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We perform the Batalin-Fradkin-Vilkovisky (BFV) quantization of the 2þ 1 projectable and the 3þ 1

nonprojectable versions of the Hořava theory. This is a Hamiltonian formalism, and noncanonical gauges
can be used with it. In the projectable case, we show that the integration on canonical momenta reproduces
the quantum Lagrangian known from the proof of renormalization of Barvinsky et al. This quantum
Lagrangian is nonlocal, its nonlocality originally arose as a consequence of getting regular propagators.
The matching of the BFV quantization with the quantum Lagrangian reinforces the program of
quantization of the Hořava theory. We introduce a local gauge-fixing condition, hence a local Hamiltonian,
that leads to the nonlocality of the Lagrangian after the integration. For the case of the nonprojectable
theory, this procedure allows us to obtain the complete (nonlocal) quantum Lagrangian that takes into
account the second-class constraints. We compare with the integration in general relativity, making clear the
relationship between the underlying anisotropic symmetry of the Hořava theory and the nonlocality of its
quantum Lagrangian.
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I. INTRODUCTION

Several studies have been devoted to the consistent
quantization of the Hořava theory [1]. Some of the analyses
performed under the framework of quantum field
theory can be found in Refs. [2–14]. Other approaches
of quantization, as causal dynamical triangulations and
loop quantum gravity has been done, for example in
Refs. [15–19]. A fundamental advance is the renormaliz-
ability proof of the projectable version presented in
Ref. [2]. The difference between the projectable and the
nonprojectable versions of the Hořava theory is that in the
former the lapse function is restricted to be a function only
on time, a condition that can be imposed consistently in the
Hořava theory, whereas in the latter it can be a general
function of time and space. An interesting feature of the
proof of renormalizability is the introduction of nonlocal
gauge-fixing conditions, which leads to a nonlocal quan-
tum Lagrangian. The nonlocal gauges were motivated by
the goal of obtaining regular propagators for all quantum
modes, such that the renormalizability can be achieved in a
similar way to the case of Lorentz-violating gauge theories

[20–22]. The condition of regularity implies that the
propagators have no divergences in space valid for each
time and viceversa. For the case of the Hořava theory, the
propagators acquire anisotropic higher order in momen-
tum space.
Due to the emphasis on the symmetry, quantization of

gauge field theories are usually performed in the
Lagrangian formalism, rather than in the Hamiltonian
formalism. The standard procedure for fixing the gauge
is the Faddeev-Popov method [23], together with its
associated Becchi-Rouet-Stora-Tyutin (BRST) symmetry
[24]. Nevertheless, the quantization of the Hořava theory
using the Hamiltonian formalism deserves to be consid-
ered. In particular, the quantization of the nonprojectable
case is a delicate issue since it is a theory with second-class
constraints. The analogous of the Hamiltonian constraint of
general relativity acquires a second-class behavior in the
nonprojectable Hořava theory, which can be related to the
reduction of the gauge symmetry. The Hamiltonian for-
malism provides a natural framework for the quantization
of theories with second-class constraints. Indeed, the
contribution to the measure of these constraints is defined
in the phase space [25]. Analyses on the Hamiltonian
formulation and the dynamics of the degrees of freedom of
the Hořava theory can be found in Refs. [26–31].
The nonlocal gauge-fixing conditions introduced in the

projectable case are noncanonical gauges, in the sense that
they involve a Lagrange multiplier. If one wants to use this
kind of gauges in the Hamiltonian formalism, then an
extension of the phase space is required. Motivated by this,
two of us presented the Batalin-Fradkin-Vilkovisky (BFV)
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quantization of the 2þ 1 nonprojectable Hořava theory in
Ref. [32]. The BFV formalism provides a quite general
framework for quantization of systems with constraints,
with the particularity that first-class constraints are not
imposed explicitly and their Lagrange multipliers are
promoted to be part of the canonical variables. The BFV
formalism was first presented in Ref. [33] as a way to
introduce noncanonical gauge-fixing conditions in the
Hamiltonian formalism. This extension allows us to intro-
duce relativistic gauges in the phase space, which is a way
to establish the unitarity of relativistic gauge theories. The
formalism was extended in Ref. [34] to the case of systems
with fermionic constraints, together with establishing an
essential connection with the BRST symmetry. In Ref. [35],
the BFV quantization was extended to the case of systems
with (bosonic and fermionic) second-class constraints, and
for the general case when the Hamiltonian and the BRST
charge have expansions of certain order on the ghosts
fields. In Ref. [36] the formalism was applied to general
relativity. In the general BFV scheme of quantization, the
gauge symmetry is fixed by the choice of a fermionic
function, and the resulting gauge-fixed path integral enjoys
a BRST symmetry operating on the canonical variables, as
we commented.
Since the quantization of the Hořava theory has been

focused in the Lagrangian and the Hamiltonian BFV
formalisms, a natural question is to ask whether both
approaches are equivalent. Indeed, in Ref. [2] it is indicated
that the introduction of an extra variable, that can be
interpreted as the conjugate momentum of the shift vector,
eliminates the nonlocality of the final Lagrangian. This
suggests that we perform a complete Hamiltonian analysis
of the quantum theory. In this paper we undertake this
problem, with interest in connecting with the gauge-fixing
conditions known from the renormalization of the project-
able case [2]. We study the BFV quantization of the 2þ 1
projectable and 3þ 1 nonprojectable versions of the
Hořava theory. We emphasize that this provides a consis-
tent quantization in the sense that it is based on a canonical
phase space that admits the gauges of interest. This is
particularly critical for the nonprojectable case. After we
present the BFV quantization, we get the quantum
Lagrangian for each case by means of integration on the
canonical momenta, including the ghosts. To achieve this,
we specialize the form of the gauge-fixing condition, by
specifying its functional dependence on the momenta (it
depends on a particular momentum). This leads us to
introduce operators that, after the integration, yield the
nonlocalities on the quantum Lagrangian. In the case of the
projectable theory we arrive at the same quantum
Lagrangian defined in Ref. [2]. In the nonprojectable case
we obtain the quantum Lagrangian of the theory where the
second-class constraints have been taken into account. In
this way the quantum Lagrangian of the nonprojectable
case is consistent. We compare the same method of

integration in general relativity, whose BFV quantization
was presented in Ref. [36], noticing that the relativity leads
to a local quantum Lagrangian.
This paper is organized as follows. In Sec. II we present

the BFV quantization of the projectable theory and the
integration to obtain the quantum Lagrangian. We first
develop the formalism for a Hořava theory defined in a
general spatial dimension d, and eventually we specialize to
the 2þ 1 case. In Sec. III we present the same approach
for the 3þ 1 nonprojectable case, presenting the BFV
quantization and the quantum Lagrangian. In Sec. IV we
compare with general relativity. Finally, we present some
conclusions.

II. PROJECTABLE HOŘAVA THEORY

A. Classical theory

The Hořava theory [1], both in the projectable and
nonprojectable cases, is based on a given foliation that
has an absolute physical meaning. The aim is to get an
anisotropic scaling at the ultraviolet that favor the renor-
malizability of the theory, where a parameter zmeasures the
degree of anisotropy. To hold this anisotropic scaling, the
dimensions of the space and time are defined to be

½t� ¼ −z; ½xi� ¼ −1: ð2:1Þ

The order z is fixed by the criterium of power-counting
renormalizability, which yields z ¼ d, where d is the spatial
dimension of the foliation. The Arnowitt-Deser-Misner
variablesN,Ni and gij are used to describe the gravitational
dynamics on the foliation. The allowed coordinate trans-
formations on the foliation,

δt ¼ fðtÞ; δxi ¼ ζiðt; x⃗Þ; ð2:2Þ

lead to the gauge symmetry of the foliation-preserving
diffeomorphisms,

δN ¼ ζk∂kN þ f _N þ _fN; ð2:3Þ

δNi ¼ ζk∂kNi þ Nk∂iζ
k þ _ζjgij þ f _Ni þ _fNi; ð2:4Þ

δgij ¼ ζk∂kgij þ 2gkði∂jÞζk þ f _gij ð2:5Þ

(strictly, the spatial diffeomorphisms are the gauge trans-
formations). The condition that defines the projectable
version is that the lapse function is restricted to be a
function only of time, N ¼ NðtÞ, a condition that is
preserved by the transformation (2.3). In this section we
summarize the canonical formulation of the projectable
case, dealing with an arbitrary number d of spatial
dimensions. The Hamiltonian analysis of the projectable
case, taking the infrared effective action, was done in
Ref. [26]. Further analyses, with different boundary
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conditions, can be found in Ref. [28]. The quantization of
the same model under the scheme of loop quantum gravity
has been studied in Ref. [19].
The Lagrangian of the projectable theory is given by

L ¼ ffiffiffi
g

p
NðKijKij − λK2 − V½gij�Þ; ð2:6Þ

where the extrinsic curvature is defined by

Kij ¼
1

2N
ð_gij − 2∇ðiNjÞÞ ð2:7Þ

and V½gij�, called the potential, is built from invariants of
the spatial curvature and their derivatives, up to the
order 2z.
In the Hamiltonian formulation the canonical pair is

ðgij; πijÞ, whereas NðtÞ and Niðt; x⃗Þ enter as Lagrange
multipliers. SinceNðtÞ is a function only of time, there is an
associated global constraint, given in terms of a spatial
integral. This constraint is

Z
ddxH ¼ 0; H≡ 1

ffiffiffi
g

p
�
πijπij þ

λ

1 − dλ
π2
�
þ ffiffiffi

g
p

V:

ð2:8Þ

Throughout this paper we assume that λ does not take the
critical value λ ¼ 1=d. This global constraint does not
eliminate a complete functional degree of freedom. The
local constraint of the theory is the momentum constraint,

Hi ¼ −2∇kπki: ð2:9Þ

The primary Hamiltonian is

H0 ¼
Z

ddxH0 ¼ N
Z

ddxH: ð2:10Þ

Since N is a function of time in the projectable theory, we
take advantage of the symmetry of reparameterizing the
time, Eqs. (2.2) and (2.3), to setN ¼ 1. With this setting the
primary Hamiltonian density is equivalent to H. Due to
their importance in the BFV quantization, and since the
Hamiltonian is equivalent toH, we show the following two
brackets between constraints,

�Z
ddxϵkHk;

Z
ddyηlHl

�
¼

Z
ddxHlLϵ⃗η

l; ð2:11Þ

�Z
ddxϵkHk; ρ

Z
ddyH

�
¼ 0: ð2:12Þ

In the above ρ is a test function only of time whereas ϵk and
ηk are test functions of time and space.

B. BFV quantization

The initial consideration in the BFV formalism is that the
constrained system under quantization must be involutive.
This means that, given a Hamiltonian H0 and a set of
functions Ga, the following relations are satisfied

fGa;Gbg ¼ Uc
abGc; ð2:13Þ

fH0; Gag ¼ Vb
aGb: ð2:14Þ

To avoid writing huge expressions, we use a simplification
on the notation of brackets: we insert densities instead of
spatial integrals, such as fA;Bg → fR ddxA;

R
ddyBg. The

first-class constraints are part of the definition of the Ga
functions. The other part is given by the canonical momenta
conjugated to the Lagrange multipliers of the first-class
constraints, since these multipliers are promoted to canoni-
cal variables in the BFV extension of the phase space. The
extended phase space is completed with the canonical pair
of fermionic ghosts ðηa;PaÞ, where each pair is incorpo-
rated for each function Ga.
To apply this formalism to the projectable Hořava theory,

we identify the momentum constraint Hi as the only first-
class constraint, being the shift vector Ni its Lagrange
multiplier. By denote by πi the canonical momentum
conjugated to Ni. Thus, the functions are Ga ¼ ðHi; πiÞ.
Since πi commutes with itself and with Hi, the algebra
(2.13) reduces to the algebra of Hi,

fHi;Hjg ¼ Uk
ijHk: ð2:15Þ

This corresponds to the algebra of spatial diffeomorphisms,
as shown in (2.11), and we take the definition ofUk

ij from it.
Uc

ab ¼ 0 for a; b; c > i. The primary Hamiltonian is iden-
tified in (2.10), hence the bracket (2.14) corresponds to
(2.12), such that Vb

a ¼ 0. By incorporating the ghost fields,
the full BFV phase space of the projectable Hořava theory
is given by the canonical pairs ðgij; πijÞ, ðNi; πiÞ, and
ðηa;PaÞ. The ghosts can be split in the two sets, ðηi1;P1

i Þ,
ðηi2;P2

i Þ. The gauge-fixing condition is incorporated in the
path integral by means of a fermionic functionΨ, which is a
given functional on the extended phase space. Thus,
the BFV path integral of the projectable Hořava theory
is given by

Z¼
Z

DgijDπijDNkDπkDηaDPa

×exp

�
i
Z

dtddxðπij _gijþπk _N
kþPa _η

a−HΨÞ
�
: ð2:16Þ

In this formalism the ghosts eliminate the unphysical
quantum degrees of freedom that should be eliminated
by the first-class constraints. Indeed, in d spatial dimen-
sions the canonical pairs ðgij; πijÞ, ðNi; πiÞ amount for
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dðdþ 3Þ degrees of freedom, and the ghosts ðηi1;P1
i Þ,

ðηi2;P2
i Þ sum 4d degrees. After subtracting, one gets

dðd − 1Þ physical degrees of freedom in the phase space
of the quantum theory. In d ¼ 2 this yield 2 degrees of
freedom, which represent the scalar mode of the 2þ 1
projectable theory in canonical variables. In d ¼ 3 the
degrees of freedom are six, which are the two tensorial
modes plus the extra scalar mode. Since the Hořava theory
has anisotropic scaling, it is important to write down the
dimensions of the several fields. This is

½gij�¼0; ½πij�¼d¼ z;

½Nk�¼ z−1; ½πk�¼1þd−z¼1;

½ηi1�¼ ½P2
i �¼ ðd−zÞ=2¼0; ½ηi2�¼ ½P1

i �¼ ðdþzÞ=2¼ z:

ð2:17Þ
In the general BFV formalism, the gauge-fixed quantum

Hamiltonian is defined by

HΨ ¼ H1 þ fΨ;Ωg: ð2:18Þ

The Poisson bracket is extended to include fermionic
variables,

fA; Bg ¼ δRA
δqr

δLB
δpr − ð−1ÞnAnB δ

RB
δqr

δLA
δpr ; ð2:19Þ

where R and L denote right and left derivatives and nA is 0 or
1 depending on whether A is a boson or a fermion. Ω is the
generator of the BRST symmetry. According to the exten-
sion of the BFV formalism presented in Ref. [35],Ω andH1

are defined in terms of expansions in the ghost fields,

Ω ¼ Gaη
a þ

Xs

k¼1

Pbk…Pb1Ω
b1…bk ; ð2:20Þ

H1 ¼ H0 þ
Xs

k¼1

Pbk…Pb1H
b1…bk
1 ; ð2:21Þ

where s represents the rank of theory. The coefficient
functions of the first order in Pa are given by

Ωa ¼ −
1

2
Ua

bcη
bηc; Ha

1 ¼ Va
bη

b: ð2:22Þ

The rest of coefficients, up to the order s of the theory, are
obtained by recurrence relations, starting from the first-order
ones [35]. An essential condition of the BFV formalism is
that Ω and H1 must satisfy

fΩ;Ωg ¼ 0; fH1;Ωg ¼ 0: ð2:23Þ

The first one is a nontrivial condition since Ω is a fermionic
variables. These conditions support the BRST symmetry of
the quantum theory.

The projectable Hořava theory is of first order, that is, Ω
ends at the first order in the ghosts, whereasH1 is of zeroth
order,

Ω ¼ Gaη
a −

1

2
Uc

abη
aηbPc ¼ Hkη

k
1 þ πkη

k
2 −

1

2
Uk

ijη
i
1η

j
1P

1
k;

ð2:24Þ

H1 ¼ H0 ¼ H: ð2:25Þ

The conditions (2.23) are satisfied as follows. We have the
bracket of Ω with itself,

fΩ;Ωg ¼ fHiη
i
1;Hjη

j
1g − fHiη

i
1; U

k
mnη

m
1 η

n
1P

1
kg

þ 1

4
fUk

ijη
i
1η

j
1P

1
k; U

l
mnη

m
1 η

n
1P

1
l g: ð2:26Þ

The first two brackets are equal,

fHiη
i
1;Hjη

j
1g ¼ fHiη

i
1; U

k
mnη

m
1 η

n
1P

1
kg ¼ Ui

jkη
j
1η

k
1Hi;

ð2:27Þ

hence cancel themselves. The last bracket is proportional to
the structure ηj1η

m
1 η

n
1 Uk

ijU
i
mn, which is zero by the Jacobi

identity. Therefore fΩ;Ωg ¼ 0. Next,

fH1;Ωg ¼ fH;Ωg ¼ fH; ηi1Hig ¼ 0; ð2:28Þ

where the last equality follows from (2.12).1 Therefore, we
obtain the BFV gauge-fixed Hamiltonian of the projectable
Hořava theory,

HΨ ¼ Hþ fΨ;Hkη
k
1 þ πkη

k
2 −

1

2
Uk

ijη
i
1η

j
1P

1
kg: ð2:29Þ

According to the original BFV formulation, Ψ can adopt
a form suitable for relativistic gauges. It turns out that this
form is also suitable for the anisotropic symmetry of the
Hořava theory. First, we deal with gauge-fixing conditions
of the general structure

Φi ¼ − _Ni þ χi ¼ 0; ð2:30Þ

where the phase-space functional χi is the part of the gauge-
fixing condition that can be chosen. Thus, the specific BFV
fermionic gauge-fixing function is

Ψ ¼ P1
i N

i þ P2
i χ

i: ð2:31Þ

With this choice the gauge-fixed Hamiltonian becomes

1Recalling that we mean spatial integrals inside the brackets.
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HΨ ¼ HþHkNk þ P1
kη

k
2

− P1
i ðNj∂jη

i
1 þ Ni∂jη

j
1Þ þ fP2

i χ
i;Ωg: ð2:32Þ

Throughout this paper we assume that the gauge-fixing
condition χl does not depend on the ghosts fields, then the
Hamiltonian takes the form

HΨ ¼ HþHkNk þ P1
kη

k
2 − P1

i ðNj∂jη
i
1 þ Ni∂jη

j
1Þ

þ πkχ
k þ P2

i fχi;Hkgηk1 þ P2
i
δχi

δNl η
l
2: ð2:33Þ

Therefore, the BFV path integral for the projectable Hořava
theory in the gauge (2.30)–(2.31) becomes

Z ¼
Z

DgijDπijDNkDπkDηi1DP1
iDηi2DP2

i exp

�
i
Z

dtddx

�
πij _gij þ πk _N

k þ P1
i _η

i
1 þ P2

i _η
i
2 −H −HkNk

−P1
kη

k
2 þ P1

i ðNj∂jη
i
1 þ Ni∂jη

j
1Þ − πkχ

k − P2
i fχi;Hkgηk1 − P2

i
δχi

δNl η
l
2

��
: ð2:34Þ

The generator of the BRST symmetry Ω acts on the
canonical fields by means of the canonical transformation

φ̃ ¼ φþ fφ;Ωgϵ; ð2:35Þ

where ϵ is the fermionic parameter of the transformation.
The transformation of the fields is

δΩgij¼2gkði∇jÞηk1ϵ; δΩπ
ij¼−2πkði∇kη

jÞ
1 ϵþ∇kðπijηk1Þϵ;

δΩNk¼ηk2ϵ; δΩπk¼0;

δΩη
i
1¼−1

2
Ui

jkη
j
1η

k
1ϵ; δΩP1

i ¼Hiϵ−Uk
ijη

j
1P

1
kϵ;

δΩη
k
2¼0; δΩP2

k¼πkϵ:

C. Quantum Lagrangian

We continue with working on an arbitrary spatial
dimensionality d, eventually we specialize to the d ¼ 2
case. For the BFV quantization we have defined the
structure of the gauge-fixing condition (2.30), which has
the part χi unspecified. To arrive at the quantum
Lagrangian, we impose conditions on the functional form
of χi that allow us to perform the integration on the several
canonical momenta. These conditions allow us to make a
connection with the same gauge fixing used in the proof of
renormalizability of the projectable theory.
We start with the integration on the momentum πi. The

term −πkχk in the action of (2.34) suggests to demand that
χi has a linear dependence on πi, leading to a quadratic term
in πi in the Hamiltonian, otherwise a higher order depend-
ence on this variable could lead to a violation of unitarity,

which is contradiction to the spirit of the Hořava theory and
its anisotropic symmetry. Therefore, we assume the struc-
ture of the gauge-fixing condition

χk ¼ Dkiπi þ Γk½gij; Nk�; ð2:36Þ

where Γk is a functional that may depend only on gij and
Nk. The restriction that Γk does not depend on the
momentum πij allows us to perform the integration
straightforwardly. According to the anisotropic dimen-
sional assignments (2.17), the gauge-fixing condition must
satisfy ½χk� ¼ 2z − 1, hence the dimension of the operator
Dij must be

½Dij� ¼ 3z − d − 2 ¼ 2z − 2: ð2:37Þ

Below we give explicitly the operator Dij and the gauge-
fixing form Γi in the perturbative framework. Nevertheless,
many operations can be carried out without recurring to
perturbations and for general Γi. Hence we stay for a while
on nonperturbative variables, using only the fact thatDij is
a flat operator (does not depend on any field variable).
By setting the form (2.36) for the gauge-fixing condition,

the last three terms of the action of Eq. (2.34) become

−πkDkiπi − πkΓk − P2
i fΓi;Hkgηk1 − P2

i
δΓi

δNl η
l
2: ð2:38Þ

We may complete the square involving πi and then
integrate on the shifted variable, obtaining the path integral

Z ¼
Z

DgijDπijDNkDηaDPa exp

�
i
Z

dtddx

�
πij _gij þ Pa _η

a þ 1

4
ð _Nk − ΓkÞD−1

kl ð _Nl − ΓlÞ −H −HkNk

−P1
kη

k
2 þ P1

i ðNj∂jη
i
1 þ Ni∂jη

j
1Þ − P2

i fΓi;Hkgηk1 − P2
i
δΓi

δNl η
l
2

��
: ð2:39Þ
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Since Dij is a local operator, its inverse D−1
kl , which has

arisen by the integration, is a nonlocal operator.
Now we move to the ghost sector. The following change

of notation is useful for the final the quantum Lagrangian:

ηi1 → Ci; P1
i → P̄i;

ηi2 → Pi; P2
i → C̄i: ð2:40Þ

Wemay perform the integration of the Grassmann variables
Pi and P̄i, which arise in the action (2.39) in the terms

−P̄kPkþ P̄kð _Ck−Nj∂jCk−Nk∂jCjÞþPk

�
_̄Ckþ C̄i

δΓi

δNk

�
:

ð2:41Þ

The bilinear −P̄kPk can be completed, such that the
Gaussian integration on these Grassmann variables can
be performed (without consequences on the measure).
After these steps of integration, the path integral becomes

Z ¼
Z

DgijDπijDNkDC̄iDCi exp

�
i
Z

dtddx

�
πij _gij þ

1

4
ð _Nk − ΓkÞD−1

kl ð _Nl − ΓlÞ −H −HkNk

þð _Ck − Nj∂jCk − Nk∂jCjÞ
�
_̄Ck þ C̄i

δΓi

δNk

�
− C̄ifΓi;HkgCk

��
: ð2:42Þ

Now we focus the integration on πij. A significant part of
the computations can be continued on nonperturbative
grounds. Since this is interesting on its own, in
Appendix A we show this nonperturbative integration for
the case of the projectable theory. In what follows we adopt
a perturbative approach. We consider perturbations around
the analogous of the Minkowski spacetime, given by
gij ¼ δij, πij ¼ 0, Ni ¼ 0, C̄i ¼ Ci ¼ 0.
We comment that for the d ¼ 2-dimensional case we

take the operator Dij as

Dij ¼ δijΔþ κ∂i∂j; D−1
ij ¼ δij

Δ
−

κ

1þ κ

∂i∂j

Δ2
; ð2:43Þ

where κ is an arbitrary constant. The inverse D−1
ij is a

nonlocal operator of dimension −2 in d ¼ 2. The operator
D−1

ij (2.43) was introduced in the gauge-fixing condition
used in Ref. [2], with the aim of introducing the nonlocality
that finally leads to regular propagators. This version of the
operatorDij for the d ¼ 2 case arises in several steps of the
integration for arbitrary dimension d, with a fixed value of
κ. For this reason we denote these special cases as

Dij
1 ¼ δijΔþ ∂i∂j; ð2:44Þ

Dij
2 ¼ δijΔþ 1þ λ

1 − λ
∂i∂j; ð2:45Þ

Dij
3 ¼ δijΔþ ð1 − 2λÞ∂i∂j: ð2:46Þ

The inverse of Dij
2 is also required,

D−1
2ij ¼

δij
Δ

−
1þ λ

2

∂i∂j

Δ2
: ð2:47Þ

Note that the operator Dij
2 cannot be extended to the

relativistic limit λ ¼ 1.
We denote the perturbative variables

gij − δij ¼ hij; πij ¼ pij; Ni ¼ ni; ð2:48Þ

and the ghosts C̄i, Ci are considered perturbative variables
of first order. The quantum action given in (2.42), expanded
up to quadratic order, results

S¼
Z

dtddx

�
pij _hijþ

1

4
ð _nk−ΓkÞD−1

kl ð _nl−ΓlÞ−H−nkHk

þ _Ck

�
_̄Ckþ C̄i

δΓi

δnk

�
− C̄ifΓi;HkgCk

�
; ð2:49Þ

where

Hj ¼ −2∂kpkj − 2∂kðhijpkiÞ þ pkl∂jhkl; ð2:50Þ

H ¼ pijpij þ λ

1 − dλ
p2 þ ffiffiffi

g
p

V: ð2:51Þ

We perform the transverse-longitudinal decomposition

hij ¼ hTTij þ 1

d − 1

�
δij −

∂i∂j

Δ

�
hT þ ∂ðihjÞ; ð2:52Þ

and similarly for pij. In d ¼ 2 dimensions the TT mode
must be absent from this decomposition. Thus, the action
(2.49) becomes
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S ¼
Z

dtddx

�
pij
TT

_hTTij þ 1

ðd − 1Þp
T _hT −

1

2
piDij

1
_hj þ

1

4
ð _nk − ΓkÞD−1

kl ð _nl − ΓlÞ

− pij
TTp

ij
TT −

1 − λ

ðd − 1Þð1 − dλÞ ðp
TÞ2 þ 1

2
pi

�
δijΔþ

�
1þ 2λ

1 − dλ

�
∂i∂j

�
pj

−
2λ

1 − dλ
pT∂ipi þ niDij

1 p
j −

ffiffiffi
g

p
V þ _Ck

�
_̄Ck þ C̄i

δΓi

δnk

�
− C̄ifΓi;HkgCk

�
: ð2:53Þ

Note that the ðpTÞ2 term disappears in the relativistic limit λ ¼ 1, hence we assume that λ does not take this value. By

integrating pij
TT and pT , the action takes the form2

S ¼
Z

dtddx

�
1

4
_hTTij _hTTij þ 1 − dλ

4ð1 − λÞðd − 1Þ ð
_hTÞ2 þ 1

4
ð _nk − ΓkÞD−1

kl ð _nl − ΓlÞ þ λ

1 − λ
pi∂i

_hT þ piDij
1

�
−
1

2
_hj þ nj

�

þ 1

2
piDij

2 p
j −

ffiffiffi
g

p
Vþ _Ck

�
_̄Ck þ C̄i

δΓi

δnk

�
− C̄lfΓl;HkgCk

�
: ð2:54Þ

The last integration is on pi. The square involving this
variable can be completed,

1

2
Dij

2 ðpi þD−1
2ikB

kÞðpj þD−1
2jlB

lÞ − 1

2
BiD−1

2ijB
j; ð2:55Þ

where

Bk ¼ λ

1 − λ
∂k

_hT −Dkl
1

�
_hl
2
− nl

�
; ð2:56Þ

−
1

2
BkD−1

2klB
l ¼ −

1

8
_hlDkl

3
_hk þ

1

2
_hlDkl

3 n
k −

1

2
nlDkl

3 n
k

þ λ2

4ð1 − λÞ ð
_hTÞ2 þ 1

2
λ _hk∂k

_hT − λnk∂k
_hT:

ð2:57Þ

After the Gaussian integration, the action (2.54) becomes

S¼
Z

dtddx

�
1

4
_hTTij _hTTij þ ð1−dλÞ

4ð1−λÞðd−1Þð
_hTÞ2þ1

4
ð _nk−ΓkÞD−1

kl ð _nl−ΓlÞ

−
ffiffiffi
g

p
V−

1

2
BkD−1

2klB
lþ _Ck

�
_̄Ckþ C̄i

δΓi

δnk

�
− C̄ifΓi;HkgCk

�
: ð2:58Þ

So far, the potential V and the factor Γi of the gauge-
fixing condition have been left unspecified, hence all the
above formulas for projectable Hořava theory are valid in
any spatial dimension d, except for the fact that in the d ¼ 2

case the hTTij mode must be dropped from all expressions.
Now, to continue on obtaining the quantum Lagrangian, we
specialize to the d ¼ 2 case, specifying the potential and
the gauge-fixing condition completely. The potential of the
d ¼ 2 projectable Hořava theory, up to second order in
perturbations, becomes

ffiffiffi
g

p
V ¼ μ

ffiffiffi
g

p
R2 ¼ μðΔhTÞ2: ð2:59Þ

The operator Dij is defined in (2.43). For the factor Γi we
take the form introduced in Ref. [2], which was obtained by
considering the anisotropic scaling of the variables of the
Hořava theory,

Γk ¼ 2c1Δ∂lhkl þ 2c2Δ∂khþ c3∂k∂i∂jhij; ð2:60Þ

where c1, c2, c3 are constants. In the transverse–longi-
tudinal decomposition it takes the form

Γk ¼ c1Δ2hk þ γΔ∂k∂lhl þ 2c2Δ∂khT; ð2:61Þ

where γ ¼ c1 þ 2c2 þ c3. Now we may write explicitly
several elements of the action (2.58) for the d ¼ 2 case. We
have the terms that involve the time derivative of the shift
vector,

2Note that, since we are assuming that Γk does not depend on
pij, the last term in (2.53) does not depend on this momentum.
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1

4
ð _nk − ΓkÞD−1

kl ð _nl − ΓlÞ ¼ 1

4
_nlD−1

kl _n
k −

1

2
_nkðc1ðδklΔ − ρκ∂k∂lÞ þ ργ∂k∂lÞhl − ρc2 _nk∂khT

þ 1

4
hk½c21δlkΔ3 þ ð2c1γ þ γ2 − ρκðγ þ c1Þ2ÞΔ2∂k∂l�hl þ ρc2ðγ þ c1ÞhkΔ2∂khT − ρc22h

TΔ2hT;

ð2:62Þ

where ρ ¼ ð1þ κÞ−1. In the ghost sector we have the bracket

Z
d2xC̄ifΓi;HkgCk ¼ −2

Z
d2xCkðc1δklΔ2 þ γΔ∂k∂lÞC̄l: ð2:63Þ

The action in 2þ 1 dimensions takes the form

S ¼
Z

dtd2x

�
1 − λ

4
ð _hTÞ2 − ðμþ ρc22ÞhTΔ2hT þ 1

4
_nlD−1

kl _n
k þ λ

2
_hk∂k

_hT −
1

8
_hlDkl

3
_hk þ ρc2ðγ þ c1ÞhkΔ2∂khT

−
1

2
nlDkl

3 n
k þ ðλ − ρc2Þ _nk∂khT −

1

2
_nk½ð1þ c1ÞδlkΔþ ð1 − 2λþ ρðγ − κc1ÞÞ∂k∂l�hl

þ 1

4
hk½c21δklΔ3 þ ð2c1γ þ γ2 − ρκðγ þ c1Þ2ÞΔ2∂k∂l�hlþ _Ck _̄Ck þ 2Ckðc1δklΔ2 þ γΔ∂k∂lÞC̄l

�
: ð2:64Þ

We notice the presence of odd derivatives in time or space in (2.64), which are also the terms that mix ni and the components
of hij.

3 We see that these odd terms cancel if we set4

c1 ¼ −1; c2 ¼ λð1þ κÞ; c3 ¼ −2κ: ð2:65Þ

By adjusting these constants, the final quantum path integral of the projectable 2þ 1 Hořava theory, written in Lagrangian
variables and at second order in perturbations, is

Z¼
Z

DhTDhTi DhLDniTDnLDC̄iDCiexp

�
i
Z

dtd2x

�
hT

�
−
1

4
ð1−λÞ∂2

t −ðμþð1þκÞλ2ÞΔ2

�
hT

þCk½−∂2
t −2δklΔ2þ2ð2ðλ−1Þð1þκÞþ1ÞΔ∂k∂l

�
C̄l−

1

4
nkTðΔ−1∂2

t þ2ΔÞnkTþnL
�

1

4ð1þκÞ∂
2
t þð1−λÞΔ2

�
nL

þhT
�
1

2
λ∂2

t −2λðλ−1Þð1þκÞΔ2

�
hLþ1

8
hTk ðΔ∂2

t þ2Δ3ÞhkT−hL
�
1

4
ð1−λÞ∂2

t þðλ−1Þ2ð1þκÞΔ2

�
hL

�
; ð2:66Þ

where we have also decomposed the vectors,

ni ¼ niT þ ∂inL; ∂iniT ¼ 0;

hi ¼ hiT þ ∂iΔ−1hL; ∂ihiT ¼ 0: ð2:67Þ

The quantum Lagrangian of Eq. (2.66) coincides with the one presented in Ref. [2]. Those authors used a Faddeev-Popov
procedure for fixing the gauge, hence they get the usual parameter σ associated to the averaging on the gauge-fixing
condition. To match exactly both Lagrangians, we must set σ ¼ 1=4. At the end, the nonlocality only affects the time-
derivative of the shift vector (and all propagators are regular [2]).
Finally, we make a comment on the cubic order in perturbations in the ghost sector. We take the ghost sector of the action

given in (2.42). Its expansion up to cubic order, imposing the gauge (2.60), is

3Actually, the odd derivatives are only in time. We see this explicitly in the 3þ 1 nonprojectable case, where we present the analogous
formulas, Eqs. (3.31) and (3.34), written with the decomposition on the vectors fields.

4This identification is equivalent to the one used in Ref. [2] for the Lagrangian theory.
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Sgh ¼
Z

dtd2xf _Ck _̄Ck þ _̄Ck∂iCkni − Ck∂i
_̄Ckni − _̄CkCi∂ink þ Ci½−δijΔ2

þð2λ − 1þ 2κðλ − 1ÞÞΔ∂i∂j�C̄j − Δ∂kC̄lð∂kCjhlj þ ∂lCjhkj þ Cj∂jhklÞ
þλð1þ κÞΔ∂iC̄ið2∂lCkhlk þ ∂khCkÞ − κ∂k∂l∂jC̄jð2∂kCihli þ ∂ihklCiÞg: ð2:68Þ

This is equal to the cubic order in the ghost sector of
Ref. [2], except for an additional term we find, which is

−Ck∂i
_̄Ckni.

III. 3 + 1 NONPROJECTABLE THEORY

A. Classical theory

In the nonprojectable theory the lapse function N is
allowed to depend on time and space, hence it represents a
complete functional degree of freedom. In this case a large
class of terms that depend on the vector ai ¼ ∂i lnN arise
in the Lagrangian [37]. We focus the nonprojectable theory
in 3þ 1 dimensions. The Lagrangian has the general form
shown in (2.6), but eliminating the restriction of project-
ability on N. The criterium of power-counting renormaliz-
ability requires us to include a term of order z ¼ 3 in 3þ 1
dimensions. The total Lagrangian, containing the z ¼ 1, 2,
3 orders has many terms. In this analysis we take for the
potential only the z ¼ 3 terms that contribute to the
propagators, which are the dominant terms in the propa-
gators in the ultraviolet regime. They are [9]

V ¼ −α3∇2R∇iai − α4∇2ai∇2ai

− β3∇iRjk∇iRjk − β4∇iR∇iR; ð3:1Þ

where α3, α4, β3, β4 are coupling constants.
In the nonprojectable theory the lapse function N and its

conjugatemomentumPN are part of the canonical variables.
There is no time derivative of N in the Lagrangian, hence

θ1 ≡ PN ¼ 0 ð3:2Þ

is a constraint of the theory. The classical Hamiltonian,
obtained by a Legendre transformation, is

H0 ¼
Z

d3x
ffiffiffi
g

p
N

�
πijπij
g

þ λ

1 − 3λ

π2

g
þ V

�
: ð3:3Þ

The rest of constraints are the momentum constraint,
Hi ¼ −2∇kπki, and the constraint

θ2≡ N
ffiffiffi
g

p
�
πijπijþ

λ

1−3λ
π2
�
þ ffiffiffi

g
p

NV−α3
ffiffiffi
g

p ∇2ðN∇2RÞ

þ2α4
ffiffiffi
g

p ð∇i∇2ðN∇2aiÞÞ¼0: ð3:4Þ

In the definition of the phase space, the main qualitative
difference between the projectable and nonprojectable cases

is the activation of the lapse function as a degree of freedom
and the arising of the constraint θ2 (3.4) in the side of the
nonprojectable theory. The last two terms of the constraint θ2
are total derivatives of sixth order, hence the integral of θ2 is
equal to the primary Hamiltonian (3.3),

H0 ¼
Z

d3xθ2: ð3:5Þ

Actually, when the z ¼ 1 terms are included in the potential,
there is a boundary contribution remaining from the integral
of θ2. Moreover, a term proportional to the so called
Arnowitt-Deser-Misner energy is required for the differ-
entiability of one of the z ¼ 1 terms. Therefore, the general
statement is that the primary Hamiltonian of the 3þ 1
nonprojectable Hořava theory can be written as the integral
of θ2 plus boundary terms. Since in this analysis we focus on
the z ¼ 3 terms, we can discard these boundary terms.

B. BFV quantization

Since the nonprojectable theory has second-class con-
straints, the definitions of the BFV quantization must be
adapted, according to Ref. [35]. The involution is defined in
terms of Dirac brackets,

fGa;GbgD ¼ Uc
abGc; fH0; GagD ¼ Vb

aGb; ð3:6Þ

where Dirac brackets are defined by

fF;RgD¼fF;Rg−fF;θAgM−1
ABfθB;Rg; MAB¼fθA;θBg:

ð3:7Þ

The implementation of the BFV quantization of the 3þ 1
case is parallel to the 2þ 1 case shown in Ref. [32]. Here we
present the summary. The matrix of Poisson brackets of the
second-class constraints has a triangular form,

M ¼
�

0 fθ1; θ2g
−fθ1; θ2g fθ2; θ2g

�
: ð3:8Þ

Since the primary Hamiltonian H0 is equivalent to the
second-class constraint θ2, its Dirac bracket is zero with any
quantity, hence Vb

a ¼ 0. The Dirac bracket of the momentum
constraint Hi with itself is equivalent to its Poisson bracket,

fHiðxÞ;HjðyÞgD ¼ fHiðxÞ;HjðyÞg; ð3:9Þ
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This leads to the algebra of spatial diffeomorphisms, as in the
projectable case, hence the coefficientsUk

ij are the same, and
Uc

ab ¼ 0 for a; b; c > i.
We perform the BFV extension of the phase space in a

similar way to the projectable case. The Lagrange multi-
pliers form a new canonical pair ðNi; πiÞ. The ghosts are the
canonical pairs ðηa;PaÞ. Thus, the full phase space is given
by the pairs ðgij; πijÞ, ðN;PNÞ, ðNi; πiÞ and ðηa;PaÞ. The
BFV path integral of the nonprojectable Hořava theory is
given by

Z ¼
Z

DVδðθ1Þδðθ2ÞeiS; ð3:10Þ

where the measure and the action are given by

DV ¼ DgijDπijDNDPNDNkDπkDηaDPa ×
ffiffiffiffiffiffiffiffiffiffiffi
detM

p
;

ð3:11Þ

S¼
Z

dtd3xðπij _gijþPN
_Nþπk _N

kþPa _η
a−HΨÞ: ð3:12Þ

Unlike the projectable case, in this case the second-class
constraints must be imposed explicitly. By comparing the
quantum degrees of freedom with the projectable case, here
we see that the canonical pair ðN;PNÞ has been added to
the phase space, but at the same time the imposition of the
two second-class constraints θ1, θ2 compensates the pair
ðN;PNÞ. Hence the balance is the same of the projectable
case: there are dðd − 1Þ physical degrees of freedom in the
quantum phase space. In the 3þ 1 foliation, they are the
two tensorial modes and the extra scalar mode.
The BRST charge Ω and H1 take the same definition of

Eqs. (2.20) and (2.21). The quantum gauge-fixed
Hamiltonian is

HΨ ¼ H1 þ fΨ;ΩgD: ð3:13Þ

The nonprojectable Hořava theory is a theory of rank one,
then

Ω ¼ Gaη
a −

1

2
Uc

abη
aηbPc ¼ Hkη

k
1 þ πkη

k
2 −

1

2
Uk

ijη
i
1η

j
1P

1
k;

ð3:14Þ

H1 ¼ H0: ð3:15Þ

In the case of the second-class constraints the consistency
conditions for the BFV quantization are

fΩ;ΩgD ¼ 0; fH1;ΩgD ¼ 0: ð3:16Þ

The first condition holds following the same steps of the
projectable case, but operating with Dirac brackets in this
case. The second condition holds because H1 ¼ H0, and
this is equivalent to a second-class constraint, hence its
Dirac bracket is always zero. The gauge-fixed quantum
Hamiltonian takes the form

HΨ ¼ H0 þ
�
Ψ;Hkη

k
1 þ πkη

k
2 −

1

2
Uk

ijη
i
1η

j
1P

1
k

�

D
: ð3:17Þ

As we did in the projectable case, we can adopt the form
of the gauge-fixing condition used in the general BFV
formalism, originally introduced for relativistic theories.
Thus, the gauge-fixing conditionΦi ¼ 0 and the associated
fermionic function Ψ take the forms given in (2.30) and
(2.31), respectively. The Hamiltonian takes the form

HΨ¼H0þHkNkþP1
kη

k
2−P1

i ðNj∂jη
i
1þNi∂jη

j
1Þþπkχ

k

þP2
i fχi;Hkgηk1þP2

i
δχi

δNlη
l
2: ð3:18Þ

Due to the form (3.8), the measure of the second-class
constraints simplifies to

ffiffiffiffiffiffiffiffiffiffiffi
detM

p ¼ detfθ1; θ2g. Thus, this
measure can be incorporated to the Lagrangian by means of
the ghosts fields ε̄; ε,

detfθ1;θ2g¼
Z

Dε̄Dεexp

�
i
Z

dtd3xε̄fθ1;θ2gε
�
: ð3:19Þ

Taking the definition of θ2 given in (3.4), the bracket
fθ1; θ2g results

fθ1ðxÞ;θ2ðyÞg¼
θ2
N
δxyþ2

ffiffiffi
g

p �
−α3∇ið∇iδxy∇2R−δxyai∇2RÞþα4

�
∇i∇2ðδxy∇2aiÞ−N∇2ai∇2∇i

�
δxy
N

�

þ∇i∇2

�
N∇2∇i

�
δxy
N

��
−
δxy
N

∇i∇2ðN∇2aiÞ
��

; ð3:20Þ
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where δxy ≡ δðxi − yiÞ. Once we have obtained this bracket, we may integrate the variable PN without further
consequences, since it vanishes due to the constraint θ1 ¼ 0. The constraint θ2 can be incorporated to the Lagrangian
by means of a Lagrange multiplier, which we denote by ξ. Thus, the BFV path integral of the nonprojectable Hořava theory
in 3þ 1 dimensions takes the form

ZΨ¼
Z

DgijDπijDNDNkDπkDηi1DP1
iDηi2DP2

iDξDε̄Dεexp

�
i
Z

dtd3x

�
πij _gijþπk _N

kþP1
i _η

i
1þP2

i _η
i
2−H0−HkNk−P1

kη
k
2

þP1
i ðNj∂jη

i
1þNi∂jη

j
1Þ−πkχ

k−P2
i fχi;Hkgηk1−P2

i
δχi

δNlη
l
2þξθ2þ ε̄fθ1;θ2gε

��
: ð3:21Þ

C. Quantum Lagrangian

By adapting the discussion done in Sec. II about the structure of the gauge-fixing condition to the nonprojectable case,
we set

χi ¼ Dijπj þ Γi½gij; N;Ni�: ð3:22Þ

The Gaussian integration on πi leads to the path integral

ZΨ ¼
Z

DgijDπijDNDNkDηi1DP1
iDηi2DP2

iDξDε̄Dε exp

�
i
Z

dtd3x

�
πij _gij þ P1

i _η
i
1 þ P2

i _η
i
2 þ

1

4
ð _Nk − ΓkÞD−1

kl ð _Nl − ΓlÞ

−H0 −HkNk − P1
kη

k
2 þ P1

i ðNj∂jη
i
1 þ Ni∂jη

j
1Þ−P2

i fΓi;Hkgηk1 − P2
i
δΓi

δNl η
l
2 þ ξθ2 þ ε̄fθ1; θ2gε

��
: ð3:23Þ

The next integration we perform is over the BFV ghosts that are canonical momenta. We perform the same change of
notation (2.40). For the terms of the action that depend on Pa and P̄a it is possible to carry out the integration after
completing the bilinear in these variables, as in (2.41). The action of the ghost sector results

Sghost ¼
Z

dtd3x
�
ð _Ck − Nj∂jCk − Nk∂jCjÞ

�
_̄Ck þ C̄i

δΓi

δNk

�
− C̄ifΓi;HkgDCk

�
: ð3:24Þ

Now we adopt the perturbative variables defined in (2.48), adding N − 1 ¼ n. For the d ¼ 3 nonprojectable theory we
take [2]

Dij ¼ δijΔ2 þ κΔ∂i∂j; D−1
ij ¼ δij

Δ2
−

κ

1þ κ

∂i∂j

Δ3
: ð3:25Þ

The momentum constraint Hj is given in (2.50), and the Hamiltonian density H0 takes the form

H0 ¼ pijpij þ λ

1 − 3λ
p2 − α3nΔ2ð∂i∂jhij − ΔhÞ þ α4nΔ3nþ

�
β3
2
þ β4

�
hkj∂j∂k∂n∂lΔhnl

þ
�
β3
4
þ β4

�
ðhΔ3h − 2h∂j∂kΔ2hjkÞ þ

β3
4
ðhkjΔ3hkj − 2hkj∂l∂kΔ2hljÞ: ð3:26Þ

Therefore, the path integral becomes

Z ¼
Z

DhijDpijDnDnkDC̄iDCiDε̄DεDξ exp

�
i
Z

dtd3x

�
pij _hij −H0 − nkHk þ

1

4
ð _nk − ΓkÞD−1

kl ð _nl − ΓlÞ

þξθ2 þ ε̄fθ1; θ2gεþ _Ck

�
_̄Ck þ C̄i

δΓi

δnk

�
− C̄ifΓi;HkgDCk

��
: ð3:27Þ

We make the decomposition (2.52) on the fields. The second class constraint θ2 and the measure of the second-class
constraints, given by the bracket (3.20), contribute to the perturbative action with the following terms, respectively,
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ξθ2 ¼ ξðα3Δ3hT þ 2α4Δ3nÞ; ε̄fθ1; θ2gε ¼ −2α4ε̄Δ3ε; ð3:28Þ

where the Lagrange multiplier ξ is regarded as a perturbative variable. After these steps, the Gaussian integration on pij
TT and

pT can be done by completing squares (assuming again λ ≠ 1). This yields the action

S ¼
Z

dtd3x

�
1

4
_hTTij _hTTij þ ð1 − 3λÞ

8ð1 − λÞ ð
_hTÞ2 þ 1

4
ð _ni − ΓiÞD−1

ij ð _nj − ΓjÞ þ λ

1 − λ
pi∂i

_hT þ plDkl
1

�
−
1

2
_hk þ nk

�

þ 1

2
piDij

2 p
j − α3nΔ3hT − α4nΔ3n−

β3
4
hTTij Δ3hTTij −

�
3β3
8

þ β4

�
hTΔ3hT þ α3ξΔ3hT þ 2α4ξΔ3n

þ _Ck

�
_̄Ck þ C̄i

δΓi

δnk

�
− 2C̄l

δΓl

δhij
∂jCi − 2α4ε̄Δ3ε

�
; ð3:29Þ

where the operatorsDij
1 andDij

2 are the same of the d ¼ 2 case defined in (2.44) and (2.45). The last integration is on pi. We
integrate in a similar way to how it was done in the projectable case, obtaining

S ¼
Z

dtd3x

�
1

4
_hTTij _hTTij þ ð1 − 3λÞ

8ð1 − λÞ ð
_hTÞ2 þ 1

4
ð _ni − ΓiÞD−1

ij ð _nj − ΓjÞ − β3
4
hTTij Δ3hTTij −

�
3β3
8

þ β4

�
hTΔ3hT − α3nΔ3hT

− α4nΔ3nþ α3ξΔ3hTþ2α4ξΔ3n −
1

2
BjD−1

2jlB
l þ _Ck

�
_̄Ck þ C̄i

δΓi

δnk

�
− 2C̄l

δΓl

δhij
∂jCi − 2α4ε̄Δ3ε

�
; ð3:30Þ

where Bi is defined in Eq. (2.56). Finally, we make the decomposition on the vector variables shown in (2.67). In particular,

−
1

2
BiD−1

2ijB
j ¼ −

λ2

4ð1 − λÞ h
T∂2

t hT þ λ

2
hT∂2

t hL −
1

2
_niTΔhTi − λ _nLΔhT

þð1 − λÞ _nLΔhL þ 1

8
hTi ∂2

tΔhTi −
1

2
niTΔniT −

ð1 − λÞ
4

hL∂2
t hL þ ð1 − λÞnLΔ2nL: ð3:31Þ

Now we defined the factor Γi of the gauge-fixing condition, adopting the analysis of Ref. [2]. Those authors found that
the appropriate gauge fixing condition in d ¼ 3, preserving the anisotropy of the Hořava theory, is given by

Γi ¼ 2c1Δ2∂jhij þ 2c2Δ2∂ihþ c3Δ∂i∂j∂khjk: ð3:32Þ

The notation on the constants c1;2;3 has been put intentionally equal to the projectable case (2.60). In terms of the transverse-
longitudinal decomposition (2.52), this is

Γi ¼ c1Δ3hi þ 2c2Δ2∂ihT þ γΔ2∂i∂jhj: ð3:33Þ

We have the expansion of the term,

1

4
ð _ni − ΓiÞD−1

ij ð _nj − ΓjÞ ¼ 1

4
_niT

1

Δ2
_niT −

1

4
ρ _nL

1

Δ
_nL −

1

2
c1 _niTΔhTi þ ρc2 _nLΔhT

þρν _nLΔhL þ 1

4
c21h

T
i Δ4hTi − ρc22h

TΔ3hT − ρc2νhTΔ3hL −
1

4
ρν2hLΔ3hL; ð3:34Þ

with ν ¼ 2c1 þ 2c2 þ c3. As in the projectable case, the terms with a odd time derivative in (3.31) and (3.34) can be
canceled by an appropriate setting of the constants c1;2;3, which coincides with (2.65) since the notation on these constants is
the same. With this choice, the final path integral in the Lagrangian formalism of the 3þ 1 nonprojectable Hořava theory,
with the z ¼ 3 potential, results
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Z ¼
Z

DhTTij DhTDhTi DhLDnDniTDnLDC̄T
i DCiTDC̄LDCLDξDε̄Dε

exp

�
i
Z

dtd3x

�
C̄T
k ð∂2

t þ 2Δ3ÞCkT − C̄L½∂2
tΔþ 4ð1 − λÞð1þ κÞΔ4�CL

−
1

4
hTTij ð∂2

t þ β3Δ3ÞhTTij − hT
�
1 − 2λ

8
∂2
t þ

�
3β3
8

þ β4 þ λ2ð1þ κÞ
�
Δ3

�
hT

þ 1

8
hTi ð∂2

tΔþ 2Δ4ÞhTi −
1 − λ

4
hL½∂2

t þ 4ð1 − λÞð1þ κÞΔ3�hL

−
1

4
niT

�∂2
t

Δ2
þ 2Δ

�
niT þ 1

4
ρnL

�∂2
t

Δ
þ 4ð1 − λÞð1þ κÞΔ2

�
nL

þ λ

2
hTð∂2

t þ 4ð1 − λÞð1þ κÞΔ3ÞhL − α3nΔ3hT − α4nΔ3nþα3ξΔ3hT þ 2α4ξΔ3n − 2α4ε̄Δ3ε

��
: ð3:35Þ

In the set of propagators derived from this action, shown
in Appendix B, almost all of them are regular. The
nonregular ones arise when the variables associated to
the second-class constraints, ξ and ε̄; ε, are involved. This
confirms that the nonlocal Lagrangian (3.35) leads to
regular propagators for the original field variables, in-
cluding the ghosts associated to the gauge fixing [2], but
the presence of nonregular propagators persists, associ-
ated to the fact that the theory has second-class con-
straints, unlike the projectable case.

IV. COMPARISON WITH GENERAL RELATIVITY

As it is well known, the classical canonical action of
general relativity written in ADM variables is

S ¼
Z

dtd3xð_gijπij − NH − NkHkÞ: ð4:1Þ

The constraints are given by

Hi ¼ −2∇kπki; ð4:2Þ

H ¼ 1
ffiffiffi
g

p
�
πijπij −

1

2
π2
�
−

ffiffiffi
g

p
R; ð4:3Þ

and both constraints are of first class.N andNi play the role
of Lagrange multipliers. We denote them collectively by
Ha ¼ ðH;HiÞ, and Na ¼ ðN;NiÞ.
For the BFV quantization [36] we introduce the canoni-

cal pair ðNa; πaÞ, hence we have the functions
GA ¼ ðHa; πaÞ. For each of these functions we define
the pair of fermionic ghosts ðηA;PAÞ, which can be split as
ðηa1;P1

aÞ, ðηa2;P2
aÞ. The involution relations fGA;GBg ¼

UC
ABGC lead to the algebra of spacetime diffeomorphisms.

There is an essential qualitative difference with the Hořava
theory, since in general relativity the coefficients Uc

ab
depend on the canonical fields. This fact has important

consequences in the BFV quantization [33,36]. The gauge-
fixed BFV path integral takes the form

Z ¼
Z

DgijDπijDNaDπaDηADPA

exp

�
i
Z

dtd3xð_gijπij þ πa _N
a þ PA _η

A −HΨÞ
�
: ð4:4Þ

In the 3þ 1-dimensional spacetime the two canonical pairs
ðgij; πijÞ, ðNa; πaÞ sum 20 degrees of freedom. The ghosts
ðηa1;P1

aÞ, ðηa2;P2
aÞ sum 16 degrees. The substraction yields

the usual four physical degrees of freedom in the phase
space of quantum general relativity. The BRST charge
takes the form

Ω ¼ GAη
A ¼ Haη

a
1 þ πaη

a
2 −

1

2
Uc

abη
a
1η

b
1P

1
c: ð4:5Þ

The gauge-fixed quantum Hamiltonian is defined by
Eq. (2.18), with H1 ¼ 0. The appropriate form of the
gauge-fixing fermionic function is given in (2.31), which,
considering the four spacetime directions, takes the form
Ψ ¼ P1

aNa þ P2
aχ

a. Thus, the gauge-fixed Hamiltonian
results

HΨ¼NaHaþP1
aη

a
2þπaχ

aþP2
afχa;Hbgηb1þP2

afχa;πbgηb2
−
1

2
P2

afχa;Ue
cdgηc1ηd1P1

eþNaηb1U
c
baP

1
c: ð4:6Þ

We proceed to the construction of the quantum
Lagrangian. For the integration on πa we adopt the same
strategy we used in the Hořava theory, considering in this
case the four directions of spacetime diffeomorphisms. We
take a gauge-fixing condition in the form

χa ¼ Dabπb þ Γa½gij; N;Ni�: ð4:7Þ
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The isotropic scaling in general relativity is

½πa� ¼ 3; ½χa� ¼ 1; ½Dab� ¼ −2: ð4:8Þ

Therefore,Dab is nonlocal whereas its inverseD−1
ab is a local operator. After the integration on πa, the quantum action takes

the form

S ¼
Z

dtd3x

�
_gijπij þ

1

2
ð _Na − ΓaÞD−1

abð _Nb − ΓbÞ þ PA _η
A − NaHa − P1

aη
a
2

− Naηb1U
c
baP

1
c − P2

afΓa;Hbgηb1 − P2
a
δΓa

δNb η
b
2 þ

1

2
P2

afΓa; Ud
bcgηb1ηc1P1

d

�
: ð4:9Þ

The ghost sector is given by

−P̄aPa þ P̄a

�
_Ca −

1

2
C̄dfΓd; Ua

bcgCbCc þ NdCbUa
bd

�
þ Pa

�
_̄Ca þ C̄e

δΓe

δNa

�
: ð4:10Þ

By integrating on the corresponding Grassmann variables we get the action

S ¼
Z

dtd3x

�
_gijπij þ

1

2
ð _Na − ΓaÞD−1

abð _Nb − ΓbÞ − NaHa

þ
�
_Ca −

1

2
C̄dfΓd; Ua

bcgCbCc þ NdCbUa
bd

��
_̄Ca þ C̄e

δΓe

δNa

�
− C̄afΓa;HbgCb

�
: ð4:11Þ

We now perform perturbations, obtaining the second-order action

S ¼
Z

dtd3x

�
−
�
pTT
ij −

1

2
_hTTij

�
2

þ 1

4
_hTTij _hTTij þ 1

2
pT _hT þ 1

2
pkΔpk

þ pk

�
−∂kpT þ ðδkjΔþ ∂k∂jÞ

�
nj −

1

2
_hj

��
þ 1

4
hTTij ∂2hTTij −

1

8
hT∂2hT − n∂2hT

þ 1

2
ð _Na − ΓaÞD−1

abð _Nb − ΓbÞ − C̄afΓa;HbgCb þ _Ca

�
_̄Ca þ C̄e

δΓe

δNa

��
: ð4:12Þ

Here we face another qualitative difference with respect to the Hořava gravity. The Lagrangian in (4.12) has no ðpTÞ2 term,
unlike the Lagrangian in Eq. (2.53). This is a consequence of the relativistic structure behind the Hamiltonian of
general relativity, which implies the frozen of the scalar mode. Hence, we change the order of integration in this case,
by performing first the integration on the longitudinal component of the momentum pi. This brings the terms to the
Lagrangian

þ 1

2
ðpTÞ2 þ pTð−2∂knk þ ∂k

_hkÞ −
1

2
nkðδklΔþ 3∂k∂lÞnl −

1

8
_hkðδklΔþ 3∂k∂lÞ _hl þ

1

2
nkðδklΔþ 3∂k∂lÞ _hl: ð4:13Þ

Now we perform the integration on pT and pij
TT , obtaining

S ¼
Z

dtd3x

�
1

4
_hTTij _hTTij −

1

8
_hTkΔ _hTk þ 1

4
hTTij ΔhTTij −

1

8
hTΔhT − nΔhT −

1

2
nkTΔnkT þ 1

2
nkTΔ _hTk

−
1

8

�
ð _hTÞ2 þ _hTð−8ΔnL þ 4_hLÞÞ − C̄afΓa;HigCi þ _Ca

�
_̄Ca þ C̄e

δΓe

δNa

�
þ 1

2
ð _na − ΓaÞD−1

ab ð _nb − ΓbÞ
�
: ð4:14Þ

Therefore, the resulting quantum Lagrangian is completely local as far as the remaining part Γa of the gauge-fixing
condition is local.
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V. CONCLUSIONS

We have seen that the BFV quantization is suitable for
the Hořava theory, both in its projectable and nonproject-
able versions, and varying the dimension of the foliation.
This extends the analysis that two of us performed in
Ref. [32]. The BFV formalism provides a rich framework to
study the quantum dynamics of the Hořava gravity, in
particular by incorporating the BRST symmetry in terms of
the canonical variables. In the past it has been used to
establish the unitarity of gauge theories, thanks to the
ability of introducing a bigger class of gauge-fixing
conditions in the Hamiltonian formalism [33,36].
We have seen that the BFV version of the projectable

(three-dimensional) theory reproduces the quantum
Lagrangian presented in Ref. [2], which was obtained by
fixing the gauge following the Faddeev-Popov procedure.
Our results reinforces the consistency of the quantization of
the theory. We have performed the integration on momenta
after specifying the dependence that the gauge-fixing
condition has on them. Specifically, we have introduced
a linear dependence on the momentum conjugated to the
shift vector. Guided by a criterium of anisotropic scaling,
we have incorporated an operator that balances the momen-
tum in the gauge-fixing condition. It turns out that, in both
versions of the Hořava theory, this operator introduces a
nonlocality in the Lagrangian after the integration. Thus,
we have arrived at the same result obtained in [2] of having
a nonlocal quantum Lagrangian, in our case starting from a
self-consistent Hamiltonian formulation provided by the
BFV formalism. The original Hamiltonian theory is com-
pletely local. In Ref. [2] it was pointed out that the final
nonlocality of the quantum Lagrangian, restricted to the
kinetic term of the shift vector, can be eliminated by
introducing the conjugated momentum of the shift vector.
We have corroborated this in an inverse way, starting from
the complete, self-consistent and local Hamiltonian for-
mulation and ending with the nonlocal Lagrangian. With
the aim of having a further comparison, we have performed
the same procedure in general relativity, taking into account
the relativistic isotropy of its field variables. In this case the
operator introduced in the gauge fixing-condition is non-
local and the quantum Lagrangian resulting after the
integration is local (whenever the dependence of the
gauge-fixing condition on the rest of variables is local).
Thus, we see an interesting relationship between the
anisotropy of the underlying symmetry and the nonlocality
of the quantum Lagrangian. The relationship has been
established on very basic grounds, since it comes from the
integration of the Hamiltonian theory.
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APPENDIX A: NONPERTURBATIVE
INTEGRATION ON πij

All the dependence that the action given in (2.42) has on
πij is contained in the three terms

πij _gij −H − NkHk ¼ −
1
ffiffiffi
g

p Gijklπ
ijπkl þ 2Kklπ

kl −
ffiffiffi
g

p
V;

ðA1Þ

where

Gijkl ¼
1

2
ðgikgjl þ gilgjkÞ −

λ

1 − dλ
gijgkl; ðA2Þ

Kkl ¼
1

2
ð_gkl − 2∇ðkNlÞÞ: ðA3Þ

After completing the square involving πij and making the
Gaussian integration, from the terms in (A1) there results

ffiffiffi
g

p
GijklKijKkl −

ffiffiffi
g

p
V ¼ Lcl; ðA4Þ

where Gijkl ¼ 1
2
ðgikgjl þ gilgjkÞ − λgijgkl, such that it is the

inverse of Gijkl [1], and Lcl coincides with the classical
Lagrangian (2.6). A factor of ðdetGÞ−1=2 arises in the
measure after the integration. Therefore, the path integral
takes the form

Z ¼
Z

DgijDNkDC̄iDCiðdetGÞ−1=2

exp

�
i
Z

dtddxðLcl þ
1

4
ð _Nk − ΓkÞD−1

kl ð _Nl − ΓlÞ

þ ð _Ck − Nj∂jCk − Nk∂jCjÞ
�
_̄Ck þ C̄i

δΓi

δNk

�

−C̄ifΓi;HkgCkÞ
�
: ðA5Þ

APPENDIX B: PROPAGATORS OF THE
NONPROJECTABLE THEORY

By making Fourier transforms in time and space in the
Lagrangian (3.35), and inverting the resulting operator
between the squared fields, we obtain the propagators of the
nonprojectable theory,
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hhTTij hTTij i ¼ P1; hhThTi ¼ 2ð1 − λÞ
ð1 − 3λÞP2; k2hhTi hTi i ¼ 2P3;

hhLhLi ¼ 1

1 − λ
P4 þ

2λ2

ð1 − λÞð1 − 3λÞP2; hhThLi ¼ 4λ

ð1 − 3λÞP2;

hnni ¼ α23ð1 − λÞ
2α4ð1 − 3λÞP2; hnhTi ¼ −

2α3ð1 − λÞ
α4ð1 − 3λÞP2;

hnhLi ¼ −
2α3λ

α4ð1 − 3λÞP2; hniTniTi ¼ k4P3; k2hnLnLi ¼ ð1þ κÞk4P4;

hC̄T
kC

kTi ¼ P3; k2hC̄LCLi ¼ P4; hnξi ¼ −2P5;

hξξi ¼ −P5; hε̄εi ¼ −2P5; ðB1Þ

where

P1 ¼
4

ω2 þ β3k6
;

P2 ¼ 4

�
ω2 þ ð1 − λÞ

α4ð1 − 3λÞ ðα4ð3β3 þ 8β4Þ − 2α23Þk6
�
−1
;

P3 ¼
4

ω2 þ 2k6
; P4 ¼

4

ω2 þ 4ð1 − λÞð1þ κÞk6 ;

P5 ¼
1

α4k6
: ðB2Þ

In (B1) we have written the propagators of hTi , n
L, and C̄L; CL multiplied by k factors since these variables must be

compensated with spatial derivatives in the composition of the original tensor variables. We adopt the definition of regular
propagators given in Ref. [2], which is based on the analysis of renormalizability of Lorentz-violating gauge theories of
Refs. [20–22]. P1, P2, P3, and P4 are regular, but P5 is not regular.

5 Thus, the nonregularity is located on the variables ξ; ε̄; ε
associated to the second-class constraints.
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