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In recent papers it has been shown that a large class of vectorization mechanisms in gravity, which
involve the vector fields becoming apparently tachyonic in some regime, are actually dominated by ghosts
and nonperturbative behavior. Despite this, vectorized compact object solutions have previously been
found, which raises the question of how, and if, the newly discovered ghosts are quenched in these cases.
Here we develop the tools to study the perturbations of vectorized compact objects, and demonstrate that
they suffer from ghosts and gradient instabilities as well. Thus, these vectorized objects do not represent the
stable end point of a quenched instability unlike their scalarized counterparts in the spontaneous
scalarization literature.
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I. INTRODUCTION

General relativity (GR) is incredibly successful from a
phenomenological point of view, having accounted for
previously unexplained observations and made many
incredible predictions that have since been verified.
Perhaps the most spectacular of these is the confirmation
of GR’s prediction of the existence of gravitational waves.
It matches observations of binary pulsars so well as to
provide an extremely stringent constraint on massless (and
sufficiently light) scalar fields [1]. It is also so far consistent
with all of direct gravitational wave observations performed
by the LIGO-Virgo-KAGRA collaboration (e.g., [2]).
Given the success of GR, especially in the Solar System

[3], the most interesting theories come with some mecha-
nism to mimic GR in the solar system, while allowing for
large deviations elsewhere. Such mechanisms are termed
“screening mechanisms” and the prototypical examples are
the Damour Esposito-Farèse (DEF) model of spontaneous
scalarization [4,5] and the Vainshtein mechanism [6] (see
Ref. [7] for a review). We are interested in the former in this
study, which has an action of the form

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 2ð∂μϕÞð∂μϕÞ − 2VðϕÞ�

þ Sm½fm;Ω2
ϕðϕÞgμν�: ð1Þ

Here VðϕÞ is a potential for the scalar field, fm stands for
any matter fields and Ω2

ϕðϕÞ is a conformal factor through
which the scalar field and matter are coupled. Given some
conditions onΩϕ and V one can arrange for the theory to be

solved by GR solutions with constant ϕ ¼ ϕ0.
Perturbations of the scalar field around such a solution
have an effective mass squared of the form

m2
eff ¼ m2

ϕ − 4πβT; ð2Þ

where m2
ϕ ¼ V 00jϕ0

, β ¼ d2 logΩ2
ϕdϕ

2jϕ0
, and T is the trace

of the stress energy tensor. Choosing mϕ and β correctly
one can then arrange that the Solar System is stably given
by GR while (say) neutron stars become unstable to scalar
perturbations. An instability due to a wrong sign of the
effective square mass is termed “tachyonic.” When this
effective square mass is constant throughout spacetime, it is
sufficient that it be negative to trigger an instability,
whereas in this case it depends on the matter configuration.
Ifm2

eff < 0 in some region of characteristic size R, then a
heuristic condition for the instability is that 1=R2þm2

eff≲0

(so that some mode which can probe this length scale is
unstable within it) [8]. When m2

ϕ is small, one can see that
the controlling parameter for the onset of the instability will
be the compactness of the object. When the mass is
sufficiently small, binary pulsar tests heavily constrain
the model [9], and for very large masses the mechanism
is never activated for astrophysical objects [8]. However,
there remains an interesting range of parameters for light
scalars in various astrophysical scenarios [10].
There is no explicit role of the scalar nature of the field in

the spontaneous scalarization mechanism we have pre-
sented, hence, there have been efforts to generalize it to
other fields, the most commonly studied case being vectors
[11–14]. The common theme of these theories is that the
vector field spontaneously grows in the vicinity of compact
objects similarly to the scalar of the DEF model, and the
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vectorized objects generically feature large deviations
from GR.
Our analysis will focus on the direct generalization of the

DEF model, Ref. [11], though some of our results will
cover any model of vectorization that have perturbation
equations of the form

∇μFμν ¼ Ξν
μAμ; ð3Þ

such as Refs. [12–14].
It was recently shown that theories of this type possess

ghost instabilities if they contain what one might term a
“naïve tachyon” [15,16].1 If Ξ were to be a good mass
squared tensor, then it should behave, in some key ways,
like μ2δμν, the mass term of the Proca field. A “naïve
tachyon” would then be when it does not meet these
requirements, for example, if Ξ has negative eigenvalues as
a matrix, one would expect some tachyonic behavior. As
we will demonstrate later, Ξμν plays an even more promi-
nent role than that of a mass squared tensor, being the
inverse of the effective metric for the scalar mode of the
vector field, and so requirements of causality will also play
a role in deciding what forms of Ξ allows healthy dynamics
of the vector (see Ref. [18]).
As a concrete example, the spontaneous vectorization

theory of Ref. [11] is given by the action2

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − FμνFμν − 2m2
VAμAμÞ

þ Sm½fm;ΩV
2ðAμAμÞgμν�; ð4Þ

where Aμ is a vector field with bare mass mV,
Fμν ¼ ∇μAν −∇νAμ, and as before fm is a generic label
for any matter field. The vector field equation of motion is
given by

∇μFμν ¼ ðm2
V − 8πΛΩ4

VT̃ÞAν ≡ ẑm2
VA

ν; ð5Þ

where

ẑ ¼ 1 −
8π

m2
V

d lnΩV

dðAμAμÞΩ
4
VT̃: ð6Þ

T̃ is the trace of the stress energy tensor with respect to the
metric g̃μν ¼ Ω2

Vgμν. In the rest of the paper we will use

ΩV ¼ eβAμAμ=2; ð7Þ

following the literature.
When ẑ < 0we have a naive tachyon as described above,

which led to expectations that the theory would have

vectorized neutron star solutions similar to the scalarized
solutions of the DEF model [11]. However, in Ref. [15], it
was shown that action (4) also features ghost instabilities
for a neutron star that is a solution of GR when ẑ is
negative. Furthermore, ẑ also changes sign in many cases,
which leads to other serious problems due to divergent
terms of the form ẑ−1.
Despite the problems around a GR background, neutron

star solutions with nontrivial vector configurations have
been numerically calculated [11]. If these vectorized
solutions are stable, then one could hope that the prob-
lematic GR backgrounds are dynamically avoided and that
these vectorized configurations develop without issue.
Here, we will show that this is not the case. That is,
arbitrarily small perturbations from vectorized solutions
calculated in Ref. [11] grow in an unbounded manner,
meaning they are unstable. We also explore parts of the
ðβ; mVÞ parameter space that have not been investigated so
far, and show that there is no stable spherically symmetric
vectorized star in any sector we studied. This is in stark
contrast to the case of the DEF model where typical
scalarized solutions are known to be stable in various
models [8,20–24].
Despite these negative results, we shall see that the naïve

picture of a tachyonic degree of freedom can apply to the
axial part of the vector field, and so, in the regions of
parameter space where this holds, one should likely be
looking at axisymmetric stars for healthy end states, if
any exist.
In Sec. II, we develop the perturbative framework to

analyze the instabilities of vectorized stars by generalizing
the approach of Ref. [15]. In Sec. III, we numerically solve
for vectorized stars in the theory of action (4), and show
that all solutions are unstable to linearized pertubations.
Not all solutions carry all the different forms of instabilities
we study, but they all carry at least one. In Sec. IV, we will
discuss our results, and argue how our methods can be
applied to other vectorization theories and other extensions
of the DEF model.
We use the geometric units G ¼ c ¼ 1 and the metric

signature ð−1; 1; 1; 1Þ. We use Einstein summation con-
ventions for Greek indices μ; ν;…, but not for the Latin
indices for spatial variables such as i, unless specifically
stated otherwise.

II. INSTABILITIES OF VECTORIZED STARS

A. Spherically symmetric vectorized stars

The metric of a static and spherically symmetric vec-
torized star can be represented by the ansatz

ds2 ¼ −eνðrÞdt2 þ 1

1 − 2μðrÞ
r

dr2 þ r2ðdθ2 þ sin2 θdϕÞ: ð8Þ

The vector field also has the simple form
1See Ref. [17] for a similar earlier work on cosmology.
2Also see Ref. [19] for a similar cosmological theory.
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Aμ ¼ ðA0ðrÞ; 0; 0; 0Þ ¼ A0ðrÞ∂0: ð9Þ

That is, only the time component of the vector field is
nonvanishing in a static and spherically symmetric space-
time. This was “assumed” in Ref. [11] for ease of
calculation. Here, we examine the most general case,
and show that there is no need for an assumption.
The fact that spherical symmetry implies that the angular

components of the vector field, Aθ;ϕ, vanish is not a trivial
one. For example, minimally coupled massless vector fields
can have nonzero angular components under spherical
symmetry such as the electromagnetic field vector V of a
Reissner-Nordstromblack holewithmagnetic charge. This is
possible due to the fact that the stress-energy tensor can still
be spherically symmetric in this case, even though Vϕ ≠ 0

andFθϕ ≠ 0. However, this is not the case for amassive field.
The metric equation of motion arising from the action (4)

takes the following form outside the star

Rμν ¼ 2FμρFν
ρ −

1

2
FρσFρσgμν þ 2m2

VAμAν: ð10Þ

The line element (8) has direct implications for the Ricci
and Einstein tensors. First, Rμν has to be diagonal, hence
only one component of Aμ can be nonvanishing due to the
m2

V term. Secondly, the surviving component cannot be Aθ

or Aϕ, since Eq. (8) also implies that Rϕϕ ¼ sin2 θRθθ,
which cannot be satisfied due to the same term.
Finally, vanishing of Ar is a direct consequence of the

α ¼ r case of Eq. (5)

Ar ¼ ∂ρð
ffiffiffiffiffijgjp

FρrÞffiffiffiffiffijgjp ð−4πΩ4
VβT̃ þm2Þ ¼ 0; ð11Þ

where we used the partial derivative formula for the
divergence of an antisymmetric tensor, and the fact that
the only nonzero component of the differentiated tensor,
Ftr, is time independent for a static solution. Overall, the
only surviving component is A0.
In the following, we will assume that the nuclear matter

behaves as a perfect fluid with stress-energy tensor

T̃μν ¼ ðρ̃þ p̃Þũμũν þ p̃g̃μν; ð12Þ

where the total energy density ρ̃, pressure p̃ and the
components of the fluid four velocity ũα only depend on
the radial coordinate r.

B. Basics of tachyons, ghosts, and gradient instabilities

Although they are related to each other, we will
categorize our instabilities into three groups: tachyons,
ghosts, and gradient instabilities. Their basic behavior can
be demonstrated for a classical massive scalar field theory
in 1þ 1D

Sφ ¼
Z

dtdx
ffiffiffiffiffi
jgj

p
½−gttð∂tφÞ2 − gxxð∂xφÞ2 −m2φ2�; ð13Þ

whose equation of motion is

gtt∂2
tφþ gxx∂2

xφ ¼ m2φ ð14Þ

for a metric gμν with constant diagonal components.
A Fourier mode φðt; xÞ ¼ ei½ωðkÞt−kx� has the dispersion

relation

ωðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ gxxk2

−gtt

s
: ð15Þ

If ωðkÞ is real, then the mode has an oscillatory behavior in
time. This happens in the “usual” casewhere gtt < 0, gxx > 0

and m2 > 0. If ωðkÞ becomes imaginary, then the mode
grows exponentially, which is an instability. Let us consider
the cases where one of the constants change its signwhile the
other two have the usual one.
We call the m2 < 0 case a “tachyon.” The modes with

k2 <
−m2

gxx
ð16Þ

are unstable in this case, hence it is an infrared instability.
Note that high wave number modes are stable, and the

fastest growing unstable mode behaves as ∼e
ffiffiffiffiffiffiffiffiffiffi
m2=gtt

p
t,

hence, there is an upper limit to the growth rate. This is
the instability that underlies the spontaneous scalarization
mechanism of the DEF model [4].
We call the gtt > 0 case a “ghost.” All ghost modes

exponentially grow, the growth rate of the modes diverging

at high wave numbers as ∼e
ffiffiffiffiffiffiffiffiffiffi
gxx=gtt

p
kt. Thus, unlike a

tachyon, a ghost, as described here, has infinite growth
rate for generic perturbations.
We call the gxx < 0 case a “gradient instability.” The

modes with

k2 >
m2

−gxx
ð17Þ

are unstable, and low wave number modes are stable.
However, high wave number modes can grow arbitrarily

fast like the ghost as ∼e
ffiffiffiffiffiffiffiffiffiffi
gxx=gtt

p
kt. Hence, the growth rate of

this instability also diverges.
In our simple model, a coexistence of two of the

instabilities is equivalent to the third instability. For
example, a ghost and a gradient with m2 > 0 behaves
exactly as a tachyon, which is the simple mathematical
result of the fact that we can multiply the action (13) or the
equation of motion (14) with −1, and have the same theory.
Similarly, gtt > 0, gxx < 0, and m2 < 0 can be considered
as a completely stable theory. However, the scalar field
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couples to other fields, and the overall sign of the action is
meaningful in most situations, e.g., in spontaneous scala-
rization in Eq. (1). Hence, we will categorize each sign
change as a separate instability.
Last, we will see that the instabilities we encounter will

have gμν and m2 values that are functions of spacetime
coordinates, and they can have different signs in different
regions. In the case of the tachyon, havingm2 < 0 only in a
finite region of space effectively puts a lower bound on the
k values that can be tachyonic, which might mean no mode
is tachyonic [8]. On the other hand, having different regions
of spacetimewith positive and negative gtt values means the
coefficient of the principal part of the equation of motion
(14) vanishes at the transition points between regions.
Alternatively, if we divide the whole equation by gtt, some
of the coefficients diverge at such points. In any case,
perturbative treatment of such an equation becomes impos-
sible, which we will see to be the case for vectorization.

C. Ghost and gradient instabilities in vectorization

The stability analysis for any putative solution to the
vectorization theory can start at the generalized Lorenz
condition [15]

∇μðẑAμÞ ¼ 0; ð18Þ

which is obtained from Eq. (5) by realizing that
∇μ∇νFμν ¼ 0 due to the antisymmetry of Fμν. Let us fix
the metric of the vectorized solution as the background
metric, and consider perturbative deviations of the vector
field

Aμ ¼ Āμ þ δAμ: ð19Þ

Here, and from now on, an overbar denotes the value of a
function or operator for the exact vectorized solution. The
linearized Lorenz condition becomes

∇̄μðΞμ
νδAνÞ ¼ 0; ð20Þ

where we define

Ξμ
ν ≡ z̄δμν þ 2

dẑ
dðAρAρÞ

ĀμĀν: ð21Þ

For the exponential conformal factor ΩV ¼ eβA
μAμ=2 of

Ref. [11]

m2
VΞμ

ν ¼ −16πβ2T̃bge2βĀ
ρĀρĀμĀν

þ ðm2
V − 4πβT̃bge2βĀ

ρĀρÞδμν; ð22Þ

where T̃bg is the value of the trace of the stress-energy
tensor for the vectorized solution. More explicitly

Ξ0
0 ¼ 1 −

4πβT̃bge2βĀ
0Ā0ð1þ 4βĀ0Ā0Þ
m2

V
; ð23Þ

Ξi
i ¼ 1 −

4πβT̃bge2βĀ
0Ā0

m2
V

ðno sumÞ; ð24Þ

where there is no summation over the repeated spatial index
i as is the case for most expressions in this paper. These
reduce to the corresponding expressions in Ref. [15] when
Āμ ¼ 0, as expected.
We can already see some of the problematic aspects of

the vectorized solutions directly using the Lorenz con-
dition. The form of the metric and the vector field for the
vectorized star imply that Ξμ

ν is diagonal on this back-
ground, and Eq. (20) gives the time evolution for δA0

∂0ð
ffiffiffiffiffiffi
−ḡ

p
Ξ0

0δA0Þ ¼ −
X3
i¼1

∂ið
ffiffiffiffiffiffi
−ḡ

p
Ξi

iδAiÞ; ð25Þ

where the summation over i is shown explicitly.3 This is
an advection equation for the vector density δBμ≡ffiffiffiffiffiffi
−ḡ

p
Ξμ

νδAν. Consider a point p where Ξ0
0 ¼ 0. Note that

the right-hand side of Eq. (25) is generically nonzero at p
since there is no symmetry principle to ensure otherwise.
This means even if the initial data is such that δBðt ¼ 0Þ ¼ 0
atp, itwill immediately evolve to nonzerovalues, assuming a
meaningful time evolution is possible. However, this implies
that the time derivative of δA0 diverges at p. In summary,
Ξ0

0 ¼ 0 implies divergences in the time evolution of generic
pertubations around a vectorized star.
Equation (20) is first order in time, hence the nature of

the divergence is not apparent. We can show that this is
related to a ghost instability by following Ref. [15] and
using the Stueckelberg trick [26], which makes the follow-
ing substitution in the action (4)

Aμ → Aμ þ
1

mV
∂μψ : ð26Þ

This separates out an explicit scalar field, whose equation
of motion can be obtained by varying the action, or
equivalently by using the Stueckelberg trick directly in
the Lorenz condition [Eq. (18)],

∇μ

�
ẑ

�
Aμ þ

1

mV
∇μψ

��
¼ 0: ð27Þ

For perturbative deviations from a vectorized star solution,
the linearized equation is

3A0 is not a dynamical degree of freedom since its time
derivative does not appear in the action (4), but the dynamics of
the other components imply this time evolution indirectly [25].
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∇̄μ

�
Ξμν

�
δAν þ

1

mV
∇̄νδψ

��
; ð28Þ

where

Ξμν ¼ ḡνρΞμ
ρ ¼ z̄ḡμν þ 2

dẑ
dðAρAρÞ

ĀμĀν: ð29Þ

The significance of Ξμν becomes clearer when we consider
the principal part, the highest derivative term, of this
equation: Ξμν∂μ∂νδψ . This means that the evolution of
δψ is governed by the effective inverse metric

ğμν ¼ Ξμν: ð30Þ

In particular, if Ξ00 is positive then δψ will be a ghost, and if
Ξii is negative for any i, δψ will have a gradient instability
for large wave numbers. Using this effective metric the full
equation of motion can be expressed as

□̆δψ ¼ −mV∇̆ · δAþ ΔΓβ
αβΞμαðmVδAμ þ ∇̆μδψÞ; ð31Þ

where ΔΓμ
αβ ¼ Γ̆μ

αβ − Γμ
αβ, and both □̆ and ∇̆· imply

contraction with ğ, rather than g. Note that, ğ00 or
equivalently Ξ00 changes sign exactly when Ξ0

0 changes
sign, since this tensor and the metric are both diagonal in
our cases of interest. Hence, the divergence in the Lorenz
condition Eq. (25) occurs exactly when δψ becomes
a ghost.
Even though we considered a specific model, Ref. [11],

so far, note that our results are valid for any symmetric Ξ,
hence applies to other vectorization models studied in detail
in Refs. [12,13]. It is, however, worth noting that non-
diagonal terms, which one would expect to find outside of
spherical symmetry, complicate the analysis somewhat,
again see Ref. [18].
Last, we can also observe the ghost directly in the vector

field components when we recast the field equation (5) in
the form

□Aα þ ð∇β ln ẑÞ∇αAβ ¼ MαβAβ; ð32Þ

where we used the Lorenz constraint and the commutation
rules for covariant derivatives [15]. The mass squared
tensor is defined as

Mαβ ¼ ẑm2gαβ þ Rαβ −∇α∇β ln ẑ: ð33Þ

The principle part of Eq. (32) solely consists of □Aα

when it is linearized around the GR solution for which the
vector field vanishes. On the other hand, for a spherically
symmetric vectorized star background, the following term
also contributes to the linearized equation

∇̄α∇̄β ln ẑ ¼
2

z̄
dẑ

dðAρAρÞ
Āσ∇̄α∇̄βδAσ þ… ð34Þ

This means that the principal part cannot be expressed as a
wave operator in general, however, for α ¼ 0 in Eq. (32), it
can be written as

ğμν∂μ∂νδA0; ð35Þ

where we used the fact that only the 0 component of Āρ is
nonvanishing. Hence, ğμν ¼ Ξμν is also the effective metric
that governs the evolution of δA0, which becomes a ghost if
ğ00 changes sign, and has a gradient instability if ğii

changes sign for any i. These are the same conditions
for the existence of instabilities in the scalar field ψ arising
from the Stueckelberg trick.
To summarize, we have shown that the existence of ghost

or gradient instabilities depends on the behavior of Ξμν,
which acts as an effective (inverse) metric for some degrees
of freedom in the theory of action (4). Since gμν always has
the signature ½−1; 1; 1; 1�, a change of sign in Ξμ

ν occurs
exactly under the same conditions of a change of sign of
Ξμν as we mentioned. Thus, wewill compute Ξμ

ν profiles of
vectorized neutron stars in Sec. III in order to assess their
stability.

D. Tachyons in vectorization

The original aim of vectorization as introduced in Eq. (4)
was to replicate the tachyon-based spontaneous growth of
scalar fields arising from action (1) [11]. In the standard
scenario, the stability of the final solution is realized by
nonlinear effects which suppress the instability as the scalar
field grows [8].
The existence of a ghost instability for perturbations

around a vectorized star is sufficient to demonstrate that
such a solution is unstable, however, it is interesting to see
if the suppression mechanism of the tachyonic instability
also fails. Namely, it is possible that the nonlinear effects
that are expected to quench the tachyon once a vectorized
solution forms fail.
GR backgrounds are known to be susceptible to tachyon

instabilities in vectorization [15]. The existence of ghosts
breaks the perturbative approach due to divergent terms in
the time evolution, but let us try to see the behavior of the
tachyonic modes assuming a background solution exists
and we only perturb the degrees of freedom that are
tachyonic. We will repeat the discussion of Ref. [15] for
a vectorized background, starting with a vector spherical
harmonic decomposition of the perturbative deviations
from the exact solution

δAα ¼
1

r

X4
i¼1

X
lm

ciulmðiÞ ðt; rÞZðiÞlm
α ðθ;ϕÞ; ð36Þ
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where c1 ¼ c2 ¼ 1, c3 ¼ c4 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

, and

Zð1Þlm
α ¼ ½1; 0; 0; 0�Ylm; ð37Þ

Zð2Þlm
α ¼ ½0; 1; 0; 0�Ylm; ð38Þ

Zð3Þlm
α ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp ½0; 0; ∂θ; ∂ϕ�Ylm; ð39Þ

Zð4Þlm
α ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp ½0; 0; csc θ∂ϕ;− sin θ∂θ�Ylm; ð40Þ

Ylm being the scalar spherical harmonics. Details of this
decomposition can be found in Refs. [15,27].
As the background vector field Ā has no θ or ϕ

component, the u4 degree of freedom, the so-called axial
mode, behaves as in the case with vanishing vector field,
with a slightly different expression for the effective mass. In
particular, the perturbation Lagrangian up to quadratic
terms for any u4 ≡ ul0ð4Þ becomes

St ¼
Z

dtdr
eν̄=2ð1 − 2μ̄=rÞ−1=2

4πlðlþ 1Þ
�
e−ν̄ð _u4Þ2

−
�
1 −

2μ̄

r

�
ðu04Þ2 −

�
lðlþ 1Þ

r2
þ z̄m2

V

�
u24

�
ð41Þ

after integration over the angular coordinates. This leads to
the field equation

�
−e−ν̄∂2

t þ e−ν̄=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2μ̄

r

r
∂r

�
eν̄=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2μ̄

r

r
∂r

�

−
lðlþ 1Þ

r2
− z̄m2

V

�
u4 ¼ 0: ð42Þ

If we perform a separation of variables u4ðt; rÞ ¼ eiωtuðrÞ,
then we obtain

�
−

d2

dr2�
þ VeffðrÞ

�
u ¼ ω2u; ð43Þ

where

dr�
dr

¼ e−ν̄=2
�
1 −

2μ̄

r

�
−1=2

ð44Þ

VeffðrÞ ¼ eν̄
�
lðlþ 1Þ

r2
þ z̄m2

V

�
; ð45Þ

and Veff can be considered a function of r� through rðr�Þ. A
tachyon exists if there is a solution to this eigenfunction
problem that satisfies ω2 < 0. Note that the axial mode is
only defined for l ≥ 1.

Increasing l makes the modes strictly less tachyonic due
to its positive contribution to Veff , which means it is
sufficient to check l ¼ 1 for the existence of a tachyon.
Nonexistence of linearized tachyons in the axial sector is
guaranteed if Veff > 0 everywhere, since the expectation
value of the differential operator on the left-hand side of

FIG. 1. Deviations from GR measured by Ω̄Vðr ¼ 0Þ − 1 as a
function of the ADM mass of vectorized stars for various values
of β < 0 and mV. This is a slightly updated version of Fig. 1 of
Ref. [11]. There are solutions where the vector field or the matter
density does not monotonically decrease with radius (dashed
lines), and the general dependence of deviations from GR on the
neutron star mass is qualitatively different from the case of
scalarization, e.g., in Ref. [8].

FIG. 2. Ξ0
0, Ξr

r, Veff , Φ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−A0A0

p
, and the matter energy

density ρ̃ of a nonmonotonic (left) and monotonic (right) star for
β < 0. The radii where Ξ0

0 and Ξr
r cut through 0 can be seen as

the divergences in the logarithmic scale, and the lines are dashed
when the functions attain negative values. Veff is monotonically
decreasing with radius in both cases and is positive everywhere.
Note that the regions where Ξ0

0 and Ξr
r become negative overlap

closely, but not exactly.
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Eq. (43) for any trial function is positive in this case, which
ensures ω2 > 0 for any eigenfunction. We will employ this
shortcut when analyzing our vectorized stars.
The above analysis is only for a single vector spherical

harmonic, and does not have any direct implications for the
even modes u1;2;3. This means we can conclude the
existence of tachyons from Eq. (43) but not rule them
out completely even if u4 is not tachyonic. We will not
investigate the more complicated coupled equations for
u1;2;3 in this study, as we will soon see that the even sector is
already plagued by ghost and gradient instabilities.

III. RESULTS

For our purposes,we recomputed the static and spherically
symmetric vectorized neutron star solutions of Ref. [11]
using the same numerical methods, and constructed other

ones in a broader part of the ðβ; mVÞ parameter space. In
addition, we computed Ξμ

ν [Eqs. (23) and (24)] and Veff
[Eq. (45)] for each solution to assess stability.We checked the
numerical convergence of our results, and also performed
independent residual analysis. All the neutron star solutions
are for the piecewise polytropic HB equation of state for
nuclear matter defined in Ref. [28].
We categorize the solutions into two groups. The first

group has strictly decreasingA0 andmatter density ρ̃, so there
is no immediate sign of an instability when one looks at the
solutions, hereafter “monotonic stars.” The second group
have visible indications of instability, particularly A0, ρ̃ or
both increase at some point within the star, hereafter “non-
monotonic stars.” However, note that nonmonotonicity does
not necessarily imply instability, nor does monotonicity
imply stability, hence we examined the perturbations around
all solutions.

FIG. 3. Maximum values of −Ξ0
0 and −Ξr

r for the neutron stars in Fig. 1 [recall from Eq. (24) that Ξi
i is the same for all i]. Negative

values are attained for both functions in all cases, hence all solutions have ghost and gradient instabilities.
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Summarizing the previous section, we deduce the
instabilities of linearized perturbations of vectorized stars
as follows:

(i) There is a ghost instability if Ξ0
0 < 0 anywhere.

(ii) There is a gradient instability if Ξi
i < 0 anywhere.

(iii) There is a tachyonic instability if the eigenfunction
problem in Eq. (43) has a negative eigenvalue,
ω2 < 0, for Veff. As a shortcut, u4 does not have
a tachyon if Veff > 0 everywhere, hence such a case
is an indication of stability in this mode. However,
recall that this does not rule out the existence of
tachyons in the u1;2;3 modes.

As we mentioned before, having all instabilities together
would mean stability if the vector field was not coupled to
any other field, which is not the case in our action (4).
Moreover, issues with ẑ cutting 0 would remain, and the
instabilities would catch up with us at higher orders in
perturbation theory. Hence the above classification.
The general behavior of vectorized stars in terms of their

deviation from GR can be seen in Fig. 1, some sample star
profiles can be seen in Fig. 2. Applying the above
instability criteria to the neutron stars in Fig. 1, we found
that all vectorized solutions have both ghost and gradient
instabilities. Therefore neither type of star is stable, which
is the main result of this study. The “strength” of the ghost
and gradient instabilities of the stars as measured by the
most negative values attained by Ξμ

ν can be seen in Fig. 3.
Ξμ

ν is significantly negative, so the existence of the ghost
cannot be avoided by small changes to the stellar structure.
The behavior of Ξμ

ν and Veff as functions of radius for two
sample vectorized stars can be seen in Fig. 2.
In contrast to ghosts, we find that themonotonic stars have

Veff > 0 everywhere, hence the u4 mode is not tachyonic in
this case. The u4 tachyon is also stabilized in the majority of
the nonmonotonic stars due to the same criterion. There are
some nonmonotonic stars where Veff < 0 in small regions,
butwe did not solve the eigenfunction problem, so these stars
may or may not have tachyonic instabilities.
The naïve expectation of a tachyon first growing and

eventually getting quenched in vectorization seems to be
partially realized for many, possibly all, solutions for the u4
modes. However, note that u4 ¼ 0 for the vectorized star,
hence, it is not the u4 modes themselves that quench the
tachyon, but possibly the indirect nonlinear effects of the
other modes through their coupling. We reiterate that
regardless of the fate of the tachyon(s), the ghost, and
gradient instabilities not considered in the original work
[11] are present in all solutions, which is enough to render
the vectorized stars unstable.
The solutions found in Ref. [11] all had β < 0, however

it is known, from the scalarization case, that it is possible to
destabilize massive GR stars for β > 0 [23]. Therefore we
have investigated a part of the β > 0 parameter space for
the first time as well. The deviation from GR in this case

can be seen in Fig. 4, monotonic and nonmonotonic sample
star profiles can be seen in Fig. 5.
The vectorized stars remained unstable in all cases for

β > 0 as well, which can be seen in Fig. 6, though the
picture is slightly different. All solutions still have gradient
instabilities hence the major problem of the β < 0 solutions

FIG. 4. Deviations from GR measured by 1 − Ω̄Vðr ¼ 0Þ as a
function of the ADM mass of vectorized stars for various values
of β > 0 and mV. The behavior of the curves are relatively
simpler compared to the β < 0 case in Fig. 1, which we discuss in
Sec. IV. There is a second branch of solutions appearing at high β
which consists of nonmonotonic solutions. All curves possibly
continue to higher MADM values than shown, however the
numerical methods we employ are ineffective in this regime.

FIG. 5. Ξ0
0, Ξr

r, Veff , Φ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−A0A0

p
, and the energy density ρ̃

of a star with (left) and without (right) ghosts for β > 0. The radii
where Ξ0

0 and Ξr
r cut through 0 can be seen as the divergence in

the logarithmic scale, and the lines are dashed when the functions
attain negative values. Note that Ξ0

0 and Ξr
r can cut through zero

twice, being negative between these radii. Veff is not monoton-
ically decreasing with radius in these examples, but it is positive
everywhere.
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persists. The ghost instability remains active in the majority
of the solutions, though there do exist monotonic solutions
with Ξ0

0 > 0 everywhere. As for the u4 tachyons, there are
solutions with Veff > 0 and Veff < 0 among both mono-
tonic and nonmonotonic stars, but we did not explore
whether any of the latter cases indeed have tachyonic
instabilities, since Ξi

i < 0 already ensured that all solutions
are unstable.
The shooting method we utilized to calculate the

solutions does not work reliably for high Arnowitt-
Deser-Misner (ADM) mass neutron stars, especially for
higher values of mV, hence the ADM masses in our figures
do not necessarily reflect the most massive neutron stars in
the theory. There are also solutions in parts of the parameter
space where A0ðrÞ has nodes, which are not shown in our

figures. These are effectively “higher harmonics” of the
fundamental vectorized solution where the vector field does
not have nodes, and are always unstable. The solutions
presented so far for very different ðβ; mVÞ values and ADM
masses are all unstable, which strongly suggests that all
static, spherically symmetric vectorized solutions are
unstable; however we cannot conclusively rule out excep-
tions since the parameter space is vast. Further regions of
the parameter space might be explored in the future using
alternative numerical methods [29].
One final possibility we want to mention is that, however

likely or not, the unstable part of the spherically symmetric
regime might be dynamically avoided in vectorization, and
one might have to look for the stable solutions under less
stringent conditions, e.g., axisymmetry. This is possible as

FIG. 6. Maximum values of −Ξ0
0 and −Ξr

r for the neutron stars in Fig. 4 [recall from Eq. (24) that Ξi
i is the same for all i]. While

negative values are attained for Ξr
r in all cases, Ξ0

0 > 0 everywhere for some solutions. Thus, all solutions are unstable due to gradient
instabilities, but some do not carry ghosts.
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the nonperturbative behavior is triggered as ẑ gets suffi-
ciently small, before it crosses 0. Consider the concrete
example of a star, far from the regime where ẑ crosses 0,
collapsing to form something compact enough that, if it
were to follow collapse as in GR, ẑ would cross 0. Initially
this should proceed as a GR collapse with some small
perturbations, however as ẑ gets small, and before it crosses
0, perturbation theory will break down due to the ẑ−1 terms.
From that point on we cannot say what will happen. It is
merely plausible that the nonperturbative evolution avoids
the catastrophic regime we have discussed here and in
Ref. [15], ending at some stable axisymmetric star.
Investigation of such a scenario requires the simulation
of collapsing stars, which have been performed for sponta-
neous scalarization [30].

IV. CONCLUSIONS

Spontaneous vectorization was motivated by the fact that
scalar nature of the field does not play any direct role in the
DEF model. This naïvely presented the possibility that
scalarization is not an isolated mechanism for a specific
theory, but it has analogs in other alternative theories of
gravity. While this may be the case for more general scalar-
tensor theories [31], all indications are that the mechanism
cannot be generalized to nonscalar fields. Specifically, the
recent discovery of the existence of ghost and gradient
instabilities around GR solutions of generic spontaneous
vectorization theories showed that vectorization is radically
different from scalarization [15,16]. Even though vectori-
zation superficially seems to be about updating the type of
the field in spontaneous scalarization, the essence of the
theory is about changing the type of the instability carried
by the field, albeit unintentionally.
In this work, we showed that the ghost and gradient

instabilities that are present for unvectorized (GR) objects
plague the static and spherically symmetric vectorized
neutron star solutions as well. This is in stark contrast to
the standard case of scalarized stars in the DEF model and
other scalarization theories inspired by it, where the
tachyonic instability is eventually quenched, leading to
stability [8,20–24]. Our results were achieved by linearizing
the vector field equations on a fixed vectorized neutron star
background, and showing that the existence of instabilities is
related to components of a tensor, Ξμ

ν, changing sign.
The differences between the vectorized neutron star

solutions shown in Fig. 1, and their counterparts in
scalarization had already cast doubts on the stability of
the former [11]. We have confirmed these suspicions, and
also identified the nature of the instabilities. One of the
potentially tachyonic modes is suppressed in many of the
vectorized stars in line with the original expectation, but
the more problematic ghost and gradient instabilities are
still present, something not foreseen when vectorization
was introduced.

Another striking feature of vectorization is that the
deviations from GR in the β > 0 solutions in Fig. 4, which
are studied for the first time, have a much “simpler”
structure compared to the β < 0 case in Fig. 1. We believe
this is related to the large field behavior of the conformal
factor ΩV for the vectorization of spherically symmetric
stars behaving differently from that of Ωϕ of scalarization.
The effective mass of both the scalar [Eq. (2)] and vector
[Eq. (5)] fields depend on the conformal factors Ωϕ, ΩV in
their respective theories, since T ¼ Ω4

ϕT̃ in Eq. (2). In the
most familiar case of scalarization with β < 0, the
tachyonic nature is suppressed as the scalar grows since
Ωϕ ¼ eβϕ

2=2 becomes strictly smaller. The opposite is true
for scalarization with β > 0, which means Ωϕ makes the
scalar even more tachyonic as it grows. This does not
necessarily lead to an instability since the nonlinear
changes in T̃ can still quench the tachyon for appropriate
coupling functions, but one can encounter unstable scalar-
ized stars as well [23]. In short, typically the β < 0 case of
scalarization is simpler than that of β > 0 [23].
The opposite picture is true for vectorization in a spheri-

cally symmetric spacetimewhereA0 is theonly nonvanishing
component, and AμAμ is negative. Thus, the simpler case
whereΩV ¼ eβAμAμ=2 is suppressed with growing jA0j is that
of β > 0. Similarly, Ξμ

ν also becomes less unstable, i.e., less
negative, with growing jA0j for β > 0 and T̃bg > 0. This
means we might expect the β > 0 solutions of vectorization
to behave more closely to the more familiar β < 0 case of
scalarization. This expectation seems to be partially realized
in the simplicity of Fig. 4 compared to Fig. 1, and in the fact
that ghost instabilities are suppressed (Ξ0

0 > 0 everywhere)
for some of the vectorized stars with β > 0, unlike their
β < 0 counterparts (see Fig. 3 vs Fig. 6). Nevertheless, all
vectorized solutions we computed are ultimately unstable for
both positive and negative β.
Even though we have considered a single theory, that of

action (4), the structure of vectorized objects has been
studied in other models as well [12,14,32]. Extended
vector-Gauss-Bonnet theories present an especially inter-
esting case where spherically symmetric vectorized black
holes are known to be entropically disfavored to
Schwarzschild black holes of GR, i.e., the GR solutions
have higher entropy than vectorized black holes for the
same ADMmass [32]. This result is likely due to the vector
field and not due to changing the coupling from matter to
the Gauss-Bonnet term, since scalarized black holes in
scalar-Gauss-Bonnet theories are entropically favored to
those of GR [33], and the stability of at least some of these
objects has been confirmed by numerical time evolution
[24]. Hence, we conjecture that vectorized black hole
solutions of Ref. [32] are also unstable, which can be
investigated by the methods we developed here.
Our approach can be adapted more broadly to any theory

where the linearized vector field equation is of the form (3).
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Generalizations of scalarization beyond vectors also exist
[13,34–38], and are known to suffer from similar problems
[15], the only known exception being a specific form of
spontaneous spinorization [39]. Developing tools for the
stability analysis of solutions in these theories is a future
topic of interest.
Finally, we should reiterate that the problem of the action

(4) is not merely the instability of vectorized neutron stars
arising from it. Recall that the neutron star solutions with
vanishing vector fields, which are solutions of GR, also
suffer from ghost and gradient instabilities [15,16]. Hence,
even if the vectorized solutions were stable, the question of
how the time evolution from a neutron star with no vector
field to a vectorized one occurs, if it can be defined in a

meaningful way at all, would remain unanswered. On the
other hand, our results show that if it is possible to have an
interpretation of spontaneous vectorization of action (4) as
a well-posed theory, the vectorized stars that are computed
so far are not the astrophysical objects one would want to
study further.
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