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fðQÞ gravity is the extension of symmetric teleparallel general relativity (STGR), in which both
curvature and torsion vanish and gravity is attributed to nonmetricity. This work performs theoretical
analyses of static and spherically symmetric solutions with an anisotropic fluid for general fðQÞ gravity.
We find that the off-diagonal component of the field equation due to a coincident gauge leads to stringent
restrictions on the functional form of fðQÞ gravity. In addition, although the exact Schwarzschild solution
only exists in STGR, we obtain Schwarzschild-like solutions in nontrivial fðQÞ gravity and study its
asymptotic behavior and deviation from the exact one.
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I. INTRODUCTION

Modern observations have confirmed that the expansion
of the current Universe is accelerating, which could be
sourced by some unknown components called dark energy
(DE) [1,2]. A possible way to explain DE is to modify pure
general relativity (GR), where gravity is ascribed to
curvature, with the torsion and nonmetricity assumed to
vanish. For instance, the Lambda cold dark matter model is
the minimal modification, where the cosmological constant
Λ is responsible for DE. Along this way, one can generalize
GR to fðRÞ gravity by improving the Ricci scalar R to
its functional form [3,4]. On the other hand, choosing the
torsion T or the nonmetricity Q as a geometric basis
provides two different but equivalent descriptions of
gravity. These are the so-called teleparallel equivalent of
general relativity (TEGR) [5,6] and symmetric teleparallel
general relativity (STGR)1 [7–10].
In STGR theory, both the curvature and the torsion

vanish, as the nonmetricity describes the gravity. In this
theory, under the teleparallelism constraint, we can always
choose the coincident gauge, which restricts the affine
connection to disappear and makes the metric tensor the
only basic variable. In analogy to fðRÞ gravity, TEGR and
STGR can be generalized to fðTÞ gravity [11,12] and fðQÞ
gravity [10,13]. Although the latter one is relatively less
investigated, it has many similar properties to those in fðTÞ
gravity. For instance, similar to fðTÞ theory [14–16], the
gauge choice breaks the coordinate transformation invari-
ant in fðQÞ theory, which predicts different consequences
in various coordinate systems [17]. Recently, there have

been several applications of fðQÞ theory: cosmology
[18–21], bouncing model [22], wormhole solutions [23],
energy conditions [24], and the Newtonian limit [25] have
been discussed.
In analogy to fðTÞ gravity, it is known that the nonzero off-

diagonal component of field equations in fðTÞ gravity, which
originates from the specific gauge choice, restricts the func-
tional form of fðTÞ [26]. Therefore, it would also put
restrictions on the functional form of fðQÞ gravity, which
potentially gives us a guideline for themodel buildingoffðQÞ
gravity. This work aims to investigate possible functional
formsoffðQÞunder the restrictionof thestaticandspherically
symmetric geometry with an anisotropic fluid. In particular,
we will show that there is no exact Schwarzschild solution
for the nontrivial fðQÞ function.With the nonmetricity scalar
Q being constant, we also analyze the deviation of the
metric from the exact Schwarzschild solution.
This paper is organized as follows. In Sec. II, we briefly

review fðQÞ theory, where the action and the equations
of motion are introduced. In Sec. III, we derive the
nonmetricity scalar Q and the equations of motion for
generic static and spherically symmetric geometry with an
anisotropic fluid. We see that the off-diagonal component
of field equations leads to two solutions: STGR which
recovers GR, and the constant nonmetricity scalar. Then,
with a focus on the second solution in Sec. IV, we
investigate the constraints on the functional form of
fðQÞ and geometry under various conditions. Finally,
Sec. V is devoted to the conclusions and discussion.

II. f ðQÞ GRAVITY

fðQÞ gravity considers a generic metric-affine space-
time, in which the metric tensor gμν and connection Γλ

μν

are treated independently, and the nonmetricity of the
connection is defined by
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Qαμν ≡∇αgμν ¼ ∂αgμν − Γλ
αμgλν − Γλ

ανgμλ: ð1Þ

The general form of affine connection can be decomposed
into the following three independent components:

Γλ
μν ¼ f λ

μνg þ Kλ
μν þ Lλ

μν; ð2Þ

where f λ
μνg denotes the Levi-Civita connection deter-

mined by the metric gμν,

f λ
μνg≡ 1

2
gλβð∂μgβν þ ∂νgβμ − ∂βgμνÞ: ð3Þ

Kλ
μν is the contortion written as

Kλ
μν ≡ 1

2
Tλ

μν þ TðμλνÞ; ð4Þ

with the torsion tensor Tλ
μν defined as the antisymmetric

part of the affine connection, Tλ
μν ≡ 2Γλ½μν�, and the

disformation Lλ
μν is defined by

Lλ
μν ≡ 1

2
Qλ

μν −QðμλνÞ: ð5Þ

Then let us introduce the following nonmetricity conjugate

Pα
μν ¼ −

1

4
Qα

μν þ
1

2
QðμανÞ þ

1

4
ðQα − Q̃αÞgμν −

1

4
δαðμQνÞ;

ð6Þ

and its two independent traces

Qα ≡Qα
μ
μ; Q̃α ≡Qμ

αμ: ð7Þ

Finally, the nonmetricity scalar is defined as follows:

Q ¼ −QαμνPαμν: ð8Þ

Supplemented with Lagrange multipliers, one introduces
fðQÞ gravity given by the following action [27]:

S ¼
Z ffiffiffiffiffiffi

−g
p

d4x

�
1

2
fðQÞ þ λα

βμνRα
βμν þ λα

μνTα
μν þ Lm

�
;

ð9Þ

where g is the determinant of the metric gμν, fðQÞ is an

arbitrary function of the nonmetricity Q, λβμνα is the
Lagrange multipliers, and Lm is the matter Lagrangian
density,
Varying the action (9) with respect to the metric gives the

field equation

−Tμν ¼
2ffiffiffiffiffiffi−gp ∇αð

ffiffiffiffiffiffi
−g

p
fQPα

μνÞ þ
1

2
gμνf

þ fQðPμαβQν
αβ − 2QαβμPαβ

νÞ; ð10Þ

where a subscript Q stands for a derivative of fðQÞ with
respect to Q, fQ ≡ ∂QfðQÞ. The energy-momentum tensor
is defined in the standard way,

Tμν ≡ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

: ð11Þ

Varying Eq. (9) with respect to the connection, one
obtains

∇ρλα
νμρ þ λα

μν ¼ ffiffiffiffiffiffi
−g

p
fQPα

μν þHα
μν; ð12Þ

where the hypermomentum tensor density is written as

Hα
μν ¼ −

1

2

δLm

δΓα
μν
: ð13Þ

By taking into account the antisymmetry property of μ and
ν in the Lagrangian multiplier coefficients, Eq. (12) can be
reduced to

∇μ∇νð
ffiffiffiffiffiffi
−g

p
fQPμν

α þHα
μνÞ ¼ 0: ð14Þ

Taking ∇μ∇νHα
μν ¼ 0 (see discussion in Ref. [27]),

we have

∇μ∇νð
ffiffiffiffiffiffi
−g

p
fQPμν

αÞ ¼ 0: ð15Þ

Without curvature and torsion, the affine connection has the
following form [10]:

Γα
μν ¼

�∂xα
∂ξλ

�
∂μ∂νξ

λ: ð16Þ

We can make a special coordinate choice, the so-called
coincident gauge, so that Γα

μν ¼ 0. Then, the nonmetricity
reduces to

Qαμν ¼ ∂αgμν; ð17Þ

and thereby largely simplifies the calculation since only the
metric is the fundamental variable. However, the cost is that
the action no longer remains diffeomorphism invariant,
except for STGR [18]. One can utilize the covariant
formulation of fðQÞ gravity to avoid the problem. Since
the affine connection in Eq. (16) is purely inertial, one
could utilize the covariant formulation by first determining
the affine connection in the absence of gravity [17]. As
shown in this work, however, the off-diagonal component
of the field equations in the coincident gauge would put
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strict constraints on fðQÞ gravity, thereby providing us
with nontrivial functional forms of fðQÞ.

III. STATIC AND SPHERICALLY SYMMETRIC
GEOMETRY IN A POLAR COORDINATE

The metric ansatz for a generic static and spherically
symmetric spacetime is written as

ds2 ¼ −eaðrÞdt2 þ ebðrÞdr2 þ r2dΩ2; ð18Þ
where dΩ2 ≡ dθ2 þ sin2 θdϕ2. By substituting Eq. (18)
into Eq. (8), the nonmetricity scalar Q is written in terms
of r,

QðrÞ ¼ −
2e−b

r

�
a0 þ 1

r

�
; ð19Þ

where a prime ( 0) denotes a derivative with respect to the
radial coordinate r.
Corresponding to the spherically symmetric geometry,

the energy-momentum tensor for an anisotropic fluid with
spherical symmetry is given by

Tμν ¼ ðρþ ptÞuμuν þ ptgμν þ ðpr − ptÞvμvν: ð20Þ
Here, uμ is the four-velocity, and vμ is the unitary spacelike
vector in the radial direction satisfying uμuμ ¼ −1,
vμvμ ¼ 1, and uμvν ¼ 0. ρðrÞ is the energy density,
prðrÞ is the pressure in the direction of vμ (radial pressure),
and ptðrÞ is the pressure orthogonal to vμ (tangential
pressure).
For the anisotropic fluid (20), independent components

of equations of motion (10) are listed as follows:

ρ ¼ f
2
− fQ

�
Qþ 1

r2
þ e−b

r
ða0 þ b0Þ

�
; ð21Þ

pr ¼ −
f
2
þ fQ

�
Qþ 1

r2

�
; ð22Þ

pt ¼ −
f
2
þ fQ

�
Q
2
− e−b

�
a00

2
þ
�
a0

4
þ 1

2r

�
ða0 − b0Þ

��
;

ð23Þ

0 ¼ cot θ
2

Q0fQQ: ð24Þ

Substituting the nonmetricity scalar Eq. (19) into the
equations of motion, we have

2p0
rþa0ðρþprÞ

¼fQ
e−b

r

�
2

r
ða0 þb0Þ−a0ða0−b0Þþ 4

r2
ð1−ebÞ−2a00

�
¼0;

ð25Þ

where in the last equality we have assumed an isotropic
fluid and used pr − pt ¼ 0 in Eqs. (22) and (23). Therefore,
the Tolman-Oppenheimer-Volkoff equation is satisfied in
general fðQÞ gravity for a static and spherically symmetric
metric with isotropic fluids.
Now looking at the off-diagonal component in Eq. (24),

one finds that the solutions to fðQÞ gravity are constrained
to the following two cases:

fQQ ¼ 0 ⇒ fðQÞ ¼ a0 þ a1Q; ð26Þ

Q0 ¼ 0 ⇒ Q ¼ Q0; ð27Þ

where Q0, a0, and a1 are constant. This result is similar to
that in fðTÞ gravity [28], i.e., fTT ¼ 0 or T 0 ¼ 0 for the
static and spherically symmetric assumption with the
diagonal tetrad in fðTÞ gravity.
The first solution in Eq. (26) is obviously reduced to

STGR and is thereby equivalent to GR, with the ratio a0=a1
corresponding to cosmological constant Λ. Nevertheless,
we shall confirm whether the Schwarzschild solution exists
in linear fðQÞ gravity.
In vacuum with ρ ¼ pr ¼ pt ¼ 0, the equations of

motion are reduced to

0 ¼ a0 þ b0; ð28Þ

Q ¼ a0
a1

−
2

r2
; ð29Þ

0 ¼ a0
2
þ a1e−b

�
a00

2
þ
�
a0

4
þ 1

2r

�
ða0 − b0Þ

�
: ð30Þ

The first equation indicates that aðrÞ ¼ −bðrÞ þ c, where c
is an integration constant and can be ignored by rescaling
the time coordinate t to e−c=2t. As a result, the rr
component is the inverse of the tt component in
Eq. (18). The second equation implies a cosmological
constant term 2Λ ¼ a0=a1. Since Q ¼ −R up to a total
derivative or surface term in the action of STGR, the sign
of Λ is flipped compared with the case in GR due to our
convention of the nonmetricity scalar Eq. (8).
Using Eqs. (19), (28), and (29), we obtain

e−b ¼ 1þ c1
r
−

a0
6a1

r2: ð31Þ

Note that, throughout the paper, we shall use ci to denote
the integration constant. Then, the line element in Eq. (18)
is written as

ds2 ¼ −
�
1þ c1

r
−

a0
6a1

r2
�
dt2 þ

�
1þ c1

r
−

a0
6a1

r2
�

−1
dr2

þ r2dΩ2: ð32Þ
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One recognizes that it represents the Schwarzschild
(anti–)de Sitter solution, as that in GR, with Λ ¼
a0=ð2a1Þ and c1 ¼ −2M, where M is a mass parameter.
In the next section, we shall further discuss the nontrivial

solution that Q ¼ Q0 in Eq. (27), which will also lead to
strict constraints on the functional forms. In addition, the
constant nonmetricity scalar Q0 could be interpreted as
cosmological constant Λ, as shown in Eq. (29).

IV. CONSTANT NONMETRICITY SCALAR: Q=Q0

For constant Q, the geometric quantities are related to
each other according to Eq. (19)

a0 ¼ −
Q0r
2

eb −
1

r
; ð33Þ

and Eqs. (21)–(23) become

ρ ¼ fðQ0Þ
2

− fQðQ0Þ
�
Q0 þ

1

r2
þ e−b

r
ða0 þ b0Þ

�
; ð34Þ

pr ¼ −
fðQ0Þ
2

þ fQðQ0Þ
�
Q0 þ

1

r2

�
; ð35Þ

pt ¼ −
fðQ0Þ
2

þ fQðQ0Þ
�
Q0

2

− e−b
�
a00

2
þ
�
a0

4
þ 1

2r

�
ða0 − b0Þ

��
: ð36Þ

With these four equations in hand, we will try to determine
the remaining six quantities, i.e., fðQÞ, aðrÞ, bðrÞ, ρðrÞ,
prðrÞ, and ptðrÞ, by imposing some conditions.

A. Vacuum solution

We first focus on the vacuum case with ρ ¼ pr ¼
pt ¼ 0, then the equations reduce to

0 ¼ fQðQ0Þ
e−b

r
ða0 þ b0Þ; ð37Þ

0 ¼ −
fðQ0Þ
2

þ fQðQ0Þ
�
Q0 þ

1

r2

�
; ð38Þ

0 ¼ fQðQ0Þ
�
Q0

2
þ 1

r2
þ e−b

�
a00

2
þ
�
a0

4
þ 1

2r

�
ða0 − b0Þ

��
:

ð39Þ

One immediately finds that from Eq. (38)

fQðQ0Þ ¼ 0; fðQ0Þ ¼ 0: ð40Þ

Those two restrictions imply that a general functional form
of fðQÞ should be

fðQÞ ¼
X
n

anðQ −Q0Þn; ð41Þ

where an are parameters. Therefore, in order for fðQÞ
gravity to have nontrivial spacetime solutions, the func-
tional form of fðQÞ should satisfy Eq. (40), otherwise,
we only find solutions in general relativity, where fðQÞ
gravity is reduced to STGR as discussed in the previous
section. We will revisit the above and briefly discuss
the model building in the Conclusions. In the following,
we analyze the spacetime structure, which is less con-
strained due to the triviality of Eqs. (37) and (39) provided
that fðQ0Þ ¼ fQðQ0Þ ¼ 0.

1. Case 1: a0 + b0 = 0

Equation (37) also allows for a solution that a0 þ b0 ¼ 0,
which is necessary if the Schwarzschild solution is to exist
as in Eq. (28). However, Eq. (33) solves bðrÞ as

e−bðrÞ ¼ c3
r
−
Q0

6
r2; ð42Þ

and the line element Eq. (18) is then given by

ds2 ¼ −
�
c3
r
−
Q0

6
r2
�
dt2 þ

�
c3
r
−
Q0

6
r2
�

−1
dr2 þ r2dΩ2:

ð43Þ

It shows that there is no exact Schwarzschild solution for
nontrivial fðQÞ functions. It is, however, a Schwarzschild
(anti–)de Sitter-like solution with c3 ¼ −2M andQ0 ¼ 2Λ,
and its asymptotic behavior shall be the same as Eq. (32)
at r ≪ 1 and r ≫ 1. Note that inversely substituting the
Schwarzschild metric into Eq. (33), Q0 cannot be constant,
which guarantees the absence of the exact Schwarzschild
solution.
Interestingly, Eq. (43) is similar to the Schwarzschild-

like solution found by the Noether symmetry approach in
fðTÞ gravity [29], where the line element is expressed as
follows:

ds2 ¼ −AðrÞdt2 þ 1

d23

1

AðrÞ dr
2 þ r2dΩ2 ð44Þ

with

AðrÞ ¼ 2d1
3d3

r2 −
2dμ
d3r

: ð45Þ

Here, dμ ¼ d1d4 − d2d3 and d1 � � � d4 are free parameters
(in Ref. [29], they are integration constants). Identifying
d3 ¼ 1, d1 ¼ −Q0=4, and dμ ¼ −c3=2, we can rewrite
Eq. (43) in the following form:
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c3
r
−
Q0

6
r2 ¼ η

�
1 −

r⋆
r

�
RðrÞ: ð46Þ

In the above expression. we have defined

η ¼
�
−
Q0c23
6

�
1=3

; ð47Þ

r⋆ ¼
�
6c3
Q0

�
1=3

; ð48Þ

RðrÞ ¼ 1þ r
r⋆

þ
�
r
r⋆

�
2

: ð49Þ

The r⋆ is a characteristic radius with the restriction c3Q0 > 0
so that r⋆ > 0, and the function RðrÞ can be viewed as a
distortion factor which quantifies the deviation from the
exact Schwarzschild solution. By definition of η > 0,
c3 < 0, and thus, Q0 < 0. Therefore, at the scale r → r⋆,
Eq. (43) can mimic the Schwarzschild solution, and the
fðQÞ gravity approximately produces a Schwarzschild
spacetime in vacuum.
Next, we shall verify whether the term inside the braces

in Eq. (39) can vanish under the condition that a0 þ b0 ¼ 0.
Substituting Eq. (33) leads to

0 ¼ ðe−bÞ00 þ 2ðe−bÞ0
r

þ 2

r2
þQ0; ð50Þ

which solves b as

e−bðrÞ ¼
�
c4 þ

c5
r
−
Q0r2

6
− 2 ln r

�
: ð51Þ

It is apparently in conflict with Eq. (42), which indicates the
inconsistency between the two possibilities.

2. Case 2: a0 + b0 ≠ 0

We could assume a0 þ b0 ≠ 0 and make the term inside
the braces in Eq. (39) vanish, which reads

Q0

2
þ 1

r2
− e−b

�
a00

2
þ
�
a0

4
þ 1

2r

�
ða0 − b0Þ

�
¼ 0: ð52Þ

Substituting Eq. (33) into the above equation gives

Q2
0r

4 þ 2Q0r2ð2Bþ B0rÞ þ 4BðBþ 4þ B0rÞ ¼ 0; ð53Þ

where we have defined BðrÞ≡ e−bðrÞ.
Although there is no analytic solution, we can still

qualitatively analyze its asymptotic behavior. Equation (53)
gives B0 in terms of B and r:

B0 ¼ −
ðQ0r2 þ 2BÞ2 þ 16B

2rðQ0r2 þ 2BÞ : ð54Þ

Let us study the asymptotic formofBðrÞ at r → 0 and r → ∞
by rewriting Eq. (54) as

B0 ¼ −
Q0r
2

−
B
r
−

8B
Q0r3 þ 2Br

: ð55Þ

First, we consider the case r → 0. Assuming B con-
verges, Eq. (55) approximates B0 ∼ −B=r − 4=r. The
solution is BðrÞ ∼ −4þ c6=r, but it is inconsistent with
the assumption. Thus, B should diverge at r → 0, and then,
the second term in Eq. (55) is dominant, B0 ∼ −B=r. Then,
we find the asymptotic form of bðrÞ at r ∼ 0:

e−bðrÞ ∼
c7
r
: ð56Þ

Next, we consider the case r → ∞. In a way similar to
the case r → 0, assuming B converges to a finite value at
r → ∞, the first term in Eq. (55) is dominant, which gives
an inconsistent result BðrÞ ∼ −Q0r2=4þ c8. Thus, BðrÞ
should diverge also at r → ∞. Assuming B ∼ rn, the case
0 < n < 2 suggests the first term in Eq. (55) is dominant,
which gives BðrÞ ∼ −Q0r2=2n, and it is inconsistent with
the assumption. Moreover, the case n > 2 suggests the
second term is dominant, which also gives the inconsistent
result B ∼ c9=r. Finally, one finds a consistent form
BðrÞ ∼ B2r2, where B0 is a parameter. In this case,
Eq. (55) approximates B0 ∼ −Q0r=2 − B=r. Therefore,
the coefficient B2 satisfies 2B2 ¼ −Q0=2 − B2 to find
B2 ¼ −Q2=6. Finally, we find the asymptotic form of
bðrÞ at r ∼∞:

e−bðrÞ ∼ −
Q0

6
r2: ð57Þ

The above analysis of the asymptotic behavior suggests
that the solution e−bðrÞ to Eqs. (52) and (33) is similar to
the Schwarzschild-like solution in Eq. (42). However,
a0 þ b0 ≠ 0, and aðrÞ is determined by Eq. (33). e−bðrÞ ∼
c10=r at r ∼ 0, and then, Eq. (33) gives a0 ∼
−Q0r2=2c10 − 1=r. Because the second term is dominant,
the asymptotic form of aðrÞ at r ∼ 0 is eaðrÞ ∼ c11=r. In the
same manner, e−bðrÞ ∼ − Q0

6
r2 at r ∼∞, and Eq. (33)

approximates a0 ∼ 2=r. Thus, the asymptotic form of
aðrÞ at r ∼∞ is eaðrÞ ∼ c12r2.

3. Case 3: ea = 1− 2M
r

In previous case studies, we have confirmed the
Schwarzschild-like solution and its asymptotic behavior.
Presupposing that ea ¼ 1 − 2M

r , we further discuss the
deviation from the exact Schwarzschild metric, where
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the deviation is written only by the rr component of metric
ebðrÞ. Under the above assumption, Eq. (33) solves b as

eb ¼ −
2

Q0rðr − 2MÞ ; ð58Þ

where we require Q0 < 0, and the metric reads

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ −2

Q0r2

�
1 −

2M
r

�
−1
dr2 þ r2dΩ2:

ð59Þ

Comparing the above with the Schwarzschild metric, one
finds an extra prefactor in the rr component. Taking the
limit r ≫ 2M, we find the leading term in the rr component
is proportional to 1=r2, which shows the absence of a
conventional Newtonian limit.

B. Nonvacuum solutions

We have seen that the vacuum solution for Q ¼ Q0 is
closely related to the solutions of Eq. (40), which provide
us with the condition for the nontrivial functional forms of
fðQÞ. In this subsection, however, we shall focus on the
nonvacuum case by imposing conditions on geometric
quantities. In particular, we assume that fQðQ0Þ ≠ 0 to
look for particular solutions of interest.

1. Case 1: a0 + b0 = 0

The solutions for a0 þ b0 ¼ 0 are the same as Eqs. (42)
and (43), while the equations of motion are constrained to

−ρ ¼ pr ¼ pt þ fQðQ0Þ
1

r2
; ð60Þ

pt ¼ −
fðQ0Þ
2

þQ0fQðQ0Þ: ð61Þ

Note that the energy density and radial pressure obey the
inverse-square law with respect to the radius if fQðQ0Þ ≠ 0,
although the tangential pressure is constant. And since pt is
a constant in terms of Q0, we rewrite it as pt0 and obtain a
particular solution to fðQÞ:

fðQÞ ¼ c13Q0

ffiffiffiffiffiffi
Q
Q0

s
− 2pt0: ð62Þ

2. Case 2: a0 = 0

When a is a constant, Eq. (33) solves bðrÞ as

e−b ¼ −
Q0

2
r2: ð63Þ

Then the metric reads

ds2 ¼ −dt2 −
2

Q0r2
dr2 þ r2dΩ2; ð64Þ

where we have absorbed a into a time coordinate. The
equations of motion are

ρ ¼ −pr −Q0fQðQ0Þ; ð65Þ

pr ¼ pt þ fQðQ0Þ
1

r2
; ð66Þ

pt ¼ −
fðQ0Þ
2

þQ0fQðQ0Þ: ð67Þ

The values of the pressures are the same as in case 1, so is
the particular solution to fðQÞ.

3. Case 3: b = 0

For b ¼ 0, Eq. (33) gives

ea ¼ c14
r

exp

�
−
Q0

4
r2
�
; ð68Þ

with the metric being

ds2 ¼ −
c14
r

exp

�
−
Q0

4
r2
�
dt2 þ dr2 þ r2dΩ2: ð69Þ

Then the equations of motion read

ρ ¼ fðQ0Þ
2

−
Q0fQðQ0Þ

2
; ð70Þ

pr ¼ −ρþ fQðQ0Þ
�
Q0

2
þ 1

r2

�
; ð71Þ

pt ¼ −ρ − fQðQ0Þ
�
Q0

4
þQ2

0r
2

16
þ 1

4r2

�
: ð72Þ

Since ρ is a constant in terms of Q0, we rewrite it as ρ0.
Then, a particular solution to fðQÞ is

fðQÞ ¼ c15Qþ 2ρ0; ð73Þ

which recovers STGR with cosmological constant
Λ ¼ ρ0=c15.

V. CONCLUSIONS AND DISCUSSION

Different geometric bases allow us to have different
descriptions of gravity. Of particular concern in recent
years is the STGR, in which gravity is attributed to the
nonmetricity tensor. As an extension of STGR, fðQÞ
gravity is an intriguing approach in the study of modified
gravity. In this work, we have analyzed the static and
spherically symmetric solutions in general fðQÞ gravity
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and have shown the two possible solutions due to the
nonzero off-diagonal components, that is, the linear fðQÞ
function and constant nonmetricity scalar Q ¼ Q0. We
have confirmed that the Schwarzschild (anti–)de Sitter
solution only exists in linear fðQÞ gravity, which recovers
STGR and is thereby equivalent to GR.
With a focus on the second solution Q ¼ Q0, we have

found that the vacuum solutions fðQ0Þ ¼ fQðQ0Þ ¼ 0 as
in Eq. (40), which puts stringent constraints on the func-
tional form of fðQÞ gravity. On the other hand, those
solutions do not constrain the metric components and
provide us with considerable freedom to investigate the
spacetime structure. As examples, we have discussed three
cases trying to find the exact Schwarzschild solution, only
to obtain the Schwarzschild-like solutions. Those solutions
do not exhibit asymptotic flatness; that is, the spacetime
cannot reduce to the Minkowski one at r ≫ 2M due to the
absence of 1 in the metric. Therefore, the Schwarzschild-
like solutions obtained for the case Q ¼ Q0 cannot recover
the Newtonian inverse-square law, which is strictly con-
strained by observations. As for the nonvacuum solution for
Q ¼ Q0, we have started from the geometric assumptions
listed as three examples. By proper conditions on the tt
component or rr component, we have found some par-
ticular solutions to fðQÞ with constant energy density or
constant tangent pressure.
As an application of our findings, we have discussed the

implications for the fðQÞ cosmology from the theoretical
viewpoint of model building. In the case study forQ ¼ Q0,
we have seen that Q0 plays a role of the cosmological
constant in the Schwarzschild-like solutions, and thus, we
can expect the cosmological model of fðQÞ gravity for DE.
The possible functional form of fðQÞ is constrained by
Eq. (40), which suggests fðQÞ ¼ P

n anðQ −Q0Þn as in
Eq. (41). Therewith, specifying the coefficients an, one
could construct specific models of fðQÞ gravity. The
simplest example is the polynomial of Q, which was
proposed and investigated as the cosmological model of
fðQÞ gravity [18]. Moreover, reading Eq. (41) as the Taylor
expansion, one can construct the exponential of Q or its

combinations, for instance, the trigonometric functions.
Those functional forms are known well in cosmological
applications of fðRÞ gravity [3,30,31], and thus, the fðQÞ
functions similar to or the same as the known fðRÞ
functions can provide us with intriguing cosmology.
In the end, we comment on the gauge fixing and possible

analogy to the known results in fðTÞ gravity. The curva-
tureless and torsionless conditions correspond to the
coincident gauge so that the affine connection is always
zero. However, the choice of the coincident gauge makes
the fðQÞ theory no longer invariant under the general
coordinate transformation. As in the case of fðTÞ gravity,
the covariant formulation of fðQÞ theory [17,32,33] can
allow us to avoid issues caused by the coincident gauge. In
our present analysis, the existence of the constraint equa-
tion (24) results in two choices for fðQÞ gravity: a linear
function or constant nonmetricity scalar. Concerning the
gauge fixing and breakdown of diffeomorphism, the differ-
ent coordinate systems may allow fðQÞ gravity to possess
the Schwarzschild solution even in the noncovariant
approach to fðQÞ gravity. As in the fðTÞ theory, an off-
diagonal component of the field equations shows up in the
polar coordinate, which prohibits the Schwarzschild space-
time as a solution, otherwise, the fðTÞ function should be
linear to the torsion scalar T. On the other hand, fðTÞ
gravity with higher orders of T can possess the
Schwarzschild solution in the isotropic coordinate [26].
By relying on the analogy between fðTÞ and fðQÞ theories,
it may be worth studying the spherically symmetric
solution of fðQÞ gravity in the isotropic coordinate.
Applying our present analysis to the covariant fðQÞ gravity
or other coordinate systems, we may be able to obtain
the Schwarzschild solution even in the nontrivial fðQÞ
function.
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