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Two codimensional thick braneworlds are investigated in quite general terms for two intersecting scalar
fields generating the extra dimension defect. In general, when one considers two codimensional thick
braneworlds, the warp factor is constructed as a stringlike defect. Considering a twofold warp factor
constructed from two intersecting warp factors, an alternative bulk configuration is examined. With the
brane localization thus driven by two crossing scalar fields, the possible solvable models obtained from
such a two codimensional setup are systematically discussed. The obtained solutions are classified as five
different models organized into two subsets, for which some of their physical properties are evaluated. For
models I and II, in the first subset, Einstein equation solutions are rigidly defined, up to some arbitrary
constant. For models III, IV, and V, in the second subset, an additional degree of freedom not constrained
by Einstein equations is admitted. The solutions are all obtained from a departure statement of assuming a
conformally flat metric for the internal space, which is concomitant to the proper choice of coordinates.
Eventual singularities in the curvature are identified, however, without affecting the physical appeal of the
solutions described in terms of the stress energy tensor patterns, which are shown to be free of singularities
for model IV, besides admitting straightforward reductions to (4þ 1) dimensions. In particular, from
the framework of models III and IV, one is able to achieve braneworld solutions over two different
geometries of S2 which, as demonstrated, can be reduced to trivial and nontrivial extensions of the well-
known (4þ 1)-dimensional braneworlds. Therefore, our (5þ 1)-dimensional results point to a consistent
and expanded generalization of a (4þ 1)-dimensional braneworld which naturally admits the possibility of
an enlarged and maybe more accurate phenomenology.

DOI: 10.1103/PhysRevD.105.024068

I. INTRODUCTION

In the last few decades, inspired by the modern attempts
at unifying all interactions, the idea of extra dimensions has
been frequently scrutinized. Admitting the possibility of
extra dimensions playing some role in physics requires a
deeper understanding of the evinced observation of three
space dimensions. A naive explanation for the (3þ 1)-
dimensional Universe is based on the idea that extra
dimensions can be compactified as a circle with a tiny
radius of the order of the Planck length (≈10−33 cm). In this
scenario, all the effects due to additional dimensions would
be hidden to experimental measurements. In such a context,
the Arkani-Hamed–Dimopoulos—Dvali (ADD) [1] and
Randall-Sundrum (RS) [2,3] seminal papers diffuse the
possibility of implementing large extra dimensions into
realistic phenomenological contexts. In particular, as sug-
gested by the ADD model [1], one of the most inspiring
motivations for pursuing large extra dimensions in physics
is the possibility of resolving the hierarchy problem [1]

in quantum field theories. While the ADD model was
performed on a flat space, RS models [2,3] assume that the
brane should gravitate, being spatially localized by an extra
dimension warping effect so as to explain the field
hierarchy. As a consequence, the RS model’s warped
metric would admit an alternative to the ADD compacti-
fication [3]. After capturing the correct gravitational inter-
action in (3þ 1) dimensions, such compactified models
support the construction of higher-dimensional theories
with infinitely extended extra dimensions, without affecting
the success of Newton’s theory of gravity.
Higher-dimensional theories by themselves have also

supported braneworld scenarios driven by topological
defects [4], where the fields of the Standard Model are
hypothetically confined by branelike regions of space
[1,4–13]. This novel paradigm thus led to several spinoff
models, including the now so-called thick braneworlds,
where the thin brane is replaced by a topological defect, an
equivalent structure to those introduced for describing
domain walls [4]. The thick brane framework has thus
been considered as an engendering tool for obtaining the
configuration to the Randall-Sundrum model, by admitting
some lumplike (nontopological) defect solution for the
warp factor. In this case, the gravitational and matter fields
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should be localized in the brane, which may host some
internal structure [14–22].
Besides working as a platform for the resolution of the

hierarchy problem, thick braneworlds in (4þ 1) dimen-
sions [14–33] have included the dark scalar field dynamics
in their formulation. Notwithstanding the ferment in this
field, theoretical and phenomenological connections with
cosmology and astroparticle physics have also been evalu-
ated [34–60]. More recently, in the strict theoretical front,
the possibility of humanly traversable wormholes in RS
models [61] has also been suggested.
With the ultimate proposal of enlarging the phenom-

enology alternatives for thick brane scenarios, the present
work intends to investigate six-dimensional braneworlds,
an idea already explored through different facets, which
include, for instance, thin branes and stringlike defects
[62–74]. However, instead of considering stringlike defects
as they are typically engendered from thick brane 1-dim
warping mechanisms, the possibility of intersecting branes
is here admitted. By considering a twofold warp factor
which is separable into two intersecting warp factors
respectively driven by two intersecting scalar fields, several
novel solutions for thick braneworld models are obtained.
In fact, with respect to the featured compact internal
structure, some of the resulting constructions here admitted
shall contrast with the second RS paradigm. Otherwise, the
involved scalar fields and self-gravity mechanisms shall
consistently resemble the well-succeeded thick braneworld
models in admitting lumplike defect solutions for the warp
factors. Considering the eventual complexity of some
(5þ 1)-dimensional metrics, our paper is constrained to
finding and classifying classical solutions that define the
corresponding braneworld scenarios, so as to prepare a
clean framework for describing the localization of gravi-
tational and matter fields in the future.
Working with (5þ 1) dimensions is indeed not only

constrained to model building, but also to localizing
spin-1=2 particles without introducing additional fields—
i.e., through the same warp factor features that result in
gravity localization [64,65,68,69]. In some sense, this is not
admitted in (4þ 1) dimensions, where some additional
generating mass field mechanisms are required to achieve
localization [14,15,23,28,75–79]. Also, by placing brane-
worlds over some novel topological spaces, we append the
possibility of some new physics. While five-dimensional
setups have only two manifolds, R and S1, for the topology
of the internal one-dimensional space, six-dimensional
braneworlds may exhibit a wide range of topologies from
the two-dimensional space. Due to the compact features of
S2, our straightforward proposal lies in constructing the
total space from a priori internal space S2, where, in
particular, it is not regarded as the sphere, but as a set with a
space topology homeomorphic to the sphere. Considering a
departing topological manifold with a defined metric—and
that S2, as a coupled structure, intrinsically carries several

different metrics—models over two distinct geometries
of S2, the sphere and the spheroid, can be solved and
evaluated.
A more specialized summary of the above procedure is

provided by a departure metric given by σ ¼ e−2fdu ⊗
duþ e−2hdv ⊗ dv, which is nothing but the conformally
flat metric [80] σ ¼ e−2Bðdu ⊗ duþ dv ⊗ dvÞ for any
(pseudo-)Riemannian space of two dimensions, ðB2; σÞ,
although it is written in terms of different coordinates.
Despite dealing with braneworld models with two codi-
mensions, the choice of coordinates implying the confor-
mally flat form of the metric is too restrictive. For the
purpose of finding Einstein equation solutions for the warp
factor A, the conformally flat approach would be intrac-
table. When considering intersecting branes, one assumes a
twofold warp factor A, A ¼ Ãþ Â, where Ã and Â depend
on two different variables [i.e., ÃðuÞ and ÂðvÞ] with
independent warping characteristics. The setup for the
corresponding brane intersection is provided by two scalar
fields, ϕ and ζ, which also depend on the same two
different variables, evidently with ϕ;v ¼ ζ;u ¼ 0.
Therefore, the scalar fields, ϕ and ζ, shall drive the

behavior of the warp factors, Ã and Â, respectively. Such
assumptions, followed by the simplifying hypothesis
of assuming the metric components associated with the
co-dimensions to be separable—i.e., f ¼ f̃ðuÞ þ f̂ðvÞ and
h ¼ h̃ðuÞ þ ĥðvÞ—shall result in two subsets of sorted
analytical solutions composing five different models: from
I to V, for which the physical properties and the reducibility
to (4þ 1) scenarios shall be evaluated.
The paper is thus organized as follows. Section II

presents the elementary introduction to the (5þ 1)-
dimensional setup driven by two scalar fields and sets
the equations to be solved. Section III is devoted to the
particular case of intersecting thick branes where the main
assumptions of the proposed modeling are discussed. The
solutions for the so-called models from I to V are obtained.
Considering that only for models I and II, in the above-
mentioned first subset, are Einstein equation solutions
rigidly defined, and that for models III, IV, and V, in
the above-mentioned second subset, an additional degree of
freedom related to the coupled fields but not constrained by
Einstein equations is admitted, fixing the geometry of the
internal space is mandatory for definitely determining all
the fields. Such aspects and their complete understanding
are thus evaluated in Sec. IV. Our conclusions are drawn in
Sec. V, so as to point to the possibility of an enlarged and
maybe more accurate phenomenology.

II. (5 + 1)-DIMENSIONAL BRANEWORLD
PRELIMINARIES

The space-time is postulated to be a six-dimensional
manifold E6 that is, as a set, equivalent to the product
space M4 × B2, where M4 is some four-dimensional
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pseudo-Riemannian manifold and B2 is some two-
dimensional Riemannian manifold. The geometry of E6

is represented by the metric

g ¼ e−2Aωμνdxν ⊗ dxμ þ σijdxi ⊗ dxj; ð1Þ
where A is the warp factor,ω is the metric of the space-time
M4 (ω∶M4 → T ð0;2ÞM4), and σ is the metric of the internal
space B2 (σ∶B2 → T ð0;2ÞB2). Here A∶B2 → R, which
means that A ¼ Aðu; vÞ, with u ¼ x4 and v ¼ x5;
ωμν∶M4 → R; and σij∶B2 → R. Clarifying the notation,
greek indices (μ, ν,…) are valued in the set f0; 1; 2; 3g,
uppercase latin indices (M;N;…) are valued in
f0; 1; 2; 3; 4; 5g, lowercase latin indices (m; n; i; j;…) are
valued in f4; 5g (and represent the bulk codimensions), and
the labels x4 ¼ u and x5 ¼ v represent the choice of
coordinates for the codimensions ðB2Þ; the use of notation
T45 ≡ Tuv whenever suited, indicates that “4” ¼ “u” and
“5” ¼ “v”; derivatives, whenever suited, will be repre-
sented by a comma—i.e., f;μ ≔ ∂f=∂xμ; and finally,
tensors when being referred to in their (abstract) entirety
will be in boldface, as in g, but their components will be
cast in regular font, as in gμν.
Let us now suppose that matter in this space is of scalar

nature, and it corresponds to two canonical real scalar
fields minimally coupled to gravity. The action for gravity
is the usual Einstein-Hilbert action in six dimensions, so as
to have

S ¼ Sg þ Sϕ;

Sg ¼
Z

d6x
ffiffiffiffiffiffi
−g

p
2M4R;

Sϕ ¼ −
Z

d6x
ffiffiffiffiffiffi
−g

p �
gMN

2
ϕ;Mϕ;N þ gMN

2
ζ;Mζ;N þ V

�
;

where ϕ∶B2 → R [ϕ≡ ϕðu; vÞ], ζ∶B2 → R [ζ ≡ ζðu; vÞ],
V is some function of ϕ and ζ, and g ¼ detðgMNÞ. The
equations of motion for the related fields (ϕ, ζ, and the
metric g) are obtained as

□ϕ ¼ 1ffiffiffiffiffiffi−gp ½ ffiffiffiffiffiffi
−g

p
gMNϕ;N �;M ¼ V ;ϕ; ð2Þ

□ζ ¼ 1ffiffiffiffiffiffi−gp ½ ffiffiffiffiffiffi
−g

p
gMNζ;N �;M ¼ V ;ζ; ð3Þ

RMN −
1

2
gMNR ¼ TMN

4M4
; ð4Þ

where the stress energy tensor (TMN) is defined as

TMN ≔ ϕ;Mϕ;N þ ζ;Mζ;N − gMN

�
ϕ;Kϕ;K

2
þ ζ;Kζ;K

2
þ V

�
:

ð5Þ

The conservation of the stress energy tensor implies that

ð∇MTÞMN ¼ 0 ⇔ ð∇MGÞMN ¼ 0;

which, for the two scalar fields, results in

ð∇MTÞMN ¼ ϕ;Nð□ϕ − V ;ϕÞ þ ζ;Nð□ζ − V ;ζÞ ¼ 0:

As previously mentioned, the accomplishment of the
intersecting thick brane scenario admits scalar fields,
ϕ ¼ ϕðuÞ and ζ ¼ ζðvÞ, regarded as independent quantities
from each other, with ϕ;v ¼ ζ;u ¼ 0. From such an
assumption, one has

ð∇MGÞMN ¼ 0 ⇔

�
□ϕ − V ;ϕ ¼ 0;

□ζ − V ;ζ ¼ 0:
ð6Þ

This means that any solution of Eq. (4) also satisfies
Eqs. (2) and (3) for the scalar fields. Nevertheless, this is
only true for ϕ;v ¼ ζ;u ¼ 0. Therefore, in this case, the
scalar field Eqs. (2) and (3) can be regarded as completely
redundant.1

More generically, to realize the field equations, one first
writes down the components of the Einstein tensor through
a straightforward—even if long and tedious—process. To
simplify the following steps, a rescaling of the metric given
by g ¼ e−2Aĝ can be used to remove the conformal factor,
where one defines

ĝ ¼ ωμνdxμ ⊗ dxν þ σ̂ijdxi ⊗ dxj

and σ̂ ¼ e2Aσ. Notice that the metric ĝ is factorable, since
ωμν∶M4 → R and σ̂ij∶B2 → R, and the calculations that
follow can be easily extended to any dimension.
One can now write the relation between the operators

compatible with g and ĝ: the connection, Riemann, and
Einstein tensors compatible with g, calling them∇, RM

NPQ,
andGMN , respectively, and those compatible with ĝ, calling
them ∇̂, R̂M

NPQ, and ĜMN , respectively. The Einstein
equations are thus redefined in terms of the metric ĝ rather
than g. Meanwhile, the Einstein tensor of the metric g can
be recast in terms of the metric ĝ and A, in the form of

GMN ¼ ĜMN þ 4∇̂M∇̂NAþ 4∇̂MA∇̂NA − 4ĝMN□̂A

þ 6ĝMN∇̂PA∇̂PA: ð7Þ

To compute ĜMN in order to obtain the equations of
motion, one first notices that the Riemann tensor R̂ is
factorable,

1The analytical solutions must define not only the metric, but
also the scalar fields as functions of u and v, which does not
necessarily imply identifying V explicitly in terms of the scalar
fields—i.e., V ¼ Vðϕ; ζÞ.
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R̂ ¼ R̂ρ
αμνðxκÞ

∂
∂xρ ⊗ dxα ⊗ dxν ⊗ dxν þ R̂j

klcðxsÞ
∂
∂xj ⊗ dxk ⊗ dxl ⊗ dxc

¼ Rρ
αμνðxκÞ

∂
∂xρ ⊗ dxα ⊗ dxν ⊗ dxν þ Σ̂j

klcðxsÞ
∂
∂xj ⊗ dxk ⊗ dxl ⊗ dxc;

where R̂ρ
αμν encodes the curvature of ðM4;ωÞ, and which has been labeled by Rρ

αμν, and R̂j
klc encodes the curvature of

ðB2; σ̂Þ, which has been labeled by Σ̂j
klc. From here on,R andΔμ are the curvature and covariant derivative compatible with

ω. Analogously, Σ and Δi are compatible with σ, with Σ̂ being compatible with σ̂. Also, a shortened notation given in terms
of Δ ≔ ωμνΔμΔν and Δ2 ≔ σijΔiΔj shall be useful in the following steps.
From the Riemann tensor, the set of expressions for Ricci tensors and the Ricci scalar are given by

R̂μν ¼ R̂M
μMν ¼ R̂κ

μκν ¼ Rκ
μκνðxρÞ ¼ RμνðxρÞ;

R̂ij ¼ R̂M
iMj ¼ R̂m

imj ¼ Σ̂m
imjðxlÞ ¼ Σ̂ijðxlÞ;

R̂ ¼ ĝMNR̂MN ¼ ωμνRμν þ σ̂ijΣ̂ij ¼ Rþ Σ̂;

which can be reintroduced into Eq. (7), so as to return

Gμν ¼ Rμν −
1

2
ωμνR −

1

2
ωμνΣ̂ − 4ωμνΔ̂2Aþ 6ωμνσ̂

ijA;iA;j;

Gij ¼ Σ̂ij −
1

2
σ̂ijΣ̂ −

1

2
σ̂ijRþ 4Δ̂iΔ̂jAþ 4A;iA;j − 4σ̂ijΔ̂2Aþ 6σ̂ijσ̂

mnA;nA;m:

Finally, by substituting the above expressions into Einstein field equations decoupled from Eq. (4), one finds

Rμν −
1

2
ωμνR ¼ ωμν

�
1

2
Σ̂þ 4Δ̂2A − 6σ̂ijA;iA;j −

e−2A

4M4

�
ϕ;Kϕ;K

2
þ ζ;Kζ;K

2
þ V

��
; ð8Þ

Σ̂ij −
1

2
σ̂ijðRþ Σ̂Þ þ 4Δ̂iΔ̂jAþ 4A;iA;j − 4σ̂ijΔ̂2Aþ 6σ̂ijσ̂

mnA;nA;m

¼ 1

4M4

�
ϕ;iϕ;j þ ζ;iζ;j − e−2Aσ̂ij

�
ϕ;Kϕ;K

2
þ ζ;Kζ;K

2
þ V

��
: ð9Þ

Since Rμν and R are functions of space-time M4, and Σ̂ij and Σ̂ are functions of the internal space B2, one may separate
variables in Eqs. (8) and (9). Through a more familiar notation, one chooses a separation constant which can be interpreted
as the so-called cosmological constant Λ. After some mathematical manipulation, one thus obtains

Rμν ¼ Λωμν; ð10Þ

1

2
Σ̂þ 4Δ̂2A − 6σ̂ijA;iA;j −

e−2A

4M4

�
ϕ;lϕ;l

2
þ ζ;lζ;l

2
þ V

�
¼ −Λ; ð11Þ

Σ̂ij −
1

2
σ̂ijð4Λþ Σ̂Þ þ 4Δ̂iΔ̂jAþ 4A;iA;j − 4σ̂ijΔ̂2Aþ 6σ̂ijσ̂

mnA;nA;m

¼ 1

4M4

�
ϕ;iϕ;j þ ζ;iζ;j − e−2Aσ̂ij

�
ϕ;lϕ;l

2
þ ζ;lζ;l

2
þ V

��
: ð12Þ

From the above results, Eq. (10) defines the geometry of space-time ðM4;ωÞ, and one can readily obtain some solutions
summarized as follows:
(1) If Λ ¼ 0, a solution is a Minkowski space, ω ¼ η.
(2) If Λ > 0, a solution is a de Sitter space of four dimensions (dS4), ω ¼ ωþ.
(3) If Λ < 0, a solution is an anti–de Sitter space of four dimensions (AdS4), ω ¼ ω−.
(4) There are also Friedmann-Robertson-Walker space-time solutions of these equations for all values of Λ [35].
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Therefore, one may fit each of these (3þ 1) solutions
into the model construction that follows. Again, to simplify
the notation, whenever one is dealing with a space-timeM4

where Λ ¼ 0, its metric will be labeled η, while for either
Λ > 0 or Λ < 0, it will be labeled by either ωþ or ω−,
respectively. Hence, the subsequent steps can be resumed
by obtaining the solutions for Eqs. (11) and (12), which
define the geometry of the internal space ðB2; σ̂Þ. However,
since they are still expressed in terms of σ̂, it should be
simpler to work with the started geometry preliminarily
resumed by σ. Turning back to such a departure metric, one
first writes

Ξ̂l
ij ¼ Ξl

ij þ A;jδ
l
i þ A;iδ

l
j − A;sσ

lsσij;

Σ̂ij ¼ Σij − σijΔ2A;

Σ̂ ¼ e−2A½Σ − 2Δ2A�;
Δ̂iΔ̂jA ¼ ΔiΔjA − 2A;iA;j þ σlsσijA;lA;s;

which, once substituted into Eqs. (11) and (12), after some
straightforward manipulations, lead to

V
4M4

¼ 2Λe2A þ 2Δ2A − 8A;mA;m; ð13Þ

Σij − σijΛe2A þ 4ΔiΔjA − σijΔ2Aþ 4σijA;mA;m − 4A;iA;j

¼ ϕ;iϕ;j þ ζ;iζ;j
4M4

; ð14Þ

from which one can notice that some coordinate degree of
freedom is still present.
Equations (13) and (14) encode the needed infor-

mation to determine the geometry of space ðB2; σÞ, the
warp factor A, and the scalar fields ϕ and ζ. From a
geometrical perspective, they clearly illustrate why the two-
codimensional problem is circumstantially more compli-
cated than one-codimensional analysis. The existence of

curvature for the internal space B2 increases the complexity
of the equations to be solved. For a one-codimension
problem, the equations are, up to some constants, equiv-
alent, but the curvature is null. In addition, the complexity
that arises solely from topological considerations is
evinced: while for one codimension there are only two
possible topologies, R1 or S1, for two codimensions a
vaster scenario can be explored.
Turning back to the systematic procedure for solving

Eqs. (13) and (14), one can state the following theorem [80]:
Theorem 1.—Every two-dimensional (pseudo-)

Riemannian space ðB2; σÞ is conformally flat.
This means that, without loss of generality, one can

consider the metric of the space of codimensions to be
conformally flat—i.e.,

σ ¼ e−2Bðu;vÞðdu ⊗ duþ dv ⊗ dvÞ:

As previously argued, one has made a previous choice
for the coordinates so as to be able to write the resulting
expression for the metric. However, since Eq. (14) may not
be analytically solvable, it would be counterproductive to
keep expressing it in terms of conformal coordinates. A
more treatable set of coordinates for solving the resulting
differential equations, that do not result in a conformally
flat metric, can be identified by rewriting the system in
terms of the following metric:

σ ¼ e−2fðu;vÞdu ⊗ duþ e−2hðu;vÞdv ⊗ dv: ð15Þ

This is not the most general metric choice,2 but it does
allow for some leeway when solving the equations.
Naturally, this is equivalent to the conformally flat form,
since one has just used a different set of coordinates. By
substituting the metric choice from Eq. (15) into the field
Eqs. (13) and (14), it is straightforward to write

V
8M4

¼ Λe2A þ e2fðA;uu þ A;uf;u − A;uh;u − 4A;u
2Þ þ e2hðA;vv þ A;vh;v − A;vf;v − 4A;v

2Þ; ð16Þ

ϕ;u
2 þ ζ;u

2

4M4
¼ e2h−2fðf;vv þ f;vh;v − f;v2 þ 4A;v

2 − 3f;vA;v − A;vv − A;vh;vÞ
þ h;uu þ f;uh;u − h;u2 þ 3A;uu þ 3f;uA;u þ A;uh;u − Λe2A−2f; ð17Þ

ϕ;v
2 þ ζ;v

2

4M4
¼ e2f−2hðh;uu þ f;uh;u − h;u2 þ 4A;u

2 − 3h;uA;u − A;uu − A;uf;uÞ
þ f;vv þ f;vh;v − f;v2 þ 3A;vv þ 3h;vA;v þ A;vf;v − Λe2A−2h; ð18Þ

ϕ;uϕ;v þ ζ;uζ;v
4M4

¼ 4A;uv þ 4f;vA;u þ 4h;uA;v − 4A;uA;v: ð19Þ

2The most general one would allow nondiagonal terms.
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From Eqs. (16)–(19), one can determine the warp factor
and scalar fields, consequently obtaining the defect that
generates the thick brane. From this point, different
techniques must be employed for solving Eqs. (16)–(19)
analytically. One may separate the techniques into two
opposite categories:
(1) Starting from a predetermined internal space ðB2; σÞ,

which in other words corresponds to the preliminary
knowledge of f and h, one can thus calculate the
warp factor A.

(2) Starting with no knowledge of the geometry of the
internal space ðB2; σÞ—i.e., of f and h—one thus
assumes some simplifying hypothesis so as to solve
the equations in order to find A, f, and h.

Our focus will be on the second technique, which can later
be connected to the first onebyusing their solutions to fit them
into predetermined geometries. Looking at the second tech-
nique, the equationswill necessarily determine themetric, but
the topology ofB2 will still remain undetermined. This fact is
true, since the metric does not have, in general, enough
information to define the topological properties of space, with
the exception of some of the compact characteristics of the
latter, which is only possible because of the bulk geometry.3

Besides this special topological invariant, not many topo-
logical statements can be extracted about the spaces here
within, unless they are imposed a priori. Such indeterminacy
will be advantageous to the model building, since the same
solution may fit different topologies, and thus configure
distinctive space-times.

III. INTERSECTING THICK BRANES

For branes regarded as the intersection between the
defects generated by ϕ, such that ϕ;v ¼ 0, and by ζ, such
that ζ;u ¼ 0, which are achieved through an appropriate
choice of coordinates, u and v, one can follow the strong
supposition that the warp factor A and the functions f and h
will all be separable functions of u and v,

A ¼ ÂðvÞ þ ÃðuÞ;
f ¼ f̂ðvÞ þ f̃ðuÞ;
h ¼ ĥðvÞ þ h̃ðuÞ;

which can be summarized by a metric restricted by
Eq. (15), as it does not have diagonal terms.
With such assumptions clearly identified, Eq. (19)

implies

f̂;vÃ;u þ h̃;uÂ;v − Ã;uÂ;v ¼ 0; ð20Þ

which can be solved under two independent subliminar
hypotheses.

First, when either Â;v or Ã;u is set equal to zero, one has
either f̂;v ¼ 0 (if Â;v ¼ 0), or h̃;u ¼ 0 (if Ã;u ¼ 0)—this is,
consequently, the most simplified scenario. It constrains
either u or v to be compactified, since there would be no
way of localizing fields along the direction for which A is
null (constant). For instance, with Â ¼ 0, and arbitrarily
setting ĥ ¼ 0, the resulting metric would be cast in the
form of

g ¼ e−2Ãωμνdxμ ⊗ dxν þ e−2f̃du ⊗ duþ e−2h̃dv ⊗ dv;

ð21Þ
which leads to a stringlike defect for the warp factor. This
set of solutions has already been widely investigated
[64,67–70,72], even when they are not driven by scalar
fields. Considering our more general interest, such con-
structions will not be further pursued. However, it is worth
mentioning that several models that shall be more deeply
understood also have, as limiting cases, stringlike solutions
for the warp factor.
Second, the most promising scenario emerges from

considering nonvanishing values for both components,
Ã;u and Â;v. Following a simplified stratagem, from
Eq. (20), one may write f̂ ¼ pÂ and h̃ ¼ ð1 − pÞÃ, where
p ∈ R, while ĥ and f̃ are mapped by an aleatory corre-
spondence with the coordinates u and v. In this case, the
metric is recast in the form of

g ¼ e−2Âe−2Ãωμνdxμ ⊗ dxν þ e−2pÂe−2f̃du ⊗ du

þ e−2ĥe−2ð1−pÞÃdv ⊗ dv; ð22Þ
which leads to a novel class of solutions, which indeed is
not covered by the metric from Eq. (21).
As implicitly mentioned, from the metric in Eq. (22), one

can realize that the exchange of coordinates u ↔ v (as well
as f ↔ h) does not modify the space-time, which is just
relabeled in terms of u ↔ v. This means that a model with
p ¼ p1 is equivalent to a model with p ¼ 1 − p1, which
can be mathematically expressed in terms of the equiv-
alence relation, ∀p ∈ R∶p ∼ 1 − p; i.e., for any p value,
there is an equivalent model with p replaced by 1 − p.
Thus, the algorithm for solving the equations of motion can
be constrained by choosing, for instance,

p ∈ R=∼ ¼ fp ∈ Rjp ≥ 1=2g;
such that the equations to be solved, Eqs. (16)–(18), can be
resumed by

V
8M4

¼ e2pÂe2f̃½ðp − 5ÞÃ;u
2 þ f̃;uÃ;u þ Ã;uu�

þ e2ĥe2ð1−pÞÃ½ĥ;vÂ;v − ðpþ 4ÞÂ;v
2 þ Â;vv�

þ Λe2Âe2Ã; ð23Þ
3According to Refs. [81,82], one can extract out of Einstein

equations whether or not the space B2 is noncompact.
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e2pÂe2f̃

4M4
ϕ;u

2 ¼ e2pÂe2f̃½pð1 − pÞÃ;u
2 þ ð4 − pÞf̃;uÃ;u þ ð4 − pÞÃ;uu� − Λe2Âe2Ã

þ e2ĥe2ð1−pÞÃ½ð4 − 3p − p2ÞÂ;v
2 þ ðp − 1ÞÂ;vĥ;v þ ðp − 1ÞÂ;vv�; ð24Þ

e2ĥe2ð1−pÞÃ

4M4
ζ;v

2 ¼ e2pÂe2f̃½pð5 − pÞÃ;u
2 − pf̃;uÃ;u − pÃ;uu� − Λe2Âe2Ã

þ e2ĥe2ð1−pÞÃ½pð1 − pÞÂ;v
2 þ ð3þ pÞĥ;vÂ;v þ ð3þ pÞÂ;vv�: ð25Þ

Notice that Eq. (23) just defines the potential as a function
of u and v. Unless one imposes upon the potential V its
analytical dependence on ϕ and/or ζ, which would suppress
some degrees of freedom from Eqs. (24) and (25), Eq. (23)
is redundant to the solutions from Eqs. (24) and (25) when
they are used to obtain V. Otherwise, the analytical
solutions for Eqs. (24) and (25) can be obtained under
the following constraints:
(1) When Λ ¼ 0, thus the brane is flat.
(2) When Λ ≠ 0, but p ¼ 0 (or p ¼ 1).

This happens because the term with the cosmological
constant will necessarily contribute to a function that
depends on both variables, unless p ¼ 0 (or p ¼ 1), or
the brane is flat (Λ ¼ 0).

A. The flat brane case (Λ= 0)

After applying the separation of variables technique,
Eqs. (24) and (25) are written as

ð4þ pÞÂ2
;v − ĥ;vÂ;v − Â;vv ¼

C1

1 − p
e2pÂe−2ĥ; ð26Þ

ϕ;u
2

4M4
− ð4 − pÞf̃;uÃ;u − pð1 − pÞÃ2

;u − ð4 − pÞÃ;uu

¼ C1e−2f̃e2ð1−pÞÃ; ð27Þ

ð5 − pÞÃ2
;u − f̃;uÃ;u − Ã;uu ¼

C2

p
e−2f̃e2ð1−pÞÃ; ð28Þ

ζ;v
2

4M4
− ð3þ pÞĥ;vÂ;v − pð1 − pÞÂ2

;v − ð3þ pÞÂ;vv

¼ C2e−2pÂe2ĥ; ð29Þ

where Ci ∈ R, i ∈ f1; 2g are the separation constants. To
find the solutions of Eqs. (26)–(29), one needs to separate
the p ¼ 0 (or p ¼ 1) case from the p ≠ 0 (or p ≠ 1) case.

1. The p ≠ 0 (or p ≠ 1) case (models I and II)

Essentially, the above introduced sequence of steps for
preparing the equations of motion to be solved corresponds
to some kind of suppression of unnecessary degrees of
freedom. Looking at Eqs. (26)–(29), the coordinate

freedom is represented by ĥ and f̃. Again, the coordinate
constraints, ĥ ¼ pÂ and f̃ ¼ ð1 − pÞÃ, are chosen in order
to simplify the equation manipulability. With the metric in
the form of

g ¼ e−2Ãe−2Âημνdxμ ⊗ dxν

þ e−2ð1−pÞÃe−2pÂðdu ⊗ duþ dv ⊗ dvÞ; ð30Þ

the system corresponds to the singular configuration for
which a conformally flat approach simplifies the equation
resolutions. From Eqs. (26) and (28), the solutions obtained
are expressed by

Â ¼ Â0 −
1

4
lnfcosh½2cvðvþ v0Þ�g; ð31Þ

Ã ¼ Ã0 −
1

4
lnfcosh½2cuðuþ u0Þ�g; ð32Þ

where, without loss of generality, one may set the boundary
conditions as given by Â0 ¼ Ã0 ¼ 0, with

cv2 ¼ −
C1

p − 1
;

cu2 ¼
C2

p
;

where cv, cu ∈ C, but either ImðciÞ ¼ 0 or ReðciÞ ¼ 0,
since C1, C2, and p are real constants.
To develop models which can “localize” fields on the

brane, one may break this solution into two different
configurations, one for p ≥ 3 and ImðcuÞ ¼ 0, and another
for p ≤ 3 and ReðcuÞ ¼ 0. They correspond to the models
that shall be further explored in Appendix A.
Starting with p ≥ 3 [ImðcuÞ ¼ 0], which is now labeled

“model I,” one finds the metric (u0 ¼ v0 ¼ 0)

gI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh ð2cuuÞ

���� cos
�
nφ
2

�����
s

ημνdxμ ⊗ dxν

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j cosðnφ

2
Þjp

coshp−1ð2cuuÞ

s
ðdu ⊗ duþ r2dφ ⊗ dφÞ: ð33Þ
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Scalar fields and potential are resumed by

VI ¼ −8M4sechð1−pÞ=2ð2cuuÞsecp=2
�
nφ
2

��
cu2 −

n2

16r2

�
; ð34Þ

ϕI ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffi
M2aϕ

q 8><
>:u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bϕ

q
−

ffiffiffiffiffi
bϕ

p
2cu

arcsinh
h ffiffiffiffiffi

bϕ
q

tanh ð2cuuÞ
i

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bϕ

p
4cu

ln

2
664

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bϕ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bϕtanh2ð2cuuÞ

q
þ 1 − bϕ tanhð2cuuÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ bϕ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ bϕtanh2ð2cuuÞ
q

þ 1þ bϕ tanhð2cuuÞ

3
75
9>=
>;; ð35Þ

ζI ¼ �M2 cos

�
nφ
2

� 4r
ffiffiffiffiffiffiffi
2aζ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − bζtan2ðnφ2 Þ

q
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − bζ þ ð1þ bζÞ cos ðnφÞ

p � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bζ

p
arcsin

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bζ

p
sin

�
nφ
2

��

þ ffiffiffiffiffiffiffiffi
−bζ

p
arctanh

� ffiffiffi
2

p ffiffiffiffiffiffiffiffi
−bζ

p
sinðnφ

2
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðbζ þ 1Þ cos ðnφÞ − bζ þ 1

p �	
; ð36Þ

where the following constants have been defined:

aϕ ¼ −ð1 − pÞ n2

16r2
þ ðp − 4Þcu2;

bϕ ¼ ð5 − 2pÞcu2
aϕ

;

aζ ¼ pcu2 þ ð3þ pÞ n2

16r2
;

bζ ¼ −
ð3þ 2pÞn2
16r2aζ

;

through which the constraints aϕ ≥ 0, bϕ ≥ −1, aζ ≥ 0 and
bζ ≤ 0 are sufficient and necessary conditions for obtaining
real scalar fields, ϕ and ζ [cf. Eqs. (35) and (36)].
Besides the singularities exhibited by the scalar field ζI ,

the behavior of the variable u suggests that an infinite
amount of energy is required to achieve the model I
configuration (see Appendix A).

To avoid such a shortcoming, model II, with p ≤ 3 and
ReðcuÞ ¼ 0, can be introduced. In this case, the metric can
be stated as (u0 ¼ v0 ¼ 0)

gII ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� cos

�
lθ
2

�
cos

�
nφ
2

�����
s

ημνdxμ ⊗ dxν

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j cosðnφ

2
Þjp

j cosðlθ
2
Þjp−1

s
ðρ2dθ ⊗ dθ þ r2dφ ⊗ dφÞ: ð37Þ

Notice that, for p ≥ 3, the metric (37) would imply an
infinite effective volume. The scalar fields and potential for
such a configuration are as follows:

VII ¼ M4 secð1−pÞ=2
�
lθ
2

�
secp=2

�
nφ
2

��
l2

2ρ2
þ n2

2r2

�
;

ð38Þ

ϕII ¼ �M2 cos

�
lθ
2

� 4ρ
ffiffiffiffiffiffiffiffi
2aϕ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − bϕtan2ðlθ2Þ

q
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − bϕ þ ð1þ bϕÞ cos ðlθÞ

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bϕ

q
arcsin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bϕ

q
sin

�
lθ
2

��

þ
ffiffiffiffiffiffiffiffiffi
−bϕ

q
arctanh

� ffiffiffi
2

p ffiffiffiffiffiffiffiffiffi
−bϕ

p
sinðlθ

2
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðbϕ þ 1Þ cos ðlθÞ − bϕ þ 1

p �	
; ð39Þ

ζII ¼ �M2 cos

�
nφ
2

� 4r
ffiffiffiffiffiffiffi
2aζ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − bζtan2ðnφ2 Þ

q
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − bζ þ ð1þ bζÞ cos ðnφÞ

p � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bζ

p
arcsin

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bζ

p
sin

�
nφ
2

��

þ ffiffiffiffiffiffiffiffi
−bζ

p
arctanh

� ffiffiffi
2

p ffiffiffiffiffiffiffiffi
−bζ

p
sinðnφ

2
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðbζ þ 1Þ cos ðnφÞ − bζ þ 1

p �	
; ð40Þ
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where one identifies the following constants:

aϕ ¼ −ð1 − pÞ n2

16r2
− ðp − 4Þ l2

16ρ2
;

bϕ ¼ −
ð5 − 2pÞl2
16ρ2aϕ

;

aζ ¼ −p
l2

16ρ2
þ ð3þ pÞ n2

16r2
;

bζ ¼ −
ð3þ 2pÞn2
16r2aζ

:

In this case, aϕ ≥ 0, bϕ ≤ 0, aζ ≥ 0, and bζ ≤ 0 are the
sufficient and necessary conditions for assuring real scalar
fields. The scalar fields exhibit several singularities,
depending on the values for n and l. These singularities
explain the number of cusps in the warp factor. In order to
realize physically consistent solutions, the required energy
to achieve their internal structure must be finite. Even
though model II exhibits several singularities as depicted
by the scalar fields, the total energy necessary to accom-
plish model II is finite (see Appendix A). This is an evinced
advantage with respect to model I. Although model II has
finite total energy, one may still argue against its physical
significance, due to its recurrent singularities, a short-
coming that must be considered in the following model
issues.

2. The p = 0 (or p = 1) case (model III)

The third option of analytical models with flat branes,
with two scalar fields and p ¼ 0, starts from setting f̂ ¼ 0

and h̃ ¼ Ã, which leads to the subsequent metric

g ¼ e−2Âe−2Ãωμνdxμ ⊗ dxν þ e−2f̃du ⊗ du

þ e−2ĥe−2Ãdv ⊗ dv: ð41Þ

Again, from Eqs. (23)–(25), after separation of variables
and some straightforward manipulations, one finds the
following system of equations:

V
8M4

¼ e2f̃ð−5Ã;u
2 þ f̃;uÃ;u þ Ã;uuÞ þ Ce2Ã; ð42Þ

ϕ;u
2

4M4
¼ 4f̃;uÃ;u þ 4Ã;uu − Ce2Ãe−2f̃ ; ð43Þ

C ¼ −e2ĥð4Â;v
2 − Â;vĥ;v − Â;vvÞ; ð44Þ

ζ;v
2

4M4
¼ 3ĥ;vÂ;v þ 3Â;vv; ð45Þ

where C ∈ R is some separation constant. Here, one can
interpret Eqs. (42) and (43) as defining the potential V and

the scalar field ϕ, respectively, and one can actually solve
Eqs. (44) and (45). Choosing ĥ ¼ 0 straightforwardly
implies the solution

ÂIII ¼ Â0 −
1

4
ln j cos ½2

ffiffiffiffi
C

p
ðvþ v0Þ�j; ð46Þ

ζIII ¼ �2
ffiffiffi
3

p
M2arctanhfsin ½2

ffiffiffiffi
C

p
ðvþ v0Þ�g; ð47Þ

which from now on shall be called “model III,” and for
which, without loss of generality, one can set Â0 ¼ 0
and v0 ¼ 0.
Given the periodicity of ÂIII, one departs from the choice

of v ¼ rφ, where φ ∈ S1, and r is the radius of S1. Since
the metric must be continuous in S1, this requires that e−2Â

also be continuous in S1, which means that

jcosð2
ffiffiffiffi
C

p
r2πÞj¼ jcosð0Þj¼1⇒C¼ n2

16r2
; n∈N:

Therefore, one may write the metric, with Â0 ¼ 0 and
v0 ¼ 0, as

gIII ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� cos

�
nφ
2

�����
s

e−2Ãημνdxμ ⊗ dxν þ e−2f̃du ⊗ du

þ r2e−2Ãdφ ⊗ dφ; ð48Þ

which expresses a setup with a Minkowski brane ðΛ ¼ 0Þ
with two scalar fields. Both the scalar field ζIII and the
warp factor ÂIII are, up to some constant, equivalent in
form to those from model I, as depicted in Figs. 14(a)
and 15(b). Despite such similarities, distinctive coordinates
lead to inequivalent fields, so solutions must be rediscussed
and reinterpreted. Considering the possible values of n,
only the n ¼ 1 configuration does not require the modulus
in

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij cos ðnφ=2Þjp
, since cos ðφ=2Þ is strictly positive in

this region.
In this case, one may be tempted to interpret each of the

cusps of the warp factor as forming different branes.
However, since the unique localizing parameter in this
model is the radius r of S1, it is better to interpret such a
configuration as a single brane with some internal structure,
as the same is true for models I and II.
In this case, before evaluating metric gIII , the scalar

field ϕ, and potential configurations, one should turn one’s
attention to the associated stress energy tensor. For p ¼ 0
models, from Eqs. (42) and (43), the total stress energy
tensor can be separated as follows:

TMN ¼ Tζ
MN þ Tϕ

MN; ð49Þ

Tζ
MN ¼ ζ;Mζ;N − gMN

ζ;Kζ;K
2

; ð50Þ
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Tϕ
MN ¼ ϕ;Mϕ;N − gMN

�
ϕ;Kϕ;K

2
þ V

�
; ð51Þ

which allows one to focus on the stress energy tensor driven
by the scalar field ζ [Eq. (50)]:

TζIII
μν ¼ −

3M4n2ημν
2r2

���� sec
�
nφ
2

�����3=2;
which is depicted in Fig. 1. Of course, Fig. 1 evinces that

the TζIII
μν singularities shall support a number of cusps in the

warp factor. From the perspective of the bulk, the energy
necessary to achieve such a configuration can be computed
in terms of

EζIII
μν ¼

Z
E6

TζIII
μν

ffiffiffiffiffiffi
−g

p
d6x ∝

Z
π

−π

���� sec
�
nφ
2

�����1=2dφ;
where the last integral converges for all values of n.
Therefore, the energy of these models, as far as ζ is
concerned, is finite. Although the energy needed for this
configuration is finite, one may still argue against the
physical significance of this model, due to the number of
singularities in the stress energy tensor.
To complete the model, one now only lacks the depend-

ence of the warp factor on the u coordinate related to Ã, and
to the scalar field ϕ, as well as to the potential V. For model
III, these fields must satisfy Eqs. (42) and (43). Notice here
that while V, ϕ, and Ã are still undetermined, f̃ is a mere
choice of coordinates. Therefore, one has complete free-
dom in choosing one such field, as long as further analytical
integration is allowed for the other two fields. This means
that a multitude of solutions can be found in order to fit
such a building procedure. As will be presented later, a set
of similar equations for Ã, ϕ, and V will be found for
different solutions of Â and ζ: this is to be expected, since

the equations are separated in the variables u and v. Later,
a couple of examples will be proposed, all of which start
by assuming Ã. This is simply to achieve an intended
geometry for ðB2; σÞ, which shall lead to a common
solution set for Ã, ϕ, and V for all the models with p ¼ 0.
To resume, model III also contains a trivial extension of

well-known models of (4þ 1)-dimensional braneworlds.
Looking at Eqs. (42) and (43), one should notice that, for
f̃ ¼ n ¼ 0 (which is nothing but a choice of coordinates
and C ¼ 0), exactly the same equations, up to some
constants, are obtained from such a five-dimensional case
[14–27]. These models unsurprisingly contain trivial exten-
sions of the five-dimensional braneworld models so deeply
considered in the previously quoted works. One may call
them trivial because the metric takes the form

g ¼ e−2Ãðημνdxμ ⊗ dxν þ r2dφ ⊗ dφÞ þ du ⊗ du; ð52Þ

which is simply the same metric as in the five-dimensional
setup with an additional codimensional compactified struc-
ture as in S1, and with the defect generated by the scalar
field ϕ and potential V (ζ ¼ 0).

B. The bent brane case ðp= 0;Λ ≠ 0Þ
Considering the bent brane case, Eqs. (23)–(25) with

Λ ≠ 0 and p ¼ 0, no preliminary assumption about the
curvature of M4 (i.e., about Λ ≠ 0) is required. Departing
from the metric in Eq. (41), and after some straightforward
manipulations involving Eqs. (23)–(25) (for p ¼ 0), they
can be cast in the form of

C ¼ Λe2Â − e2ĥð4Â;v
2 − Â;vĥ;v − Â;vvÞ; ð53Þ

ζ;v
2

4M4
¼ 3ĥ;vÂ;v þ 3Â;vv − Λe2Âe−2ĥ; ð54Þ

where C ∈ R is the separation constant. Again, the
expressions defining the potential V and the scalar field
ϕ are given by Eqs. (42) and (43), which correspond to the
flat brane model with p ¼ 0.
To solve Eq. (53), one can set either ζ;v ¼ 0 (ζ ¼ 0), or

C ¼ 0 (but ζ;v ≠ 0).
This means that when two scalar fields are present and

the brane is not flat, some additional supposition (C ¼ 0)
about the solution must be made, but in all other cases, one
can generally solve these equations. In particular, the first
case, with ζ ¼ 0, is the most interesting one. It corresponds
to a model with a single scalar field which drives a smooth
behavior with no singularities in the stress energy tensor,
which are ingrained in the other configurations (models I,
II, and III).

FIG. 1. Stress energy tensor TζIII�
μν ¼ −r2TζIII

μν =3M4n2ημν as a
function of φ, for n ¼ 1 (black line), n ¼ 2 (black dashed line),
n ¼ 3 (red line), and n ¼ 4 (red dashed line).

HENRIQUE MATHEUS GAUY and ALEX E. BERNARDINI PHYS. REV. D 105, 024068 (2022)

024068-10



1. The single scalar field case (model IV)

Starting from the constraint imposed by ζ ¼ 0, model IV
is resumed by the behavior of a single scalar field. To solve
Eqs. (53) and (54), one can set ĥ ¼ 0 in order to obtain
some simplifications. Thus, combining Eqs. (53) and (54),
one can write

Λ
3
e2Â − Â;v

2 ¼ C
4
⇔

Z
dÂffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λ
3
e2Â − C

4

q ¼ �ðvþ v0Þ;

which exhibits three different solutions depending on the
values of Λ and C: i.e.,

Â ¼ ln

� ffiffiffi
3

pffiffiffiffi
Λ

p jvþ v0j

�
; if C ¼ 0 and Λ > 0; ð55Þ

Â¼ − ln

�
2

ffiffiffiffiffiffiffiffiffi
jΛj
3jCj

s
cosh

� ffiffiffiffiffiffijCjp
2

ðvþ v0Þ
�	

; if C;Λ < 0;

ð56Þ

ÂIV ¼ − ln

�
2

ffiffiffiffiffiffi
Λ
3C

r ���� cos
� ffiffiffiffi

C
p

2
ðvþ v0Þ

�����
	
; if C;Λ > 0;

ð57Þ

which are all consistent with Eqs. (53) and (54).
Clearly, the solutions from Eqs. (55) and (56) do not

depict RS-like features: gravity is not localized along the
corresponding extra dimension, unless one could force v to
be periodic. Nevertheless, the warp factors in Eqs. (55)
and (56) are not periodic, and no thin brane can supply the
required boundary conditions. Gravity can be localized
only by setting C ¼ Λ ¼ 0, which leads to constraining
ÂðvÞ ¼ Â0 (Â0 ∈ R), and by supposing v ¼ rφ, with
φ ∈ S1. In this case, one has the same trivial case from
Eq. (52), which corresponds to a trivial extension of five-
dimensional braneworlds.
On the other hand, looking at Eq. (57), which is

periodic—i.e., with v ¼ rφ, where φ ∈ S1—one does find
more appealing localization features, which emerge from
its compact characteristic. Since one expects the metric to
be continuous, the warp factor e−2Â shall also be periodic
and continuous in S1: i.e., (for v0 ¼ 0),

cos2
� ffiffiffiffi

C
p

2
r2π

�
¼ cos2ð0Þ ¼ 1 ⇒ C ¼ n2

r2
; n ∈ Nþ;

where one should notice that n ≠ 0, since the warp factor is
ill defined for n ¼ 0.
Since the peculiarities related to the solutions from

Eqs. (55) and (56) have already been discussed, one should
pay more attention to the solution from Eq. (57).

In this case, the related metric, with v0 ¼ 0, is written as

gIV ¼ 4r2Λ
3n2

cos2
�
nφ
2

�
e−2Ãωþ

μνdxμ ⊗ dxν þ e−2f̃du ⊗ du

þ r2e−2Ãdφ ⊗ dφ; ð58Þ

which corresponds to the most appealing solutions once
some physical conditions are imposed. In particular, it only
works either for a de Sitter brane ðΛ > 0Þ or, at least, for a
space with positive constant curvature. Clearly, since no
scalar field ζ is effective, the energy to achieve such a
configuration is finite. Figure 2 depicts the form of the warp
factor e−2Â

IV
, which explains why this model should be

more relevant than models I, II, and III: there are no cusps
in the warp factor. This corresponds to a straightforward
consequence of no singularities in the stress energy tensor.
Even with singularities eliminated from the stress energy

tensor, this model still exhibits curvature singularities.
Whenever cos2 ðnφ=2Þ ¼ 0, the warp factor is null, and
the metric will have vanishing components. This could be
an effect of a badly defined choice of coordinates, and
could represent some form of horizon. In this context, the
Kretschmann scalar [see Eq. (B1) in Appendix B] for
model IV reads

K ¼ e4Ã
�
3n2

r2
sec2

�
nφ
2

��
n2

r2
tan2

�
nφ
2

�
þ 4Ã;u

2

�
þ 5n4

2r4

þ e−4ÃKðuÞ þ 16Ã;uu
2 þ 40Ã;u

4 − Ã;u
2

	
;

which results in curvature singularities, since this scalar
invariant is singular whenever cos2 ðnφ=2Þ ¼ 0.
Another interesting property of model IV is the constant

4Λ=3C that multiplies the warp factor. This constant cannot
be removed from the warp factor; otherwise, it will not be a
solution of Eqs. (53) and (54). Yet, if one increases the

FIG. 2. Warp factor e−2Â
IV
of model IV as a function of φ, for

n ¼ 1 (black line), n ¼ 2 (black dashed line), n ¼ 3 (red line),
and n ¼ 4 (red dashed line).
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value of C, the warp factor not only becomes more
localized, but also exhibits a decreasing amplitude. In fact,
one could expect the maximum value of the warp factor to
be 1; thus, one could impose 4Λ=3C ¼ 1. For aΛ assuming
tiny values, one should have tiny values for C. Therefore,
the warp factor will not be exceptionally localized. Here, no
concern shall be given to such relation between C and Λ; C
will be regarded as a completely independent value.
One again only lacks the dependence of the warp factor

on the u coordinate related to Ã, and to the scalar field ϕ,
as well as to the potential V. In this case, the involved
fields must satisfy Eqs. (42) and (43), with C ¼ n2=r2 for
model IV. Therefore, the dependence of these quantities on
u is equivalent to that obtained for the flat brane model III,
with the metric in Eq. (48), and with the distinction being
only due to the value of C: for model III, the constant
C ¼ n2=16r2, n ∈ N, while for model IV, the constant
C ¼ n2=r2, n ∈ Nþ. Equations (42) and (43) will be solved
in a redundant way for models III, IV, and V in Sec. IV.

2. The C= 0 case (model V)

So far, we have built models over flat and de Sitter
branes; therefore, the whole spectrum of possible values of
Λ can be filled by anti–de Sitter brane solutions.
To realize analytical solutions of Eq. (53) when two

scalar fields are present and the brane is bent—i.e., the
space-time curvature of M4 is non-null—one must con-
strainC to 0. Other values ofC do not allow strict analytical
calculations. A simplified scenario is accomplished by
setting ĥ ¼ Â, so as to reduce Eqs. (53) and (54) for the
warp factor Â and ζ, respectively, to model V, for which

ÂV ¼ Â0 −
1

3
ln j cos ½

ffiffiffiffiffiffiffiffiffi
3jΛj

p
ðvþ v0Þ�j; ð59Þ

ζV ¼ � 4M2ffiffiffi
3

p arctanhfsin ½
ffiffiffiffiffiffiffiffiffi
3jΛj

p
ðvþ v0Þ�g; ð60Þ

with Λ < 0. The solution Â for positive values of Λ does
not exhibit RS-like features. Due to the periodicity of ÂV ,
one is able to choose v ¼ rφ, where φ ∈ S1. Since the
metric must be continuous, e−2Â must also be continuous
in S1; therefore,

½cos ð
ffiffiffiffiffiffiffiffiffi
3jΛj

p
r2πÞ�2=3 ¼ 1 ⇒ r ¼ n

2
ffiffiffiffiffiffiffiffiffi
3jΛjp ; n ∈ Nþ;

where simplified expressions are yielded from choosing
Â0 ¼ 0 and v0 ¼ 0. For such a completely contrasting
result, obviously there is no relation between C and the
radius r of S1, and Λ is a free parameter as well. In fact, the
radius r of S1 is constrained by the value of the cosmo-
logical constant Λ one chooses for the space-time M4, and
the metric is written as

gV ¼ cos2=3
�
nφ
2

�
e−2Ãω−

μνdxμ ⊗ dxν þ e−2f̃du ⊗ du

þ r2 cos2=3
�
nφ
2

�
e−2Ãdφ ⊗ dφ; ð61Þ

which expresses a compactified setup for an anti–de Sitter
brane ðΛ < 0Þ scenario at M4, with constant negative
curvature and two scalar fields. In Fig. 3(a), the form of
the warp factor is exhibited for different values of n. The
form of the scalar field is exactly the same as the one
depicted in Fig. 15(b). But the scalar field now depends on
the φ coordinate, which is different from the one considered
in model I.

(a) (b)

FIG. 3. (a) The warp factor e−2Â
V
of model V0 as a function of φ. (b) The stress energy tensor Tζ�

μν ¼ −Tζ
μν3r2=4M4n2ω−

μν of model
V as a function of φ. The plots are for n ¼ 1 (solid black line), n ¼ 2 (black dashed line), n ¼ 3 (solid red line), and n ¼ 4 (red
dashed line).
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Figure 3(b) depicts the stress energy tensor, Tζ
μν, for the

scalar field ζ,

TζV
μν ¼ −

4M4n2ω−
μν

3r2
sec2

�
nφ
2

�
;

which evidently exhibits singularities correlated to the
number of cusps exhibited by the warp factor. Again, from
the perspective of the bulk, one has the finite formation
energy given by

EζV
μν ¼

Z
E6

TζV
μν

ffiffiffiffiffiffi
−g

p
d6x ∝

Z
π

−π
sec1=3

�
nφ
2

�
dφ:

To complete the model, one notices that the fields must
satisfy Eqs. (42) and (43) with C ¼ 0, such that

V
8M4

¼ e2f̃ð−5Ã;u
2 þ f̃;uÃ;u þ Ã;uuÞ;

ϕ;u
2

4M4
¼ 4f̃;uÃ;u þ 4Ã;uu:

By choosing coordinates such that f̃ ¼ 0, one recovers
the same equations, up to some constants, as in the
five-dimensional thick braneworlds with a single scalar
field. This means that once more, we have a nontrivial
extension of the usual five-dimensional braneworld
models, which can be ratified by setting f̃ ¼ n ¼ 0 in
Eqs. (61), (59), and (60).

IV. SETUPS FROM PREDETERMINED
INTERNAL SPACES

In the previous sections, a first subset of models I and II
for intersecting thick branes was obtained and discussed in
terms of the model degenerate dependence on a single
codimensional coordinate v ↔ u. A second subset, for
models III, IV, and V, which include a split dependence
between v and u and admit some additional freedom in the
choice of the field parameters Ã, ϕ, and V, has also been
evaluated. In this section, the hypothesis of constraining
such additional degrees of freedom by imposing a geometry
for ðB2; σÞ shall be considered.
As previously argued, Eqs. (42) and (43) form a common

set of equations for all the p ¼ 0 models. These two
equations involve three field parameters: Ã, ϕ, and V. Due
to the remnant degree of freedom, Eqs. (42) and (43) can be
recast into a first-order configuration (see Ref. [83]) to be
solved. Given that p ¼ 0, one finds that the metric of the
internal space B2 takes the form of

σ ¼ e−2f̃du ⊗ duþ e−2Ãe−2ĥdv ⊗ dv: ð62Þ

Thus, the choice of Ã and f̃ fixes the geometry of B2, since
ĥ is nothing but a choice of coordinates which has been

previously specified for each model. That makes choosing
the field Ã a better option than fixing either ϕ or V, in the
manner that one can achieve an intended geometry. For this
reason, these spaces have a predetermined geometry, since
one does not determine it from the field equations, but
instead chooses Ã and f̃ such that an expected geometry is
achieved. As long as one is able to cast the metric of the
internal space as in Eq. (62), the geometrical interpretation
that follows is straightforward. The tricky thing here is
finding a combination of Ã and f̃ that allows for the
integration in Eq. (43). In the following subsections,
solutions to these equations will be provided by a choice
of the metric of the internal space B2 that allows for the
respective analytical integration of Eq. (43).
In particular, when ĥ ¼ 0 and the coordinate v is

compactified as S1 (models III and IV), one is able to
cast the metric (62) in a particular fashion so that the
internal space could be a sphere or spheroid (Secs. IV B
and IV C). Since models III and IV have the same common
geometry and topology for the internal space, the solutions
that follow are common to both of them. Model V can also
share these specific solutions for Ã, ϕ, and V, but the
applied geometrical interpretation shall not be valid in the
latter cases.

A. Solving Eqs. (42) and (43)

When one chooses coordinates such that f̃ ¼ 0,
Eqs. (42) and (43) are similar in structure to the equations
that define five-dimensional bent braneworlds [83–85],
bearing in mind that there are some constraints imposed
by the separation constants, Λ and C. Therefore, a
departure solution such as, for instance, due to Ref. [84],

Ã ¼ − ln j cos½aðuþ u0Þ�j ð63Þ

can be considered. Notice that one is able to choose
aðuþ u0Þ ¼ θ, with θ ∈ ½−π=2; π=2�, as long as one
allows for the singularities at �π=2 for the scalar field.
Thus, one is able to consider u to be compactified as S1,
just imposing a ¼ 1=2r, where r is the radius of S1. It
allows one to run θ from −π to π. As an example, for the
sphere models that follow, one regards a ¼ 1=r,
u0 ¼ −rπ=2, and thus u ∈ ½0; rπ�.
From Eqs. (42) and (43), the scalar field ϕ and potential

V are cast as

ϕς ¼ �2M2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 −

C
a2

r
arctanhfsin½aðuþ u0Þ�g; ð64Þ

Vς ¼ 8M4a2
�
5 −

�
4 −

C
a2

�
sec2½aðuþ u0Þ�

	
; ð65Þ

which, in this case, allows for an explicit correspondence
given by
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Vς ¼ 8M4a2
�
5 −

�
4 −

C
a2

�
cosh2

�
aϕ

2M2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 − C

p
�	

:

When C ¼ 4a2, the scalar field ϕς is null and the potential
Vς is a constant; thus, one has either a single scalar field ζ,
as for models III and V, or no scalar field, as for model IV.
For model IV, since no scalar field is present, ζ ¼ ϕ ¼ 0,
the potential is a constant. Upon returning to Einstein
equations, one then finds GMN ¼ −5CgMN=2, and thus E6

is nothing but a de Sitter space of six dimensions ðdS6Þ
written in some unusual system of coordinates. The form of
the scalar field ϕς can be seen in Fig. 15(b), while the
potential Vς is depicted in Fig. 4.
The corresponding metric of such configurations is

given by

gJς ¼ cos2½aðuþ u0Þ�e−2ÂJ
ωμνdxμ ⊗ dxν

þ cos2½aðuþ u0Þ�e−2ĥJdv ⊗ dvþ du ⊗ du; ð66Þ

where the index J in gJς , Â
J, and ĥJ refers to one of the

models III, IV, or V (i.e., J ¼ III, ÂJ ¼ ÂIII , refers to the
warp factor of model III). See that the warp factor from
Eq. (66) exhibits the same pattern as for model IV
[Eq. (58)], cf. Fig. 2.
Other configurations can also be achieved by choosing f̃

to be non-null; thus, even if the warp factor is as given by
Eq. (63), the configuration would be different. As an
example, one may consider the following choice of f̃:

f̃ ¼ −
1

2
lnf1 − κ cos2½aðuþ u0Þ�g;

where κ is a constant such that κ ∈ ð0; 1Þ. For κ ¼ 0, one
recovers the metric from Eq. (66). As shall be clarified in
the following subsection, this choice corresponds to a
reduction of the spheroid model, for which

gJϵ ¼ cos2 ½aðuþ u0Þ�ðe−2ÂJ
ωμνdxμ ⊗ dxν þ e−2ĥ

J
dv⊗ dvÞ

þ f1− κ cos2½aðuþ u0Þ�gdu⊗ du; ð67Þ

where ÂJ and ĥJ could be any of the functions determined
in models III, IV, or V.
Analytical solutions for Eq. (43) are constrained by the

choice of C ¼ 4a2—i.e., with J ¼ III and IV at Eq. (67).
In these cases, upon an integration of Eq. (43), one has

ϕϵ

4M2
¼∓ ffiffiffiffiffiffiffiffiffiffiffi

1 − κ
p

arctanh

0
B@

ffiffiffi
κ

p
sin½

ffiffiffi
C

p ðuþu0Þ
2

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ cos2½

ffiffiffi
C

p ðuþu0Þ
2

�
q

1
CA; ð68Þ

Vϵ

2CM4
¼ 5ð1 − κÞ − 4κð1 − κÞ cos2½

ffiffiffi
C

p ðuþu0Þ
2

�
f1 − κ cos2½

ffiffiffi
C

p ðuþu0Þ
2

�g2
; ð69Þ

and no longer does the scalar field exhibit singularities at
�π=2. It is straightforward to invert the expression for ϕ so
as to write the potential V as a function of ϕ. After some
forthright manipulations, one finds

Vϵ ¼ 2CM4

2
641þ 4ð1 − κÞcosh2



ϕϵ

4M2
ffiffiffiffiffiffi
1−κ

p
�

ð1 − κÞcosh4



ϕϵ

4M2
ffiffiffiffiffiffi
1−κ

p
�

3
75; ð70Þ

from which the scalar field and potential forms are depicted
in Fig. 5.
The warp factor for the metric (67) is exactly the same as

in Eq. (66), but due to the contribution from guu, the u
coordinate has a different meaning. Thus, it would be
interesting to change coordinates to be able to better
compare how the metric in Eq. (67) fares against the
one from Eq. (66). To this end, one chooses a new
coordinate y, with such luck that

dy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κcos2

� ffiffiffiffi
C

p

2
ðuþ u0Þ

�s
du;

upon which, after an integration, one finds

y ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
1 − κ

p ffiffiffiffi
C

p E

� ffiffiffiffi
C

p

2
ðuþ u0Þ

���� κ

κ − 1

�
; ð71Þ

where EðxjmÞ is the elliptic integral of the second kind. The
inverted expression results in

ffiffiffiffi
C

p

2
ðuþ u0Þ ¼ E−1

� ffiffiffiffi
C

p
y

2
ffiffiffiffiffiffiffiffiffiffiffi
1 − κ

p
���� κ

κ − 1

�
;

FIG. 4. Potential V�
ς ¼ Vς=32M4a2 as a function of the scalar

field ϕ�
ς ¼ ϕς=4M2. The plots are for C ¼ 0 (solid black line),

C ¼ a2=4 (dotted black line), C ¼ a2 (dashed black line), C ¼
2a2 (solid red line), C ¼ 3a2 (dotted red line), and C ¼ 7a2=2
(dashed red line).
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where E−1 is the inverse function of the elliptic integral of
the second kind. Then, one may write the metric (67) in
terms of the coordinate y as

gJϵ ¼ cos2
�
E−1

� ffiffiffiffi
C

p
y

2
ffiffiffiffiffiffiffiffiffiffiffi
1 − κ

p
���� κ

κ − 1

��
ðe−2ÂJ

ωμνdxμ ⊗ dxν

þ e−2ĥ
J
dv ⊗ dvÞ þ dy ⊗ dy: ð72Þ

Finally, the warp factor e−2Ã and the scalar field ϕ as
functions of y can be seen in Fig. 6. Clearly, from Fig. 6, as
κ gets closer to 1, the warp factor becomes more localized,
and in the limit of κ going to 1, a thin brane is recovered.
Hence, κ is the localizing parameter in this model: as it gets
closer to 1, the brane should be closer to a thin brane, and
the matter distribution in this model should look more like a
cusped function, which can only be realized by looking at
the metric in Eq. (72). Otherwise, one generally prefers to
work with Eq. (67), since a straightforward geometrical
interpretation is achieved when one applies this geometry
to S2.
Note that the setup from Eq. (67) could also be

considered in the five-dimensional context, since the
equations are, up to some constant, equivalent. From the
previous choice of f̃, one can thus construct some novel
models of bent branes in five dimensions, since the metric
is just given by

g ¼ cos2
� ffiffiffiffiffiffijΛjp

2
ðuþ u0Þ

�
ωμνdxμdxν

þ
�
1 − κcos2

� ffiffiffiffiffiffijΛjp
2

ðuþ u0Þ
�	

du2; ð73Þ

where Λ is the curvature of space-time ðM4;ωÞ.

B. The sphere models

An interesting application of the models constructed in
previous sections is concerned with the possibility of
constructing braneworlds over S2.
The sphere models, for instance, start with the

assumption that the internal space ðB2; σÞ is a sphere, or
in other words, ðB2; σÞ≡ ðS2; ςÞ, where [cf. Eq. (C2)]

ς ¼ r2dθ ⊗ dθ þ r2 sin2ðθÞdφ ⊗ dφ: ð74Þ

In this case, one has chosen u≡ rθ, f̃ ≡ 0, and
Ã≡ − ln ½sinðθÞ�, as well as φ ∈ ½−π; π� and θ ∈ ½0; π�.
This choice corresponds exactly to the one from Eq. (63),
where one now chooses u0 ¼ π=2r, a ¼ 1=r, and u only
takes values at the subinterval ½0; rπ�. See that this choice
for f̃ and Ã is also allowed for model V, which however
does not have the internal space metric as from Eq. (74).
For this reason, model V will be disregarded in this section.
Turning to the point from Eq. (74), Eqs. (42) and (43) are

easily solved so as to return the quantities

V ¼ 8M4

r2

�
5 − 4

�
1 −

Cr2

4

�
csc2θ

�
;

ϕ ¼ �4M2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Cr2

4

r
ln

�
tan

�
θ

2

��
;

such that the potential as a function of ϕ is given by

V ¼ 8M4

r2

8<
:5 − ð4 − Cr2Þcosh2

"
ϕ

4M2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Cr2

4

q
#9=
;:

For ϕ read as a real scalar field, one has

(a) (b)

FIG. 5. (a) Scalar field ϕ�
ϵ ¼ ϕϵ=4M2 as a function of θ ¼ aðuþ u0Þ. (b) Potential V�

ϵ ¼ ð1 − κÞVϵ=2CM4ð5 − 4κÞ as a function of
ϕ�
ϵ ¼ ϕϵ=4M2

ffiffiffiffiffiffiffiffiffiffiffi
1 − κ

p
. The plots are for κ ¼ 0.1 (solid black line), κ ¼ 0.2 (dashed black line), κ ¼ 0.4 (dotted black line), κ ¼ 0.6 (solid

blue line), κ ¼ 0.8 (dashed blue line), κ ¼ 0.9 (dotted blue line), κ ¼ 0.99 (solid red line), and κ ¼ 0.999 (dashed red line).
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1 −
Cr2

4
≥ 0 ⇔ C ≤

4

r2
;

from which, for models III and IV, the constraints over C
restrict the number of possible models to its dependence on
the value of n:
(1) CIII ¼ n2=16r2 ⇒ n ∈ f0; 1; 2; 3; 4; 5; 6; 7; 8g.
(2) CIV ¼ n2=r2 ⇒ n ∈ f1; 2g.
Thus, one can have, for model III, nine different

configurations for the scalar field and potential, each for
different values of n. Meanwhile, for model IV, there are
only two different configurations.
When C ¼ 4=r2 (n ¼ 8 for model III or n ¼ 2 for

model IV), one finds a vacuum: the scalar field ϕ is null,
and the potential V is a constant. For model IV, this

configuration turns out to be dS6. In Fig. 7(a), the scalar,
warp factor, and potential for different values of C are
presented. The potential as a function of ϕ can be seen in
Fig. 5(b). For models III and IV, the complete metric can
be written in the form

gIII ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� cos

�
nφ
2

�����
s

sin2 θημνdxμ ⊗ dxν þ r2dθ ⊗ dθ

þ r2 sin2ðθÞdφ ⊗ dφ; ð75Þ

gIV ¼ 4r2Λ
3n2

cos2
�
nφ
2

�
sin2 θωþ

μνdxμ ⊗ dxν þ r2dθ ⊗ dθ

þ r2 sin2ðθÞdφ ⊗ dφ: ð76Þ

(a) (b)

FIG. 6. (a) Warp factor e−2Ã as a function of y� ¼ ffiffiffiffi
C

p
y=2. (b) Scalar field ϕ�

ϵ ¼ ϕϵ=4M2 as a function of y� ¼ ffiffiffiffi
C

p
y=2. The plots are

for κ ¼ 0.1 (solid black line), κ ¼ 0.2 (dashed black line), κ ¼ 0.4 (dotted black line), κ ¼ 0.6 (solid blue line), κ ¼ 0.8 (dashed blue
line), κ ¼ 0.9 (dotted blue line), κ ¼ 0.99 (solid red line), and κ ¼ 0.999 (dashed red line).

(a) (b)

FIG. 7. (a) Scalar field ϕ� ¼ ϕ=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − C=4

p
(thick black line), warp factor Ã (thick black dashed line), and potential V� ¼ V=4.

(b) The θ dependence of the stress energy tensor Tϕ
μν, Tϕ�

μν ¼ − sin2 θTϕμ
ν=8. The plots are for C ¼ 0 (thin black line), C ¼ 1=16 (thin

black dotted line), C ¼ 1=4 (thin black dashed line), C ¼ 9=16 (thin black dot-dashed line), C ¼ 1 (thin red line), C ¼ 25=16 (thin red
dotted line), C ¼ 9=4 (thin red dashed line), C ¼ 49=16 (thin red dot-dashed line), and C ¼ 4 (thick black solid line), withM ¼ r ¼ 1.
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Figures 8 and 9 depict the warp factor e−2A of models III
and IV for various values of n.
Finally, using the definition from Eq. (51), the stress

energy tensor of the scalar field ϕ can be obtained for
different models. Redundantly, the explicit form of Tϕμ

ν

is common to all models (III and IV) and is only a
function of θ:

Tϕμ
ν ¼

8M4

r2
δμν

�
3

�
1 −

Cr2

4

�
csc2ðθÞ − 5

�
:

Despite exhibiting some singularities, Tϕ
μν is localized and

nonsingular, since once it is multiplied by the warp factor it
becomes well behaved. In Fig. 7(b), the θ dependence of

Tϕ
μν is depicted for several values of C. Clearly, the total

energy in these models, as far as ϕ is concerned, is finite,
given that the stress energy tensor is localized. In fact, for
all these scenarios, the total stress energy tensor is given by

TIII
μν ¼ −

24M4ημν
r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� cos
�
nφ
2

�����
s �

n2

8
sec2

�
nφ
2

�

þ
�
5

3
sin2θ − 1þ n2

64

��
; ð77Þ

TIV
μν ¼ 32M4Λ

n2
ωþ
μνcos2

�
nφ
2

��
1 −

n2

4
−
5

3
sin2ðθÞ

�
: ð78Þ

So far, these models have been presented in spherical
coordinates. The introduction of stereographic coordinates,
i.e.,

u ¼ r cot

�
θ

2

�
cosðφÞ;

v ¼ r cot

�
θ

2

�
sinðφÞ;

allows one to rewrite the metrics of models III and IV as

gIII ¼ 4r2ðu2 þ v2Þ
ðr2 þ u2 þ v2Þ2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� cos
�
n
2
arccos

�
uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

������
s

ημνdxμ ⊗ dxν þ du ⊗ duþ dv ⊗ dv

	
; ð79Þ

gIV ¼ 4r2ðu2 þ v2Þ
ðr2 þ u2 þ v2Þ2

�
4r2Λ
3n2

cos2
�
n
2
arccos

�
uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

��
ωþ
μνdxμ ⊗ dxν þ du ⊗ duþ dv ⊗ dv

	
: ð80Þ

One can thus notice the advantage of choosing the initial metric of B2 as from Eq. (15) if, on the other hand, one had
started with a conformally flat form. As can be seen from Eqs. (79) and (80), finding these solutions would not be

FIG. 8. Warp factor e−2A of model III in a spherical plot, with r ¼ Λ ¼ 1. The top figures are for n ¼ 0, 1, 2, 3, and 4 (from left to
right), and the bottom ones are for n ¼ 5, 6, 7, and 8 (from left to right).

FIG. 9. Warp factor e−2A of model IV for n ¼ 1 (left figure) and
n ¼ 2 (right figure) in a spherical plot, with r ¼ Λ ¼ 1.
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straightforward, since the warp factor is, most notably, not
separable in u and v. Moreover, one could express all the
warp factors without the use of arccos, and so on. In this
case, the warp factors of models III and IV for all the
allowed values of n can be depicted as they appear in
Figs. 10 and 11.
From Figs. 10 and 11, the localization of thewarp factor is

clear, even when the space goes to infinity. Therefore, these
models give rise to thick branes over the sphere where the
only adjustable localization parameter is the radius r of the
sphere. This corresponds to a detriment to the model, since it
would be interesting to have a parameter to make the brane
thinner while maintaining a fixed radius for the sphere.

C. The spheroid models

Departing from the model over the sphere, one may
consider that the ground space ðB2; σÞ is a spheroid. In
other words, ðB2; σÞ≡ ðS2; ϵÞ, with [cf. Eq. (C1)]

ϵ¼ r2
�
1þ

�
ρ2

r2
− 1

�
sin2θ

�
dθ⊗ dθþ r2sin2ðθÞdφ⊗ dφ:

The difference between the sphere and spheroid models is
simply due to the geometry represented by the metric ϵ. The
spheroid built here is a diaxial ellipsoid, with radii r and ρ.
In this case, the setup variables are

u ¼ rθ;

f̃ ¼ −
1

2
lnf½1 − κ sin2ðθÞ�g;

and

Ã≡ − ln ½sinðθÞ�;

where κ ¼ 1 − ρ2=r2. Setting κ ¼ 0, one recovers the
model over the sphere. See that this is mapped by the
metric from Eq. (67), where one just imposes u0 ¼ π=2r,
a ¼ 1=r. Thus, through Eqs. (42) and (43), one can
determine the potential and scalar field as

V
4M4

¼ 2

r2½1 − κsin2ðθÞ�
�

1 − κ

1 − κsin2ðθÞ − 4cot2ðθÞ
�

þ 2Ccsc2ðθÞ; ð81Þ

ϕ;θ
2

4M4
¼ 4ð1 − κÞ

1 − κ sin2ðθÞ þ ð4 − Cr2Þ cot2ðθÞ − ð1 − κÞCr2;

ð82Þ

FIG. 10. Warp factor e−2A of model III in stereographic coordinates. The top figures are for n ¼ 0, 1, 2, 3, and 4 (from left to right),
and the bottom ones are for n ¼ 5, 6, 7, and 8 (from left to right).
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FIG. 11. Warp factor e−2A of model IV for n ¼ 1 (left figure)
and n ¼ 2 (right figure), in stereographic coordinates.
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In this case, if C > 4=r2, then the left side of Eq. (82) is not
necessarily positive for all θ values. Notice that as θ
approaches π=2, the term with cotðθÞ goes to infinity, while
the other terms remain finite. This means that ϕ would
necessarily be imaginary for some value of θ, which is not
allowed. Therefore, one has C ≤ 4=r2. In fact, one cannot
solve Eq. (82) in general. It can only be solved analytically
when C ¼ 4=r2, which is translated into choosing n ¼ 8 for
model III or n ¼ 2 for model IV. Henceforward, up to the
end, only these cases will be considered.
For C ¼ 4=r2, the scalar field in Eq. (82) is easily

integrated:

ϕ ¼∓4M2
ffiffiffiffiffiffiffiffiffiffiffi
1 − κ

p
arctanh

� ffiffiffi
κ

p
sinðθÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − κcos2ðθÞ
p �

;

and, if κ ¼ 1 or κ ¼ 0, one finds a vacuum solution. From
Fig. 12(a), the profile of the scalar field can be read as a
topological or kink-like defect. The potential V in terms of
ϕ is exactly as given by Eq. (70) [cf. Fig. 5(b)], and the
stress energy tensor of ϕ, which is common to all models, is
given by

Tϕμ
ν ¼ −δμν

8M4ð1 − κÞ½5 − 3κ sin2ðθÞ�
r2½1 − κ2 sin2ðθÞ�2 : ð83Þ

Differently from the sphere models, these models pos-
sess another localizing parameter other than the radius r. As
κ approaches 1, the stress energy tensor becomes more and
more localized; from Fig. 12(b), one can notice such
behavior. Consequently, these models give rise to thick
branes that are even more interesting than the spherical
ones; as one chooses values of κ closer to 1, the distribution
of matter becomes thinner.

To more appropriately present the localizing effect that κ
has on the model, it is convenient to show how it can affect
the warp factor. To do this, the change of coordinates as
given by Eq. (71) is preeminent. By writing

dy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ sin2ðθÞ

q
dθ;

one must therefore choose y ¼ EðθjκÞ, where EðθjκÞ is the
elliptic integral of the second kind. The inverse is simply
expressed abstractly by θ ¼ E−1ðyjκÞ, where E−1ðyjκÞ is
the inverse function of the elliptic integral of the second
kind. Then, one is able to express the metric and the scalar
field in terms of the coordinate y by

gJ ¼ e−2Â
J
sin2½E−1ðyjκÞ�ωμνdxμ ⊗ dxν

þ r2 sin2 ½E−1ðyjκÞ�dφ ⊗ dφþ r2dy ⊗ dy;

ϕ ¼∓4M2
ffiffiffiffiffiffiffiffiffiffiffi
1 − κ

p
arctanh

� ffiffiffi
κ

p
sin ½E−1ðyjκÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − κcos2½E−1ðyjκÞ�
p 	

;

where both quantities are valued in the domain ½Eð0jκÞ ¼
0; EðπjκÞ�, i.e., y ∈ ½0; EðπjκÞ�. The warp factor e−2Ã and
the scalar field ϕ, in terms of y, are depicted in Fig. 13.
From Fig. 13, one can notice that the closer κ gets to 1, the
more the thick brane looks like a thin brane—thus, the more
localized is the model. One had already realized it from the
stress energy tensor pattern, but the above analysis paints a
better picture of the localization of the model. Of course,
expressing the same quantities in terms of θ instead of y
returns the expected analytical form.
Finally, one can express the metrics for models III

and IV by

(a) (b)

FIG. 12. (a) Scalar field ϕ� ¼ ϕ=4M2 as a function of θ. (b) The θ dependence of the stress energy tensor Tϕ
μν, Tϕ�

μν ¼
− sin2 θTϕμ

νð1 − κÞ=8ð5 − 3κÞ. The plots are for κ ¼ 0.1 (solid black line), κ ¼ 0.2 (dashed black line), κ ¼ 0.4 (dotted black line),
κ ¼ 0.6 (solid blue line), κ ¼ 0.8 (dashed blue line), κ ¼ 0.9 (dotted blue line), κ ¼ 0.99 (solid red line), and κ ¼ 0.999 (dashed red line).
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gIII ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j cos ð4φÞj

p
sin2ðθÞωμνdxμ ⊗ dxν

þ r2½1 − κ sin2ðθÞ�dθ ⊗ dθ þ r2 sin2ðθÞdφ ⊗ dφ;

gIV ¼ r2Λ
3

cos2ðφÞ sin2ðθÞωμνdxμ ⊗ dxν

þ r2½1 − κ sin2ðθÞ�dθ ⊗ dθ þ r2 sin2ðθÞdφ ⊗ dφ:

with the warp factor being essentially the same as in the
C ¼ 4=r2 spherical model, as depicted in Figs. 8 and 9. In
this fashion, one can realize that the spherical models
with C ¼ 4=r2 represent a braneworld model in a vacuum
for ϕ, while the spheroid models represent a topological
defect that alternates between two vacuums as depicted in
Fig. 12(a) [or 13(b)].
Unfortunately, it is not as simple to find stereographic

coordinates for the spheroids as it was for the sphere. It is
feasible for analytical calculations, but the expressions are
too complicated for a meaningful analysis. Here, no appeal
to a different set of coordinates will be made to discuss the
properties of these models.

V. CONCLUSION

Some novel solutions of braneworld models in (5þ 1)
dimensions were classified and explored. As a preliminary
proposal, braneworlds generated by two scalar fields were
obtained as solutions depending solely on a single coor-
dinate of the codimensions, therefore constituting an
intersection of two thick branes, where the adopted
procedure involved constraining the metric components
to be separable functions of the codimensions. Braneworlds
on top of two different geometries of S2, the sphere and
spheroidal, were also constructed, and trivial and nontrivial
extensions of the well-known (4þ 1)-dimensional

braneworld models were identified. All the results implied
five different models, where two of them were strictly
defined (models I and II) up to some constant p, and the
other three (models III, IV, and V) have maintained some
degree freedom not specified by the field equations.
In the first subset, models I and II constitute strictly

defined models, determined from a flat brane where the
separation constant pwas set to be different from 1 (or 0) so
as to strictly determine all the involved quantities from the
Einstein field equations. The intrinsic difference between
such models emerges from the choice of a constant
parameter cu: for real cu, one finds model I, and for
imaginary cu, one finds model II. For model I, one
identifies a metric with a non-RS-like warp factor while
still noticing that the effective finite volume of the bulk
allows for localizing fields in the brane. The biggest
complication of model I is its requirement of an infinite
amount of energy to achieve the localized gravity configu-
ration, which induces one to regard it as unphysical.
Model II is significantly more interesting in the sense that
where several singularities may be identified, its total defect
formation energy is finite. Nevertheless, due to the singu-
larities in the stress energy tensor, one may regard model II
also as an unphysical configuration.
In the second subset, models III, IV, and V consist of

braneworld configurations with some degree of freedom
not strictly specified by Einstein field equations. They were
constructed by assuming that the auxiliary constant is set
p ¼ 0 such that one is able to obtain solutions for the whole
range of possible values of the cosmological constant Λ
(¼ 0, > 0 or < 0). All the solutions contain extensions of
some well-known five-dimensional braneworlds when the
separation constant introduced for solving the coupled
Einstein equations is set as C ¼ 0, whether the extension
is trivial or nontrivial. More relevantly, some solutions for

(a) (b)

FIG. 13. (a) Scalar field ϕ� ¼ ϕ=4M2 as a function of θ. (b) The θ dependence of the stress energy tensor Tϕ
μν,

Tϕ�
μν ¼ − sin2 θTϕμ

νð1 − κÞ=8ð5 − 3κÞ. The plots are for κ ¼ 0.1 (solid black line), κ ¼ 0.2 (dashed black line), κ ¼ 0.4 (dotted
black line), κ ¼ 0.6 (solid blue line), κ ¼ 0.8 (dashed blue line), κ ¼ 0.9 (dotted blue line), κ ¼ 0.99 (solid red line), and κ ¼ 0.999
(dashed red line).
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the sphere and spheroid geometries, where model IV seems
to be of particular interest to physics, have been scrutinized.
In particular, model III was constructed upon a flat

brane model with two scalar fields, for which the solution
implies some singularities where the warp factor exhibits
cusped profile. Overall, the fields that constitute model III
have similar behavior to the ones in model II. The above-
mentioned model IV seems to be the most relevant solution
here depicted. This model consists of a de Sitter brane with
a single scalar field with a consistently and smoothly well-
behaved warp factor. No cusps are found in the warp factor,
and the ingrained singularities in the stress energy tensor
which emerge with other models are avoided. Regardless,
after evaluating the Kretschmann scalar, for model IV,
curvature singularities are still encountered. Model IV also
eventually discards the role of the scalar field ϕ, since one
could assume any generic form for the stress energy tensor
as long as Tu

uðuÞ, Tμ
νðuÞ ¼ δμνTv

vðuÞ, and Tuv ¼ 0. Thus,
model IV may be found in applications other than those for
thick branes generated by scalar fields. For completeness,
considering the whole spectrum of possible values for the
cosmological-like constant Λ, model V was considered
upon an anti–de Sitter brane with two scalar fields, where
the separation constant has been set as C ¼ 0. This resulted
in model V possessing similar features to model III,
which essentially exhibits the same singularities and cusps
as the latter.
It is also worth mentioning that, for models III, IV, and

V, from the second subset, the Einstein equations do not
define all fields. The scalar field ϕ, the warp factor Ã, and
the potential V are not strictly defined from field equations,
and one thus still has some freedom in choosing such
quantities. This opened the possibility for considering
predetermined geometries for the internal space. By choos-
ing Ã and f̃ with predetermined geometry, one is able to
achieve two setups that allow for the integration of the
corresponding metric in Eq. (43). From such choices of Ã
and f̃, one is able to accomplish a solution over the sphere
and spheroid for models III and IV. For the sphere models,
two solutions for model IV and nine solutions for model
III were achieved, one for each possible value of a discrete
degree of freedom n. In particular, for model IV, for n ¼ 1,
one has found a solution for which the stress energy tensor
is smoothly well behaved, even if the scalar ϕ exhibits some
singularities. On the other hand, the n ¼ 2 model depicts a
dS6 space, since there are no scalar fields, only the vacuum.
Likewise, the spheroid seems to enjoy the most interesting
features of the S2 models. Constructed for model IV, with
n ¼ 2, one is able to achieve several interesting configu-
rations for the warp factor and the scalar field, which
guarantees the localization of gravity. Also, the spheroid
solution pointed to a new solution for (4þ 1)-dimensional
models, represented by Eq. (73), where the actual locali-
zation parameters are given in terms of an arbitrary
constant, κ.

To conclude, the most interesting results are due to an
intersection of a scalar field with the vacuum (i.e., a model
with, de facto, a single scalar). These results include model
III with C ¼ 0—consisting of the trivial extensions of
some five-dimensional braneworld models—and model IV
for nonvanishing values of C. In addition, model III, when
C is non-null, and V, in general, have also interesting warp
factors. However, their corresponding stress energy tensor
shows some unphysical singularities. In particular, the S2

configurations with C ¼ 4=r2 seem to share the most
interesting features. When the internal space is a sphere,
a six-dimensional de Sitter space is enclosed, since there
are no scalar fields; while when it is a spheroid, the only
scalar field features a topological (kink-like) defect.
Of course, one or two different scalar fields in six dimen-

sional setups could be additionally covered by this paper. For
instance, the case whereΛ ≠ 0, C ≠ 0, and both scalar fields
are non-null is defined by an enhanced nonlinear equation,
which did not fit the scope of our work. Furthermore, while
most of the considered models led to finite energy configu-
rations, all ended up having the deficiency of several
singularities in between the different branes that form the
manifold. The difficulty per se is not in finding analytical
solutions to the Einstein equations, but indeed is due to
determining the ones that enclose the RS-like features—i.e.,
that can localize gravity and coupled fields. Even if surprising
simple solutions have emergedwhen one assumes the internal
space B2 to be S2, other setups may not be so treatable as for
finding solutions that confine gravity.
Considering such an extended analysis, our next steps

should include the models discussed here in the study of the
localization of gravitational and matter fields, so as to
realistically identify if their concerned configurations are
physically appealing.
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APPENDIX A: DETAILS OF MODELS I AND II

From Eqs. (31) and (32), one is able to write the metric in
the form

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh½2cuðuþ u0Þ� cosh½2cvðvþ v0Þ�

p
ημνdxμ ⊗ dxν

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshp½2cvðvþ v0Þ�
coshp−1½2cuðuþ u0Þ�

s
ðdu ⊗ duþ dv ⊗ dvÞ;

ðA1Þ

from which it is indeed not so clear whether gravity is
localized in the brane. One should notice that if ReðcvÞ ≠ 0,
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since p ≥ 1=2, there would be no way of “localizing” fields
in the “direction of v,” since both conformal factors which
multiply ημνdxμ ⊗ dxν and dv ⊗ dv “increase with v.”
Thus, one is constrained to assume ReðcvÞ ¼ 0 to achieve
an acceptable physical solution, which means that the v
coordinate can be compactified into a circle S1, or in other
words, v ¼ rφ, where r is the radius of S1 and φ ∈ S1.
Since the metric must be continuous in S1, the e−2Â factor
must be continuous in S1—i.e.,

j cos ð2jcvjr2πÞj ¼ j cosð0Þj ¼ 1 ⇒ jcvj ¼
n
4r

; n ∈ N:

Likewise, one still needs to verify the localization along
the “direction of u,” which can be achieved in two differ-
ent ways.
For instance, when ImðcuÞ ¼ 0, if one setsp large enough

(i.e., at least p ≥ 3), the effective volume associated withB2

becomes finite. Even though the warp factor does not have a
RS-like profile, because the volume of B2 is finite, one can
still possibly “localize” gravity and other fields. Otherwise,
when ReðcuÞ ¼ 0, in a similar fashion to the content
discussed for coordinate v, the space coordinate u can be
compactified as a circle S1. In this case, one must impose
1=2 ≤ p ≤ 3; otherwise, the effective volume is not finite
[this is clearer when observing the metric from Eq. (A1) for
p < 3]. Therefore, it is imperative to choose either ImðcuÞ ¼
0 formodelswithp ≥ 3orReðcuÞ ¼ 0 formodelswithp ≤ 3
in order to obtain consistent solutions with localized gravity.
Even if one is able to localize fields in the brane, the

configuration may still not be physical. If the total energy
associated with the configuration is infinite, then one can
argue that the solutions are not physical ones. Therefore, to
realize the total energy of the system, one thus writes the
stress energy tensor as

Tμν ¼ −e−2Aημν
�
guu

ðϕ;uÞ2
2

þ gφφ
ðζ;φÞ2
2

þ V
�

¼ −ημν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshpð2cuuÞ
j cosðnφ

2
Þjp−1

s �ðϕ;uÞ2
2

þ ðζ;φÞ2
2r2

þ V
�
:

As claimed above, the energy density which is computed
from

ffiffiffiffiffiffi−gp
Tμν must be finite, otherwise the total energy in

this configuration will not be finite. One thus has

Tμν
ffiffiffiffiffiffi
−g

p ¼ −
r
2
ημν

�
ðϕ;uÞ2 þ

ðζ;φÞ2
r2

þ 2V
�

×

���� cos
�
nφ
2

�����3=2cosh3=2ð2cuuÞ; ðA2Þ

from which it can be noticed that, if ImðcuÞ ¼ 0, since
ζ ¼ ζðvÞ, the integration of Eq. (A2) throughout space will
necessarily be infinite. Therefore, one may claim that the
ImðcuÞ ¼ 0 configurations require an unphysical infinite

amount of energy to be realized. Following a similar
analysis, from Eq. (A2), no conclusive assertion about
the choice of ReðcuÞ ¼ 0 instead of ImðcuÞ ¼ 0 can be
performed. However, as a matter of completeness, the
calculations will be carried out for both configurations.

1. Model I

Model I is resumed by Eqs. (33), (34), (35), and (36),
and the dependences on φ for the warp and conformal
factors are depicted in Figs. 14(a) and 14(b).
In particular, for bϕ¼bζ¼−1, one has cu¼jcvj¼n=4r.

In this case, since aϕ ≥ 0, one realizes that p ≥ 5=2, which
is a tautology, since p ≥ 3. For this choice, one finds the
scalar fields and potential in the following form:

VI ¼ 0;

ϕI ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p − 5

p
M2 arcsin

�
tanh

�
nu
2r

��
; ðA3Þ

ζI ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2p

p
M2arctanh

�
sin

�
nφ
2

��
: ðA4Þ

The scalar fields are depicted in Fig. 15. The structure of the
scalar field ζI , as given by Eq. (A4), shall recurrently
appear as a driver for (5þ 1)-dimensional thick brane-
worlds. As shall be noticed in the following models, the
scalar field dependence on the angular-like variables in a
large sense reproduce the behavior depicted in Fig. 15.
Interestingly, the scalar field ϕI is zero when p ¼ 5=2,
implying a singular configuration with a single scalar field
ζI , with VI ¼ 0.
Finally, the stress energy tensor for model I is simply

written as

Tμν ¼
M4n2ημν

8r2
ð5 − 2pÞsech2ðnu

2rÞ − ð2pþ 3Þ sec2ðnφ
2
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sechpðnu
2rÞj cosðnφ2 Þjp−1

q ;

where its several singularities are consistent with the
numerous cusps exhibited by the warp factor. Also, an
infinite amount of energy is necessary to achieve such a
configuration, as one can check after integrating the
previous expression throughout space coordinates.

2. Model II

Model II can be summarized by Eqs. (37), (38), (39),
and (40). The soft shortcoming of model II is concerned
with it not being possible to rewrite V as a function of ϕ
and ζ, since the expressions for Eqs. (39) and (40) are not
invertible. Being able to invert Eqs. (39) and (40) would be
advisable, since one had started with the assumption that
V ¼ Vðϕ; ζÞ. The shape of the scalar fields, ϕ and ζ, and of
the potential, V, are presented in Figs. 16 and 17,
respectively.
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(a) (b)

FIG. 15. The scalar fields of model I: (a) ϕ�I ¼ ϕI=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p − 5

p
M2. (b) ζ�I ¼ ζI=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2p

p
M2. The plots are for n ¼ 1 (solid black line),

n ¼ 2 (dashed black line), n ¼ 3 (solid red line), and n ¼ 4 (dashed red line).

(a) (b)

FIG. 14. (a) Warp factor e−2Â of model I as a function of φ, for n ¼ 1 (solid black line), n ¼ 2 (dashed black line), n ¼ 3 (solid red
line), and n ¼ 4 (dashed red line). (b) Conformal factor e−2B

I
of model I as a function of φ, for p ¼ 3 (black), p ¼ 4 (red), and p ¼ 5

(blue); the solid and dashed lines correspond to n ¼ 1 and n ¼ 2, respectively.

(a) (b)

FIG. 16. Scalar fields of model II for p ¼ 1=2 (black) and p ¼ 2 (red): (a) ϕ�II ¼ ϕII=M2 as a function of θ. (b) ζ�II ¼ ζII=M2 as a
function of φ. The plots are for n ¼ l ¼ 1 (solid lines), n ¼ 2, l ¼ 1 (dashed lines), and n ¼ l ¼ 2 (dotted lines).
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Analogously, the stress energy tensor is expressed by

TII
μν ¼ −2M4ημν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j cosðlθ

2
Þjp

j cosðnφ
2
Þjp−1

s 8<
:aϕ

�
1 − bϕtan2

�
lθ
2

��
þ aζ

�
1 − bζtan2

�
nφ
2

��
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j cosðlθ

2
Þjp−1

j cosðnφ
2
Þjp

s �
l2

4ρ2
þ n2

4r2

�9=
;;

which exhibits several singularities, depending on the values for n and l. In fact, for n ¼ 1 and l ¼ 1, it has two singularities:
one at φ ¼ π (or−π) and another one at θ ¼ π (or −π). These singularities explain the number of cusps in the warp factor. In
order to realize physically consistent solutions, the required energy to achieve their internal structure must be finite. From
the perspective of the bulk, such a required energy is given by

(a) (b)

FIG. 18. Energy density −TII
μν

ffiffiffiffiffiffi−gp
of model II as a function of ðθ;φÞ, for (a) p ¼ 1=2 and (b) p ¼ 2.

(a) (b)

FIG. 17. Potential VII of model II as a function of ðθ;φÞ, for (a) p ¼ 1=2 and (b) p ¼ 2.
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EII
μν ¼

Z
E6

TII
μν

ffiffiffiffiffiffi
−g

p
d6x ∝

Z
π

−π

Z
π

−π

aϕ½1 − bϕ tan2ðlθ2Þ� þ aζ½1 − bζ tan2ðnφ2 Þ� þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j cosðlθ

2
Þjp−1

j cosðnφ
2
Þjp

r
ð l2

4ρ2
þ n2

4r2Þ
j secðlθ

2
Þj3=2j secðnφ

2
Þj3=2 dθdφ;

with the last integral converging for several values4 of n, l, and p. Therefore, even though model II exhibits several
singularities as depicted by the stress energy tensor, the total energy necessary to accomplish model II is finite. This is an
evinced advantage with respect to the model I. The form of the energy density for model II (TII

μν

ffiffiffiffiffiffiffiffiffi
−gII

p
) is depicted in

Fig. 18. Although model II has finite total energy, one may still argue against its physical significance, due to its recurrent
singularities, a shortcoming that must be considered in the following model issues.

APPENDIX B: THE KRETSCHMANN SCALAR ANSATZ [EQ. (22)]

For model IV, one has reached the conclusion that the stress energy tensor is nonsingular, but one may still find curvature
singularities. From evaluating the Ricci scalar (or RMNRMN), one does not realize singularities; thus, another parameter, the
Kretschmann scalar, must be assessed in order to recognize the singularities of the model. The following calculations thus
present the path for the Kretschmann scalar determination.
One once again rescales the metric by g ¼ e−2Aĝ and determines the corresponding Riemann tensor,

RI
KJM ¼ R̂I

KJM − ∇̂J∇̂KAδIM þ ∇̂J∇̂MAδIK þ ĝISĝJM∇̂K∇̂SA − ĝISĝJK∇̂M∇̂SA

þ A;JA;Mδ
I
K − A;KA;Jδ

I
M þ A;KA;LĝLIĝJM − A;MA;LĝJKĝLI þ ĝPSA;PA;SðĝJKδIM − ĝJMδIKÞ;

where R̂I
KJM is obtained solely from ĝ. The Kretschmann scalar is written in terms of the warp factor and the metric ĝ as

K ¼ RFKJMRFKJM ¼ e4AfKþ K̂þ 4R̂LN∇̂N∇̂LAþ 4ĜLNA;LA;N þ 4ĝHS∇̂H∇̂SAĝKJ∇̂J∇̂KA

þ 4ðd − 2ÞĝJNĝKH∇̂H∇̂NA∇̂K∇̂JAþ 8ðd − 2ÞĝJNĝKHA;KA;J∇̂H∇̂NA

− 8ðd − 2ÞĝPSA;PA;SĝKJ∇̂J∇̂KAþ 2ðd − 2Þðd − 1ÞĝPSA;PA;SĝNHA;NA;Hg;

where one has defined

K̂ ¼ R̂FKJMR̂FKJM ¼ R̂μνκρR̂μνκρ þ R̂ijklR̂ijkl ¼ RμνκρRμνκρ þ Σ̂ijklΣ̂ijkl ¼ Kþ K̂;

KðxμÞ ¼ R̂μνκρR̂μνκρ ¼ RμνκρRμνκρ;

K̂ðu; vÞ ¼ R̂ijklR̂ijkl ¼ Σ̂ijklΣ̂ijkl:

After noticing that A ¼ Aðu; vÞ, for six-dimensional space, in terms of ω, A, and σ, one finds

K ¼ e4AKðxμÞ þKðu; vÞ þ 16σmhσjnΔnΔhAΔjΔmA − 32σmhσjnA;nA;hΔjΔmAþ 40σmjA;mA;jσ
psA;pA;s:

In particular, for the p ¼ 0 solutions (III, IV, and V), for which the metric is given by

g ¼ e−2Âe−2Ãωμνdxμ ⊗ dxν þ e−2Ãðdu ⊗ duþ dv ⊗ dvÞ ⇒ σ ¼ e−2Ãγ;

it follows that

4For instance, when n ¼ l ¼ 1 and p ¼ 1=2, it integrates to

2πΓð9
8
Þ2

Γð13
8
Þ2 þ 33π3

28Γð7
4
Þ4 :
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K ¼ e4Ãðe4ÂKðxμÞ þ 16Â;vv
2 − 32Â;vvÂ;v

2 þ 40Â;v
4 þ 80Â;v

2Ã;u
2 − 32Â;vvÃ;u

2 þ e−4ÃKðuÞ þ 16Ã;uu
2 þ 40Ã;u

4Þ; ðB1Þ

where KðuÞ is the Kretschmann scalar out of σ ¼ e−2Ãγ—i.e., a single function of u.

APPENDIX C: DETERMINING THE GEOMETRY
FOR SECTION IV

In Sec. IV, one uses a predetermined geometry for the
space B2. Here, it is shown how the aforesaid is achieved
for B2 ¼ S2. One starts by first considering a general
geometry for S2—namely, an ellipsoid. In this context, an
ellipsoid is S2, but with a particularly distorted metric. This
metric can be determined from its immersion in ðRð3Þ; γÞ,
where γ is the usual Euclidean metric. For a triaxial
ellipsoid, the immersion is a map

Φ∶S2 → R3;

which is defined by

ðθ;φÞ ↦ Φðθ;φÞ
≔ ða cosðφÞ sinðθÞ; b sinðφÞ sinðθÞ; c cosðθÞÞ;

with a, b, and c being the three radii that define the
ellipsoid.
Then, from Φ, it is possible to define a pullback Φ� of

Tð0;2ÞR3:

Φ�∶Tð0;2ÞRð3Þ → Tð0;2ÞS2;

according to

γ ↦ εðX; YÞ ≔ ðΦ�γÞðX; YÞ≡ γðΦ�X;Φ�YÞ;

where Φ� is the push-forward on TM induced by Φ, which
is defined by

ðΦ�XÞi ¼ Xa ∂ðxi ∘ΦÞ
∂ya ;

where, finally, x and y are the coordinate chart maps for R3

and S2, respectively, also with i ∈ f1; 2; 3g and a ∈ f1; 2g.
Substituting the above expressions, one finds the compo-
nents of the metric ε of S2,

εab ¼ γij
∂ðxi ∘ΦÞ

∂ya
∂ðxj ∘ΦÞ

∂yb ;

which leads to the metric

ε ¼ ½a2 cos2ðφÞ cos2ðθÞ þ b2 sin2ðφÞ cos2ðθÞ þ c2 sin2ðθÞ�dθ ⊗ dθ

þ a − b
2

sin ð2φÞ sin ð2θÞdφ ⊗ dθ þ ½a2 sin2ðφÞ þ b2 cos2ðφÞ� sin2ðθÞdφ ⊗ dφ:

This is a triaxial setup. It is a bit complicated, and even if
one could find coordinates such that the off-diagonal terms
are null, which is always possible, one would end up with
an extremely enhanced metric which can be simplified by
making assumptions about the radii a and b into a spheroid
configuration or a diaxial ellipsoid—i.e., a ¼ b ¼ r and
c ¼ ρ, which would return the metric

ϵ¼ ½r2 cos2ðθÞ þ ρ2 sin2ðθÞ�dθ⊗ dθþ r2 sin2ðθÞdφ⊗ dφ:

ðC1Þ

This result removes the off-diagonal terms, which turn the
procedure into simpler analytical calculations, which
should be still simpler for r ¼ ρ, as it returns

ς ¼ r2dθ ⊗ dθ þ r2 sin2ðθÞdφ ⊗ dφ: ðC2Þ

Metrics from Eqs. (C1) and (C2) are exactly the metrics
used in Sec. IV.
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