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We explore memory effects for novel Kundt wave spacetimes in the recently proposed Eddington-inspired
Born-Infeld (EiBI) theory of gravity. First, we construct new, exact Kundt wave geometries in this theory for
two different matter sources—(i) generic matter designed to satisfy the field equations as well as energy
conditions, and (ii) electromagnetic field. For both sources we find that the EiBI theory parameter κ couples
only with the nonradiative part of the physical metric solution. Thereafter, we solve the geodesic and the
geodesic deviation equations in the above spacetimes with the aim of arriving at memory effects. This
analysis is carried out numerically and reveals unique memory features depending on the type of matter
source present and the signature of the spacetime scalar curvature. The role of κ in influencing the memory
effect, for a given background spacetime, is also noted. Thus, apart from providing novel radiative solutions
in EiBI gravity, we also show how different matter configurations are responsible for distinct memory
characteristics.
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I. INTRODUCTION

A major achievement of gravitational wave astronomy
[1] has been its role in probing the strong-gravity regime
[2]. The gravitational wave memory effect is one of the few
unobserved predictions of strong-field gravity that remains
elusive to date [3]. The memory effect causes permanent
change in the relative position (or relative velocity) of the
freely falling detectors after the passage of a gravitational
wave pulse. It is predicted to yield a net constant shift in the
overall gravitational wave amplitude [3,4].
Earlier work on memory effects used the linearized

gravitational theory to predict a permanent change in the
geodesic separation after the pulse has departed [5,6]. This is
caused due to the change in the double derivative of the
quadrupole moment of the source before and after the burst
of radiation [7]. Later, Christodoulou showed that the stress
energy of gravitational waves reaching null infinity can also
contribute to the memory effect [8]. These two types of
memories were subsequently named in the literature as the
ordinary (linear) and null (nonlinear) memory effects [9–11].
Currently, there are ongoing efforts to detect this effect in
ground-based observatories [12,13], space-based detectors
[14] and pulsar timing arrays [15]. Apart from being an
astronomical observable, memory effects provide connection
with different aspects of theoretical physics like soft theo-
rems and asymptotic symmetries [16,17].
The study of memory effects can also be formulated in

exact solutions of spacetimes containing gravitational waves

[18–22]. In [19], Zhang et al. studied geodesic evolution in
vacuum exact plane waves by considering a Gaussian pulse
profile. Numerically integrating the geodesic equations they
showed how gravitational wave memory effects are realized
in such geometries. Building on these ideas, we earlier
worked out memory effects in Kundt wave geometries for
general relativity (GR) [23] and Brans-Dicke (BD) [24]
theory. In this article, we extend this analysis to a recently
proposed modified theory called Eddington-inspired Born-
Infeld (EiBI) gravity.
In general, Kundt spacetimes are defined as having a

null geodesic congruence where all the optical scalars
vanish [25–27]. The tangent vector to the congruence is,
in general, not covariantly constant [27]. Such spacetimes
admit gyratons which are spinning null sources and
generate angular momentum in the spacetime [28–34].
Apart from GR [35–45] and BD gravity [24], theories like
quadratic gravity [46–48], Gauss-Bonnet theory [49] and
Infinite Derivative gravity [50] have been investigated
while studying this geometry. For a brief review on
Kundt spacetimes we refer the reader to [41]. Kundt
wave spacetimes are generalizations of exact plane waves
propagating in a curved background spacetime. The
presence of matter is responsible for the nonplanarity
of the wavefronts. On the contrary, exact plane waves
have planar wavefronts and flat background geometry.
Any solution obtained for exact plane waves in EiBI
gravity will be same with GR since the two theories are
identical in vacuum. Hence, we work with Kundt waves
and try to examine how the matter content present in this
geometry helps to bring out features of EiBI theory.*indradeb@iitkgp.ac.in
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There exist nontrivialities in obtaining memory effects for
spacetimes having nonzero background curvature. Pursuing
a technique formulated in [51], we showed in our earlier
work on BD gravity [24] how gravitational memory con-
tribution can be isolated from the background by solving
the geodesic deviation equation. Also, we found that the
results obtained by solving geodesic equations qualitatively
match with those found from the total deviation (wave
and background). The deviation due to gravitational wave
(memory effect) is not completely obtained by studying the
geodesic equations only. Hence, we work out the memory
effects here, using both geodesic equations and geodesic
deviation equations.
In the present article, we choose two different types of

matter sources and look for the nature of the memory effects
they exhibit. The first one is a generic source. It is designed
to satisfy all the energy conditions and field equations. The
next one is the electromagnetic (EM) field. We find exact
solutions in both these cases. After constructing the metric
solution, we study their memory effects. At first, we perform
geodesic analysis and then we analyze memory effects using
the geodesic deviation. Gravitational memory effects are
shown to be dependent on the EiBI parameter κ and the
choice of the matter source.
The article is organized as follows. In Sec. II, we provide an

overview of the basic framework used in the paper. Section II
A dealswith a brief recap ofEiBI gravity. Section II B focuses
on Kundt wave geometry. In Sec. II C, we give a brief
summary of how memory effects are realized in related
physical scenarios and provide the requisite connection with
our present work. Moreover, the methodology used to
calculate memory effects using geodesic equations and the
deviation equation is also given. The entire deviation equation
formalism used here can also be found in [24]. In Sec. III, we
present the exact solution and memory effects for the generic
matter source. Section IV deals with the EM field as a source.
Finally,we conclude inSec.Vwith comments on futurework.
An appendix is provided at the end listing the Riemann
tensors in the tetrad frame used in the geodesic deviation
analysis.

II. BASIC FRAMEWORK

A. Eddington-inspired Born-Infeld gravity: A brief
recap

A determinant based action for gravitational theories was
first introduced by Eddington [52] by taking a pure
connection dependent Lagrangian. His theory was identical
to GR for vacuum constant curvature spacetimes. Around
the same time, in electrodynamics, Born and Infeld [53]
regularized the field divergences at the source of a point
charge by also introducing a determinantal form of the
action. Several years later, a gravitational analog of such a
theory was proposed by Deser and Gibbons in [54]. Being a

pure metric theory, it suffered from unconstrained higher
derivative curvature terms.
Combining these ideas, Vollick [55,56] used the Palatini

approach, where both geometry and matter were coupled to
the metric and the connection. In our work, we focus on a
theory recently proposed by Banados and Ferreira [57],
where the matter coupling is simpler and is only dependent
on the metric. The theory has subsequently been called
Eddington-inspired Born-Infeld (EiBI) gravity. The action
of EiBI gravity is,

SEiBIðg;Γ;ΨÞ ¼
2

κ

Z
d4x

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−jgμν þ κRμνðΓÞj

q

− ð1þ κΛÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
−jgμνj

q i
þ SMðg;ΨÞ: ð1Þ

κ is the only parameter of EiBI theory. It has dimensions
inverse of the cosmological constant. In Vollick’s action
[56], the matter coupling occurs inside the determinant. The
action in Eq. (1) reduces to the Einstein-Hilbert action in
two ways. First, for a vacuum solution (SM ¼ 0). Second,
in the GR limit, gμν ≫ κRμν. Thus, the difference between
EiBI gravity and GR occurs for regions involving nonzero
matter and higher curvatures.
From the previous discussion, it is obvious that GR and

EiBI gravity differ significantly in the strong-field regime.
Hence, EiBI theory can be used as a test bed to study the
physics of the early universe. In fact, Banados and Ferreira,
in their original work [57], showed that EiBI cosmology
predicts a maximum density of the universe, successfully
evading the big bang singularity. Most of the literature on
EiBI gravity is focused on the phenomenological implica-
tions it offers for astrophysics and cosmology [58–63]. We
refer the reader to the review [64] for more recent works on
EiBI gravity.
Coming back to the action given in Eq. (1), we find that

the metric and the connection are considered independent
to each other. The variation with respect to the connection
(Γ) gives the condition of metric compatibility1 of qμν,
which is defined as

qμν ¼ gμν þ κRμνðΓÞ: ð2Þ

gμν and qμν are termed as the physical metric and the
auxiliary metric, respectively. Since, qμν is compatible with
the covariant derivative associated with the connection, the
Ricci tensor appearing in the rhs of Eq. (2) can be
constructed from the auxiliary metric. The variation with
respect to gμν yields

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−jqμνj

q
qμν ¼ ð1þ κΛÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
−jgμνj

q
gμν − κ

ffiffiffiffiffiffiffiffiffiffiffiffi
−jgμνj

q
Tμν: ð3Þ

1∇̃γð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−jqμνj

p
qμνÞ ¼ 0
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We also note that EiBI theory is a bimetric theory of
gravity [65] as qμν does not couple with matter. Like any
local gravitational theory, the energy-momentum tensor Tμν

satisfies the conservation equation. The zero value of the
covariant divergence of Tμν is compatible with the physical
metric.
As stated earlier, here we investigate memory effects in

Kundt wave geometries in EiBI theory. At first, we construct
exact solutions for two different types of matter sources.
Then, we perform geodesic analysis and geodesic deviation
analysis to arrive at the memory effects. Our primary aim is
to find how the features of memory effects change for
different matter sources. We also try to find how the variation
of κ influences the nature of memory. In our analysis, we do
not restrict the value of κ.

B. Kundt wave geometry

The general Kundt spacetime line element in Brinkmann
coordnates (u, v, x, y) is [26,27]

ds2 ¼ −Hðu; v; x; yÞdu2 − 2dudv − 2W1ðu; v; x; yÞdudx

− 2W2ðu; v; x; yÞdudyþ
dx2 þ dy2

Pðu; x; yÞ2 : ð4Þ

The null vector nμ ¼ δμv is normal to the transverse
spatial plane spanned by the tangent vectors P∂x and P∂y.
Along nμ, the null congruence has vanishing optical
scalars. We work with a special type of Kundt geometry
known as Kundt waves. The spacetime metric takes the
form

ds2 ¼ −Hðu; x; yÞdu2 − 2dudvþ dx2 þ dy2

Pðu; x; yÞ2 : ð5Þ

The term Pðu; x; yÞ provides the relevant back-
ground curvature (nonradiative) while the guu-component
(Hðu; x; yÞ) of the metric gives us the gravitational wave
contribution. One can get back the well-known pp-wave
solutions by setting P ¼ 1, i.e. the wave propagates in
the Minkowski (flat) background. Wavefronts (u-constant
hypersurfaces) for a Kundt wave geometry are curved due
to the presence of matter/cosmological constant in GR.
For Brans-Dicke gravity, we obtained a vacuum solution
[24] where the scalar field provides an effective matter
contribution.
We consider two kinds of matter sources. The first one

is a generic (i.e. without any explicit matter Lagrangian)
matter source and the second one is the well-known
Maxwell EM field. As mentioned earlier, the presence of
matter is required so that the solution in EiBI theory differs
from GR.

C. Gravitational memory effect

Memory effect is basically a measure of the gravita-
tional wave deviation. Thus, one can study it either by
solving the geodesic deviation equations [6] or observing
the evolution of the separation between a pair of geodesic
trajectories by evaluating the geodesic equations [18,19].
Gravitational memory is easily realized in linearized
gravity by the following equation:

Δξi ¼ 1

2
ΔðhijÞTTξj: ð6Þ

Generally for a gravitational wave burst scenario, we
find that the metric perturbation in the transverse traceless
gauge (hTTij ) differs at early and late times [5]. Hence, the
change in proper length is nonzero (Δξi ≠ 0) and there is a
displacement memory effect. Also, if Δξi varies at late
times, we have a velocity memory effect [66].
Finding out memory in exact solutions like plane

gravitational waves was first done in [18,19]. Exact
plane waves are nonlinear generalizations of the linearized
plane gravitational wave metric in TT gauge. This fact is
made obvious by writing the metric line element in the
Baldwin-Jeffrey-Rosen (BJR) coordinate system [67].
The metric function denoting the radiation field aij (look
at Eq. (2.4) in [19]) differs before and after the onset of
the pulse. This signifies the presence of a memory effect
in analogy with Eq. (6). But BJR coordinates suffer from
singularities and, hence, Brinkmann coordinates were
used in finding out displacement and velocity memory
effects.
We have continued to work in Brinkmann coordinates in

the case of Kundt geometries. In GR [23], we only analyzed
the geodesic equations. We numerically obtained distinct
memory effects corresponding to positive and negative scalar
curvature solutions. For BD gravity [24], we obtained an
exact solution. Thereafter, we studied memory effects for
two different values of ω by solving geodesic equations and
the deviation equations. An illustrative analytical solution
was obtained for ω ¼ −2 which corresponds to the constant
negative curvature solution. For the other case, ω ¼ þ1, we
numerically obtained different memory effects as compared
to the positive curvature solutions of GR. In our current
work, we perform a similar analysis (constructing solutions
and evaluating memory effects) as was done for the BD
theory.
Below, we discuss briefly the methods used to calculate

memory effects here. We also comment on the differences
in the methods applied.

1. Geodesic memory effect

Apart from plane waves and Kundt waves, finding
memory effects using geodesics have been worked out for
radiative spacetimes like gyratons [68] and gravitational
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shockwaves [21,68]. The general methodology to arrive at
the memory effect is, pointwise, noted below.

(i) The gravitational wave term in the metric is chosen
to be pulselike.

(ii) The geodesic equations are solved (analytically/
numerically) for a pair of geodesics (or more than
two) having initial transverse coordinate velocity set
to zero.

(iii) The change in the separation between the two
geodesic trajectories, before and after the pulse,
is noted.

(iv) This change in separation is termed as the displace-
ment memory effect. If the separation is not constant,
then differentiating the geodesic separation gives a
measure of the velocity memory effect.

Here, we try to look at how the geodesic separation
evolves for different values of the EiBI parameter κ.

2. Gravitational memory using geodesic deviation

Geodesic deviation analysis can also be used to find
out the gravitational memory effect [6]. Here we employ
the same procedure as done in [24], to find out the
memory effects. This technique was first applied to
calculate memory in anti–de Sitter (AdS) spacetime [51].
We briefly mention the salient features of this technique,
pointwise, below.

(i) Fermi normal coordinates ðt; ZiÞ are constructed
along a chosen timelike geodesic such that the
Christoffel connections vanish along that curve.

(ii) Aparallel propagated tetrad (eiμ) along that geodesic
2

is obtained in which the tangent to the geodesic curve
is taken as e0μ.

(iii) The geodesic deviation vector (ξμ) in the coordinate
basis is related to the deviation vector in the Fermi
basis (Zi), via

ξμ ¼ Zieiμ: ð7Þ

(iv) The deviation equation in the Fermi coordinate,
then, reduces to a Jacobi equation,

d2Zi

dt2
¼ −Ri

0j0Zj: ð8Þ

(v) The Riemann tensor in the tetrad frame is split into
the background and wave. The wave contribution
comes from the terms proportional to Hðu; x; yÞ (or
its derivatives).

(vi) The respective deviation equations for the back-
ground and the wave become

d2Zi
B

dt2
¼ −ðRi

0j0ÞBZj
B; ð9Þ

d2Zi
W

dt2
¼ −½ðRi

0j0ÞB þ ðRi
0j0ÞW �Zj

W − ðRi
0j0ÞWZj

B:

ð10Þ

(vii) Equations (9) and (10) are solved and the results
obtained are transformed back to the coordinate
basis using Eq. (7).

(viii) The total deviation is obtained by adding the
contributions of the background and the gravita-
tional wave (ξμ ¼ ξμB þ ξμW).

This entire deviation analysis can also be studied in the
coordinate basis. We approach the problem using the Fermi
basis to simplify the calculations. Unlike the geodesic
equations, the deviation equation is perturbative in nature.
Hence, the separation obtained from both the methods will
not be exactly similar, but shall match qualitatively. Such a
comparison was done in our earlier work [24] where we
demonstrated that geodesic analysis is not sufficient to
bring out, exclusively, the amount of gravitational memory
(the memory effect is measured by the gravitational wave
deviation only). This is because the geodesic deviation
equation, being linear, can be split into its respective
background and wave components. On the other hand,
the geodesic equations are nonlinear and give a combined
separation by having the contributions of both the back-
ground and wave. Thus, the results from the geodesic
analysis were in agreement with the solutions of the total
deviation. In our work here we will also look into similar
features, in detail, within the present context.

III. KUNDT WAVE METRIC WITH A GENERIC
MATTER SOURCE

We start by writing down the ansätze for the physical
metric and auxiliary metric, respectively:

ds2 ¼ gμνdxμdxν

¼ −H1ðu; x; yÞdu2 − 2dudvþ dx2 þ dy2

P1ðx; yÞ2
; ð11Þ

ds2 ¼ qμνdxμdxν

¼ −H2ðu; x; yÞdu2 − 2dudvþ dx2 þ dy2

P2ðx; yÞ2
: ð12Þ

We assume that the metric functions P1 and P2 are
independent of u. The uu-component of Eq. (2) gives

2Spacetime coordinates are denoted by Greek indices ðμ; ν; ::Þ
while the Fermi coordinates are given by Latin indices ði; j;…Þ.
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−H2 ¼ −H1 þ
κ

2
P2

2ðH2;xxþH2;yy Þ: ð13Þ

Setting H2ðu; x; yÞ ¼ hðuÞðx2 − y2Þ, we find H1 ¼ H2,

H1ðu; x; yÞ ¼ hðuÞðx2 − y2Þ: ð14Þ

This solution corresponds to the plus polarization of
the gravitational wave. The wave profile is given by the
term hðuÞ.
From the xx-(or yy-) component of Eq. (2) we get

1

P2
2
¼ 1

P1
2
− κ

P2;2y þP2;2x −P2ðP2;xxþP2;yy Þ
P2

2
: ð15Þ

Equations (13) and (15) are only dependent on the
geometry of the theory. The field equation (3) requires
specification of the matter content in the spacetime. In this
section, we work with a generic source, which is well-suited
for obtaining an exact solution. We will also check, how the
relevant energy conditions behave, for this matter source.
After finding the metric solution, we go over to the study of
gravitational memory effects.
Analyzing solutions for such a generalized source can

act as a template for comparing memory effects with other
known sources. In this paper, we try to investigate these
comparisons corresponding to the EM field.

A. Exact solution

From Eq. (3), we find that only uv; vv; xx (or yy) yield
nontrivial equations.

uv∶
1

P2
2
¼ 1þ κΛ

P1
2

þ κ

P1
2
Tuv: ð16Þ

Equation (16) shows that P1 and P2 are conformally
related to each other. In the case where Tuv becomes a
constant, they are related via scaling.

vv∶
H2

P2
2
¼ ð1þ κΛÞ H1

P2
2
−

κ

P1
2
Tvv: ð17Þ

Comparing Eq. (17) with Eq. (16), we find Tvv ¼
−H1Tuv. The equation for the xx-component simply
gives

Txx ¼ ΛP1
2: ð18Þ

We find that there are five unknowns (P1; P2; Tuv;
Tvv; Txx) having four independent equations [(15)–(18)].
We choose Tuv ¼ σ (constant), and try to solve for the other
unknowns. The components of Tμν which vanish from the
field equation (3) are identically taken equal to zero.

In this class of metrics, u acts as an effective time
parameter.3 Thus, the constant σ can be attributed to a
matter flux present in the spacetime. Plugging Tuv ¼ σ into
Eq. (16) gives a scaling relation between P1 and P2,

P1
2 ¼ P2

2ð1þ κðΛþ σÞÞ: ð19Þ

We find that if the flux is nondynamical, then the induced
metrics on the wavefronts are related via scaling.
Substituting Eq. (19) in Eq. (15) gives

P2ðP2;xxþP2;yy Þ−P2;2x−P2;2y¼
Λþ σ

1þ κðΛþ σÞ ¼ α: ð20Þ

Here, α is a constant. Solving Eq. (20) provides
analytical forms of P2 and P1,

P2 ¼ 1þ α

4
ðx2 þ y2Þ;

P1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κðΛþ σÞ

p �
1þ α

4
ðx2 þ y2Þ

�
: ð21Þ

After solving the field equations, we find that the pulse
profile hðuÞ in Eq. (14) is unconstrained from the
field equations. The auxiliary metric is independent of κ.
Equation (21) shows that κ only couples to the physical
metric via P1 which is nonradiative. Even the matter
coupling (σ) occurs through P1. Thus, the induced metric
on the u-constant hypersurface is dependent on the under-
lying theory. If the analysis was done for exact plane waves,
the two metric functions P1 and P2 would have been
identical as there is no matter present and the wavefronts
are planar. Hence, the metric solutions and the subsequent
analysis of memory effects would be independent of κ.
The other components of the stress energy tensor can

simply be computed from the relationships given in Eqs. (17)
and (18). The Ricci scalar curvature (physical metric) for
such a solution becomes a constant, R ¼ 2ðΛþ σÞ.
Depending on the signs of the cosmological constant and
the flux parameter σ we obtain solutions that have different
background geometries (S2 or H2).

B. Energy conditions and constraints

For the Null Energy Condition, the null vector is taken as
kμ ¼ δv

μ. We find that

Tμνkμkν ¼ 0:

This shows there is no null flux present as matter. TheWeak
Energy Condition evaluated for a timelike vector (tμ) is
shown below.

3It is the affine parameter for the metric line element in Eq. (5).
A dot overhead (as used in Eqs. (22), (23) etc.) means differ-
entiation with respect to the affine parameter u.
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tμ ¼ 1ffiffiffi
2

p ½δuμ þ ð1 −H=2Þδvμ�; Tμνtμtν ¼ σ:

This justifies why σ is denoted as the flux parameter. Thus,
the flux has to be positive-definite, σ ≥ 0. The second
constraint follows from the square root in the metric
function P1 [see Eq. (21)], 1þ κðΛþ σÞ ≥ 0. We will
assume σ ¼ 0 in our entire geodesic analysis. Hence, there
is no flux present perpendicular to transverse spatial wave
surfaces. Moreover, we find from the above constraint
that α > 0ð< 0Þ depending on whether the Ricci scalar
R > 0ð< 0Þ. Note that for a given background spacetime, α
and κ are related [Eq. (20)].

C. Geodesic analysis of memory effect

The geodesic equations for the physical metric given in
Eq. (11) are

ẍþ P1;x
P1

ð_y2 − _x2Þ − 2_x _y
P1;y
P1

þ 1

2
H1;x P1

2 ¼ 0; ð22Þ

ÿþ P1;y
P1

ð_x2 − _y2Þ − 2_x _y
P1;x
P1

þ 1

2
H1;y P1

2 ¼ 0: ð23Þ

The radiative term H1ðu; x; yÞ ¼ sech2ðuÞðx2 − y2Þ is
chosen to represent a sech-squared pulse. Note that
_x ¼ _y ¼ 0 at u → −∞ can be taken as the initial condition.
We solve for different values of κ with a fixed Λ. The
signature of Λ decides the background geometry [23]. We
will consider both cases with positive and negative scalar
curvature.
Equations (22) and (23) have earlier been solved numeri-

cally in [23] for different functional forms of P1 [see
Eqs. (7), (8), (10), and (11)] in the context of GR. Here, we
carry out a similar analysis with spacetimes having differ-
ent values of κ. Since α and κ are related [Eq. (20)], we will

try to infer the behavior of geodesic separation from the
variation in α.

1. Negative scalar curvature

We solve geodesics with Λ ¼ −0.25, R ¼ −0.5ðα < 0Þ.
The evolution of x and y coordinates are obtained by numeri-
cally solving the geodesic equations in Mathematica 10.4

In Fig. 1, we plot geodesic separation, i.e. x2 − x1 and
y2 − y1. Here, x1, y1 and x2, y2 are solutions of a pair of
geodesics along the x- and y-directions, respectively, with
different initial positions but zero relative velocity. One
observes that the final value of geodesic separation is
different from the initial value. This signifies the presence
of gravitational wave memory. Along the x-direction we
find that, as the negative value of α increases, the
displacement of the separation from its initial value
increases. For the y-direction plot, we observe a maxima
near u ¼ 0 for all values of κ. The higher the value of jαj,
the higher the peak of the maxima. But, in both plots of
Fig. 1, we observe that the separation is constant with
zero relative velocity. Thus, we find constant shift
displacement memory in all these results. There is no
velocity memory effect present. This result is similar with
those found in GR [23].
From the geodesic equations (22) and (23), it might

appear that the behavior of the x and y coordinates should
be identical. This is not observed in the plots due to the
functional form of the gravitational wave term H1ðu; x; yÞ.
We consider plus polarization and hence, x and y are not
symmetric. Instead, if we had worked with cross polari-
zation, the memory effects would have been identical along
both directions.

FIG. 1. Geodesic separation for negative scalar curvature along x (left) and y (right) directions having initial value (0.1,0.1),
respectively.

4For both the sources (generic matter, EM field) we have used
we have used Mathematica 10 for numerically solving the
geodesic equations and the geodesic deviation equations, and
also for obtaining the plots.
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2. Positive scalar curvature

Geodesics in the positive scalar curvature spacetime are
studied numerically with Λ ¼ 0.25 and R ¼ 0.5ðα > 0Þ.
Positive curvature solutions in GR were shown to give

rise to a frequency memory effect [23]. In that scenario,
each geodesic was associated with a particular frequency.
Thus, the geodesic separation lead to the formation of beats
(see Figs. 3(b) and 5(b) in [23]). In the present context,
we find a similar formation of beats where the central
frequency is dependent on κ as can be seen in Fig. 2. The
lower the value of α, the higher the frequency of oscillation
along both the directions.

D. Geodesic deviation analysis

We now discuss memory effects obtained using the
geodesic deviation equation. Using the procedure from our
earlier work on Kundt waves in Brans-Dicke theory [24],
we construct the orthonormal tetrad from the physical
metric given in Eq. (11),

e0μ ¼ ½1; _v; _x; _y� e1μ ¼
�
0;−

_x
P1

;−P1;0

�

e2μ ¼
�
0;−

_y
P1

;0;−P1

�
e3μ ¼ ½−1;1− _v;−_x;−_y�: ð24Þ

The construction of a similar orthonormal tetrad as given
in Eq. (24) was earlier worked out in [37]. We find that e1μ

and e2μ are not transported parallel and, hence, they are
rotated by an angle θp,

_θp ¼ 1

P1

ðP1;y _x − P1;x _yÞ: ð25Þ

The expressions for the Riemann tensor in this tetrad
frame are provided in the Appendix. Using these expressions
[Eqs. (A1)–(A8)] in the deviation equations (9) and (10), we
numerically solve the geodesic deviation (background and

wave separately) in the tetrad frame. We find that Z0 and Z3

have no evolution.5 Thus, we only evaluate the nontrivial
behavior of Z1, Z2. Eventually, we go over to the coordinate
basis using Eq. (7) and plot the background, wave and total
deviation for different values of κ.

ξx ¼ −P1Z1 ξy ¼ −P1Z2: ð26Þ

The deviation analysis is particularly useful as it
separately gives the gravitational wave contribution from
the background. The total deviation, as shown earlier, is
obtained by summing the contributions coming from the
wave and the background. Throughout the text, we will
clarify the similarity between the qualitative features of
memory effects obtained from the deviation analysis and
the geodesic analysis, whenever required.

1. Negative curvature

We perform the geodesic deviation analysis for the same
value of the cosmological constant (Λ ¼ −0.25) and Ricci
scalar (R ¼ −0.5) as was used in the geodesic analysis. We
assume in all the cases that the initial deviation value is
ξx ¼ 0.1, ξy ¼ 0.1.
The plots in Fig. 3 show the background, wave and total

deviation for κ ¼ þ1. In both cases, the background
contribution decreases. We find a rise in wave deviation
along the x-direction, while along the y-direction, it peaks
around u ¼ 0 and then finally settles to a constant value.
We find constant shift displacement memory along both the
directions. The total deviation settles to a final value and,
hence, no velocity memory is observed.
The plots in Fig. 4 demonstrate the effect of EiBI

parameter κ on the total deviation. In the plot for the

FIG. 2. Geodesic separation for positive scalar curvature along x (left) and y (right) directions having initial value (0.1,0.1),
respectively.

5From the expressions of the Riemann tensors in the tetrad
frame given in the Appendix, we observe that there are no terms
like R0

ijk ¼ R3
ijk ¼ 0. Hence, we set Z0 ¼ Z3 ¼ 0 as they have

no evolution.
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x-direction, we find that the total deviation rises with the
increase in the negative value of α. In the y-direction plot,
we find a maxima centered near u ¼ 0. The peak of the
maxima rises with the rise in the absolute value of α.
These results are consistent with the ones obtained from
the geodesic analysis. The total deviation along the
y-direction also shows the same qualitative behavior with
variation in α, as obtained for the x-direction. Note that
along both the directions we obtain a constant shift
displacement memory effect.
The gravitational wave deviation (ξxW; ξyW) gives the

actual measure of the usual memory effect used in the
gravitational wave literature. We find that the variation of κ
(or α) in the plots of Fig. 5 give similar results to total
deviation.

2. Positive curvature

The deviation analysis is done with the same value of Λ ¼
0.25 and R ¼ 0.5 as used in the earlier geodesic analysis.
Here, we start with an initial separation, ξx ¼ 0.1, ξy ¼ 0.1.

Figure 6 show the evolution of the deviation of the
background, gravitational wave and their sum (total) along
the x- and y-directions, respectively, for κ ¼ þ1. We find
that, in both cases, there is a frequency memory effect and a
subsequent beat formation. The background contribution is
very small compared to the wave. Thus, the contribution to
the total deviation comes mostly from the pulse of radiation
present in the spacetime.
The plots in Fig. 7 give us the behavior of the total

deviation for different values of κ. When the value of α
decreases, we find that the frequency of the oscillation
increases. In the geodesic analysis, we also found (from
plots in Fig. 2) similar behavior of the frequency memory.
Note that the geodesic and deviation plots are not identical
in this scenario. This is due to the perturbative nature of the
geodesic deviation equation.
The deviation for the gravitational wave part in the plots

of Fig. 8 is similar to the total deviation. This is because the
total deviation gets most of its contributions from the
gravitational wave pulse (see Fig. 6).

FIG. 3. Coordinate deviation between geodesics along x (left) and y (right) directions having initial separation fðξx; ξyÞ ¼ ð0.1; 0.1Þg
for κ ¼ þ1.

FIG. 4. Total deviation between geodesics having constant negative scalar curvature along x (left) and y (right) directions.
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FIG. 6. Coordinate deviation between geodesics having initial separation fðξx; ξyÞ ¼ ð0.1; 0.1Þg for κ ¼ þ1 along x (left) and
y (right) directions.

FIG. 7. Total deviation between geodesics having constant positive scalar curvature along x (left) and y (right) directions.

FIG. 5. Deviation due to the gravitational wave between geodesics having constant negative scalar curvature along x (left) and y (right)
directions.
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IV. KUNDT WAVE METRIC WITH AN
ELECTROMAGNETIC FIELD SOURCE

Let us now turn towards the other exact solution. In
solving the Kundt wave metric with an EM field, we do not
a priori fix the functional form of the vector potential Aμ. We
start with a general electromagnetic field tensor Fμν and
solve the field equations of EiBI gravity. After obtaining the
solutions, we look for Aμ, which are consistent with our
results.

A. Exact solution

We use the same ansätze given in Eqs. (11) and (12) for
the physical and auxiliary metric, respectively. The energy-
momentum tensor for a free Maxwell EM field is given as

Tμν ¼ Fμ
σFνσ −

1

4
gμνFαβFαβ: ð27Þ

First we will look into the field equation (3), since the
equations for the other one will be similar [i.e. Eqs. (13) and
(15) following from the field equation (2)]. The uu-
component gives Tuu ¼ 0. Using this in Eq. (27) yields

Fvx ¼ Fvy ¼ 0: ð28Þ

The equations for components ux; uy and xy reduce to an
identity. For components vx and vy we find, respectively,

FuvFxu ¼ P1
2FuyFxy; ð29Þ

FuvFyu ¼ P1
2FuxFyx: ð30Þ

Equations (29) and (30) simplify to give

Fux ¼ Fuy ¼ 0: ð31Þ

The components xx (or yy) yield a relation between the
cosmological constant and Fμν,

Λ ¼ 1

2
ðFuv

2 þ P1
4Fxy

2Þ: ð32Þ

We find that Λ ≥ 0 from Eq. (32). Both the equations for
components uv and vv yield

1

P2
2
¼ 1

P1
2
ð1þ 2κΛÞ: ð33Þ

Thus, we again end up with a similar scaling relation
between P1 and P2 like the one obtained in the earlier case
[Eq. (19)]. Also, we find that Tuv ¼ Λ. Thus, the constraint
on Λ6 follows from the weak energy condition. So, now, the
differential equation satisfied by the metric function P2 is
given as

P2ðP2;xxþP2;yy Þ − P2;2x −P2;2y ¼
2Λ

1þ 2κΛ
¼ β: ð34Þ

Given the constraint on Λ, we find that the constant
β ≥ 0. Instead of using the former solution, we construct a
new solution for P2 from Eq. (34). We will find later how
different choices of the function P2 affect the nature of
gravitational memory. Here, we assume that P2 is inde-
pendent of y, P2;y ¼ 0. The resulting ordinary differential
equation has a solution like

P2ðxÞ¼ coshð
ffiffiffi
β

p
xÞ; P1ðxÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2κΛ

p
coshð

ffiffiffi
β

p
xÞ: ð35Þ

The Ricci scalar for the physical metric becomes
R ¼ 4Λ. Therefore, we only have a positive curvature
solution (Λ ≥ 0). For different sources we get different
constraints on the metric solution. We will try to understand
how this constraint affects the gravitational wave memory
in the spacetime.

FIG. 8. Deviation due to gravitational wave between geodesics having constant positive scalar curvature along x (left) and y (right)
directions.

6If we take the flux, Tuv ¼ 0, then the Ricci scalar vanishes.
Hence we consider only positive values of Λ.
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B. Maxwell field

The field equations of EiBI gravity show that only
components Fuv and Fxy are nonzero. But, they are con-
strained via the relation in Eq. (32). The Bianchi identity for
the Maxwell equations yield

Fuv ≡ FuvðuÞ; Fxy ≡ FxyðxÞ: ð36Þ

We assume the EM fields are independent of v and y. In
order to have a dynamical electromagnetic tensor Fμν we
need to have a nonzero current Jμ sourcing the EM field.
The relevant gauge field Aμ and the source Jμ, consistent
with the results obtained above, are given below, along with
the equations relating them.

Aμ ¼ ½0; AvðuÞ; 0; AyðxÞ� Jμ ¼ ½0; JvðuÞ; 0; 0� ð37Þ

d2Av

du2
¼ dFuv

du
¼ Jv

dAy

dx
¼ Fxy ¼

B
P2
1

: ð38Þ

Here, B is a constant of integration. Such a current source
in Eq. (37) satisfies the covariant conservation equation.
Equation (32) should always be satisfied by the EM fields.
Having found the solution, we now investigate the memory
effect.

C. Geodesic analysis of memory effect

We work out geodesic solutions for the same value of
the Ricci scalar as was done for the earlier used matter
source, R ¼ 0.5. Hence, Λ ¼ 0.125 and β > 0. The profile
of the gravitational wave is taken as the sech-squared pulse
[hðuÞ ¼ sech2ðuÞ]. In this scenario, as noted earlier, we only
have a positive curvature solution. The geodesic equations
are same as that of Eqs. (22) and (23) withP1;y ¼ 0. Like the
previous section, we will analyze the behavior of the
geodesic separation with respect to the variation of β, since
it is related to κ via Eq. (34).

Along the x-direction, the left plot in Fig. 9 shows the
frequency memory effect. We find that the frequency of
oscillation is clearly dependent on κ (or β). It decreases with
the rise in the value of β. This was also seen for the earlier
used matter source. We also find that the amplitude increases
with the decline in the value of β. In the y-direction, we find
a monotonically increasing displacement memory with the
decrease of β. Hence, there is the presence of the velocity
memory effect. One should note that the values of β used in
the plots of Fig. 9 are identical with the values of α for
the positive curvature solution of the previously used matter
source. This happens because we examine the memory
effects for the same value of the Ricci scalar, in both
scenarios.
Another interesting observation is that, here, we do

not observe any frequency memory effect along the
y-direction. For the other matter source, we obtained
the frequency memory along both directions. Thus, this
change in the behavior of memory effect is related to the
functional dependence of P1 on x and y. In the former
solution [Eq. (21)], P1 was explicitly dependent on x and
y, while in the latter one [Eq. (35)], it was only dependent
on x.

D. Geodesic deviation analysis

The deviation analysis is done with the same orthonor-
mal tetrad as given in Eq. (24). The parallel transport
condition [Eq. (25)] is also used for e1μ and e2μ. We enlist
the Riemann tensors in the tetrad frame in the Appendix.
Solving the required deviation equations in the Fermi basis,
we revert back to the coordinate basis. The results are
obtained in terms of the following plots.
In the plot for the x-direction in Fig. 10, we again find

the frequency memory effect for all the contributions.
Thus, any nonradiative spacetime having negative back-
ground curvature (like AdS) can exhibit this oscillatory
behavior of the geodesics. We also find that the ampli-
tude of wave deviation is higher than the background.

FIG. 9. Geodesic separation along x (left) and y (right) directions with the initial value as fðx; yÞ ¼ ð0.1; 0.1Þg.
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Along the y-direction, we observe a monotonically
increasing displacement memory. The entire contribution
for the total deviation comes from the gravitational wave.
The total deviation plot along the x-direction in Fig. 11

gives a similar result as obtained in Fig. 9. The higher the

value of β, the lower the frequency and higher the amplitude.
Moreover, along the y-direction we find that with the rise in
β, there is a decrease in the monotonic displacement memory
of the total deviation. Thus, our results are completely in
agreement with the geodesic analysis.

FIG. 10. Coordinate deviation between geodesics having initial separation fðξx; ξyÞ ¼ ð0.1; 0.1Þg for κ ¼ þ1 along x (left) and y
(right) directions.

FIG. 11. Total deviation in case of the EM field along the x (left) and y (right) directions.

FIG. 12. Deviation due to the gravitational wave in the case of the EM field along the x (left) and y (right) directions.
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Figure 12 gives the gravitational wave memory behavior
with the variation of the EiBI parameter κ. The plots are
quite similar to the case of the total deviation. Along the
y-direction, the behavior is identical as there is no con-
tribution from the background. The entire deviation is due
to the memory effect.
The above investigation on gravitational memory shows

that there is no constant shift displacement memory for
spacetimes sourced by EM fields. This is because of the
constraint on Λ, and thus, on the Ricci scalar. Hence, we
infer that two different matter sources exhibit differences in
the nature of memory effects.

V. CONCLUSIONS

This article tries to explore, theoretically in the context of
exact solutions, features of the gravitational wave memory
effects in EiBI theory of gravity. To this end, we have first
constructed novel solutions of Kundt wave geometries in this
theory. Since EiBI is known to differ from GR at higher
densities and curvatures, we have chosen geometries sourced
by two different matter configurations. First, we solve for a
generic matter source that satisfies all the energy conditions
and field equations. Next, we find a solution for the
electromagnetic field. Both the solutions exhibit an uncon-
strained function hðuÞ which is responsible for determining
the profile of the gravitational wave in the spacetime. In both
cases, we analyze memory effects by solving the geodesic
equations and the geodesic deviation equations by choosing
a sech-squared pulse. We observe that the matter content in
the spacetime determines the nature of gravitational memory.
Thus, the metric solution for the generic matter source acts as
a tool to compare memory effects obtained for the EM field
with itself.
All the results in the paper are summarized in the

following Table I. We write down the novel solutions

obtained in EiBI gravity and the nature of the memory
effects they reveal. The change in gravitational wave
memory corresponding to the variation in κ, via α (generic
matter) and β (the EM source), is also presented.
As EiBI gravity is a bimetric theory, we solve for both

the physical and the auxiliary metric. We find that in the
case of both the sources, the gravitational wave part of
the metric (H1) are identical and is not dependent on the
parameters of the theory, as can be seen from Table I.
Moreover, the auxiliary metric turns out to be completely
independent of κ. The induced spatial metrics (physical and
auxiliary) on the u-constant wavefronts are conformally
related where the conformal factor depends on κ. These
wavefronts are curved because of the presence of matter.
Hence, the background geometry (nonradiative part) for the
physical spacetime is entirely theory dependent (through
κ). This κ-coupling with the physical metric is not present
in exact plane wave spacetimes as the background geom-
etry is flat. This is the reason why we work with Kundt
wave geometries.
For the generic matter source we find a solution by

choosing the flux parameter (σ) to be zero. We find that for
nondynamical flux, the metric functions P1 and P2 are
related via a κ-dependent scaling. The Ricci scalar turns out
to be constant and depends on the cosmological constant
(Λ). Hence, there is no restriction on the sign of the scalar
curvature.
For the EM field, we do not a priori fix any form of the

gauge field Aμ. The field equations of the theory govern
the behavior of the matter field. A consistent solution
for the gauge field and the source current (Jμ) is also
provided. After solving the relevant field equations of
EiBI gravity, we find an almost similar scaling relation
between the metric functions P1 and P2 [Eq. (33)] as was
obtained earlier [Eq. (19)]. But here, the flux is equal to

TABLE I. Metric solutions and their corresponding memory effects for both the sources.

Generic matter source

Sign of scalar
curvature (R)

Metric functions Memory effect

−guu¼H1 guv g−1=2xx ¼g−1=2yy ¼P1 Nature Variation with respect to α or β

R<0, α < 0 sech2ðuÞðx2−y2Þ −1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þκΛ

p ð1þα
4
ðx2þy2ÞÞ

Constant shift displacement
memory along both
directions

Displacement memory increases
with rise in jαj

R>0, α > 0 sech2ðuÞðx2−y2Þ −1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þκΛ

p ð1þα
4
ðx2þy2ÞÞ

Frequency memory
along both directions

Frequency of oscillation decreases
with increase in α

Electromagnetic source

R>0, β > 0 sech2ðuÞðx2−y2Þ −1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2κΛ

p
coshð ffiffiffi

β
p

xÞ
Frequency memory only

along x, displacement
and velocity memory
along y

Frequency of oscillation decreases
with increase in β, displacement
and velocity memory decreases
with rise in β
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the cosmological constant. Thus, we only have constant
non-negative Ricci scalar solutions.
The constants α and β are related to the EiBI parameter κ

via Eqs. (20) and (34), respectively. We use these constants
to quantify the difference in the behavior of geodesic
separation (from the geodesic analysis) and the geodesic
deviation for different values of κ. Both the analyses for
the generic matter source show that in negative curvature
spacetimes we observe constant shift displacement
memory. The geodesic separation rises with the increase
in the negative value of α. This scenario is not permissible
for the EM source as Λ is strictly positive-definite.
In the case of positive curvature spacetimes, we find that

the behavior depends on the analytical forms of P1. If P1 is
both x, y-dependent, then we find frequency memory along
both directions (as shown for the generic source). For
P1 ≡ P1ðxÞ, we get frequency memory only along x. In the
other direction, we get monotonically increasing displace-
ment memory. The frequency of oscillation is found to
decrease with the rise in the positive value of α (generic
source) and β (EM source). Hence, memory effects
analyzed from geodesic and deviation analyses show
logical consistency, as claimed earlier.
Although qualitative features of memory effects as

obtained here agree with GR [23], the EiBI parameter κ
produces an imprint on the amount of gravitational memory
despite coupling only with the nonradiative part of the
metric solution. Also, studying this theory, one may find
distinct memory effects based on the constraints imposed
from the field equations, for different kinds of matter
sources.

A possible extension of this work can be done by
introducing gyratonic terms in the Kundt wave line element
and examining the memory effects in this new gyratonic
Kundt spacetime. Also, one can study geodesic congruen-
ces for such Kundt wave geometries and calculate the
B-memory [20,69].
Finally, we conclude by commenting that the link

established between the matter source and the nature of
gravitational memory effects is worth investigating for
diverse theories with nontrivial matter couplings. Even at
the level of the exact solutions, such studies on Kundt
geometries can generate different metric solutions corre-
sponding to different gravitational theories. We hope to
return to these issues in the future.
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APPENDIX

The Riemann tensor components in the tetrad frame for
the generic matter source are given below.
Background

ðR1
010ÞB ¼ −

1

P2
1

ð_y cos θp þ _x sin θpÞ2½P1;2x þP1;2y −P1ðP1;xx þP1;yy Þ� ðA1Þ

ðR1
020ÞB ¼ 1

2P2
1

½2_x _y cosð2θpÞ þ ð_x2 − _y2Þ sinð2θpÞ�½P1;2x þP1;2y −P1ðP1;xxþP1;yy Þ� ðA2Þ

ðR2
010ÞB ¼ 1

2P2
1

½2_x _y cosð2θpÞ þ ð_x2 − _y2Þ sinð2θpÞ�½P1;2x þP1;2y −P1ðP1;xxþP1;yy Þ� ðA3Þ

ðR2
020ÞB ¼ −

1

P2
1

ð_x cos θp − _y sin θpÞ2½P1;2x þP1;2y −P1ðP1;xxþP1;yy Þ� ðA4Þ

Gravitational wave

ðR1
010ÞW ¼ hðuÞP1½P1 cosð2θpÞ þ ðx cosð2θpÞ þ y sinð2θpÞÞP1;x þðy cosð2θpÞ − x sinð2θpÞÞP1;y � ðA5Þ

ðR1
020ÞW ¼ hðuÞP1½P1 sinð2θpÞ þ ðx sinð2θpÞ − y cosð2θpÞÞP1;x þðx cosð2θpÞ þ y sinð2θpÞÞP1;y � ðA6Þ

ðR2
010ÞW ¼ hðuÞP1½P1 sinð2θpÞ þ ðx sinð2θpÞ − y cosð2θpÞÞP1;x þðx cosð2θpÞ þ y sinð2θpÞÞP1;y � ðA7Þ
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ðR2
020ÞW ¼ −hðuÞP1½P1 cosð2θpÞ þ ðx cosð2θpÞ þ y sinð2θpÞÞP1;x þðy cosð2θpÞ − x sinð2θpÞÞP1;y � ðA8Þ

In the case of the EM source, the above equations are valid with P1;y ¼ 0. Note that the analytical form of the function P1

[see Eq. (35)] is also different from the generic matter source.
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