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We present the detailed analyses of a model of loop quantum Schwarzschild interior coupled to a
massless scalar field and extend the results in our previous rapid communication [C. Zhang, Y. Ma, S. Song,
and X. Zhang, Loop quantum Schwarzschild interior and black hole remnant, Phys. Rev. D 102, 041502
(2020)] to more general schemes. It is shown that the spectrum of the black hole mass is discrete and
does not contain zero. This supports the existence of a black hole remnant after Hawking evaporation due to
loop quantum gravity effects. Besides to show the existence of a nonvanishing minimal black hole mass in
the vacuum case, the quantum dynamics for the nonvacuum case is also solved and compared with the

effective one.
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I. INTRODUCTION

As a prediction of general relativity (GR), the existence
of black holes has a broad base of support from observa-
tions [1]. However, our understanding of the black hole
(BH) is still far from the end. Among those challenging
topics on BH, its quantum nature is particularly interesting.
By studying quantum BHs, one could not only solve
puzzles originating from the classical theory, but also
achieve more understanding on the theory of quantum
gravity.

As a background-independent approach to quantum
gravity, loop quantum gravity (LQG) has been widely
studied in the past 30 years [2-7]. Although some impor-
tant breakthroughs have been made in LQG [8-16], its
dynamics is still an open issue. The obstacle of LQG can be
bypassed through applying the loop quantization tech-
niques to the symmetry-reduced sectors of GR, where
the expression of the Hamiltonian constraint becomes
much simpler than that in the full theory. The resulting
quantum models are expected to reflect some quantum
features of full LQG, in spite of the fact that they might not
be equivalent to the direct symmetric sector of full LQG.
An improved treatment of quantum-reduced LQG has also
been proposed to study the symmetric sectors [17]. These
ideas were applied to study loop quantum Schwarzschild
BH recently with different perspectives [18-39]. However,
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most of these studies focused on the effective dynamics,
where one considered the Hamiltonian constraint with the
holonomy correction and solved the effective Hamilton’s
equations. This treatment resulted in several important
achievements. In particular, it resolves the singularity
inside the Schwarzschild BH and predicts certain exten-
sions of the Schwarzschild interior beyond the singularity
(see, for instance, [26,27,34-36]). However, in the effective
prescription one cannot see more intrinsic quantum natures
of BH, such as the ground state of quantum BHs and the
discreteness of the spectrum of Dirac observables. After all,
it is necessary to consider the quantum dynamics.

There are several crucial topics on the quantum dynam-
ics of BH. One is the issue of the final state of BH
evaporation which is related to the constituent of dark
matter and the puzzle of information loss. According to the
Hawking radiation [40], the primordial mini BHs in the
very early Universe should be completely evaporated by
now. However, if the BH evaporation is halted at some
stable state by some quantum gravity effect, which is called
the BH remnant, these remnants would result in important
cosmological consequences [41-43]. Remarkably, the rem-
nants originating from these primordial BHs could even
comprise the entire dark matter in the Universe [41,42].
Moreover, thanks to the remnant, one could argue that the
information fallen into a BH with matter could be stored in
the remnant after its evaporation. This provides a possible
approach to solve the puzzle of information loss [44,45].
Furthermore, the distortion of the semiclassical Hawking
spectrum resulted from certain discreteness of the BH mass
was studied [46—49]. It was argued that in certain cases, the
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distortion could be observable even for macroscopic BHs
[46]. Although these debates are crucial and long-standing,
there was no systematic study by quantum gravity to lay
a solid theoretical foundation for the arguments until
the prediction of a BH remnant in LQG models by [50].
In [50], the treatment of loop quantum cosmology (LQC) is
employed to give a minisuperspace model based on the
Kantowski-Sachs spacetime which has only two degrees
of freedom, even though the precise relation between
LQC and LQG remains open. The purpose of this paper
is to provide the detailed constructions in [50] and extend
the results to more general schemes. Moreover, the
quantum dynamics of the model will be further studied
in detail.

We study the model of a loop quantum Schwarzschild
interior coupled to a massless scalar field. The quantum
Schwarzschild BH, as the vacuum case of this model, can
be resulted by vanishing the scalar field. The phase space of
this system contains three pairs of canonical variables:
(b, pp) and (c, p.) for gravity and (¢, p,) for the scalar
field. By deparametrizing this model, one gets the physical
Hamiltonian /} of the relational evolution with respect
to the scalar field ¢ [51-53]. In the classical theory,
the Poisson bracket between ) and the mass M of the
Schwarzschild BH vanishes. This indicates a classical
Dirac observable m = cp,. proportional to M. However,
this commutativity may no longer be kept by the corre-

sponding operators b and /% in the quantum theory, which is
relevant to the choice of schemes for the quantization of §.

We only focus on the schemes such that f) and 7 are still
commutative, since the commutativity means the existence
of a Dirac observable /. Note that a general class of
schemes adopted for the loop quantization of the current
model can meet our requirement. In particular, it is valid for
the u, scheme [18,19] and the new scheme balancing the y,,
scheme and i scheme [24,26,27]. However, it cannot be
met by the i scheme [20,22]. .

We will first construct the Hamiltonian operator § and
study its properties analytically. Thanks to these analytical
results, a numerical method to diagonalize bis proposed so
that the dynamics is computable. Then the quantum
dynamics of the model can be solved for the nonvacuum
case, and it can be compared with the effective one. For the
vacuum case, the Hilbert space consisting of the physical
states of the Schwarzschild BH is built up. In this Hilbert
space m is promoted to an operator which has discrete
spectrum 6 with 0 € ;. This result supports the existence
of a stable BH remnant.

This paper is organized as follows. In Sec. I, the theory
of a loop quantum Schwarzschild BH interior coupled to a
massless scalar field is briefly reviewed, including the
deparametrization and the polymer quantization of this
model. In Sec. III, we construct the physical Hamiltonian
operator and study its properties analytically. Then the

quantum dynamics for both nonvacuum and vacuum cases
are solved in Sec. V. Finally, in Sec. VI, our results are
summarized and discussed.

II. PRELIMINARIES

A. Deparametrization of the model

Given a spatially homogeneous 3-manifold X of topo-
logy R x S2, because of the homogeneity, X is endowed
with a fiducial metric

Gapdxadx? = dx? + r2(d6? + sin20dgp?),  (2.1)
where (x, 0, ¢) are the natural coordinates adapted to the
topology and r, is a constant with dimension of length.
Since X is noncompact in the x direction, we introduce an
elementary cell C = (0,Ly) xS* in ¥ and restrict all
integrals to this elemental cell to avoid the divergence of
integrations.

The classical phase space of gravity coupled to a
massless scalar field contains the Ashtekar-Barbero
canonical conjugate pairs (A% (x), E¢(x)) for gravity and
(p(x), m(x)) for scalar field. As far as the homogeneous
states are concerned, the scalar field ¢ is reduced to a
constant and the fields Al (x), E¢(x) and 7,(x) take the
forms [53]

Al z,dxd = Lir3dx + br,d0 — br, sin 0dg + 75 cos Ode,
0
E?Tiau = P73 sin Hﬁx + &72 sin 989 — &1184),
Ly Ly
pqp ©° p(p

n, = =-—=38inf,
" Anrd 1= 4z

(2.2)

where 7; = —io;/2 (j =1, 2, 3) with ¢; being the Pauli
matrix and ¢, b, p., p; and p,, are all constants. According
to (2.2), the symmetry-reduced phase space is coordinat-
ized by the pairs (c, p.), (b, p,) and (¢, p,). The non-
vanishing Poisson brackets read

{c.p.}=2Gy,

{b.py}=Gr. (2.3)

{o.p,}=1.
By the symmetry-reduced expression (2.2), the Gaussian
and diffeomorphism constraints vanish automatically. The
dynamics of this model is encoded in the Hamiltonian
constraint. In the full theory of gravity coupled to a
massless scalar field, the Hamiltonian constraint can be
deparametrized as [54]

C(x) = m,(x) £ /h(x) =0,

where h(x) = —2+/| det(E(x))|Cy(x), with Cy, being the
vacuum-gravity Hamiltonian constraint. The so-called
physical Hamiltonian can be written as

(2.4)
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VGy S /i)
phy\/4—ﬂ_d

= g LB Fleu 20K K,

(2.5)

where F¥, denotes the curvature of the connection A’ K/,
is the extrinsic curvature and the prefactor is adapted for
convenience. It generates the relational evolution with
respect to the scalar field. Substituting (2.2) into (2.4)
and integrating both sides in the elementary cell C,
one finally obtains the Hamiltonian constraint of our
model as

| Vix
= 2.6
= oLy V0= (2.6)
where §) is given by
b= p,((0* +7°)py + 2bcp,). (2.7)

In this work, we will also refer to the physical Hamiltonian
as h though it is related to the true physical Hamiltonian

hphy by \/E = hphy'

The quantum states of the model are described by vectors
in the Hilbert space H, = Hpy ® Hyr, Where Hy,y and Hy,
are the Hilbert spaces describing the matter and gravity,
respectively. The physical states |y);,, should satisfy the

quantum version of the Hamiltonian constraint, i.e.,

Vi R
<p(p im \/B> |l//>phy =0.

It gives us a Schrodinger-like equation. Therefore, in the

(2.8)

case that the operator 1/} is self-adjoint, the physical states,
i.e., the solutions of (2.8), can be expressed as

T

|l//>phy |l//>grv (29)
where [yr),, € H,, is a state of pure gravity and £, := vGh
is the Planck length. A Dirac observable Oy, takes the
form

:t 4nG
Oy = Lorfz"’\[ B fz‘”*[ (2.10)

with an operator O, in Hy,.

To carry out the above deparametrization procedure,
in next subsection we will introduce the polymer quantiza-
tion for the gravity and obtain its Hilbert space H. Then a

self-adjoint operator ﬁ on ‘H is proposed by the loop
quantization procedure. Finally we restrict ourselves to the

subspace consisting of non-negative spectra of E to define
the Hilbert space

He = Plg o) H. (2.11)

where IAD[O,OO) = ){[O,oo)(/f;) is the projection operator with

respect to the spectrum decomposition of H

B. The polymer quantization

The polymer quantization of the gravity in this model
leads to the Hilbert space [18]
H ="Hy ® Hc = L*(Rponr- dttg) ® L* (Rpone- o). (2.12)
where dy is the Haar measure on the Bohr compactifica-
tion Rp,,, of the real line R (see Chap. 28 in Ref. [6]).
The two spaces H; and 7, correspond to the canonical
conjugate pairs (b, p,) and (c, p.), respectively. The
standard basis of these two Hilbert spaces are denoted
by |u) € Hy and |z) € H,. Their inner products read

(t'r) =6, ., (2.13)

</’/|/"> = 6/4’,/4’
where the Kronecker-6 symbol is employed.
There are two types of basic operators in the Hilbert
spaces. One is the momentum-variable operators p, and
De» Whose actions on |u) and |r) are given by

. v¢3
Polu) = TP.“W’

Pelt) = re2el). (2.14)

The other is the configuration-variable operators e’ and

e, whose actions read

e"lu) = |u+22),

elz) = |z + 22). (2.15)
As in the model of LQC, the operators Eﬂ\b and e/i\’lc

correspond to the holonomies along the edges parallel to
the R direction and the equator (or the longitude because of

the homogeneity) of S?, respectively. Moreover, e’ and

”1‘ are not strongly continuous with respect to A. Therefore

there are no operators corresponding to the configuration
variables b and c¢ in our model. This respect to the fact that
there does not exist an operator corresponding to the
connection itself in the full theory.
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III. THE PHYSICAL HAMILTONIAN OPERATOR

A. A separable subspace H of H

According to (2.13), the Hilbert space 7 possesses a
noncountable orthonormal basis, and hence it is nonsepar-
able. The problem that the kinematical Hilbert space is
nonseparable has appeared in both LQG and LQC. In LQG,
the nonseparability is caused by the uncountability of the
graphs based on which the Hilbert space is defined. In
LQC, it is caused by the polymer quantization procedure
which leads to an uncountable orthonormal basis as the
case of the present model. In LQG, one proposed to employ
the diffeomorphism invariance to identify the diffeomor-
phism equivalent graphs in order to obtain a separable
diffeomorphism invariant Hilbert space [4]. In LQC,
the problem is tackled by the superselection feature of the
Hamiltonian constraint. More precisely, because the
Hamiltonian constraint operator preserves some separable
Hilbert subspaces, one can confine the study in a certain
separable subspace [55,56]. Since we use the LQC treatment
in the current model, the situation is very similar to that in
LQC. As shown below, a separable subspace H C H can be
selected, which is preserved by the Hamiltonian operator.

Now we adopt some results in [18] to get a quantum
physical Hamiltonian of the model. Classically, the physi-
cal Hamiltonian (2.7), redenoted by §)., can be rewritten as

be = 2pybpec + ppb* + v pj, (3.1)
where p.c is a Dirac observable. Actually, for vacuum
gravity, one has p.c = LyyGM with M being the mass of
the Schwarzschild BH [53]. Since in the Hilbert space
there are no operators corresponding to » and c, the
expression (3.1) cannot be promoted to an operator directly.
We thus return to the integral expression (2.5) of the full
deparametrized theory and follow [18] to express Cg in

terms of F — d(yK) + [yK,yK] and the spatial curvature
Q = —sin(0)d0 A ders, with

1
K=- (i 73dx + br,df — bt sin quﬁ) (3.2)
¥ \Lo

denoting the extrinsic curvature. Then the physical
Hamiltonian A, is expressed by

] 3
%w=4%%1}ymw, (3.3)

where

B0) = | BB (Fa0) - POy e (34

Note that, in comparison with the expression (2.2) of A, the
expression (3.2) does not contain the term 3 cos(0)de.
Thus the “holonomy” of K along the ¢ direction is much
simpler than that of A. Moreover, since € does not depend
on dynamical variables, one needs not to regularize it by
holonomies. To regularize (3.3), one fixes three edges
intersecting at a point y, € C, where the first edge e is
along the R direction of X taking length #; = 6.L, and the
other two edges e, and e; are along the equator and the
longitude of S? with the same radians Z, = #5 = §,. By
defining the “holonomies”

h,-z@xp(/K),

ok
one can regularize F;, as [18]

(3.5)

°k 2 o oj
Fap(yo) = —Zﬁtf(hihjhi_]hflTk)wa(yo)wi(J’o)
7 CilJ

+ 0( V l’ﬂa’/ﬂb)’

where ci)la denotes the cotriad of the fiducial metric (2.1),
adapting to the three edges e;. It should be noted that in the
treatment to obtain (3.6) in [18] the edges along the equator
and a longitude fail in forming a closed loop. However, it is

(3.6)

easy to show that (3.6) still holds for Fy , in the symmetric
model. It is worth mentioning that in an improved treatment
proposed in [37] for the quantum-reduced model of LQG,
one could integrate the connection over a really closed loop
on the sphere to regularize the curvature. Substituting (3.6)
and the expression (2.2) of EY into (3.4), we thus get a
regularized expression of A(y,) at some point y, in the
equator as

h(yo) =

sin(6.¢)

,sin?(3,b)

N 477.'L0 b

1 sin(8,b
\/2pb %b )p

+72p3. (3.7)

At

b 2
c 5/)

Note that the homogeneity indicates that (3.4) takes the same value up to a sin(8) factor due to its density weight at different
points on the same sphere. Thus one can obtain the regularized expression of i(y) at any point y as

sin(6.¢)

, sin?(8,b)

h(y) = sin(6) \/2Ph sin(;bb) p

- 47TLO b

> = +v2p2, 3.8
5C b 5% 4 ph ( )
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regardless of the limitation that (3.8) is obtained by using

the homogeneity of the 2-sphere rather than doing the

regularization point by point on the whole sphere.
Substituting (3.8) into (3.3), one thus gets a regularized

version of /iy, = 1/ for our model, where

56030 — 2, sin(;zbb) 5 sin(SSCc) L P2 Sinzégbb) 2
(3.9)
satisfies
b, = limpr3. (3.10)

=0
30

Then it is straightforward to write down the operator B(Sb )
by replacing the basic variables in (3.9) by their quantum

analogs. Note that the limit 5, — 0 and 5, — 0 of /f;(éb"sf)
does not exist for the polymerlike quantization. To obtain
certain definite values of &, and &,., we will employ the
ideas from LQC [55,56] to make use of some physical
result of quantum geometry in LQG, which enable us to
define a physical regularized Hamiltonian § as

o (5.b s
h= ~lin‘lf)(‘sb»@») =2p, sin(d, )Pc sin(5,.¢)
?Sh:gh 5b 50
sin”(8,b)
e (3.11)

Then the physical Hamiltonian operator could be obtained
by quantizing (3.11). In the loop quantization of the model,
various strategies have been proposed in choosing the two
quantum parameters o, and .. Roughly speaking, the
choices can be classified into three schemes. The first one is
the uq scheme where 5, and §, are chosen as constants
[18,19,21]. The second one is the 7 scheme which allows &,
and 6§, to be any functions of p;, and p, [20,22]. The third
one, referred to as the modified scheme, was developed
recently where 9, and o, are phase space dependent only
through Dirac observables [24,26,27]. Since the expres-
sion p,sin(5.¢)/8,. in (3.11) corresponds to the classical
Dirac observable p.c = LoyyGM in (3.1), we are motivated

to assume that the quantum operator /4 is composed of a
Dirac observable p_sin(§.¢)/5., which is self-adjoint and

commutes with ﬁ This assumption rules out certain
strategies such as the @ scheme where 5. depends on p,
and &, depends on p, since the resulting operator would no

longer commute with ). Furthermore, we assume that &, is
a constant or any function of the Dirac observable

—

p.sin(8.¢)/8. for the following analysis. Similar assump-
tions were adopted in p, scheme and the modified scheme.

They are sufficient but not necessary to obtain a Dirac

—

observable p.sin(é.c)/8.. In summary, the current paper
focuses on the schemes such that ~
(i) aseparable Hilbert subspace H, C H, can be chosen

—

to define an operator p sin(5.c)/5, corresponding
to p.sin(8.¢)/8., which is self-adjoint, commutates
with the physical Hamiltonian B;

(ii) the quantum parameter §, is a constant or any

function of p, sin(5.¢)/8,.

It should be noted that in the y scheme the Hamiltonian
operator which we obtained coincides with the Hamiltonian
constraint operator constructed in [18] up to the inverse
volume and some operator orderings. Denote o, as the

—

spectrum of the Dirac observable p_sin(5.¢)/8,.. Then H,
is isometric to the Hilbert space L?(o.,du.) with the
spectral measure du,. The Hilbert space Hy, ® H, C H
can be represented by L?(o.,du;H,) in which each

element is a F{y-valued function on o,. The representation
is defined by

U:ﬂb ® Lz(audﬂc) Sy, Q.

= we( )Wy € L* (0, duc; Hy). (3.12)

The inner product in L2(o,, du; Hp) is given by

W) = [ @), (313)

O

where (y()(x)[w® (x)) denotes the inner product of
yD (x), ) (x) € H.

For convenience, the elements in the spectrum space can
be denoted by L,ym € o, with m € R in analogy with their
classical correspondence p.c = L,yGM. We also define

B = ppsin(Ab). (3.14)

For a state y € L?(6,., duc; Hy), w(L,ym) € Hy is abbre-
viated to y(m). Then the action of § on y reads

~ 2L ,ym -~ I~ ~
(by)(m) = < (m) Pym + (T”ﬁ(i(m) + 721’%) w(m),
) ’ (6, ) ™
(3.15)
where 5§,’”> = 6,(L,ym) due to the dependence of &, on

—

pesin(é.c)/8.. By (3.15), the separable Hilbert subspace
H C L*(o..du.; Hy) preserved by /I)\ is constructed as
follows. Given L,ym € o, let Hy(m) C Hy be a separable
Hilbert space preserved by ﬁaﬁ”’)' Then the Hilbert space

H C L*(o,, du,; Hy) contains the state y such that y(m) €
Hy(m) for all L,ym € o.. For convenience, the Hilbert

024069-5
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space H constructed by Hy(-):m — Hy(m) through this
procedure will be denoted by L?(o, du,; Hy(+)).

B. The operators ﬁ,l

According to (3.15), the action of ﬁ is determined by the

(m)

property of B(s;’”“ Since §,, ’ is constant for a given m € R,

we will drop the superscript in 5(bm)

constant ;. Classically, one has

and consider 5, with a

1 . .

Py sin(8,b) = % (ppe®” = pye=P).  (3.16)
i

A well-known ambiguity in the quantization procedure is

caused by the operator ordering. By definition, one has

e, = (P = Spr€3)e™. (3.17)
We hereby introduce a parameter b to parametrize various
operator-ordering strategies and define

Py’ = (P, + r£3b)e %", (3.18)
Then, we can define a symmetric operator corresponding to
(3.16) as

1 —
Ps, =5 (B +1¢50)e b — Zi0h(5, + y£3D)). (3.19)
Its action is given by
~ 1 yff,
Bs,ln) = % (1 + 26, +2b)|u +25,)
— (4 +2D)|u — 265)). (3.20)

Thus the separable Hilbert subspaces of 7, preserved by
Ps, are given by

= {y € Hy.y(u) #0only for u =¢, +2n6,,.n € Z}
(3.21)

for some constant ¢, € [0,25,). We will show below that
the separable Hilbert subspace preserved by the physical

Hamiltonian § can be constructed with Hy'.
Denote the restriction of 5, on H(;l’ ) by fs, rHEfb )

Hfj’ and H‘Z” , a natural isomorphism between them can be
defined by

. Given

iTHE 3 (e, +2n8,) > |8, +2n8,) e Y. (3.22)
It introduces an operator i(ﬁgh rHésh))i‘l in Hgf”) whose

action reads

i(Bs, 1HY)i7V 8, + 2n6),)
1yt3

217 ((2]’1517 + Ep + 25}, + 25>|£b + 2n5b + 25b>
— (216, + &, + 2b)|&, 4 2n8), — 26,)). (3.23)
where b := b + (&, — &,)/2. For clarity, let us use ﬁ((;:) to
denote the operator ,/B\(% with respect to the constant b = x.
According to (3.23), to study the operator ﬁg? nggb ) with
respect to x # 0, one can use the operator i (ﬁg) nggb Nt
on 'Hib with &, = &, + 2x and, thus, have

iy, )i

ﬂéh Wa (&), (3.24)

Therefore, without loss of generality, we can set b = 0 and

study properties of ,B5 er for any given ¢,.
From now on, let us refer to the restriction ,B,; rH ) for

some Hﬁ as ﬂéb unless specially noted. Because ﬂ(;b is
unbounded, one has to assign certain domain to complete

its definition. A natural choice of the domain D(Ba,,) reads

D(By,) = {w € Hy” . lsupp(y)| < o} (3.25)
where |supp(y)| denotes the cardinality of the

support of y. This implies that D(ﬁ(gb) only consists of a
finite linear combination of the basis |u) € ’Hgfh). The
essential self-adjointness of ﬁ(;b with the domain D(ﬁéb) can
be proven. Define a self-adjoint operator N(>1) as

N lu) = (1 4+ p?)|u). Then it is straightforward to verify
that there exist numbers ¢, d € R such that

185wl <cl[|[Nyll. VyeD.
|(Bo, v Nw) = (N s, )| <d|N"Py ||, ¥ weD,
(3.26)
where (-,-) denotes the inner product in Hgg”). Therefore

ﬁéb is essentially self-adjoint with the domain D(ﬁgb)
according to Theorem X.37 in [57].

By expanding the eigenequation ;5 [y) = w|y) with the
basis |¢), one has

1yt

oy (p) = 5275 (1 + 26, ) (u +28y) = py (u = 28) ).

(3.27)

As shown in the behaves

asymptotically as

Appendix A, y(u)
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ﬁmei’”‘l("“) + e D) L O(|u|™),  u =y +4nd,,
w(u) = . . (3.28)
G )~ D) (), = ey + (4025,
I
where k= and ne€Z. This implies that  from ’Hggb) to the specific Hilbert space Hf”) with &, =

2
[y (p)Pdu = ©'55, and hence

> lww)P =

p=e,+2n

Thus w(u) is unnormalizable. Moreover, since y(u) be-
haves asymptotically as a plane wave of In(|u|), we can
show by using the same techniques as in [58] and the

Weyl’s criterion [57] that the spectrum of p,sin(8,b) is the
entire real line R. Furthermore, the two leading-order
functions in (3.28), denoted by

(e g o=k,

£ =
Yo (U \/m

satisfy

\/IF\/W

—iyt36,5gn (1) o () = wyg (u),  (3.29)

where sgn(u) denotes the sign function of x. This implies

that the operator E;b, in the large p limit, returns to the
Schrodinger quantization of p,b:

JI?\/\?

b = —iyt%sgn(p) (3.30)

Therefore, the classical limit of /ﬂ\(sb is correct. This finishes
the quantization procedure of p, sin(6,b) and the study of

the properties of the corresponding operator E(;b. The same
discussion can be transported analogously to p.. sin(é.c)

for constant §.. The resulting operator p.sin(5.c)/5. is
self-adjoint and possesses the entire line as its spectrum.

These properties of pcsin/(é\cc) /6, are compatible with our
general assumptions.

C. The operator ﬁ
Let us denote the operator in the rhs of (3.15) as

ﬁ(m) — 2L0ym

Bs, + 52 ﬂab + 7’ Dj. (3.31)

It should be noted that the operator ﬁ,;b in (3.31) is the
original one defined by (3.20) with nonvanishing b.
However, as discussed below (3.23), the identity map i

€, + 2b ensures that we can set b = 0. Thus, by this

treatment we define an operator in Hf”) corresponding
to ™ as
. r(m £p) — 2L0}/m S ()
(0" M )i =i B, 1)
1. ep)y i L )N i
i T i P )i

(3.32)

where the map i, defined by (3.22), identifies the Hilbert

spaces Hgb) and Hf” ) with g, = €, + 2b. For the first two
terms in this operator, one has

i((Bs,)" THE )i = (B THE (3.33)

where ﬁgj) is defined by (3.24). For the last term, we have

i(P2IHE)i 8, + 2n8),)
= [(p» —r£3b)? fob)Hgb +2nd,).  (3.34)
Therefore, (3.32) can be expressed as
. n(m Ep)N + 2L(,ym (0 g
i(B" 1Hg )it == (B 1) + [<ﬁ§,}>2 "]
+7? [( —y£3)* 1Hy" }- (3.35)
That is, by setting b = 0 for the B(; in ﬁ f? has to be
replaced by p;, — yfzb Thus we redefine I) " a
T(m 2L()7m
p" = Bs, + /is,, +72(Py —r£30)% (3.36)

where ﬁ(;b is defined by (3.20) with b = 0. As a conse-

quence, the operator E is changed correspondingly to

~ —~,

(By) (m) = 5"y (m) (337)
with the redefined §"™
Now let us construct the separable Hilbert

L*(o., duc; Hy(-)) as mentioned below (3.15). To do this,
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we only need to assign to each m the Hilbert space H, (&5 m)),

i.e., to define Hg(-) as

Hy () :m > Hy(m) = ng”(m)), (3.38)

where ¢, :m > €,(m) € [0,25,) is assumed to be some
sufficiently well-behaved function. Then the resulting
Hilbert space L*(o.,du.; Hy(-)) is supposed to be acted
by 5 To define the domain of the unbounded operator E

we first define the domain Dy (m) of §™ ngf”(m)) for each
m by

{weH™

Dy(m) = </4|z;/> # 0 for finite numbers of y}.

(3.39)

Then the domain of B, denoted by D(E) reads

D(b) = { € L*(6.. duc: Hy(-)).w(m) € Dy(m) ¥V m}.
(3.40)

We now complete the rigorous definition of the operator ﬁ
Since B is identical to the operator-valued function
B('):mHﬁ(m), instead of investigating E itself, it is
sufficient to study §™ for all m. In the following, to

simplify our notions, we will abbreviate €,(m) to ¢, if the
dependence of €, on m does not matter. Moreover, the

IH) with the domain Dyg(m) is
. Furthermore, when E is mentioned,

restricted operator 5
denoted simply by §™
it refers to the operator ) with domain D(}).

The operator ﬁ and ﬁ(m) are necessary to be self-adjoint
to govern a well-defined dynamics. By using the Kato-

Rellich theorem [59], we can prove that both H and H(m) are
essentially self-adjoint (see Appendix B for details).

Because of the essential self-adjointness of E and B("O

their closure, denoted by f)\(m) and f)\, respectively, can be
regarded as the Hamiltonian operator of the current model

with the desired properties. We use Dy(m) and D(f}) to

denote the domains of B(m) and E respectively.

IV. DYNAMICS GOVERN BY §
To solve the dynamics governed by ﬁ one needs to

diagonalize /I; or, equivalently, to diagonalize ﬁ('") for all m.
To begin with, we first study the discreteness of the

spectrum of §™. By definition, §™ can be reexpressed as

-~

m 1~ 2 ~
f)< ) = —Lim?*y* + <L0my + 5—17,55,,) + 72 (py — ;'fﬁb)Q-

(4.1)
Thus, one has
Wwib™ ) = 2wl By~ r£30)1y)
- Lgm*r*(wly), V¥ |w) € Dy(m). (4.2)
Hence /f)\(m) is bounded from below. By (4.2), we can obtain
(8" 2 =L3m?7 + 2, (Py = r30)).  (43)
where, for an operator A, /4,,(:4\) denotes
pa(A) = sup inf  (y,Ay).  (44)
A S e S

Note that (pj, —yZ3b)* can be defined on Dy(m) by
definition. Hence u,((p, —y£3b)?) is well defined.
Since p,((py — y£3b)?) = o0 as n — oo, one has that

lim p1,,(h (4.5)

n—0oo

Hence, according to the min-max principle (see, e.g.,
Theorem XIII.1 in [60]), I)

In other words, each element in the spectrum of f)

) has purely discrete spectrum

denoted by o(§™), is an eigenvalue of §™ with finite
multiplicity.

Given the significance of f) , it is desirable to under-

stand the properties of U(I]( )). In particular, one may ask
whether the eigenvalue w(m) as a function of m is analytic

or not. This issue is closely related to the analyticity of EO")
on m in the sense of Kato [60,61]. To overcome the

technical difficulty that I) for different m are defined in
different Hilbert spaces, we employ the following unitary
map for a given m,:

£, H ") 3 ey (m) + 2n5(’”>>

— |ey(m,) + 2n 5'"" ) € H , (4.6)

where the dependence of &, and 6, on m is written
explicitly. The issue on the analyticity of @(m) can be

equivalently discussed by that of 1mf) ,711

defined on 1,,Dg(m) = Dg(m,). For simplicity, let us
use 67 and & to denote 6<m"> and ¢,(m,), respectively.

A sesquilinear form T’ ( -) associated to 1,51, can
be defined on Dy(m,) by

which is
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7w )= ltnd iz 10).  w.p€Dy(m,). (47)
Then (4.2) implies that 7', is semibounded, i.e.,

Ty, w) 2 —L§ V w € Dy(m,). (4.8)
Hence, T,, is closable. Its closure, denoted by 7T, is the

extension of 7, on the closure of Dy(m,) with respect to
the norm

Wl =/ Tulww) + (L3m2 + Dly).  (49)
Since the norm ||y||,, depends on m, the resulting closures
Q(m) of Dg(m,) could depend on m in general. Suppose

that 5,(;"> and &, (m) are analytic functions of m at m, and

52 2 # 0. It turns out that 7', is an analytic family of type
(a) in the sense of Kato (see Sec. VII4 in [61]). This, by
definition, is ensured by that (i) Q(m) = Q(m,,) for all m
sufficiently close to m,, and (i) T, (w, w) is analytic on m
for all w € Q(m,). The detailed proof of this conclusion is
presented in Appendix C.

Because T, is symmetric and closed, there is a self-

adjoint operator Tm associated to it, which is indeed the
Friedrichs extension of §™. By the analyticity of 7, t,,
forms an analytic family of type (B) in the sense of Kato
(see Sec. VII4 in [61]). As a consequence, iml)\(mi,;l and

=~

thus §"™

carry the same property because of

~

t,=1,5"™i;!, which can be proven as follows. Firstly,

the domain Dg(m,) of 1,5 ;! is the closure of Dy (m,)
with respect to the graph norm

wll, = /1linb™

Secondly, applying the same techniques in the proof of
Lemma C.1 in Appendix C, one can show straightfor-

wardly that || - [[, is equivalent to the norm || - ||}, defined by

Gl 4yl

lg

lwlly =/ wlBilw) + v,

Finally, because of [|y||. < ||} for all y € Dg(m,), one

concludes Dy(m,) C Q(m), which results in t, =

mf) ,‘n' according to the uniqueness of the Friedrichs
extension.

Due to the analyticity of f) , the analyticity of w(m) can
obtained directly (see, e.g., Chap XII of [60] and Theorem
VIL1.8 in [61]), which is summarized precisely as the
following theorem.

Theorem IV.1. —Suppose that 5(”’) and &,(m) are analytic

functions of m at m and 5 # 0. Given an eigenvalue w of

ﬁ@) which is of an algebraic multiplicity k, for each m

which is sufficiently close to m, I) has exactly k&

eigenvalues (counting multiplicity) near . These eigen-
values are given by p(< k) distinct, single-valued and
analytic functions @, (m), ..., w,(m).

While this theorem is valid for the general cases that the
eigenvalue @ possesses the algebraic multiplicity £ > 1, it
can be seen from the numerical results in the next section

that each eigenspace of ﬁ<m>
dimensional.

for all m is exactly one-

A. Numerical approach to compute the
eigenvalues and eigenstates

Since §™
lw) associated to each w € a(ﬁ(m)) is normalizable. Hence
the function w(u) := (u|y) decreases rapidly for suffi-

ciently large values of |u|. This fact motivates us to use
the finite-dimensional cutoff approximation to collect

has only a discrete spectrum, the eigenvector

eigenvalues of ﬁ(m). More precisely, we consider a finitely
dimensional subspace, denoted by Hg&‘h’k)

) = |eb + 2n5,) € Hy () with || < k for some large k.

, spanned by

Let P be the projection operator to H ) such that
(k) _ ), Inl <k, 4.10
|ﬂ"> { 0, otherwise. (4.10)

Given an eigenvector |w) of /I;(m) with respect to an

eigenvalue w, we have

PUR"PY —w)ly) = (PUFPY 5"y
= ~(1= PO Py
- PO = PW)ly)
- (1= PR (1= PY)p).
(4.11)
Since w(u) := (u|y) rapidly decreases for sufficiently large

values of |/, the term 1 — P%) in the rhs of (4.11) indicates

that (ﬁ(k)ﬁ(m)?’(m o)|y) should be very small for large k.
Thus it is reasonable to expect that @ and |w) can be
approximated by a certain eigenvalue and its corresponding

o~

eigenvector of ﬁ(k)/ﬁ(m)P(H, respectively, for large k. This is
the reason for our finite-dimensional cutoff approximation
method. To apply this method, we need to identify those
eigenvalues of ﬁ(k>ﬁ('")i)(k> suitable for approximating the
eigenvalues of H(m) and check whether all eigenvalues of

EW) can be approximated by this way.
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Since ﬁ(k>ﬁ<m>ﬁ(k) is a (2k 4+ 1)-dimensional symmetric
matrix under the basis |u), it has (2k + 1) eigenvalues. We
denote them as /ng) with /1(11{) < ﬂgk) <o < /15’&1, where the

subscript i denoted that /ng) is the ith eigenvalue from the

least and the superscript k corresponds to the superscript of
P, Obviously, we have i <2k + 1 in ﬂgk). Thus, once the

ith eigenvalue of ﬁ(k)/f)wﬁ(k) for some k is mentioned, k
should satisfy k > k, (i) with k, (i) == (i — 1)/2. Moreover,

because /f)\(m) is semibounded, it has the minimal eigenvalue.
Thus its eigenvalues can be denoted by w;withi=1,2,...
such that w; <w, <--- <w, <---. Then by using the
Rayleigh-Reitz technlque (see, e.g., Theorem XIIL3 in [60]
and Appendix D), one can obtain

A0 5 k@) 5

N

fet fetl i

(4.12)

(k)

As a consequence, the limit of 4, as k — oo exists, i.e.,

A= klimz,@") <o (4.13)
Consider the sequence {l//, ,1//<k ol Hl),

) ..}, where, for each k, z//l-
of f)(k)ﬁ(m)ﬁ(k) with the eigenvalue /1,(»1{) and satisfies
||1//l || = 1. Because of ||1p,(<k)|| =1, the
{y/l ,1,//5 D+ ...,wl(k"(i)”), ...} contains a sub-
sequence by the Banach-Alaoglu theorem; i.e., there exists

y; € Hggh ) such that

is an elgenvector

sequence

Vg eH™. (4.14)

im (" |g) = (wilp).

=00
Consider all weakly convergent subsequences of {1// (ko i))

1//5 ol >+1), w<k ol >+" } and collect their limits deﬁned

by (4.14). Denote the space spanned by these hmlts as A, It

turns out that each 4; is an eigenvalue of I) and all the
elements in A; are eigenvectors corresponding to the
eigenvalue 4; (see Theorem E.1 in Appendix E for proof).
Therefore, the ith eigenvalue and its corresponding eigen-

vectors of f’(k>ﬂ(m)13(k> with k> i approximate some
eigenvalue and eigenvectors of E(m), respectively. To check

whether all eigenvalues of ﬁ(m) can be approximated by the
finite-dimensional cutoff approximation, we can show that

s(®") n

if 4; # 4,4, (see Theorem E.2 in Appendix E for more

(i Ai1) = @, (4.15)

details). In other words, each eigenvalue of E ™) is a limit

point of the sequence {/lf”(j ),/lf”(j)ﬂ, ﬁf o) o, ...} for

some j.

The accuracy of the above approximation can be dis-
cussed by the following procedure as in [62,63]. Let |1//f )>

be a normalized eigenvector of p )I)(m)ﬁ(k) corresponding
to the eigenvalue /1,“). One has

k
w1 ) = 4. (4.16)
Defining
el = (5" = 41y (4.17)
we will show
A€ (A = W 4 gy, (4.18)

Let {|w, 5)} be an orthonormal basis of the Hilbert space,

consisting of eigenvectors of f)<m), where @ denotes the
eigenvalue and ¢ represents other quantum numbers. Given

/lgk), for arbitrary real numbers a and § with a < /ll(-k) < p,
we have

w16 - 6" - )

=Y Y @-a@-plw weP. (419
[CI]
Then supposing (a. 8) N 6(§™) = @, one will get
w16 - )@ Al 2 0. (420)

Because of (y”|(5" = 4")w/") = 0. ("I(B™ -

a) (W - ,ﬁ)|l//l(»k)> can be expanded as

=@+ @Y - -p).  @21)
Substituting (4.21) into (4.20), we get
(k)y2
p<ah g (e 7)" (4.22)
AW g

Note that (4.22) holds under the assumption (a,f) N
o(§") = @. Thus, if > 4"+ (e]')2/ (2" - a), one
will get (a, ) N O'(I) ) # @, which, together with the

fact that a(f)( )) is closed, ensures

(k) _
<a,/1§."> G )2] no(®™)#£@.  (4.23)

/l(k) -a

i
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Choosing a as o = igk) - el(-k), we get

W —e® 20 4 B[y £ @ (4.24)

Noting that (4.24) is true for all k> k,(i) and
limy_, o PIE e( ) = A;, one finally has

A€ (A — o 0 4 gy (4.25)

Similar to the derivation of (4.22), one can also obtain

(4.26)

(4.27)

Then (4.18) is obtained by combining (4.25) and (4.27).
The above discussion can also be applied to estimate the

S ' )\ s .
accuracy of approximating |y;) by |y;"’). Given an interval
(a,,f,) D 4; such that J; is the only eigenvalue contained
in it, we have

W™ - a,) (™ —ﬂo>|w§")>
— (4 —ay) (A =B, Z| ")12:.8)

=33 G- a)(a-B)ll(w”

FEYI

L8)>0.  (4.28)

Substituting (4.21) into (4.28), one obtains

(e + Y =) - p)
> (2= a,) (4 = )Y "

é

|2, )%, (4.29)

which leads to

®"y)(n) = —%yzfé(n +2)(n+ Dw(n+2) -

1 _ Z|<l//l(k) |li, 5>|2 S - (&'l(_k))z .
A = a,) (B, = 2Y)

(4.30)

Now let us assume Agf)l * /ng) * ’11(:]?1 without loss of
generality. Then one can choose a sufficiently large k such
that

O el <, A il

i€, (4.31)

which, together with (4.18),
(/1,(.5)1 +e§f>1,/1§f1 - 55?1) contains the single eigenvalue
A;. Then, according to (4.30), we get

1=l
S

implies that the interval

(
,E )’ (4.32)

= e a8 =l — ey

i+1

The left-hand side of (4.32) measures the accuracy of
. . (k) (k) )
approximating |y;) by |w; ') because |y; ") is normalized.

B. Finite-dimensional cutoff approximation for the
numerical computation

In our model, there are two free parameters ¢, and b. By
mimicking the derivation of Theorem C.1 in Appendix C,

one can show that B(m), as an operator-valued function of ¢,
and b, forms an analytic family of type (B) in the sense of
Kato. Therefore, we can set ¢, = 0 = b in our computation,
and the results for case with either ¢, # 0 or b # 0 can be
obtained by perturbing that for the case of ¢, =0 =b. In
other words, the former can be expanded as some power
series of ¢, and b, and the convergences of the series are

ensured by the analyticity of /I)\(m) on ¢, and b.

By setting ¢, = 0, we work in the specific Hilbert space
define by (3.21) with ¢, = 0. This Hilbert space is denoted
by H® where a state is given by a wave function

w(218,) = w(n) with y € Z. Then the action of §™ reads

ir*¢sLom(n+ Dw(n+1)

1 1 .
+ <4—1y253(77 +1)*+ Zyzfé(l + 45%r2)n2>w(77) + iy* 3 Lomny (n — 1) — —yzf“ (n—1wn-2). (433)

w)(n) =

Thus the eigenequation (f)\(m oy (n) results in

4
rPeamn+2)(n+1)

y(n+2) =

<—ww('7) i Lgm(n + Dwln + 1)

1 1 .
+ (Z rean+1)2 + Zyzfé(l + 45§V2)172> w(n) + iy* €3 Lomny (n — 1) — —yzf“ (n=Nw(n- 2)) . (4.34)
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For 1 =0, (4.34) becomes

20 1 2Lom

2O ) (0) — i Y1),
gt Jwi0) =2y

w(2) = ( (4.35)

which implies that the value of y(2) depends only on y/(0)
and y(1). Once y(2) is obtained by (4.35), the values of
w(n) for all # >3 can be obtained by (4.34). Thus, the
values of y(n) for all n > 2 are determined completely by
w(0) and w(1) by (4.34)." Similarly, one can rewrite (4.34)
to express w(n —2) in terms of w(n — 1), w(n), w(n+ 1)
and y(7 4 2). Then, by setting # = —1, it is easy to see that
the values of y() for all < —3 are completely determined

by w(—1) and y(=2). Thus, for a given eigenvector of ﬁ<m>,
its values for 7 < 0 decouple from its values for n > 0.

Hence, the eigenvectors of B(m) can be classified into two
superselected sectors. The first sector consists of those y
vanishing for # < 0, while the second sector consists of the
ones vanishing for # > 0. Consider a transformation T
defined as

(Ty)(n) = w(-n—1). (4.36)
Then T relates the eigenvectors in the two sectors. It should
be noted that this classification of the eigenvectors is valid
only for the case of ¢, = 0 = b. However, for the case of
g, # 0 or b # 0, the eigenvectors can be divided into two
sectors, satisfying >, o [w(n)|* < Lor Y, o lw(n)* < 1,
respectively.

Given an eigenvector y_ in the second sector with the
eigenvalue w_, a straightforward calculation gives that

B™ +)Ty_ = o_Ty_, (4.37)
where € satisfies
(@p)(n) = —r* 3o 2n+ Dy (). (4.38)

Thus Ty _ is an eigenvector of B<m> + € with respect to the
eigenvalue w_.  _
Define H(1) = (§™ + ) + ¢ on Dy(m). Similar to the

discussion on §™, we can show that H (1) is self-adjoint
with the domain Dy (m) independent of A. Moreover, H(A)
forms an analytic family of type (A) in the sense of Kato.
This can be verified easily by showing that H(A)|y) for all

lw) € Dy(m) is a vector-valued analytic function of 1 (see,
e.g., Chap. XII.1 in [60]). Therefore, the Rayleigh-
Schrodinger perturbation theory can be applied to expand

'Note that the values of y(0) and (1) have to be chosen
suitably so that the resulting y/(57) is normalizable.

the eigenvalues Q) and the eigenvectors ¥ of H (4) as
the Rayleigh-Schrodinger series

=1
O = Ty_+ (6 b (4.39)

where ¢, and ¢, denotes the coefficients (see, e.g., [60])
and the convergence of these series for all 1 € R is ensured
by the analyticity of H (1) on A. By setting A = —1, one gets
the eigenvalue Q1) =: . and the corresponding eigen-
vector W1 =ty . of the operator H(-1) = ﬁ(m). By
substituting the explicit expression of ¢, into (4.39), one
can get w () = 0 for all < 0. Thus . are in the first

sector. Therefore, for each eigenvector of E)('") in the second
sector with eigenvalue w_, there always exists an adjoint

eigenvector . of H(m) in the first section with eigenvalue
w, nearby w_.

By (4.39), for a very small value of y*#}353, the difference
between @, and w_ would be very tiny so that very high
computational cost is needed to separate their values
numerically. To overcome this difficulty we consider the

Hilbert space HE,OH - Héo) defined by

HYD = {y e MY w(n) =0V n <0}, (4.40)

where the symbol ﬁ represents the completion with
respect to the inner product of HE)O). Then, we diagonalize
the operators 5" 1H"") and (" + ) 1H""), denoting
the restrictions of " and §"™ + € on H£0+)’ respectively,
by the finite-dimensional cutoff approximation method. Let
w . be an eigenvector of H(m) ngOJr) with eigenvalue o,
and y_ the eigenvector of (ﬁ<m> +%¢) rHéOH with eigen-
value w_. Then the vectors y, and T~'f_ =y _ in Héo) are

the eigenvectors of ﬁ(m) with eigenvalues w, and w_,
respectively. Moreover, (4.39) implies

() = (Ty_)(n). (4.41)

V. THE QUANTUM DYNAMICS

We now study the dynamics of the model for the cases
of p,#0 and p, =0, respectively. For p, # 0, the
corresponding classical solution is an extension of the
Schwarzschild interior with an extra minimally coupled
massless scalar field. This extension is referred to as the
Janis-Newman-Winicour (JNW) interior which differs
from the usual JNW spacetime as an extension of
Schwarzschild exterior [64]. In the classical JNW interior

[53], characterized by a parameter B = 2,/m?* + G pé /4n,
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there are two singularities at ¥ = 0 and r = B, respectively,
where r is the radial coordinate. Once p, vanishes, the
singularity at r = B will disappear and is replaced by the
Schwarzschild horizon, so that the JNW interior becomes
the Schwarzschild interior.

In Sec. IT A, gravity is deparametrized by the scalar
field which provides a material reference frame of time.
However, for the case of [A)(/, = 0, the reference frame
of time will disappear. The physical Hamiltonian becomes
the Hamiltonian constraint. However, it is still necessary
to understand the dynamics of the system as the rela-
tional evolution with respect to certain gravitational degree
of freedom. The information of the dynamics is encoded in

the solutions to ﬁy/: 0. Thus we need to solve this
equation.

A. Dynamics for p,, # 0

By (3.12), the Hilbert space L*(o.,du.; Hp(+)) of the
model consists of functions y:m > w(m) € Hy(m). As
shown in Sec. III B, Hy(m) can be chosen as the one
defined by (3.21) with ¢, = 0 and some m-dependent J,,

denoted by 62’") whose explicit expression depends on the
schemes to quantize §). With this convention, a state y €

L*(o.,du; Hg(-)) can be represented by a family of
functions

(m)

w(m,-)in — w(m,26,"n)

with # € Z. Given a state y, according to (2.9) and (2.11),
an associated dynamical state reads

e m)
Fi oVh ~
wlp.m)=e "% oeow(m).  (5.1)
|
S
wlmng)=e =
w(m)>0

Let |w(m)) € Hy(m) be the normalized eigenvector of p™
with respect to the eigenvalue w(m). Then (5.1) is
simplified as

A/ 4nGa(m)

Fi »
wigm)= D> e G Hw(m)y(m)|om). (52)
w(m)>0
We choose y(m) as
_ (m= mo) (’7*’10)2_iﬂ
pmg)=e = e U (5.3)

which carries some semiclassical features. According to
(5.1), the initial state evolved by the Hamiltonian is

P[o,oo)lll( m). Then, it is possible that P[O sy (m) is no

longer a semiclassical wave packet even though y(m) is.
To see how to avoid this possibility, we introduce the

expectation value of H(m)

(w (m)[5" |y (m))

w,(m) =

and its uncertainty

Amm=¢wmeme»4wm®MMMﬂ

For each m, we think of w(m) as a wave function of the
eigenvalues w of f)\(m), so it is some wave packet peaked at
wo(m) with fluctuation Aw(m). The projection 1/5[0‘00) cuts
off w(m) at m =0 and vanishes it for all w(m) <0.
Therefore, Ig[oﬁm)w(m) can keep the wave-packet feature
of w(m) only if |w,(m)| > Aw(m). This condition is the
criterion to choose the parameters in (5.3).
For a properly chosen y(m), its evolution reads

\/4xGa(m) (=)

'W‘Ze"' ().

(5.4)

To check the consistence between the quantum dynamics and effective dynamics, we calculate the expectation value of the

operator p, as

~ (- ,,,0
7<5b;2 Nz / dme Zn‘Zw (m) >O

(m mo)

= ﬁo Zn/ dme % P(n.m, ),
m n —0o0

where the normalization factor A is given by

wza— Wi 2
Je WY e T (lm)luy”)

(5.5)
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0 (m mo) ’l ’l() ﬁ 2 00 _(m—m())2
N—Z = / dme ”m 'I )|/,{,<7m)> = / dme Hzﬂ n(m) (56)
The integral in (5.5) can be calculated by using the saddle point approximation as
2 /!
m P (’%mo (p)
Pn, L4 ] 5.7
7552 Z” (’7mo¢(+47’(11,mo</J)Jr 57)

Therefore, as far as the leading order of the evolution is concerned, we only need to compute P(#, my, ¢). The result of (5.6)

reads

-2 = /76, n(mg) 1+— nlmo) . (5.8)
o 4 n(mg) ' '
Hence one has
p/Gelng) <n’—n§>2 i () 2
Zu)(m0)>0< |a)(m0)> oo Zr/’e i <w(m0>|:u;7’ ’ >
P(n, mo, @) = o . (5.9)
Zw(mo)zo Ene i <w(m0>|:u"l ’ >
By this formula, P(;,mg, ) can be computed numerically easily. The numerical results of P(i,mg.)"/? and

<ﬁb>/(75b£;2))

> >, 1P(n, my, p) are shown in Fig. 1, where we choose &, =

VA with A being the area gap in LQG.

Moreover, one can also calculate the evolution of p, with respect to the effective Hamiltonian

47 2 ) 1 _
e \/ 5,0, sin(6,b) p. sin(d.¢) + 5 pisin(6,b)? + 72 p3. (5.10)
I
As a comparison, the results of the effective dynamics and By = 0. (5.11)

the classical dynamics are also plotted in Fig. 1.

As shown in Fig. 1, both of the classical singularities
could be resolved by the effective dynamics where 5] is
prevented from reaching O by the bounces at the local
minimums. Then the classical spacetime is extended
periodically. The quantum evolution matches very well
with the effective dynamics for several periods around
@ = 0 when the semiclassical feature of the coherent state
is well kept. The effective evolution and thus the quantum
evolution match well with the classical dynamics in the
classical regime. Thus the current quantum theory has a
correct semiclassical limit and its semiclassical features can
be responded properly by the effective dynamics. However,
the coherent property of the state cannot be kept along the
whole evolution, since the width of the wave packet grows
as the time ¢ runs far away from the initial value ¢ = 0.
This leads to a significant difference between the quantum
and effective dynamics in late time.

B. Dynamics for p, =0

In the case of p, = 0, the dynamics is encoded in the
equation

Alternatively, one could also consider the Hamiltonian
constraint operator corresponding to the vacuum
Hamiltonian constraint multiplied by volume as a lapse
function [50]. To solve (5.11), it is convenient to represent
w(m) for each m by y(m,-):0w(m) — w(m,o(m)) € C

with w(m) € (§"™). Then the action of § on y reads

(bw) (m, (m))

By (3.13) the inner product of two states y; and y, reads

(wi.w) / du,

=ow(m)y(m,o(m)). (5.12)

R (m, w(m))*y(m, w(m)),

w(m Gzr(h )
(5.13)
where * means the complex conjugate.
Given a solution y to (5.11), Eq. (5.12) implies
w(m,w(m)) =0, w(m) #0. (5.14)
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2500 ¢ Quantum Dynamics
—— Effective Dynamics
- Classical Dynamics
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FIG. 1. Plots of the evolution of the wave packet (top panel) and
the evolution of |7 = p,/(y6,¢3) derived by the quantum, the
effective dynamics and the classical dynamics (bottom panel).
According to the results, the quantum dynamics as well as the
effective dynamics matches well with the classical dynamics in
the classical regime. Thus the quantum model admits a correct
classical limit. Moreover, the quantum evolution of p, matches
very well with the effective dynamics in the domain where the
wave packet is sharply peaked. However, the width of the wave
packet grows as ¢ goes beyond the domain. Then the effective
dynamics is no longer valid.

Thus the support of the solution y is contained in
the set

So = {(m,w(m))|m € o, w(m) € s(h™), @(m) = 0},
(5.15)

which is identified naturally to the set
os={meo,0€ o(5™). (5.16)

Given two functions y; with i = 1, 2 on o, (5.13) can be
expressed by

(Wi.v2) = / ducy (m)*ya(m). (5.17)

140 T T T T T T T T T

120 | i

100 | <
8ot <
S

S 60 | <

40 | <

20 | i

0 L L L L L L L L L

0 10 20 30 40 50 60 70 80 90 100

10" 1

@".
@G

—_ @@GG
o o®

S )

@
@
Q
Qo
Q
°
100+ 1

10° 10" 102

FIG. 2. Plots of o for the u, scheme with 5, = VA =6, (top

panel) and the scheme with &, = v/A/(2|m|) and &, = VA
(bottom panel). As shown in the figure, nearby each value of
mf,") there exists an adjoint value of mf)"l). 0 does not belong to o.

The parameters are chosen as y = 0.2374, A = 4\/§nyzf12,
and 7, = 1.

Thus, one could naively deem that the functions on o¢ with
the inner product (5.17) would constitute the physical
Hilbert space. However, depending on the explicit expres-
sion of y,, it could occur that the right-hand side of (5.17)
vanishes for regular functions y; and w,. To see how
this happens, let us assume o, = R at first. Because the
eigenvalues of ﬁ(m) can be expanded at some m,, closed to
m by a power series of m —m, and o(m,) is discrete, in
general they are not 0. Hence it is reasonable to expect
that there are only countably many m € ¢, such that
0€ a(ﬁ(m)). Then, both o, and S, are countable sets.
This speculation is confirmed by our numerical computa-
tion in the u, scheme as we as the scheme with §, = v/A
and &, = v/A/(2|m|), as shown in Fig. 2. For the case of

o. #R, one has o, CR because p.sin(5.c)/5. was
assumed to be self-adjoint. Then the resulting o, is just
a subset of that for the case of o = R. Therefore, o; is
always countable. Since o is countable, it could occur that
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os C o, is of vanishing measure, i.e., . (oz) = 0. For this
case, the right-hand side of (5.17) will vanish and thus it
cannot define an inner product for the physical Hilbert
space. Hence we introduce the following procedure to
define the inner product in the solution space, which is
valid not only for the case of y.(o:) = 0 but also for the
case of y.(og) # 0. Let 5(m,,-) for each m, € 6, be the
function on o, such that (i) 5(m,,m) = 0 for all m # m,
and (ii) fac du.6(m,,m) = 1. Thus &(m,, ) is the Dirac-6
distribution for u.(o;) =0 and proportional to the
Kronecker § function otherwise. Given a regular function
w(m,w(m)), a solution to (5.11) can be generated as

W(m) =Y 8(my” m)do,wm.w(m).  (5.18)

where mg") € 0; C 0.. By choosing an appropriate dense

subspace S C ‘H, these ¥ of (5.18) are indeed antilinear
functionals on S as

¥Y:p > Pl

/ du Y W(m) W)

[0

= w(ms” .0y p(mi”.0)

n)

(5.19)

for all ¢ € S. Hence W is the solution to (5.11) in the sense

that ‘P[ﬁgﬂ = 0 for all ¢ € S. Thus (5.18) defines a rigging
map P:y +— Py on S. Therefore, by the refined algebraic
quantization procedure [6], the physical inner product of
two solutions ¥; = Py; with i = 1, 2 reads

= > i (md )y (ml?),

nez

(¥1|¥2) = Y1y (5.20)

which coincides with (5.17) if u. (o) # 0. Hence the
physical Hilbert space of the solutions is given by

Haw = {f10, > C.>_|f(my")P <0} (5.21)

The Dirac observable E,;(_ = pcsin/(é\cc) /6, in H can be

promoted to an operator Eﬁ; in Hpgy by the dual action such
that
= Loyécmg,n)f(mg,")), v omd.

(&.f)(mb") (5.22)

Equatlon (5.22) implies that each mf, o

is an eigenvalue of
55 , and §5 is self-adjoint in Hpy with the spectrum o, as

the closure of o;.

Given y € Hy(m), Eq. (4.33) indicates

Oy () = (5"w) (), (5.23)

where y* € Hy(m) is defined by w* (1) For a

= vl
(n)

givenm, € o, lety be the eigenvector of B ") with the
eigenvalue 0. Then (5.23) ensures that

(5.24)

-m{")

Thus, v is an eigenvector of f) with the eigenvalue 0.

Therefore, one has —m"”) € 6; provided m

For m = 0, one has the operator

€7:.

[)(0) 52 ﬁéb —+ 72/\2

with the

eigenvalue 0. Because of Eﬁb >0 and ﬁlz, >0, ¢ would
satisfy

Assume that there is an eigenvector ¢ of E(O)

) —~
s, =0 =Dpi¢. (5.25)
By the definitions of E(;b and p?, one can easily check that
there is no nontrivial ¢ satisfying (5.25). Hence, O is not an

eigenvalue of B(O>. Taking account of Theorem IV.1, one

gets the conclusion that 0 & o(5"™) for sufficiently small
|m|. Therefore, there exists a gap between the spectrum &,
and 0, i.e., 0 & o:. Note that o is the spectrum of the

operator Eﬁ; in the physical Hilbert space, whose classical

limit of p.sin(6.c)/5, is proportional to the mass of the
Schwarzschild BH. Thus the above analysis shows the
discreteness of this mass spectrum. If a certain mechanism
of BH evaporation could be introduced into our quantum
model consistently such that the BH evaporates from one

eigenstate of Egc to another, in such BH evaporation models,
the operator /af\;c should refer to the quasilocal mass of the

BH itself (e.g., the mass of isolated horizon defined in [65])
which does not includes the mass of the radiation, because

Eﬁ;c is comprised of the symmetry-reduced variables inside

the BH. Then the BH would evaporate its mass discretely,
and the evaporation would eventually halt at the stable
ground state with a nonvanishing minimal eigenvalue of

/5\/50. We call this ground state the BH remnant. Note that the

above discussion, extrapolating from a quantum description
of the BH interior, assumes that the exterior quantum
description of the BH and the inclusion of Hawking
radiation will not change the mass spectrum.
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The above analysis is compatible with the numerical
results in Fig. 2, which shows that the values of mg" are
discrete and have the following characters. First, for each
mi", there exists an adjoint m!") nearby it. This property
comes from the symmetric property (4.41) of the eigen-

vectors of E(m). Second, the lowest value of |m(0”> | in 6 can

be obtained as mth)| = 0.5499 for the u, scheme and

|m,(;th)\ = 0.5362 for the other scheme, where the param-

eters are chosen as y = 0.2374, A = 4\/§Jzyf§ and 7, = 1.

VI. CONCLUDING REMARK

The loop quantization of the model of a Schwarzschild
interior coupled to a massless scalar field has been studied
in the previous sections. By applying the deparametrization
procedure, we get the physical Hamiltonian ¥ of this model
with respect to the scalar field. Since p.c is a Dirac
observable in the classical theory, § is promoted to an

operator ﬁ commutating with the operator pcsirfé\cc) /6,
which corresponds to p.c. Replacing p,sin(5.¢)/8. in B
with its spectrum L,ym € ., we obtain a family of
operators §™. It is shown that both §™ and ¥ are self-

adjoint. The spectrum of ﬁ(m) and its analyticity with
respect to m are studied. Moreover, we develop a numerical

method to diagonalize §™. Based on these results, the
dynamics for the cases of p, # 0 and p,, = 0 are studied,
respectively.

For the case of p,, # 0, the evolution of a wave packet is
considered and the results are compared with the effective
dynamics governed by the effective Hamiltonian. It turns
out that the quantum evolution matches well with the
effective dynamics in the domain where the wave packet is
sharply peaked. However, the width of the wave packet
would increase as the relational time ¢ evolves. Thus an
inconsistence between the quantum dynamic and the
effective dynamics would occur at late time. The numerical
codes to compute the evolution can be found in [66].

For the case of p,, = 0, the constraint § = 0 is imposed
to get the physical states of the loop quantum
Schwarzschild interior model. Its physical Hilbert space
Hgy is obtained. The spectrum &, of the Dirac observable

%C, i.e., the dual of pcsir@c)/éc in Hpgy, is analyzed by
both analytical and numerical methods. It turns out that the
6 is discrete and it does not contain 0, provided that the
parameters 6,(;") and e,(m) satisfy the suitable analyticity.
Thus, there exists a gap between o; and 0. Since the

classical limit of Eﬁs is proportional to the mass of the
Schwarzschild BH, o; is referred to as its mass spectrum.

Moreover, by the numerical method to diagonalize B we
can also compute o, numerically [66]. Note that the

observable (ffs(: in our models refers to the quasilocal mass

of the BH. For instance, it agrees with the quasilocal mass
M, defined with respect to a naturally chosen pair of null
vector fields (£%,n%) on the horizon A [65], where the
null normal field 7¢ to A and future directed null field n¢
transverse to A satisfy £“n, = —1. Some interesting results
would be obtained if certain mechanism of BH evapora-
tion could be introduced into our quantum model such that
the evaporation can be regarded in a quasistatic process
from the Schwarzschild BH of a given mass to the
Schwarzschild BH with another mass. Then, it is reason-
able to expect that the evaporation occurs in a quantum-
jump manner, since the mass of BH can take only discrete
values. Moreover, because of 0 & Gs, the evaporation of the
BH would eventually halt at the remnant. It should be noted
that this discussion extrapolates from a quantum descrip-
tion of the BH interior. It is assumed that the exterior
quantum description of the BH and the inclusion of
Hawking radiation will not change the mass spectrum.
We leave the detailed investigation of these issues for our
future work.

It should be noted that the analyses in the current paper
are valid for a quite general class of schemes such that (i) a
separable Hilbert subspace H, C , can be chosen to

—

define an operator p.sin(6.c)/8. corresponding to
pesin(8.¢)/8., which is self-adjoint and commutates with

the physical Hamiltonian T; and (ii) the quantum parameter
) 1s a constant or any function of p,. sin(5.¢)/8,.. With the
numerical method developed in this paper, it becomes
possible to further study the Hawking radiation with the
matter backreaction and the distortion of the Hawking
spectrum in detail. We leave this open issue for our future
works. Thus the discrete mass spectrum predicted by our
LQG model provides a solid starting point to study the
possibilities of considering the BH remnants as dark matter
candidates, as well as solving the puzzle of information loss
in BH evaporation.
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APPENDIX A: ASYMPTOTIC BEHAVIOR OF ﬁgb
By definition, the eigenequation of ﬁﬁb implies that its

eigenfunctions satisfy

4iw 1

wlp +25,) = w(p) + (u—26),

a v
u—+ 26,
(A1)

which can be rewritten as
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W(u+28,) = A(u)y (u) (A2)
with
. + 26
wp+25,) = Wik +20,) and
w(p)
4io 1 I
A(,u) — < yC2 pt28,  pt28, )
1 0
Define
wo (n+28,)  wi(u+28,)
B(ﬂ) =: N B s
wo (1) —yy (1)
where
+ 1 +ikIn(|u|)
V() = —r= ek,
Vul
We obtain that the vector-valued function
. 21 (1)
X)) = ( )
22(p)
defined by
W+ 26,) = B(u)x(u +23y), (A3)
satisfies
X +28,) = B(u)"'A(u)B(p — 26,3 (1) = M (u)x (),
(Ad)

which is obtained by applying (A2). Our purpose is to
derive the condition with which the vector-valued function
(1) in right-hand side of (A3) can be approximated by
some constant up to some O(u~!) term. This can be
achieved if the matrix M (u) satisfies

=M+ O(|u|™).

M) (AS)

with some constant M. Substituting (AS) into (A4), we
obtain

w

with

Therefore, one gets

H=¢€,+ 4n5nv
U =g, +4nd, + 20,
(A8)

) = {)mwé (1) + 2295 (),
2wy () = xowg (u),

with n € Z.

APPENDIX B: THE SELF-ADJOINTNESS
OF 1] ™ AND

We now prove that fL and I) are essentially self-adjoint.
Define an operator A as

2 4
A = (530 207 412 + 74 26 )

5 16
= A(u)|p), (B1)
whose domain reads
p@) = { ). AP <o (B2)

u

Then A is self-adjoint because A(u) is real. Let B be the
operator defined on the domain Dy as

~ 2mL 7 ~ 1, —~
B =205 o (B = 73+ (B + ) ).
(B3)
Then B can be expressed as
~  2mLyy 1 1 o o
B = ——((a , (B4
5 2 @) =g (@ h ). (B)
where
&
a'lu) = 5 (u +26,) 1 +26,),
rth
alu) = ZFulu +26,). (B5)
Given y € Dy, we have
~ 2mL0y1 .
By| < al -
Bl < | (5 5" g a2 ]
2mL0y1 I,
. B6
|CR e el e

Moreover, a straightforward calculation gives
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4f4 4/8
Lyl 2(u—26,)*

by 1 1
H( 5, 2i 45§(a) v

v’y 2mLoy €3

2 4m2L
<
<> ("

25654 K

(W (u +28,) + (u — 25b)2ﬂ)> ()]

1652 o, 4
= B (u)lw(u)? (B7)
u
and
2mL071 AW Am’Liy*ty 2, V' 2 2
1 < S (0T 4 05 45 25
H( 5, 20" 45%,a)w _zﬂ: 1657 bt ”)+25652(”+ Sl 2)
1 2mLyy*tS
R (20, 4600+ 260) )
b
(B8)

=3 B ()P

By Egs. (B6)—-(B8) we obtain

1Byl < \/Zm(unww n \/ZB‘(u)IW(u)lz
< \/Z4B-<u>|w<u>2

(B9)

Moreover, one has

Ayl = > Aw?lw(w)P.

By the expressions of B~(u) and A(u), there exists some
real number b > 0 such that

(B10)

1

4B~ (u) < ——— = A(u)* + b, B11
(ﬂ)_1+2y451 (u)* + (B11)
which implies
1By < < [Aw|> + blly >, (B12)
T 1424

Therefore, §™) =B+ A is self-adjoint on D(A) and
thus essentially self-adjoint on Dy according to the
Kato-Rellich theorem (see Theorem X.12 in [59]). Thanks
to the self-adjointness of ﬁ('"), the self-adjointness of E can
be proven as follows. Let g© be elements in the orthogonal
complement of the range of E:I: i

g* € Ran(h + i)+

respectively, i.e.,
. Then we have

[
0=((A+i)y.g*)

- / a5 £y (m).g*(m). ¥ weD(B). (B13)

O¢

Let f be a square-integrable function f on ¢, with respect to
U ie., f € L*(o.,du,). Given y € D(}), one has

2

/ due (£ ()5 "y (m), £ (m) 5"y (m))

O

< / duc | f(m) / 5"y < 0. (B14)

which implies that fy:m — f(m)y(m) is also in D(ﬁ)
Thus substituting fy into (B13), we conclude

[ (@ £ippm). g (m)) =0. ¥ fEL o)

( (B15)

Therefore, it holds almost everywhere for m that
(B £ i)y (m). g* (m)) = 0.

Since this conclusion is true for all y(m) € Dy(m), one has

(B16)

that g*(m )e Ran(I)( )+ i)+ almost everywhere for m.

However, E)
one gets

is essentially self-adjoint for all m. Hence

Ran(h™ + i)t v om.

= {0},

This ensures that g=(m) = 0 for all m. The self-adjointness

(B17)

of A is thus obtained because of the basic criterion for self-
adjointness (see, e.g., Theorem VIIL.3 in [57]).
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APPENDIX C: THE ANALYTICITY OF T,

Theorem C.1.—T,, is an analytic family of forms of type
(a) in the sense of Kato.

By definition, this theorem can be obtained directly from
the following lemmas.

Lemma C.1.—The norm || - ||,,
each m is equivalent to the norm

defined on Dyg(m,) for

Wil =/ wlBlw) + wlw): (c1)
1.e., there exist constants ¢, C > 0 such that
cllwlly < llwllw < Cllwlls, ¥ w €& Dg(m,). (C2)

Proof.—Given |y) = > y,|u) € Dy(m,), by (4.2) one
gets
Ty w) + (Lgm*r* + D{wly)
Wy gm2y wly
> 72 (wl(Py — r£30)*lw) + (wlw)
> el pily) + (ww). (C3)
|

Wl (1 + P (1D ™50 + Lr>m® + 1)(1+ 53) )| < Clwly),

where

e ey

=1
c + > 5

(C4)

Moreover, consider the operator (1 + p2)72(i,.5"i5! +
L22m? 4+ 1)(1 + p2)2 on Dgy(m,). Tt can be verified
straightforwardly that

(14 P2) 2 (1,0 ™ i+ L32m? 4+ 1) (14 52) 2| < oo
(C5)

1

Thus the operator (1 + ﬁ%)‘z(imﬁ(m)i,‘nl + L3y*m* + 1) x
(14 p2)2 is bounded; ie., there exist C >0 such
that

By definition, (1 + ﬁ%)‘%:Db(m(,) — Dg(m,) is surjective. Hence (C6) implies

(] (0,150 + L2 2m? + 1)y < Clw|(1 + B2 |w),

Thus

To(wow) + (Lgm*y? + 1) (ylw) < Cly|(1 +B})lw).

Then (C2) is proven by (C3) and (C8).

v 78S Db(mo)' (C6)
YV w € Dgy(m,). (C7)
V w € Dy(m,). (C8)

By Lemma C.1, for each m, Q(m) is indeed the closure of Dy (m,,) with respect to the norm || - ||, given in (C1). Thus one

gets Q(m) = Q(my,,) for all m.

Lemma C.2.Suppose 557"1) and &,(m) to be analytic functions of m at m, and 52’"") #0. Then T,,(w,y), for each

w € Q(m,), is an analytic function of m at m,,.

Proof —The action of 1,5tz on |u,) with p, = €9 + 2nd reads

1

£, 0" 5 ) = = (F(m) + ) (F(m) + By — 7€28) 1 2) +

i@
1

2Lgmy
2601

(FOm) + P lpas1)

n (— (F(m) + Py + 76350 + ((m) + B)?) + 7262 (F(m) + Py - yfgb/éﬁ,W) )

4(5;)?
2Ly my
2601

~ 1
(F(m) + Py + r£368)) ltcr) — o0

(f(m) + Py + 2r£367) (F(m) + Py + 12367 la2).  (C9)

where f(m) := e,(m)53/8\") — €9 is analytic at m,. Given |y) € Q(m,), Eq. (C9) implies that (y|i,,5" i;!|) is a finite
linear combination of (y|p|y), (w|p,lw) and (y|y) with coefficients depending on m analytically. Since Q(m) is the

closure of Dy(m,,) with respect to the norm || - |
analyticity of T,,(w,y) is proven.

., both (y|p3|w) and (y|p,|y) are well defined for all y € Q(m). Then the

024069-20



LOOP QUANTUM DEPARAMETRIZED SCHWARZSCHILD ...

PHYS. REV. D 105, 024069 (2022)

APPENDIX D: PROOF OF EQS. (4.12) AND (4.13)

We notice that

W= sup inf (. PUR Py
epok) .
T ot S

_ : H(m)

= sup nf (v, 5" w)
. (€ph) oy, =1

P192.- i1 €My <w.¢,,>:or,' ¥ on=12....i-1

(D1)

because of PHH™PE — POFMB® ang POy, — y for

all y € H{

Given k' >k, one has Héfb e Hf”’k/). Let
D1 s piy € H,y (k) e some vectors such that
Bics Bicpits - i1 & Hy (X Then we have

inf (. 5"y
P =1
(qu,) 0 ¥ i=12,....i-1
= f "y <ab <2 (D)
|//eH$b'k);HwH:1
(p.py)=0. ¥ I=12.....i—n~1
Therefore, one obtains
2 = sup inf (w. 5" y)
PR NV T
D20 Ti1=10 <w.¢,,):(][?\'/n:l.2.....i—l
= sup Jdnf 5"y).  (D3)
Probo. i1 €M, s w wwffi] :/11 HI;/,!:A-I.Ai—I

Furthermore, for given ¢y, ¢, ....¢,_; € Héf”’k), we have

e,k .
{wer |y =1:(w.d,) =0, ¥ n=1.2,....i—1}
e,k .
c{w eyl = 1: (y. ) =0. ¥V n=1,2,....i—1}.
(D4)
Thus, one has
inf (. 5"y) > inf (w. 5"y,
u/eH(;”'k>:HvH:1 -,/eng )=t
(pupn)=0, ¥ n=12,....i-1 (y.pn)=0. ¥ n=12.....i-1
(D5)

which implies

/ng) _ sup 1nf <l//,i)\(m)l//>
d)] (fh (/) IGH (€p: *) (. (;:E)HS Y H1 Jlr 1
> sup inf (. 5"y =2,

. /
k) perd ) =1
Dosepi EH Ve, R
P19, i1 €M (Wpn)=0. ¥ n=12.....i~1

(Do)

Similarly, we have

W= sup Jnf (v.5"y)
B
= sup ( H})f <W,E(m)‘//>
¢1A¢z.~...¢<_]€H(”b) n//en;b’ 3llwll=1
) ' b ) =0V n=12,.ic1
2 sup inf <‘/”H(m>l//>= w;. (D7)

(ep)  weDp(m)illy]=1
Prors it €M =0 nmt i

Thus the proof of (4.12) is completed, and the existence of
the limit lim_, A'*) can be obtained directly from (4.12).

1

APPENDIX E: THE FINITE CUTOFF
APPROXIMATION

Theorem E.I.—Each 1; given in (4.13) is an eigenvalue

of B(m). The space A, is an eigenspace corresponding to the
eigenvalue 4.
Proof.—By definition, one has

IPOE™ = 2w = 1 = 2w < 147 = A,
(E1)
which implies
klim HIA’(k) (B(m) - ’li)l//z('k) | =0. (E2)

Given an arbitrary ¢ € Dy(m), by the definition (3.39) of
Dy (m), there exists an integer N, such that ¢ € Hyg (&0,
V k> N,. Thus, for each ¢ € Dy(m), one gets

(@PYG™ =)y = (@B = 2) ), ¥ k=N,

(E3)

where we used ﬁ(k)(p =@ for all k > N(p and that ﬁ(m) is
symmetric. Hence, we have

— )l
= (o™ = ) |wi),

0= lim (p| P (5"

Y @ € Dg(m). (E4)

By this equation, y; is in the domain of the adjoint of B<m>

Since B(m is essentially self-adjoint, its adjoint is equal to

its closure f) . Thus y; is in Dy(m). Moreover, (E4) also

implies

(®" = 2:)w; =0, (ES)
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which ensures either y; = 0 or that y; is an eigenvector of
B(m) with the eigenvalue 4;. We now show that y; # 0 and
hence y; can only be an eigenvector of ﬁ(m). Given an

eigenvalue w of E(m), let |w, @) be an orthonormal basis of

the eigenspace with respect to @. Define a projection P as

Ply Z Z lw, @) (w, aly). (E6)

wE(—o0
Because f)\(m) is bounded from below and each eigenvalue @

is of finite multiplicity, the summation in the rhs consists of
) in (4.14), we

|

—(w.alyi))llo=4|. (E7)

only finite terms. Then for each vectors l[/l
have

(W—li)ﬁng"” -

S Y e (w.aly)(@-2)

wE(—c0, Ak] a

Z ZI (w.aly]"

a)E

Taking account of (E7), (4.14) and the fact that the
summation contains finitely many terms, we obtain

tim || (5" — 4,) Py

-

— Z Z|w,a><w,a|wi>(w—ﬂi)
0€(-00,4] @

(E8)

1.€.,

1

S Y o) alw)@—4).  (E9)

wE(—00.4| @

RIS

Moreover, because of (E5) and

Z Z ) (0= 24;)
wE(-00,4;] «
- X T i @0
(—o0,4] @
we finally have
lim (5™ — 2,)Py™ = 0. (E11)

>0

Furthermore, by using

1P (5" = 2w < 1A = Al

(E12)

— 2w | =11

one has

tim| [P (5 — 4y = o. (E13)
Combining (E13) with the inequality
1P (6" —4) (1= Py |
<[PUG =2y + (6 = 2) Py (E14)
we finally obtain
tim [P (6 = 2,)(1 = Py
< lim[| (6" = 2Py =0, (EIS5)
which implies
lim P (§ O™ —2)(1=Pw™ =0.  (El6)
Defining @ := inf{w € 6(§"), w > 4;}, we have
(P (5™ <1— Py ™y ™)
= (1 =P)(®" = 2)(1 = Py jy{"™)
> (&—2)[(1 ﬁ)w,"”, (E17)

where the last inequality is resulted from ((ﬁ(m) A)(1 -

P)p,¢) 2 (&= 2;)((1 = P)g. ) for all ¢ € Dg(m). The
combination of (E17) and (E16) leads to
lim||(1 = P)y;"|| = 0. (E18)
Furthermore, because of
(nr) —w.ll < f) (n1) P 1— (ny)
v = will <[Py, wil + 111 = Pyy™|
+(1(1 = P)will, (E19)

we obtain

tim|ly}" ;|| < lim|[Py" = Py + (1 = Pyl

(E20)
The first term in the rhs of (E20) satisfies
[Py = Pu| < (Z“ > |G aly™) = (@. aly))].
(E21)
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Taking account of (4.14) and the fact that the summation in
the rhs contains finite terms, Eq. (E21) implies

lim| [Py — Py = 0. (E22)
Therefore, we have
tim ") =y < (1= Pyl < ol (E23)

which implies that |y;) # 0. Otherwise, one would get

0= lim ly;" —yil| = lim[y;™|.  (E24)

which is contradictory to [|y\")

to (E5), A; is an eigenvalue of ﬁ<m> and |y;) is a
corresponding eigenvector. =
The above proof is inspired by the works [67,68] and
Sec. VIIL.7 in [57].
Theorem E.2.—Given A; and 4, as defined in (4.13), if
A FAisq, 1.6, A; < A;,, one has

|| = 1. Therefore, according

s(®") n

Proof.—Consider an interval (a,b) with 4; <a <b <
Aiy1. By definition of 4; and (4.12), there exists an integer N
such that

(A Ais1) = @ (E25)

W<a YEkxN. (E26)

Then for an eigenvalue ll(,k ) of ﬁ(k)ﬁ(m)f’(k) with k > N,

(i) if i’ < i, one has

A <A < g (E27)

A > 2% > 0> b, (E28)

The above analysis indicates

-~

a(ﬁ(k)h(m)ﬁ(k)) N(a,b)= VY k>N, (E29)

where o(P!* T plk )) denote, as usual, the set of eigen-
values of P¥ )I)( P, Let z be the complex number

a-+b a—>b
= j E30
> +1i 7 (E30)

Given |g) € Dy (m), one has [y) = (5" = 2)|p) € Dy(m)

by the expression of ﬁ(m). Hence there exists a large integer

n > N such that

PPgy=lp), PP =y, PUH|e) =5 |g).

(E31)
Then one has
v) = (0" ~2)lg) = PUHPY —2)lg).  (E32)
which leads to
G =2ty = (PGP o) ). (E33)
Because of Py =y, ie., lp’Hé"), we have
2041
IR — o)y 2 = D1 =2 Pl )
=1
(E34)

(n)

where " is the normalized eigenvector of pmympt

(n)

corresponding to the eigenvalue 4,”. According to the

inequality 2" <A <. <A <a<b<Al < <A,
we have that
0 —p g —2 (E35)
i - (Cl _ b)2
which implies
2n+1
16" —2)~y > < ZI
(a—b)?
2 2
=z Y ) eDym). (E30
Thus, one has
B _ =102 < 2y eD )
16" =2yl < =g P Y ) €Dyl
(E37)
As a consequence,
T.(m 2
p(8" —2)) < v2 (E38)

b—a’

where p((W — 2)~!) is the spectral radius of (™ — 7)1
Because of the self-adjointness of B(m)
B —z)" is

, the spectrum of

o(5" =2 = {(A-2)"L aeo(6™)}.  (E39)
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Therefore, (E38) leads to

(a.b) no()™) =@ (E40)

which is true for any (a, b) C (4;,4;,,). Hence, one obtains

(A 2i1) n6(8™) = @. (E41)

APPENDIX F: THE EFFECTIVE DYNAMICS

The effective Hamiltonian constraint reads

5 iy 4

H=p——0
Pe= Gz

2
— Py sin(8,b) p. sin(3.c)
5,0,

1.
+ 6—21912, sin®(8,b) + yzpi)
b

dr
=p2 —GL—%YQEJ- (F1)

As p.sin(8.c) = ymLy6,. is a constant of motion, it is
sufficient to consider the following Hamiltonian constraint
for the evolution of p,:

4r  (2ymL, .
Hm = p2 (270 5.b
Py GL2? ( 5, Py sin(3,b)
1 .
+ 5719%, sin*(8,,b) + V2p§>
b

= pg — B (F2)

GL2

The evolution of y := p,sin(5,b) with respect to ¢ is
given by

dy _ vz { h(’”)}
d(ﬂ A L())/
dr 1 3
1) o,b
GLOy Py PbJ’ » €08(8,D)
4zo,y 1 1 5.2
— - . F3
GL% Py Pp — PpY ( )

The Hamiltonian constraint H™) = 0 can also be written as

e y*  2Lgmy N GLOp(p
b 282 ¥, 4r

(F4)

which, together with (F3), gives

dp — GLys, »,
=30 =)=y -y (FS)

dy 4\ /1 + 7282
[ L [

with

drm

Lyyo,m
V.= 1+}/252 —144/1+

Moreover, according to (F4), the maximal value of p,
along its dynamical trajectory is

G 2
y:t = Loyébm (-l It 1 + p(/’z) )

Gpo (1 +y*5%)
—er LAY (F6
4m? ( )

Gp2
(o = g (14 0% (F7)

with which y, and y/, can be rewritten as

max
Vy = L()]/ébm< 1 :l: >
Om

LoySym (pp™)?
yli 1—‘r}’252 -1+ ( 25%) L2 B

Equation (F8) can be used to fix the dynamical solution by
the initial data of pj**.
Solution to (F5) is

y25§> . (F8)

GL2ys
p=+t—=Z—p,
4y /1 + 25
d
x [ Y . (F9)

vo VO=y)0=-y00-Y)0-ys)

As pj=—(y=-y)(y—ys)20and y_<y. <y, <y,
we have
Ya € DLV vy €DLVL] (F10)
Moreover, because (F4) can be written as
) 1
Py = (F11)

—yz—él%(y—y_)(y—h),

(F10) implies that p;, cannot reach 0 and will

bounce at

(F12)
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In order to calculate the integral (F9), we define

F13
¢ %}L (F13)
Then (F9) becomes
GL3y5), 1
27, n 7,252 PO =005 D)
. Fl14
X/ra ¢<1—r2><1—k2r2> 1y

By choosing the initial data ¢y = @(y_.), we finally

have

GL%Y@;

p(y) =g =+ —F—=
27y /1 + 7287

1 .
" ”'ﬂ\/ ATRICTETA i
(F15)

where F(x|k) is the elliptic integral of the first type.
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