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Recent years have witnessed a surge of interest of the lensing of the black holes arising from general as
well as other modified theories of gravity due to the experimental data available from the Event Horizon
Telescope (EHT) results. The EHT may open a new door indicating the possible existence of the rotating
black hole solutions in modified theories of gravity in the strong field regime. With this motivation, we
investigate in the present paper the equatorial lensing ðθ ¼ π=2Þ by a recently obtained exact rotating black
holes solution in Eddington-inspired Born-Infeld (EiBI) theory in both the strong- and weak-field limits.
Such black holes are the modification of Kerr-Newman black holes in general relativity, characterized by
their mass M, the charge Q, and the rotation parameter a. and an additional term ϵ accounting for the
correction to the Kerr-Newman solutions. We show numerically the variations of the impact parameter um,
the light deflection coefficients p and q, and the total azimuthal bending angle αD and find a close
dependence of these quantities on the charge parameter rq, the correction term ϵ, and the spin a. We also
calculate the angular position θ∞, the angular separation s, and the magnification of the relativistic images.
In addition, we also discuss the weak lensing of the black holes in Eddington-inspired Born-Infeld (EiBI)
theory using the Gauss-Bonnet theorem. We calculate the weak lensing parameter and find its variation
with different values of the parameters rq and ϵ.
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I. INTRODUCTION

Einstein’s general relativity admits only a few exact
physically acceptable solutions [1]. Among these limited
solutions, we have the axially symmetric stationary sol-
utions, such as Kerr and Kerr-Newman, which are, respec-
tively, the vacuum and electrovacuum solutions of general
relativity [2–6]. These solutions are well established in the
context of no-hair theorems for the asymptotically flat
axisymmetric spacetimes. However, in the presence of hair,
no-hair theorems may find other solutions which are
characterized by some other parameters. An extension of
this possibility has been done in the case of scalar and Proca
hairs in the asymptotically de Sitter spacetimes [7]. It is also
shown in another investigation that the no-hair theorem
ruled out the possible existence of the real massive vector
field in fðRÞ theories as long as the potential due to the
scalar field is positive definite in Einstein’s frame [8]. To
check the Kerr black holes hypothesis to know the exact
nature of the astrophysical black holes is a proven fact that
has been tested many times using x-ray spectroscopy of the
accreting matter around the black holes [9,10], the strong
gravitational lensing, and the recently obtained images of
black holes silhouettes of M87 supermassive black holes

using the Event Horizon Telescope (EHT) [11–16]. Apart
from these, gravitational wave astronomy confirms that the
gravitational waves emerging from black hole mergers
using the Kerr solution strongly match with the waveform
signals as detected by the LIGO Scientific and Virgo
collaborations [17,18]. But these results may not find their
validity in the strong gravity regime, and the alternative
theories of gravity may find a new resource to test the
strong gravity field with the more advanced future tech-
nologies [19]. The awakening of the gravitational wave
astronomy by LIGO/Virgo and the imaging of the shadow
of M87 black holes by the EHT may open a new door to the
physics world, particularly in the strong gravity regime
such as black hole physics. Since the astrophysical black
holes are mostly rotating, thereby obtaining the exact
rotating solutions in different gravity theories is a pressing
topic to test the strong gravity regime through gravitational
waves and imaging of black holes mostly residing pre-
sumably at the heart of every galaxy.
Having obtained a black hole solution, it is worth

investigating one of the most prominent astrophysical
events that occurred when light rays pass through such
compact objects. The light rays or any massive particles
while encountering the black holes, their direction of
propagation drastically changes. Light rays, instead of
following the straight path, would follow the curved path
that black holes have created in their surroundings. Such a
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phenomenon is called the gravitational lensing. After its
first-ever imaging of the silhouettes of the M87 super-
massive black holes by the EHT, the study of the lensing
phenomena in the strong gravity region has been of utmost
importance. The shadow imaging in the sky relies on the
gravitational lensing of strong field as encompassed by
light rays, thereby bearing the fingerprints of the geometry
of the strong field gravity. After its first inception by
Darwin [20], the studies on the lens equation and lensing
phenomena of the astrophysical compact objects were
triggered. Later Frittelli et al. [21] and then Virbhadra
[22] analyzed the lens equation without referring to the
black holes background. After that, the lens equation by
Virbhadra and Ellis for the Schwarzschild black holes was
constructed. In the subsequent years, Bozza et al. [23,24],
following the Virbhadra-Ellis lens equation, invented a
mathematical formulation of the gravitational lensing of a
generic black hole in a spherically symmetric spacetime.
Motivated by the formulation and with the advance of time,
people made tremendous developments in the investigation
of the strong gravitational lensing of the various static
spherically symmetric as well as axially symmetric sta-
tionary black hole spacetimes [25–40]. The light bending
phenomenon is analyzed to investigate and eventually to
rule out possible inhomogeneity of the dark energy in the
form of an ideal static fluid, within the maximum turn-
around radius of a cosmic structure [41]. The bending angle
and the perihelion precision of light for two different
spherically symmetric spacetimes in Hordeski gravity
theories in the realm of astrophysical scenarios also have
been investigated [42]. The gravitational lensing by black
holes has been investigated using both analytical and
numerical techniques [22,34,40,43–59]. With the advent
of modern technologies, the EHT group has been able to
image the black holes silhouettes using very long baseline
interferometry (VLBI) techniques [11–16]. They observed
the very first image of the shadow of the M87 supermassive
black holes by modeling the Kerr spacetime. These inves-
tigations from the EHT placed a strong piece of evidence at
first sight that there could be no other spacetimes apart from
the Kerr metric [11]. However, recently measured values of
the rotation parameter show uncertainties to what could
have been expected using the Kerr metric as a source [60].
Therefore, some minimal constraint conditions on the
angular measurement of the Kerr black holes should be
imposed [61]. Therefore, the non-Kerr black holes showing

the significant deviations in measurement procedures
cannot be a possible candidate from the phenomenological
point of view [61].
There has been a lot of research interest in the inves-

tigations of the strong gravitational lensing for a non-Kerr
family of black holes. The physical observables for the
lensing effect in the strong domain of gravity have been
investigated for various rotating non-Kerr spacetimes, e.g.,
the hairy Kerr black holes [62], the nonsingular Kerr-Sen
black holes [59], the rotating black holes in 4D Einstein
Gauss-Bonnet (EGB) gravity [63], etc. They studied
rigorously various observables, such as the light deflection
angle, the angular distance, and the angular separation and
angular magnifications and also the time delay effects to
investigate the astrophysical consequences in the context of
the black holes M87 and SgrA* [64]. Motivated by these
ideas, in this paper, we aim to discuss these physical
observables for strong lensing for the rotating solution in
the context of EiBI gravity theory. It is possible to test the
strong field gravitational effects using such a non-Kerr
family of black holes for a variety of observations.
The paper is organized as follows. In Sec. II, we briefly

review the rotating black holes in Eddington-inspired Born-
Infeld gravity. We give the usual formalism to derive the
strong lensing observable in Sec. III. The numerical
techniques and plots of the light deflection angle, the
angular distance, and the angular separations are obtained
in Sec. IV. The derivations of the weak-field light bending
angle using the Gauss-Bonnet theorem is the subject of
Sec. V. We conclude the paper in Sec. VI.

II. EIBI GRAVITY AND ROTATING SOLUTIONS

The rotating solutions in the Eddington-inspired Born-
Infeld gravity are obtained when one employs the corre-
spondence between modified models as a contraction of a
metric tensor with the Ricci scalars formulated in light of
general relativity and the Ricci-based gravity theories. For
the basic investigations and the properties of the rotating
black holes in EiBI gravity theories, we refer our reader to
Ref. [64] and the references therein. This is an exact
solution that is obtained when there is a nonminimal
coupling to nonlinear electrodynamics of Born-Infeld
gravity. The rotating black hole in Einstein-inspired
Born-Infeld gravity theories in the usual Boyer-Lindquist
coordinates (t, x, θ, ϕ) reads as [64]

ds2 ¼ −
�
1 − f þ ϵρq

ðΔþ a2sin2θÞ
Σ

�
dt2 − 2a

�
f − ϵρq

ðΔþ x2 þ a2Þ
Σ

�
sin2θdtdϕþ ð1þ ϵρqÞΣ

Δ
dx2

þ ð1 − ϵρqÞΣdθ2 þ
�
ðx2 þ a2 þ fa2sin2θÞ − ϵρq

ðx2 þ a2Þ2 þ a2Δsin2θ
Σ

�
sin2θdϕ2; ð1Þ
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where the correction term ϵ encodes the deviation of
charged rotating black holes in EiBI gravity to that of
the Kerr-Newman metric of general relativity. We have also
noted that

f ¼ rSx − r2q=2

Σ
¼ x2 þ a2 − Δ

Σ
Σ ¼ x2 þ a2cos2θ

Δ ¼ x2 − rSxþ a2 þ r2q=2; ð2Þ

and

ρq ¼ r2q
2Σ2

; ð3Þ

which can be viewed as the energy density of a charged
rotating black holes whose electromagnetic field is de-
scribed by

Aμ ¼ ðAt; 0; 0; AϕÞ ¼
Qx
Σ

ð1; 0; 0;−asin2θÞ; ð4Þ

from which we can immediately get the required compo-
nents of the field strength tensor Fμν ¼ ∇μAν −∇νAμ. The
quantity a is the spin angular momentum of the black holes,
and rq is the charge parameter. The rotating black holes (1)
in EiBI gravity encompass the Kerr-Newman black hole
when ϵ ¼ 0 and Kerr black holes in the case of rq ¼ 0. To
calculate the various observables in the study of the strong
lensing, we are in a position to introduce the dimensionless
quantities

x →
x
rS

; a →
a
rS

; t →
t
rS

; rq →
rq
rS

; ð5Þ

with this, the metric (1) is recast as

ds2 ¼ −
�
1 − f̃ þ ϵρ̃q

ðΔ̃þ a2sin2θÞ
Σ̃

�
dt2 − 2a

�
f̃ − ϵρ̃q

ðΔ̃þ x2 þ a2Þ
Σ̃

�
sin2θdtdϕþ ð1þ ϵρ̃qÞΣ̃

Δ̃
dx2

þ ð1 − ϵρ̃qÞΣ̃dθ2 þ
�
ðx2 þ a2 þ f̃x2sin2θÞ − ϵρ̃q

ðx2 þ a2Þ2 þ a2Δ̃sin2θ
Σ̃

�
sin2θdϕ2: ð6Þ

We have also noted that

f̃ ¼ x − r2q=2

Σ̃
¼ x2 þ a2 − Δ̃

Σ̃
Σ̃ ¼ x2 þ a2cos2θ

Δ̃ ¼ x2 − xþ a2 þ r2q=2 ð7Þ

and

ρ̃q ¼ r2q

2Σ̃2
; ð8Þ

The rotating black holes in EiBI gravity are stationary
axially symmetric spacetimes which are invariant under the
simultaneous transformation t → −t and ϕ → −ϕþ 2π.
Therefore, the metric (6) admits two Killing vectors, ημðtÞ ¼
δμt and ημðϕÞ ¼ δμϕ, which are linearly independent. The

vectors ημðtÞ and ημðϕÞ are associated, respectively, with the

translational and rotational isometries [65]. The event
horizon is a well-defined boundary that is a null hyper-
surface, and it comprises the outward null geodesics which
are not capable of hitting the null infinity in the future. The
event horizon is a solution of gxx ¼ Δ̃ ¼ 0, which leads to
the form

x� ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ða2 þ r2q=2Þ

q
2

: ð9Þ

which has the same expression as of the Kerr-Newman
black holes. Therefore, the event horizon of the rotating
black holes in EiBI black holes theory has structure similar
to that of the Kerr-Newman black holes. However, the static
limit surface is not the same as gKNtt ≠ gEiBItt . The black hole
exists only in the limit when a2 ≤ 1=4 − r2q=2. The maxi-
mum value of the rotation parameter turns out to be
a ¼ 0.5, for rq ¼ 0. For any nonzero value of the parameter
rq, the rotation parameter has value less than 0.5. The left
side of Fig. 1 shows the variation of the horizon x� with
respect to the rotation parameter a. The blue dotted curve
represents the Cauchy horizon, x−, whereas the black solid
line represents the event horizon, xþ. Similarly, the right
figure shows the parameter space of the charge parameter
rq with respect to the rotation parameter a. The shaded
region in this plot shows the no-black-hole spacetime. This
figure shows the restricted theoretical values of rq and a.
Given the opportunities available for testing the alter-

native theories of gravity, the physical implications of such
black hole solutions and the analysis of their various
features is very timely in the context of astrophysical
settings. From the data available from various experimental
setups such as the EHT, the LIGO Scientific Collaboration,
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and the Virgo Collaboration, one can study the potential
deviations of the Kerr-Newman black holes in general
relativity in the study of accretion disks, strong gravita-
tional lensing and shadows, generation of gravitational
waves in binary mergers, and so on, from that of the
rotating solutions that arise from the EiBI gravity.

III. EQUATORIAL BLACK HOLE LENSING

In this section, we investigate the equatorial (θ ¼ π=2)
light bending due to the rotating black holes in EiBI gravity.
The effects of the deformation parameter ϵ, the charge
parameter rq, and the spin a on the equatorial lensing will
also be investigated. The metric (6) for the equatorial plane
reads as

ds2 ¼−AðxÞdt2þBðxÞdx2þCðxÞdϕ2−DðxÞdtdϕ; ð10Þ
where

AðxÞ ¼
�
1 −

1

x
þ r2q
2x2

�
1þ ϵ

x2

�
1 −

1

x
þ 2a2 þ r2q=2

2x2

��
;

BðxÞ ¼ x2 þ ϵr2q
2x2

Δ̃
;

CðxÞ ¼ x2 þ a2 þ x − r2q=2 −
ϵr2q
2x4

ðx2 þ a2Þ2 þ a2Δ̃
x2

;

DðxÞ ¼ 2a

�
x − r2q=2 −

ϵr2q
2x4

ðx2 þ a2Þ þ Δ̃
x2

�
; ð11Þ

where Δ̃ ¼ x2 þ a2 − xþ r2q=2. We write the Lagrangian

L ¼ gμν _xμ _xν; ð12Þ
which is used to find the geodesics equation. The overdot
describes the derivative with respect to the affinely para-
metrized variable, say, λ. The metric (10) admits two Killing
vectors due to time translation and rotation, which corre-
spond, respectively, to the constant energy E and the constant
angular momentum l such that

2E ¼ ∂L
∂_t ¼ gtt_tþ gtϕ _ϕ; ð13Þ

−2l ¼ ∂L
∂ _ϕ ¼ gtϕ_tþ gϕϕ _ϕ: ð14Þ

We consider E ¼ 1 by suitably choosing the affine parameter
and identify l as the angular momentum of the photon with
respect to the black hole axis. We have four first-order
differential equations in the equatorial plane using Eqs. (13)
and (14) and also the null geodesics conditions ds2 ¼ 0 as

_t ¼ 4C − 2lD
4ACþD2

; ð15Þ

_θ ¼ 0; ð16Þ

_ϕ ¼ 2Dþ 4Al
4ACþD2

; ð17Þ

_x ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C −Dl − Al2

Bð4ACþD2Þ

s
: ð18Þ

Since we are interested in the study of the photon trajectories
in the isolated black hole system, we can safely ignore the
effect of the other celestial objects on the trajectory of the
photon and can well approximate the spacetime as
Minkowskian at a large enough distance. We assume that
both the source and the observer are situated at a large
distance from the black holes under study. This will satisfy
our purpose for studying the lensing phenomena on the
equatorial plane.
Now, we need to focus on the effective potential for light

rays, Veff , which they follow in the radial direction only.
The effective potential follows from the relation _x2 þ
VeffðxÞ ¼ 0 and is given by

VeffðxÞ ¼ −
4ðC −Dl − Al2Þ
Bð4ACþD2Þ : ð19Þ

FIG. 1. The plot of horizon radius vs the rotation parameter for rq ¼ 0.45 (left) and the charge parameter vs the rotation parameter
(right).
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At this point, it is worth it to understand that in the asymptotic limit the photons emanating from infinity approaches the
black hole event horizon at some distance x0 and leaves for infinity again. The impact parameter u ¼ l=E ¼ l (E ¼ 1) is
defined in the equatorial plane. Therefore, for Veff ¼ 0, the expression for the angular momentum l reads

l ¼ u ¼ −D0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

0 þ 4A0C0

p
2A0

;

¼
ϵð4a3rq2 þ arq4 þ 4arq2x02 − 2arq2x0Þ þ

ffiffiffi
2

p
x02

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2a2 þ rq2 þ 2ðx0 − 1Þx0Þð4x08 − rq4ϵ2Þ

q
ϵð4a2rq2 þ rq4 þ 2rq2x02 − 2rq2x0Þ þ 2rq2x04 þ 4ðx0 − 1Þx05

þ 2arq2x04 − 4ax05

ϵð4a2rq2 þ rq4 þ 2rq2x02 − 2rq2x0Þ þ 2rq2x04 þ 4ðx0 − 1Þx05
: ð20Þ

Hence, the expression for the impact parameter u can be
obtained once we get the expression for x0. The “þ” sign in
front of the square root is meant for a > 0, which indicates
the prograde motion for light rays, and for a < 0, we have
retrograde motion. The light deflection angle in a generic
stationary axisymmetric spacetime for x0 is expressed as

αDðx0Þ ¼ Iðx0Þ − π; ð21Þ

where the total azimuthal angle Iðx0Þ reads

Iðx0Þ¼2

Z
∞

x0

dϕ
dx

dx¼2

Z
∞

x0

P1ðx;x0ÞP2ðx;x0Þdx; ð22Þ

P1ðx; x0Þ ¼
ffiffiffiffi
B

p ð2A0ALþ A0DÞffiffiffiffiffiffiffiffiffi
CA0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ACþD2

p ;

P2ðx; x0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A0 − AC0

C þ L
C ðAD0 − A0DÞ

q : ð23Þ

The light rays follow a straight line along the geodesics
when no black hole is present, thereby indicating
Iðx0Þ ¼ π. For a specific value of x0, one can get
αDðx0Þ ¼ 2π, which means that the light rays would
complete a whole circular loop. It goes on decreasing,
which eventually leads to forming more than one complete
loop, and at a certain radius, say, x0 ¼ xm, the total
azimuthal deflection becomes infinitely large, and the light
rays will be impinged into the black hole. This quantity xm
is called the unstable light rays’ circular radius. An explicit
expression for the integral (22) is not obtained. Therefore,
following the method as developed by Bozza [24], we

calculate the behavior of the deflection angle near the
unstable photon orbit radius. In this respect, we define a
new variable to separate the divergent and regular parts in
Iðx0Þ, such that [24]

z ¼ 1 −
x0
x
: ð24Þ

With this definition the quantity Iðx0Þ is now expressed as

Iðx0Þ ¼
Z

1

0

Rðz; x0Þfðz; x0Þdz; ð25Þ

where

Rðz; x0Þ ¼
2x2

x0
P1ðx; x0Þ; ð26Þ

fðz; x0Þ ¼ P2ðx; x0Þ: ð27Þ

The function Rðz; x0Þ in Iðx0Þ is nonsingular in nature for
any value of z and x0, whereas the function fðz; x0Þ is
divergent at z ¼ 0. To show explicitly the nature, we can
Taylor expand the denominator of the function fðz; x0Þ in z
such that

fðz; x0Þ ∼ f0ðz; x0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αzþ γz2 þOðz3Þ
p ; ð28Þ

where we have considered the expansion up to z2 only. The
parameters α and γ are given as

α ¼ x0
C0

½ðC0
0A0 − A0

0C0Þ þ LðA0
0D0 − A0D0

0Þ� ð29Þ

γ ¼ x0
2C2

0

½2C0ðA0C0
0 − A0

0C0Þ þ 2x0C0
0ðC0A0

0 − A0C0
0Þ − x0C0ðC0A00

0 − A0C00
0Þ�

þ L

�
x20C

0
0ðA0D0

0 −D0A0
0Þ

C0
2

þ ðx20=2ÞðD0A00
0 − A0D00

0Þ þ x0ðD0A0
0 − A0D0

0ÞÞ
C0

�
: ð30Þ
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Now, we find the photon orbit radius xm, as the largest real root of the Eq. (29), such that

− 16a4ðrq6ϵ3 − 12rq2x80ϵÞ − 4a2ð8x120 ðx0 − rq2Þ − 36rq2x80ϵðrq2 þ 2ðx0 − 1Þx0Þ
þ 3rq6ϵ3ðrq2 þ 2ðx0 − 1Þx0Þ − 2rq4x40ϵ

2ðrq2 þ x0ð4x0 − 3ÞÞÞ − ð−rq6ϵ2 þ rq4x0ϵð8x30 þ ϵÞ
þ 4rq2x50ðx30 þ 4ðx0 − 1ÞϵÞ − 4x90Þð2

ffiffiffi
2

p
a − 8

ffiffiffi
2

p
a3rq2ϵð6x40 − rq2ϵÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Δ̃0ð4x80 − rq4ϵ2Þ

q
− ðrq2 þ 2ðx0 − 1Þx0Þðrq2ϵþ 2x40Þð2rq6ϵ2 þ rq4x0ϵð−8x30 þ 2x0ϵ − 3ϵÞ
− 8rq2x50ðx30 þ 2ðx0 − 1ÞϵÞ þ 4ð3 − 2x0Þx90Þ ¼ 0; ð31Þ

where Δ̃0 is the value of Δ̃ at x ¼ x0. When one solves
Eq. (31), one can get the value of the quantity xm as a
function of a, rq, and ϵ. The dependence of the spin a on xm
has been depicted in Fig. 2 for a set of values of ϵ and rq.
In the limit x0 → xm, the quantity α ¼ 0, and conse-

quently, we have fðz; x0Þ ≈ 1=z; thereby, the integral (25)
becomes infinitely large as z → 0. We write the integral
(25) as a combination of divergence and regular parts
such that

Iðx0Þ ¼ IDðx0Þ þ IRðx0Þ; ð32Þ

with

IDðx0Þ ¼
Z

1

0

Rð0; xmÞf0ðz; x0Þdz; ð33Þ

IRðx0Þ¼
Z

1

0

½Rðz;x0Þfðz;x0Þ−Rð0;x0Þf0ðz;x0Þ�dz: ð34Þ

The integral (33) has an analytical solution:

IDðx0Þ ¼
2Rð0; xmÞffiffiffi

γ
p log

� ffiffiffiffiffiffiffiffiffiffiffi
γ þ α

p þ ffiffiffi
γ

pffiffiffi
α

p
�
: ð35Þ

As α ¼ 0 at x0 ¼ xm, the right-hand side of Eq. (33) has a
infinity at x0 ¼ xm, as can be seen from the expression
inside the logarithm above. Therefore, the regular part is

FIG. 2. Plot showing the variation of the photon orbit radius xm (upper panel) and the impact parameter um (lower panel) with respect
to the rotation parameter a for different values of rq and ϵ.
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contained in the integral of Eq. (34). Since it has significant
contribution up to order of ðx0 − xmÞ, we can take the
regular parts as

IRðxmÞ ¼
Z

1

0

½Rðz; xmÞfðz; xmÞ − Rð0; xmÞf0ðz; xmÞ�dz;

ð36Þ

whose behavior can be seen from the numerical plots,
Fig. 4. Now, using Eqs. (35) and (36), we express the
quantity αD as

αDðθÞ ¼ −p log

�
θDOL

um
− 1

�
þ qþOðu − umÞ; ð37Þ

where the quantities p and q in Eq. (37) for the strong
gravitational field limit are cast as

p¼Rð0;xmÞ
2

ffiffiffiffiffi
γm

p ; and q¼−πþ IRðxmÞþp log
cx2m
u2m

; ð38Þ

which is a polynomial of various parameters and is
expressed as

p ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrq2ϵþ 2x04Þð2rq2ð2a2ϵþ x04 þ ðx0 − 1Þx0ϵÞ þ rq4ϵþ 4ðx0 − 1Þx05Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2 þ rq2 þ 2ðx0 − 1Þx0

q ffiffiffiffiffiffiffiffiffiffi
c1γm

p ; ð39Þ

where

c1 ¼ 2x04ða2ð2x0ðx0 þ 1Þ − rq2Þ þ 2x04Þ
− rq2ϵð4a4 þ a2ðrq2 þ 2x0ð3x0 − 1ÞÞ þ 2x04Þ: ð40Þ

Series expanding Eq. (20) in terms of ðx0 − xmÞ, we have

u − um ≈ c2ðx0 − xmÞ2: ð41Þ
The analytical expression for c2 is very large, and we do not
write it here. We use the expression of c2 in the numerical

FIG. 3. The behavior of the deflection coefficient p vs the spin a (upper panel) and the variation of the coefficient q with spin a (lower
panel) for different values of rq and ϵ.
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investigations of the light deflection coefficients p and q.
Remember that all the expressions with the subscript m are
obtained at x0 ¼ xm. The quantities p and q, in Eq. (39),
appear in the calculation of the total azimuthal angle, and
they are called the deflection coefficients in the strong-field
regime. We plot them in Fig. 3, which depicts that p and q
show the opposite behavior with the different values of spin
parameter a. As expected, these quantities become infi-
nitely large as we increase the values of a, thereby
indicating the validity of the coefficients at higher rotation
parameter ceases to exist. As a limiting case, those results
of strong-field deflection coefficients reduce to the corre-
sponding limits of Kerr-Newman black holes when ϵ → 0,
the Kerr black holes when rq → 0, and also the Schwarzs-
child black holes when a → 0, rq → 0, and ϵ → 0.

IV. OBSERVABLES AND
RELATIVISTIC IMAGES

In this section, we discuss about the strong gravitational
lensing with the help of lens equations. There exist several
methods to describe the lens equations, as they principally
dependent on different choices of the variables. In describ-
ing the gravitational lensing, we place the black hole at the
origin such that at one side there is the observer and at

another side there is the light source. The light rays coming
from the illuminating source (S) deviate from their original
path while passing the black hole (L) due to the curvature
and ultimately reach the observer (O). The line connecting
the black holes and the observer and the image that the
observer sees is an optical axis OL, and it will be deviated
at an angle θ with respect to OL. Similarly, the light source
will be aligned at β angle with OL. The emitted light rays
make an angle αDðθÞ when detected by the observer.
As mentioned earlier, there are various mathematical

formulations to interpret the lensing phenomena. Among
them, the Ohanian lens equation is the best approximation
[54] to describe the positions of observer and the source as

ξ ¼ DOL þDLS

DLS
θ − αDðθÞ; ð42Þ

where the angle ξ ∈ ½−π; π� connects the optical axis and
the source directions. DOL is the lens to the observer
distance, while DLS is the lens to source distance. The
angles ξ and β are found to follow the relation [54,63]

DOL

sinðξ − βÞ ¼
DLS

sin β
: ð43Þ

FIG. 4. Plot showing the behavior of the light deflection angle for different values of rq and ϵ. Points on the horizontal shows the
divergence of the deflection angle at u ¼ um.
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For the completeness of the above relations, we choose θ, ξ,
and β to be tinier because in this case the relativistic images
formed by the black holes are prominent. The light rays
come from source S and make many loops while encoun-
tering the black holes, so the deflection angle α is replaced
by 2nπ þ Δαn, where the integer n ∈ N represents the
number that counts the loops and 0 < Δαn ≪ 1.
Equation (42), together with Eq. (43) for smaller values
of θ, is rewritten as

β ¼ θ −
DLS

DOL þDLS
Δαn: ð44Þ

Next, Eq. (44) is utilized to extract the information
regarding the image positions. For a critical impact param-
eter um, which is a function of the distance of the photon
orbit radius xm, αDðθÞ becomes infinitely large. For each
loop of the light rays, there is a certain value of the impact
parameter, u, at which the light rays reaches from source to
the observer. Therefore, on both sides of the black holes, an
infinite number of relativistic images are constructed. Now,
Eq. (37) with αDðθn0Þ ¼ 2nπ reads as

θn
0 ¼ um

DOL
ð1þ enÞ; ð45Þ

where

en ¼ e
q−2nπ

p : ð46Þ

The Taylor expansion of the deflection angle αDðθÞ
around θn

0 to the first order in ðθ − θn
0Þ reads [63]

αDðθÞ¼αDðθn0Þþ
∂αDðθÞ
∂θ

����
θn

0

ðθ−θn
0ÞþOðθ−θn

0Þ: ð47Þ

On utilizing Eq. (45) and defining Δθn ¼ ðθ − θn
0Þ,

one gets

Δαn ¼ −
pDOL

umen
Δθn: ð48Þ

Now, the final expression for the lens equation (44)
reads [63]

β ¼ ðθn0 þ ΔθnÞ þ
DLS

DOL þDLS

�
pDOL

umen
Δθn

�
: ð49Þ

Substituting the value of Δθn ¼ ðθ − θn
0Þ and then ignor-

ing the second term in Eq. (49) as it contributes much less
than compared to the second term, we have

θn ¼ θn
0 þDOL þDLS

DLS

umen
DOLp

ðβ − θn
0Þ: ð50Þ

Next, we discuss the most striking features of the gravita-
tional lensing, the formation of the Einstein’s ring. Einsten’s
rings are formed when we have the point lens perfectly
aligned in the line of sight of the source such that the light
from the source is spreading in all directions equally. The
complex lens systems may lead to the formation of multiple
Einstein rings [22,54,56]. Moreover, a partial double
Einstein ring was also found in Ref. [57] in which the
authors mentioned that these rings are created from two
sources located at different distances from the lens. The
relativistic Einstein’s rings are formed when the deflection
angle α ≥ 2π. For the lens and the observer to be perfectly
oriented (β ¼ 0) and the lens to be situated perfectly at the
center of the observer and the source, thenEq. (50) reads [63]

θEn ¼
�
1 −

2umen
DOLp

��
um
DOL

ð1þ enÞ
�
: ð51Þ

For DOL ≫ um, the angular radius () for Einstein’s ring
reduces to

θEn ¼ um
DOL

ð1þ enÞ: ð52Þ

It is worth it to mention that θE1 is the angular position of
the outermost ring. Figure 5 depicts the angular position θE1
various black holes. Like Einstein’s, one of the most
important quantities is the image magnification, which is
viewed as the ratio of solid angles made by the image and
the source with the central object, such that for the nth
image the magnification is defined as [24,58]

μn ¼
1

β

�
um
DOL

ð1þ enÞ
�
DOS

DLS

umen
DOLp

��
: ð53Þ

As expected, the magnification decreases, and the image
becomes fainter as n increases. We have from Ref. [24] the

FIG. 5. Plots for the outermost Einstein rings for black holes at
the center of nearby galaxies in the framework of Schwarzschild
geometry. The red line corresponds to SgrA*, and green line
corresponds to M87 [63].

GRAVITATIONAL LENSING FOR STATIONARY AXISYMMETRIC … PHYS. REV. D 105, 024062 (2022)

024062-9



important observables describing the rotating black holes in
EiBI gravity theory as

θ∞ ¼ um
DOL

ð54Þ

s ¼ θ1 − θ∞ ≈ θ∞ðe
q−2π
p Þ ð55Þ

rmag ¼
μ1P∞
n¼2 μn

≈ e
2π
p ; ð56Þ

where s is the angular separation between the first image
(n ¼ 1) and the rest of the images which are supposedly
packed at θ∞, rmag is the ratio of the fluxmagnification of the
first image and sum of the flux magnification of all the other

images. We plot these observables in a realistic scenario of
various black holes, such as the Sgr A*, M87 [66]. We
considerM ¼ 4.3 × 106 M⊙ and d ¼ 8.35 Kpc [67] for Sgr
A* and M ¼ 6.5 × 109 M⊙ and d ¼ 16.8 Mpc for M87
[16]. From the plots in Figs. 6 and 7 it is clear that the angular
separation increases but the angular position (θ∞) and the
flux magnitude (rmag) decrease with different values of rq
and ε.
We tabulated the values of the pair ða; 2θ∞Þ for a fixed

value of the rotation parameter rq=rS ¼ 0.15 (one should
remember that rS ¼ 2M is the Schwarzschild radius, where
M is the mass of the EiBI black hole). We can estimate the
value of the deflection angle for M87 black holes using the

FIG. 6. Plot showing the variation of lensing observables θ∞, s, and rmag as a function of a for different values of rq and ϵ for SgrA*.
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restricted values of the parameters rq and ϵ. If we assume
the parametric values of these parameters as tabulated in
Table I, we can see that we have the diameter of the photon
ring of the M87 black holes as reported by the EHT
Collaboration. Although, we do not get the upper bound of
the diameter of the photon ring, i.e., 45 μas, as reported by
EHT, we get the values 42 and 39 μas, as the bound lies as
42� 3 μas (see the tabulated values for the M87 black
holes for the reference).
For a consistency check, we have also calculated the

diameter of the photon ring of the SgrA*. We see that if we
allow the window of 2θ∞ ¼ 42� 3 μas for the diameter of
the photon ring for the SgrA* then, for the particular values

of the parameters rq and a, we always have the satisfactory
results. We have tabulated them in Table II.

V. WEAK GRAVITATIONAL LENSING

In the present section, we deal with the weak lensing of
the rotating charged black holes in EiBI theory. We rewrite
the metric in usual (t; r; θ;ϕ) coordinates to get the form

ds2 ¼ −Xðr; θÞdt2 − 2Uðr; θÞdtdϕþ Yðr; θÞdr2
þ Zðr; θÞdθ2 þ Vðr; θÞdϕ2; ð57Þ

where the form of Xðr; θÞ, Yðr; θÞ, Zðr; θÞ, Vðr; θÞ, and
Uðr; θÞ can be seen when we compare the metric (1)

FIG. 7. Plot showing the variation of lensing observables θ∞, s, and rmag as a function of a for different values of rq and ϵ for M87.
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with (57). We consider only the null rays for the propa-
gation, which is seen by computing ds2 ¼ 0 for dt as

dt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γijdxidxj

q
þ Nidxi; ð58Þ

where i, j ¼ 1, 2, 3 and γij and Ni are defined accord-
ingly as

γijdxidxj ≡ Yðr; θÞ
Xðr; θÞ dr

2 þ Zðr; θÞ
Xðr; θÞ dθ

2

þ Xðr; θÞVðr; θÞ þU2ðr; θÞ
A2ðr; θÞ dϕ2; ð59Þ

Nidxi ≡ −
Uðr; θÞ
Xðr; θÞ dϕ: ð60Þ

The properties of the γij are followed from the relation
γijγjk ¼ δik. γij encodes the properties of a three-
dimensional Riemannian space in which the trajectories
of the null rays are described by the motion along a
spatial curve.
Now, we use the metric (59) and then the Gauss-Bonnet

theorem to have the definition of the light deflection angle,
which is described as [68–70]

αD ¼ −
Z Z

∞
O
□∞

S

KdSþ
Z

O

S
kgdl; ð61Þ

where K is the curvature of the 3-surface along which light
propagates, kg is the geodesics curvature of the light curves,
dS is the area element, and dl is the line element. We define
the curvature of the 3-surface at the equatorial plane
(θ ¼ π=2) as

K ¼
3Rrϕrϕ

γ
;

¼ 1ffiffiffi
γ

p
� ∂
∂ϕ

� ffiffiffi
γ

p
γrr

ð3ÞΓϕ
rr

�
−

∂
∂r

� ffiffiffi
γ

p
γrr

ð3ÞΓϕ
rϕ

��
; ð62Þ

where γ is the determinant of the metric when θ ¼ π=2.
For the rotating axially symmetric spacetime, Eq. (62)
becomes [69,70]

K¼−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X3

YðXVþU2Þ

s
∂
∂r

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X3

YðXVþU2Þ

s
∂
∂r

�
XVþU2

X2

��
:

ð63Þ

Therefore, K is evaluated to be

K ¼
�
3r2q
2x4

þ 3ϵr2q þ r2qa2

x6

�
−
�
1

x3
þ 6a2 þ 3r2q þ 2ϵr2q

x5

�
rS

þ
�

3

4x4
þ−6a2 þ ϵr2q þ 5r2q

2x6

�
r2S

þO
�
a2ϵr2S
x8

;
r2qϵ2r2S
x8

;
a2r2qr2S
x8

;
r3S
x5

�
: ð64Þ

It is clear that to calculate the leading-order contribution we
approximated the calculations to the weak-field limit, and
all the higher-order terms are safely ignored. The Gaussian
curvature is integrated over the quadrilateral which is
closed so that [71]Z Z

∞
O
□∞

S

KdS ¼
Z

ϕO

ϕS

Z
x0

∞
K

ffiffiffi
γ

p
drdϕ; ð65Þ

where x0 is the closest distance to the black hole. On
utilizing Eqs. (17) and (18) and choosing u ¼ 1=x, we can
express the equation for light orbit as

TABLE I. The table shows the set values of the spin parameter
a and the full deflection angle, i.e., a; 2θ∞ of rotating EiBI black
hole with the charge parameter rq=rS ¼ 0.15, and ϵ=r2S ¼ 0.0
(first column), ϵ=r2S ¼ 0.1 (second column), and ϵ=r2S ¼ 0.15
(third column) as a model to the M87 black holes.

a; 2θ∞ðμasÞ a; 2θ∞ðμasÞ a; 2θ∞ðμasÞ
(0.0,42.285) (0.0, 42.2752) (0.0, 42.2703)
(0.0104,42) (0.0102,42) (0.0084, 42)
(0.05,40.6065) (0.05, 40.5963) (0.05, 40.5912)
(0.0963,39) (0.0963, 39) (0.0960, 39)
(0.1,38.8696) (0.1, 38.859) (0.1, 38.8536)
(0.15,37.06241) (0.15, 37.0513) (0.15, 37.0457)
(0.2,35.1682) (0.2,35.1566) (0.2, 35.1507)
(0.25,33.1626) (0.25,33.1504) (0.25, 33.1442)
(0.3,31.0074) (0.3, 30.9945) (0.3, 30.988)
(0.35,28.6361) (0.35, 28.6225) (0.35, 28.6157)
(0.4,25.9127) (0.4,25.8985) (0.4, 25.8914)
(0.45,22.4438) (0.45, 22.4298) (0.45, 22.4228)

TABLE II. The table shows the set values of the spin parameter
a and the full deflection angle, i.e., ða; 2θ∞Þ of a rotating EiBI
black hole with the charge parameter rq=rS ¼ 0.15, and ϵ=r2S ¼
0.0 (first column), ϵ=r2S ¼ 0.1 (second column), and ϵ=r2S ¼ 0.15
(third column) as a model to the SgrA*.

ða; 2θ∞ðμasÞÞ ða; 2θ∞ðμasÞÞ ða; 2θ∞ðμasÞÞ
(0.0,50.6784) (0.0, 50.6666) (0.0, 50.6608)
(0.05,48.6666) (0.05, 48.6544) (0.05, 48.6483)
(0.1,46.585) (0.1, 46.5722) (0.1, 46.5659)
(0.1361,45) (0.136, 45) (0.1363, 45)
(0.15,44.4191) (0.15, 44.4058) (0.15, 44.3991)
(0.2,42.1489) (0.2, 42.1349) (0.2, 42.1279)
(0.2031,42) (0.202, 42) (0.204,42)
(0.25,39.7452) (0.25,39.73057) (0.25, 39.723)
(0.2648,39) (0.26420, 39) (0.265, 39)
(0.3,37.1622) (0.3, 37.1467) (0.3, 37.1389)
(0.35,34.3202) (0.35,34.3039) (0.35,34.2958)
(0.4,31.0562) (0.4, 31.0392) (0.4, 31.0306)
(0.45,26.8988) (0.45, 26.882) (0.45, 26.8736)
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�
du
dϕ

�
2

¼ FðuÞ; ð66Þ

with

FðuÞ ¼ u4ðXU þ V2ÞðU − 2Vb − Xb2Þ
ðYðV þ XbÞÞ2 ; ð67Þ

with b≡ l=E defined as the impact parameter. Using the
weak-field solution u ¼ ðsinϕÞ=bþOðrS; r2SÞ [71],
Eq. (65) reduces toZ Z

∞
O
□∞

S

KdS ¼
Z

ϕO

ϕS

Z sinϕ
b

0

−
K

ffiffiffi
γ

p
u2

dudϕ: ð68Þ

Therefore, for the metric (59), the integral (68) reads as

ZZ
KdS ¼ rS

b

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2O

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2S

q 	
þ rSa2

3b3

�
ð2þ b2u2SÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2S

q
þ ð2þ b2u2OÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2O

q 	

−
rSr2q
3b3

�
ð16þ b2u2SÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2S

q
þ ð16þ b2u2OÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2O

q 	

−
11a2rSr2q
25b5

�
ð3b4u4S þ 4b2u2S þ 8Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2S

q
þ ð3b4u4O þ 4b2u2O þ 8Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2O

q 	

−
�
3r2q
8b

þ 3r2S
16b

��
uS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2S

q
þ uO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2O

q 	

− ðcos−1buS þ cos−1buOÞ
�
3r2q
8b2

þ 3a2r2q
8b4

−
15r2S
16b2

−
9r2Sa

2

16b4
−
9ϵr2q
16b4

−
27r2Sr

2
q

256b4

�

þ
�
−
a2r2q
8b3

−
15r2Sa

2

16b3
−
3ϵr2q
8b3

��
uSð3þ 2b2u2SÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2S

q
þ uOð3þ 2b2u2OÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2O

q 	

þO
�
a2r2qr2S
b6

;
r2qr2Sϵ

b6
;
r3S
b3

�
; ð69Þ

where uO and uS are defined, respectively, as cosϕo ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2O

p
, cosϕs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2S

p
. The geodesic curvature of the

manifold ð3ÞM is defined to be [71]

kg ¼ −
1ffiffiffiffiffiffiffiffi
γγθθ

p Nϕ;r; ð70Þ

which reflects the fact the a nonrotating black hole does not contribute to it, thereby making a crucial contribution to the
light deflection angle. Hence, the geodesic curvature for metric (59) reads

kg ¼
�

a
2x4

−
3arq2

4x6

�
rS2 þ

�
a
x3

−
3arq2

4x5

�
rS −

arq2

x4
−
4aϵrq2

x6
þO

�
r3Sa
x5

;
ar2Sr

2
qϵ

x8

�
: ð71Þ

We consider a coordinate system which is centered at the position of the lens, and we can take the approximation of the light
curve such that r ¼ b= cos ϑ and l ¼ b tanϑ [71]. Therefore, the geodesic curvature in its path integral form reads

Z
O

S
kgdl ¼

Z
O

S

��
a
b2

cos θ −
3

4

ar2q
b4

cos3θ

�
rS þ

�
a
2b3

cos2θ −
3

4

ar2q
b5

cos4θ

�
r2S −

ar2q
b3

cos2θ −
4aϵr2q
b5

cos4θ

�
dθ þO

�
r3Sa
b4

�

¼ −
rSa
b2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2S

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2O

q 	
þ
�
ar2q
2b2

−
r2Sa
b2

þ 9arqr2S
32b4

þ 3

2

ϵar2q
b4

��
uS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2S

q
þ uO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2O

q 	

þ
�
ar2q
2b3

−
r2Sa
4b3

−
45ar2qr2S
32b5

þ 3

2

aϵr2q
b5

�
ðcos−1buO þ cos−1buSÞ

−
15ar2qr2S
32b4

�
uSð3þ 2b2u2SÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2S

q
þ uOð3þ 2b2u2OÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2O

q 	

þ ϵar2q
2b4

�
uSð3þ 2b2u2SÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2S

q
þ uOð3þ 2b2u2OÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2O

q 	
þO

�
r3Sa
b4

;
r4Sar

2
q

b7

�
; ð72Þ
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In deriving the above expression, we adopted the prograde motion along the null geodesics (dl > 0), while for dl < 0, we
obtain the retrograde motion with the extra terms with the “−” sign. For asymptotically large distances, we have uO → 0
and uS → 0, so the deflection angle gives us the expression

αD ¼
�
aπr2q
2b3

−
3πr2q
8b2

−
3πa2r2q
8b4

−
9ϵπr2q
16b4

−
3ϵaπr2q
2b5

�
þ
�
4

b
−
4a
b2

þ 8a2

3b3
þ 32r2q

6b3
þ 176a2r2q

50b5

�
rS

þ
�
15π

16b2
−
aπ
b3

þ 9πa2

16b4
þ 27πr2q
256b4

−
45πar2q
32b5

�
r2S þO

�
r3S
b3

;
r4S
b4

�
; ð73Þ

which reduces the Kerr-Newman limit of the deflection angle [50] when ϵ → 0, such that

αKND ¼
�
aπr2q
2b3

−
3πr2q
8b2

−
3πa2r2q
8b4

�
þ
�
4

b
−
4a
b2

þ 8a2

3b3
þ 32r2q

6b3
þ 176a2r2q

50b5

�
rS

þ
�
15π

16b2
−
aπ
b3

þ 9πa2

16b4
þ 27πr2q
256b4

−
45πar2q
32b5

�
r2S þO

�
r3S
b3

;
r4S
b4

�
; ð74Þ

which in addition for rq → 0 reduces to the expression for the deflection angle for Kerr black holes [69,70]

αKerrD ¼
�
4

b
−
4a
b2

þ 8a2

3b3

�
M þ

�
15π

4b2
−
aπ
b3

þ 9πa2

4b4

�
M2 þO

�
M3

b3
;
M4

b4

�
: ð75Þ

For the nonrotating (a ¼ 0) black hole in EiBI theory, the deflection angle has the form

αD ¼
�
−
3πr2q
8b2

−
9ϵπr2q
16b4

�
þ
�
4

b
þ 32r2q

6b3

�
rS þ

�
15π

16b2
þ 27πr2q
256b4

�
r2S þO

�
r3S
b3

;
r4S
b4

�
: ð76Þ

VI. CONCLUSIONS

The general theory of relativity has been tested, and the
theory incredibly matches with the local astrophysical
evidences. The black holes are one of the strangest objects
thatwerepredicted in general relativity, but still there are only
few concepts which have been verified on the experimental
level. The experimental discovery that the black hole
solutions such as Schwarzschild and Kerr metrics are not
the actual real black holes would have pointed to a strong-
field deviation from general relativity having deep implica-
tions at the fundamental level. In the present paper, we
investigated the gravitational lensing in the strong-field
approximation of the black holes in EiBI theory. Using
the standard procedure for calculating the impact parameter,
we study numerically the total azimuthal deflection αD of
light rays.We find that the charge parameter rq and theBorn-
Infeld parameter ϵ influence the null geodesics. The coef-
ficients p and q also have been obtained and plotted
numerically, which shows that with fixed values of the
charge rq the coefficient p increases with rotation parameter
a, while q is decreasing with a. Figure 3 shows that the
coefficients p and q share the same property as those of
Kerr-Newman (ϵ ¼ 0) and the stationary axially symmetric

black holes in EiBI theory (ϵ ≠ 0). The deflection angle αD
showed monotonic behavior with the rotation parameter a,
and it diverges atu ¼ um, which has been shownwith dots on
the horizon lines in Fig. 4. As an application to the realistic
scenario, we calculated the strong lensing observables s, θ∞,
and rmg for SgrA* and M87 black holes.
We further calculate the weak-field gravitational lensing

for the rotating black holes in EiBI theory. We have shown
that in the limit ϵ → 0 our results match with the Kerr-
Newman black holes. This way, all limit cases of Kerr black
holes (rq ¼ 0) are satisfied. Our results may be important
from a phenomenological point of view as the results from
EHT slightly deviate from the Kerr black holes. This way,
we can implement our investigations in the study of the
astrophysical scenario.
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