E. The shift in hf;) does not affect the
gauge fixed in Lemma 4, while the change in /45 is exactly
of the form needed to eliminate ¢(0). Fixing this gauge, we

may now assume that ¢(6) = 0 and therefore ¢Zh\}) has
no further diffeomorphism freedom.

For an arbitrary dynamical spacetime the metric will not,
generically, have any exact symmetries. However for given
asymptotics, the spacetime will admit an asymptotic
symmetry group. We define this group as the group of
diffeomorphisms which preserve the gauge conditions in
Lemma 4 along with g8 h% = —¢. Since in this gauge,
the metric decomposes into spin-2, spin-1 and spin-
0 degrees of freedom there is a corresponding decom-
position of the asymptotic symmetry group. The upshot of
this is that we can consider the asymptotic symmetries of
spin-2, spin-1 and spin-0 degrees of freedom separately.

To find the symmetry group of the spin-2 modes, we note
that the R* components of the leading order metric hﬁ,},) are
effectively in a Bondi-type gauge. The original Bondi

gauge conditions on the leading order metric are hﬁlr) =

h) = ¢A8h) = 0. It then follows from Bondi’s original
analysis that the symmetry group that preserves these gauge
conditions is the BMS group 8B which we shall review
shortly. We note that our gauge conditions also imply
'y = n') = 0. Additionally, we imposed ¢*8h\) = —¢.

Since ¢ has no residual gauge freedom this fixes g*% h%.

Therefore, the asymptotic symmetry group of the spin-
2 degrees of freedom is the BMS group B.

At this point as promised, we should recall some
properties of the BMS group. The Lie algebra (bms) of
2B contains an infinite-dimensional normal Lie subalgebra
t, which contains the supertranslations. Explicitly, the
elements of t are

e —-10)(5) 3710 (5)"

+1qABD 7(6) O, (4.48)
, B aGA eey .

where the “...” denotes vector fields that vanish as r — oo
at fixed u, @ and y™. The function T () is smooth on the
asymptotic two-sphere. If 7(6) is an ¢ =0 spherical
harmonic then Eq. (4.48) is an asymptotic time transla-
tion. If 7/(0) is a linear combination of # = 1 spherical
harmonics then Eq. (4.48) is an asymptotic spatial trans-
lation. If 7'(6) is orthogonal to the # =0, 1 spherical
harmonics then (4.48) is called a supertranslation
and, asymptotically, corresponds to the action of an

infinitesimal, angle-dependent time translation. The quo-
tient bm3/t = 80(3, 1) is the Lorentz Lie algebra, which
corresponds to conformal Killing vectors of S2. At the level
of group structure, the BMS group (2B) is therefore the
semidirect product of the restricted Lorentz group (£) and
the infinite-dimensional supertranslation group (7):

B=LKT. (4.49)

We now turn to the spin-1 degrees of freedom. The

diffeomorphisms that act on A,% and preserve our metric

asymptotics (3.5) are generated by fﬁ,?) (@), which cannot
depend on u. To preserve Lemma 4, 5,(,?) must be harmonic

on M. Any such 5,(,? ) is a smooth function S (6) multiplied
by a Killing vector V"(y) on My,

M =S5(0)V™(y) <%)M + ... (4.50)

where the omitted terms again vanish as r — oco. There are
b; Killing vectors on M;,. In the limit as r — oo, the
commutator of any two &M of the form (4.50) vanishes so
the asymptotic symmetry group generated by these vector
fields is Abelian. Let us denote this group of angle-
dependent internal isometries by €. We note that elements
of this group do not commute with Lorentz transformations
in L.

The remaining degrees of freedom are the spin-0 modes
of (4.35) given by the tensor modes ®,,, describing the
volume-preserving moduli, and the scalar mode ¢ which is
the volume mode. There is no choice of asymptotic vector
field which preserves our asymptotic conditions and the
gauge conditions given in Lemma 4 that can affect either
®,,, or ¢. The only asymptotic diffeomorphism that can

(1)
affect rpg,l,), is of the form % + - -+, but all of this gauge

freedom has already been used to implement the gauge of
Lemma 4. Thus there is no remaining diffeomorphism
freedom for these modes.

Therefore, the enlarged asymptotic symmetry group (®)
is the semidirect product of B with the Abelian group €:

G =3BxEC. (4.51)
We note that this asymptotic symmetry group is identical to
the asymptotic symmetry group of asymptotically flat
Einstein-Maxwell-scalar theory where € is replaced with
the asymptotic symmetries of the electromagnetic field
[64]. Therefore, € has the natural interpretation as the
asymptotic symmetry group of the graviphotons.

Finally we will give the action of elements of & on Z,
which has the topology of R x $? x M. An element of
this asymptotic symmetry group moves a point (u, 8, y) to
(ﬁ,é, y) as
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FIG. 2. Action of a supertranslation and an angle-dependent
internal isometry on the asymptotic sphere. We chose M;, = S!
for simplicity. Null infinity is an incoming null surface with
topology R x §% x S' whose cross sections are asymptotically
large spheres. A pointin R x S? (highlighted in black) and a point
on M;,, = S', where the S' is represented by a circle, specifies a
point on null infinity. At leading order in % supertranslations only
act on R* while angle-dependent internal isometries act only on
M. Given a constant u# cut of null infinity, labeled %,, a
supertranslation acts by u — u + T(6) and an angle-dependent
internal isometry acts by y — y + S(6). The composition of these
group actions takes the cut X into the cut Z;.

it = w(0)[u+T(6)], (4.52)
0" = 6(6), (4.53)
" =p(y.0), (4.54)

where ¢:5% — 52 acts by a conformal isometry of the two-
sphere given by 6*qs5 = @*q4p. Similarly, at each fixed
angle, the map p(-, 0): M, = M, acts as an isometry of
the internal space: p*§,,, = Omn- An illustration of the
combined action of a supertranslation with an angle-
dependent internal isometry is given in Fig. 2. Finally

we note that, in terms of the leading order metric hj(vllg\,, the
infinitesimal action of the composition of a supertranslation
and an angle-dependent internal isometry is

W), 0,y) = h)(u,0,y) + T(O)N 45(u, 0)

1
+ (DADB — 5 qABDZ) T(@), (455)

A (u,6,y) — A (u,0,y) + DuS(0) ® V,,(y).  (4.56)

So the composition of a supertranslation and an angle-
dependent isometry only affects the zero modes of the
leading order metric.

V. BURSTS OF RADIATION

Building on our discussion of the radiative degrees of
freedom and the corresponding asymptotic symmetries in

Sec. IV, we now examine the response of the asymptotic
spacetime metric to a burst of radiation. We study the
metric near Z by analyzing Einstein’s equation in a %
expansion. We consider spacetimes which are stationary at
early times, undergo a period where there is a significant
amount of gravitational radiation for a finite range of
retarded time, and then approach stationarity at asymptoti-
cally late times. It was pointed out in [7], at early or late
times, that the metric corresponding to a collection of
inertially moving massive bodies is stationary at order % but

will generically be nonstationary at higher orders in } In
particular, it was shown quite generally, that the behavior of
the Zth multipole moment for the metric of a static compact

object at some time ¢t = u + r behaves as

(u+r)” 1+1fu+
711 PR RS

(5.1)

hyn ~
-
near Z+ where gyn = 1y~ + hyn and the behavior in the
internal space has been suppressed. Therefore a generic,
boosted compact object will be stationary at leading order
in 1/r but will generically be nonstationary at subleading
orders in 1/r. This nonstationarity for # =1 can be
removed by boosting to the center-of-mass frame where
the matter is at rest. However, h,,y is generically nonsta-
tionary at subleading orders in 1/r if one has incoming or
outgoing compact objects at early or late times.
However, for simplicity, we will investigate null memory
effects caused entirely by the flux and scattering of
incoming and outgoing gravitational radiation, and no
ordinary memory. To impose this condition we assume
the stronger stationarity conditions of [7]. Specifically we
assume there exists a gauge in which the metric satisfies the
following stationarity conditions at asymptotically early
and late times:
8uh<M”1)V -0 asu—too forallm>1. (5.2)
We will further require that the stress-energy vanishes in a
neighborhood of null infinity at early and late times at the
following orders:

T<M"3V -0 asu—> too foralln <3. (5.3)
This is not terribly restrictive: the condition includes all
stress-energy with compact support and most isolated
systems studied in the literature.

This section is laid out as follows: in Eq. (5.1) we
examine the constraints from Einstein’s equation on the
metric in the stationary eras. In Sec. V B, we use our results
from Secs. IVB-V A to integrate Einstein’s equations to
obtain gauge invariant information about the change in the
metric between the stationary eras caused by the passage of
gravitational radiation to ZT. As we shall see, certain
components of the change in the metric correspond
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precisely to the composition of a supertranslation with an
angle-dependent isometry.

A. Stationary eras

We first investigate the behavior of the metric in a
stationary era. Our stationarity conditions turn out to imply
constraints on the angular behavior of the metric at leading
order in % It is useful to note that Proposition 1 applies to
any closed Riemannian manifold and Proposition 2 applies
to any compact Riemannian Einstein space, and therefore
they both apply to the two-sphere equipped with the round
metric gup-

Remark 1. Propostions 1 and 2 apply to any compact
Riemannian manifold. For example with the round metric
gap on the two-sphere then (S2,g,z) is a compact
Riemannian Einstein space with ¢ = 1. Therefore,
Proposition 1 and 2 apply to both a one form V, and a
second rank, symmetric tensor field 75 on S°. Therefore,
V4 and T,p can both be decomposed uniquely as in
Egs. (2.14) and (2.24) where the covariant derivative is
now the derivative operator D, compatible with metric ¢, 5.
There is no “tensor part” since there are no divergence-free,
trace-free tensors on S2. Furthermore, any divergence-free
vector v, on S? can be written as the “curl” of a scalar
function P, i.e., vy, = €,2DyP. This is sometimes called
the “magnetic parity” or “parity odd” part of the vector.
Finally, any rotationally invariant operator (such as
D> = ¢"BD,Dp) acting on a one-form or a symmetric
tensor preserves this decomposition.

Given Remark 1, we now determine the metric con-
straints from Einstein’s equations in a stationary era. We
adopt the gauge described in Lemma 4. The analysis of
Einstein’s equations in a stationary era is greatly simplified
by further fixing the gauge of the metric at O(L). In
Appendix A, we prove that one can put the metric in a
gauge compatible with the stationarity conditions (5.2) and
(5.3) and the gauge of Lemma 4 so that Einstein’s equations
imply that

by
2 =(2 2 2:i =) r-m
e =k 0). Am=>_AMO) @ V"), (54)
i=1
and

o2 = o2(0.y) + <DmDn ST D2) P (g, y)
gmn

"p_3

¢ (0). (5.5)

Aside from special cases like M;,, = T*, neither ¥(>) nor

d>,(f,), are zero modes on M.
We now analyze Einstein’s equations in a stationary era
in the gauge of Lemma 4 with the constraints (5.4) and (5.5)

imposed. The zero mode of Einstein’s equations at order 713
after a lengthy calculation described in Appendix A, yields

(uu;3) DA =0, (5.6)
(ur;3) D2hYY) =0, (5.7)
(A;3) [D2=1]hY) =D, DBAY) — Dy(hlh) = hll)) =0,
(5.8)
(rr;3) ¢ —2hi) =0, (5.9)
(rA;3) Duhly — DV =0, (5.10)
AB;3) [D*-2n) — 2D, Dh) 4 2pCpl)
(AB;3) [ Y (A et cudAB
+ DADBqCDh(clI)) + QABqCDh(c%
+ [DyDy = 4asl( = 2hi)) = 0, (5.11)
(um;3) DAV =0, (5.12)
. 2 (L) (Li) _
(Am;3)  [D? = 1]AY 4+ DAl = o, (5.13)
(mni3) D¢p=0 and D@}, =0, (5.14)

where the coefficients A\, Agl;i) and @) are defined

in Lemma 4. In Eq. (5.14), the ®() are the EZL exactly
massless modes as discussed in Sec. II B. Additionally, the
(rm;3) components of Einstein’s equations vanish.

Equations (5.6), (5.7), (5.9), (4.29) imply that A\, hlY,
o, @f,i% and Aam are spherically symmetric and
¢ =2hl. (5.15)

Consequently, the left-hand side of Eq. (5.10) vanishes.
Using Proposition 2 and Remark 1, one can write

A (6) = DS (6) + €4 DR (0).  (5.16)

h)(0) = D,P(6) + e,EDRF(6). (5.17)

and

133(0) = €, Dy DW(0) + (DADB - %zﬂ) T(0)

+ 948 1),

5 (5.18)

Applying €“4D¢ to Egs. (5.8), (5.10), and (5.13) yields

024072-22



GRAVITATIONAL MEMORY AND COMPACT EXTRA DIMENSIONS

PHYS. REV. D 105, 024072 (2022)

DRO(G) =0, D?F@) =0 and

(D* +2)D*W(6) = 0, (5.19)

and therefore the magnetic parity parts of AE\] ;i), hl(;f and

hf;; vanish."" Applying ¢*2 to Eq. (5.11) yields a relation
between U(0), T(0) and P(6):
D2U(0) — D*(D> +2)T(0) + 4D*P(9) = 0.  (5.20)
We summarize the above results in the following lemma:
Lemma 5. Let (M, g) be an isolated system that satisfies
both our ansatz (3.5) in a gauge compatible with Lemma 4
and our stationarity conditions. There exists a unique
diffeomorphism which preserves these gauge and statio-
narity conditions such that the leading order expansion
coefficients satisfy the following relations:

(1) The R* metric components satisfy:

hal =i h = ¢y W) =DuP0),  (5.21)

h) = (DADB - Q%BDZ> T(0) + ‘%B U(o),
(5.22)

and h =0= . Here ¢; and ¢, are constants,
the functions P(H) T(0) and U() are smooth
functions on S? and are related by

D*U(0) — D*(D?* +2)T(0) + 4D*P(6) = 0. (5.23)
(2) The Af,l% components satisfy:
by ‘
Al =007 (),
i=1
1 4 o (i
Ay =3"DSOO) @ V(") (5.24)

i=1

and Ag?z = 0. The Q(i> are constants and the func-

tions S')(@) are smooth functions on S2.
(3) The internal space components satisfy:

. a
(1) _ _Ymn (D) £0) (m
mn — q) tmn N 2

¢ D_4¢+; ™), (5.25)

""The operator (D* + 2)D? annihilates the # = 0, 1 spherical
harmonics. Let W be the projection of W into the subspace
spanned by # = 0, 1 spherical harmonics. That W is annihilated
by the operator in Eq. (5.18) (i.e., e(ACDB)DCW = 0) follows
from the fact that any function that is a linear combination of
¢ =0, 1 spherical harmonics satisfies DyDyW = —q,zW.

where 2¢, = ¢ and the coefficients ®() are con-
stants.

This discussion captures the leading order behavior of the

metric near Z* for stationary objects in the bulk; for

example, stars or black holes with possible scalar hair.

B. Change in the metric coefficients after
the burst of radiation

Now that we have determined the radiative degrees of
freedom in Lemma 4, and the metric component constraints
from the requirement of stationarity at asymptotically early
and late times in Lemma 5, we now integrate the leading
order Einstein equations to prove the following theorem:

Theorem 1. Let (M, g) be an isolated system which
satisfies our ansatz and stationarity conditions. Let g,y be
in the gauge described by Lemmas 4 and 5 and satisfy
Einstein’s equation with stress-energy 7,y satisfying
Eq. (5.3) and the dominant energy condition.

(1) The change in the metric coefficient A, ; is

1 1
Ah%(e) = (DADB - ) QABD2> T(G) - B qapAd,

(5.26)

where A¢p = A(@m"(pgn,)l) is a constant; specifically,
it cannot be a function of 6. The function 7'(0) is a
smooth function on S? determining an asymptotic
supertranslation [Eq. (4.55)] which satisfies

D(D? +2)T(0) = 4AhS)

—2A¢ — 162F(6),

(5.27)

where Ahg,lu) is a constant, F(0) <0 is

1 2
F(o _——/ dudyp, (Tﬁ,u u. 0,
( ) VOI(Mim) Rx M ’uMml ( y)
1
— N 0 5.28
+ g NN 1.0.9)) (5.29)
and duy,, is the volume measure of (L?,Yn M)

(2) The change in the metric coefficient A, i

-Sons

AAAm @,y

0) @ V(™) (5.29)

where \7%) are a basis of b; harmonic one-forms on
M, and the coefficients SU) are a set of smooth
functions of S? which are parameters of an asymp-
totic internal isometry and satisfy

D*51) ()

= A0 + 16270 (0), (5.30)
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where the Q) are constants and

1

(i) - -
T0) = JoitM

2)

x / dudpirg, Tl (u,0,y™)VOm(ym).
RXMim

(5.31)

(3) The change in the metric coefficient (p,(,i,), is

A
gmn

D/ om
A (y V=74

& '
A+ AR (y"), (5.32)
i=1

where A¢ and A®) are constants, and the fﬁ,i)n are a

basis of EZL symmetric, divergence-free two tensors

on M, which satisfy the Lichnerowicz equation.

Proof.—We assume that the metric g,y iS in a gauge

compatible with Lemmas 4 and 5. The “zero mode” of the

(uv;2) components of Einstein’s equation at order riz (see
Appendix A 1), yields

(uu;2) 0,00 + 0,0y — 0,hl)) = 82T
1

—— 1
+ ZNabNab - Eau(h(l)ABNAB +240AnN

+ (p<1>mnNmn - au}_lug’? - aquB}_lu,(fI; - au?]mn(pg’ﬁ)’
(5.33)
(ur;2) 0, —20,hY = 2hdlY,  (5.34)
(wA;2) 0,D%hY) —20,h) + 0,D,hlY = 2R
(5.35)

and the (rr;2), (rA;2) and (AB;2) components of Einstein’s
equation vanishes. Integrating Eq. (5.34) together with our
stationarity conditions, Eq. (5.2) implies that

Agp = 2AhS) (5.36)
which agrees with Eq. (5.15). Lemma 5 implies that
A¢ is spherically symmetric. Furthermore we note that,
by Lemma 4

O (q"Ph) + ) =0 = Ap = —AU, (537

where U = qABh/(;; in the stationary eras. Combining
Egs. (5.33) and (5.35) yields

8, DADER) = 20,hll) — (D* +2)0,hly)

_ ] ————
+ 16272 + SNONawp=0,Cr. (538)

where C; denotes a collection of terms which vanish in the
stationary eras. Integrating with respect to retarded time,
using Eq. (5.2) and using the decomposition of hglg in the
stationary eras given by Lemma 5 yields
DX(D?+2)AT(0) =4AhY) —2A¢"V) —162F(0)  (5.39)
where F is the total flux of stress-energy and news squared to
null infinity given by Eq. (5.28). That 7 < 0 follows from the
positivity of T,(ﬁ,) due to the dominant energy condition and
the positivity of N°N .

The zero mode of the (um;2) components of Einstein’s
equation at order rl—z can be extracted by taking the zero

mode of the (um;2) components contracted with the

orthonormal basis vectors f]’"”‘_/ﬁ,i) on M. The (rm;2)
and (Am;2) components of Einstein’s equation vanish and
the zero mode of the (um;2) components yields

(um;?2) 8MDAA£‘1;i) —9,AL

= / (162T V" 1+ 9,C,),  (5.40)
Mim

where AE{) (u.0) and A (u, 0) are defined in Lemma 4 and
C, vanishes in the stationary eras. Integrating Eq. (5.40)
and using Eqgs. (5.2) and (5.3) and using the decomposition

of A/(’{lrzl’ Ag,l,,l in the stationmg) era given by Lemma 5 as well

as the decomposition of ¢, and N,,, given by Lemma 4
and Eq. (4.21), respectively, yields the desired relation
D*ASD(0) = AQY + 16271 (0) (5.41)
where the J()(6) are defined by Eq. (5.31). Finally, the
(mn;2) components of Einstein’s equation place no further

constraints on the change in (pﬁ,:,), and therefore, Lemmas 4

and 5 imply that Agly) is given by Eq. (5.32).

That 7(6) and the S() () generate an asymptotic super-
translation and an asymptotic angle-dependent internal
isometry between the stationary eras follows from
Egs. (4.55) and (4.56) and that A/, = O in the stationary
eras. ]

We finally consider the spherical harmonic dependence

of the change in the metric coefficients Ah/&l;, Ahgﬁl and

Aqoﬁ,i,)l. We first note that, by Lemma 5, A(pg,},i is clearly
spanned only by £ =0 spherical harmonics. By
Proposition 2, if 7(0) is spanned by £ =0, 1 spherical
harmonics then D,DpT(0) = —q,3T(0). Therefore, it

follows that the trace-free part of Ah% on $? is orthogonal
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to the £ =0, 1 spherical harmonics. Furthermore, by the

form of Eq. (5.29), we have that AASVL is orthogonal to the
¢ = 0 spherical harmonics.

VI. THE MEMORY EFFECT IN COMPACTIFIED
SPACETIMES

A. Unification of memory effects

We now explore the geometric interpretation of Theorem

1 in terms of the memory effect, which is an observable
quantity. Physically, the memory effect is the permanent
relative displacement of a system of test particles, initially
at rest, caused by the passage of a burst of gravitational
radiation. The relative displacement of test particles is
governed by the geodesic deviation equation
(MVy)?EN = —Rypo™ oM 0eEP,

(6.1)
where v is the tangent vector of the worldline of the
particle, & is the deviation vector and Rypo" is the
Riemann tensor. We are interested in the displacement of
test particles located near future null infinity and shall
determine the leading order memory effects in a % expan-
sion in a neighborhood of null infinity.

We consider a spacetime where the metric near
future null infinity is stationary at leading order in %, at
asymptotically early and late retarded times. In this sub-
section, we will simplify and integrate Eq. (6.1) to
derive an explicit formula for the memory effect. This
discussion is a modification of a similar analysis found in
[65]. There are subtle differences when one considers
compact internal manifolds, which makes the argument
worth revisiting.

Consider an array of initially stationary test particles in a
neighborhood of null infinity, which we model as a
congruence of timelike geodesics whose tangents 4
initially point in the (9/0u)™ direction. In a neighborhood
of null infinity, the spacetime metric deviates from
the Ricci-flat direct product metric (2.2) at order %
Consequently, the geodesic equation implies that v¥ differs
from the corresponding integral curve of (9/0u)™ only at
order % and therefore u will differ from an affine para-
metrization beginning at this order.

For an arbitrary internal manifold, the curvature is
generically nonvanishing at infinity. Nevertheless, these
considerations imply that the quantity Rypo™v™v2 in
Eq. (6.1) does vanish at infinity and is only nonvanishing
at order 1. Therefore, the deviation of v™ from (8/0u)™ in
Eq. (6.1) can only affect £V at order rlz and faster falloff.
Finally, by Eq. (4.2), the Riemann tensor differs from
the Weyl tensor at 0(%) since the stress-energy falls off like
r%. Since we are only considering the memory effect at

leading order in 1, we can replace v with (9/0u)™ and

Pl

Rpy N vP ot with the electric Weyl tensor £,," [as defined
in Eq. (4.11)] in Eq. (6.1) which yields

82

Indices on the right-hand side of Eq. (6.2) are raised and
lowered with the asymptotic metric g,,y. Equation (6.2)
implies that £¥ differs from the integral curve of its initial
value &) at order % and we may replace £¥ by its initial
value in the right-hand side of Eq. (6.2). Thus, at leading
order in 1, we have

82 )M M N

(6.3)
where 5§}> is the deviation vector at O(). Integrating
Eq. (6.3) twice, we obtain

gIMi=, = AM e (6.4)

where

(6.5)

Ayn = —/oo du’/u du"Eyy.

We refer to Ay as the memory tensor. This characterizes
the memory effect as a linear map on the initial displace-
ment to the change in the relative separation. Further, as
noted in Lemma 3, the only nonvanishing components of
Eyn are Ey, = —10,N ,, where a, b are along S x My
This gives a simpler manifestly gauge invariant relation for
the memory,

1 0
2ul0.9) =5 [ " duN (0. (66)

From (6.6), it follows that

Aab = Aba’ qabAab = qABAAB + gmnAmn =0, (67)
and clearly A, is time independent. Additionally from
Eq. (4.19), we see that

DAy =0, DAy, =0, DA, +2R,",9A,, =0.
(6.8)

Using arguments identical to those in the proof of Lemma
3, we see that A 4 is independent of internal coordinates y™
and A,,, and A,,, can be uniquely decomposed in a basis of
harmonic one-forms V.

7)., respectively,

and Lichnerowicz zero modes
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Auw = AV©O) @ Vi) (y) and
=1
aL (i 1
Amn - ZA(Z)<6)Enlm(y) + mf}mn@ qu(e)' (69)

The AX) are a collection of b, one-forms on 52, and the A(")
are smooth functions on $2.

We now provide a geometric interpretation of Theorem
1. In the gauge given in Eq. (4), the news tensor can be
expressed in terms of the leading order metric (4.46). This

provides a direct relation between the change in the h%,

hgl,l and hE,i,)L before and after the radiation epochs:

1
> A(pﬁnl,i.

1
AAB = _Ahz(;;’ 2

1 1
5 Ay, = EAAEUL and A, =

(6.10)

Using the results of Theorem 1 we can now relate the
memory to the change in the metric due to a burst of
radiation. We first note that certain metric components
appearing in Theorem 1 can be directly related to defi-
nitions of the Bondi mass aspect and electric charge aspect
in R4,

1 1
mp = —559) —_nl) and

2
00 = ) — Al (in a stationary era),  (6.11)
where F = dA using the exterior derivative on R* and Ay
is defined in Eq. (3.1). Using the results of Theorem 1 and

Eq. (6.9) we see that

1
DADBAAB = 2AmB - EAqﬁ - 8ﬂf(9),

1
B =52, (6.12)
. 1 , ,
DAY () = 580" +8270(0),  (6.13)
T A 1
A = EAfb(’) and ™A, = EAfﬁ- (6.14)

In analogy with the decomposition of the news in
Egs. (4.20) and (4.21) we can decompose the flux F(6)
into gravitational, electromagnetic and scalar contributions
to the flux:

F(0) = Fer(0) + Fem(0) + Fs(0),  (6.15)

where

— 1
For(0) = — A du(TE,%) @NABNAB), (6.16)

by '
Fem0) == /R AN, (6.17)
i—1

a
Fo(0) = -2 / N =3 / AN, (6.18)
R = Jr

From the point of view of reduction, Eq. (6.16) corresponds
to the flux of four-dimensional gravitational radiation
energy as well as null stress-energy. Equation (6.17)
corresponds to the flux of electromagnetic energy and
Eq. (6.18) is the flux of scalar energy where the first term is
the contribution from the volume mode and the second term
is the contribution from the volume-preserving moduli.

We can give a physical interpretation to these relations,
which express memory in terms of fluxes. First consider
Eq. (6.12). The spherically symmetric part of the left-hand
side vanishes. The right-hand side defines a change in the
spherically symmetric part of the mass aspect. It is
reasonable to view

1
m=mp— 4_1¢ (in a stationary era)  (6.19)

as the mass since the change in this quantity is determined
by the energy flux to Z* in analogy with the four-dimen-
sional result (1.12). Similarly, 0 is the electric charge for
each asymptotic gauge field A} since AQ(¥ is determined
by the charge flux to Z*. Via (6.14), scalar memory is
defined by the change in the scalar charge, given by the
coefficient of the 1 term in the expansion of the field near
Z7, between early and late times. In this case, there is no
integrated flux term.

The memory effect A,y corresponds to the permanent
relative angular displacement of a pair of freely falling test
masses. Ay, corresponds to the displacement in the
internal space directions (i.e., along Killing directions)
for a pair of test masses that are initially angularly
displaced. If the test masses had some initial displacement
in the internal space then, due to a change in scalar charge,
the relative displacement in the internal space will change
by an amount A,,,. Physically, the internal space is small
and therefore relative displacements of test masses into the
internal space are undetectable. Nevertheless, the four-
dimensional scalar and electromagnetic memory effects are
usually described in terms of velocity kicks [14,15]. We
should be able to recover this way of observing memory
from the higher-dimensional gravitational picture.

To see how this emerges, consider the geodesic motion
of a test particle with velocity v
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MV, 0N =0,

(6.20)

which follows from varying the point-particle action

S=—m / Vv @dd. (6.21)

This equation of motion (6.20) describes the motion of a
point particle following a timelike geodesic. We consider
the case where the tangent v, initially v%), is of the form

M — 9 \M \/m 9 M
Vo =cilp,) TV ) ay) (6.22)

,  1+4/1+44 ,  —l+/1+44° (6.23)
v T =—5—. (6

1 3 ) )

where V" (y) is a unit normalized Killing vector, which is
automatically geodesic on M,
VD, V" =0 and g"V,V,=1. (6.24)
This characterizes an initially stationary test particle with
charge ¢ determined by the velocity in the internal direction
at some early time u = u,. The vector field V" must be
Killing to ensure the test particle is constructed from zero
modes of the internal space. Since our discussion is purely
classical, we will not worry about quantization conditions
on the internal momentum, which force such momenta to
be of order the Kaluza-Klein scale.
We are interested in the velocity kick of this test particle
relative to a preferred class of asymptotic, stationary
observers, which will define our lab frame. To define a

timelike vector field v, we Lie-transport the tangent

0 ab - . .
vector 115”) , so that 9! in our coordinates agrees with the

trivial extension 1)53) for all u > uy. We note that this is an
accelerated reference frame, which implies that it differs

from geodesic evolution of 1)1(3) at order L:

(1
.0, I
UM:U}&b—FM'FO( ) (6.25)

2
Expanding Eq. (6.20) in powers of % and integrating the

geodesic equation, a straightforward computation yields in
the gauge described by Lemma 4 that the nonvanishing

components of the velocity kick are AvA(1) and Ap(D,

AUI(;)(M, (9) = C% /u du’au’h;(,;) +g/u du/NAme‘

(6.26)

The first term on the right-hand side of (6.26) is not
proportional to the charge. Rather it is finite as ¢ — 0 and

corresponds to a purely gravitational velocity kick. This
effect actually has nothing to do with the compact internal
space and is present in just R*. It would be very interesting
to explore the potential observability of this effect. The
second term is the electromagnetic kick we expect. Note
that \V 4,,V" is independent of y because of Eq. (4.20).
Similarly, the radial velocity kick

2 u o
Av’(l)(uﬁ):%/ du' N, V"V (6.27)

00

is sensitive to radiation from the specific scalar zero modes
associated with the torus component in the decomposition
theorem of [57].

The total velocity kicks in the angular and radial
directions, respectively, are given by

A,y (0) = lim Av(" (u, 0), (6.28)
Av"(0) = lim Av" (D (u, 0). (6.29)

U—o0

Using Eq. (5.35) we find that the integrand of the first term
in Eq. (6.26) can be expressed in terms of an integral of the
news:

1 1 1 1,0
auh,(;‘) — EDBNBA + ZDAN + EDAI’I;(};«) - Eaihfﬂ)

(6.30)

Integrating Eq. (6.30) and using Eq. (5.36) implies that

1
AR (0) =3 A duDPNg,. (6.31)

Using Eq. (6.6) yields the total velocity kick in terms of the
memory

AUA(e) = C%DBABA + qAAm‘_/m, (632)

AV (0) = 34, V"V, (6.33)

This leaves the question of how to detect radiation for
moduli associated with the simply connected component of
M. It appears that directly detecting such radiation
requires a more sophisticated detector, but we can make
one comment on this issue. In principle, a detector can
measure N 45, N 4,, and the torus contribution to N, by
the motion of the arms of a LIGO-like detector and the
motion of a charged test particle. Squaring these contri-
butions gives us all of Eq. (6.15) except any unknown null
stress-energy, including contributions from additional
moduli. We can use the measured fluxes to compute what
should be the dominant contribution to the right-hand side
of Eq. (6.12). Assuming the size of the ordinary memory
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effect compared with the radiation contribution is still
small, and there is a sizeable discrepancy between the
observed gravitational memory and the flux computation,
we can place upper bounds on the possible contribution of
any additional moduli.

B. The circle case

The original beauty of Kaluza-Klein theory was a
unification of electromagnetism, gravity and scalar field
theory in a single five-dimensional theory of gravity
compactified on a circle. Let us revisit this beautiful and
simple example to unify the separately studied notions of
memory for gravity [13,18], electromagnetism [15-17] and
scalar theories [14] in the framework of five-dimensional
gravity using the discussion of Sec. VI A.

Let us take a spacetime metric with an exact U(1)
isometry,

GundxMdxN = g, dx'dx’ 4+ €X' (dy + A, (x)dx")?,
(6.34)
where y ~y + 2zL and ¢ — 0 at infinity. Reducing the

D =5 Einstein-Hilbert action with zero cosmological
constant on y gives the four-dimensional action,

1
S =
162G

1
/ d4xe"’(")\/§(R ~7 ez‘”FWF”” + 8,,g08"§0> ,
(6.35)

where F = dA. This is a special case of M;, that we
studied earlier in the frame we have assumed in our
discussion so far, which is not Einstein frame. The % terms

in the expansion of A, and ¢**™) can be identified with A,(,ly)

and (pfvi) defined in Eq. (3.1) and discussed in the preceding
sections.

Specializing Eq. (6.21) to the case of a R* x S! gives the
geodesic equation,

aexM o dxNdxP
dr? NPTdr de

0, (6.36)
with the Christoffel symbols given to leading order in 1r by

1 1 1 - 1
FEM = qCDauhEtD)’ ng = EqCDaMA(D)t Fyy = Eaugb(l)’

(6.37)

where ¢(!) = 2¢("). Assuming an initial 1}%) of the form

Eq. (6.23) gives the following leading order equations of
motion:

WM = —3rM - 2qI'M — FKMTY, |

(6.38)

where KM = (£)M. In this case, the time-dependent
behavior of the angular and radial velocity kicks for a
particle with charge g, which might vanish, is determined
using

2
0,050 =~ PO~ gL, 0,00 =~ S0,90)

(6.39)

Using the analysis of Sec. VI A, the total velocity kick
from the far past (u - —o0) to the far future (1 - +o0) is
given by

Avy = ciDPApp + qhyy,

Av=c2A,,.  (6.40)

>
where Agy, Ap, and A, are found in Eq. (6.10).

One final comment: in the context of subleading soft
photon theorems, there are proposals to permit gauge
transformations in Abelian gauge theory that grow linearly
with r near Z* [66,67]. This is an interesting possibility,
although the asymptotic behavior of the gauge parameter
no longer defines a U(1) group element. In the Kaluza-
Klein context, allowing such gauge transformations
becomes a statement about higher-dimensional gravity,
which would generalize the class of diffeomorphisms
normally permitted, assuming such a generalization is
sensible. It would be interesting to explore this embedding
further.

C. Color memory

While most of the analysis in this paper assumes a Ricci-
flat M;,;, we cannot resist sketching how color memory
studied in [19,55] should also emerge from Kaluza-Klein
reduction. The starting point is a higher-dimensional
gravity theory which admits a space with non-Abelian
isometries. We will assume a D — 4 sphere for simplicity.
Let us take an action,

1
K —

= 2K2 dDX\/—g(R —2A — |FD—4|2)9 (641)
D

where Fp_4 is a D — 4-form field strength. Compactifying
this theory on SP~* with radius L gives an effective four-
dimensional potential for the radius L of the form:

2A (D —-4)(D-5) N?
= [3D-4)"

Vs = (6.42)

LD—2

Here we assume the sphere metric is des§D_4, where dsip_4
is the metric for a sphere of unit volume. The parameter N
is proportional to the amount of quantized Fp_; flux
through the sphere. Since this is a classical gravity theory,
we chose A conveniently to ensure the resulting spacetime
is flat Minkowski. Under this condition, the potential has a
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minimum with L growing with N. This is all we need. We
have engineered Minkwoski spacetime from a compacti-
fication with non-Abelian isometries. In this case, the
identity component of the isometry group is SO(D — 3).

Let us return to the geodesic equation (6.36) for a test
particle with velocity along the sphere. The novelty in this
case, by comparison with the Ricci-flat case, is that the
internal velocity vector can rotate as higher-dimensional
gravitational radiation passes by. In the Ricci-flat case, the
Christoffel symbols along Killing directions vanish. For
spaces with non-Abelian isometry groups, like the sphere,
this is no longer true. From a four-dimensional perspective,
the color charge would therefore appear to change because
of a burst of radiation, in agreement with [19].

D. Frames

The final issue we need to address is the choice of
frames. As illustrated in the circle example of Sec. VI B, the
natural four-dimensional frame that corresponds to study-
ing radiation in terms of the D-dimensional metric is not
Einstein frame. Let us parametrize the volume mode or
breathing mode of the internal metric in analogy with the
circle case,

dsiy = €9y, dy"dy", (6.43)
where ¢ — 0 at infinity. To connect with our earlier
discussion, note that ¢p = 2(D — 4)p{!) where ¢ is defined
in Lemma 4. Reducing to four dimensions gives an
effective action of the form,

1 4 D—4
- ( ){/) - R DY .44
S 1 / d xe VvV g ’ (6 )

where the omitted terms involve scalar and vector fields
whose kinetic terms typically depend on ¢. Our analysis in
terms of ¢ gives formulas for memory in this frame. To
convert to Einstein frame with a canonical Einstein-Hilbert
action, we need to perform one conformal transformation
and use the relations described in Sec. I A. The Einstein
frame metric is defined by

gﬁ) — o(D-4)p G
(1)
- <1+(D—4)('”T+--~>g,w
(1) (1
hyy 17
(1)
hy 1¢

Therefore the leading order metric in the Einstein frame is

: 1
WP = 1Y+, (647

and so the Einstein news tensor is

1
Nﬁ@ :NAB _ENCIAB = Na3.

(6.48)
Thus the Einstein news tensor is equivalent to the trace-free
Bondi news tensor—Einstein frame observer is insensitive
to the overall breathing mode as we expect [24]. The
components of electromagnetic and scalar radiative degrees
of freedom are unchanged:

N&E):NA,H and N =N,

m

(6.49)

The memory effects as viewed by such FEinstein frame
observer are then given by

1
AE)

E
ap = Bap — E‘IAB(‘]CDACD)’ Az(mz = Ay, and

AE) = A, (6.50)
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APPENDIX A: ASYMPTOTIC EXPANSION OF
EINSTEIN’S EQUATIONS

In this Appendix, we collect some technical results
regarding the asymptotic Einstein equations and the decay
of certain components of the Ricci tensor that will be used
ubiquitously in this paper. To simplify our analysis we
assume that the metric is in the gauge described by
Lemma 4.

1. Constraints on the asymptotic expansion

It is more convenient for our analysis to examine the
trace-reversed Einstein equations given by

Ryn = 87T yy. (A1)
where 7 )y is the trace-reversed stress tensor:
1 PO
Twun =Tun — mgMN(g Tpg). (A2)

It is useful to split the Ricci tensor into a linear and
nonlinear part using the metric split g,y + Ay for some
chosen g. We define the nonlinear part of the Ricci tensor as
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Run = Ruy — RMNv (A3)

where R,y is the Ricci tensor and R,y is the linearized
Ricci tensor defined below:

~ 1 N
Ryny = ) (Oghyn + 2Ry" yChpo

D>+ (n—1)(n-

(D2 + n(n = 3)]Al" + 280"

= 0" = nd, (W) + ")) =

D%+ (n—1)(n—2) = 1]A""") —2D, (h"
- DAllfu - (9141//1a;l—~_1 + D0 ( ) + ¢

D2+ (n=1)(n=2) —4nly™") + 4n("

+D2h51r1+1> + 2m//£ ") + n(n - 1)(h (n=1) Q') n—1 )

[D? + (n - 1)(n

+2(n—1)9,h" ()

— Dypy»r
n+1 n+1
= 1627 ") 2R,

D>+ (n—1)(n

DR £ 2(n = 1)0,hE + DR + 92 (R ) 4 D)y — 29,y =

—2DAR(”

—2) = 2Jnyy " — 4Dk Y 4+ 4DRG Y 4 2(n = 1), A

On the right-hand side, all differential operators along with
Riemann are defined with respect to g. In the appendices,
we will denote the linearized version of objects with a tilde,
just as R,y is the linear part of Ry,y.

In our analysis we defined g in (3.4) while A, is given by
the collection of functions (%,,. A, @,,) appearing in (3.5).
We will expand (A1) to find a series of recursion rela-
tions of the form: (linearized Ricci) = (stress-energy) —
(nonlinear Ricci). We find the following relations:

16T 4 oRIHl.

— 2D(Al//53n)) _ 2(‘//5"1) _ W:Sn))QAB + (DADB _ (I’l _ l)qAB)(h(n—l) + ¢(n—l))

~ qap0, (") + ) +2

[D* + (n Y+ 2(n -
+Dmau( n+1 _|_¢ (n+1) )

—1)(n—2))A%

[D? + n(n - 3)A%" + 2400
=D D, (1) + g0 =

(i~ =200 + b ) g

—2DAAYS

D2+ (n—1)(n—2) - 1]A] " 2DA<< )—A%’n”>+2<n—1>auAAm+DzA2’t:”

— Dyl =D,y

- 2)]40%:_1) +2(n
+DmDn<h (n+1) + ¢ (n+1) )

D>+ (n—1)(n

Here we have defined

- 1)81,4()0%’2!

(AS)
Ut 2(n = 10,0 + D + gl
—162T 0 + 2R, (A6)
—n) +2(n = 1)9,h%) + D2RC
= 1627 4 2R, (A7)
+2¢"8h ) —4DARTTY 4 2(n = 1)0, A
—167T 8 4 oRITY, (A8)
—2) = 5]n" Y 4 4p" Y _op, (hY — BlYy — 2pBRY 4 2yt
+ ) = (= 1)D, (=) 4 g1
(A9)
+ DY
= 16275 4 2R, (A10)
1), Alm + DA™ =Dy = 0,0
—162T ™ + 2R, (Al1)
U+ 2(n-1)0,A5 + D245 + nyly)
—162T ) + 2R, (A12)
—162T ) 4 2R, (A13)
+ D%+ 2R, 105 — 2D SH)
—162T o™ + 2R, (Al4)
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Wy = Nhyy. hn = n””h/(f;), P = g, (A15)
so that
i) = DAY+ B =) (Y = hl) = 0,4 + DAL, (A16)
" = DAY £ 3= m) () = h) = gAY - 9 hf) + D7 Al (A17)
y = DERY 4 (4= ) (Y By — 9, n ) DAl (AI8)
win) = DALY + (3 - )l - Al ) - 0,45 + Dgl. (A19)

In the body of this work, we will need the expansion of Einstein’s equations to order rlz and to order r% for the special case of
a stationary era.

A direct calculation of R@\, in the gauge of Lemma 4 shows that the nonvanishing components of Rﬁg\, can be written

entirely in terms of the news Eq. (4.46). Explicitly the nonvanishing components of Rz(t%v are given by

1 1
Rii) = = g NN a5 0, (W N“), (A20)
1 1 1
Ru%n =—(D,® P — @D N, — DN + 5D (PPN ), A2l
@ 1 1
Rinn = ~2 (D, @77)(D,y®,,) + (DPD9,,)(D(,®,,) + EdDPququ)m,,

1
——_¢D*D -D,D, (®r1d A22
+2(D—4)¢ mn +4 m n( pq)’ ( )

where the product in Eq. (A20) is explicitly given by

() nrab — p(D ArAB o 4D pram mn L s

hapy N0 = Iyg NP+ Ay N+ @ N+ = 3" N (A23)

and the scalars @,,,,(u, 6, y) and ¢(u, 6) are defined in Lemma 4. The remaining components of Rﬁé}v vanish. In Sec. VB,
the zero modes of the nonlinear parts of the Ricci tensor appear as “flux” terms for the change in metric. More precisely, we

find that the zero modes of R,(fu) and R,(,z,,)l determine the change in the metric due to a burst of radiation. The zero mode of

Eq. (A20) is manifestly nonvanishing unless A ,, = 0. To determine the zero mode of Rfﬁ,)l we contract with a Killing

vector V" of (Miy, Gun) and integrate over Mip,:

1

_ _ _ an Vm
/M RumV" = 7 /M {/\/ 74(V"D,,®,,) - 2D, <q>f’"/\/ mn V" + 2V

D-4 VpcpmnN’"")] ’

(A24)

1

_1 / NEL @, (A25)
4 Mim

ever the decomposition theorem of [57] states that M, is a
free quotient of a Riemannian product of a torus and a

where in the first line we used the fact that ®,, is
divergence-free, ¢ is constant on M, and that V" is

covariantly constant to write the last three terms in
Eq. (A21) as a total derivative. In the second line we used
the fact that V™ is covariantly constant to write the
directional derivative in terms of the Lie derivative. How-

connected Ricci-flat space with vanishing b,. For such a
product, £;®,,, = 0 since V is one of the torus isometries.

At this stage, we want to check whether our ansatz (3.5)
of an expansion in powers of 1 makes sense as an
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asymptotic expansion. This might seem fairly reasonable
because in both pure gravity and Maxwell-Einstein, there
exists a large class of solutions which are smooth at Z* in a
particular gauge [68]."> However, this is not the case for a
scalar field in four dimensions with null sources [65]. A
scalar field ¢ in Minkowski spacetime satistying

O, = J, (A26)

where J is a source, does not admit a } expansion near Z*
when J erz’ which is a configuration with finite flux
through Z*. Rather one must include k’f# terms in the
expansion. This is without dynamical gravity.

In our case, there is a general obstruction to integrating in
from Z*. Namely, if a specific scalar fluctuation of M, is
obstructed, or equivalently gets a mass at some order
beyond the linearized approximation, then our ansatz is
simply not valid for that mode. The mode could never
propagate to Z*, which we implicitly assume in our ansatz.
We can see this obstruction emerge in the % expansion.

where ®? = ®,,,®"". Integrating over Mjy,,

Consider the mn component of the vacuum Einstein’s
equations at order rlz, ie., Eq. (Al4) for n=1 and

T2 = 0:

Dz(”}('r%r)l + anzpnq(0532q) - 2D(ml//(3)

n)

+D,,D,(h® + ¢®) = 2R (A27)
After contracting both sides with a tensor field #""(y)
which is annihilated by Lichnerowicz, it is straightforward
to check that the right-hand side vanishes. We therefore get
the following nonlinear obstruction to our ansatz:

/ "R = 0.
Mim

It is straightforward to check that the volume mode, as
expected, is unobstructed. Letting ¢,, = §,,(y) in
Eq. (A28) and using Eq. (A22) gives

(A28)

AMn 2 1 m 1 m 1
J Ry = (ZD ©D,, P, 5 D' D, P, +ZD2¢2), (A29)
R _ | L pnorip & — promp o A30
Mg mn—i m 5 m>*pq — q>*pm |» ( )
_1 Lorp2o. 1 omprp @ A3l
= E " - 5 Pq + g = pm | ( )

1

=3 /M (R, @ = RID,, D, + DD DID,,). (A32)
(A33)

:0’

where we have used
D*®,,, + 2R, 1@, =0,

and that ®,,, is divergence-free. As we spelled out in

Sec. II B, the space of exactly massless modes ZiL <d is
smaller than the kernel of Lichnerowicz. The exactly
massless volume-preserving moduli satisfy Eq. (A28).
Thus, as in Lemma 4, we truncate the linearized massless

"“Note that starting with smooth initial data on a Cauchy
surface and evolving that data does not generically lead to a
solution with an analytic expansion in . near Z*. Rather log(r)
terms can be generated at subleading orders in } even in pure
gravity [69]. However, there exists a class of initial data in pure
gravity that guarantee C* differentiability at Z+ for any k [68].

|

moduli to exactly massless moduli and obtain a solution
consistent with our ansatz and Einstein’s equations at order
,l—z- As we will see in Sec. A 3, this truncation also ensures
that our ansatz is consistent with Einstein’s equations at
order r% We fully expect that restricting to exactly massless
modes is necessary to obtain a solution to Einstein’s
equations to all orders in %; however, we have not attempted
to show this here. Note that this discussion motivates our
imposing a similar condition on TS,%}L; namely, that Tﬁ be
orthogonal to the d; + 1 exactly massless scalar modes.

2. Going to the stationary era gauge
We now want to show that a metric in the gauge of
Lemma 4 can be further restricted at order riz in a stationary
era. Specifically,
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by _ 4 our ansatz (3.5), stationarity conditions and Lemma 4. We
n2 =h2 (o), AZ) = Z AF) (0) @ Vi (y™) choose a gauge vector field of the form
i=1
()
A34 S (0. 1
( ) 5MN%)+O(F , (A36)

and
where &£, is a u-independent gauge transformation. By an

analysis similar to the proof of Lemma 4 we see that

@) _ g® ” Gnn -
P = Ppan (04, 3") + (DmDn Td- Dz) Y@ (04, ym) DmA,SZ,,), = 0 is divergence-free and goﬁf,), admits the decom-

4

G position given in Eq. (A35). In a stationary era, R,(,%) =

H2)
T d—4 ¢2(0). (A35) R,(IZ,,) and T%\, = 0. Therefore,

Note that ¢\) is missing a vector term shown in Proposition (uv;2) Dzh,(ﬁ/) =0, (A37)

2, and ¢ is constant on M. To achieve this gauge we e
first make a gauge transformation that is compatible with (um;2)  D*Aum =0, (A38)

|

(mn;2) D) + 2R, 7,99 + D, D, (2% + 12 + ¢*8h2) — 2D, DP¢? = 2R (A39)

rq A ( n)p

We conclude that

ha =y (0.0) and  AG) =" A7 (.0) ® V(). (A40)

by
2
i=1

Using these relations we now study (mn;2). Taking the trace of (mn;2) gives"
2D"D" g} = S D" DD, @, D"DID, B, + 5 DD, (A41)
which yields the following equation for ¥(?):

D-5 1 . 1
(m)u‘“lf(z) =— ZD ©”D,d,, + ED 7D, D, — ZDZ(qwq)pq). (A42)

We note that the above analysis implies that the right-hand side has no zero modes and therefore, we can solve for ¥?) in

terms of ®,,,. After solving for ¥(?) we can then solve for CIJ%),:

D-5 1
L[CI)%)!] =-L [gmanu)] +2 (m) DmDizDZT(Z) - Z (D(mq)pq)(Dn)cDPq)
1 1 DD,
+ (DP9, (D, ®@,,) + Eq)ququq)mn + ZD,,,D,1(<1>MCI>M) + 2AD-4)° (A43)

Here L[] is the Lichnerowicz operator and ®,,, = (D,,D,, — 3’1”4 D?). As in our discussion of Sec. A 1, we again truncate to

exactly massless scalar fluctuations for which the right-hand side of Eq. (A43) has no Lichnerowicz zero modes. This

guarantees solvability of Eq. (A43). On a generic Ricci flat manifold, () will not be harmonic and CDS,%,% does not satisfy the
Lichnerowicz equation. In the special case of M;, = T*, we see that D,,® »g = 0 and

D*¥?) =0 = DO +2R,,7, 402 =0 for My, = T*. (A44)

BJust to remind the reader, ®@,,, without a superscript denotes the leading order term as in (4.32).
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3. Ricci in a stationary era

The last result we want to record is the behavior
of the nonlinear part of the Ricci tensor at order r%

By a lengthy but straightforward calculation, the
following components of the nonlinear part of the

1

1
R — —D, Dp(®PD,,) — EDP((DMDA(D’”‘I)

Am_4

Finally, the Rf,?,)l component is given by

Ricci tensor vanish in a stationary era and in our gauge
at order -t

3 1 2 2 1
Riun = = > Dn®” 1D,y 9 + (DD, (Dl ) + 5Dy, (@, P7)

n)q

1
— D, [

-+ nonzero modes,

R,(i) =0 and R{) =0 in a stationary era, (A45)
and the nonvanishing components are
|
1
RE) = — m(PPID, ) —I—EDP((I)P‘I(I)qm) in a stationary era, (A46)
in a stationary era. (A47)
)
2 1 2 1 ; -
- Dp (q)qu(m(p( ) ) + EDP((DPqu(pi('m)l) + iDs [(I) PCDPq:'mnq]
. N | o omism =
_nsq] - E chI)ls':‘msq':'kls + Egqu)l Slng=kms
(A48)
Epg = CNPQR”N”Qv (B2)

where E,,, =2D,®,,—D,P,, and “nonzero modes”
refers to modes orthogonal to the Lichnerowicz zero
modes. Again this obstruction to solving Einstein’s equa-
tions is generically nontrivial for a Ricci-flat space, but

f M, t’"”Rg,), = 0if 7, is an exactly massless fluctuation,
and hence the obstruction vanishes. Note that for the special
case of M, = T¥, Rim) = 0.

APPENDIX B: A GAUGE INVARIANT
DERIVATION OF MEMORY IN LINEARIZED
GRAVITY WITH COMPACT EXTRA
DIMENSIONS

In this section we will derive the memory effect in
linearized gravity for isolated systems with compact extra
dimensions using the Bianchi identity. In particular we
shall assume, in any neighborhood of null infinity, there
exists a gauge in which the metric admits an asymptotic
expansion of the form (3.5). We now derive the memory
effect in a manifestly gauge invariant way using the Bianchi
identity for the asymptotic Weyl tensor. Since we shall be
working with gauge invariant quantities, we shall only need
that the expansion (3.5) is valid in any local neighborhood
of null infinity.

We denote the linearized Weyl tensor by C mnpo- The
linearized Bianchi identity is

dmCnpior = 0. (B1)

The linearized electric Weyl tensor is defined as

where n" = (0/0u)". Lemma 3 applies to the leading
order linearized electric Weyl tensor, which has nonvanish-
ing components E,p and g 4 that are harmonic on M.
The component &, satisfies the Lichnerowicz equation on
M,y Finally, we again have that ¢g*BE,5 = §™E,,,.

We now compute the memory effect from the Bianchi
identity. We recall that

AMN = /oo dl/l/ /u dl/t//g:MN.

We start with the scalar memory effect. Since A,,, satisfies
the Lichnerowicz equation we can expand A, as

(B3)

(B4)

dr
- (i 1 . .
Amn = ; A(I)Tr(é)n + mgmngqupq,

in terms of d; trace-free, divergence-free symmetric tensors

T% which satisfy the Lichnerowicz equation. Note that g is
defined in (1.32). We note that A®() and A¢ in Theorem 1
are actually gauge invariant quantities and therefore, the
derivation of scalar memory is exactly analogous to the
derivation in the nonlinear theory:

N < 1
A(l>:§AcI)(’) and Qm”Amn=§A¢- (BS)
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For the scalar case, working with gauge invariant variables
does not buy us much.

To derive the electromagnetic memory effect, we note
that an explicit computation using the linearized metric
yields

/wpm Za FUM xﬂ) ® V ( m)’ <B6)
=1

where the bar on the left-hand side denotes a projection to
zero modes as described in Sec. [ E. Viewing the left-hand
side as a one-form in the internal space, this means
projecting to harmonic one-forms on M;, in agreement
with the expression on the right-hand side. F ,(,'D) is the field

strength for the graviphoton associated with Vﬁ,?. This field
strength is now gauge invariant and 0, is the derivative
operator compatible with the flat metric 7,,.

Since the Weyl tensor is trace-free and satisfies the first

Bianchi identity, it follows that F,(f,,) satisfies

O'Fii) =0 and 0,F.) =0 (B7)
for all i. We then expand F ,(,'l,) in powers of l near null

infinity as given by Eq. (3.5). Using Lemma 4 the only

nonvanishing component of Ffl,} at order L is F Et A " which,

by Eq. (B6), is directly related to g A 1N the following way:

Epm =— ZaF Jw.0) ® V(™).  (BY)

(i)

The divergence equation for F,, at order r—lz constrains the

angular divergence of F Efj),

DAF) = 9, Fi?. (BY)

Similarly, applying €2 the Bianchi identity for F f,l,,) at order

% yields

ABD, P = 9, BFGD. (B10)

Therefore, using Eqs. (B8) and (B3) we find that

ABFE)) and DAAY = A(FE).
(B11)

ABD A(

On the right-hand side, A means the change in the quantity
from u = —o0 to u = +o0.

Finally we turn to the gravitational memory effect arising
from asymptotic dimensional reduction. Using the fact that
the Weyl tensor is divergence-free and satisfies the

homogeneous wave equation one can show that the zero

mode of CW,(, satisfies

3, Copje = 0. (B12)

We first focus on the relevant equations for E,w. By
analogous manipulations that led to Eqgs. (4.5) and (4.6)
we find that
»E,, =0 and O,E, =0. (B13)
Therefore, the R* components of the linearized electric
Weyl tensor satisfy the same equations as the components
of the linearized electric Weyl tensor in flat spacetime. One
major difference is that, when one has compact extra
dimensions, nﬂ”Eﬂy is nonvanishing. In flat spacetime this
quantity does vanish but, in the presence of compact extra
dimensions, the tracelessness of the Weyl tensor implies
that y**E . vanishes if and only if §"E,,, vanishes. This is
a crucial difference that leads to contributions from the
breathing mode of M;, to the observed gravitational
memory in this frame. We will discuss the choice of frame
in Sec. VI. Because of this subtlety we shall explicitly
derive the memory effects implied by the system of
equations given in Eq. (B13).
We now expand E/w in powers of % The explicit
recursion relations relating Weyl tensor components order

by order in % can be found in [65]. By Lemma 4 the only
nonvanishing component of ‘E:;w is £ ap- Since the trace
gMBE,\p is equivalent to —g™E,,, we shall focus on the
trace-free part of £, on the two-sphere. Applying ¢“AD,
to the angle component of the divergence equation in

Eq. (B13) at order - yields

~ 1 ~ ~
DADPTFIE ] = — 3 D3¢ P + 0,D'EY.  (B14)
where TF[-] takes a symmetric 2-tensor on S? and projects
out the trace: Typ = Tap —3q9ap(¢“°Tcp).
The r component of the divergence equation in
Eq. (B13) at order - gives

DAES) = ¢"PEG) +0,EF). (B15)

Finally applying g% to the angle-angle components of the
wave equation in Eq. (B13) at order :7 gives

[D* = 2]g*0E 4 + 20,4 EG = 0. (BI6)

Equations (B14), (B15), (B16) imply that
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DADBTF(E ) = [D? — 1)§™E,,, + 2EY.  (B17)
where we used that fact that g"PE,; = —§"E,,,.
Equation (B17) constrains the scalar part of TF[E,z] on
the two-sphere. We now consider the vector part. The
vector part of the angle-angle components of memory are
determined by the magnetic Weyl tensor on R* given by

- 1 ~
B, = Eef"’”Cpam, (B18)
where €,,,, is the spatial volume form on R* which is related
4 _ . .
to the volume element on R* by €,,, = €,,,,; indices are

raised with the background flat metric 7,,. The magnetic
Weyl tensor is symmetric, has vanishing # components and,
by the first Bianchi identity, is traceless:

B,, =0, B, =B, and n*B,=0. (B19)
Furthermore, the linearized Bianchi identity and the fact
that all components of the linearized tensor satisfies the
wave equation implies that

B, =0 and 0B, =0. (B20)
Therefore, the linearized magnetic Weyl tensor satisfies the
same relations as the linearized magnetic Weyl tensor in flat
spacetime. In contrast to the R* components of the
linearized electric Weyl tensor, the magnetic Weyl tensor
is traceless. The system of equations given by Eq. (B20) are

therefore identical to their analogous equations in flat
spacetime. The derivation of the vector part of memory

for perturbations in flat spacetime has been treated pre-
viously in [53]. Since these computations are identical to

the derivation of the vector part of A5, we will not repeat
this analysis here. Equation (B20) implies the following
falloff for the magnetic Weyl tensor components:

- 1 ~ 1 ~ 1
BABN0<;>’ BrMN0<ﬁ>, BrrN0<;> (BZI)

The final result from analyzing Eq. (B20) together with
Eq. (B21) is

DADEB) = 92BY) (B22)

where B% =—(1es“Ecp  and,
(%) €AB C/(fl;ru °

After integrating Eqgs. (B22) and (B17) and using the fact
that ¢"8A,p = —§™"A,,,, we find that

explicitly, BS) =

. 1 .
DADPTF(A 1) = 5 [D? ~ 1]A¢ - AER),  (B23)
A - . 1
CADDPRyp = ~A(By) and g*PRp = —7 Ag.
(B24)

Equations (B23) and (B24) are consistent with the linear-
ized form of Eq. (6.12) since, by Lemma 5, A(BS))
vanishes and A¢ is spherically symmetric under the strong
stationarity conditions we imposed.

[1] P.D. Lasky, E. Thrane, Y. Levin, J. Blackman, and Y. Chen,
Detecting Gravitational-Wave Memory with LIGO: Impli-
cations of GW 150914, Phys. Rev. Lett. 117, 061102 (2016).

[2] J. B. Wang et al., Searching for gravitational wave memory
bursts with the Parkes Pulsar Timing Array, Mon. Not. R.
Astron. Soc. 446, 1657 (2015).

[3] R. van Haasteren and Y. Levin, Gravitational-wave memory
and pulsar timing arrays, Mon. Not. R. Astron. Soc. 401,
2372 (2010).

[4] H. Bondi, Gravitational waves in general relativity, Nature
(London) 186, 535 (1960).

[5] H. Bondi, M. G.J. van der Burg, and A. W. K. Metzner,
Gravitational waves in general relativity. 7. Waves from
axisymmetric isolated systems, Proc. R. Soc. A 269, 21
(1962).

[6] R.K. Sachs, Gravitational waves in general relativity. 8.
Waves in asymptotically flat space-times, Proc. R. Soc. A
270, 103 (1962).

[7] G. Satishchandran and R. M. Wald, Asymptotic behavior of
massless fields and the memory effect, Phys. Rev. D 99,
084007 (2019).

[8] S. Hollands and A. Ishibashi, Asymptotic flatness and
Bondi energy in higher dimensional gravity, J. Math. Phys.
(N.Y.) 46, 022503 (2005).

[9] S. Hollands and R. M. Wald, Conformal null infinity does
not exist for radiating solutions in odd spacetime dimen-
sions, Classical Quant. Grav. 21, 5139 (2004).

[10] D. Andriot and G. Lucena Gdémez, Signatures of extra
dimensions in gravitational waves, J. Cosmol. Astropart.
Phys. 06 (2017) 048; Erratum, J. Cosmol. Astropart. Phys.
05 (2019) 01.

[11] H. Lii, P. Mao, and J.-B. Wu, Asymptotic structure of
Einstein-Maxwell-Dilaton theory and its five dimensional
origin, J. High Energy Phys. 11 (2019) 005.

[12] W.-D. Tan, Einstein-Maxwell-dilaton theory in Newman-
Penrose formalism, Phys. Rev. D 102, 044054 (2020).

024072-36


https://doi.org/10.1103/PhysRevLett.117.061102
https://doi.org/10.1093/mnras/stu2137
https://doi.org/10.1093/mnras/stu2137
https://doi.org/10.1111/j.1365-2966.2009.15885.x
https://doi.org/10.1111/j.1365-2966.2009.15885.x
https://doi.org/10.1038/186535a0
https://doi.org/10.1038/186535a0
https://doi.org/10.1098/rspa.1962.0161
https://doi.org/10.1098/rspa.1962.0161
https://doi.org/10.1098/rspa.1962.0206
https://doi.org/10.1098/rspa.1962.0206
https://doi.org/10.1103/PhysRevD.99.084007
https://doi.org/10.1103/PhysRevD.99.084007
https://doi.org/10.1063/1.1829152
https://doi.org/10.1063/1.1829152
https://doi.org/10.1088/0264-9381/21/22/008
https://doi.org/10.1088/1475-7516/2017/06/048
https://doi.org/10.1088/1475-7516/2017/06/048
https://doi.org/10.1088/1475-7516/2019/05/E01
https://doi.org/10.1088/1475-7516/2019/05/E01
https://doi.org/10.1007/JHEP11(2019)005
https://doi.org/10.1103/PhysRevD.102.044054

GRAVITATIONAL MEMORY AND COMPACT EXTRA DIMENSIONS

PHYS. REV. D 105, 024072 (2022)

[13] D. Christodoulou, Nonlinear Nature of Gravitation and
Gravitational Wave Experiments, Phys. Rev. Lett. 67,
1486 (1991).

[14] A. Tolish and R. M. Wald, Retarded fields of null particles
and the memory effect, Phys. Rev. D 89, 064008 (2014).

[15] L. Bieri and D. Garfinkle, An electromagnetic analogue of
gravitational wave memory, Classical Quant. Grav. 30,
195009 (2013).

[16] S. Pasterski, Asymptotic symmetries and electromagnetic
memory, J. High Energy Phys. 09 (2017) 154.

[17] L. Bieri, P. Chen, and S.-T. Yau, The electromagnetic
Christodoulou memory effect and its application to neutron
star binary mergers, Classical Quant. Grav. 29, 215003
(2012).

[18] Y.B. Zel’dovich and A. G. Polnarev, Radiation of gravita-
tional waves by a cluster of superdense stars, Sov. Astron.
18, 17 (1974), https://ui.adsabs.harvard.edu/abs/1974AZh...
.51...30Z/abstract.

[19] M. Pate, A.-M. Raclariu, and A. Strominger, Color
Memory: A Yang-Mills Analog of Gravitational Wave
Memory, Phys. Rev. Lett. 119, 261602 (2017).

[20] B. S. Acharya, Supersymmetry, Ricci flat manifolds and the
string landscape, J. High Energy Phys. 08 (2020) 128.

[21] A. Tolish, L. Bieri, D. Garfinkle, and R. M. Wald, Exami-
nation of a simple example of gravitational wave memory,
Phys. Rev. D 90, 044060 (2014).

[22] M. Favata, Nonlinear gravitational-wave memory from
binary black hole mergers, Astrophys. J. 696, L159 (2009).

[23] L. Bieri and D. Garfinkle, Neutrino radiation showing a
Christodoulou memory effect in general relativity, Ann.
Henri Poincare 16, 801 (2015).

[24] S. Tahura, D.A. Nichols, A. Saffer, L.C. Stein, and
K. Yagi, Brans-Dicke theory in Bondi-Sachs form:
Asymptotically flat solutions, asymptotic symmetries
and gravitational-wave memory effects, Phys. Rev. D
103, 104026 (2021).

[25] K. Dasgupta, G. Rajesh, and S. Sethi, M theory, orientifolds
and G—flux, J. High Energy Phys. 08 (1999) 023.

[26] D. Andriot and D. Tsimpis, Gravitational waves in warped
compactifications, J. High Energy Phys. 06 (2020) 100.

[27] D. Andriot, P. Marconnet, and D. Tsimpis, Warp factor and
the gravitational wave spectrum, J. Cosmol. Astropart. Phys.
07 (2021) 040.

[28] I. Bena, J. Blabdack, M. Graiia, and S. Liist, The tadpole
problem, J. High Energy Phys. 11 (2021) 223.

[29] D. Kapner, T. Cook, E. Adelberger, J. Gundlach, B.R.
Heckel, C. Hoyle, and H. Swanson, Tests of the Gravita-
tional Inverse-Square Law below the Dark-Energy Length
Scale, Phys. Rev. Lett. 98, 021101 (2007).

[30] P. Zyla et al. (Particle Data Group Collaboration), Review of
particle physics, Prog. Theor. Exp. Phys. 2020, 083C01
(2020).

[31] M. J. Stott and D. J. E. Marsh, Black hole spin constraints on
the mass spectrum and number of axionlike fields, Phys.
Rev. D 98, 083006 (2018).

[32] V. Cardoso, O.J. Dias, G.S. Hartnett, M. Middleton, P.
Pani, and J.E. Santos, Constraining the mass of dark
photons and axionlike particles through black-hole super-
radiance, J. Cosmol. Astropart. Phys. 03 (2018) 043.

[33] V.M. Mehta, M. Demirtas, C. Long, D.J.E. Marsh, L.
McAllister, and M. J. Stott, Superradiance in string theory,
J. Cosmol. Astropart. Phys. 07 (2021) 033.

[34] W. Taylor and Y.-N. Wang, Scanning the skeleton of
the 4D F-theory landscape, J. High Energy Phys. 01
(2018) 111.

[35] J. Halverson, C. Long, and B. Sung, Algorithmic univer-
sality in F-theory compactifications, Phys. Rev. D 96,
126006 (2017).

[36] P. Candelas, E. Perevalov, and G. Rajesh, Toric geometry
and enhanced gauge symmetry of F theory/heterotic vacua,
Nucl. Phys. B507, 445 (1997).

[37] M. Lynker, R. Schimmrigk, and A. Wisskirchen, Landau-
Ginzburg vacua of string, M theory and F theory at ¢ = 12,
Nucl. Phys. B550, 123 (1999).

[38] S. Sethi, Warped compactifications, New dimensions in
field theory and string theory (1999), https://online.kitp
.ucsb.edu/online/susy_c99/sethi/.

[39] L. Randall and R. Sundrum, A Large Mass Hierarchy
from a Small Extra Dimension, Phys. Rev. Lett. 83, 3370
(1999).

[40] S. Sethi, C. Vafa, and E. Witten, Constraints on low
dimensional string compactifications, Nucl. Phys. B480,
213 (1996).

[41] K. Becker and M. Becker, M theory on eight manifolds,
Nucl. Phys. B477, 155 (1996).

[42] S.L. Liebling and C. Palenzuela, Dynamical boson stars,
Living Rev. Relativity 20, 5 (2017).

[43] C. Palenzuela, L. Lehner, and S.L. Liebling, Orbital
dynamics of binary boson star systems, Phys. Rev. D 77,
044036 (2008).

[44] D. Baumann, H.S. Chia, J. Stout, and L. ter Haar, The
spectra of gravitational atoms, J. Cosmol. Astropart. Phys.
12 (2019) 006.

[45] T. Ikeda, L. Bernard, V. Cardoso, and M. Zilhdo, Black hole
binaries and light fields: Gravitational molecules, Phys. Rev.
D 103, 024020 (2021).

[46] C. A.R. Herdeiro and E. Radu, Asymptotically flat black
holes with scalar hair: A review, Int. J. Mod. Phys. D 24,
1542014 (2015).

[47] R. Myers and M. Perry, Black holes in higher dimensional
space-times, Ann. Phys. (N.Y.) 172, 304 (1986).

[48] R. Gregory and R. Laflamme, Black Strings and p-Branes
Are Unstable, Phys. Rev. Lett. 70, 2837 (1993).

[49] R. Gregory, The Gregory-Laflamme instability, arXiv:1107
.5821.

[50] R. Durrer and P. Kocian, Testing extra dimensions with the
binary pulsar, Classical Quant. Grav. 21, 2127 (2004).

[51] Y. Du, S. Tahura, D. Vaman, and K. Yagi, Probing
compactified extra dimensions with gravitational waves,
Phys. Rev. D 103, 044031 (2021).

[52] R. M. Wald, General Relativity (Chicago University Press,
Chicago, 1984).

[53] L. Bieri and D. Garfinkle, Perturbative and gauge invariant
treatment of gravitational wave memory, Phys. Rev. D 89,
084039 (2014).

[54] E.E. Flanagan and D. A. Nichols, Conserved charges of the
extended Bondi-Metzner-Sachs algebra, Phys. Rev. D 95,
044002 (2017).

024072-37


https://doi.org/10.1103/PhysRevLett.67.1486
https://doi.org/10.1103/PhysRevLett.67.1486
https://doi.org/10.1103/PhysRevD.89.064008
https://doi.org/10.1088/0264-9381/30/19/195009
https://doi.org/10.1088/0264-9381/30/19/195009
https://doi.org/10.1007/JHEP09(2017)154
https://doi.org/10.1088/0264-9381/29/21/215003
https://doi.org/10.1088/0264-9381/29/21/215003
https://ui.adsabs.harvard.edu/abs/1974AZh....51...30Z/abstract
https://ui.adsabs.harvard.edu/abs/1974AZh....51...30Z/abstract
https://ui.adsabs.harvard.edu/abs/1974AZh....51...30Z/abstract
https://ui.adsabs.harvard.edu/abs/1974AZh....51...30Z/abstract
https://ui.adsabs.harvard.edu/abs/1974AZh....51...30Z/abstract
https://ui.adsabs.harvard.edu/abs/1974AZh....51...30Z/abstract
https://ui.adsabs.harvard.edu/abs/1974AZh....51...30Z/abstract
https://ui.adsabs.harvard.edu/abs/1974AZh....51...30Z/abstract
https://ui.adsabs.harvard.edu/abs/1974AZh....51...30Z/abstract
https://ui.adsabs.harvard.edu/abs/1974AZh....51...30Z/abstract
https://ui.adsabs.harvard.edu/abs/1974AZh....51...30Z/abstract
https://doi.org/10.1103/PhysRevLett.119.261602
https://doi.org/10.1007/JHEP08(2020)128
https://doi.org/10.1103/PhysRevD.90.044060
https://doi.org/10.1088/0004-637X/696/2/L159
https://doi.org/10.1007/s00023-014-0329-1
https://doi.org/10.1007/s00023-014-0329-1
https://doi.org/10.1103/PhysRevD.103.104026
https://doi.org/10.1103/PhysRevD.103.104026
https://doi.org/10.1088/1126-6708/1999/08/023
https://doi.org/10.1007/JHEP06(2020)100
https://doi.org/10.1088/1475-7516/2021/07/040
https://doi.org/10.1088/1475-7516/2021/07/040
https://doi.org/10.1007/JHEP11(2021)223
https://doi.org/10.1103/PhysRevLett.98.021101
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1103/PhysRevD.98.083006
https://doi.org/10.1103/PhysRevD.98.083006
https://doi.org/10.1088/1475-7516/2018/03/043
https://doi.org/10.1088/1475-7516/2021/07/033
https://doi.org/10.1007/JHEP01(2018)111
https://doi.org/10.1007/JHEP01(2018)111
https://doi.org/10.1103/PhysRevD.96.126006
https://doi.org/10.1103/PhysRevD.96.126006
https://doi.org/10.1016/S0550-3213(97)00563-4
https://doi.org/10.1016/S0550-3213(99)00204-7
https://online.kitp.ucsb.edu/online/susy_c99/sethi/
https://online.kitp.ucsb.edu/online/susy_c99/sethi/
https://online.kitp.ucsb.edu/online/susy_c99/sethi/
https://online.kitp.ucsb.edu/online/susy_c99/sethi/
https://doi.org/10.1103/PhysRevLett.83.3370
https://doi.org/10.1103/PhysRevLett.83.3370
https://doi.org/10.1016/S0550-3213(96)00483-X
https://doi.org/10.1016/S0550-3213(96)00483-X
https://doi.org/10.1016/0550-3213(96)00367-7
https://doi.org/10.1007/s41114-017-0007-y
https://doi.org/10.1103/PhysRevD.77.044036
https://doi.org/10.1103/PhysRevD.77.044036
https://doi.org/10.1088/1475-7516/2019/12/006
https://doi.org/10.1088/1475-7516/2019/12/006
https://doi.org/10.1103/PhysRevD.103.024020
https://doi.org/10.1103/PhysRevD.103.024020
https://doi.org/10.1142/S0218271815420146
https://doi.org/10.1142/S0218271815420146
https://doi.org/10.1016/0003-4916(86)90186-7
https://doi.org/10.1103/PhysRevLett.70.2837
https://arXiv.org/abs/1107.5821
https://arXiv.org/abs/1107.5821
https://doi.org/10.1088/0264-9381/21/8/015
https://doi.org/10.1103/PhysRevD.103.044031
https://doi.org/10.1103/PhysRevD.89.084039
https://doi.org/10.1103/PhysRevD.89.084039
https://doi.org/10.1103/PhysRevD.95.044002
https://doi.org/10.1103/PhysRevD.95.044002

FERKO, SATISHCHANDRAN, and SETHI

PHYS. REV. D 105, 024072 (2022)

[55] A. Strominger, Lectures on the infrared structure of gravity
and gauge theory, arXiv:1703.05448.

[56] S. Bochner, Vector fields and Ricci curvature, Bull. Am.
Math. Soc. 52, 776 (1946).

[57] A.E. Fischer and J. A. Wolf, The structure of compact
Ricci-flat Riemannian manifolds, J. Diff. Geom. 10, 277
(1975).

[58] A. Besse, Einstein Manifolds, Classics in Mathematics
(Springer, New York, 1987).

[59] S. Hollands, A. Ishibashi, and R. M. Wald, BMS super-
translations and memory in four and higher dimensions,
Classical Quant. Grav. 34, 155005 (2017).

[60] R. Goto, Moduli spaces of topological calibrations, Calabi-
Yau, Hyperkéhler, G, and Spin(7) structures, Int. J. Comput.
Math. 15, 211 (2004).

[61] Z. Wyatt, The weak null condition and Kaluza-
Klein spacetimes, J. Hyperbol. Differ. Equat. 15, 219
(2018).

[62] L. Andersson, P. Blue, Z. Wyatt, and S.-T. Yau, Global
stability of spacetimes with supersymmetric compactifica-
tions, arXiv:2006.00824.

[63] U. Kol and M. Porrati, Properties of dual supertranslation
charges in asymptotically flat spacetimes, Phys. Rev. D 100,
046019 (2019).

[64] B. Bonga, A. M. Grant, and K. Prabhu, Angular momentum
at null infinity in Einstein-Maxwell theory, Phys. Rev. D
101, 044013 (2020).

[65] G. Satishchandran and R.M. Wald, Memory effect for
particle scattering in odd spacetime dimensions, Phys.
Rev. D 97, 024036 (2018).

[66] M. Campiglia and A. Laddha, Subleading soft photons and
large gauge transformations, J. High Energy Phys. 11 (2016)
012.

[67] A. Laddha and P. Mitra, Asymptotic symmetries and
subleading soft photon theorem in effective field theories,
J. High Energy Phys. 05 (2018) 132.

[68] P.T. Chrusciel and E. Delay, Existence of nontrivial,
vacuum, asymptotically simple space-times, Classical
Quant. Grav. 19, L71 (2002).

[69] D. Christodoulou and S. Klainerman, The Global Nonlinear
Stability of the Minkowski Space (PMS-41) (Princeton
University Press, 2016)

024072-38


https://arXiv.org/abs/1703.05448
https://doi.org/10.1090/S0002-9904-1946-08647-4
https://doi.org/10.1090/S0002-9904-1946-08647-4
https://doi.org/10.4310/jdg/1214432794
https://doi.org/10.4310/jdg/1214432794
https://doi.org/10.1088/1361-6382/aa777a
https://doi.org/10.1142/S0129167X04002296
https://doi.org/10.1142/S0129167X04002296
https://doi.org/10.1142/S0219891618500091
https://doi.org/10.1142/S0219891618500091
https://arXiv.org/abs/2006.00824
https://doi.org/10.1103/PhysRevD.100.046019
https://doi.org/10.1103/PhysRevD.100.046019
https://doi.org/10.1103/PhysRevD.101.044013
https://doi.org/10.1103/PhysRevD.101.044013
https://doi.org/10.1103/PhysRevD.97.024036
https://doi.org/10.1103/PhysRevD.97.024036
https://doi.org/10.1007/JHEP11(2016)012
https://doi.org/10.1007/JHEP11(2016)012
https://doi.org/10.1007/JHEP05(2018)132
https://doi.org/10.1088/0264-9381/19/9/101
https://doi.org/10.1088/0264-9381/19/9/101

