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We develop a general formalism for treating radiative degrees of freedom near Iþ in theories with an
arbitrary Ricci-flat internal space. These radiative modes are encoded in a generalized news tensor which
decomposes into gravitational, electromagnetic, and scalar components. We find a preferred gauge which
simplifies the asymptotic analysis of the full nonlinear Einstein equations and makes the asymptotic
symmetry group transparent. This asymptotic symmetry group extends the Bondi–Metzner–Sachs (BMS)
group to include angle-dependent isometries of the internal space. We apply this formalism to study
memory effects, which are expected to be observed in future experiments, that arise from bursts of higher-
dimensional gravitational radiation. We outline how measurements made by gravitational wave observa-
tories might probe properties of the compact extra dimensions.
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I. INTRODUCTION

Perhaps the most robust prediction of string theory is the
existence of extra spatial dimensions. Perturbative string
theory requires ten spacetime dimensions while nonpertur-
bative string theory predicts an eleventh dimension. In this
era of gravitational wave astronomy, it is exciting to explore
ways of probing the extra dimensions found in either string
theory, or other theories of higher-dimensional gravity.
Gravitational wave observatories, like LIGO, measure fea-
tures of the gravitational radiation produced by mergers of
compact objects like black holes, neutron stars or even more
exotic possibilities. The goal of this work is to begin to
explorewhich features of the internal compactification space
might be accessible throughgravitational signatures. Probing
the structure of compactified dimensions usually requires
high energies. Unlike our usual intuition from particle
physics correlating high energy with small wavelengths,
gravity offers potential probes of short distance physics via
black holes, where higher energy means larger objects.
The goal of this work is two-fold: first we will describe

how LIGO and future gravitational wave observatories can
see universal signatures of new physics at very low frequen-
cies. By new physics we mean sources of stress-energy
which can be treated as effectively null; for example, highly
energetic low mass particles. At zero frequency, there is an
observable called gravitational memory which is sensitive to
new sources of stress-energy. Future experiments have a
reasonable likelihood of measuring thememory effect [1–3].
This is certainly not the only potential observable of interest.
The gravitational waveform itself encodes more data about
new physics, including any potential extra dimensions.

However, analyzing the full waveform typically requires
more model-dependent inputs and a numerical study.
The second goal is defining gravitational radiation in a

reasonably preciseway in compactified spacetimes.Defining
gravitational radiation is a nontrivial exercise which was
solved in four-dimensional asymptotically flat spacetime in
the classic work of Bondi, Metzner and Sachs [4–6]. One of
the outcomes of that work was the enlargement of the
asymptotic Poincaré group to the infinite-dimensional
Bondi–Metzner–Sachs (BMS) group that includes super-
translations, which we will review shortly.1 A complete
analysis of gravitational radiation in all noncompact space-
time dimensions appears in [7], building on the earlier work
of [8,9]. Somewhat surprisingly, gravitational radiation for
spacetimes with compact dimensions has not yet been
studied beyond linearized gravity, or in the special case of
a circle compactification [10–12]. As in the noncompact
case, a full nonlinear analysis is needed to define a notion of
radiated power per unit angle, which gives energy-momen-
tum loss as well as the null memory contribution to the total
memory effect [13].
The simplest compactified space we might imagine is a

circle or a torus. From that example studied in Sec. VI B we
will unify scalar [14], electromagnetic [15–17] and gravi-
tational [13,18] notions of memory in the spirit of Kaluza
and Klein. In Sec. VI C we sketch how this approach can be
used to derive memory for non-Abelian gauge theories,
discussed for example in [19], from a higher-dimensional

1These supertranslations have no connection to supersym-
metry. This is just an unfortunate clash of nomenclature.
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gravity theory compactified on a space with a non-Abelian
isometry group. String theory suggests a richer class of
compactification spaces, described below in Sec. I B, with a
first generalization from tori to Ricci-flat spaces. In their
full glory, however, the vacuum solutions are quite intricate
warped spacetimes. In this analysis we largely focus on the
case of unwarped Ricci-flat spacetimes where the analysis
is more tractable. Well-known examples of this type
include manifolds of special holonomy like G2 manifolds
used in M-theory compactifications and Calabi-Yau three-
folds used in string compactifications. However we are not
restricting our discussion to supersymmetric vacuum con-
figurations in this analysis. We consider general Ricci-flat
compactifications, which do not necessarily have special
holonomy. For a recent discussion about Ricci-flat spaces
which do not have special holonomy, see [20].2 For warped
compactifications where four-dimensional effective field
theory still makes sense, we expect a qualitatively similar
picture to the Ricci-flat case with a suitable change in the
effective null stress-energy generated from the compact
dimensions.
To introduce the memory observable, consider 3þ 1

spacetime dimensions and pure Einstein-Hilbert gravity
with no additional sources of stress-energy:

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p
R: ð1:1Þ

An asymptotically flat metric is conveniently written in
terms of Bondi coordinates ðu; r; θÞ adapted to outgoing
null directions. This coordinate system is depicted in
Fig. 1. The θA are coordinates for the two-sphere at null
infinity with unit round metric qAB. In Bondi gauge, grr ¼
grA ¼ 0 and ∂rfdetðgABÞg ¼ 0. The metric with signature
ð−;þ;þ;þÞ then takes the form

ds2 ¼
�
ημν þ

X
n

hðnÞμν

rn

�
dxμdxν;

¼ −du2 − 2dudrþ qABeAeB þ 2mBðu; θÞ
r

du2 þ hð1ÞABðu; θÞ
r

eAeB þO

�
1

r2

�
; ð1:2Þ

where eA ¼ rdθA and mB is the Bondi mass aspect. The
radiative degrees are encapsulated by the “news” tensor
which is given by

NABðu; θÞ ¼
�
qACqBD −

1

2
qABqCD

�
∂uh

ð1Þ
CDðu; θÞ: ð1:3Þ

Memory can be viewed as the displacement of an array of
freely floating test masses located near null infinity created

by the passage of a gravitational wave. The full memory
effect is given in terms of the news tensor:

ΔABðθÞ≡ 1

2

Z
∞

−∞
du0NABðu0; θÞ: ð1:4Þ

Memory can be decomposed into two contributions [21]:
the first is an “ordinary” contribution produced by the
change in the mass multipole moments of the radiation
source; for example, a black hole binary merger. This
contribution can be seen in a weak field linearized gravity
approximation [18]. There is also a more subtle “null”
memory effect produced by the energy flux that reaches
null infinity [13].

A. Four-dimensional effective field theory

The first question we might ask is how a gravitational
wave detector might see a sign of new physics. Let us
suppose that far away from sources and near the detector,
the vacuum Einstein equations are applicable. On the one
hand, the memory effect is given by the news tensor via
(1.4). Let us model the detector as a collection of test

FIG. 1. Depiction of Bondi coordinates.

2While less familiar than the special holonomy Ricci-flat
spaces which preserve supersymmetry, it is not hard to construct
nonsupersymmetric examples along the following lines: take a
K3 surface that admits an involution which does not preserve the
holomorphic two-form and may have fixed points. Consider the
space ðK3 × T kÞ=G where the quotient group G acts on the K3
surface as just described, and simultaneously on the torus by
translations so that G is freely acting. Similar examples can be
constructed without tori, sometimes at the expense of the spin
structure, by taking special holonomy spaces that admit fixed-
point free involutions and considering the resulting quotient
space; the Enriques surface, constructed as a Z2 quotient of a K3
surface, is of that type.
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particles near null infinity. At leading order in 1
r, the

displacement of the test particles in the angular directions
is given by

ξA ¼ ξð0ÞA ðθÞ þ ξð1ÞA ðu; θÞ
r

þO

�
1

r2

�
; ð1:5Þ

where the initial positions are given by ξð0ÞA . Near null

infinity, ξð1ÞA ðu; θÞ is determined by the geodesic deviation
equation which implies that the relative accelerations of the
test particles with respect to retarded time is given by

∂2ξð1ÞA

∂u2 ¼ −Rð1Þ
uAuBξ

B
ð0Þ: ð1:6Þ

This component of the Riemann tensor at leading order in 1
r

can be expressed in terms of the Bondi news giving the
relation,

∂2ξð1ÞA

∂u2 ¼ 1

2
∂uNABðu; θÞξBð0ÞðθÞ: ð1:7Þ

An elementary derivation of this formula can be found in
Sec. VI. The displacement of the “arms” of the detector as a
function of retarded time is

Δξð1ÞA ðu; θÞ ¼ 1

2

Z
u

−∞
du0NABðu0; θÞξBð0ÞðθÞ: ð1:8Þ

For convergence of this integral for all retarded time, we
assume the news tensor decays in the far past/future as
NAB ∼Oð 1

juj1þϵÞ for ϵ > 0. The memory effect is given by

lim
u→∞

Δξð1ÞA ðu; θÞ ¼ ΔABðθÞξBð0ÞðθÞ: ð1:9Þ

On the other hand, assuming the vacuum Einstein equations
one finds that

DADBΔAB ¼ 2ΔmBðθÞ þ
1

4

Z
∞

−∞
duNABðu; θÞNABðu; θÞ;

ð1:10Þ

whereDA is the covariant derivative on the unit two-sphere.
In principle this formula can be inverted to get the memory
tensorΔAB. The first term on the right-hand side of (1.10) is
the change in the Bondi mass aspect, which captures the
ordinary memory contribution. In principle, the ordinary
memory can be determined from data by comparison with
simulated waveforms. The second term is the null memory
contribution. This is proportional to the power radiated per
unit angle. For a binary black hole merger the contribution
of the null memory is roughly ∼103 times larger than the

ordinary memory [22]. Therefore, the dominant contribu-
tion to Eq. (1.10) is the null memory term.
The upshot is that the news can be extracted from the arm

motion via (1.8) and then used for a second evaluation of
the expected memory using (1.10), which assumes the
vacuum Einstein equations. If this computation of the
memory disagrees with observation, there must be some
other physics affecting the detector.

1. Minimally coupled stress-energy

First imagine a situation with a single distinguished
metric, namely the Einstein-frame metric g, and some
matter stress-energy Tμν which might, for example, be
governed by an action SM coupled to this metric:

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p
Rþ SMðgÞ: ð1:11Þ

As usual, the Hilbert stress tensor is given by
Tμν ¼ −ð 2ffiffiffiffi−gp Þ δSMδgμν. In this situation, (1.10) is augmented

by a contribution from null stress-energy given below,

DADBΔABðθÞ ¼ 2ΔmBðθÞ

þ 8π

Z
∞

−∞
du

�
Tð2Þ
uu þ 1

32π
NABNAB

�
;

ð1:12Þ

where Tð2Þ
uu ðu; θÞ≡ limr→∞r2Tuuðu; r; θÞ. In addition to

(3.4), the derivation of (1.12) assumes that the stress tensor
decays likeOð 1r2Þ and obeys the dominant energy condition:
namely, that Tμνvν is timelike or null for any timelike or
null vector vμ. This modified relation has been proposed as
a way of detecting the contribution of neutrino radiation to
the memory effect [23].

2. Jordan-frame stress-energy

The other case of interest to us is the situation where
there are scalar fields, collectively denoted ϕ, and the
matter sector couples to a Jordan-frame metric gðJÞ distinct
from the Einstein metric. We can model this situation by the
action

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p
Rþ

Z
d4x

�
−
1

2
∂μϕ∂μϕ − VðϕÞ

�

þ SMðgðJÞÞ; ð1:13Þ

where gðJÞμν ¼ eωðϕÞgμν and ωðϕÞ is a scale factor that
depends on the scalar fields ϕ. For example, Brans-
Dicke theory is of this type with a single scalar field ϕ,
and a function ω proportional to ϕ; a nice discussion of
memory and asymptotically flat solutions for Brans-Dicke
theories can be found in [24]. The choice of Jordan frame
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metric is ambiguous up to a shift of the scale factor ω by a
constant. For convenience we will choose this constant so
that ωðϕÞ vanishes as r → ∞.
It is worth commenting on masses at this point. Any real

detector is obviously not located at Iþ so a sufficiently
energetic flux of low mass particles will effectively behave
like null stress-energy. With this caveat in mind, our
analysis will usually assume an idealized situation where
the detector lives near Iþ and we can treat particles near Iþ
as massless. To derive an expression for memory, we again
assume that the stress tensor obeys the dominant energy
condition with Oð 1r2Þ decay for large r. Similarly any scalar
field ϕ has the following expansion near Iþ,

ϕ ∼ ϕð0Þ þ ϕð1Þðu; θÞ
r

þO

�
1

r2

�
; ð1:14Þ

where ϕð0Þ is a constant. Our detector is constructed from
the matter sector governed by SMðgðJÞÞ. Geodesic deviation
determines how the detector reacts to a burst of gravita-
tional radiation. For stationary test particles situated near
Iþ, the geodesic deviation is again described by

∂2ξð1;JÞA

∂u2 ¼ −Rð1;JÞ
uAuBξ

B
ð0;JÞ: ð1:15Þ

Here the two superscripts denote the power in the 1=r
expansion and Jordan frame. Although the Jordan frame
metric is not in Bondi gauge described in Eq. (3.4), it is still

true that hð1;JÞrr and hð1;JÞrA vanish. For metrics of this form,
the relevant component of the Riemann tensor takes the
form

Rð1;JÞ
uAuB ¼ −

1

2
∂2
uh

ð1;JÞ
AB

¼ −
1

2
∂2
uðhð1ÞAB þ ωð1ÞqABÞ

¼ −
1

2
∂uðNAB þ ∂uω

ð1ÞqABÞ; ð1:16Þ

where in the last line we used the fact that qABhð1ÞAB ¼ 0 in
Bondi gauge. The arm displacement is now given by

Δξð1;JÞA ðu;θÞ ¼ 1

2

Z
u

−∞
du0ðNABðu0;θÞ þ ∂uω

ð1ÞqABÞξBð0;JÞðθÞ:

ð1:17Þ

Equation (1.17) gives the motion of the arms of the detector
moving on a geodesic of the Jordan frame metric. This
motion has a transverse piece due to the contribution of
NAB and a longitudinal piece due to the contribution of the
conformal mode ∂uω

ð1Þ. This extra piece is also known as
the breathing mode of the gravitational radiation.

If the scalar charge, defined by ωð1Þðu; θÞ in analogy with
(1.14), does not change then the second term in Eq. (1.17)
vanishes. In the Jordan frame, the memory effect is again
given by

lim
u→∞

Δξð1;JÞA ðu; θÞ ¼ ΔðJÞ
ABðθÞξBð0;JÞðθÞ: ð1:18Þ

The news tensor appearing in (1.17) can again be related to
the square of the news tensor via Einstein’s equations,

DADBΔðJÞ
AB ¼ 2ΔmðJÞðθÞ

þ 8π

Z
∞

−∞
du

�
Tð2Þ
uu ðu; θÞ þ 1

32π
N2ðu; θÞ

�
;

ð1:19Þ

where Tð2Þ
uu ðu; θÞ is again defined by limr→∞r2Tuuðu; r; θÞ

and mðJÞðθÞ ¼ mBðθÞ þ 1
2
D2ωð1Þ. The frame dependence

can therefore contribute to the memory in competition with
null stress-energy as long as the associated scalar fields can
be treated as massless.

3. Higher-derivative interactions

Any effective description for a theory of quantum gravity
will have higher derivative interactions. These interactions
are crucial for constructing vacuum solutions with flux in
string theory, which we will discuss in Sec. I B. In this
work, we will not take into account higher derivative
interactions in the full higher-dimensional theory. That is
a very difficult problem to address. Rather we will consider
higher derivative interactions in the four-dimensional
effective theory. As long as we can reduce to an effective
four-dimensional description, this should cover any pos-
sible observable effects from these couplings.
Let us consider purely gravitational corrections to the

Einstein-Hilbert action, which take the schematic form

S¼ 1

16πG

Z
d4xð ffiffiffiffiffiffi

−g
p

RþOðR2Þ þOðR3Þ þ…Þ: ð1:20Þ

The higher derivative corrections are suppressed by some
scale. We want to answer the question: which combinations
of curvatures could possibly affect memory? Memory is
determined by terms that decay at Oð 1r2Þ near Iþ. The
Riemann tensor for the metric (3.4) decays like 1

r. Any
contractions of Riemann with metrics will also decay at
Oð1rÞ or faster. This means that terms of OðR3Þ are already
decaying too fast to affect memory. On the other hand,
terms of OðR2Þ deserve further investigation.
At the four derivative order there are two topological

couplings, the Pontryagin density and the Euler density,
proportional to
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Z
TrðR̂ ∧ R̂Þ;

Z
TrðR̂ ∧ �R̂Þ; ð1:21Þ

where R̂ is the curvature two-form. These terms do not
affect either the equations of motion, or memory. One
might imagine adding an axion coupling of the sortR
ϕ̂TrðR̂ ∧ R̂Þ for an axion ϕ̂, but such a coupling decays

at Oð 1r3Þ because the nonconstant behavior of the axion is
Oð1rÞ. That leaves the combinations

Z ffiffiffiffiffiffi
−g

p
R2;

Z ffiffiffiffiffiffi
−g

p
RμνRμν;

Z ffiffiffiffiffiffi
−g

p
RμνλρRμνλρ:

ð1:22Þ

However the first two terms can be field redefined away.
The third term is related to the Euler density, which is
proportional to R2 − 4RμνRμν þ RμνλρRμνλρ, and therefore
the third term can also be ignored. Based on this discussion,
it appears that memory is insensitive to higher derivative
corrections.

B. Compactified spacetimes

There are really three separate facets to the question of
exploring compactified dimensions using gravitational
radiation. The first question one might ask is what class
of spacetimes should we consider? The simplest Kaluza-
Klein spacetime is higher-dimensional Minkowski space
compactified on a torus, for example, five-dimensional
Minkowski space compactified on a circle of radius R. This
is a very useful example for exploring basic phenomena
encountered in higher dimensions. String theory, however,
suggests a richer class of spacetimes used in the con-
struction of the string landscape. While there is much
debate about the string landscape, we will stick with
elements of the underlying string constructions that are
most likely to survive in the future.
The main surprise that string theory offers to a general

relativist interested in radiation is the need to consider
warped compactifications to four dimensions with vacuum
configurations of the form

ds2 ¼ e−φðyÞηþ eφðyÞds2Mint
ðyÞ; ð1:23Þ

where η is the D ¼ 4 Minkowski metric, ds2Mint
is the

metric for a Ricci-flat internal space Mint with coordinates
y, and φðyÞ is the warp factor [25]. There are also higher
form flux fields that thread both the internal space and
spacetime, which can be viewed as conventional sources of
stress-energy. Gravitational waves in warped backgrounds
of this type have been studied in [26,27]. For a compact
Mint, this metric does not solve the spacetime Einstein
equations without the inclusion of exotic ingredients like
orientifold planes and higher derivative interactions. These
ingredients exist in string theory. At higher orders in the

derivative expansion of the spacetime effective action, the
conformally Ricci-flat form of the internal space metric
(1.23) is not preserved, but this form is a sufficiently good
approximation for our discussion of radiation.
Without some additional quantum ingredient, the semi-

classical background (1.23) is part of a family of solutions
obtained by rescaling the internal space ds2Mint

→ λds2Mint

for any λ > 0 with an accompanying change in the warp
factor. So there is a large volume limit for the internal space
when λ is large. In this limit, the warp factor approaches a
constant, and the higher-dimensional spacetime approaches
a product manifold. It is important to note, however, that
the warp factor can still have regions of large variation
in Mint.
The most tractable and heavily studied backgrounds M

preserve spacetime supersymmetry. The expectation is that
spacetime supersymmetry is spontaneously broken below
the compactification scale. For a set of examples of this
type, Mint is obtained from the geometry of a Calabi-Yau
four-fold with some additional structure. Such spaces are
complex Kähler Ricci-flat manifolds with potentially many
shape and size parameters, which correspond to massless
scalar fields in spacetime. The scalar fields that determine
the complex structure ofMint typically get a mass from the
fluxes that thread the space [25].3 This mass scale, Mflux,
can be significantly lighter than the Kaluza-Klein scale of
the compactification, denoted MKK .
Let us get a rough feel for the numbers involved. If we

assume an upper bound on the size of any compact
dimension of roughly order microns, or equivalently eV,
from gravitational bounds [29] to approximately 10−18 m
or a TeV from collider bounds [30], and six compact
dimensions then the ten-dimensional Planck scale takes the
range MD¼10

p ∼ 10 keV − 10 TeV. Of course, the size of
any compact dimensions might be much smaller than this
upper bound. We expect scalars from the complex structure
moduli to get masses of order

Mflux ∼
ðMKKÞ3
M2

s
; ð1:24Þ

where Ms is the string scale. For a string coupling of order
one, the string scale and Planck scale are comparable:
Ms ∼MD¼10

p . In this case,

Mflux ∼
ðMKKÞ3=2
M1=2

p

; ð1:25Þ

where Mp is the observed four-dimensional Planck
scale. The scalars then have a mass in the range of

3See [28] for evidence that this might not be generically true
for all the complex structure moduli when the number of such
moduli is large.
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10−14 − 104 eV for a Kaluza-Klein scale ranging from
1 eV − 1 TeV.4 This is a huge range of masses but it
certainly includes masses light enough that we can simply
ignore the mass and treat the scalar as massless for the
purposes of detection by a gravitational wave detector. The
last point to mention about the complex structure moduli is
the number of such moduli. From known constructions of
Calabi-Yau four-fold geometries, there are examples with
of Oð105Þ such moduli [34,35].5

There is one other notable feature of the flux compacti-
fications described by (1.23). Namely they are warped
compactifications with a warp factor eφðyÞ which can have a
very large variation. Such compactifications can look very
asymmetric because of the presence of strongly warped
throats in the geometry [38]. The primary reason for
interest in such throats is to generate small scales from
the Planck scale to solve the hierarchy problem in the spirit
of the Randall-Sundrum model [39], although in the
context of an actual compactification from string theory.
In addition to generating hierarchies in the four-dimen-

sional effective theory, this has potentially interesting
consequences for exotic compact objects, specifically
objects localized in higher dimensions. There is no com-
plete understanding of how large the warp factor might
become in flux vacua, largely because it is very difficult to
find semiclassical compact flux solutions, which are
necessarily supersymmetric backgrounds. However, it is
reasonable to expect a variation in the warp factor at least
large enough to account for the Oð1016Þ hierarchy between
weak scale physics of Oð103Þ GeV and Planck scale
physics of Oð1019Þ GeV. In principle, the variation of
the warp factor could be much larger because the D3-brane
tadpole found in F-theory on a Calabi-Yau four-fold
[40,41], which determines the maximum amount of back-
ground flux, can be as large as Oð104Þ in known examples.
The background flux, together with gravitational curvature
terms, source the harmonic equation satisfied by the warp
factor.
The upshot of this stringy top down look at compactified

extra dimensions is that there can be many scalar fields with
masses potentially below the Kaluza-Klein scale. We now
turn to what kinds of compact objects might be sensitive to
either these scalar fields, or directly to the existence of
additional dimensions.

C. Compact objects in higher dimensions

1. Delocalized compact objects

In this work we want to study dynamical spacetimes
which arise from the motion of compact objects. These
objects might be stars or black holes in manifolds with
compact extra dimensions. At a coarse level, there are two
distinct categories of compact object we might study. The
first are objects constructed strictly from the light degrees
of freedom with masses below the Kaluza-Klein scale, for
example, from the potentially light scalars discussed in
Sec. I B. This class of compact object is essentially
delocalized in the internal dimensions. We should be able
to study the physics of these modes in four-dimensional
effective field theory discussed in Sec. I A.
Surprisingly, even in this setting there are exotic compact

objects that can support scalar hair, which is our basic
signature of extra dimensions. The first are Bose stars
reviewed in [42]: no particularly exotic ingredients are
needed to construct Bose stars other than a complex scalar
field. The scalar field is not static but the associated
spacetime metric is static. It is interesting to note that
the moduli scalar fields that arise in most string compacti-
fications are naturally complex scalar fields because most
such vacua give a low-energy supergravity theory.
Gravitational radiation from binary boson star systems
has been studied in [43].
Closely related to Bose stars are gravitational atoms and

molecules, which are clouds of scalar fields or massive
vector fields surrounding a black hole, or a black hole
binary [44,45]. Included in these configurations are Kerr
black holes with scalar hair, which interpolate between Kerr
black holes and rotating Bose stars [46]. This is already a
rich phenomenology of exotic compact objects, which are
sensitive to light scalar fields.

2. Circle compactification

The second category of compact object is at least
partially localized in the internal directions. Our basic
intuition follows from compactification on a circle of radius
R. Black hole uniqueness theorems are considerably
weaker above four dimensions, and it is useful to character-
ize the black objects we wish to study based on their
localization properties. A black string solution is simply a
D ¼ 4 black hole which knows nothing about the internal
space. It is a delocalized solution admitting a spacelike
Killing vector generating rotations of the S1.
The other extreme is a black hole which is highly

localized on the internal space, breaking the Uð1Þ isometry.
Black holes with a size small compared to R look locally
like a D ¼ 5 Myers-Perry solution [47]. Solutions with
mass M are dynamically stable only for a certain range of
the ratioM=R because of the Gregory-Laflamme instability
[48]. The entropy serves as a thermodynamic diagnostic for
stability. For a fixed massM, black strings have an entropy

4Masses at the very low end of this range will be constrained
by bounds from superradiant instabilities from spinning black
holes. This lower bound is in the range of 10−11 eV; see, for
example [31,32]. For a recent discussion of superradiance in
string theory, see [33].

5The currently largest known value of the Hodge number, h3;1,
which determines the number of complex structure moduli for a
Calabi-Yau four-fold is 303148 found in [36,37]. We would like
thank Wati Taylor and Jim Halverson for discussions on moduli
bounds.
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that scales like SBS ∼M2 while D ¼ 5 black holes have an
entropy that scales like SBH ∼M2

ffiffiffiffiffiffiffiffiffiffi
R=M

p
[49]. For large R,

the localized black hole configuration is the preferred
solution.
Astrophysical black hole mergers detectable by LIGO

have constituent masses of roughly Oð10Þ solar masses,
which corresponds to a distance scale of Oð104Þ m. This is
ten orders of magnitude larger than the best upper bound on
the Kaluza-Klein scale. M is clearly much greater than the
range of Kaluza-Klein scales discussed in Sec. I B, and
therefore one should expect that the generic compact object
will be delocalized.
For circle compactifications, the binary merger of black

holes localized at a point was studied in [50,51] using a
point particle approximation. With no other ingredients, the
massless degrees of freedom in four dimensions are a
graviton, a Kaluza-Klein scalar and a graviphoton. The
luminosity of gravitational waves released in the merger
process is about 20% less than the merger of four-
dimensional black holes mainly because of scalar radiation
produced in the merger.
To see this consider R4 × S1 with coordinates

ðt; x1; x2; x3; yÞ and flat metric ds2 ¼ ημνdxμdxν þ dy2,
where y ∼ yþ 2πR. In linearized gravity, the stress-energy
for a point particle of mass m and world-line given by
XMðτÞ with affine parameter τ is given by

TMNðXÞ ¼ m
Z

dτ _XM _XNδð5ÞðX − XðτÞÞ: ð1:26Þ

The indices ðM;N;…Þ run over all the spacetime dimen-
sions while ðμ; ν;…Þ run over four-dimensional quantities
in accord with the conventions spelled out later in Sec. I E.
For a particle moving only in R4, _XyðτÞ ¼ 0.
The massless scalar field in four dimensions is the zero

mode of δgyy ¼ hyy where gMN is the full spacetime metric.
By this we mean Fourier expand the fluctuation hyy in the y
direction and restrict to the zero mode. We will denote the
zero mode by a barred quantity h̄yy. In linearized gravity,
this is sourced by the zero mode of the stress tensor,

□ηh̄yy ¼ −8πðT̄yy − ημνT̄μνÞ; ð1:27Þ

where □η ¼ ημν∂μ∂ν. For the stress tensor given in (1.26),
T̄yy ¼ 0 and the right-hand side of (1.27) is nonzero,
leading to the mismatch with experiment. The situation
gets worse with more compact dimensions. Taken at face
value, this would seem to rule out this simple model of
compact extra dimensions.
However, we do not expect astrophysical black holes to

be localized in a model like this because of the Gregory-
Laflamme instability: the black holes are much larger than
any extra dimension. Much more likely is a completely
delocalized black string wrapping the y direction. For a

string with induced metric γab ¼ ∂aXM∂bXNgMN and
tension μ, the stress-energy tensor is given by

TMN ¼ μ

Z
dσdτ

ffiffiffiffiffiffi
−γ

p
γab∂aXM∂bXNδð5ÞðX − Xðσ; τÞÞ:

ð1:28Þ
Choosing gμν ¼ ημν and fixing static gauge for the wrapped
string ðσ ∼ y; τ ∼ tÞ gives

Tyy ¼ 2πμR
Z

dτδð4ÞðX − XðτÞÞ; ð1:29Þ

with 2πμR ¼ m. This makes the right-hand side of (1.27)
vanish as we expect for a model that replicates a standard
D ¼ 4 black hole.
Using this observation we can actually construct a model

for a D ¼ 4 particle, at the level of hydrodynamics, which
interpolates between the black string and the completely
localized black hole. Consider the stress tensor with affine
parameter τ given by

TμνðXÞ ¼ m
Z

dτ _Xμ _Xνδð5ÞðX − XðτÞÞ;

Tyy
ϵ ðxÞ ¼ ϵm

Z
dτδð4ÞðX − XðτÞÞ: ð1:30Þ

This is conserved. It is a hybrid of a D ¼ 5 point particle
with a uniform stress on the y circle. For ϵ ¼ 0, this is the
D ¼ 5 point particle while for ϵ ¼ 1, the right-hand side of
(1.27) vanishes and the zero mode of TμνðXÞ coincides with
the black string (1.28). For intermediate ϵ, this will result in
a D ¼ 4 particle with some scalar charge that will generate
some scalar radiation. However, the amount is tunable. We
would expect more complicated stress-energy distributions
in the y direction for configurations corresponding to arrays
of D ¼ 5 black holes and nonuniform black strings. The
upshot is that there are many potential stress tensors that
could describe black objects in R4 × S1 with varying
amounts of scalar charge from the D ¼ 4 perspective,
whose dynamics can be made consistent with current
observation.
The circle is a very special example of a compactifica-

tion. For the more general warped backgrounds described
in Sec. I B, there is an exciting possibility of novel
phenomena. One might imagine localized black objects,
analogous to theD ¼ 5 black hole just discussed, which are
globally unstable because of a Gregory-Laflamme type
argument, but which are nonetheless long lived because of
the local behavior of the warp factor. It would be interesting
to explore this possibility further.

D. Signatures of compact dimensions

In Sec. I A we saw that memory can be used to detect
new physics. More precisely, given a particular model of
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the stress-energy in a theory, gravitational observatories can
make independent measurements of arm motion and of
gravitational memory, and then compare these measure-
ments; disagreement indicates a missing contribution to the
stress-energy. Such a missing contribution could come
from various sources, including additional light fields in the
theory or a matter coupling to a Jordan frame metric which
differs from the Einstein frame metric. However, for the
purposes of the current work, we are most interested in the
possibility that a discrepancy in these measurements could
arise from the presence of compact extra dimensions.
In a theory with extra dimensions, we will show that the

radiative degrees of freedom near Iþ are encoded in a
generalized news tensor written as N ab, where the indices
a, b now run over both the asymptotic two-sphere S2 and
the internal space Mint. The components N AB will encode
the familiar Bondi news contribution NAB as well as an
additional scalar breathing mode N which give rise to
gravitational radiation in the noncompact directions.
However, we will see that a generic internal manifold will
support additional radiative modes encoded in N Am and
N mn, which involve fluctuations in the directions of the
internal manifold Mint. Viewed from the perspective of a
macroscopic observer in R4, the additional modes in N Am
and N mn are precisely the radiative degrees of freedom for
electromagnetic gauge fields and light scalars, respectively.
This implies that there is an electromagnetic memory effect
and a scalar memory effect associated with these addi-
tional modes.
In theories with these extra modes arising from compact

dimensions, the null stress-energy appearing in Eq. (1.12)
receives additional contributions; one now has

DADBΔAB ¼ 2ΔmðθÞ

þ 8π

Z
∞

−∞
du

�
T ð2Þ

uu ðu; θÞ þ 1

32π
NABNAB

�
;

T ð2Þ
uu ðu; θÞ≡ Tð2Þ

uu ðu; θÞ

þ 1

32π
ðN AmN Am þN mnN mn þ N2Þ:

ð1:31Þ

Here N is associated with a breathing mode of the internal
space which is a scalar degree of freedom. Therefore, for a

particular model for the null stress-energy Tð2Þ
uu that should

contribute to memory, the presence of extra compact
dimensions will generate a discrepancy between the pre-
dicted and measured memory effects. This discrepancy is
captured in the four-dimensional effective stress tensor

T ð2Þ
uu , which includes the electromagnetic and scalar con-

tributions from the higher-dimensional gravity modes.
We can extract more data about these contributions from

a different class of measurements. The ordinary electro-
magnetic and scalar memory effects generate a velocity

kick for a suitable charged test particle. Even without any
Abelian charge or extra dimensions, gravity generates a
similar velocity kick for a test particle. Likewise, in theories
with extra dimensions, a particle with velocity in the
internal directions will experience a velocity kick in R4

because of the passage of gravitational radiation in the
internal space.
Measuring these velocity kicks requires a different

experimental design than is typical for current gravitational
observatories, which study geodesic deviation for pairs of
point particles. Instead, if one can measure the trajectory of
point particles—even a single point particle—undergoing
geodesic motion, relative to a lab frame which is stationary
in an appropriate sense, then one can in principle extract all
of N Am and a part of N mn described in Sec. VI. These
additional sources of news are the primary signatures of
extra dimensions we might hope to see with memory
measurements alone.

E. Conventions

Unless otherwise specified, we work in units where
G ¼ c ¼ ℏ ¼ 1, and follow the conventions of [52]. Our
metric signature is mostly positive and our sign convention
for curvature is such that the scalar curvature of the round
sphere metric is positive. The fullD-dimensional spacetime
manifold, denoted M, has the topology M ¼ R4 ×Mint

where R4 is a four-dimensional Lorentzian manifold and
Mint is a (D − 4)-dimensional compact Riemannian mani-
fold. Our index conventions are listed below:

(i) Indices ðM;N; L;…Þ run over the full spacetime
manifold M with metric gMN and covariant deriva-
tive ∇M. The Riemann tensor associated to the
metric gMN is RMNP

Q.
(ii) Indices ðμ; ν; λ;…Þ run over R4, and are raised and

lowered with the asymptotic Minkowski metric ημν.
We denote the covariant derivative compatible with
ημν by ∂μ.

(iii) Indices ðm; n; l;…Þ run over Mint, and are raised
and lowered with metric ĝmn. The covariant deriva-
tive compatible with ĝmn is Dm. The Riemann
tensor of ĝmn is Rmnp

q which has vanishing Ricci:
ĝmpRmnp

q ¼ 0.6

(iv) Indices ðA; B;C;…Þ run over S2, and are raised and
lowered with the round metric qAB. The covariant
derivative compatible with qAB is DA.

(v) Lastly indices ða; b; c;…Þ run over S2 ×Mint, and
are raised and lowered with the product metric qab
given by q ¼ q ⊕ ĝ.

Indices for tensors on M are raised and lowed with the
asymptotic Ricci-flat product metric which we denote by a
hat,

6That ĝmn is Ricci-flat follows from our falloff ansatz given in
Eq. (3.5) and the Einstein equations.
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ĝMNdxMdxN ¼ ημνdxμdxν þ ĝmnðyÞdymdyn; ð1:32Þ

where xM ¼ fxμ; ymg are arbitrary coordinates on R4 and
Mint, respectively. We also use these conventions to denote
coordinates on submanifolds like S2 or S2 ×Mint, as well
as components in a coordinate basis. We will use the same
index notation for tensors which are intrinsic to a sub-
manifold and the components of an ambient tensor along a
submanifold; for example, the tensor TMN defined on the
full spacetime M has angular components TABðx; yÞ while
the intrinsic tensor tABðθÞ lives on S2. We do not feel the
potential confusion that might arise from doing this justifies
introducing a new alphabet.
To simplify keeping track of powers of 1r, we will expand

tensors in a normalized basis, which in Bondi coordinates is
fdu; dr; eA ¼ rdθA; dymg. This is a little different from the
more common convention found in [24,53–55]. As an
explicit example consider the one-form on the sphere with
coordinates θA,

Vμdxμ ¼ vAðθÞdθA ¼
�
vAðθÞ
r

�
ðrdθAÞ; ð1:33Þ

for some vAðθÞ. With this choice of basis, the Oð1rÞ term

Vð1Þ
A ¼ vAðθÞ is nonzero. When we perform asymptotic

expansions near Iþ, as in Eq. (3.4), we will use a super-
script to indicate a term at a given order in 1

r, keeping in
mind the preceding convention for angular directions. For
example, a scalar field ϕ would be expanded as follows:

ϕ ¼
X∞
n¼0

ϕðnÞ

rn
: ð1:34Þ

Lastly, given a tensor on Mint we can expand in
eigenmodes of the appropriate Laplacian. It will be useful
to denote the zero mode in such a harmonic expansion by a
bar. For example, given a function tðxμ; ymÞ on M the zero
mode is denoted by t̄ðxÞ. This zero mode solves D2t ¼ 0

where D2 ≡ ĝmnDmDn is the scalar Laplacian on Mint.
Similarly for a one-form tMðx; yÞwe denote the zero modes
by ðt̄μðx; yÞ; t̄mðx; yÞÞ, while the zero modes of a symmetric
two-tensor tMNðx; yÞ are denoted ðt̄μνðx; yÞ; t̄μmðx; yÞ;
t̄mnðx; yÞÞ. For Ricci-flat manifolds, this kind of harmonic
decomposition simplifies considerably as we review
in Sec. II.

II. REVIEW OF LINEARIZED DIMENSIONAL
REDUCTION

The topics under discussion in this work are of potential
interest to multiple communities, including string theorists,
general relativists, quantum field theorists and gravitational
wave astronomers. To make the work as self-contained as

possible, we will review techniques that are more familiar
to a specific community.
The usual procedure of dimensional reduction is to

start with a vacuum configuration which we take to be a
D-dimensional product manifold,

M ¼ R4 ×Mint; ð2:1Þ

where R4 is the noncompact Lorentzian spacetime, and
Mint is the (D − 4)-dimensional compact Riemannian
internal space. We will also take Mint to be connected
and closed (i.e., compact without boundary).M is equipped
with the product metric

ĝMNdxMdxN ¼ ημνdxμdxν þ ĝmnðyÞdymdyn; ð2:2Þ

where ημν is the Minkowski metric, ĝmnðyÞ is a Ricci-flat
metric on Mint and xM ¼ fxμ; ymg are coordinates on R4

and Mint, respectively. Our discussion does not involve
fermions so we will not worry about issues like a spin
structure.
Let us consider pure gravity with the Einstein-Hilbert

action on the total spacetime manifold M:

S ¼ 1

2κ

Z
M
dDx

ffiffiffiffiffiffi
−g

p
R: ð2:3Þ

The supergravity theories that describe low-energy limits of
string theory have additional fields, which we will ignore
for the moment, to focus on the graviton. We will discuss
dimensional reduction for linearized metric perturbations,
which is the usual approach. This should be contrasted with
our later discussion in Sec. IVA near Iþ, which is for the
full nonlinear theory.
Consider a linearized perturbation of ĝMN denoted hMN .

Let ∇̂M be the covariant derivative operator compatible
with ĝMN . Imposing the gauge conditions7

∇̂MhMN ¼ 0 and ĝMNhMN ¼ 0 ð2:4Þ

yields the linearized Einstein equation in Lorenz gauge:

□ĝhMN þ 2R̂M
P
N
QhPQ ¼ 0: ð2:5Þ

7Equation (2.4) is a special case of the Lorenz gauge. While
Lorenz gauge is useful in studying radiation in linearized gravity
with no null sources, we note that it is incompatible with the 1

r
falloff of the metric in asymptotically null directions in a general
radiating spacetime [7]. The proof of [7] shows that harmonic
gauge, which is the nonlinear generalization of Lorenz gauge, is
incompatible with the falloff conditions in D-dimensional non-
compact spacetimes, but the proof straightforwardly generalizes
to cases with compact extra dimensions using the techniques and
formulas in this paper.
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Here □ĝ ≡ ĝMN∇̂M∇̂N , R̂MPN
Q is the Riemann tensor of

the background metric ĝMN , and indices are raised and
lowered with the background metric. The residual gauge
freedom that preserves (2.4) is given by

hMN → hMN þ ∇̂ðMξNÞ where □ĝξM ¼ 0; ∇̂MξM ¼ 0:

ð2:6Þ

Note that the exact (not asymptotic) symmetry group of
Eq. (2.2) is trivially the direct product of the Poincaré group
ðPÞ and the isometry group (I) of ðMint; ĝmnÞ:

P ×I: ð2:7Þ

For background metric Eq. (2.2), the only nonvanishing
components of the Riemann tensor are the internal com-
ponents; therefore the Riemann tensor is equivalent to
Rmnp

q on ðĝmn;MintÞ.
Consider the projection of Eq. (2.5) into R4 and rewrite

□ĝ in terms of the derivative operator ∂μ compatible with
ημν, and the covariant derivative operator Dm compatible
with ĝmn. This yields

D2hμν þ□ηhμν ¼ 0; ð2:8Þ

whereD2 ≡ ĝmnDmDn and□η ≡ ημν∂μ∂ν. Expanding hμν in
terms of eigenfunctions of the Laplacian on Mint, Eq. (2.8)
yields an infinite tower of massive modes (one for each
eigenvalue). The mass scale is set by the size of the compact
extra dimensions. Since the goal of this paper is to study
radiation with compact extra dimensions we are interested in
either massless fields, or fields with masses below the
Kaluza-Klein scale; see the discussion in Sec. I B.
The massless modes h̄μν are annihilated by the Laplacian

and correspondingly satisfy a massless wave equation inR4:

D2h̄μν ¼ 0 ⇒ □ηh̄μν ¼ 0: ð2:9Þ

The zero-mode h̄μν is harmonic on Mint and therefore
independent of the internal coordinates y. Projecting both
indices of Eq. (2.6) into R4 shows that diffeomorphisms act
on the zero mode h̄μν by

h̄μνðxμÞ → h̄μνðxμÞ þ ∂ðμξ̄νÞðxμÞ
where □ηξ̄μ ¼ 0; ∂μξ̄μ ¼ 0; ð2:10Þ

and ξ̄μ is the zero mode of the projection of ξM into R4. The
massless spin-2 graviton arising from this reduction is h̄μν.

A. Vector modes

Analogously, we can study the vector perturbation hμm
using the linearized Einstein equation (2.5). We again

collect results here on the massless mode h̄μm which
satisfies

D2h̄μm ¼ 0: ð2:11Þ

Viewing hμm as a one-form onMint, we note that solutions
to Eq. (2.11) are spanned by the space of one-forms V̄m on
Mint that satisfy

D2V̄m ¼ 0: ð2:12Þ

Equation (2.12) is a condition on V̄m in terms of the
coordinate Laplacian D2. For any compact manifold,
the coordinate Laplacian on a one-form Vm is related to
the Hodge Laplacian ðΔðHÞÞ on Vm by the well-known
Weitzenböck identity for one-forms:

D2Vm ¼ −ΔðHÞVm þ ĝpnRmpVn: ð2:13Þ

Here Vm is a one-form onMint andRmp is the Ricci tensor
of ðĝmn;MintÞ. Therefore on any Ricci-flat manifold, the
coordinate Laplacian can be replaced by (minus) the Hodge
Laplacian when acting on one-forms. Solutions to
Eq. (2.12) are harmonic one-forms. We now investigate
the properties of solutions to Eq. (2.12). First recall the
well-known Hodge decomposition of a one-form.
Proposition 1. Let ðMint; ĝmnÞ be a compact

Riemannian manifold. Any globally defined one-form
Vm can be uniquely decomposed as follows:

Vm ¼ DmSþ vm; ð2:14Þ

where Dmvm ¼ 0. We refer to vm and S as the vector and
scalar parts of Vm, respectively.
If Vm is harmonic then S must be a constant and

consequently, Vm is divergence-free. Further a harmonic
Vm ¼ ĝmnVn is a Killing vector ifMint is Ricci flat. To see
this, let ξn be a Killing vector on Mint i.e., ξm ¼ ĝmnξ

n

satisfies DðmξnÞ ¼ 0. Applying Dm to Killing’s equation
and commuting the derivatives yields

D2ξm þ DmDnξn −Rm
nξn ¼ 0: ð2:15Þ

The second and third terms of Eq. (2.15) both vanish since
Rmn ¼ 0 and ξm is divergence-free by Killing’s equation.
Therefore if ĝmnξn is a Killing vector then ξm is indeed
harmonic.
To complete the correspondence we now show that if a

one-form V̄m is harmonic then ĝmnV̄n is also a Killing
vector [56]. Contracting Eq. (2.12) with V̄m and integrating
over Mint gives

Z
Mint

DmV̄nDmV̄n ¼ 0 ⇒ DmV̄n ¼ 0: ð2:16Þ
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Consequently, solutions to Eq. (2.12) are covariantly
constant and therefore Killing. The space of solutions to
Eq. (2.12) is therefore the space of Killing vectors onMint.
The number of linearly independent harmonic one-forms
onMint is counted by the first Betti number, b1, which is a
topological invariant. The preceding observations can be
summarized in the following lemma [56]:
Lemma 1. (Bochner) Let ðMint; ĝmnÞ be a compact

Ricci-flat Riemannian manifold. The space of harmonic
one-forms is then in one-to-one correspondence with the
space of Killing vectors, which are covariantly constant.
The dimension of the space of Killing vectors is b1ðMintÞ.
In the case where b1 > 0, the Ricci-flat space Mint of

dimension D − 4 can be written as a free quotient of T k ×
M̃D−4−k

int where M̃D−4−k
int is also Ricci flat [57]. We can now

give the general solution to Eq. (2.11),

h̄μmðxμ; ymÞ ¼
Xb1
i¼1

AðiÞ
μ ðxμÞ ⊗ V̄ðiÞ

m ðymÞ; ð2:17Þ

where fV̄ðiÞ
m g are the b1 linearly independent Killing

vectors. The coefficients AðiÞ
μ ðxÞ define a set of b1 grav-

iphoton vector fields on R4. Furthermore, it follows from

Eqs. (2.5) and (2.4) that each vector field AðiÞ
μ ðxμÞ satisfies

the wave equation and is divergence-free on R4:

□ηA
ðiÞ
μ ¼ 0 and ∂μAðiÞ

μ ¼ 0: ð2:18Þ

Projecting one index of Eq. (2.6) intoR4 and one index into
Mint, and using (2.11) implies that the gauge freedom of
h̄μm is

h̄μm → h̄μm þ
Xb1
i¼1

½∂μλ
ðiÞðxμÞ�V̄ðiÞ

m ðymÞ; ð2:19Þ

where λðxμÞ is a smooth function on R4, which satisfies the
wave equation. This is equivalent to an Abelian gauge

transformation on AðiÞ
μ ,

AðiÞ
μ ðxμÞ → AðiÞ

μ ðxμÞ þ ∂μλ
ðiÞðxμÞ; □ηλ

ðiÞ ¼ 0: ð2:20Þ

The Lie algebra for these spin-1 massless gauge fields is
determined by the isometry group of Mint. The isometry
group is clearly Abelian for Ricci-flat Mint since, by
Lemma 1, any Killing vector is also covariantly constant
and therefore the commutator of any two Killing vectors
vanishes.

B. Scalar modes

We finally consider the perturbations hmn which satisfy

D2hmn þ 2Rm
p
n
qhpq þ□ηhmn ¼ 0: ð2:21Þ

Therefore massless perturbations h̄mn are spanned by the
tensor fields on T̄mnðymÞ which satisfy

D2T̄mn þ 2Rm
p
n
qT̄pq ¼ 0: ð2:22Þ

The operator acting on T̄mn in Eq. (2.22) is the
Lichnerowicz Laplacian. Equation (2.4) implies a further
constraint on the allowed solutions to Eq. (2.22).
Expanding the divergence of hMN in terms of harmonic
one-forms implies that

DmT̄mn ¼ 0: ð2:23Þ

The space of solutions to Eqs. (2.22) and (2.23) is the
moduli space of infinitesimal deformations that preserve
the vanishing of the Ricci tensor. This moduli space is
known to be finite dimensional [58].
To further investigate the implications of Eqs. (2.22) and

(2.23), we first recall a well-known result about the
decomposition of symmetric tensors [59]:
Proposition 2. Let ðMint; ĝmnÞ be a compact

Riemannian Einstein space with dimension D − 4, i.e.,
Rmn ¼ cĝmn, for some constant c, which includes the
Ricci-flat case. Then any second rank, symmetric tensor
field Tmn can be uniquely decomposed as

Tmn ¼ tmn þ DðmWnÞ þ
�
DmDn −

1

D − 4
ĝmnD2

�
S

þ 1

D − 4
ĝmnU; ð2:24Þ

where Dmtmn ¼ 0 ¼ ĝmntmn, DmWm ¼ 0 and U≡ ĝpqTpq.
We refer to tmn, Wm and ðS;UÞ as the tensor, vector and
scalar parts of Tmn, respectively.
In keeping with our notation, we denote the tensor,

vector and scalar parts of T̄mn as t̄mn, W̄m, S̄ and Ū. This is
in accord with our prior notation of denoting harmonic
functions and harmonic one-forms with a bar since, as we
shall see, the scalar and vector parts of T̄mn are indeed
harmonic. Taking the trace of Eq. (2.22) yields

D2Ū ¼ 0; ð2:25Þ

which implies that Ū is a constant. Taking the divergence of
Eq. (2.24) using Eqs. (2.25) and (2.23) then gives

1

2
D2W̄n ¼

D − 5

D − 4
DnD2S̄: ð2:26Þ

Taking another divergence of Eq. (2.26) and using the fact
that Wn is divergence free gives

ðD − 5ÞD4S̄ ¼ 0: ð2:27Þ

The case D ¼ 5 corresponds to a one-dimensional
Ricci-flat compact space, namely S1. In this case,
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t̄mn ¼ W̄n ¼ S̄ ¼ 0 and the only modulus is a rescaling of
the metric. If D > 5 then Eq. (2.27) implies that S̄ is a
constant. Equation (2.26) then requires that Wn be har-
monic and, by Lemma 1, it is therefore also Killing.
Consequently, T̄mn has no vector part. In addition, its
scalar part is constant and determined by its trace. Any
solution to Eqs. (2.22) and (2.23) can be uniquely decom-
posed in the form

T̄mn ¼ t̄mn þ
1

D − 4
ĝmnŪ; ð2:28Þ

where Ū is a constant while t̄mn is both trace-free and
satisfies Eqs. (2.22) and (2.23). The mode Ū is the overall
breathing mode of the space. The t̄mn are the volume-
preserving moduli.
Finally, we note the enormous simplification for the case

of a torus where Mint ¼ TD−4. In this case, the Riemann
tensor Rmnp

q vanishes and the T̄mn are constant. Including
the overall volume modulus, there are 1

2
ðD − 4ÞðD − 3Þ

metric moduli. We summarize these statements about the
moduli space of Ricci-flat Riemannian manifolds in the
following lemma:
Lemma 2. Let ðMint; ĝmnÞ be a compact, Ricci-flat

Riemannian manifold. The solution T̄mn to Eq. (2.22) can
be uniquely decomposed as in Eq. (2.28) where Ū is a
constant and t̄mn satisfies Dmt̄mn ¼ 0 ¼ ĝmnt̄mn. If Mint ¼
TD−4 then t̄mn is constant.
Therefore, the space of massless linearized perturbations

h̄mn can be decomposed into a set of dL þ 1 scalar fields

h̄mn ¼
ĝmn

D − 4
ϕðxÞ þ

XdL
i¼1

ΦðiÞðxÞtðiÞmnðyÞ; ð2:29Þ

where the scalar field ϕðxÞ is associated with the volume
mode or breathing mode Ū, and dL is the dimension of the
moduli space of volume preserving deformations. It is
important to stress that these modes are guaranteed to be
massless only in the linearized approximation with the
exception of the volume mode ϕwhich is exactly massless.
Finally, the linearized Einstein equations imply that the

scalars ϕ and ΦðiÞ satisfy the massless wave equation,

□ηϕ ¼ 0 and □ηΦðiÞ ¼ 0: ð2:30Þ
Diffeomorphisms of h̄mn can only begenerated by one-forms
ξm which change the perturbation by DðmξnÞ. Using Eq. (1),
we decompose ξm ¼ ηm þ Dmξ with Dnηn ¼ 0, which
shows that ηm can only affect Wm of (2.24). Similarly, ξ
cannot affect the zero mode of U. Consequently the scalar
fields ϕ and ΦðiÞ in Eq. (2.29) have no diffeomorphism
freedom.
The preceding discussion is a general analysis of the

moduli space of linearized deformations ofMint. However,
the precise enumeration of solutions to Eqs. (2.22) and
(2.23) must be treated on a case-by-case basis for each

choice of Mint. In many cases of interest in string theory,
Mint has special holonomy and one can say more about the
count of solutions to Eqs. (2.22) and (2.23). For example, if
the internal manifold Mint is Calabi-Yau, one can use
Kähler geometry to compute the dimension of the moduli
space of metric deformations in terms of the Hodge
numbers hp;q of Mint; specifically h1;1 and h

D−6
2
;1.

There is a separate question of whether infinitesimal
deformations can be promoted to finite deformations. For
Calabi-Yau, G2 and Spinð7Þ spaces, all zero modes seen in
a linear analysis survive to the full nonlinear theory [60]. In
this work, we only need the existence of a finite number of
solutions for Eqs. (2.22) and (2.23); we make no additional
assumptions about ðMint; ĝmnÞ besides Ricci flatness. For
general Ricci-flat Mint, it is hard to determine whether the
zero modes found at linear order remain massless in a fully
nonlinear analysis.
To either reach Iþ or the actual physical location of the

detector, a scalar mode must be either exactly massless or
of sufficiently light mass and high energy that we can
approximate the mode as massless. For our analysis, we
will need to use the condition that Rmnðĝþ hÞ ¼ 0 to third
order in h where we only fluctuate the internal metric. This
plays a role in Appendix A for the asymptotic expansion of
the solution in powers of 1r near I

þ. However, it is important
to note that the asymptotic expansion is only applicable for
metric fluctuations that are unobstructed and correspond to
exactly massless fields. Let us denote the number of exactly
massless volume-preserving scalar modes by d̂L in contrast
with the number of massless modes dL in the linearized
approximation.

III. COMPACTIFIED ISOLATED SYSTEMS

We first need to define the class of Lorentzian space-
times that we will study. Although we are motivated by
string theory, we do not restrict our study to 10- or 11-
dimensional spacetimes. Rather we consider D-dimen-
sional spacetimes with four noncompact spacetime dimen-
sions and D − 4 compact Riemannian extra dimensions,
which represent “gravitational lumps” or localized metric
configurations whose curvature grows weak in asymptotic
null directions. Following standard terminology in the
general relativity community, we refer to such spacetimes
as compactified isolated systems, or simply as isolated
systems. As discussed in Sec. I B, this class of metrics
describes string compactifications on Ricci-flat spaces and
approximates warped compactifications in the limit of large
internal volume where the warping becomes small.
First note that any metric gMN on M ¼ R4 ×Mint is of

the form

ds2 ¼ gμνðx; yÞdxμdxν þ 2Aμnðx; yÞdxμdyn
þ φmnðx; yÞdymdyn; ð3:1Þ
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where xμ and ym are arbitrary local coordinates on R4 and
Mint, respectively. We define the notion of an isolated
system on a manifold M ¼ R4 ×Mint by introducing a
geometric gauge in coordinates adapted to outgoing null
hypersurfaces. In these coordinates, we define a class of
metrics which suitably tend to ĝMN in asymptotically large
null directions. These coordinates are defined in a manner
analogous to the standard Bondi coordinates in four-
dimensional asymptotically flat spacetimes. Since these
coordinates are essential for the analysis of gravitational
radiation, we briefly review their construction here.
The Bondi coordinates are denoted ðu; r; θA; ymÞ. In

Bondi gauge u is a function on spacetime such that sur-
faces of constant u are outgoing null hypersurfaces. The
coordinates θA are two arbitrary angular coordinates
on S2, and the ym are D − 4 arbitrary coordinates on
Mint. In Bondi gauge, the normal covector ∇Mu is null
gMNð∇MuÞð∇NuÞ ¼ 0 and we define the corresponding
future directed null vector KM ≡ −gMN∇Nu. The r coor-
dinate is a “radial” coordinate which varies along the
null rays. Note this is not a spacelike coordinate but a
null coordinate. In this gauge, the tangent to the null
rays corresponds to the radial coordinate vector field.
In summary, in Bondi gauge

KM ≡ −∇Mu; KM ¼
� ∂
∂r

�
M

and

gMNKMKN ¼ 0: ð3:2Þ

The angular coordinates θA and the internal coordinates yM

are both chosen to be constant along these outgoing
null rays so that KM∇Mθ

A ¼ −gMNð∇MuÞð∇NθÞ ¼ 0

and KM∇Mym ¼ −gMNð∇MuÞð∇NymÞ ¼ 0. These Bondi
gauge conditions imply that the metric gMN satisfies

grr ¼ 0; grA ¼ 0 and Arm ¼ 0; ð3:3Þ

where Aμn is defined in Eq. (3.1). The metric gMN in these
coordinates is adapted to outgoing null hypersurfaces. Now
we define an isolated system with compact extra dimen-
sions which tends to the Ricci-flat metric (2.2). In coor-
dinates ðu; r; θA; ymÞ adapted to outgoing null directions,
the asymptotic metric is given by

ĝMNdxMdxN ¼ ημνdxμdxν þ ĝmndymdyn;

¼ −du2 − 2dudrþ r2qABdθAdθB

þ ĝmndymdyn: ð3:4Þ

We define an isolated system as a metric gMN given by
Eq. (3.1) which, in coordinates xμ ¼ ðu; r; θÞ and ym,
approaches the flat metric ĝMN given by Eq. (3.4) in
powers of 1

r in the orthonormal frame described in
Sec. I E:

gμν ∼ ημν þ
X∞
n¼1

r−nhðnÞμν ; Aμn ∼
X∞
n¼1

r−nAðnÞ
μn and

φmn ∼ ĝmn þ
X∞
n¼1

r−nφðnÞ
mn: ð3:5Þ

This is gauge equivalent to the Bondi gauge choice8

hðnÞrr ¼ 0; hðnÞrA ¼ 0 and AðnÞ
rm ¼ 0; ð3:6Þ

for all n. The symbol “∼” in Eq. (3.5) denotes an
asymptotic expansion. For convenience we have assumed
an asymptotic expansion in 1

r to all orders with the upper
limit of the sums in Eq. (3.5) taken to be ∞. This is not
strictly necessary for most of this analysis. The results
obtained in Secs. IVA–IV C require only that Eq. (3.5) be
valid at order n ¼ 1. The results obtained in Sec. VA
require that Eq. (3.5) be valid up to order n ¼ 3.
A full analysis of the validity of this ansatz would require

examining global stability for a suitable class of initial data.
Such an analysis was undertaken in [61,62] where stability
was proven in the case of supersymmetric compactifica-
tions. It would be interesting to study the asymptotic
behavior of such solutions near null infinity and compare
with the ansatz assumed here.
As noted in Eq. (1.5), our conventions for expanding the

metric coefficients in powers of 1
r differs from more

common conventions. Usually the expansion coefficients
refer to the powers of 1r which arise from the components of
gMN in a coordinate basis. In our conventions spelled out in

Eq. (1.5), the metric expansion coefficients gðkÞμν , A
ðkÞ
μm and

φðkÞ
mn all contribute to the physical falloff rate of the metric

gMN at order 1
rk
, as seen in any orthonormal frame. From the

preceding discussion, Bondi gauge has a preferred geo-
metric status in constructing the notion of an isolated
system. We shall see, however, that Bondi gauge does not
appear to be the preferred gauge when asymptotically
solving the leading order Einstein equations with compact
spatial directions, studied in Eqs. (4.2) and (5.1).
We also need to specify the asymptotic falloff of the

stress-energy tensor. The inclusion of massive sources is
straightforward since their stress-energy vanishes near Iþ.
For massless sources, we demand that

TMN ¼
X∞
n¼2

r−nTðnÞ
MN; ð3:7Þ

where the nonvanishing component of the leading order

stress tensor are Tð2Þ
uu , T

ð2Þ
um and Tð2Þ

mn. This is consistent with

8The original Bondi gauge conditions also impose that the
“radial” coordinate correspond to an areal coordinate which
imposes that ∂rðdetðgABÞÞ. Additionally, the falloff gur in Bondi
gauge is such that gð1Þur vanishes. We shall not impose these
conditions in the general falloff given by Eq. (3.5).
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the dominant energy condition. As we will see, the falloff
of Tμν and Tμm ensure finiteness of the energy flux and
charge-current flux to Iþ. The falloff of Tmn agrees with
the intuition from Kaluza-Klein reduction.
There is one further condition we will impose, which

turns out to be easily satisfied by the most common forms
of stress-energy. From our ansatz (3.5) and the analysis

found in Appendix A, we see that
R
Mint

ĝmnGð2Þ
mn ¼ 0. This

turns out to be surprisingly nontrivial to demonstrate.
Einstein’s equations then imply that the zero mode,R
Mint

ĝmnTð2Þ
mn, vanishes. In fact, Gð2Þ

mn is orthogonal to every
exactly massless scalar fluctuation tmn, not just the breath-
ing mode of Mint. Similarly, we will impose a stronger

condition on the stress-energy tensor that
R
Mint

tmnTð2Þ
mn

vanishes for every exactly massless scalar fluctuation
tmn. This stronger version is also motivated from the
analysis found in Appendix A.
We can see whether this is a reasonable condition by

examining a few typical sources of stress-energy. If one
considers a D-dimensional scalar field ϕ with stress tensor

TMN ¼ ∇Mϕ∇Nϕ −
1

2
gMN∇Pϕ∇Pϕ; ð3:8Þ

and

ϕ ¼ ϕð0Þ þ ϕð1Þðu; θ; yÞ
r

þ…; ð3:9Þ

then in this simple case, ϕð1Þ is harmonic on Mint
and therefore constant in y. The leading nonvanishing

stress-tensor component is then Tð2Þ
uu ¼ ð∂uϕ

ð1ÞÞ2 and

Tð2Þ
mn ¼ 0. If one generalizes this case by considering a

p-form field strength F with D-dimensional action
−
R
M

1
2ðp!ÞFM1…Mp

FM1…Mp , the stress tensor takes the form

TMN ¼ 1

2ðp − 1Þ!
�
FMM1…Mp−1

FN
M1…Mp−1

−
1

2p
gMNFM1…Mp

FM1…Mp

�
: ð3:10Þ

In Kaluza-Klein reduction near I, F ¼ dA gives rise to
massless spacetime fields associated to harmonic forms on
Mint as

Að1Þ
M1…Mp−1

ðu; θ; yÞ ¼ ϕð1Þ
μ1…μqðu; θÞωmqþ1…mp−1

ðyÞ; ð3:11Þ

where ω ∈ Hp−q−1ðMint;RÞ is a harmonic represen-
tative of the cohomology class. The field strength Fð1Þ ¼
dϕð1Þ ∧ ω, where at this order dϕð1Þ ¼ −∂uϕ

ð1Þ ∧ K and
the one-form K is defined in (3.2). As noted in (3.2), K is

null with respect to the asymptotic metric so Tð2Þ
mn ¼ 0 again

as in the case of the scalar field. For these sources of stress-
energy commonly found in string theory, we see a much
stronger constraint on the asymptotic stress tensor than we
assume; namely that

Tð2Þ
MN ¼ 1

2ðp − 1Þ! ð∂uϕ
ð1ÞÞ2KMKN · jωj2; ð3:12Þ

where jωj2 ¼ ωmqþ1…mp−1
ωmqþ1…mp−1 . Although in these

cases of physical interest the stress tensor satisfies stronger
conditions, in the body of this work we will only use the
weaker assumptions of falloff given by Eq. (3.7).
Finally while we have defined isolated systems in the

case where the spacetime is a product manifold, one can
straightforwardly extend this definition to include a wider
class of fibered metrics, including some gravitational
instantons. For example, we could consider R × TN where
TN refers the multi-Taub-NUT metric and R is time. This
example is a particularly nice generalization of the circle
compactification, which we will discuss in Sec. VI B. The
total space M is topologically R5, but the TN metric at
spatial infinity is a Hopf fibration S1 ↪ S3 → S2. The
Chern number of the fibration corresponds to the magnetic
charge for the Kaluza-Klein gauge-field found from reduc-
ing the metric on the asymptotic S1. The picture under
Kaluza-Klein reduction on the asymptotic S1 is a collection
of particles located at the NUT singularities of the TN
metric, which are magnetically charged under the Kaluza-
Klein gauge field. While in this construction, TN appears
only in the spatial metric and time is completely factorized,
there have been studies of asymptotic symmetries and dual
supertranslations where TN appears with the fibered S1

identified with time [63].
While we will primarily focus on the case of product

manifolds, many of our results only require that the metric
satisfy Eq. (3.5) locally in some neighborhood of null
infinity. In particular, our results about the asymptotic
dimensional reduction of the Weyl tensor, the local con-
straints on the radiative order metric and asymptotic
symmetries, found in Secs. IVA–IV C remain valid as
long as the metric asymptotes to ĝMN at Iþ. On the other
hand, arguments that involve inversion of elliptic operators
on the sphere or integrating Einstein’s equations over
retarded time, found in Secs. VA–VI, will need to be
modified in the fibered case. In order to extend these results
to the fibered case, it is more useful to work with manifestly
gauge invariant quantities. In Appendix B, we provide an
alternative, manifestly gauge invariant derivation of our
results in linearized gravity using the Bianchi identity.

IV. ASYMPTOTICS NEAR NULL INFINITY

In this section wewill analyze the asymptotic behavior of
the spacetime for an isolated system near null infinity. We
first collect some results regarding the asymptotic behavior
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of the Weyl tensor for any isolated system without impos-
ing decay conditions. Unless stated otherwise, we consider
a metric gMN which satisfies the asymptotic expansion
Eq. (3.5) near null infinity and obeys Einstein’s equations:

RMN −
1

2
gMNR ¼ 8πTMN: ð4:1Þ

In Eq. (4.1) we show that the Bianchi identity implies that
the “electric” part of theWeyl tensor, defined in Eq. (4.9), at
order 1

r admits a dimensional reduction in a manner exactly
analogous to the dimensional reduction given in Eq. (2).
In Eqs. (5.1) and (4.2) we examine, in detail, the change
in the metric caused by a “burst” of gravitational radiation.
We characterize this burst by requiring that the metric
be stationary at asymptotically early and late times. In
Eq. (4.2), we analyze Einstein’s equations during the
radiative epoch. In Eq. (5.1), we investigate the implica-
tions of Einstein’s equations during the stationary eras.

A. Asymptotic reduction in nonlinear gravity

As shown in Sec. II, linearized metric perturbations in
Lorenz gauge with background metric (2.2) reduce to a
collection of gravitons, graviphotons and scalars. In the
full nonlinear theory, we will show that the leading
order electric Weyl tensor for any isolated system at null
infinity admits a harmonic decomposition in a way analo-
gous to linearized Kaluza-Klein analysis. This provides a
gauge invariant description of radiation, Kaluza-Klein

decomposed into spin-0, spin-1 and spin-2 components,
in full nonlinear general relativity.
We remind the reader that the Weyl tensor is related to

the Riemann tensor,

CMNPQ ¼ RMNPQ − 2g½M½PSQ�N�; ð4:2Þ

where SMN is the Schouten tensor which, in terms of the
Ricci tensor, is given by

SMN ¼ 2

D − 2
RMN −

1

ðD − 1ÞðD − 2Þ gMNR: ð4:3Þ

Since the Einstein tensor is divergence-free, the Schouten
tensor satisfies ∇MSMN ¼ ∇NS where S≡ gMNSMN . The
uncontracted Bianchi identity is

∇½MCNP�QR ¼ −2g½Q½N∇MSP�R�: ð4:4Þ

The nested notation appearing on the right-hand side of
(4.4) means antisymmetrize over ðN;M;PÞ and antisym-
metrize over ðQ;RÞ separately. We will use this notation
below. Contracting over M and Q and using the trace-
lessness of the Weyl tensor yields

∇MCMPQR ¼ ðD − 3Þ∇½QSR�P: ð4:5Þ

Applying gMT∇T to Eq. (4.4), commuting the derivatives
and using Eqs. (4.5) and (4.2) implies

□gCNPQR ¼ 2ðD − 2Þ∇½N∇½QSR�P� − 2g½Q½N□gSP�R� þ 2gMTg½Q½N∇jTj∇P�SR�M
− ðD − 2ÞgTMST½NCP�MQR þ 2gTMST½QCR�½NP�M − 2gOMgRTSORg½Q½NCP�jMjR�T

þ 1

2
gMTSMTCNPQR þ 2gMTSM½NCP�½QR�T þ 2gMOgTKCM½NP�TCOKQR

þ 4gMOgTKCM½Q½NjTjCP�jKjR�O; ð4:6Þ

where □g ≡ gMN∇M∇N . Therefore in any spacetime, the
Weyl tensor satisfies the wave equation with source given
by terms that are either products of the Weyl tensor,
products of the Weyl tensor with the Schouten tensor or
derivatives of the Schouten tensor. The asymptotic expan-
sion of the metric given by (3.5) implies the 1

r expansion for
the Weyl tensor:

CNPQR ∼
X∞
n¼0

CðnÞ
NPQR

rn
: ð4:7Þ

After imposing Einstein’s equations the only nonvanishing

components of Cð0Þ
NPQR is the Riemann tensor Rnpqr of the

Ricci-flat asymptotic internal space Mint with metric ĝmn.
Further, the Schouten tensor is defined in terms of the Ricci

tensor in Eq. (4.3) which, in turn, can be written in terms of
the stress-energy tensor by Einstein’s equation (4.1).
The asymptotic falloff condition on the stress tensor is

given in Eq. (3.7). This stress tensor falloff directly implies
an asymptotic expansion of the Schouten tensor,

SMN ∼
X∞
n¼2

SðnÞMN

rn
; ð4:8Þ

where the sum starts atOð 1r2Þ and S
ð2Þ
MN ¼ 2

D−2T
ð2Þ
MN . We now

show that Eqs. (4.6) and (4.5) place strong constraints on
the asymptotic behavior of the “electric part” of the Weyl
tensor near null infinity. In particular, the leading order
electric part of the Weyl tensor can be dimensionally
reduced in exactly the same manner as reviewed in
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Eq. (2), but now in the full nonlinear theory. The electric
part of the Weyl tensor is defined as

EPR ≡ CNPQRnNnQ; ð4:9Þ

where nM ≡ ð∂=∂uÞM. The properties of the Weyl tensor
imply that the electric Weyl tensor is symmetric, trace-free
and that its u components vanish:

EMN ¼ ENM; gMNEMN ¼ 0 and EuN ¼ 0: ð4:10Þ

We note that limr→∞ EMN vanishes at fixed u, θA and ym,
and therefore the leading order electric Weyl tensor
given by

EMNðu; θA; ymÞ≡ lim
r→∞

rEMNðr; u; θA; ymÞ ð4:11Þ

is gauge invariant. From the above relations, we now prove
the following key lemma regarding the asymptotic dimen-
sional reduction of EMN .
Lemma 3. (Asymptotic reduction of electric Weyl). Let

ðM; gÞ be an isolated system whose metric gMN has an
asymptotic expansion given by Eq. (3.5) and let EMN be the
leading order, electric Weyl tensor defined by Eqs. (4.9)
and (4.11). EMN satisfies the following properties:
(1) The components EuM and ErM vanish for any

isolated system.
(2) The nonvanishing components satisfy

EAB ¼ ĒABðu;θÞ; EAm ¼
Xb1
i¼1

EðiÞ
A ðu;θÞ⊗ V̄ðiÞ

m ðymÞ;

Emn ¼−
ĝmn

D− 4
qABĒABðu;θÞþ

XdL
i¼1

EðiÞðu;θÞt̄ðiÞmnðymÞ:

ð4:12Þ

The V̄ðiÞ
m are a basis for the b1 harmonic one-forms

on Mint, where b1 is the first Betti number of Mint.

The t̄ðiÞmn are a basis of the dL symmetric, rank 2
tensors which satisfy the Lichnerowicz equation on

Mint and Dmt̄ðiÞmn ¼ ĝmnt̄ðiÞmn ¼ 0, where dL þ 1 is the
dimension of the moduli space.

Proof.—That EuM vanishes follows directly from the
definition and properties of the electric Weyl tensor given in
Eqs. (4.9) and (4.10). To prove that ErM vanishes we note
that contracting Eq. (4.6) on the N and Q indices with nN

and nQ gives the following equations for the electric Weyl
tensor at order 1

r:

D2Eμν ¼ 0; D2Eμn ¼ 0

and D2Emn þ 2Rm
p
n
qEpq ¼ 0: ð4:13Þ

Since EMN is gauge invariant we assume, without loss of
generality, that the metric gMN is in a gauge such that the

metric expansion coefficents hð1Þrr , h
ð1Þ
rA and hð1Þrm all vanish. A

straightforward calculation of the electric Weyl tensor using
the metric in Bondi gauge implies that

ErA ¼ 0; Err ¼ 0 and Erm ¼ 0: ð4:14Þ

Since EMN is gauge invariant we conclude that ErM

vanishes for any isolated system. Applying nP and nR to
the P and R components of Eq. (4.5) at order 1r and using the
fact that ErM vanishes gives

DnEAn ¼ 0 and DmEmn ¼ 0: ð4:15Þ

Equations (4.13) and (4.15) together with Lemmas 1 and 2
imply that EAB and ĝmnEmn are harmonic on Mint, EAm is

spanned by harmonic one-forms V̄ðiÞ
m on Mint, and the

trace-free part of Emn is spanned by t̄
ðiÞ
mn. Finally we note that

ĝmnEmn ¼ −qABEAB; ð4:16Þ

which follows from the tracelessness of EMN as well as the
vanishing of EuM and ErM. ▪
Lemma 3 implies that the nonvanishing components of

the leading order electric Weyl tensor, EMN , can be viewed
as a tensor on S2 ×Mint. Let qab be a (D − 2)-dimensional
product metric on S2 ×Mint which, for arbitrary coordi-
nates xa ¼ fθA; ymg on S2 ×Mint, is defined by9

qabdxadxb ¼ qABdθAdθB þ ĝmndymdyn: ð4:17Þ

It is convenient to define a “news tensor” on S2 ×Mint
which we denote N ab,

N ab ≡ lim
r→∞

r
�
qacqbd −

1

D − 2
qabqcd

�
∂uḡcd; ð4:18Þ

where ḡab is the zero mode of gMN along the S2 ×Mint
directions. The components of N ab satisfy

D2N AB ¼ 0; D2N Am ¼ 0;

D2N mn þ 2Rm
p
n
qN pq ¼ 0; ĝmnN mn ¼ −qABN AB;

ð4:19Þ

and the news therefore admits the decomposition,

9We faced an unfortunate choice in labeling combined coor-
dinates for the sphere and the internal space. Either introduce a
new letter or use xa, which we hope the reader will not confuse
with xμ. We hope this choice is the lesser of two evils. All
conventions are spelled out in Sec. I E.
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N AB ¼ NABðu; θÞ þ
1

2
qABNðu; θÞ;

N Am ¼
Xb1
i¼1

NðiÞ
A ⊗ VðiÞ

m ðymÞ; ð4:20Þ

N mn ¼ −
ĝmn

D − 4
Nðu; θÞ þ

Xd̂L
j¼1

N ðjÞðu; θÞt̄ðjÞmnðymÞ; ð4:21Þ

where NAB is the trace-free projection of N ABðu; θÞ and N
is the trace of N AB on S2 given by

NAB ¼
�
qACqBD −

1

2
qABqCD

�
N CDðu; θÞ and

N ¼ qABN ABðu; θÞ: ð4:22Þ

Equations (4.20) and (4.21) give a decomposition of
radiation in the full spacetime M into spin-2, spin-1 and
spin-0 components. The four-dimensional Bondi news is
related to the trace-free part NAB, but note that NAB here is
computed in D-dimensional Einstein frame. In Sec. VI D,
we will discuss how the news and related observables are
affected by the choice of frame.
The decomposition of the radiative modes given by

Eq. (4.21) corresponds to the exactly massless modes
arising from Mint. The decomposition given by Lemma
3 is a consequence of the leading order Bianchi identity and
Einstein’s equations. However, as we have spelled out in
Eq. (2.2), the space of truly massless modes is a subset of
the modes enumerated in Lemma 3. The spin-2 mode, spin-
1 modes and the scalar volume mode are truly massless.

However, the number of truly massless volume-preserving
scalars are d̂L ≤ dL. Therefore in Eq. (4.21), we replaced dL
with d̂L. As we show in Appendix A, if we had not done
this truncation then our ansatz would not be consistent with
Einstein’s equations.
Finally, a direct calculation of EMN in terms of the metric

implies that the nonvanishing components of EMN can be
compactly expressed in terms of N ab:

Eab ¼ −
1

2
∂uN ab: ð4:23Þ

We refer toN ab as the “news” tensor which is analogous to
the Bondi news tensor in four-dimensional asymptotically
flat spacetimes. In such spacetimes, the null memory effect
is determined by the squared Bondi news tensor integrated
over retarded time, as discussed in Sec. I A. In Sec. VI, we
prove that analogous statements hold for isolated systems
with compact extra dimensions.

B. Asymptotic analysis of the metric

We now analyze the leading order solution of Einstein’s
equations in the neighborhood of null infinity. We assume
that the metric is initially in Bondi gauge which implies, in
particular,

hð1Þrr ¼ 0; hð1ÞrA ¼ 0 and Að1Þ
rm ¼ 0; ð4:24Þ

where Arm is defined in (3.1). Einstein’s equation at leading
order in 1

r gives the following constraints:

ðuu; 1Þ D2hð1Þuu þ 2∂uDmAð1Þ
mu − ∂2

uðqABhð1ÞAB þ ĝmnφð1Þ
mnÞ ¼ 0; ð4:25Þ

ður; 1Þ D2hð1Þur ¼ 0; ð4:26Þ

ðuA; 1Þ D2hð1ÞuA þ ∂uDmAð1Þ
Am ¼ 0; ð4:27Þ

ðAB; 1Þ D2hð1ÞAB ¼ 0; ð4:28Þ

ðum; 1Þ D2Að1Þ
um − DmDnAð1Þ

un þ ∂uDnφð1Þ
nm þ ∂uDmðhð1Þur − qABhð1ÞABÞ − ∂uDmĝpqφ

ð1Þ
pq ¼ 0; ð4:29Þ

ðAm; 1Þ D2Að1Þ
Am − DmDnAð1Þ

An ¼ 0; ð4:30Þ

ðmn; 1Þ D2φð1Þ
mn þ 2Rm

p
n
qφð1Þ

pq − 2DðmDpφð1Þ
nÞp − 2DmDnh

ð1Þ
ur þ DmDnðqABhð1ÞAB þ ĝpqφð1Þ

pq Þ ¼ 0: ð4:31Þ

The notation on the left-hand side ðMN; kÞ refers to the MN components of Einstein’s equations at order 1
rk
. To solve these

equations we want to find gauge choices, in a manner compatible with Eq. (3.5), so that the following equations are true:

DmAð1Þ
um ¼ 0; DmAð1Þ

Am ¼ 0 and φð1Þ
mn ¼ Φmn þ

�
DmDn −

ĝmn

D − 4
D2

�
Ψþ ĝmn

D − 4
ϕ; ð4:32Þ
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where DmΦmn ¼ 0 ¼ ĝmnΦmn, and ϕðu; θÞ is constant on Mint. We want to construct a diffeomorphism, specified by a
vector field, that preserves our asymptotic falloff conditions and implements (4.32). So we assume that the vector field has
the form

ξM ∼
ξð1ÞM ðu; θ; yÞ

r
þO

�
1

r2

�
; ð4:33Þ

where we assume noOðr0Þ term in ξM. Under this diffeomorphism, the metric shifts by gMN → gMN þ 2∇ðMξNÞ. In order to

achieve the gauge conditions of Eq. (4.32) the components of ξð1ÞM must satisfy

Dmξ
ð1Þ
A ¼ −Að1Þ

Am; −∂uξ
ð1Þ
m þ Dmξ

ð1Þ
u ¼ −Að1Þ

um; Dðmξ
ð1Þ
nÞ ¼ −

1

2
φð1Þ
mn: ð4:34Þ

To ensure that we preserve the Bondi gauge conditions at leading order, we set ξð1Þr ¼ 0. The first equation in (4.34) implies

that D2ξð1ÞA ¼ −DmAð1Þ
Am. The right side of this equation has no zero mode, and so we can solve for ξð1ÞA . Next, using

Proposition 2, we can decompose φð1Þ
mn into tensor, vector and scalar parts:

φð1Þ
mn ¼ Φmn þ DðmζnÞ þ

�
DmDn −

1

D − 4
ĝmnD2

�
Ψþ ĝmn

D − 4
ϕ; ð4:35Þ

where ĝmnΦmn ¼ DmΦmn ¼ 0 and Dmζm ¼ 0. Using Eq. (1), ξð1Þm ¼ Dmξþ ηm where Dmηm ¼ 0. Using these decom-
positions and taking the trace of the third equation in (4.34) gives D2ξ ¼ − 1

2
ϕ. The zero mode of ϕ is the obstruction to

solving for ξ. Subtracting out the zero mode, we can solve D2ξ ¼ − 1
2
ðϕ − ϕ̄Þ. With this choice of ξ, we can replace ϕ by

ϕ̄ðu; θÞ. Furthermore, we can choose ηm ¼ − 1
2
ζm, which eliminates the vector part of φð1Þ

mn. Finally, we consider the

divergence of the second equation in (4.34), D2ξð1Þu ¼ −DmAð1Þ
um þ ∂uD2ξ. Since the right side of this equation has no zero

mode, we can solve for ξð1Þu . This completes the specification of the diffeomorphism which implements (4.32).
The leading order Einstein equations [Eqs. (4.25)–(4.31)] can now be directly solved. In this gauge, Eqs. (4.26)–(4.28)

imply that hð1Þur , h
ð1Þ
uA and hð1ÞAB are constant on Mint. Therefore,

hð1Þur ¼ h̄ð1Þur ðu; θÞ; hð1ÞuA ¼ h̄ð1ÞuAðu; θÞ; hð1ÞAB ¼ h̄ð1ÞABðu; θÞ: ð4:36Þ

Equations (4.32) and (4.36) imply that Eq. (4.25), which takes the form

D2hð1Þuu ¼ ∂2
uðqABh̄ð1ÞAB þ ϕÞ; ð4:37Þ

can be directly solved. Since the right-hand side of Eq. (4.37) is in the kernel of the Laplacian D2, the left- and right-hand
sides must both vanish implying

hð1Þuu ¼ h̄ð1Þuu ðu; θÞ and ∂2
uðqABh̄ð1ÞAB þ ϕÞ ¼ 0: ð4:38Þ

Applying ĝmn to Eq. (4.31) and using Eqs. (4.32) and (4.36) yields

ðD − 5ÞD4Ψ ¼ 0; ð4:39Þ

which, by Proposition 2, implies that the trace-free scalar part of Φmn vanishes.
10 Using our gauge conditions, harmonicity

of the spacetime components hð1Þμν and that Eq. (4.39) implies Dmφð1Þ
mn ¼ 0, the ðum; 1Þ and ðAm; 1Þ components of

Einstein’s equation imply that Að1Þ
um and Að1Þ

Am are harmonic with decomposition

Að1Þ
um ¼

Xb1
i¼1

Að1;iÞ
u ðu; θÞ ⊗ V̄ðiÞ

m ðymÞ and Að1Þ
Am ¼

Xb1
i¼1

Að1;iÞ
A ðu; θÞ ⊗ V̄ðiÞ

m ðymÞ; ð4:40Þ

10Equation (4.39) looks unconstrained forD ¼ 5 but that case is very special since the internal space is S1 and the only term in (4.35)
is proportional to ϕ.
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where V̄ðiÞ
m are a basis for harmonic one-forms on Mint. Finally, Eqs. (4.32), (4.36) and (4.39) imply that

D2Φmn þ 2Rm
p
n
qΦpq ¼ 0 ⇒ Φmn ¼

Xd̂L
i¼1

ΦðiÞðu; θÞt̄ðiÞmnðymÞ; ð4:41Þ

where t̄ðiÞmn are the d̂L trace-free, divergence-free, unobstructed deformations ofMint. Finally Eq. (4.38) implies that the sum
qABh̄AB þ ϕ can have, at most, linear dependence on retarded time u. Einstein’s equations at order 1

r2, however, place a
stronger constraint on the time dependence of this quantity. In particular, a direct calculation of qAB applied to the zero
mode of the trace-reversed Einstein equations implies that

∂uðqABh̄ð1ÞAB þ ϕÞ ¼ 0: ð4:42Þ

We summarize our findings on the asymptotic behavior of the metric in the following lemma:
Lemma 4. Let ðM; gÞ be an isolated system in a gauge which satisfies our ansatz Eq. (3.5). There exists a unique

diffeomorphism which preserves our ansatz such that the leading order expansion coefficients of the metric have the
following properties:
(1) The R4 metric components are harmonic on Mint and therefore satisfy

hð1Þuu ¼ h̄ð1Þuu ðu; θÞ; hð1Þur ¼ h̄ð1Þur ðu; θÞ; hð1ÞuA ¼ h̄ð1ÞuAðu; θÞ; hð1ÞAB ¼ h̄ð1ÞABðu; θÞ; ð4:43Þ

and the hð1Þrr , h
ð1Þ
rA components vanish.

(2) The components Að1Þ
um and Að1Þ

Am admit the decomposition

Að1Þ
um ¼

Xb1
i¼1

Að1;iÞ
u ðu; θÞ ⊗ V̄ðiÞ

m ðymÞ; Að1Þ
Am ¼

Xb1
i¼1

Að1;iÞ
A ðu; θÞ ⊗ V̄ðiÞ

m ðymÞ; ð4:44Þ

and Að1Þ
rm vanishes. The V̄ðiÞ

m are a complete basis of b1 linearly independent Killing vectors of Mint where b1 is the
first Betti number of Mint.

(3) The components φð1Þ
mn satisfy

φð1Þ
mn ¼ ĝmn

D − 4
ϕðu; θÞ þ

Xd̂L
i¼1

ΦðiÞðu; θÞt̄ðiÞmnðymÞ; ð4:45Þ

where ϕ≡ ĝmnφð1Þ
mn and the t̄ðiÞmn are a complete basis

of d̂L symmetric, rank 2 tensor fields which satisfy

Dmt̄ðiÞmn ¼ 0, ĝmnt̄ðiÞmn ¼ 0 and Eq. (2.22). Further-

more, the metric satisfies ∂uðqABhð1ÞAB þ ϕÞ ¼ 0.
Without loss of generality, we will assume this gauge in

the remainder of this work. This gauge choice dramatically
simplifies the analysis of the higher-dimensional Einstein
equations by gauging away higher harmonics in the internal
space. We note that any metric which admits an asymptotic
expansion (3.5), and which satisfies the Einstein equations,
can be put into this gauge. In this sense, our gauge choice is
not an additional assumption but actually a consequence of
the falloff conditions and equations of motion.
In this gauge the news tensor, defined in (4.18), is very

nicely related to the leading order metric by

N ab ¼ ∂uh
ð1Þ
ab : ð4:46Þ

This expression for the news tensor identifies the gauge
invariant radiative degrees of freedom of the leading order
metric, and manifestly satisfies the relations spelled out
in (4.19).

C. Asymptotic symmetries of compactified
spacetimes

In this section we investigate the asymptotic sym-
metries of spacetimes with compact extra dimensions.
Before doing so, it will be convenient to further refine

the gauge choice of Lemma 4. Note that the trace qABhð1ÞAB

is constrained by Eq. (4.42) so that qABhð1ÞABðu; θÞ ¼
−ϕðu; θÞ þ cðθÞ. We now show that there exists a residual
gauge transformation, compatible with Lemma 4, which
allows us to set c ¼ 0. Performing a diffeomorphism
parametrized by ξM ¼ cðθÞKM, where KM is defined in
Eq. (3.2), we see that the metric changes by
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hð1ÞAB → hð1ÞAB þ 2cðθÞqAB; hð1ÞuA → hð1ÞuA þDAcðθÞ;
ð4:47Þ

where DA is the covariant derivative compatible with qAB,

defined in Sec. I E. The shift in hð1ÞuA does not affect the
gauge fixed in Lemma 4, while the change in hAB is exactly
of the form needed to eliminate cðθÞ. Fixing this gauge, we
may now assume that cðθÞ ¼ 0 and therefore qABhð1ÞAB has
no further diffeomorphism freedom.
For an arbitrary dynamical spacetime the metric will not,

generically, have any exact symmetries. However for given
asymptotics, the spacetime will admit an asymptotic
symmetry group. We define this group as the group of
diffeomorphisms which preserve the gauge conditions in

Lemma 4 along with qABhð1ÞAB ¼ −ϕ. Since in this gauge,
the metric decomposes into spin-2, spin-1 and spin-
0 degrees of freedom there is a corresponding decom-
position of the asymptotic symmetry group. The upshot of
this is that we can consider the asymptotic symmetries of
spin-2, spin-1 and spin-0 degrees of freedom separately.
To find the symmetry group of the spin-2 modes, we note

that the R4 components of the leading order metric hð1Þμν are
effectively in a Bondi-type gauge. The original Bondi

gauge conditions on the leading order metric are hð1Þrr ¼
hð1ÞrA ¼ qABhð1ÞAB ¼ 0. It then follows from Bondi’s original
analysis that the symmetry group that preserves these gauge
conditions is the BMS group B which we shall review
shortly. We note that our gauge conditions also imply

hð1Þrr ¼ hð1ÞrA ¼ 0. Additionally, we imposed qABhð1ÞAB ¼ −ϕ.
Since ϕ has no residual gauge freedom this fixes qABhð1ÞAB.
Therefore, the asymptotic symmetry group of the spin-
2 degrees of freedom is the BMS group B.
At this point as promised, we should recall some

properties of the BMS group. The Lie algebra ðbmsÞ of
B contains an infinite-dimensional normal Lie subalgebra
t, which contains the supertranslations. Explicitly, the
elements of t are

ξM ¼ −TðθÞ
� ∂
∂u

�
M
−
1

2
D2TðθÞ

� ∂
∂r

�
M

þ 1

r
qABDBTðθÞ

� ∂
∂θA

�
M
þ…; ð4:48Þ

where the “…” denotes vector fields that vanish as r → ∞
at fixed u, θA and ym. The function TðθÞ is smooth on the
asymptotic two-sphere. If TðθÞ is an l ¼ 0 spherical
harmonic then Eq. (4.48) is an asymptotic time transla-
tion. If TðθÞ is a linear combination of l ¼ 1 spherical
harmonics then Eq. (4.48) is an asymptotic spatial trans-
lation. If TðθÞ is orthogonal to the l ¼ 0, 1 spherical
harmonics then (4.48) is called a supertranslation
and, asymptotically, corresponds to the action of an

infinitesimal, angle-dependent time translation. The quo-
tient bms=t ¼ soð3; 1Þ is the Lorentz Lie algebra, which
corresponds to conformal Killing vectors of S2. At the level
of group structure, the BMS group ðBÞ is therefore the
semidirect product of the restricted Lorentz group ðLÞ and
the infinite-dimensional supertranslation group ðT Þ:

B ¼ L ⋉ T : ð4:49Þ

We now turn to the spin-1 degrees of freedom. The

diffeomorphisms that act on Að1Þ
μm and preserve our metric

asymptotics (3.5) are generated by ξð0Þm ðθÞ, which cannot

depend on u. To preserve Lemma 4, ξð0Þm must be harmonic

onMint. Any such ξ
ð0Þ
m is a smooth function SðθÞmultiplied

by a Killing vector V̄mðyÞ on Mint,

ξM ¼ SðθÞV̄mðyÞ
� ∂
∂ym

�
M
þ…; ð4:50Þ

where the omitted terms again vanish as r → ∞. There are
b1 Killing vectors on Mint. In the limit as r → ∞, the
commutator of any two ξM of the form (4.50) vanishes so
the asymptotic symmetry group generated by these vector
fields is Abelian. Let us denote this group of angle-
dependent internal isometries by C. We note that elements
of this group do not commute with Lorentz transformations
in L.
The remaining degrees of freedom are the spin-0 modes

of (4.35) given by the tensor modes Φmn describing the
volume-preserving moduli, and the scalar mode ϕ which is
the volume mode. There is no choice of asymptotic vector
field which preserves our asymptotic conditions and the
gauge conditions given in Lemma 4 that can affect either
Φmn or ϕ. The only asymptotic diffeomorphism that can

affect φð1Þ
mn is of the form ξð1Þm

r þ � � �, but all of this gauge
freedom has already been used to implement the gauge of
Lemma 4. Thus there is no remaining diffeomorphism
freedom for these modes.
Therefore, the enlarged asymptotic symmetry group ðGÞ

is the semidirect product of B with the Abelian group C:

G ¼ B ⋉ C: ð4:51Þ

We note that this asymptotic symmetry group is identical to
the asymptotic symmetry group of asymptotically flat
Einstein-Maxwell-scalar theory where C is replaced with
the asymptotic symmetries of the electromagnetic field
[64]. Therefore, C has the natural interpretation as the
asymptotic symmetry group of the graviphotons.
Finally we will give the action of elements of G on Iþ,

which has the topology of R × S2 ×Mint. An element of
this asymptotic symmetry group moves a point ðu; θ; yÞ to
ðũ; θ̃; ỹÞ as
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ũ ¼ ωðθÞ½uþ TðθÞ�; ð4:52Þ

θ̃A ¼ σðθÞ; ð4:53Þ

ỹm ¼ ρðy; θÞ; ð4:54Þ

where σ∶S2 → S2 acts by a conformal isometry of the two-
sphere given by σ�qAB ¼ ω2qAB. Similarly, at each fixed
angle, the map ρð·; θÞ∶Mint → Mint acts as an isometry of
the internal space: ρ�ĝmn ¼ ĝmn. An illustration of the
combined action of a supertranslation with an angle-
dependent internal isometry is given in Fig. 2. Finally

we note that, in terms of the leading order metric hð1ÞMN , the
infinitesimal action of the composition of a supertranslation
and an angle-dependent internal isometry is

hð1ÞABðu; θ; yÞ → hð1ÞABðu; θ; yÞ þ TðθÞNABðu; θÞ

þ
�
DADB −

1

2
qABD2

�
TðθÞ; ð4:55Þ

Að1Þ
Amðu; θ; yÞ → Að1Þ

Amðu; θ; yÞ þDASðθÞ ⊗ V̄mðyÞ: ð4:56Þ

So the composition of a supertranslation and an angle-
dependent isometry only affects the zero modes of the
leading order metric.

V. BURSTS OF RADIATION

Building on our discussion of the radiative degrees of
freedom and the corresponding asymptotic symmetries in

Sec. IV, we now examine the response of the asymptotic
spacetime metric to a burst of radiation. We study the
metric near Iþ by analyzing Einstein’s equation in a 1

r
expansion. We consider spacetimes which are stationary at
early times, undergo a period where there is a significant
amount of gravitational radiation for a finite range of
retarded time, and then approach stationarity at asymptoti-
cally late times. It was pointed out in [7], at early or late
times, that the metric corresponding to a collection of
inertially movingmassive bodies is stationary at order 1r, but
will generically be nonstationary at higher orders in 1

r. In
particular, it was shown quite generally, that the behavior of
the lth multipole moment for the metric of a static compact
object at some time t ¼ uþ r behaves as

hMN ∼
ðuþ rÞl
rlþ1

∼
1

r
þ lu

r2
þ… ð5:1Þ

near Iþ where gMN ¼ ηMN þ hMN and the behavior in the
internal space has been suppressed. Therefore a generic,
boosted compact object will be stationary at leading order
in 1=r but will generically be nonstationary at subleading
orders in 1=r. This nonstationarity for l ¼ 1 can be
removed by boosting to the center-of-mass frame where
the matter is at rest. However, hMN is generically nonsta-
tionary at subleading orders in 1=r if one has incoming or
outgoing compact objects at early or late times.
However, for simplicity, we will investigate null memory

effects caused entirely by the flux and scattering of
incoming and outgoing gravitational radiation, and no
ordinary memory. To impose this condition we assume
the stronger stationarity conditions of [7]. Specifically we
assume there exists a gauge in which the metric satisfies the
following stationarity conditions at asymptotically early
and late times:

∂uh
ðnÞ
MN → 0 as u → �∞ for all n ≥ 1: ð5:2Þ

We will further require that the stress-energy vanishes in a
neighborhood of null infinity at early and late times at the
following orders:

TðnÞ
MN → 0 as u → �∞ for all n ≤ 3: ð5:3Þ

This is not terribly restrictive: the condition includes all
stress-energy with compact support and most isolated
systems studied in the literature.
This section is laid out as follows: in Eq. (5.1) we

examine the constraints from Einstein’s equation on the
metric in the stationary eras. In Sec. V B, we use our results
from Secs. IV B–VA to integrate Einstein’s equations to
obtain gauge invariant information about the change in the
metric between the stationary eras caused by the passage of
gravitational radiation to Iþ. As we shall see, certain
components of the change in the metric correspond

FIG. 2. Action of a supertranslation and an angle-dependent
internal isometry on the asymptotic sphere. We chose Mint ¼ S1

for simplicity. Null infinity is an incoming null surface with
topology R × S2 × S1 whose cross sections are asymptotically
large spheres. A point inR × S2 (highlighted in black) and a point
onMint ¼ S1, where the S1 is represented by a circle, specifies a
point on null infinity. At leading order in 1

r supertranslations only
act on R4 while angle-dependent internal isometries act only on
Mint. Given a constant u cut of null infinity, labeled Σ0, a
supertranslation acts by u → uþ TðθÞ and an angle-dependent
internal isometry acts by y → yþ SðθÞ. The composition of these
group actions takes the cut Σ0 into the cut Σ1.
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precisely to the composition of a supertranslation with an
angle-dependent isometry.

A. Stationary eras

We first investigate the behavior of the metric in a
stationary era. Our stationarity conditions turn out to imply
constraints on the angular behavior of the metric at leading
order in 1

r. It is useful to note that Proposition 1 applies to
any closed Riemannian manifold and Proposition 2 applies
to any compact Riemannian Einstein space, and therefore
they both apply to the two-sphere equipped with the round
metric qAB.
Remark 1. Propostions 1 and 2 apply to any compact

Riemannian manifold. For example with the round metric
qAB on the two-sphere then ðS2; qABÞ is a compact
Riemannian Einstein space with c ¼ 1. Therefore,
Proposition 1 and 2 apply to both a one form VA and a
second rank, symmetric tensor field TAB on S2. Therefore,
VA and TAB can both be decomposed uniquely as in
Eqs. (2.14) and (2.24) where the covariant derivative is
now the derivative operatorDA compatible with metric qAB.
There is no “tensor part” since there are no divergence-free,
trace-free tensors on S2. Furthermore, any divergence-free
vector vA on S2 can be written as the “curl” of a scalar
function P, i.e., vA ¼ ϵA

BDBP. This is sometimes called
the “magnetic parity” or “parity odd” part of the vector.
Finally, any rotationally invariant operator (such as
D2 ≡ qABDADB) acting on a one-form or a symmetric
tensor preserves this decomposition.
Given Remark 1, we now determine the metric con-

straints from Einstein’s equations in a stationary era. We
adopt the gauge described in Lemma 4. The analysis of
Einstein’s equations in a stationary era is greatly simplified
by further fixing the gauge of the metric at Oð 1r2Þ. In
Appendix A, we prove that one can put the metric in a
gauge compatible with the stationarity conditions (5.2) and
(5.3) and the gauge of Lemma 4 so that Einstein’s equations
imply that

hð2Þμν ¼ h̄ð2Þμν ðθÞ; Að2Þ
μm ¼

Xb1
i¼1

Að2;iÞ
μ ðθÞ ⊗ V̄ðiÞ

m ðymÞ; ð5:4Þ

and

φð2Þ
mn ¼ Φð2Þ

mnðθ; yÞ þ
�
DmDn −

ĝmn

D − 4
D2

�
Ψð2Þðθ; ymÞ

þ ĝmn

D − 4
ϕ̄ð2ÞðθÞ: ð5:5Þ

Aside from special cases like Mint ¼ T k, neither Ψð2Þ nor
Φð2Þ

mn are zero modes on Mint.
We now analyze Einstein’s equations in a stationary era

in the gauge of Lemma 4 with the constraints (5.4) and (5.5)

imposed. The zero mode of Einstein’s equations at order 1
r3,

after a lengthy calculation described in Appendix A, yields

ðuu; 3Þ D2hð1Þuu ¼ 0; ð5:6Þ

ður; 3Þ D2hð1Þur ¼ 0; ð5:7Þ

ðuA; 3Þ ½D2 − 1�hð1ÞuA −DADBhð1ÞuB −DAðhð1Þuu − hð1Þur Þ ¼ 0;

ð5:8Þ

ðrr; 3Þ ϕ − 2hð1Þur ¼ 0; ð5:9Þ

ðrA; 3Þ DAh
ð1Þ
ur −DAϕ

ð1Þ ¼ 0; ð5:10Þ

ðAB; 3Þ ½D2 − 2�hð1ÞAB − 2DðADChð1ÞBÞC þ 2DChð1ÞCuqAB

þDADBqCDh
ð1Þ
CD þ qABqCDh

ð1Þ
CD

þ ½DADB − qAB�ðϕ − 2hð1Þur Þ ¼ 0; ð5:11Þ

ðum; 3Þ D2Að1;iÞ
u ¼ 0; ð5:12Þ

ðAm; 3Þ ½D2 − 1�Að1;iÞ
A þDAA

ð1;iÞ
u ¼ 0; ð5:13Þ

ðmn; 3Þ D2ϕ ¼ 0 and D2ΦðiÞ
mn ¼ 0; ð5:14Þ

where the coefficients Að1;iÞ
u , Að1;iÞ

A and ΦðiÞ
mn are defined

in Lemma 4. In Eq. (5.14), the ΦðiÞ are the d̂L exactly
massless modes as discussed in Sec. II B. Additionally, the
ðrm; 3Þ components of Einstein’s equations vanish.

Equations (5.6), (5.7), (5.9), (4.29) imply that hð1Þuu , h
ð1Þ
ur ,

ϕ, ΦðiÞ
mn and Að1;iÞ

u are spherically symmetric and

ϕ ¼ 2hð1Þur : ð5:15Þ

Consequently, the left-hand side of Eq. (5.10) vanishes.
Using Proposition 2 and Remark 1, one can write

Að1;iÞ
A ðθÞ ¼ DASðiÞðθÞ þ ϵA

BDBRðiÞðθÞ; ð5:16Þ

hð1ÞuAðθÞ ¼ DAPðθÞ þ ϵA
BDBFðθÞ; ð5:17Þ

and

hð1ÞABðθÞ ¼ ϵðACDBÞDCWðθÞ þ
�
DADB −

qAB
2

D2

�
TðθÞ

þ qAB
2

UðθÞ: ð5:18Þ

Applying ϵCADC to Eqs. (5.8), (5.10), and (5.13) yields
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D2RðiÞðθÞ ¼ 0; D2FðθÞ ¼ 0 and

ðD2 þ 2ÞD2WðθÞ ¼ 0; ð5:19Þ

and therefore the magnetic parity parts of Að1;iÞ
A , hð1ÞuA and

hð1ÞAB vanish.11 Applying qAB to Eq. (5.11) yields a relation
between UðθÞ, TðθÞ and PðθÞ:

D2UðθÞ −D2ðD2 þ 2ÞTðθÞ þ 4D2PðθÞ ¼ 0: ð5:20Þ

We summarize the above results in the following lemma:
Lemma 5. Let ðM; gÞ be an isolated system that satisfies

both our ansatz (3.5) in a gauge compatible with Lemma 4
and our stationarity conditions. There exists a unique
diffeomorphism which preserves these gauge and statio-
narity conditions such that the leading order expansion
coefficients satisfy the following relations:
(1) The R4 metric components satisfy:

hð1Þuu ¼ c1; hð1Þur ¼ c2; hð1ÞuA ¼ DAPðθÞ; ð5:21Þ

hð1ÞAB ¼
�
DADB −

qAB
2

D2

�
TðθÞ þ qAB

2
UðθÞ;

ð5:22Þ

and hð1Þrr ¼ 0 ¼ hð1ÞrA . Here c1 and c2 are constants,
the functions PðθÞ, TðθÞ and UðθÞ are smooth
functions on S2 and are related by

D2UðθÞ −D2ðD2 þ 2ÞTðθÞ þ 4D2PðθÞ ¼ 0: ð5:23Þ

(2) The Að1Þ
μm components satisfy:

Að1Þ
um ¼

Xb1
i¼1

QðiÞV̄ðiÞ
m ðymÞ;

Að1Þ
Am ¼

Xb1
i¼1

DASðiÞðθÞ ⊗ V̄ðiÞ
m ðymÞ ð5:24Þ

and Að1Þ
rm ¼ 0. The QðiÞ are constants and the func-

tions SðiÞðθÞ are smooth functions on S2.
(3) The internal space components satisfy:

φð1Þ
mn ¼ ĝmn

D − 4
ϕþ

Xd̂L
i¼1

ΦðiÞtðiÞmnðymÞ; ð5:25Þ

where 2c2 ¼ ϕ and the coefficients ΦðiÞ are con-
stants.

This discussion captures the leading order behavior of the
metric near Iþ for stationary objects in the bulk; for
example, stars or black holes with possible scalar hair.

B. Change in the metric coefficients after
the burst of radiation

Now that we have determined the radiative degrees of
freedom in Lemma 4, and the metric component constraints
from the requirement of stationarity at asymptotically early
and late times in Lemma 5, we now integrate the leading
order Einstein equations to prove the following theorem:
Theorem 1. Let ðM; gÞ be an isolated system which

satisfies our ansatz and stationarity conditions. Let gMN be
in the gauge described by Lemmas 4 and 5 and satisfy
Einstein’s equation with stress-energy TMN satisfying
Eq. (5.3) and the dominant energy condition.
(1) The change in the metric coefficient hð1ÞAB is

Δhð1ÞABðθÞ ¼
�
DADB −

1

2
qABD2

�
TðθÞ − 1

2
qABΔϕ;

ð5:26Þ

where Δϕ ¼ Δðĝmnφð1Þ
mnÞ is a constant; specifically,

it cannot be a function of θ. The function TðθÞ is a
smooth function on S2 determining an asymptotic
supertranslation [Eq. (4.55)] which satisfies

D2ðD2 þ 2ÞTðθÞ ¼ 4Δhð1Þuu − 2Δϕ − 16πF ðθÞ;
ð5:27Þ

where Δhð1Þuu is a constant, F ðθÞ ≤ 0 is

F ðθÞ ¼ −
1

VolðMintÞ
Z
R×Mint

dudμMint

�
Tð2Þ
uu ðu; θ; yÞ

þ 1

32π
N abN abðu; θ; yÞ

�
ð5:28Þ

and dμMint
is the volume measure of ðĝmn;MintÞ.

(2) The change in the metric coefficient Að1Þ
Am is

ΔAð1Þ
Amðθ; ymÞ ¼

Xb1
i¼1

DASðiÞðθÞ ⊗ V̄ðiÞ
m ðymÞ ð5:29Þ

where V̄ðiÞ
m are a basis of b1 harmonic one-forms on

Mint and the coefficients SðiÞ are a set of smooth
functions of S2 which are parameters of an asymp-
totic internal isometry and satisfy

D2SðiÞðθÞ ¼ ΔQðiÞ þ 16πJ ðiÞðθÞ; ð5:30Þ

11The operator ðD2 þ 2ÞD2 annihilates the l ¼ 0, 1 spherical
harmonics. Let W̃ be the projection of W into the subspace
spanned by l ¼ 0, 1 spherical harmonics. That W̃ is annihilated
by the operator in Eq. (5.18) (i.e., ϵðACDBÞDCW̃ ¼ 0) follows
from the fact that any function that is a linear combination of
l ¼ 0, 1 spherical harmonics satisfies DADBW̃ ¼ −qABW̃.
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where the QðiÞ are constants and

J ðiÞðθÞ ¼ 1

VolðMintÞ
×
Z
R×Mint

dudμMint
Tð2Þ
umðu;θ; ymÞV̄ðiÞmðymÞ:

ð5:31Þ

(3) The change in the metric coefficient φð1Þ
mn is

Δφð1Þ
mnðymÞ ¼ ĝmn

d − 4
Δϕþ

Xd̂L
i¼1

ΔΦðiÞ t̄ðiÞmnðymÞ; ð5:32Þ

where Δϕ and ΔΦðiÞ are constants, and the t̄ðiÞmn are a
basis of d̂L symmetric, divergence-free two tensors
on Mint which satisfy the Lichnerowicz equation.

Proof.—We assume that the metric gMN is in a gauge
compatible with Lemmas 4 and 5. The “zero mode” of the
ðμν; 2Þ components of Einstein’s equation at order 1

r2 (see
Appendix A 1), yields

ðuu; 2Þ ∂uDAhð1ÞAu þ ∂uh
ð1Þ
ur − ∂uh

ð1Þ
uu ¼ 8πT̄ð2Þ

uu

þ 1

4
N abN ab −

1

2
∂uðhð1ÞABNAB þ 2Að1ÞAmNAm

þ φð1ÞmnNmn − ∂uh̄u
ð2Þ
rr − ∂uqABh̄u

ð2Þ
AB − ∂uĝmnφð2Þ

mnÞ;
ð5:33Þ

ður; 2Þ ∂uϕ − 2∂uh
ð1Þ
ur ¼ ∂2

uh̄u
ð2Þ
rr ; ð5:34Þ

ðuA; 2Þ ∂uDBhð1ÞBA − 2∂uh
ð1Þ
uA þ ∂uDAh

ð1Þ
ur ¼ ∂2

uh̄
ð2Þ
rA ;

ð5:35Þ

and the ðrr; 2Þ, ðrA; 2Þ and ðAB; 2Þ components of Einstein’s
equation vanishes. Integrating Eq. (5.34) together with our
stationarity conditions, Eq. (5.2) implies that

Δϕ ¼ 2Δhð1Þur ð5:36Þ

which agrees with Eq. (5.15). Lemma 5 implies that
Δϕ is spherically symmetric. Furthermore we note that,
by Lemma 4

∂uðqABhð1ÞAB þ ϕÞ ¼ 0 ⇒ Δϕ ¼ −ΔU; ð5:37Þ

where U ¼ qABhð1ÞAB in the stationary eras. Combining
Eqs. (5.33) and (5.35) yields

∂uDADBhð1ÞAB ¼ 2∂uh
ð1Þ
uu − ðD2 þ 2Þ∂uh

ð1Þ
ur

þ 16πT̄ð2Þ
uu þ 1

2
N abN ab − ∂uC1; ð5:38Þ

where C1 denotes a collection of terms which vanish in the
stationary eras. Integrating with respect to retarded time,

using Eq. (5.2) and using the decomposition of hð1ÞAB in the
stationary eras given by Lemma 5 yields

D2ðD2þ2ÞΔTðθÞ¼4Δhð1Þuu −2Δϕð1Þ−16πF ðθÞ ð5:39Þ

whereF is the total flux of stress-energy and news squared to
null infinity givenbyEq. (5.28). ThatF ≤ 0 follows from the

positivity of Tð2Þ
uu due to the dominant energy condition and

the positivity of N abN ab.
The zero mode of the ðμm; 2Þ components of Einstein’s

equation at order 1
r2 can be extracted by taking the zero

mode of the ðμm; 2Þ components contracted with the

orthonormal basis vectors ĝmnV̄ðiÞ
n on Mint. The ðrm; 2Þ

and ðAm; 2Þ components of Einstein’s equation vanish and
the zero mode of the ðum; 2Þ components yields

ðum; 2Þ ∂uDAAð1;iÞ
A − ∂uA

ð1;iÞ
u

¼
Z
Mint

ð16πTð2Þ
umV̄ðiÞm þ ∂uC2Þ; ð5:40Þ

where AðiÞ
A ðu; θÞ and AðiÞ

u ðu; θÞ are defined in Lemma 4 and
C2 vanishes in the stationary eras. Integrating Eq. (5.40)
and using Eqs. (5.2) and (5.3) and using the decomposition

of Að1Þ
Am, A

ð1Þ
um in the stationary era given by Lemma 5 as well

as the decomposition of φð1Þ
mn and Nmn given by Lemma 4

and Eq. (4.21), respectively, yields the desired relation

D2ΔSðiÞðθÞ ¼ ΔQðiÞ þ 16πJ ðiÞðθÞ ð5:41Þ

where the J ðiÞðθÞ are defined by Eq. (5.31). Finally, the
ðmn; 2Þ components of Einstein’s equation place no further

constraints on the change in φð1Þ
mn and therefore, Lemmas 4

and 5 imply that Δφð1Þ
mn is given by Eq. (5.32).

That TðθÞ and the SðiÞðθÞ generate an asymptotic super-
translation and an asymptotic angle-dependent internal
isometry between the stationary eras follows from
Eqs. (4.55) and (4.56) and that N ab ¼ 0 in the stationary
eras. ▪
We finally consider the spherical harmonic dependence

of the change in the metric coefficients Δhð1ÞAB;Δh
ð1Þ
Am and

Δφð1Þ
mn. We first note that, by Lemma 5, Δφð1Þ

mn is clearly
spanned only by l ¼ 0 spherical harmonics. By
Proposition 2, if TðθÞ is spanned by l ¼ 0, 1 spherical
harmonics then DADBTðθÞ ¼ −qABTðθÞ. Therefore, it

follows that the trace-free part of Δhð1ÞAB on S2 is orthogonal
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to the l ¼ 0, 1 spherical harmonics. Furthermore, by the

form of Eq. (5.29), we have that ΔAð1Þ
Am is orthogonal to the

l ¼ 0 spherical harmonics.

VI. THE MEMORY EFFECT IN COMPACTIFIED
SPACETIMES

A. Unification of memory effects

We now explore the geometric interpretation of Theorem
1 in terms of the memory effect, which is an observable
quantity. Physically, the memory effect is the permanent
relative displacement of a system of test particles, initially
at rest, caused by the passage of a burst of gravitational
radiation. The relative displacement of test particles is
governed by the geodesic deviation equation

ðvM∇MÞ2ξN ¼ −RMPQ
NvMvQξP; ð6:1Þ

where vM is the tangent vector of the worldline of the
particle, ξM is the deviation vector and RMPQ

N is the
Riemann tensor. We are interested in the displacement of
test particles located near future null infinity and shall
determine the leading order memory effects in a 1

r expan-
sion in a neighborhood of null infinity.
We consider a spacetime where the metric near

future null infinity is stationary at leading order in 1
r, at

asymptotically early and late retarded times. In this sub-
section, we will simplify and integrate Eq. (6.1) to
derive an explicit formula for the memory effect. This
discussion is a modification of a similar analysis found in
[65]. There are subtle differences when one considers
compact internal manifolds, which makes the argument
worth revisiting.
Consider an array of initially stationary test particles in a

neighborhood of null infinity, which we model as a
congruence of timelike geodesics whose tangents vA

initially point in the ð∂=∂uÞM direction. In a neighborhood
of null infinity, the spacetime metric deviates from
the Ricci-flat direct product metric (2.2) at order 1

r.
Consequently, the geodesic equation implies that vM differs
from the corresponding integral curve of ð∂=∂uÞM only at
order 1

r and therefore u will differ from an affine para-
metrization beginning at this order.
For an arbitrary internal manifold, the curvature is

generically nonvanishing at infinity. Nevertheless, these
considerations imply that the quantity RMPQ

NvMvQ in
Eq. (6.1) does vanish at infinity and is only nonvanishing
at order 1

r. Therefore, the deviation of vM from ð∂=∂uÞM in
Eq. (6.1) can only affect ξN at order 1

r2 and faster falloff.
Finally, by Eq. (4.2), the Riemann tensor differs from
theWeyl tensor atOð 1r2Þ since the stress-energy falls off like
1
r2. Since we are only considering the memory effect at
leading order in 1

r, we can replace vM with ð∂=∂uÞM and

RPML
NvPvL with the electric Weyl tensor EM

N [as defined
in Eq. (4.11)] in Eq. (6.1) which yields

∂2

∂u2 ξ
M ¼ −EM

Nξ
N: ð6:2Þ

Indices on the right-hand side of Eq. (6.2) are raised and
lowered with the asymptotic metric ĝMN . Equation (6.2)
implies that ξM differs from the integral curve of its initial
value ξM0 at order 1

r and we may replace ξM by its initial
value in the right-hand side of Eq. (6.2). Thus, at leading
order in 1

r, we have

∂2

∂u2 ξ
ð1ÞM ¼ −EM

Nξ
N
ð0Þ; ð6:3Þ

where ξð1ÞM is the deviation vector at Oð1rÞ. Integrating
Eq. (6.3) twice, we obtain

ξð1ÞMju¼∞
u¼−∞ ¼ ΔM

Nξ
N
ð0Þ; ð6:4Þ

where

ΔMN ≡ −
Z

∞

−∞
du0

Z
u0

−∞
du00EMN: ð6:5Þ

We refer to ΔMN as the memory tensor. This characterizes
the memory effect as a linear map on the initial displace-
ment to the change in the relative separation. Further, as
noted in Lemma 3, the only nonvanishing components of
EMN are Eab ¼ − 1

2
∂uN ab where a, b are along S2 ×Mint.

This gives a simpler manifestly gauge invariant relation for
the memory,

Δabðθ; yÞ≡ 1

2

Z
∞

−∞
duN abðu; θ; yÞ: ð6:6Þ

From (6.6), it follows that

Δab ¼ Δba; qabΔab ¼ qABΔAB þ ĝmnΔmn ¼ 0; ð6:7Þ

and clearly Δab is time independent. Additionally from
Eq. (4.19), we see that

D2ΔAB ¼ 0; D2ΔAm ¼ 0; D2Δmn þ 2Rm
p
n
qΔpq ¼ 0:

ð6:8Þ

Using arguments identical to those in the proof of Lemma
3, we see thatΔAB is independent of internal coordinates ym

andΔAm andΔmn can be uniquely decomposed in a basis of

harmonic one-forms V̄ðiÞ
m and Lichnerowicz zero modes

t̄ðiÞmn, respectively,
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ΔAm ¼
Xb1
i¼1

ΔðiÞ
A ðθÞ ⊗ V̄ðiÞ

m ðyÞ and

Δmn ¼
Xd̂L
i¼1

ΔðiÞðθÞt̄ðiÞmnðyÞ þ 1

D − 4
ĝmnĝpqΔpqðθÞ: ð6:9Þ

TheΔðiÞ
A are a collection of b1 one-forms on S2, and theΔðiÞ

are smooth functions on S2.
We now provide a geometric interpretation of Theorem

1. In the gauge given in Eq. (4), the news tensor can be
expressed in terms of the leading order metric (4.46). This

provides a direct relation between the change in the hð1ÞAB,

hð1ÞAm and hð1Þmn before and after the radiation epochs:

ΔAB ¼ 1

2
Δhð1ÞAB; ΔAm ¼ 1

2
ΔAð1Þ

Am and Δmn ¼
1

2
Δφð1Þ

mn:

ð6:10Þ

Using the results of Theorem 1 we can now relate the
memory to the change in the metric due to a burst of
radiation. We first note that certain metric components
appearing in Theorem 1 can be directly related to defi-
nitions of the Bondi mass aspect and electric charge aspect
in R4,

mB ≡ −
1

2
Eð3Þ
rr ¼ 1

2
hð1Þuu and

QðiÞ ≡ Fð2;iÞ
ur ¼ Að1;iÞ

u ðin a stationary eraÞ; ð6:11Þ

where F ¼ dA using the exterior derivative on R4 and Aμm

is defined in Eq. (3.1). Using the results of Theorem 1 and
Eq. (6.9) we see that

DADBΔAB ¼ 2ΔmB −
1

2
Δϕ − 8πF ðθÞ;

qABΔAB ¼ −
1

2
Δϕ; ð6:12Þ

DAΔðiÞ
A ðθÞ ¼ 1

2
ΔQðiÞ þ 8πJ ðiÞðθÞ; ð6:13Þ

ΔðiÞ ¼ 1

2
ΔΦðiÞ and ĝmnΔmn ¼

1

2
Δϕ: ð6:14Þ

In analogy with the decomposition of the news in
Eqs. (4.20) and (4.21) we can decompose the flux F ðθÞ
into gravitational, electromagnetic and scalar contributions
to the flux:

F ðθÞ ¼ FGRðθÞ þ FEMðθÞ þ F SðθÞ; ð6:15Þ

where

FGRðθÞ ¼ −
Z
R
du

�
Tð2Þ
uu þ 1

32π
NABNAB

�
; ð6:16Þ

FEMðθÞ ¼ −
Xb1
i¼1

Z
R
duN ðiÞAN ðiÞ

A ; ð6:17Þ

F SðθÞ ¼ −2
Z
R
duN2 −

Xd̂L
j¼1

Z
R
duðN ðjÞÞ2: ð6:18Þ

From the point of view of reduction, Eq. (6.16) corresponds
to the flux of four-dimensional gravitational radiation
energy as well as null stress-energy. Equation (6.17)
corresponds to the flux of electromagnetic energy and
Eq. (6.18) is the flux of scalar energy where the first term is
the contribution from the volume mode and the second term
is the contribution from the volume-preserving moduli.
We can give a physical interpretation to these relations,

which express memory in terms of fluxes. First consider
Eq. (6.12). The spherically symmetric part of the left-hand
side vanishes. The right-hand side defines a change in the
spherically symmetric part of the mass aspect. It is
reasonable to view

m ¼ mB −
1

4
ϕ ðin a stationary eraÞ ð6:19Þ

as the mass since the change in this quantity is determined
by the energy flux to Iþ in analogy with the four-dimen-
sional result (1.12). Similarly, QðiÞ is the electric charge for
each asymptotic gauge field Aði;1Þ

μ sinceΔQðiÞ is determined
by the charge flux to Iþ. Via (6.14), scalar memory is
defined by the change in the scalar charge, given by the
coefficient of the 1

r term in the expansion of the field near
Iþ, between early and late times. In this case, there is no
integrated flux term.
The memory effect ΔAB corresponds to the permanent

relative angular displacement of a pair of freely falling test
masses. ΔAm corresponds to the displacement in the
internal space directions (i.e., along Killing directions)
for a pair of test masses that are initially angularly
displaced. If the test masses had some initial displacement
in the internal space then, due to a change in scalar charge,
the relative displacement in the internal space will change
by an amount Δmn. Physically, the internal space is small
and therefore relative displacements of test masses into the
internal space are undetectable. Nevertheless, the four-
dimensional scalar and electromagnetic memory effects are
usually described in terms of velocity kicks [14,15]. We
should be able to recover this way of observing memory
from the higher-dimensional gravitational picture.
To see how this emerges, consider the geodesic motion

of a test particle with velocity vM

FERKO, SATISHCHANDRAN, and SETHI PHYS. REV. D 105, 024072 (2022)

024072-26



vM∇MvN ¼ 0; ð6:20Þ

which follows from varying the point-particle action

S ¼ −m
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−ĝMNðxÞdxMdxN
q

: ð6:21Þ

This equation of motion (6.20) describes the motion of a
point particle following a timelike geodesic. We consider
the case where the tangent vM, initially vMð0Þ, is of the form

vMð0Þ ≡ c1

� ∂
∂u

�
M
þ c2V̄mðyÞ

� ∂
∂ym

�
M
; ð6:22Þ

c21 ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4q2

p
2

; c22 ¼
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4q2

p
2

; ð6:23Þ

where V̄mðyÞ is a unit normalized Killing vector, which is
automatically geodesic on Mint:

V̄mDmV̄n ¼ 0 and ĝmnV̄mV̄n ¼ 1: ð6:24Þ

This characterizes an initially stationary test particle with
charge q determined by the velocity in the internal direction
at some early time u ¼ u0. The vector field V̄m must be
Killing to ensure the test particle is constructed from zero
modes of the internal space. Since our discussion is purely
classical, we will not worry about quantization conditions
on the internal momentum, which force such momenta to
be of order the Kaluza-Klein scale.
We are interested in the velocity kick of this test particle

relative to a preferred class of asymptotic, stationary
observers, which will define our lab frame. To define a
timelike vector field vlabM , we Lie-transport the tangent

vector vð0ÞM , so that vlabM in our coordinates agrees with the

trivial extension vð0ÞM for all u > u0. We note that this is an
accelerated reference frame, which implies that it differs

from geodesic evolution of vð0ÞM at order 1
r:

vM ¼ vlabM þ vð1ÞM ðu; θ; yÞ
r

þO

�
1

r2

�
: ð6:25Þ

Expanding Eq. (6.20) in powers of 1
r and integrating the

geodesic equation, a straightforward computation yields in
the gauge described by Lemma 4 that the nonvanishing
components of the velocity kick are ΔvAð1Þ and Δvrð1Þ,

Δvð1ÞA ðu; θÞ ¼ c21

Z
u

−∞
du0∂u0h

ð1Þ
uA þ q

2

Z
u

−∞
du0N AmV̄m:

ð6:26Þ

The first term on the right-hand side of (6.26) is not
proportional to the charge. Rather it is finite as q → 0 and

corresponds to a purely gravitational velocity kick. This
effect actually has nothing to do with the compact internal
space and is present in just R4. It would be very interesting
to explore the potential observability of this effect. The
second term is the electromagnetic kick we expect. Note
that N AmV̄m is independent of y because of Eq. (4.20).
Similarly, the radial velocity kick

Δvrð1Þðu; θÞ ¼ c22
2

Z
u

−∞
du0N mnV̄mV̄n ð6:27Þ

is sensitive to radiation from the specific scalar zero modes
associated with the torus component in the decomposition
theorem of [57].
The total velocity kicks in the angular and radial

directions, respectively, are given by

ΔvAðθÞ≡ lim
u→∞

Δvð1ÞA ðu; θÞ; ð6:28Þ

ΔvrðθÞ≡ lim
u→∞

Δvrð1Þðu; θÞ: ð6:29Þ

Using Eq. (5.35) we find that the integrand of the first term
in Eq. (6.26) can be expressed in terms of an integral of the
news:

∂uh
ð1Þ
uA ¼ 1

2
DBNBA þ

1

4
DAN þ 1

2
DAh

ð1Þ
ur −

1

2
∂2
uh̄

ð2Þ
rA :

ð6:30Þ

Integrating Eq. (6.30) and using Eq. (5.36) implies that

Δhð1ÞuAðθÞ ¼
1

2

Z
R
duDBNBA: ð6:31Þ

Using Eq. (6.6) yields the total velocity kick in terms of the
memory

ΔvAðθÞ ¼ c21D
BΔBA þ qΔAmV̄m; ð6:32Þ

ΔvrðθÞ ¼ c22ΔmnV̄mV̄n: ð6:33Þ

This leaves the question of how to detect radiation for
moduli associated with the simply connected component of
Mint. It appears that directly detecting such radiation
requires a more sophisticated detector, but we can make
one comment on this issue. In principle, a detector can
measure N AB;N Am and the torus contribution to N mn by
the motion of the arms of a LIGO-like detector and the
motion of a charged test particle. Squaring these contri-
butions gives us all of Eq. (6.15) except any unknown null
stress-energy, including contributions from additional
moduli. We can use the measured fluxes to compute what
should be the dominant contribution to the right-hand side
of Eq. (6.12). Assuming the size of the ordinary memory
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effect compared with the radiation contribution is still
small, and there is a sizeable discrepancy between the
observed gravitational memory and the flux computation,
we can place upper bounds on the possible contribution of
any additional moduli.

B. The circle case

The original beauty of Kaluza-Klein theory was a
unification of electromagnetism, gravity and scalar field
theory in a single five-dimensional theory of gravity
compactified on a circle. Let us revisit this beautiful and
simple example to unify the separately studied notions of
memory for gravity [13,18], electromagnetism [15–17] and
scalar theories [14] in the framework of five-dimensional
gravity using the discussion of Sec. VI A.
Let us take a spacetime metric with an exact Uð1Þ

isometry,

ĝMNdxMdxN ¼ gμνdxμdxν þ e2φðxÞðdyþ AμðxÞdxμÞ2;
ð6:34Þ

where y ∼ yþ 2πL and φ → 0 at infinity. Reducing the
D ¼ 5 Einstein-Hilbert action with zero cosmological
constant on y gives the four-dimensional action,

S ¼ 1

16πG

Z
d4xeφðxÞ

ffiffiffi
g

p �
R −

1

4
e2φFμνFμν þ ∂μφ∂μφ

�
;

ð6:35Þ

where F ¼ dA. This is a special case of Mint that we
studied earlier in the frame we have assumed in our
discussion so far, which is not Einstein frame. The 1

r terms

in the expansion of Aμ and e2φðxÞ can be identified with A
ð1Þ
μy

and φð1Þ
yy defined in Eq. (3.1) and discussed in the preceding

sections.
Specializing Eq. (6.21) to the case of a R4 × S1 gives the

geodesic equation,

d2xM

dτ2
þ ΓM

NP
dxN

dτ
dxP

dτ
¼ 0; ð6:36Þ

with the Christoffel symbols given to leading order in 1
r by

ΓC
uu ¼ qCD∂uh

ð1Þ
uD; ΓC

uy ¼
1

2
qCD∂uA

ð1Þ
D ; Γr

yy ¼
1

2
∂uϕ

ð1Þ;

ð6:37Þ

where ϕð1Þ ¼ 2φð1Þ. Assuming an initial vMð0Þ of the form

Eq. (6.23) gives the following leading order equations of
motion:

∂uvMð1Þ ¼ −c21ΓM
uu − 2qΓM

uy − c22K
MΓr

yy; ð6:38Þ

where KM ≡ ð ∂∂rÞM. In this case, the time-dependent
behavior of the angular and radial velocity kicks for a
particle with charge q, which might vanish, is determined
using

∂uvC;ð1Þ ¼−c21qCD∂uh
ð1Þ
uD−qFð1Þ

uA ; ∂uvr;ð1Þ ¼−
c22
2
∂uϕ

ð1Þ:

ð6:39Þ

Using the analysis of Sec. VI A, the total velocity kick
from the far past (u → −∞) to the far future (u → þ∞) is
given by

ΔvA ¼ c21D
BΔBA þ qΔAy; Δvr ¼ c22Δyy; ð6:40Þ

where ΔBA, ΔBy and Δyy are found in Eq. (6.10).
One final comment: in the context of subleading soft

photon theorems, there are proposals to permit gauge
transformations in Abelian gauge theory that grow linearly
with r near Iþ [66,67]. This is an interesting possibility,
although the asymptotic behavior of the gauge parameter
no longer defines a Uð1Þ group element. In the Kaluza-
Klein context, allowing such gauge transformations
becomes a statement about higher-dimensional gravity,
which would generalize the class of diffeomorphisms
normally permitted, assuming such a generalization is
sensible. It would be interesting to explore this embedding
further.

C. Color memory

While most of the analysis in this paper assumes a Ricci-
flat Mint, we cannot resist sketching how color memory
studied in [19,55] should also emerge from Kaluza-Klein
reduction. The starting point is a higher-dimensional
gravity theory which admits a space with non-Abelian
isometries. We will assume a D − 4 sphere for simplicity.
Let us take an action,

S ¼ 1

2κ2D

Z
dDx

ffiffiffiffiffiffi
−g

p ðR − 2Λ − jFD−4j2Þ; ð6:41Þ

where FD−4 is a D − 4-form field strength. Compactifying
this theory on SD−4 with radius L gives an effective four-
dimensional potential for the radius L of the form:

Veff ¼
2Λ
LD−4 −

ðD − 4ÞðD − 5Þ
LD−2 þ N2

L3ðD−4Þ : ð6:42Þ

Here we assume the sphere metric is L2ds2SD−4 , where ds2SD−4

is the metric for a sphere of unit volume. The parameter N
is proportional to the amount of quantized FD−4 flux
through the sphere. Since this is a classical gravity theory,
we chose Λ conveniently to ensure the resulting spacetime
is flat Minkowski. Under this condition, the potential has a
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minimum with L growing with N. This is all we need. We
have engineered Minkwoski spacetime from a compacti-
fication with non-Abelian isometries. In this case, the
identity component of the isometry group is SOðD − 3Þ.
Let us return to the geodesic equation (6.36) for a test

particle with velocity along the sphere. The novelty in this
case, by comparison with the Ricci-flat case, is that the
internal velocity vector can rotate as higher-dimensional
gravitational radiation passes by. In the Ricci-flat case, the
Christoffel symbols along Killing directions vanish. For
spaces with non-Abelian isometry groups, like the sphere,
this is no longer true. From a four-dimensional perspective,
the color charge would therefore appear to change because
of a burst of radiation, in agreement with [19].

D. Frames

The final issue we need to address is the choice of
frames. As illustrated in the circle example of Sec. VI B, the
natural four-dimensional frame that corresponds to study-
ing radiation in terms of the D-dimensional metric is not
Einstein frame. Let us parametrize the volume mode or
breathing mode of the internal metric in analogy with the
circle case,

ds2Mint
¼ e2φðxÞĝmndymdyn; ð6:43Þ

where φ → 0 at infinity. To connect with our earlier
discussion, note that ϕ ¼ 2ðD − 4Þφð1Þ where ϕ is defined
in Lemma 4. Reducing to four dimensions gives an
effective action of the form,

S ¼ 1

16πG

Z
d4xeðD−4Þφ ffiffiffiffiffiffi

−g
p

Rþ…; ð6:44Þ

where the omitted terms involve scalar and vector fields
whose kinetic terms typically depend on φ. Our analysis in
terms of ĝ gives formulas for memory in this frame. To
convert to Einstein frame with a canonical Einstein-Hilbert
action, we need to perform one conformal transformation
and use the relations described in Sec. I A. The Einstein
frame metric is defined by

gðEÞμν ¼ eðD−4Þφgμν;

¼
�
1þ ðD − 4Þφ

ð1Þ

r
þ � � �

�
gμν

¼ ημν þ
hð1Þμν

r
þ ðD − 4Þφ

ð1Þ

r
ημν þ…; ð6:45Þ

¼ ημν þ
hð1Þμν

r
þ 1

2

ϕ

r
ημν þ…: ð6:46Þ

Therefore the leading order metric in the Einstein frame is

hð1;EÞμν ¼ hð1Þμν þ 1

2
ϕημν ð6:47Þ

and so the Einstein news tensor is

N ðEÞ
AB ¼ N AB −

1

2
NqAB ¼ NAB: ð6:48Þ

Thus the Einstein news tensor is equivalent to the trace-free
Bondi news tensor—Einstein frame observer is insensitive
to the overall breathing mode as we expect [24]. The
components of electromagnetic and scalar radiative degrees
of freedom are unchanged:

N ðEÞ
Am ¼ N Am and N ðEÞ

mn ¼ N mn: ð6:49Þ

The memory effects as viewed by such Einstein frame
observer are then given by

ΔðEÞ
AB ¼ ΔAB −

1

2
qABðqCDΔCDÞ; ΔðEÞ

Am ¼ ΔAm and

ΔðEÞ
mn ¼ Δmn: ð6:50Þ
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APPENDIX A: ASYMPTOTIC EXPANSION OF
EINSTEIN’S EQUATIONS

In this Appendix, we collect some technical results
regarding the asymptotic Einstein equations and the decay
of certain components of the Ricci tensor that will be used
ubiquitously in this paper. To simplify our analysis we
assume that the metric is in the gauge described by
Lemma 4.

1. Constraints on the asymptotic expansion

It is more convenient for our analysis to examine the
trace-reversed Einstein equations given by

RMN ¼ 8πT MN; ðA1Þ

where T MN is the trace-reversed stress tensor:

T MN ¼ TMN −
1

D − 2
gMNðgPQTPQÞ: ðA2Þ

It is useful to split the Ricci tensor into a linear and
nonlinear part using the metric split ĝMN þ hMN for some
chosen ĝ. We define the nonlinear part of the Ricci tensor as
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RMN ≡ RMN − R̃MN; ðA3Þ

where RMN is the Ricci tensor and R̃MN is the linearized
Ricci tensor defined below:

R̃MN ≡ −
1

2
ð□ĝhMN þ 2R̂M

P
N
QhPQ

− 2∇̂ðM∇̂PhNÞP þ ∇̂M∇̂NhÞ: ðA4Þ

On the right-hand side, all differential operators along with
Riemann are defined with respect to ĝ. In the appendices,
we will denote the linearized version of objects with a tilde,
just as R̃MN is the linear part of RMN .
In our analysis we defined ĝ in (3.4) while hMN is given by

the collection of functions ðhμν; Aμn;φmnÞ appearing in (3.5).
We will expand (A1) to find a series of recursion rela-
tions of the form: ðlinearized RicciÞ ¼ ðstress-energyÞ−
ðnonlinear RicciÞ. We find the following relations:

½D2 þ ðn − 1Þðn − 2Þ�hðn−1Þuu þ 2ðn − 1Þ∂uh
ðnÞ
uu þ D2hðnþ1Þ

uu þ ∂2
uðhðnþ1Þ þ ϕðnþ1ÞÞ − 2∂uψ

ðnþ1Þ
u ¼ −16πT ðnþ1Þ

uu þ 2Rðnþ1Þ
uu ;

ðA5Þ

½D2 þ nðn − 3Þ�hðn−1Þur þ 2hðn−1Þuu − 2DAhðn−1ÞAu þ 2ðn − 1Þ∂uh
ðnÞ
ur þ D2hðnþ1Þ

ur þ nψ ðnÞ
u

− ∂uψ
ðnþ1Þ
r − n∂uðhðnÞ þ ϕðnÞÞ ¼ −16πT ðnþ1Þ

ru þ 2Rðnþ1Þ
ur ; ðA6Þ

½D2 þ ðn − 1Þðn − 2Þ − 1�hðn−1ÞuA − 2DAðhðn−1Þuu − hðn−1Þur Þ þ 2ðn − 1Þ∂uh
ðnÞ
uA þ D2hðnþ1Þ

uA

−DAψ
ðnÞ
u − ∂uψ

ðnþ1Þ
A þDA∂uðhðnÞ þ ϕðnÞÞ ¼ −16πT ðnþ1Þ

uA þ 2Rðnþ1Þ
uA ; ðA7Þ

½D2 þ ðn − 1Þðn − 2Þ − 4�hðn−1Þrr þ 4hðn−1Þur þ 2qABhðn−1ÞAB − 4DAhðn−1ÞAr þ 2ðn − 1Þ∂uh
ðnÞ
rr

þ D2hðnþ1Þ
rr þ 2nψ ðnÞ

r þ nðn − 1Þðhðn−1Þ þ ϕðn−1ÞÞ ¼ −16πT ðnþ1Þ
rr þ 2Rðnþ1Þ

rr ; ðA8Þ

½D2 þ ðn − 1Þðn − 2Þ − 5�hðn−1ÞrA þ 4hðn−1ÞuA − 2DAðhðn−1Þur − hðn−1Þrr Þ − 2DBhðn−1ÞBA þ D2hðnþ1Þ
rA

þ 2ðn − 1Þ∂uh
ðnÞ
rA −DAψ

ðnÞ
r þ nψ ðnÞ

A − ðn − 1ÞDAðhðn−1Þ þ ϕðn−1ÞÞ
¼ −16πT ðnþ1Þ

rA þ 2Rðnþ1Þ
rA ; ðA9Þ

½D2 þ ðn − 1Þðn − 2Þ − 2�hðn−1ÞAB − 4DðAh
ðn−1Þ
BÞu þ 4DðAh

ðn−1Þ
BÞr þ 2ðn − 1Þ∂uh

ðnÞ
AB þ D2hðnþ1Þ

AB

− 2DðAψ
ðnÞ
BÞ − 2ðψ ðnÞ

r − ψ ðnÞ
u ÞqAB þ ðDADB − ðn − 1ÞqABÞðhðn−1Þ þ ϕðn−1ÞÞ

− qAB∂uðhðnÞ þ ϕðnÞÞ þ 2ðhðn−1Þrr − 2hðn−1Þur þ hðn−1Þuu ÞqAB ¼ −16πT ðnþ1Þ
AB þ 2Rðnþ1Þ

AB ; ðA10Þ

½D2 þ ðn − 1Þðn − 2Þ�Aðn−1Þ
um þ 2ðn − 1Þ∂uA

ðnÞ
um þ D2Aðnþ1Þ

um − Dmψ
ðnþ1Þ
u − ∂uψ

ðnþ1Þ
m

þ Dm∂uðhðnþ1Þ þ ϕðnþ1ÞÞ ¼ −16πT ðnþ1Þ
um þ 2Rðnþ1Þ

um ; ðA11Þ

½D2 þ nðn − 3Þ�Aðn−1Þ
rm þ 2Aðn−1Þ

um − 2DAAðn−1Þ
Am þ 2ðn − 1Þ∂uA

ðnÞ
rm þ D2Aðnþ1Þ

rm þ nψ ðnÞ
m

− Dmψ
ðnþ1Þ
r − nDmðhðnÞ þ ϕðnÞÞ ¼ −16πT ðnþ1Þ

rm þ 2Rðnþ1Þ
rm ; ðA12Þ

½D2 þ ðn − 1Þðn − 2Þ − 1�Aðn−1Þ
Am − 2DAðAðn−1Þ

um − Aðn−1Þ
rm Þ þ 2ðn − 1Þ∂uA

ðnÞ
Am þ D2Aðnþ1Þ

Am

−DAψ
ðnÞ
m − Dmψ

ðnþ1Þ
A þ DmDAðhðnÞ þ ϕðnÞÞ ¼ −16πT ðnþ1Þ

Am þ 2Rðnþ1Þ
Am ; ðA13Þ

½D2 þ ðn − 1Þðn − 2Þ�φðn−1Þ
mn þ 2ðn − 1Þ∂uφ

ðnÞ
mn þ D2φðnþ1Þ

mn þ 2Rm
p
n
qφðnþ1Þ

pq − 2Dðmψ
ðnþ1Þ
nÞ

þ DmDnðhðnþ1Þ þ ϕðnþ1ÞÞ ¼ −16πT ðnþ1Þ
mn þ 2Rðnþ1Þ

mn : ðA14Þ

Here we have defined
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ψM ≡ ∂NhNM; hðnÞ ≡ ημνhðnÞμν ; ϕðnÞ ≡ ĝmnφðnÞ
mn; ðA15Þ

so that

ψ ðnÞ
u ¼ DAhðn−1ÞAu þ ð3 − nÞðhðn−1Þur − hðn−1Þuu Þ − ∂uh

ðnÞ
ur þ DmAðnÞ

um; ðA16Þ

ψ ðnÞ
r ¼ DAhðn−1ÞAr þ ð3 − nÞðhðn−1Þrr − hðn−1Þur Þ − qABhðn−1ÞAB − ∂uh

ðnÞ
rr þ DmAðnÞ

rm ; ðA17Þ

ψ ðnÞ
A ¼ DBhðn−1ÞBA þ ð4 − nÞðhðn−1ÞrA − hðn−1ÞuA Þ − ∂uh

ðnÞ
rA þ DmAðnÞ

Am; ðA18Þ

ψ ðnÞ
m ¼ DAAðn−1Þ

Am þ ð3 − nÞðAðn−1Þ
rm − Aðn−1Þ

um Þ − ∂uA
ðnÞ
rm þ DnφðnÞ

nm: ðA19Þ

In the body of this work, we will need the expansion of Einstein’s equations to order 1
r2, and to order

1
r3 for the special case of

a stationary era.

A direct calculation of Rð2Þ
MN in the gauge of Lemma 4 shows that the nonvanishing components of Rð2Þ

MN can be written

entirely in terms of the news Eq. (4.46). Explicitly the nonvanishing components of Rð2Þ
MN are given by

Rð2Þ
uu ¼ −

1

4
N abN ab þ

1

2
∂uðhð1ÞabN

abÞ; ðA20Þ

Rð2Þ
um ¼ 1

4
ðDmΦpqÞN pq −

1

2
ΦpnDpN mn −

1

2ðD − 4ÞϕD
nN nm þ 1

2
DmðΦnpN npÞ; ðA21Þ

Rð2Þ
mn ¼ −

1

4
ðDðmΦpqÞðDnÞΦpqÞ þ ðDpΦq

mÞðD½pΦq�nÞ þ
1

2
ΦpqDpDqΦmn

þ 1

2ðD − 4ÞϕD
2Φmn þ

1

4
DmDnðΦpqΦpqÞ; ðA22Þ

where the product in Eq. (A20) is explicitly given by

hð1ÞabN
ab ¼ hð1ÞABN

AB þ Að1Þ
AmN

Am þΦmnN mn þ 1

D − 4
ϕĝmnN mn; ðA23Þ

and the scalars Φmnðu; θ; yÞ and ϕðu; θÞ are defined in Lemma 4. The remaining components of Rð2Þ
MN vanish. In Sec. V B,

the zero modes of the nonlinear parts of the Ricci tensor appear as “flux” terms for the change in metric. More precisely, we

find that the zero modes of Rð2Þ
uu and Rð2Þ

um determine the change in the metric due to a burst of radiation. The zero mode of

Eq. (A20) is manifestly nonvanishing unless N ab ¼ 0. To determine the zero mode of Rð2Þ
um we contract with a Killing

vector V̄m of ðMint; ĝmnÞ and integrate over Mint:

Z
Mint

RumV̄m ¼ 1

4

Z
Mint

�
N pqðV̄mDmΦpqÞ − 2Dp

�
ΦpnN mnV̄m þ ϕN p

mV̄m

D − 4
− V̄pΦmnN mn

��
; ðA24Þ

¼ 1

4

Z
Mint

N mn£V̄Φmn; ðA25Þ

where in the first line we used the fact that Φpq is
divergence-free, ϕ is constant on Mint and that V̄m is
covariantly constant to write the last three terms in
Eq. (A21) as a total derivative. In the second line we used
the fact that V̄m is covariantly constant to write the
directional derivative in terms of the Lie derivative. How-

ever the decomposition theorem of [57] states thatMint is a
free quotient of a Riemannian product of a torus and a
connected Ricci-flat space with vanishing b1. For such a
product, £V̄Φmn ¼ 0 since V̄ is one of the torus isometries.
At this stage, we want to check whether our ansatz (3.5)

of an expansion in powers of 1
r makes sense as an
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asymptotic expansion. This might seem fairly reasonable
because in both pure gravity and Maxwell-Einstein, there
exists a large class of solutions which are smooth at Iþ in a
particular gauge [68].12 However, this is not the case for a
scalar field in four dimensions with null sources [65]. A
scalar field ϕ in Minkowski spacetime satisfying

□ηϕ ¼ J; ðA26Þ

where J is a source, does not admit a 1
r expansion near Iþ

when J ∼ 1
r2, which is a configuration with finite flux

through Iþ. Rather one must include logðrÞ
rn terms in the

expansion. This is without dynamical gravity.
In our case, there is a general obstruction to integrating in

from Iþ. Namely, if a specific scalar fluctuation of Mint is
obstructed, or equivalently gets a mass at some order
beyond the linearized approximation, then our ansatz is
simply not valid for that mode. The mode could never
propagate to Iþ, which we implicitly assume in our ansatz.
We can see this obstruction emerge in the 1

r expansion.

Consider the mn component of the vacuum Einstein’s
equations at order 1

r2, i.e., Eq. (A14) for n ¼ 1 and

T ð2Þ
mn ¼ 0:

D2φð2Þ
mn þ 2Rm

p
n
qφð2Þ

pq − 2Dðmψ
ð3Þ
nÞ

þ DmDnðhð3Þ þ ϕð3ÞÞ ¼ 2Rð2Þ
mn: ðA27Þ

After contracting both sides with a tensor field tmnðyÞ
which is annihilated by Lichnerowicz, it is straightforward
to check that the right-hand side vanishes. We therefore get
the following nonlinear obstruction to our ansatz:

Z
Mint

tmnRð2Þ
mn ¼ 0: ðA28Þ

It is straightforward to check that the volume mode, as
expected, is unobstructed. Letting tmn ¼ ĝmnðyÞ in
Eq. (A28) and using Eq. (A22) gives

ĝmnRð2Þ
mn ¼

�
1

4
DmΦpqDmΦpq −

1

2
DpΦqmDqΦpm þ 1

4
D2Φ2

�
; ðA29Þ

where Φ2 ¼ ΦmnΦmn. Integrating over Mint,

Z
Mint

ĝmnRð2Þ
mn ¼ 1

2

Z
Mint

�
1

2
DmΦpqDmΦpq − DpΦqmDqΦpm

�
; ðA30Þ

¼ 1

2

Z
Mint

�
−
1

2
ΦpqD2Φpq þΦqmDpDqΦpm

�
; ðA31Þ

¼ 1

2

Z
Mint

ðRmpnqΦmnΦpq −RmpnqΦmnΦpq þΦqmDqDpΦpmÞ; ðA32Þ

¼ 0; ðA33Þ

where we have used

D2Φmn þ 2Rm
p
n
qΦpq ¼ 0;

and that Φmn is divergence-free. As we spelled out in
Sec. II B, the space of exactly massless modes d̂L ≤ dL is
smaller than the kernel of Lichnerowicz. The exactly
massless volume-preserving moduli satisfy Eq. (A28).
Thus, as in Lemma 4, we truncate the linearized massless

moduli to exactly massless moduli and obtain a solution
consistent with our ansatz and Einstein’s equations at order
1
r2. As we will see in Sec. A 3, this truncation also ensures
that our ansatz is consistent with Einstein’s equations at
order 1

r3. We fully expect that restricting to exactly massless
modes is necessary to obtain a solution to Einstein’s
equations to all orders in 1

r; however, we have not attempted
to show this here. Note that this discussion motivates our

imposing a similar condition on Tð2Þ
mn; namely, that Tð2Þ

mn be
orthogonal to the d̂L þ 1 exactly massless scalar modes.

2. Going to the stationary era gauge

We now want to show that a metric in the gauge of
Lemma 4 can be further restricted at order 1

r2 in a stationary
era. Specifically,

12Note that starting with smooth initial data on a Cauchy
surface and evolving that data does not generically lead to a
solution with an analytic expansion in 1

r near I
þ. Rather logðrÞ

terms can be generated at subleading orders in 1
r even in pure

gravity [69]. However, there exists a class of initial data in pure
gravity that guarantee Ck differentiability at Iþ for any k [68].
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hð2Þμν ¼ h̄ð2Þμν ðθÞ; Að2Þ
μm ¼

Xb1
i¼1

Að2;iÞ
μ ðθÞ ⊗ V̄ðiÞ

m ðymÞ

ðA34Þ

and

φð2Þ
mn ¼ Φð2Þ

mnðθA; ymÞ þ
�
DmDn −

ĝmn

d − 4
D2

�
Ψð2ÞðθA; ymÞ

þ ĝmn

d − 4
ϕ̄ð2ÞðθÞ: ðA35Þ

Note that φð2Þ
mn is missing a vector term shown in Proposition

2, and ϕ̄ð2Þ is constant on Mint. To achieve this gauge we
first make a gauge transformation that is compatible with

our ansatz (3.5), stationarity conditions and Lemma 4. We
choose a gauge vector field of the form

ξM ∼
ξð2ÞM ðθ; yÞ

r2
þO

�
1

r3

�
; ðA36Þ

where ξM is a u-independent gauge transformation. By an
analysis similar to the proof of Lemma 4 we see that

DmAð2Þ
μm ¼ 0 is divergence-free and φð2Þ

mn admits the decom-

position given in Eq. (A35). In a stationary era, Rð2Þ
μν ¼

Rð2Þ
μn and Tð2Þ

MN ¼ 0. Therefore,

ðμν; 2Þ D2hð2Þμν ¼ 0; ðA37Þ

ðμm; 2Þ D2Að2Þ
μm ¼ 0; ðA38Þ

ðmn; 2Þ D2φð2Þ
mn þ 2Rm

p
n
qφð2Þ

pq þ DmDnð−2hð2Þur þ hð2Þrr þ qABhð2ÞABÞ − 2DðmDpφð2Þ
nÞp ¼ 2Rð2Þ

mn: ðA39Þ

We conclude that

hð2Þμν ¼ h̄ð2Þμν ðu; θÞ and Að2Þ
μm ¼

Xb1
i¼1

Að2Þ
μ ðu; θÞ ⊗ V̄mðyÞ: ðA40Þ

Using these relations we now study ðmn; 2Þ. Taking the trace of ðmn; 2Þ gives13

−2DmDnφð2Þ
mn ¼ 1

2
DmΦpqDmΦpq − DmΦpqDpΦmq þ

1

2
D2ðΦpqΦpqÞ; ðA41Þ

which yields the following equation for Ψð2Þ:
�
D − 5

D − 4

�
D4Ψð2Þ ¼ −

1

4
DmΦpqDmΦpq þ

1

2
DmΦpqDpΦmq −

1

4
D2ðΦpqΦpqÞ: ðA42Þ

We note that the above analysis implies that the right-hand side has no zero modes and therefore, we can solve for Ψð2Þ in
terms of Φmn. After solving for Ψð2Þ we can then solve for Φð2Þ

mn:

L½Φð2Þ
mn� ¼ −L½DmnΨð2Þ� þ 2

�
D − 5

D − 4

�
DmDnD2Ψð2Þ −

1

4
ðDðmΦpqÞðDnÞΦpqÞ

þ ðDpΦq
mÞðD½pΦq�nÞ þ

1

2
ΦpqDpDqΦmn þ

1

4
DmDnðΦpqΦpqÞ þ

ϕD2Φmn

2ðD − 4Þ : ðA43Þ

Here L½·� is the Lichnerowicz operator andDmn ≡ ðDmDn −
ĝmn
D−4D

2Þ. As in our discussion of Sec. A 1, we again truncate to
exactly massless scalar fluctuations for which the right-hand side of Eq. (A43) has no Lichnerowicz zero modes. This

guarantees solvability of Eq. (A43). On a generic Ricci flat manifold, ψ ð2Þ will not be harmonic andΦð2Þ
mn does not satisfy the

Lichnerowicz equation. In the special case of Mint ¼ Tk, we see that DmΦpq ¼ 0 and

D2Ψð2Þ ¼ 0 ⇒ D2Φð2Þ
mn þ 2Rm

p
n
qΦð2Þ

pq ¼ 0 for Mint ¼ Tk: ðA44Þ

13Just to remind the reader, Φmn without a superscript denotes the leading order term as in (4.32).
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3. Ricci in a stationary era

The last result we want to record is the behavior
of the nonlinear part of the Ricci tensor at order 1

r3.
By a lengthy but straightforward calculation, the
following components of the nonlinear part of the

Ricci tensor vanish in a stationary era and in our gauge
at order 1

r3:

Rð3Þ
μν ¼ 0 and Rð3Þ

um ¼ 0 in a stationary era; ðA45Þ
and the nonvanishing components are

Rð3Þ
rm ¼ −DmðΦpqΦpqÞ þ

1

2
DpðΦpqΦqmÞ in a stationary era; ðA46Þ

Rð3Þ
Am ¼ 1

4
DmDAðΦpqΦpqÞ −

1

2
DpðΦpqDAΦmqÞ in a stationary era: ðA47Þ

Finally, the Rð3Þ
mn component is given by

Rð3Þ
mn ¼ −

1

2
DðmΦpqDnÞφ

ð2Þ
pq þ ðDpΦqðmÞðDjpjφ

ð2Þ
nÞqÞ þ

1

2
DmDnðΦpqφ

ð2ÞpqÞ

− DpðΦpqDðmφ
ð2Þ
nÞqÞ þ

1

2
DpðΦpqDqφ

ð2Þ
mnÞ þ 1

2
Ds½Φs

PΦPqΞmnq�

−
1

2
Dm½Φs

PΦPqΞnsq� −
1

2
ĝkqΦlsΞmsqΞkls þ

1

2
ĝkqΦlsΞlnqΞkms

þ nonzero modes; ðA48Þ

where Ξmrq ≡ 2DðmΦrÞq − DqΦmr and “nonzero modes”
refers to modes orthogonal to the Lichnerowicz zero
modes. Again this obstruction to solving Einstein’s equa-
tions is generically nontrivial for a Ricci-flat space, butR
Mint

tmnRð3Þ
mn ¼ 0 if tmn is an exactly massless fluctuation,

and hence the obstruction vanishes. Note that for the special

case of Mint ¼ Tk, Rð3Þ
mn ¼ 0.

APPENDIX B: A GAUGE INVARIANT
DERIVATION OF MEMORY IN LINEARIZED

GRAVITY WITH COMPACT EXTRA
DIMENSIONS

In this section we will derive the memory effect in
linearized gravity for isolated systems with compact extra
dimensions using the Bianchi identity. In particular we
shall assume, in any neighborhood of null infinity, there
exists a gauge in which the metric admits an asymptotic
expansion of the form (3.5). We now derive the memory
effect in a manifestly gauge invariant way using the Bianchi
identity for the asymptotic Weyl tensor. Since we shall be
working with gauge invariant quantities, we shall only need
that the expansion (3.5) is valid in any local neighborhood
of null infinity.
We denote the linearized Weyl tensor by C̃MNPQ. The

linearized Bianchi identity is

∂ ½MC̃NP�QR ¼ 0: ðB1Þ

The linearized electric Weyl tensor is defined as

ẼPR ≡ C̃NPQRnNnQ; ðB2Þ

where nN ≡ ð∂=∂uÞN . Lemma 3 applies to the leading
order linearized electric Weyl tensor, which has nonvanish-
ing components ẼAB and ẼAm that are harmonic on Mint.
The component Ẽmn satisfies the Lichnerowicz equation on
Mint. Finally, we again have that qABẼAB ¼ ĝmnẼmn.
We now compute the memory effect from the Bianchi

identity. We recall that

Δ̃MN ¼
Z

∞

−∞
du0

Z
u0

−∞
du00ẼMN: ðB3Þ

We start with the scalar memory effect. Since Δ̃mn satisfies
the Lichnerowicz equation we can expand Δ̃mn as

Δ̃mn ¼
XdL
i¼1

Δ̃ðiÞTðiÞ
mn þ 1

D − 4
ĝmnĝpqΔ̃pq; ðB4Þ

in terms of dL trace-free, divergence-free symmetric tensors

TðiÞ
mn which satisfy the Lichnerowicz equation. Note that ĝ is

defined in (1.32). We note that ΔΦðiÞ and Δϕ in Theorem 1
are actually gauge invariant quantities and therefore, the
derivation of scalar memory is exactly analogous to the
derivation in the nonlinear theory:

Δ̃ðiÞ ¼ 1

2
ΔΦðiÞ and ĝmnΔ̃mn ¼

1

2
Δϕ: ðB5Þ
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For the scalar case, working with gauge invariant variables
does not buy us much.
To derive the electromagnetic memory effect, we note

that an explicit computation using the linearized metric
yields

C̃μνρm ¼
Xb1
i¼1

∂ρF
ðiÞ
νμ ðxμÞ ⊗ VðiÞ

m ðymÞ; ðB6Þ

where the bar on the left-hand side denotes a projection to
zero modes as described in Sec. I E. Viewing the left-hand
side as a one-form in the internal space, this means
projecting to harmonic one-forms on Mint in agreement

with the expression on the right-hand side. FðiÞ
μν is the field

strength for the graviphoton associated with VðiÞ
m . This field

strength is now gauge invariant and ∂μ is the derivative
operator compatible with the flat metric ημν.
Since the Weyl tensor is trace-free and satisfies the first

Bianchi identity, it follows that FðiÞ
μν satisfies

∂μFðiÞ
μν ¼ 0 and ∂ ½μF

ðiÞ
νσ� ¼ 0 ðB7Þ

for all i. We then expand FðiÞ
μν in powers of 1

r near null
infinity as given by Eq. (3.5). Using Lemma 4, the only

nonvanishing component of FðiÞ
μν at order 1

r is F
ði;1Þ
uA which,

by Eq. (B6), is directly related to ẼAm in the following way:

ẼAm ¼ −
Xb1
i¼1

∂uF
ði;1Þ
uA ðu; θÞ ⊗ V̄ðiÞ

m ðymÞ: ðB8Þ

The divergence equation for FðiÞ
μν at order 1

r2 constrains the

angular divergence of Fði;1Þ
uA ,

DAFði;1Þ
uA ¼ ∂uF

ði;2Þ
ur : ðB9Þ

Similarly, applying ϵAB the Bianchi identity for FðiÞ
μν at order

1
r2 yields

ϵABDAF
ði;1Þ
uB ¼ ∂uϵ

ABFð2;iÞ
AB : ðB10Þ

Therefore, using Eqs. (B8) and (B3) we find that

ϵABDAΔ̃
ðiÞ
B ¼ ΔðϵABFð2;iÞ

AB Þ and DAΔ̃ðiÞ
A ¼ ΔðFð2;iÞ

ur Þ:
ðB11Þ

On the right-hand side, Δ means the change in the quantity
from u ¼ −∞ to u ¼ þ∞.
Finally we turn to the gravitational memory effect arising

from asymptotic dimensional reduction. Using the fact that
the Weyl tensor is divergence-free and satisfies the

homogeneous wave equation one can show that the zero
mode of C̃μνρσ satisfies

∂ ½μC̃νρ�σκ ¼ 0: ðB12Þ

We first focus on the relevant equations for Ẽμν. By
analogous manipulations that led to Eqs. (4.5) and (4.6)
we find that

∂μẼμν ¼ 0 and □ηẼμν ¼ 0: ðB13Þ

Therefore, the R4 components of the linearized electric
Weyl tensor satisfy the same equations as the components
of the linearized electric Weyl tensor in flat spacetime. One
major difference is that, when one has compact extra
dimensions, ημνẼμν is nonvanishing. In flat spacetime this
quantity does vanish but, in the presence of compact extra
dimensions, the tracelessness of the Weyl tensor implies
that ημνẼμν vanishes if and only if ĝmnẼmn vanishes. This is
a crucial difference that leads to contributions from the
breathing mode of Mint to the observed gravitational
memory in this frame. We will discuss the choice of frame
in Sec. VI. Because of this subtlety we shall explicitly
derive the memory effects implied by the system of
equations given in Eq. (B13).
We now expand Ẽμν in powers of 1

r. The explicit
recursion relations relating Weyl tensor components order
by order in 1

r can be found in [65]. By Lemma 4 the only
nonvanishing component of Ẽμν is ẼAB. Since the trace
qABẼAB is equivalent to −ĝmnẼmn we shall focus on the
trace-free part of ẼAB on the two-sphere. Applying qCADA
to the angle component of the divergence equation in
Eq. (B13) at order 1

r2 yields

DADBTF½ẼAB� ¼ −
1

2
D2qABẼAB þ ∂uDAẼð2Þ

Ar ; ðB14Þ

where TF½·� takes a symmetric 2-tensor on S2 and projects
out the trace: TAB → TAB − 1

2
qABðqCDTCDÞ.

The r component of the divergence equation in
Eq. (B13) at order 1

r3 gives

DAẼð2Þ
Ar ¼ qABẼð2Þ

AB þ ∂uẼ
ð3Þ
rr : ðB15Þ

Finally applying qAB to the angle-angle components of the
wave equation in Eq. (B13) at order 1

r3 gives

½D2 − 2�qABẼAB þ 2∂uqABẼ
ð2Þ
AB ¼ 0: ðB16Þ

Equations (B14), (B15), (B16) imply that
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DADBTF½ẼAB� ¼ ½D2 − 1�ĝmnẼmn þ ∂2
uẼ

ð3Þ
rr ; ðB17Þ

where we used that fact that qABẼAB ¼ −ĝmnẼmn.
Equation (B17) constrains the scalar part of TF½ẼAB� on

the two-sphere. We now consider the vector part. The
vector part of the angle-angle components of memory are
determined by the magnetic Weyl tensor on R4 given by

B̃μν ≡ 1

2
ϵρσμC̃ρσνu; ðB18Þ

where ϵμνρ is the spatial volume form onR4 which is related
to the volume element on R4 by ϵμνρ ¼ ϵuμνρ; indices are
raised with the background flat metric ημν. The magnetic
Weyl tensor is symmetric, has vanishing u components and,
by the first Bianchi identity, is traceless:

B̃uν ¼ 0; B̃μν ¼ B̃νμ and ημνB̃μν ¼ 0: ðB19Þ

Furthermore, the linearized Bianchi identity and the fact
that all components of the linearized tensor satisfies the
wave equation implies that

∂μB̃μν ¼ 0 and □B̃μν ¼ 0: ðB20Þ

Therefore, the linearized magnetic Weyl tensor satisfies the
same relations as the linearized magnetic Weyl tensor in flat
spacetime. In contrast to the R4 components of the
linearized electric Weyl tensor, the magnetic Weyl tensor
is traceless. The system of equations given by Eq. (B20) are
therefore identical to their analogous equations in flat
spacetime. The derivation of the vector part of memory

for perturbations in flat spacetime has been treated pre-
viously in [53]. Since these computations are identical to
the derivation of the vector part of Δ̃AB, we will not repeat
this analysis here. Equation (B20) implies the following
falloff for the magnetic Weyl tensor components:

B̃AB ∼O
�
1

r

�
; B̃rμ ∼O

�
1

r2

�
; B̃rr ∼O

�
1

r3

�
: ðB21Þ

The final result from analyzing Eq. (B20) together with
Eq. (B21) is

DADBB̃ð1Þ
AB ¼ ∂2

uB̃
ð3Þ
rr ; ðB22Þ

where B̃ð1Þ
AB ¼ −ð1

2
ÞϵACẼCB and, explicitly, B̃ð3Þ

rr ¼
ð1
2
ÞϵABC̃ð3Þ

ABru.
After integrating Eqs. (B22) and (B17) and using the fact

that qABΔ̃AB ¼ −ĝmnΔ̃mn we find that

DADBTF½Δ̃AB� ¼
1

2
½D2 − 1�Δϕ − ΔðẼð3Þ

rr Þ; ðB23Þ

ϵCADCDBΔ̃AB ¼ −ΔðB̃ð3Þ
rr Þ and qABΔ̃AB ¼ −

1

2
Δϕ:

ðB24Þ

Equations (B23) and (B24) are consistent with the linear-

ized form of Eq. (6.12) since, by Lemma 5, ΔðB̃ð3Þ
rr Þ

vanishes and Δϕ is spherically symmetric under the strong
stationarity conditions we imposed.
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