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Recent years have witnessed a surge of interest of the lensing of the black holes arising from general as
well as other modified theories of gravity due to the experimental data available from the Event Horizon
Telescope (EHT) results. The EHT may open a new door indicating the possible existence of the rotating
black hole solutions in modified theories of gravity in the strong field regime. With this motivation, we
investigate in the present paper the equatorial lensing (6 = 7/2) by a recently obtained exact rotating black
holes solution in Eddington-inspired Born-Infeld (EiBI) theory in both the strong- and weak-field limits.
Such black holes are the modification of Kerr-Newman black holes in general relativity, characterized by
their mass M, the charge Q, and the rotation parameter a. and an additional term ¢ accounting for the
correction to the Kerr-Newman solutions. We show numerically the variations of the impact parameter u,,,,
the light deflection coefficients p and ¢, and the total azimuthal bending angle ap and find a close
dependence of these quantities on the charge parameter r,, the correction term ¢, and the spin a. We also
calculate the angular position 8, the angular separation s, and the magnification of the relativistic images.
In addition, we also discuss the weak lensing of the black holes in Eddington-inspired Born-Infeld (EiBI)
theory using the Gauss-Bonnet theorem. We calculate the weak lensing parameter and find its variation

with different values of the parameters r, and e.
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I. INTRODUCTION

Einstein’s general relativity admits only a few exact
physically acceptable solutions [1]. Among these limited
solutions, we have the axially symmetric stationary sol-
utions, such as Kerr and Kerr-Newman, which are, respec-
tively, the vacuum and electrovacuum solutions of general
relativity [2—6]. These solutions are well established in the
context of no-hair theorems for the asymptotically flat
axisymmetric spacetimes. However, in the presence of hair,
no-hair theorems may find other solutions which are
characterized by some other parameters. An extension of
this possibility has been done in the case of scalar and Proca
hairs in the asymptotically de Sitter spacetimes [7]. It is also
shown in another investigation that the no-hair theorem
ruled out the possible existence of the real massive vector
field in f(R) theories as long as the potential due to the
scalar field is positive definite in Einstein’s frame [8]. To
check the Kerr black holes hypothesis to know the exact
nature of the astrophysical black holes is a proven fact that
has been tested many times using x-ray spectroscopy of the
accreting matter around the black holes [9,10], the strong
gravitational lensing, and the recently obtained images of
black holes silhouettes of M87 supermassive black holes
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using the Event Horizon Telescope (EHT) [11-16]. Apart
from these, gravitational wave astronomy confirms that the
gravitational waves emerging from black hole mergers
using the Kerr solution strongly match with the waveform
signals as detected by the LIGO Scientific and Virgo
collaborations [17,18]. But these results may not find their
validity in the strong gravity regime, and the alternative
theories of gravity may find a new resource to test the
strong gravity field with the more advanced future tech-
nologies [19]. The awakening of the gravitational wave
astronomy by LIGO/Virgo and the imaging of the shadow
of M87 black holes by the EHT may open a new door to the
physics world, particularly in the strong gravity regime
such as black hole physics. Since the astrophysical black
holes are mostly rotating, thereby obtaining the exact
rotating solutions in different gravity theories is a pressing
topic to test the strong gravity regime through gravitational
waves and imaging of black holes mostly residing pre-
sumably at the heart of every galaxy.

Having obtained a black hole solution, it is worth
investigating one of the most prominent astrophysical
events that occurred when light rays pass through such
compact objects. The light rays or any massive particles
while encountering the black holes, their direction of
propagation drastically changes. Light rays, instead of
following the straight path, would follow the curved path
that black holes have created in their surroundings. Such a
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phenomenon is called the gravitational lensing. After its
first-ever imaging of the silhouettes of the M87 super-
massive black holes by the EHT, the study of the lensing
phenomena in the strong gravity region has been of utmost
importance. The shadow imaging in the sky relies on the
gravitational lensing of strong field as encompassed by
light rays, thereby bearing the fingerprints of the geometry
of the strong field gravity. After its first inception by
Darwin [20], the studies on the lens equation and lensing
phenomena of the astrophysical compact objects were
triggered. Later Frittelli e al. [21] and then Virbhadra
[22] analyzed the lens equation without referring to the
black holes background. After that, the lens equation by
Virbhadra and Ellis for the Schwarzschild black holes was
constructed. In the subsequent years, Bozza et al. [23,24],
following the Virbhadra-Ellis lens equation, invented a
mathematical formulation of the gravitational lensing of a
generic black hole in a spherically symmetric spacetime.
Motivated by the formulation and with the advance of time,
people made tremendous developments in the investigation
of the strong gravitational lensing of the various static
spherically symmetric as well as axially symmetric sta-
tionary black hole spacetimes [25-40]. The light bending
phenomenon is analyzed to investigate and eventually to
rule out possible inhomogeneity of the dark energy in the
form of an ideal static fluid, within the maximum turn-
around radius of a cosmic structure [41]. The bending angle
and the perihelion precision of light for two different
spherically symmetric spacetimes in Hordeski gravity
theories in the realm of astrophysical scenarios also have
been investigated [42]. The gravitational lensing by black
holes has been investigated using both analytical and
numerical techniques [22,34,40,43-59]. With the advent
of modern technologies, the EHT group has been able to
image the black holes silhouettes using very long baseline
interferometry (VLBI) techniques [11-16]. They observed
the very first image of the shadow of the M87 supermassive
black holes by modeling the Kerr spacetime. These inves-
tigations from the EHT placed a strong piece of evidence at
first sight that there could be no other spacetimes apart from
the Kerr metric [11]. However, recently measured values of
the rotation parameter show uncertainties to what could
have been expected using the Kerr metric as a source [60].
Therefore, some minimal constraint conditions on the
angular measurement of the Kerr black holes should be
imposed [61]. Therefore, the non-Kerr black holes showing
|

z

the significant deviations in measurement procedures
cannot be a possible candidate from the phenomenological
point of view [61].

There has been a lot of research interest in the inves-
tigations of the strong gravitational lensing for a non-Kerr
family of black holes. The physical observables for the
lensing effect in the strong domain of gravity have been
investigated for various rotating non-Kerr spacetimes, e.g.,
the hairy Kerr black holes [62], the nonsingular Kerr-Sen
black holes [59], the rotating black holes in 4D Einstein
Gauss-Bonnet (EGB) gravity [63], etc. They studied
rigorously various observables, such as the light deflection
angle, the angular distance, and the angular separation and
angular magnifications and also the time delay effects to
investigate the astrophysical consequences in the context of
the black holes M87 and SgrA* [64]. Motivated by these
ideas, in this paper, we aim to discuss these physical
observables for strong lensing for the rotating solution in
the context of EiBI gravity theory. It is possible to test the
strong field gravitational effects using such a non-Kerr
family of black holes for a variety of observations.

The paper is organized as follows. In Sec. II, we briefly
review the rotating black holes in Eddington-inspired Born-
Infeld gravity. We give the usual formalism to derive the
strong lensing observable in Sec. III. The numerical
techniques and plots of the light deflection angle, the
angular distance, and the angular separations are obtained
in Sec. I'V. The derivations of the weak-field light bending
angle using the Gauss-Bonnet theorem is the subject of
Sec. V. We conclude the paper in Sec. VI.

I1. EIBI GRAVITY AND ROTATING SOLUTIONS

The rotating solutions in the Eddington-inspired Born-
Infeld gravity are obtained when one employs the corre-
spondence between modified models as a contraction of a
metric tensor with the Ricci scalars formulated in light of
general relativity and the Ricci-based gravity theories. For
the basic investigations and the properties of the rotating
black holes in EiBI gravity theories, we refer our reader to
Ref. [64] and the references therein. This is an exact
solution that is obtained when there is a nonminimal
coupling to nonlinear electrodynamics of Born-Infeld
gravity. The rotating black hole in Einstein-inspired
Born-Infeld gravity theories in the usual Boyer-Lindquist
coordinates (¢, x, 8, ¢) reads as [64]

A

A 25in26 A 2 2 1 0y
ds2=—(1—f+epqw>dt2—2a(f—ep47( +x2+a)>sin29dtd¢+7( TP o

+ (1 —ep?)Zdd* + [(X2 + a® + fa*sin*@) — ep?

(x* 4+ a*)? + a*Asin6
z

} sin?0dg?, (1)
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where the correction term e encodes the deviation of
charged rotating black holes in EiBI gravity to that of
the Kerr-Newman metric of general relativity. We have also
noted that

er—r§/2_x2—|-a2—A

f=ms 7 T
¥ = x? + a’cos’6
A=x*—rex+a*+r/2, (2)
and
2
,
4 =_9 3
P=55a 3)

which can be viewed as the energy density of a charged
rotating black holes whose electromagnetic field is de-
scribed by

B B A 2'29
dSZZ_(l _f+€pq%>

+ (1 — ep?)Xd6* + [(x2 + a? + fx%sin0) — ep? Al

We have also noted that

x—r§/2:x2+a2—ﬁ

f=—% s
3 = x% + d®cos?0
A:xz—x—i—az—{—ré/Z (7)
and
2
,
54 — 9
P (8)

The rotating black holes in EiBI gravity are stationary
axially symmetric spacetimes which are invariant under the
simultaneous transformation ¢t — —f and ¢ — —¢ + 27x.
Therefore, the metric (6) admits two Killing vectors, ;1’<‘ H=

& and ;1’( 5 = &y, which are linearly independent. The

vectors 17’(’ 9 and ;7‘(’ g) are associated, respectively, with the

translational and rotational isometries [65]. The event
horizon is a well-defined boundary that is a null hyper-
surface, and it comprises the outward null geodesics which
are not capable of hitting the null infinity in the future. The
event horizon is a solution of ¢** = A= 0, which leads to
the form

df* —2a (}

Ox

Ay = (41.0.0.4,) = < (1.0.0.~asin0).  (4)

from which we can immediately get the required compo-
nents of the field strength tensor F,, = V,A, =V, A,. The
quantity a is the spin angular momentum of the black holes,
and r, is the charge parameter. The rotating black holes (1)
in EiBI gravity encompass the Kerr-Newman black hole
when e = 0 and Kerr black holes in the case of r, = 0. To
calculate the various observables in the study of the strong
lensing, we are in a position to introduce the dimensionless
quantities

X
X - —,
rs r's rs r's

with this, the metric (1) is recast as

- (A +x* + a? 1 +ep?)E
—epl (A+x +a )> sin®0dtdeg + %d}c2
2 2\2 2& 0
o +a) ; aosmn }smzedqﬁz (6)

1+,/1-4(a®+13/2)
Xy = ¢ — 9)

which has the same expression as of the Kerr-Newman
black holes. Therefore, the event horizon of the rotating
black holes in EiBI black holes theory has structure similar
to that of the Kerr-Newman black holes. However, the static
limit surface is not the same as g&N # ¢FBl. The black hole
exists only in the limit when a* < 1/4 — rZ/2. The maxi-
mum value of the rotation parameter turns out to be
a = 0.5, for r, = 0. For any nonzero value of the parameter
rq» the rotation parameter has value less than 0.5. The left
side of Fig. 1 shows the variation of the horizon x. with
respect to the rotation parameter a. The blue dotted curve
represents the Cauchy horizon, x_, whereas the black solid
line represents the event horizon, x,. Similarly, the right
figure shows the parameter space of the charge parameter
r, with respect to the rotation parameter a. The shaded
region in this plot shows the no-black-hole spacetime. This
figure shows the restricted theoretical values of r, and a.

Given the opportunities available for testing the alter-
native theories of gravity, the physical implications of such
black hole solutions and the analysis of their various
features is very timely in the context of astrophysical
settings. From the data available from various experimental
setups such as the EHT, the LIGO Scientific Collaboration,
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and the Virgo Collaboration, one can study the potential
deviations of the Kerr-Newman black holes in general
relativity in the study of accretion disks, strong gravita-
tional lensing and shadows, generation of gravitational
waves in binary mergers, and so on, from that of the
rotating solutions that arise from the EiBI gravity.

III. EQUATORIAL BLACK HOLE LENSING

In this section, we investigate the equatorial (6 = x/2)
light bending due to the rotating black holes in EiBI gravity.
The effects of the deformation parameter e, the charge
parameter r,,, and the spin a on the equatorial lensing will
also be investigated. The metric (6) for the equatorial plane
reads as

ds? = —A(x)dr* + B(x)dx?> + C(x)d¢* — D(x)dtd¢p, (10)

where
1 € 1 2d>+7r2)2
Ax)=(1-—+-L(14+5(1-—+—5") ),
(x) < x+2x2< +x2< e >>
xz+€_’32
B.x — ~2x’
0 ="%
202 4 2\2 4 2K
ery (x> +a*)* +a’A
C(x):x2+a2+x—r§/2—2—x4 2 ,
ery (x> +d®) + A
D(x) = 2a<x— /2 —Z—XZ#> (11)

where A = x? + a* — x + r2/2. We write the Lagrangian
L= g, x"x", (12)

which is used to find the geodesics equation. The overdot
describes the derivative with respect to the affinely para-
metrized variable, say, A. The metric (10) admits two Killing
vectors due to time translation and rotation, which corre-
spond, respectively, to the constant energy £ and the constant
angular momentum ¢ such that

FT T T T T T

07F ]
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The plot of horizon radius vs the rotation parameter for r, = 0.45 (left) and the charge parameter vs the rotation parameter

oL . .
28 = E = gyl + gt¢¢’ (13)
oL . .
=20 = —=q,4t + . 14
00 Gip 9¢¢¢ ( )

We consider £ = 1 by suitably choosing the affine parameter
and identify ¢ as the angular momentum of the photon with
respect to the black hole axis. We have four first-order
differential equations in the equatorial plane using Egs. (13)
and (14) and also the null geodesics conditions ds*> = 0 as

. 4C-2¢D
= 15
4AC + D? (15)
6=0, (16)
. 2D +4AL
:+—27 (17)
4AC + D
— Dt — AL?
j—an, [CoDOZAT f. (18)
B(4AC + D?)

Since we are interested in the study of the photon trajectories
in the isolated black hole system, we can safely ignore the
effect of the other celestial objects on the trajectory of the
photon and can well approximate the spacetime as
Minkowskian at a large enough distance. We assume that
both the source and the observer are situated at a large
distance from the black holes under study. This will satisfy
our purpose for studying the lensing phenomena on the
equatorial plane.

Now, we need to focus on the effective potential for light
rays, Vg, which they follow in the radial direction only.
The effective potential follows from the relation x> +
Vei(x) = 0 and is given by

4(C =Dt - AL?)

Venx) = - B(4AC + D7)

(19)
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At this point, it is worth it to understand that in the asymptotic limit the photons emanating from infinity approaches the
black hole event horizon at some distance x, and leaves for infinity again. The impact parameter u = /€ = £ (£ = 1) is
defined in the equatorial plane. Therefore, for V 4 = 0, the expression for the angular momentum £ reads

P =Dy + \/D} + 4A,C,

24,

e(4a’r, + ar* + dar2xy? — 2ar,2x) + V2x? \/(2a2 + rg? 4 2(xo — 1)xg) (4xo® — r,e?)

e(4azrq2 + rq4 + 2rqzx02 — 2rqzx0) + 2rq2x04 + 4(xg — 1)x¢°

2ar,*xy* — 4axy’

e(4a’r> + rt + 2r,2x0% — 2r,2x0) 4 2r2x0t + 4(xo — 1)xg°

Hence, the expression for the impact parameter u can be
obtained once we get the expression for x,. The “+” sign in
front of the square root is meant for a > 0, which indicates
the prograde motion for light rays, and for a < 0, we have
retrograde motion. The light deflection angle in a generic
stationary axisymmetric spacetime for x, is expressed as

ap(xo) = I(xo) — =, (21)

where the total azimuthal angle /(x,) reads

I(x) =2 / "D e / TPy (xoxo)Pa(xoxg)dx,  (22)

, dx %o

VB(2A\AL + AyD)

Pi(x,xy) = ,
1x:%o) JCANAAC + D?
1
Py(x,x0) = (23)

\/AO — AS 4 L(AD, — AyD)

The light rays follow a straight line along the geodesics
when no black hole is present, thereby indicating
I(xg) = n. For a specific value of x,, one can get
ap(xg) = 2z, which means that the light rays would
complete a whole circular loop. It goes on decreasing,
which eventually leads to forming more than one complete
loop, and at a certain radius, say, x, = x,,, the total
azimuthal deflection becomes infinitely large, and the light
rays will be impinged into the black hole. This quantity x,,
is called the unstable light rays’ circular radius. An explicit
expression for the integral (22) is not obtained. Therefore,
following the method as developed by Bozza [24], we

|

0

(20)

|

calculate the behavior of the deflection angle near the
unstable photon orbit radius. In this respect, we define a
new variable to separate the divergent and regular parts in
I(xy), such that [24]

z=1-22, (24)

With this definition the quantity /(x) is now expressed as

1) = [ Rlzx0) . o), 25)

where
RGe) = 25 Py ). (6)
F(z.x0) = Pa(x, xo)- (27)

The function R(z, xq) in I(xy) is nonsingular in nature for
any value of z and x,, whereas the function f(z,x,) is
divergent at z = 0. To show explicitly the nature, we can
Taylor expand the denominator of the function f(z, xy) in z
such that

1
Vaz+y2 + 0(2)

f(z,x0) ~ folz, xo) = . (28)

where we have considered the expansion up to z> only. The
parameters a and y are given as

a=200(Cl Ay — ALCy) + L(AL Dy — AyD! 29
C 0410 00 0~0 0o
0
X
Yy = —26012 [2C0(A0C6 - A6CO) + 2x0C6(C0A6 - AOC6) - )COC()(C()AS - A()Cg)]
L x5C0(AoDy — DoAp) n (x5/2)(DoAG — AyDyy) + xo(DoAj — AgDy)) ‘ (30)

Cy?

Co
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Now, we find the photon orbit radius x,,, as the largest real root of the Eq. (29), such that

— 16a*(r,5¢% —12r,2x§e) — 4a® (8x{*(xg — r,%) — 361, xge(r,* + 2(xo — 1)x0)

+3r,86} (r,? + 2(xo — 1)xg) = 2r,*x3e* (r,* + x0(4x9 — 3))) = (—=r,5¢* + r *xoe(8x3 + €)

+ 4rq2x(5)(x8 +4(xg—1)e) — 4x(9))(2\/§a — 8\/§a3rq2€(6xg _ 7’426))\/2&0(4)63 B ”4462)
- (r612 +2(xo — 1)350)(”1126 + 2x3)(2rq6e2 + rq4x0€(—8x(3) + 2xp€ — 3¢)

— 8r,2x)(x3 4 2(x — 1)€) + 4(3 — 2x0)x]) = 0,

where A, is the value of A at x = x,. When one solves
Eq. (31), one can get the value of the quantity x,, as a
function of a, r,,, and e. The dependence of the spin a on x,,
has been depicted in Fig. 2 for a set of values of € and r,.

In the limit x, — x,,, the quantity @« = 0, and conse-
quently, we have f(z,xq) = 1/z; thereby, the integral (25)
becomes infinitely large as z — 0. We write the integral
(25) as a combination of divergence and regular parts
such that

I(xo) = Ip(xo) + Ir(xo), (32)
with
r,=0.45
1.8 . .
AN
> — £=0.00
S~
1.6r N — — ¢£=0.50
NN
N -—--€=075
1.4} S
< N
BN
[ N
1.2 X
N
1.0 AN
-04 -03 -0.2 -0.1 0.0 0.1 0.2
a
r,=0.45
aol —— £=0.00
2.5F
S

1.5¢

-04 -03 -02 -01 00 01 0.2

a

0.3

(31)

I (x) = / RO folzxo)ds, (33)

1
Ii(x0) = [ Rl (zv0) = RO.) oz )}z (34)
The integral (33) has an analytical solution:

2R(0, x,, v

Ip(xy) = (0, x )log< y+a+\/)7>‘ (35)
VY Va

As a = 0 at xy = x,,, the right-hand side of Eq. (33) has a

infinity at x, = x,,, as can be seen from the expression
inside the logarithm above. Therefore, the regular part is

r,=0.55
2.0 . .

1.8¢
1.67
E1.4'
x
1.2¢
1.0¢
0.8¢

0.6
-04

-03 -02 -01 0.0 01 0.2

a

r,=0.55

—— ¢=0.00

1.5¢

-04 -03 -02 -01 00 01 02

a

FIG. 2. Plot showing the variation of the photon orbit radius x,, (upper panel) and the impact parameter u,, (lower panel) with respect

to the rotation parameter a for different values of r, and e.
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contained in the integral of Eq. (34). Since it has significant
contribution up to order of (xy—x,), we can take the
regular parts as

Ia(x) / R(z 0 (2 5) = R(0. ) folz ).

(36)

whose behavior can be seen from the numerical plots,
Fig. 4. Now, using Egs. (35) and (36), we express the
quantity ap as

ap(0) —plog(lgf&—l)—kq—l—(’)(u—um), (37)

m

where the quantities p and ¢ in Eq. (37) for the strong
gravitational field limit are cast as

R(0.x,,) cx;,
= , and —n+1g(x,,)+ plog—-,
N q r(Xm)+p )

which is a polynomial of various parameters and is
expressed as

(38)

2\/(rqze + 2x0%)(2r, 2 (2a%e + xo*

+ (x0 = 1)xoe) + ryte +4(xg — 1)x0”)

p:

: (39)

where

¢ = 2x0* (@ (2x0(x0 + 1) = r,%) + 2x¢%)

— rjfe(4a* + a*(r,* 4 2x0(3x — 1)) + 2x0%).  (40)
r,=0.45
1.5 : :
1.4F —— ¢=0.00
i — — =050
: 22075
0.2
—0.2f ——£=0.00
—_— — — =050
03 = ST -~ £=075
-0.4¢ RS
(o) \\\\\ N
-0.5¢ N
-0.6¢
-0.7¢
-038 A A A A A
-04 -03 -02 -01 0.0 0.1 0.2
a
FIG. 3.

panel) for different values of r, and e.

\/2a2 + rq2 +2(x9g = 1)xo\/C1Vm

Series expanding Eq. (20) in terms of (xy — x,,), we have
U= Uy, ~cy(xg— x,)>% (41)

The analytical expression for ¢, is very large, and we do not
write it here. We use the expression of ¢, in the numerical

r,=0.55
2.0 : .
1.8' — €=0.00
— — £=0.50
1.6¢ ----¢=0.75
Q 14'
1.2¢
1.0¢
0.8F
-04 -03 -02 -01 00 01 02 03
a
r,=0.55
-0.2 '

b — £=0.00
031 — — £=0.50
~0.4F_ -~ ----€=0.75

~ ~ - ~
oy —0.5' =~ ~ -
-0.6
-0.7¢
-0.8 ' ' ' : :
-04 -03 -0.2 -041 0.0 0.1 0.2
a

The behavior of the deflection coefficient p vs the spin a (upper panel) and the variation of the coefficient ¢ with spin a (lower
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FIG. 4. Plot showing the behavior of the light deflection angle for different values of r, and e. Points on the horizontal shows the

divergence of the deflection angle at u = u,,.

investigations of the light deflection coefficients p and g.
Remember that all the expressions with the subscript m are
obtained at x, = x,,. The quantities p and ¢, in Eq. (39),
appear in the calculation of the total azimuthal angle, and
they are called the deflection coefficients in the strong-field
regime. We plot them in Fig. 3, which depicts that p and ¢
show the opposite behavior with the different values of spin
parameter a. As expected, these quantities become infi-
nitely large as we increase the values of a, thereby
indicating the validity of the coefficients at higher rotation
parameter ceases to exist. As a limiting case, those results
of strong-field deflection coefficients reduce to the corre-
sponding limits of Kerr-Newman black holes when ¢ — 0,
the Kerr black holes when r, — 0, and also the Schwarzs-
child black holes when a — 0, r, = 0, and € — 0.

IV. OBSERVABLES AND
RELATIVISTIC IMAGES

In this section, we discuss about the strong gravitational
lensing with the help of lens equations. There exist several
methods to describe the lens equations, as they principally
dependent on different choices of the variables. In describ-
ing the gravitational lensing, we place the black hole at the
origin such that at one side there is the observer and at

another side there is the light source. The light rays coming
from the illuminating source (S) deviate from their original
path while passing the black hole (L) due to the curvature
and ultimately reach the observer (O). The line connecting
the black holes and the observer and the image that the
observer sees is an optical axis OL, and it will be deviated
at an angle 8 with respect to OL. Similarly, the light source
will be aligned at # angle with OL. The emitted light rays
make an angle ap (@) when detected by the observer.

As mentioned earlier, there are various mathematical
formulations to interpret the lensing phenomena. Among
them, the Ohanian lens equation is the best approximation
[54] to describe the positions of observer and the source as

_Dop + Dys

¢
Dys

0—ap(), (42)

where the angle & € [z, 7] connects the optical axis and
the source directions. D; is the lens to the observer
distance, while D;g is the lens to source distance. The
angles ¢ and f are found to follow the relation [54,63]

Do, _ Dus
sin(é—f)  sinf’

(43)
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For the completeness of the above relations, we choose 0, &,
and f to be tinier because in this case the relativistic images
formed by the black holes are prominent. The light rays
come from source S and make many loops while encoun-
tering the black holes, so the deflection angle « is replaced
by 2nz + Aa,, where the integer n € N represents the
number that counts the loops and 0 < Aa, < 1.
Equation (42), together with Eq. (43) for smaller values
of 6, is rewritten as

Dy

p=0—-——"—"—
Dor + Dy

Aa,,. (44)

Next, Eq. (44) is utilized to extract the information
regarding the image positions. For a critical impact param-
eter u,,, which is a function of the distance of the photon
orbit radius x,,, ap(0) becomes infinitely large. For each
loop of the light rays, there is a certain value of the impact
parameter, u, at which the light rays reaches from source to
the observer. Therefore, on both sides of the black holes, an
infinite number of relativistic images are constructed. Now,
Eq. (37) with ap(6,°) = 2nx reads as

u
0,0 =—""(1+e,). 45
(i te,) (45)

where

q—2nnm

e,=e€ 7 . (46)

The Taylor expansion of the deflection angle ap(0)
around 6,° to the first order in (6 — 0,°) reads [63]

dap (9 )
89 6”

aD<9):aD(6n0)+ (6_6n0>+0(9_9n0)' (47)

On utilizing Bq. (45) and defining A6, = (6 —6,°),
one gets

_PDoy
um e}’l

Aa, = AD,. (48)

Now, the final expression for the lens equation (44)
reads [63]

p=(0,°+A0,) +

D D

LS (” oL AH,,). (49)
D OL + D LS Upné,

Substituting the value of A@, = (6 —6,°) and then ignor-
ing the second term in Eq. (49) as it contributes much less
than compared to the second term, we have

Doy + Dy uye,

6 =00
" nt Dis  Dorp

B-0,).  (50)

Next, we discuss the most striking features of the gravita-
tional lensing, the formation of the Einstein’s ring. Einsten’s
rings are formed when we have the point lens perfectly
aligned in the line of sight of the source such that the light
from the source is spreading in all directions equally. The
complex lens systems may lead to the formation of multiple
Einstein rings [22,54,56]. Moreover, a partial double
Einstein ring was also found in Ref. [57] in which the
authors mentioned that these rings are created from two
sources located at different distances from the lens. The
relativistic Einstein’s rings are formed when the deflection
angle a > 2x. For the lens and the observer to be perfectly
oriented (# = 0) and the lens to be situated perfectly at the
center of the observer and the source, then Eq. (50) reads [63]

2u,,e u
OF = (1 -—"")(="(1 . 51
! < DOLP) (DOL 1+ e,J) G
For Dy, > u,,, the angular radius () for Einstein’s ring
reduces to

0F = =" (1 +e,). (52)
Doy

It is worth it to mention that 6% is the angular position of
the outermost ring. Figure 5 depicts the angular position 6%
various black holes. Like Einstein’s, one of the most
important quantities is the image magnification, which is
viewed as the ratio of solid angles made by the image and
the source with the central object, such that for the nth

image the magnification is defined as [24,58]

= o) (P

F Dot DisDorp

As expected, the magnification decreases, and the image
becomes fainter as 7 increases. We have from Ref. [24] the

20F

FIG. 5. Plots for the outermost Einstein rings for black holes at
the center of nearby galaxies in the framework of Schwarzschild
geometry. The red line corresponds to SgrA*, and green line
corresponds to M87 [63].
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FIG. 6. Plot showing the variation of lensing observables 0, s, and ry,, as a function of a for different values of r, and e for SgrA*.

important observables describing the rotating black holes in
EiBI gravity theory as

u
0, — —m 54
Doy (54)
s=0,—0,~0,(7) (55)
Fmag = 0/:71 o~ ezr_f, (56)
n=2 Hn

where s is the angular separation between the first image
(n =1) and the rest of the images which are supposedly
packed at 0, 1y, 18 the ratio of the flux magnification of the
first image and sum of the flux magnification of all the other

images. We plot these observables in a realistic scenario of
various black holes, such as the Sgr A*, M87 [66]. We
consider M = 4.3 x 10° M and d = 8.35 Kpc [67] for Sgr
A* and M = 6.5 x 10° M, and d = 16.8 Mpc for M87
[16]. From the plots in Figs. 6 and 7 itis clear that the angular
separation increases but the angular position (0,) and the
flux magnitude (rp,,,) decrease with different values of r,
and e.

We tabulated the values of the pair (a,26,,) for a fixed
value of the rotation parameter r,/rg = 0.15 (one should
remember that r¢ = 2M is the Schwarzschild radius, where
M is the mass of the EiBI black hole). We can estimate the
value of the deflection angle for M87 black holes using the
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FIG. 7. Plot showing the variation of lensing observables 0, s, and ry,,, as a function of « for different values of r, and ¢ for M87.

restricted values of the parameters r, and e. If we assume  of the parameters r, and a, we always have the satisfactory
the parametric values of these parameters as tabulated in  results. We have tabulated them in Table II.
Table I, we can see that we have the diameter of the photon
ring of the M87 black holes as reported by the EHT V. WEAK GRAVITATIONAL LENSING
Collaboration. Although, we do not get the upper bound of
the diameter of the photon ring, i.e., 45 puas, as reported by
EHT, we get the values 42 and 39 pas, as the bound lies as
42 + 3 pas (see the tabulated values for the M87 black
holes for the reference). ds*> = =X(r,0)dt* —2U(r,0)dtde + Y (r, 0)dr?

For a consistency check, we have also calculated the > 2
diameter of the photon ring of the SgrA*. We see that if we +Z(r.0)d0" + V(r.0)dd”, (57)
allow the window of 26, = 42 +£ 3 pas for the diameter of ~ where the form of X(r,0), Y(r,0), Z(r,0), V(r,0), and
the photon ring for the SgrA* then, for the particular values U(r,0) can be seen when we compare the metric (1)

In the present section, we deal with the weak lensing of
the rotating charged black holes in EiBI theory. We rewrite
the metric in usual (¢, r, 8, ¢p) coordinates to get the form
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TABLE I. The table shows the set values of the spin parameter
a and the full deflection angle, i.e., a, 20, of rotating EiBI black
hole with the charge parameter r,/rg = 0.15, and €/rk=0.0
(first column), e/r% = 0.1 (second column), and ¢/rz = 0.15

(third column) as a model to the M87 black holes.

a,20.(pas) a,20,(uas) a,20,(uas)
(0.0,42.285) (0.0, 42.2752) (0.0, 42.2703)
(0.0104,42) (0.0102,42) (0.0084, 42)
(0.05,40.6065) (0.05, 40.5963) (0.05, 40.5912)
(0.0963,39) (0.0963, 39) (0.0960, 39)
(0.1,38.8696) (0.1, 38.859) (0.1, 38.8536)

(0.15,37.06241)
(0.2,35.1682)
(0.25,33.1626)
(0.3,31.0074)
(0.35,28.6361)
(0.4,25.9127)
(0.45,22.4438)

(0.15, 37.0513)
(0.2,35.1566)
(0.25,33.1504)
(0.3, 30.9945)
(0.35, 28.6225)
(0.4,25.8985)
(0.45, 22.4298)

(0.15, 37.0457)
(0.2, 35.1507)
(0.25, 33.1442)
(0.3, 30.988)
(0.35, 28.6157)
(0.4, 25.8914)
(0.45, 22.4228)

TABLEII. The table shows the set values of the spin parameter
a and the full deflection angle, i.e., (a,260,) of a rotating EiBI
black hole with the charge parameter r,/rg = 0.15, and ¢/r§ =
0.0 (first column), €/r% = 0.1 (second column), and ¢/r% = 0.15

(third column) as a model to the SgrA*.

(4. 26, (uas))

(@, 205 (nas))

(4. 20,4 (pas))

(0.0,50.6784) (0.0, 50.6666) (0.0, 50.6608)
(0.05,48.6666) (0.05, 48.6544) (0.05, 48.6483)
(0.1,46.585) (0.1, 46.5722) (0.1, 46.5659)
(0.1361,45) (0.136, 45) (0.1363, 45)

(0.15,44.4191)
(0.2,42.1489)

(0.15, 44.4058)
(0.2, 42.1349)

(0.15, 44.3991)
(0.2, 42.1279)

(0.2031,42) (0.202, 42) (0.204,42)
(0.25,39.7452) (0.25,39.73057) (0.25, 39.723)
(0.2648,39) (0.26420, 39) (0.265, 39)

(0.3,37.1622)
(0.35,34.3202)
(0.4,31.0562)

(0.45,26.8988)

(0.3, 37.1467)
(0.35,34.3039)
(0.4, 31.0392)
(0.45, 26.882)

(0.3, 37.1389)
(0.35,34.2958)
(0.4, 31.0306)
(0.45, 26.8736)

with (57). We consider only the null rays for the propa-
gation, which is seen by computing ds> = 0 for dt as

dt = \/ yijdxidxj + Nidxi,

(58)

where i, j =1, 2, 3 and y;; and N; are defined accord-

ingly as
. Y(r,0) Z(r,0)
dxidy = dr? de?
S T R (CY)
X(r,0)V(r,0) + U(r,0
(rOV(r.0) + UAr0) o (s9)
A*(r,0)
Vv = - 209 4, (60)
T X(re) T

The properties of the y” are followed from the relation
YVyjx = &' y; encodes the properties of a three-
dimensional Riemannian space in which the trajectories
of the null rays are described by the motion along a
spatial curve.

Now, we use the metric (59) and then the Gauss-Bonnet
theorem to have the definition of the light deflection angle,
which is described as [68-70]

o
ap = —// KdS+/ kdl, (61)
o(?Dojq S

where K is the curvature of the 3-surface along which light
propagates, k, is the geodesics curvature of the light curves,
dS is the area element, and d! is the line element. We define
the curvature of the 3-surface at the equatorial plane
@ =rn/2)as

3R roro
y 9

_ V(O (Ve _ 9 ﬂ()df))
\/7<8¢ (m 3F"> ar (yrr o)) ©2

where y is the determinant of the metric when 6 = /2.
For the rotating axially symmetric spacetime, Eq. (62)
becomes [69,70]

K =

X3 0 X3 d (XV+U?
Y(XV+U»)or || Y(XV+UHor\ X2 '
(63)

K=-

Therefore, K is evaluated to be

o 3_;"(217 N 3erl +ria’ al 6a* + 3r; + 2er;, .
2x* X0 x3 X0 5
N i+—6a2+er§+5r§ 2
4x* 2x0 $
2.2 20202 222 3
aery rie’ry d*rory r}
+ O( x8 ) x8 ’ _x8 B ;) . (64)

It is clear that to calculate the leading-order contribution we
approximated the calculations to the weak-field limit, and
all the higher-order terms are safely ignored. The Gaussian
curvature is integrated over the quadrilateral which is
closed so that [71]

/ L _ Kds= / "o L Y K\ pdrdp, (65

where x, is the closest distance to the black hole. On
utilizing Egs. (17) and (18) and choosing u = 1/x, we can
express the equation for light orbit as

024062-12



GRAVITATIONAL LENSING FOR STATIONARY AXISYMMETRIC ... PHYS. REV. D 105, 024062 (2022)

du\? F 66 with b = #/€ defined as the impact parameter. Using the
a¢) (). (66) weak-field solution u = (sing)/b + O(rg,r%) [71],
Eq. (65) reduces to
e / / Kds / o [T _KvT, dp.  (68)
= - uddg.
Fw) u (XU + V2)(U = 2Vb — Xb?) & eoop ¢ Jo u?
u) = ,
(Y(V+ Xb))2 Therefore, for the metric (59), the integral (68) reads as
|
s 2 22 2 2,2 2,2 22
//de_ (1= + 1= 023) +- = ((2+b D1 =0 + 2+ )1 - D)
rsr 22 22 22 22
T ((16+b 20/1 = b2 + (16 + b*ud)\ /1 — b u0>
11
% (( 3b*ud + 4b2ul + 8)\/1 — b2ul + (3b*ud + 4b%ud + 8) /1 — bzug)
3r2 3
( i 16r2>( sy 1= b2 + o1 = b2 )
3r2  3a’r2 1572 9r2a®  9er?  27r%r?
— (cos—1p -1p >y q _1ors Jrga  Yery 2Irsry
(cos™ bus + cos™ buo) (8b2 TR "6 T 1667 16 256b4>
2.2 2,2 2
15 3
+ ( 6;1; - 8€br3"> (53 +2073)\/1 = 020 + (3 + 207\ 1 - 17
arrirs rgri€e ry
+ O( b6 ’ b6 b%) (69)
where u, (al)ld ug are defined, respectively, as cos ¢, = —\/1 — b*u’, cos ¢, = /1 — b*u3. The geodesic curvature of the
manifold ®)M is defined to be [71]
1
k!] = —WN{/)J., (70)

which reflects the fact the a nonrotating black hole does not contribute to it, thereby making a crucial contribution to the
light deflection angle. Hence, the geodesic curvature for metric (59) reads

3ar,? 3ar,? ar,?  4aer,? Sa aririe
kq i_ q }"52+ %_ q re— Z _ q +0 7"561’ SS ] (71)
' 2x* 4xb ¥ 4x X x0 ¥ ox
We consider a coordinate system which is centered at the position of the lens, and we can take the approximation of the light
curve such that r = b/ cosd and [ = btand [71]. Therefore, the geodesic curvature in its path integral form reads

0 o((a 3ar} 3ar} ar’ ria
kydl = 6 —=—Lcos’0 20 —=—Lcos*d | ri — —5tcos?0 do+ O =
/S g /5 <<b2 cos e L cos >rs + <2b3 cos 153 cos )”s b3 L cos?0 1 cos* ) + (b4
_rsa r2a  Yar,ri 3ear
Is2 (\/1 bg + 1=} + (21)3 Tt ts b4q> (usq/l—b2u§+u0 1= b3

2 2 2.2
ar 45argrs  3aery
+ <—q S 'S > (cos™'bug + cos™'buy)

2b°  4b° 32b5 2 b’

15ar§rs 5 5 - . -
-2 (u5(3—|—2b 1= 02 + (3 + 207 )y 1 = b3 )

2

€ar r3a r4ar2
+ ot (u5(3+2b2 21 /1 = b2 + up(3 + 2625 )1/ 1 — b2u )+O<bs4 L "), (72)
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In deriving the above expression, we adopted the prograde motion along the null geodesics (d/ > 0), while for dI < 0, we
obtain the retrograde motion with the extra terms with the “—" sign. For asymptotically large distances, we have uy, — 0
and ug — 0, so the deflection angle gives us the expression

= <(17Tr[2]_3ﬂ'r31_371'a2r(21 Yenr; 3eafcrfl> <4 da  8a® 327 176a2r3) S

203 8K 8b*  16b*  2b° b 0 a3 T end T s0b0
157 ar 9rna? 27711"3 457mr§ 5 ot
_— _ = - o253, 73
+<mw 5 T 16b* T 256D &m>“+ Q3w> (73)

which reduces the Kerr-Newman limit of the deflection angle [50] when ¢ — 0, such that

SN aﬂr?] 3 37rr‘2] 3 3ra? rtzl .
b 2b3  8b2  8b*

4 4a+ n
b b2 3b 6b°

8a? 32r[21 176a2r§
5005 )%

45zar?

157 anm  9rad? 277zr%, A
- r
256b%  320° )8

1602 5 1600

}"3 r4
+O<ﬁyﬁ>, (74)

which in addition for r, — 0 reduces to the expression for the deflection angle for Kerr black holes [69,70]

- 4 4a 8d?
a,% :<E_ﬁ+W>M+

157 ar  9ma’® M M*
<4—bz—ﬁ+ 4b4>M2+O<?,F>. (75)

For the nonrotating (a = 0) black hole in EiBI theory, the deflection angle has the form

3ar;  Yemry

w= (-

VI. CONCLUSIONS

The general theory of relativity has been tested, and the
theory incredibly matches with the local astrophysical
evidences. The black holes are one of the strangest objects
that were predicted in general relativity, but still there are only
few concepts which have been verified on the experimental
level. The experimental discovery that the black hole
solutions such as Schwarzschild and Kerr metrics are not
the actual real black holes would have pointed to a strong-
field deviation from general relativity having deep implica-
tions at the fundamental level. In the present paper, we
investigated the gravitational lensing in the strong-field
approximation of the black holes in EiBI theory. Using
the standard procedure for calculating the impact parameter,
we study numerically the total azimuthal deflection ap of
light rays. We find that the charge parameter r, and the Born-
Infeld parameter € influence the null geodesics. The coef-
ficients p and ¢ also have been obtained and plotted
numerically, which shows that with fixed values of the
charge r, the coefficient p increases with rotation parameter
a, while g is decreasing with a. Figure 3 shows that the
coefficients p and g share the same property as those of
Kerr-Newman (¢ = 0) and the stationary axially symmetric

1), (4,3
16b"* b 6b°

r+w—”+
ST \16p?

277r? o
%a§»§+o<§yﬁ>. (76)
[

black holes in EiBI theory (e # 0). The deflection angle a;,
showed monotonic behavior with the rotation parameter a,
and itdiverges at u = u,,, which has been shown with dots on
the horizon lines in Fig. 4. As an application to the realistic
scenario, we calculated the strong lensing observables s, 6,
and ry,, for SgrA* and M87 black holes.

We further calculate the weak-field gravitational lensing
for the rotating black holes in EiBI theory. We have shown
that in the limit ¢ — O our results match with the Kerr-
Newman black holes. This way, all limit cases of Kerr black
holes (r, = 0) are satisfied. Our results may be important
from a phenomenological point of view as the results from
EHT slightly deviate from the Kerr black holes. This way,
we can implement our investigations in the study of the
astrophysical scenario.
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