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Quantum Lagrangian of the Horava theory and its nonlocalities
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We perform the Batalin-Fradkin-Vilkovisky (BFV) quantization of the 2 + 1 projectable and the 3 + 1
nonprojectable versions of the Hotava theory. This is a Hamiltonian formalism, and noncanonical gauges
can be used with it. In the projectable case, we show that the integration on canonical momenta reproduces
the quantum Lagrangian known from the proof of renormalization of Barvinsky er al. This quantum
Lagrangian is nonlocal, its nonlocality originally arose as a consequence of getting regular propagators.
The matching of the BFV quantization with the quantum Lagrangian reinforces the program of
quantization of the Hotava theory. We introduce a local gauge-fixing condition, hence a local Hamiltonian,
that leads to the nonlocality of the Lagrangian after the integration. For the case of the nonprojectable
theory, this procedure allows us to obtain the complete (nonlocal) quantum Lagrangian that takes into
account the second-class constraints. We compare with the integration in general relativity, making clear the
relationship between the underlying anisotropic symmetry of the Horava theory and the nonlocality of its

quantum Lagrangian.
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I. INTRODUCTION

Several studies have been devoted to the consistent
quantization of the Hofava theory [1]. Some of the analyses
performed under the framework of quantum field
theory can be found in Refs. [2-14]. Other approaches
of quantization, as causal dynamical triangulations and
loop quantum gravity has been done, for example in
Refs. [15-19]. A fundamental advance is the renormaliz-
ability proof of the projectable version presented in
Ref. [2]. The difference between the projectable and the
nonprojectable versions of the Hofava theory is that in the
former the lapse function is restricted to be a function only
on time, a condition that can be imposed consistently in the
Horava theory, whereas in the latter it can be a general
function of time and space. An interesting feature of the
proof of renormalizability is the introduction of nonlocal
gauge-fixing conditions, which leads to a nonlocal quan-
tum Lagrangian. The nonlocal gauges were motivated by
the goal of obtaining regular propagators for all quantum
modes, such that the renormalizability can be achieved in a
similar way to the case of Lorentz-violating gauge theories
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[20-22]. The condition of regularity implies that the
propagators have no divergences in space valid for each
time and viceversa. For the case of the Horava theory, the
propagators acquire anisotropic higher order in momen-
tum space.

Due to the emphasis on the symmetry, quantization of
gauge field theories are wusually performed in the
Lagrangian formalism, rather than in the Hamiltonian
formalism. The standard procedure for fixing the gauge
is the Faddeev-Popov method [23], together with its
associated Becchi-Rouet-Stora-Tyutin (BRST) symmetry
[24]. Nevertheless, the quantization of the Hofava theory
using the Hamiltonian formalism deserves to be consid-
ered. In particular, the quantization of the nonprojectable
case is a delicate issue since it is a theory with second-class
constraints. The analogous of the Hamiltonian constraint of
general relativity acquires a second-class behavior in the
nonprojectable Horava theory, which can be related to the
reduction of the gauge symmetry. The Hamiltonian for-
malism provides a natural framework for the quantization
of theories with second-class constraints. Indeed, the
contribution to the measure of these constraints is defined
in the phase space [25]. Analyses on the Hamiltonian
formulation and the dynamics of the degrees of freedom of
the Horava theory can be found in Refs. [26-31].

The nonlocal gauge-fixing conditions introduced in the
projectable case are noncanonical gauges, in the sense that
they involve a Lagrange multiplier. If one wants to use this
kind of gauges in the Hamiltonian formalism, then an
extension of the phase space is required. Motivated by this,
two of us presented the Batalin-Fradkin-Vilkovisky (BFV)
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quantization of the 2 + 1 nonprojectable Horava theory in
Ref. [32]. The BFV formalism provides a quite general
framework for quantization of systems with constraints,
with the particularity that first-class constraints are not
imposed explicitly and their Lagrange multipliers are
promoted to be part of the canonical variables. The BFV
formalism was first presented in Ref. [33] as a way to
introduce noncanonical gauge-fixing conditions in the
Hamiltonian formalism. This extension allows us to intro-
duce relativistic gauges in the phase space, which is a way
to establish the unitarity of relativistic gauge theories. The
formalism was extended in Ref. [34] to the case of systems
with fermionic constraints, together with establishing an
essential connection with the BRST symmetry. In Ref. [35],
the BFV quantization was extended to the case of systems
with (bosonic and fermionic) second-class constraints, and
for the general case when the Hamiltonian and the BRST
charge have expansions of certain order on the ghosts
fields. In Ref. [36] the formalism was applied to general
relativity. In the general BFV scheme of quantization, the
gauge symmetry is fixed by the choice of a fermionic
function, and the resulting gauge-fixed path integral enjoys
a BRST symmetry operating on the canonical variables, as
we commented.

Since the quantization of the Hofava theory has been
focused in the Lagrangian and the Hamiltonian BFV
formalisms, a natural question is to ask whether both
approaches are equivalent. Indeed, in Ref. [2] it is indicated
that the introduction of an extra variable, that can be
interpreted as the conjugate momentum of the shift vector,
eliminates the nonlocality of the final Lagrangian. This
suggests that we perform a complete Hamiltonian analysis
of the quantum theory. In this paper we undertake this
problem, with interest in connecting with the gauge-fixing
conditions known from the renormalization of the project-
able case [2]. We study the BFV quantization of the 2 + 1
projectable and 3 4 1 nonprojectable versions of the
Horava theory. We emphasize that this provides a consis-
tent quantization in the sense that it is based on a canonical
phase space that admits the gauges of interest. This is
particularly critical for the nonprojectable case. After we
present the BFV quantization, we get the quantum
Lagrangian for each case by means of integration on the
canonical momenta, including the ghosts. To achieve this,
we specialize the form of the gauge-fixing condition, by
specifying its functional dependence on the momenta (it
depends on a particular momentum). This leads us to
introduce operators that, after the integration, yield the
nonlocalities on the quantum Lagrangian. In the case of the
projectable theory we arrive at the same quantum
Lagrangian defined in Ref. [2]. In the nonprojectable case
we obtain the quantum Lagrangian of the theory where the
second-class constraints have been taken into account. In
this way the quantum Lagrangian of the nonprojectable
case is consistent. We compare the same method of

integration in general relativity, whose BFV quantization
was presented in Ref. [36], noticing that the relativity leads
to a local quantum Lagrangian.

This paper is organized as follows. In Sec. II we present
the BFV quantization of the projectable theory and the
integration to obtain the quantum Lagrangian. We first
develop the formalism for a Horava theory defined in a
general spatial dimension d, and eventually we specialize to
the 2 4 1 case. In Sec. Il we present the same approach
for the 3 4+ 1 nonprojectable case, presenting the BFV
quantization and the quantum Lagrangian. In Sec. IV we
compare with general relativity. Finally, we present some
conclusions.

II. PROJECTABLE HORAVA THEORY

A. Classical theory

The Hotrava theory [1], both in the projectable and
nonprojectable cases, is based on a given foliation that
has an absolute physical meaning. The aim is to get an
anisotropic scaling at the ultraviolet that favor the renor-
malizability of the theory, where a parameter z measures the
degree of anisotropy. To hold this anisotropic scaling, the
dimensions of the space and time are defined to be

(2.1)

The order z is fixed by the criterium of power-counting
renormalizability, which yields z = d, where d is the spatial
dimension of the foliation. The Arnowitt-Deser-Misner
variables N, N’ and g; ; are used to describe the gravitational
dynamics on the foliation. The allowed coordinate trans-
formations on the foliation,

ot = f(1), oxt = {i(t, %), (2.2)
lead to the gauge symmetry of the foliation-preserving
diffeomorphisms,

SN = C*OuN + FN + IN, (2.3)
SN; = LN, + Nk + E gy + [N, + N, (2.4)
0gij = Ckakgij + 2gk(iaj)€k + 19 (2.5)

(strictly, the spatial diffeomorphisms are the gauge trans-
formations). The condition that defines the projectable
version is that the lapse function is restricted to be a
function only of time, N = N(¢), a condition that is
preserved by the transformation (2.3). In this section we
summarize the canonical formulation of the projectable
case, dealing with an arbitrary number d of spatial
dimensions. The Hamiltonian analysis of the projectable
case, taking the infrared effective action, was done in
Ref. [26]. Further analyses, with different boundary
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conditions, can be found in Ref. [28]. The quantization of
the same model under the scheme of loop quantum gravity
has been studied in Ref. [19].

The Lagrangian of the projectable theory is given by

where the extrinsic curvature is defined by
1.
Kij = ﬁ (gij - 2v(iNj)) (2'7)

and V[g;;], called the potential, is built from invariants of
the spatial curvature and their derivatives, up to the
order 2z.

In the Hamiltonian formulation the canonical pair is
(gj.7), whereas N(r) and N'(z,X) enter as Lagrange
multipliers. Since N(7) is a function only of time, there is an
associated global constraint, given in terms of a spatial
integral. This constraint is

1 . A
d = = U .. 2 )
/dxH 0, H \/Z](n nl]+—1_dﬂn>+\/§v
(2.8)

Throughout this paper we assume that A does not take the
critical value 4 = 1/d. This global constraint does not
eliminate a complete functional degree of freedom. The
local constraint of the theory is the momentum constraint,

H,’ - —2Vk7rk,». (29)
The primary Hamiltonian is
Hy = /d"x’Ho = N/ dxH. (2.10)

Since N is a function of time in the projectable theory, we
take advantage of the symmetry of reparameterizing the
time, Eqgs. (2.2) and (2.3), to set N = 1. With this setting the
primary Hamiltonian density is equivalent to H. Due to
their importance in the BFV quantization, and since the
Hamiltonian is equivalent to H, we show the following two
brackets between constraints,

{/ddXEka,/ddyl’[lHl} = /ddleﬁgl’[l, (211)
{/ddxeka,p/ddyH} =0.

In the above p is a test function only of time whereas e* and
5~ are test functions of time and space.

(2.12)

B. BFV quantization
The initial consideration in the BFV formalism is that the
constrained system under quantization must be involutive.
This means that, given a Hamiltonian H, and a set of
functions G,, the following relations are satisfied

{G,.G,} = U, G, (2.13)

{Hy,G,} = V4G, (2.14)
To avoid writing huge expressions, we use a simplification
on the notation of brackets: we insert densities instead of
spatial integrals, such as {A, B} — { [ d’xA, [ d‘yB}. The
first-class constraints are part of the definition of the G,
functions. The other part is given by the canonical momenta
conjugated to the Lagrange multipliers of the first-class
constraints, since these multipliers are promoted to canoni-
cal variables in the BFV extension of the phase space. The
extended phase space is completed with the canonical pair
of fermionic ghosts (4%, P,), where each pair is incorpo-
rated for each function G,.

To apply this formalism to the projectable Horava theory,
we identify the momentum constraint ; as the only first-
class constraint, being the shift vector N’ its Lagrange
multiplier. By denote by #z; the canonical momentum
conjugated to N'. Thus, the functions are G, = (H;, ;).
Since z; commutes with itself and with H;, the algebra
(2.13) reduces to the algebra of H;,

{Hi.H;} = Ui Hy (2.15)
This corresponds to the algebra of spatial diffeomorphisms,
as shown in (2.11), and we take the definition of U f‘j from it.
U¢, = 0 for a, b, ¢ > i. The primary Hamiltonian is iden-
tified in (2.10), hence the bracket (2.14) corresponds to
(2.12), such that V2 = 0. By incorporating the ghost fields,
the full BFV phase space of the projectable Horava theory
is given by the canonical pairs (g;;.7"), (N; '), and
(74, P?). The ghosts can be split in the two sets, (17}, P}),
(7}, P?). The gauge-fixing condition is incorporated in the
path integral by means of a fermionic function ¥, which is a
given functional on the extended phase space. Thus,
the BFV path integral of the projectable Horava theory
is given by

Z:/Dgiani/DNkDﬂkDiy”DPa
X exp [i/dtddx(ﬂ”g}j+7rka+73a’7a—H‘P) . (2.16)

In this formalism the ghosts eliminate the unphysical
quantum degrees of freedom that should be eliminated
by the first-class constraints. Indeed, in d spatial dimen-
sions the canonical pairs (g;;,z"), (N;,#') amount for
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d(d + 3) degrees of freedom, and the ghosts (7}, P!),
(ny,P?) sum 4d degrees. After subtracting, one gets
d(d — 1) physical degrees of freedom in the phase space
of the quantum theory. In d = 2 this yield 2 degrees of
freedom, which represent the scalar mode of the 2 + 1
projectable theory in canonical variables. In d = 3 the
degrees of freedom are six, which are the two tensorial
modes plus the extra scalar mode. Since the Horava theory
has anisotropic scaling, it is important to write down the
dimensions of the several fields. This is

[91’;’]20’ [”ij}:dzz’

[N =z-1, 7] =1+d-z=1,

i) =[P?]=(d-2)/2=0, [n]=[Pl]=(d+2)/2=z.
(2.17)

In the general BFV formalism, the gauge-fixed quantum
Hamiltonian is defined by

The Poisson bracket is extended to include fermionic
variables,

Sf"A "B
oq" op”

6R B&"A

A,B} = :
{A, B} " q o

— (=1)man (2.19)
where R and L denote right and left derivatives and n, is O or
1 depending on whether A is a boson or a fermion. Q is the
generator of the BRST symmetry. According to the exten-
sion of the BFV formalism presented in Ref. [35], Q and H;
are defined in terms of expansions in the ghost fields,

Q=G+ Py.. P, Q" (220)
k=1
Hi=Ho+ S Py Py HOw ™, (221)

k=1

where s represents the rank of theory. The coefficient
functions of the first order in P, are given by

Q4 :——chn ne,

> Hi = Vi

(2.22)
The rest of coefficients, up to the order s of the theory, are
obtained by recurrence relations, starting from the first-order
ones [35]. An essential condition of the BFV formalism is
that Q and H; must satisfy

{Q,Q} =0, {H,,Q} =0. (2.23)
The first one is a nontrivial condition since Q is a fermionic
variables. These conditions support the BRST symmetry of
the quantum theory.

The projectable Horava theory is of first order, that is, Q
ends at the first order in the ghosts, whereas H is of zeroth
order,

11771’717Dk7
(2.24)

1 1
Q= Gun® =5 Ugpnn"Pe = it + mens =5

The conditions (2.23) are satisfied as follows. We have the
bracket of Q with itself,

{Q.Q} = {Hm’i CHnl} = (M Ui Pl

+7 {U nim Pl Ubun i P} (2.26)
The first two brackets are equal,
{Hn, Hyn|} = {Hin}, bt PLY = UlninH,
(2.27)

hence cancel themselves. The last bracket is proportional to
the structure '} Uk U!,,, which is zero by the Jacobi
identity. Therefore {Q, Q} 0. Next,

where the last equality follows from (2.12)." Therefore, we
obtain the BFV gauge-fixed Hamiltonian of the projectable
Hortava theory,

Hy = H + {¥, Hyy + s — 2 u’ll’llpk} (2.29)

According to the original BFV formulation, ¥ can adopt
a form suitable for relativistic gauges. It turns out that this
form is also suitable for the anisotropic symmetry of the
Horava theory. First, we deal with gauge-fixing conditions
of the general structure
O =N+, =0, (2.30)
where the phase-space functional y is the part of the gauge-
fixing condition that can be chosen. Thus, the specific BFV
fermionic gauge-fixing function is

¥ =PIN + Py (2.31)

With this choice the gauge-fixed Hamiltonian becomes

'Recalling that we mean spatial integrals inside the brackets.
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Hy = H + HN* + Pink

—PHN/Om, + N'om]) + {Pi. Q). (2.32)
Throughout this paper we assume that the gauge-fixing
condition y’ does not depend on the ghosts fields, then the
Hamiltonian takes the form

H = H + HN + Plas — PNy + Nidyr])

. oy’
+ gt + P M + P %né- (2.33)
Therefore, the BFV path integral for the projectable Horava

theory in the gauge (2.30)—(2.31) becomes

Z= /DgijDﬂijDNszran’iDP}D%DP% exp [i / dtd?x <fcijg}j + 7 NF 4+ Pligh 4 P2, — H — HN*

o o , Sy
—Purts + PLNIOm| + N'Omy) = m* = Py, Hikny = Pr lﬂéﬂ :

The generator of the BRST symmetry Q acts on the

canonical fields by means of the canonical transformation

=9+ {0.Qle (2.35)

where ¢ is the fermionic parameter of the transformation.
The transformation of the fields is

800i; =20V ke, Sqn'l = —2ﬂk(ivk’7]1)€+ Vi(z'int)e,
5QNk:7]]2€€, 59”1{:07
Sani =—1 Ui-kn{n’fe, SqP! =H;e— U’-‘jn{ Ple,

J i
5971]2( =0, 5QIP% =Ti€.

C. Quantum Lagrangian

We continue with working on an arbitrary spatial
dimensionality d, eventually we specialize to the d = 2
case. For the BFV quantization we have defined the
structure of the gauge-fixing condition (2.30), which has
the part y' unspecified. To arrive at the quantum
Lagrangian, we impose conditions on the functional form
of y' that allow us to perform the integration on the several
canonical momenta. These conditions allow us to make a
connection with the same gauge fixing used in the proof of
renormalizability of the projectable theory.

We start with the integration on the momentum z;. The
term —m.* in the action of (2.34) suggests to demand that
x' has alinear dependence on r;, leading to a quadratic term
in z; in the Hamiltonian, otherwise a higher order depend-
ence on this variable could lead to a violation of unitarity,
|

N (2.34)

|
which is contradiction to the spirit of the Hotava theory and
its anisotropic symmetry. Therefore, we assume the struc-
ture of the gauge-fixing condition
xF =Dk +THg,;, N, (2.36)

where I'* is a functional that may depend only on g; ; and
N*. The restriction that T* does not depend on the
momentum 7/ allows us to perform the integration
straightforwardly. According to the anisotropic dimen-
sional assignments (2.17), the gauge-fixing condition must
satisfy [y*] = 2z — 1, hence the dimension of the operator
D must be

(D] =37-d-2=27-2. (2.37)
Below we give explicitly the operator ¥/ and the gauge-
fixing form I'? in the perturbative framework. Nevertheless,
many operations can be carried out without recurring to
perturbations and for general I''. Hence we stay for a while
on nonperturbative variables, using only the fact that D% is
a flat operator (does not depend on any field variable).

By setting the form (2.36) for the gauge-fixing condition,
the last three terms of the action of Eq. (2.34) become

. . oIt
—m DN — mI* — PHI, Hyynk — P? Wﬂlz (2.38)

We may complete the square involving z; and then
integrate on the shifted variable, obtaining the path integral

4

i, . 1 . .
zZ= / Dy, Dl DN*Dy*DP,, exp [i / dtd’x (ﬂ’fg',-j + Pt + — (N =TO)DH (N = T') — H — HN*

. . . . . oI
—Purs + PL(N'On| + N'9mp) — PHU, Hy b — P%wﬂé)} .

(2.39)
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Since D% is a local operator, its inverse ‘é);ll, which has
arisen by the integration, is a nonlocal operator.

Now we move to the ghost sector. The following change
of notation is useful for the final the quantum Lagrangian:

Pll i 75,',

n = C',
;13 - P, (2.40)
We may perform the integration of the Grassmann variables

P’ and P;, which arise in the action (2.39) in the terms
|

Py PE+ Py (CF = N9, CF = N*9,;CT) +P* <ék+ Ci%> .

(2.41)

The bilinear —P,P* can be completed, such that the
Gaussian integration on these Grassmann variables can
be performed (without consequences on the measure).
After these steps of integration, the path integral becomes

. _ . . 1 . .
zZ= / Dy, /DxliDN*DC;DC' exp [i / dtd’x (;zw iy + 3 (N =TOD (N = T') — H — H, N

. ‘ VS
+(C* = N7 9;C* — N*0,;C) <Ck +C; %) - c,-{r’,Hk}ckﬂ.

Now we focus the integration on z%/. A significant part of
the computations can be continued on nonperturbative
grounds. Since this is interesting on its own, in
Appendix A we show this nonperturbative integration for
the case of the projectable theory. In what follows we adopt
a perturbative approach. We consider perturbations around
the analogous of the Minkowski spacetime, given by
gij =6, 71 =0,N=0,C;,=C =0.

We comment that for the d = 2-dimensional case we
take the operator DV as

.. 5," K 818
DI = 5”A + Ka,@j, @al = K] - 1 T AZJ s (243)

where x is an arbitrary constant. The inverse Q)l‘]l is a
nonlocal operator of dimension —2 in d = 2. The operator
fé)i‘jl (2.43) was introduced in the gauge-fixing condition
used in Ref. [2], with the aim of introducing the nonlocality
that finally leads to regular propagators. This version of the
operator DV for the d = 2 case arises in several steps of the
integration for arbitrary dimension d, with a fixed value of

k. For this reason we denote these special cases as

ij 1+4
D = 5,4+ l—fﬂa,.aj, (2.45)
DY = 5,A + (1 -22)9,0;. (2.46)
The inverse of 23'2’ is also required,
oij 1+20,0;
-1 Yy t
Dy = ATy A (2.47)

(2.42)

[

Note that the operator i‘)’zj cannot be extended to the
relativistic limit 4 = 1.
We denote the perturbative variables

9ij — 6ij = hyjs 7'l = p, N =n', (2.48)
and the ghosts C;, C' are considered perturbative variables
of first order. The quantum action given in (2.42), expanded

up to quadratic order, results

1
S—/dtddx{p”hij+Z(hk—Fk)§);1(hl—F’) —H—n*H,

o <c‘:k+é,g;> —Ci{Fi,Hk}Ck}, (2.49)
where

H; = —20,pM - zak(hijpki) + pklajhkh (2.50)

H=plph+—p2 N2 (2.51)

1-di
We perform the transverse-longitudinal decomposition

9,9,
lAf> W'+ 9y, (2.52)

1
_ 1, TT
hij=hij +5— (5:'/ -

and similarly for p”. In d = 2 dimensions the 77 mode
must be absent from this decomposition. Thus, the action
(2.49) becomes
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1
d-1

S = / dtd’x [p;!Th,T,T -

1-4

ij

A
>pThT —Eplﬁ)ljhj +

1. 1.
1 ("k - Fk)skﬂ”l - rl)

24

. 1 . .
. _ T\2 . ) . . J
PrrPrr (d—l)(l—dﬂ) (p ) +2p <511A+ <1+1_dﬂ)azaj>p

24

. T . - _ ol _ .
——pTaipl + n’@l/p/ - \/EV +C* (Ck + C; F) - C,-{F’,Hk}c"} .
n

1-di

i

(2.53)

Note that the (p”)? term disappears in the relativistic limit 4 = 1, hence we assume that A does not take this value. By

integrating p;jT and p7, the action takes the form?

1—-di
4(1=4)(d-1)
1 . i o _ oIt
—l—zp’@sz/ —\/§V+Ck<Ck+C,5 X

n

1 1 TT 1 TT
S:/dlddX{4]’lij I’ll] + 4

The last integration is on p’. The square involving this

variable can be completed,
Vi i —1 pkY( i a1y _ L picy-1pi
5@2 (p' + Dy BY) (P! + D3;B') _EB DB/, (2.55)

where

B* =

A T kl hl I
0" - <2 ). (2.56)

(7Y 4+~ (it -

) - CI{FI,Hk}C"}.

1'TT'TT
S:/dtddx{zh,/ hlj +

1 s
% —EB"QDQ,{I,B’ +C* (Ck +C;

So far, the potential V' and the factor IV of the gauge-
fixing condition have been left unspecified, hence all the
above formulas for projectable Horava theory are valid in
any spatial dimension d, except for the fact that in the d = 2
case the hiTjT mode must be dropped from all expressions.
Now, to continue on obtaining the quantum Lagrangian, we
specialize to the d = 2 case, specifying the potential and
the gauge-fixing condition completely. The potential of the
d = 2 projectable Horava theory, up to second order in
perturbations, becomes

VGV = iy /gR: = u(ARTY2. (2.59)

A_2N0te that, since we are assuming that I'* does not depend on
pY, the last term in (2.53) does not depend on this momentum.

(1-d2)
A(1-2)(d—1)

. P 20
k)@;ll (l’ll - Fl) + 7p’6ihT + p’@lj <—2l’lj + I’l'l)

1-4

(2.54)

1 1. . 1. 1
= BEDB! = — S D by - 2y D — ! D

ye . 1 . . .
+ ) (h")? + 5zhka,{hT — Ankoh" .

(2.57)
After the Gaussian integration, the action (2.54) becomes

()2 4 (i~ ) D) i~ 1)

or

%> —C,-{rf,Hk}ck}. (2.58)

The operator DV is defined in (2.43). For the factor I we
take the form introduced in Ref. [2], which was obtained by
considering the anisotropic scaling of the variables of the
Horava theory,

Fk = ZCIAE)lhkl + 2c2A8kh + c30k8i8jh (260)

ijs
where ¢, c¢,, c3 are constants. In the transverse—longi-
tudinal decomposition it takes the form

Fk = ClAzhk + yA@k(?lhl + 2C2AakhT, (261)

where y = ¢| + 2¢, + ¢3. Now we may write explicitly
several elements of the action (2.58) for the d = 2 case. We
have the terms that involve the time derivative of the shift
vector,
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1
(nF =THD (a! -T) = —nlﬁbk[ ne— En Ke1 (8 — px00;) + pydi0;)hy — penk O, hT

ENJ

1
+ th (16U A? + (2¢1y + 72 = pi(y + ¢1)?) D20, D) hy + pea(y + ¢ ) A2OhT — pcshT APRT,

(2.62)
where p = (1 + «)~!. In the ghost sector we have the bracket
/ PxCAT HYCF = =2 / PxC (e, 64A% + yAD,,) T, (2.63)
The action in 2 4+ 1 dimensions takes the form
S = / dtdzx{ 1 4 (h")2 = (u+ pc2)hT AKT + %h’i),:,' n* + %hkakiﬂ - %h,@’g%k + pea(y + ¢ A%0hT
- %”li‘)glnk + (A= pey)in* Oph” — %flk[(l +c1)duA + (1 =24+ p(y — key)) 004y
+ %hk[c%5k1A3 + ey + 77 = pr(y + ¢1)?) A0, +CHCy +2CH (6402 + }’Aakal)éz}- (2.64)

We notice the presence of odd derivatives in time or space in (2.64), which are also the terms that mix n’ and the components
of h; j.3 We see that these odd terms cancel if we set’

c; = -1, ¢y = A1 +x), c3 = —2k. (2.65)

By adjusting these constants, the final quantum path integral of the projectable 2 4+ 1 Horava theory, written in Lagrangian
variables and at second order in perturbations, is

: o 1
= / DhTDhI DhtDn'TDnDC;DC'exp {i / dtd*x {hT (—Z(l—/1)8,2—(M+(1+K)/12)A2> nt

+ CH=0? =25,,02 +2(2(A—1)(1 +k) + 1)Aa,{a,} Cl—%nkT(A"8%+2A)nkT+nL (4(11“) oF+(1 —/I)A2> nt

</182 2A(4 —1)(1+K)A2>hL+8hT(A82+2A3)hkT hL<4(1 —2)0? + (/1—1)2(1+K)A2>h1“], (2.66)

where we have also decomposed the vectors,

n' = n'l +9'nt, on'T =0,
l’li = I’ll‘T + 8iA_th, 8il’liT == 0 (267)

The quantum Lagrangian of Eq. (2.66) coincides with the one presented in Ref. [2]. Those authors used a Faddeev-Popov
procedure for fixing the gauge, hence they get the usual parameter ¢ associated to the averaging on the gauge-fixing
condition. To match exactly both Lagrangians, we must set ¢ = 1/4. At the end, the nonlocality only affects the time-
derivative of the shift vector (and all propagators are regular [2]).

Finally, we make a comment on the cubic order in perturbations in the ghost sector. We take the ghost sector of the action
given in (2.42). Its expansion up to cubic order, imposing the gauge (2.60), is

3 Actually, the odd derivatives are only in time. We see this explicitly in the 3 + 1 nonprojectable case, where we present the analogous
formulas Egs. (3.31) and (3.34), written with the decomposmon on the vectors fields.
“This identification is equivalent to the one used in Ref. [2] for the Lagrangian theory.
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Syp = / dtdx{CKCy + C1,Chn — C*0,Cyni — C,C1Onk + C[—5,;A2

+(22 = 14 2k(A = 1))A8:0;]C; = ADC/(OCThy; + O,Cihy; + CIO;hM)

+ﬂ(1 + K)AaiCi(Zalehlk + 8thk) - K8k818jCj(26kCihl,~ + 8ihk1Ci)}.

This is equal to the cubic order in the ghost sector of
Ref. [2], except for an additional term we find, which is

—Ckaiékni.

III. 3+1 NONPROJECTABLE THEORY
A. Classical theory

In the nonprojectable theory the lapse function N is
allowed to depend on time and space, hence it represents a
complete functional degree of freedom. In this case a large
class of terms that depend on the vector a; = 0;In N arise
in the Lagrangian [37]. We focus the nonprojectable theory
in 3 + 1 dimensions. The Lagrangian has the general form
shown in (2.6), but eliminating the restriction of project-
ability on N. The criterium of power-counting renormaliz-
ability requires us to include a term of order z = 3in 3 + 1
dimensions. The total Lagrangian, containing the z = 1, 2,
3 orders has many terms. In this analysis we take for the
potential only the z =3 terms that contribute to the
propagators, which are the dominant terms in the propa-
gators in the ultraviolet regime. They are [9]

VY = —a;V?RV,a' — a,V?a;V?al
- B ViR V'RI* — B,V,RV'R, (3.1)
where a3, ay4, 3, B4 are coupling constants.

In the nonprojectable theory the lapse function N and its
conjugate momentum P are part of the canonical variables.
There is no time derivative of N in the Lagrangian, hence

0,=Py=0 (3.2)
is a constraint of the theory. The classical Hamiltonian,
obtained by a Legendre transformation, is

T YR
Hy= | & N Yy Z T 4y 3.3
0 / W(gﬂ—szf (33)
The rest of constraints are the momentum constraint,
H; = —2V¥x;, and the constraint

N . A
0, :ﬁ (ﬂ”ﬂij +1—f$lﬂ2> +VINV—a3/gV(NV?R)

20, /G(VIVA(NV2a;)) =0. (3.4)

In the definition of the phase space, the main qualitative
difference between the projectable and nonprojectable cases

(2.68)

[

is the activation of the lapse function as a degree of freedom
and the arising of the constraint 8, (3.4) in the side of the
nonprojectable theory. The last two terms of the constraint 8,
are total derivatives of sixth order, hence the integral of 6, is
equal to the primary Hamiltonian (3.3),

HOZ/d3x92.

Actually, when the z = 1 terms are included in the potential,
there is a boundary contribution remaining from the integral
of 6,. Moreover, a term proportional to the so called
Arnowitt-Deser-Misner energy is required for the differ-
entiability of one of the z = 1 terms. Therefore, the general
statement is that the primary Hamiltonian of the 3 + 1
nonprojectable Horava theory can be written as the integral
of 6, plus boundary terms. Since in this analysis we focus on
the z = 3 terms, we can discard these boundary terms.

(3.5)

B. BFV quantization

Since the nonprojectable theory has second-class con-
straints, the definitions of the BFV quantization must be
adapted, according to Ref. [35]. The involution is defined in
terms of Dirac brackets,

{Ga’ Gb}D = UZbGC’ {HOv Ga}D = VZGb, (36)
where Dirac brackets are defined by
{F.R}p={F.R} = {F.0,}M33{05.R}. Myp={04.05}.

(3.7)

The implementation of the BFV quantization of the 3 + 1
case is parallel to the 2 + 1 case shown in Ref. [32]. Here we
present the summary. The matrix of Poisson brackets of the
second-class constraints has a triangular form,

= (Lo o)

Since the primary Hamiltonian H,, is equivalent to the
second-class constraint 6,, its Dirac bracket is zero with any
quantity, hence V2 = 0. The Dirac bracket of the momentum
constraint H; with itself is equivalent to its Poisson bracket,

(3.8)

{Hi(x). H;(0)}p = {H:(x). H;(3)}. - (3.9)
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This leads to the algebra of spatial diffeomorphisms, as in the
projectable case, hence the coefficients U fj are the same, and
Ué, =0fora,b,c>i

We perform the BFV extension of the phase space in a
similar way to the projectable case. The Lagrange multi-
pliers form a new canonical pair (N’, z;). The ghosts are the
canonical pairs (7%, P,). Thus, the full phase space is given
by the pairs (g;;, 7"), (N, Py), (N;,z') and (n,, P*). The
BFV path integral of the nonprojectable Horava theory is

given by
_ / DVS(0,)5(60,)e,

where the measure and the action are given by

(3.10)

DV = Dy, Dr'/DNDPyDN*Dr, Dp*DP,, x Vdet M,
(3.11)

S= / dtdx (7' g;j+ PyN +mN* + P = Hy).  (3.12)

Unlike the projectable case, in this case the second-class
constraints must be imposed explicitly. By comparing the
quantum degrees of freedom with the projectable case, here
we see that the canonical pair (N, Py) has been added to
the phase space, but at the same time the imposition of the
two second-class constraints 6, 6, compensates the pair
(N, Py). Hence the balance is the same of the projectable
case: there are d(d — 1) physical degrees of freedom in the
quantum phase space. In the 3 + 1 foliation, they are the
two tensorial modes and the extra scalar mode.

The BRST charge Q and H; take the same definition of
Egs. (2.20) and (2.21). The quantum gauge-fixed
Hamiltonian is

Hy = H; +{¥,Q}). (3.13)
The nonprojectable Horava theory is a theory of rank one,
then

Q=G _EU‘”’” n"P, = Hkm+7rk112—§U,,mf717?k,

(3.14)
|

0(x).05(3)} =22 5xy+2\/_{

. Se .
+V, V2 (NVQV’ <W)> -~V (NVza’)} }

H, = Hy. (3.15)

In the case of the second-class constraints the consistency
conditions for the BFV quantization are

{Q.Q}, =0, {H,.Q},=0.  (3.16)

The first condition holds following the same steps of the
projectable case, but operating with Dirac brackets in this
case. The second condition holds because H; = H,, and
this is equivalent to a second-class constraint, hence its
Dirac bracket is always zero. The gauge-fixed quantum
Hamiltonian takes the form

1
Hy = Hy + {‘P,Hkn’f + mns — 3 117717717)1{} . (3.17)

As we did in the projectable case, we can adopt the form
of the gauge-fixing condition used in the general BFV
formalism, originally introduced for relativistic theories.
Thus, the gauge-fixing condition @' = 0 and the associated
fermionic function ¥ take the forms given in (2.30) and
(2.31), respectively. The Hamiltonian takes the form

Hy =Ho+HN + Pk —PHNIOn +N'0jm)) + mir*

P2 &'

+ P Hi bk + P léN,nz

(3.18)

Due to the form (3.8), the measure of the second-class
constraints simplifies to v/detM = det{6,, 8, }. Thus, this
measure can be incorporated to the Lagrangian by means of
the ghosts fields &, ¢,

det{6,,0,} = / DeDeexp (z’ / dtd3xé{91,92}s>. (3.19)

Taking the definition of 6, given in (3.4), the bracket
{6,,0,} results

. . Oy
Vi(V.8,,V2R—5,,a;V?R) +a [V,-Vz(éxyvza’)—NVza’VZVi(%>

(3.20)
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where 6§, = 5(x' —y'). Once we have obtained this bracket, we may integrate the variable Py without further
consequences, since it vanishes due to the constraint ; = 0. The constraint 6, can be incorporated to the Lagrangian
by means of a Lagrange multiplier, which we denote by & Thus, the BFV path integral of the nonprojectable Horava theory
in 3 + 1 dimensions takes the form

Zy= / Dy; /D' DNDN*Dr; Dy DP! Dyl DP? DEDeDeexp [i / dtd®x <an' Gij +m N + P+ Pl —Ho— HuN* = Pins
L o . Sy’ _
+PHNIOm, +NO ) —mp* =PHx iy —P%W’?lﬁ'f@z +8{91’92}€)] : (3.21)

C. Quantum Lagrangian

By adapting the discussion done in Sec. I about the structure of the gauge-fixing condition to the nonprojectable case,
we set

){iZQijﬂj‘i‘ri[gij,N,Ni]. (322)

The Gaussian integration on z; leads to the path integral

Zy = / Dy, Dr'/DNDN* Dy DP} Dy, DP? DEDEDe exp [i / dtd*x <nu gij + P + Py + 1 (N =T D (N =TT)

) ) . , . K
—Ho = HyNK = Pinh + PHNIO iy + N0 ) )= PHI Hy bk — P? 5N nh + £0, + {0, 92}49)} . (3.23)

The next integration we perform is over the BFV ghosts that are canonical momenta. We perform the same change of
notation (2.40). For the terms of the action that depend on P* and P, it is possible to carry out the integration after
completing the bilinear in these variables, as in (2.41). The action of the ghost sector results

i

. . = _ or _ .
Sehost = /dzd-”x{(ck - N/9;Ck — N*9,CV) <Ck + C; W) - C AT, Hk}Dck}. (3.24)

Now we adopt the perturbative variables defined in (2.48), adding N — 1 = n. For the d = 3 nonprojectable theory we
take [2]

. Oj Kk 0,0;
ij — 2 -1 ij iYj
@J 61]A + K'Aaiaj, @U =2 1 P 3 - (325)

The momentum constraint H; is given in (2.50), and the Hamiltonian density H, takes the form

N A B
HO = pUp’/ + 1_—3/1[72 - a3nA2(8,»8jh,-j - Ah) + a4l’lA37l + </73 +,B4> hkjajakanalAhnl
+ (f + /34> (hA3h — 2h0,0,A%h ;) + % (hyA3hy; — 20y 0,0,A2h,,). (3.26)

Therefore, the path integral becomes

y ) 1
Z= / Dh;Dp'iDnDn*DC;DCDeDeDE exp [i / dtd3x <p’/hl- j = Mo = ntHy+ 7 (k= THD (2! =)

i

. 0 _or _ .
+80, + #{0,.0,}e + C* (Ck + ¢ 5nk> —C AT, Hk}DC">] . (3.27)

We make the decomposition (2.52) on the fields. The second class constraint 6, and the measure of the second-class
constraints, given by the bracket (3.20), contribute to the perturbative action with the following terms, respectively,
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592 = §(G3A3hT + 2(X4A3I’l), 2{91,02}8 == —204(_5'A38, (328)

where the Lagrange multiplier £ is regarded as a perturbative variable. After these steps, the Gaussian integration on piTjT and
pT can be done by completing squares (assuming again A # 1). This yields the action

1-34) 1 T R 1.
3 hTThTT ( hT 2 _rz VA i _hT LNkl ——h k
/dtd { 8(1_1)( )P (0 =T)D () =)+ plOh" + p' DY =S+

T 3
+3 p'gg Pl —aanA3hT — aunA3n— b5 AR~ <% + ﬂ4) RTA3RT + ayEA3RT + 2a,E0%n

ce(E e o Flac 2a,EA e (3.29)
k l5l’lk léh 4 .
where the operators Q)'ij and i‘)’zj are the same of the d = 2 case defined in (2.44) and (2.45). The last integration is on p’. We

integrate in a similar way to how it was done in the projectable case, obtaining

1-32 1. o
/dtd3 { hTThTT—s—é(l /1; (h")? + +4 (A =)D (A — 1) = b AR - (ﬁ3 Ba )hTA3hT—a3nA3hT
A3 AW 4 2a,enn — Lpimstpl ¢k (E 420 Zoe AP TP 3.30
—aun n+a3§ + a4§ l’l—— 2l + k+ i% - [5]1 i — L0 € Er, ( . )
ij

where B' is defined in Eq. (2.56). Finally, we make the decomposition on the vector variables shown in (2.67). In particular,

1 . . 22 A 1..
——B®; B = ——— WTO?hT +ZhT02ht — — T ART — ARl ART
252 T M A S B
sL AL 1 TR2ALT 1 iT A ,iT (1_}“) LA2pL LA2,L
+(1 —A)n Ah +§hi a,Ah,. —En’ An' _Th Ozh +(1 —/I)n A n*. (3.31)

Now we defined the factor I of the gauge-fixing condition, adopting the analysis of Ref. [2]. Those authors found that
the appropriate gauge fixing condition in d = 3, preserving the anisotropy of the Horava theory, is given by

= 2C1A28 I’l + 2C2A28 h + C3Aa (9 8k k- (332)

The notation on the constants ¢ , 3 has been put intentionally equal to the projectable case (2.60). In terms of the transverse-
longitudinal decomposition (2.52), this is

Fi = C1A3hi + 2C2AzaihT + )/A25',5]h] (333)

We have the expansion of the term,

[

1 1 1 1 .
4 ZT A2 an — an[‘ Zl’lL - ECII;lZTAth + pCzi:lLAl’lT

1 1
+puvnl ARt + A AR AT — p3hT ASKT — pe,uhT A3hE — ZpuzhLA3hL, (3.34)

L il =)D (i~ ) =

with v = 2¢; 4+ 2¢, + ¢3. As in the projectable case, the terms with a odd time derivative in (3.31) and (3.34) can be
canceled by an appropriate setting of the constants ¢, ; 3, which coincides with (2.65) since the notation on these constants is
the same. With this choice, the final path integral in the Lagrangian formalism of the 3 + 1 nonprojectable Hotava theory,
with the z = 3 potential, results
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zZ= / DhII DR Dh! Dh*DnDni” DnDCT DCT DCDC DEDeDe

exp {i / dtd%{@,{(a% +2A3)CF — CLIO?A + 4(1 = 2)(1 + k) A% CE

1 1-
= ST (9% + B AL — T {T

1
+gh (A +28)h] -

4"
A
2

In the set of propagators derived from this action, shown
in Appendix B, almost all of them are regular. The
nonregular ones arise when the variables associated to
the second-class constraints, £ and &, €, are involved. This
confirms that the nonlocal Lagrangian (3.35) leads to
regular propagators for the original field variables, in-
cluding the ghosts associated to the gauge fixing [2], but
the presence of nonregular propagators persists, associ-
ated to the fact that the theory has second-class con-
straints, unlike the projectable case.

IV. COMPARISON WITH GENERAL RELATIVITY

As it is well known, the classical canonical action of
general relativity written in ADM variables is

S = /dl‘d3x(g,~j7tij - NH - Nka). (41)
The constraints are given by
H; = —2VFrry,, (4.2)
S T
=—\#m—5m .
\/§ J

and both constraints are of first class. N and N’ play the role
of Lagrange multipliers. We denote them collectively by
H, = (H,H;), and N* = (N, N").

For the BFV quantization [36] we introduce the canoni-
cal pair (N% x,), hence we have the functions
G4 = (H,, 7,). For each of these functions we define
the pair of fermionic ghosts (174, P*), which can be split as
(n$,PL), (n§,P2). The involution relations {G,, G} =
US3G lead to the algebra of spacetime diffeomorphisms.
There is an essential qualitative difference with the Horava
theory, since in general relativity the coefficients U¢,
depend on the canonical fields. This fact has important

2'18,2+(

AhL[c’)? +4(1=2)(1 + x)A3]At

%Hﬁ +A2(1+ K)>A3:| T

9? 1 9?
(A2+2A>n”+4 (Al +4(1-2)(1 +;<)A2)nL

+=hT(0? +4(1 = 2)(1 + k) AR — a3nA3hT — aunA3n+azEASRT + 204E0°n — 2a4§A3£H . (3.35)

consequences in the BFV quantization [33,36]. The gauge-
fixed BFV path integral takes the form

= /DgljDﬂljDNaDﬂaDﬂADPA
exp [i/dtd3x(gij7rif + 7, N+ Pai* = Hy)|. (4.4)

In the 3 + 1-dimensional spacetime the two canonical pairs
(g:j.7), (N*, z%) sum 20 degrees of freedom. The ghosts
(n$,PL), (n,P2) sum 16 degrees. The substraction yields
the usual four physical degrees of freedom in the phase
space of quantum general relativity. The BRST charge
takes the form

Q= Gun* = Hnf + wans — 2 UsniniPL. (45)

The gauge-fixed quantum Hamiltonian is defined by
Eq. (2.18), with H; = 0. The appropriate form of the
gauge-fixing fermionic function is given in (2.31), which,
considering the four spacetime directions, takes the form
¥ = PN + P2y Thus, the gauge-fixed Hamiltonian
results

Hy=NH,+Pns+my® +P2{r Hy b+ P2{x" mp 0l

1
_EPg{Z“,Uﬁd}nlanl—kN“ UZHP}. (4.6)

We proceed to the construction of the quantum
Lagrangian. For the integration on z, we adopt the same
strategy we used in the Horava theory, considering in this
case the four directions of spacetime diffeomorphisms. We
take a gauge-fixing condition in the form

){a = @ahﬂ'b + Fa[gij,N, Nl} (47)
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The isotropic scaling in general relativity is
] =3 [RI=1 [D"]=-2 (4.8)

Therefore, D is nonlocal whereas its inverse D} is a local operator. After the integration on 7, the quantum action takes
the form

s= [ s (gijn’f 43 (V9 D) (N —T) 4 P~ NoH, — Pl

ST |
— Nt U, PL— P2{T, Hy, b — P2 NP ns + 5 Padl, UZC}n’fﬂ%) : (4.9)

The ghost sector is given by

_ _ . 1 - ) _ ol
-P,P*+P, <C" - ECd{Fd, vs.rchce + NdC”UZd> + P (Ca +C, W) (4.10)
By integrating on the corresponding Grassmann variables we get the action
3 . ii ] 2] a —1/n7h b a
S = dtd*x gijﬂf+§(N _F)gab(N - )—N Ha
~a_La o b dcb ; ~ o ¢ b
+(C —ECd{F U4 }CPCe + N°C’UY, Ca—l—CeW - C AT, H, }C" ). (4.11)

We now perform perturbations, obtaining the second-order action

Virr N Lirrjrr 1 7ir ]
S:/dtdSX{_<PiTjT_§hij> + i hij 5P+ S ptApt

1. 1 1
+ p (—aka + (8A + 0,9)) <n/ —3h ,)) g WTOPRET — S HTOhT — nd kT

+= (N =T9)D} (N” = T*) = C,{I'*, H,, } C* + C* <C +C, ﬂ)} : (4.12)

ON“

[NSR

Here we face another qualitative difference with respect to the Hofava gravity. The Lagrangian in (4.12) has no (p”)? term,
unlike the Lagrangian in Eq. (2.53). This is a consequence of the relativistic structure behind the Hamiltonian of
general relativity, which implies the frozen of the scalar mode. Hence, we change the order of integration in this case,
by performing first the integration on the longitudinal component of the momentum p’. This brings the terms to the
Lagrangian

- 1. | :

N[ =

+

Now we perform the integration on p’ and p;jT, obtaining

1. TT;TT 1. T AT 1 1 1 1 1 T
S = / dtd3x <Z hij h‘ij - ghk Ahk —+ ZhSTAht];T — ghTAl’lT — l’lAl’lT — EnkTAnkT + El’lkTAhk

1 . . . _ S - _ ol© 1
-3 ((hT)2 + h"(=8Ant + 4h")) = C {1, H,}C' + C* (ca +C, :W) +5 (i = 9} (r? - rb)>. (4.14)

Therefore, the resulting quantum Lagrangian is completely local as far as the remaining part I'* of the gauge-fixing
condition is local.
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V. CONCLUSIONS

We have seen that the BFV quantization is suitable for
the Horava theory, both in its projectable and nonproject-
able versions, and varying the dimension of the foliation.
This extends the analysis that two of us performed in
Ref. [32]. The BFV formalism provides a rich framework to
study the quantum dynamics of the Horava gravity, in
particular by incorporating the BRST symmetry in terms of
the canonical variables. In the past it has been used to
establish the unitarity of gauge theories, thanks to the
ability of introducing a bigger class of gauge-fixing
conditions in the Hamiltonian formalism [33,36].

We have seen that the BFV version of the projectable
(three-dimensional) theory reproduces the quantum
Lagrangian presented in Ref. [2], which was obtained by
fixing the gauge following the Faddeev-Popov procedure.
Our results reinforces the consistency of the quantization of
the theory. We have performed the integration on momenta
after specifying the dependence that the gauge-fixing
condition has on them. Specifically, we have introduced
a linear dependence on the momentum conjugated to the
shift vector. Guided by a criterium of anisotropic scaling,
we have incorporated an operator that balances the momen-
tum in the gauge-fixing condition. It turns out that, in both
versions of the Horava theory, this operator introduces a
nonlocality in the Lagrangian after the integration. Thus,
we have arrived at the same result obtained in [2] of having
a nonlocal quantum Lagrangian, in our case starting from a
self-consistent Hamiltonian formulation provided by the
BFV formalism. The original Hamiltonian theory is com-
pletely local. In Ref. [2] it was pointed out that the final
nonlocality of the quantum Lagrangian, restricted to the
kinetic term of the shift vector, can be eliminated by
introducing the conjugated momentum of the shift vector.
We have corroborated this in an inverse way, starting from
the complete, self-consistent and local Hamiltonian for-
mulation and ending with the nonlocal Lagrangian. With
the aim of having a further comparison, we have performed
the same procedure in general relativity, taking into account
the relativistic isotropy of its field variables. In this case the
operator introduced in the gauge fixing-condition is non-
local and the quantum Lagrangian resulting after the
integration is local (whenever the dependence of the
gauge-fixing condition on the rest of variables is local).
Thus, we see an interesting relationship between the
anisotropy of the underlying symmetry and the nonlocality
of the quantum Lagrangian. The relationship has been
established on very basic grounds, since it comes from the
integration of the Hamiltonian theory.
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APPENDIX A: NONPERTURBATIVE
INTEGRATION ON ¥

All the dependence that the action given in (2.42) has on
7'/ is contained in the three terms

1 N
ﬂ'l]gl'j - H - Nka == ——gijklﬂ'ljﬂ'kl + 2Kklﬂ.'k1 - \/§V,

V9
(A1)
where
1 A
Giju = 5 (9ixgj1 + 9u9jx) — 1= gz 99k (A2)
1,
Ky = 3 (g =2V Ny (A3)

After completing the square involving 7/ and making the
Gaussian integration, from the terms in (A1) there results

VIGMK i Ky — \/gV = La, (Ad)
where GVM =1 (gikgil + gilg/*) — A g¥!, such that it is the
inverse of G, [1], and L coincides with the classical
Lagrangian (2.6). A factor of (detG)~'/? arises in the

measure after the integration. Therefore, the path integral
takes the form

7= / Dg;;DN*DC,;DC'(det G)~'/?
1 . .
exp [i / dtd?x(Ly + i (N* =T D (N =T

. , NV
+ (C* = N/, Ck - N*0,CY) (Ck + C; 5—N">

—Ci{rtm}ck)]. (AS)

APPENDIX B: PROPAGATORS OF THE
NONPROJECTABLE THEORY

By making Fourier transforms in time and space in the
Lagrangian (3.35), and inverting the resulting operator
between the squared fields, we obtain the propagators of the
nonprojectable theory,
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2(1—2)
ITRITY — p Tpry =277 2RTHTY = 2P
<hlj hlj > s <h h > (1 _31) k <h1 h1> 3
1 22 42
hERL) = P P hThLy = ——__p
Wy =Tt aoaasa e W =gt
2
az(1—-2) T 2053(1 — 4)
=3~ _p, Wy =-"2—_"2p,,
() =i =3 = ama b
2034 o
<nhL>:—7a4(li3/1)P2, (nTn'y = k*Py,  KX(ntnb) = (14 Kk)K*P,,
(CiC) =Ps.  KHCMCM) =Py (ng) = -2Ps,
(£6) =-Ps.  (ge) = —2Ps, (B1)
where
b4
1 — a)2 +ﬁ3k6a
P,=4 w2+M(a (365 + 8B4) — 2a3)k® B
: ag(1=32) 3 o 3 ’
py——* P, = 4
T Wt 2k8° FT @41 =21+ x)kS
1
Ps=—:. B2
3 a4k6 ( )

In (B1) we have written the propagators of h!, n*

, and CF, C* multiplied by k factors since these variables must be

compensated with spatial derivatives in the composition of the original tensor variables. We adopt the definition of regular
propagators given in Ref. [2], which is based on the analysis of renormalizability of Lorentz-violating gauge theories of
Refs. [20-22]. Py, P,, P53, and P, are regular, but Ps is not regular.5 Thus, the nonregularity is located on the variables &, g, &
associated to the second-class constraints.

5Actually, to hold the regularity of Py, P,, P5, and P, several conditions on the constants must be imposed, since the coefficients of @
and k® must be positive (after a Wick rotation) and unwanted ghosts should be avoided. The number of independent constants is enough

to have nonempty sets where these conditions holds.
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