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Gravitational and electromagnetic radiation from an electrically charged
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We derive the equations for the odd and even parity perturbations of coupled electromagnetic and
gravitational fields of a black hole with an electric charge within the context of general nonlinear
electrodynamics. The Lagrangian density is a generic function of the Lorentz invariant scalar quantities of
the electromagnetic fields. We include the Hodge dual of the electromagnetic field tensor and the
cosmological constant in our calculations. For each type of parity, we reduce the system of Einstein field
equations coupled to nonlinear electrodynamics to two coupled Schrodinger-type wave equations, one for
the gravitational field and one for the electromagnetic field. The stability conditions in the presence of the

Hodge dual of the electromagnetic field are derived.
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I. INTRODUCTION

Penrose, in his Nobel prize winning work [1], shows that
when a massive star collapses to form a black hole, the
singularity formation in general relativity (GR) is inevi-
table. This issue signals the demise of GR in its classical
form. The singularity may be resolved by an ultimate
quantum theory of gravity that can describe the final stage
of gravitational collapse. In the absence of a microscopic
theory, toy models of regular (singularity-free) black holes
have been proposed to study the formation and evaporation
of such black holes. After the first specific proposal for a
regular black hole (RBH), which was presented by Bardeen
in [2], many RBH models have been proposed by various
authors over the years. See, for example, Refs. [3—16] for
some of the RBHs that are asymptotically Schwarzschild at
large radii. The majority of these black holes, including
Bardeen’s model, are constructed in an ad hoc manner
without an underlying theory behind them. However, in
[17], Ayén-Beato and Garcia found the first RBH solution
in GR that is coupled to nonlinear electrodynamics
(NLED). NLED was originally proposed in [18], by
Born and Infeld, in an attempt to generalize Maxwell’s
theory to strong field regimes. As a result, this theory
provides a natural choice for studying charged black holes
where we deal with strong electromagnetic and gravita-
tional fields.

Ayon-Beato and Garcia were also able to reinterpret
Bardeen’s model as a black hole with a nonlinear magnetic
monopole charge in [19]. It was also shown by Rodrigues
and Silva in [20] that the Bardeen solution can be obtained
in NLED with an electric charge. In addition to the
electrically charged black hole in [17], Ayén-Beato and
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Garcia proposed two more black hole models with electric
charge in [21,22].

For these RBH models to be viable, they need to be
stable when they are perturbed. In addition to its relevance
to gravitational wave observations, the study of black hole
perturbations is crucial in determining the stability of a
black hole model [23]. There are two approaches to study
black hole perturbations. In one approach, the perturbation
of a field (e.g., a scalar field), which is weakly coupled to
the background of a black hole spacetime, is analyzed. In
this case, the geometric perturbations are usually
neglected. Since the equations governing the perturba-
tions of spherically symmetric black holes are similar to
the Klein-Gordon equation for a scalar field, one can
achieve a qualitative understanding of how the RBH and
its perturbations differ from its Schwarzschild counter-
part. However, to achieve a quantitative understanding of
the stability of a black hole, one needs to look at the
perturbations of the spacetime and any strongly coupled
fields to the background geometry.

The wave equations of coupled electromagnetic and
gravitational fields of a black hole with an electric charge in
general NLED are derived for the first time by Moreno and
Sarbach in [24]. The Lagrangian considered in [24] is a
general function of the Lorentz invariant scalar quantity F
of the electromagnetic field, where F = %F Wk and F, is
the electromagnetic field tensor. The stability conditions for
these black holes are also derived in [24].

The wave equations of coupled electromagnetic and
gravitational fields of a black hole with a magnetic
monopole charge in general NLED are derived for the
first time by Nomura ef al. in [25]. In addition to the
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electromagnetic field tensor F,,, the authors of [25] include
the Hodge dual of the field tensor, F,,,.

Since magnetic monopoles have never been observed in
nature, in this paper we focus on electrically charged black
holes within the context of NLED. Similar to [24], we
introduce perturbations on the background geometry of a
charged black hole and its nonlinear electric field. We
derive the odd parity (magnetic or axial) and even parity
(electric or polar) wave equations for the coupled electro-
magnetic and gravitational fields. In our calculations, we
include the Hodge dual field tensor, which was ignored in
[24]. The method we use in this paper is different from the
gauge-invariant approach used in [24]. Our method, where
we fix the gauge (i.e., Regge-Wheeler gauge) early on, is
more in line with the work done by Zerilli in [26] for the
Reissner-Nordstrom black hole and by Nomura et al. in
[25] for black holes with a magnetic monopole. For
simplicity, we do not consider any test particle outside
the black hole horizon. However, it should be easy to
incorporate that using Zerilli’s results in [26].

We structure the paper as follows. In Sec. II, we set up
the problem by deriving the perturbed Einstein-NLED
equations. In Sec. III, we expand the geometric and
NLED perturbations in tensor harmonics and derive the
wave equations for odd parity perturbations, which are
reduced to two coupled Schrodinger-type wave equations.
We then derive stability conditions in Sec. IV. In Sec. V, we
examine the even parity perturbations. In Sec. VI, to
provide an example of a theory with a Hodge dual field,
we apply our stability conditions to RBHs in Einstein-
Born-Infeld gravity. We provide the summary and con-
clusion in Sec. VII. In Appendixes A and B, we provide
more details and calculations involving even parity pertur-
bations and their stability. In Appendix C, we explain some
of the differences between our results, when reduced to the
Reissner-Nordstrom case, and Zerilli’s results in [26].

II. PERTURBED FIELD EQUATIONS

In order to make the comparison with the Reissner-
Nordstrom black hole perturbations easier, we closely
follow the notation in [26]. The action of NLED in a
curved spacetime is

S = /d4x\/_< (R—- 2A)——£(FF)) (1)

where R is the Ricci scalar, A is the cosmological constant,
g is the determinant of the spacetime metric tensor g,,, and
the Lagrangian density £ is an arbitrary function of the
Lorentz invariant scalar quantities1

'Note that A can be absorbed by a redefinition of the
Lagrangian density. However, since it does not add much
complexity, we will keep it throughout our calculations.

1

F = F,F". (2)
1
F.=7FuF. (3)

Here, Fi* = 1e"F,; is the Hodge dual of the electro-
magnetic ﬁeld tensor F#. The Levi-Civita tensor is
normalized as €gp3 = /—¢. In this paper, we adopt
Planck units where ¢ = G = i = 1. The Einstein-NLED
equations that describe the gravitational and NLED fields

are

where £ = L(F,F,), Ly = 0L/OF, and Z',F~ =9L/OF,.
We use tildes for quantities associated with the total NLED
and gravitational fields. Quantities with no tilde refer to the
background geometry represented by the static spherically
symmetric line element

ds> = —edt* + evdr* + r*(d0* + sin’0d¢?).  (6)

We assume the following general ansatz for the Maxwell
field for an electric charge:

= 25@5’ (r,0,¢) (7)
from which we get ', = 0. One then can integrate Eq. (5)
to obtain
f(6.9)
— 1 Sr
25M6D] 2L, (8)

In the case of spherical symmetry, the invariant quantities F
and F, only depend on the radial coordinate. Consequently,
both £ and L are functions of the radial coordinate only.
Therefore, one can use the Bianchi identity, dF = 0, to
show f(6, ¢) is a constant that we will call —q. Therefore,
the background field strength can be written as

F:

2£p dt A dr. 9)

In the rest of this paper, we choose

o(r) =+~ (10)

*Note that we assume g,r = —1/g,. It turns out this is forced to
be true. Had we not made this assumption, once we get to
Eq. (28), using G,” — G,' = 0 we find —g,,g,, is a constant. The
constant can be set to one by rescaling the time coordinate. For
more details, see [25].
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In the case of the Reissner-Nordstrom black hole, where
Lr =1, q is simply the electric charge. In the RBH models
presented in [17,21,22], ¢q is also interpreted as the electric

Note that in the case of the Reissner-Nordstrom black hole,
A=0and L =F.

We introduce first-order perturbations g,, = g,, + h,,

.charg'e. Equation (9) giyes us the background values of the  3pd F/w =F,, + f,, assuming |h,| <1 and |f,|< L.
invariant scalar quantities as Also, to first order, G = g — h*, where h" = g,uagyﬂhaﬁ,
and /== ,/=g(1 +%¢"h,,). Substituting these into
Fe_ g F —0 (11) Egs. (4) and (5) and keeping terms to first order, we arrive
254 ¥ ’ at the perturbed Einstein-NLED equations
In the right-hand side of Eq. (4), we have [25] 6G,, = 8xdE,,, (13)
E ! °F Gu | Lp F.— L - A 12 Az 5 F
w = | Lrd F P o+ G 5 (12) S(v/=GLrF™ + /<GLr ), =0, (14)
|
or more speciﬁcally3
h;w;a;a - (h;ta + hzxa u) + 2R ’ ﬁh af + h - (Ravh;m + Rayhva) + Rh;w
+ g}w(haﬂ —h% # — RPh,, 5) = —167:5E,w (15)
and
{(V=9ILrf™ + L f2 + (EFF5F<f> + Lip SFDYVF 4 (Lp p SFY) + Ly p6FUV)FY)}
= [V=9Lr(W*¢" + ¢"“I*’)F, ——\/ GLEF" g P hyy
— V=G(LrrdF ") + Lo SF )P — \/=g(Lp p 5F" + Ly p6F)FL],, (16)
where
SE,, = 6E,) + SE,)) (17)
in which
SEW — — L Lok P — (Lp Fo— £ =) hot(C Lrrg™FoFp, — Lp pFog,)5F®
o — _4” F'aul pv - F. U x = - ) ,uy+( Fgm/ - FFga apt pv — ~F.F *g;w)
o h
— (Lrp g FouFp, + EF*F*F*QW)‘SF& )}, (18)
5EI<W A {LFg (fayFﬂv + Faﬂfﬂu) ('CFgm/ - ['FFgaﬂFayFﬂu - ‘CF*FF*gﬂv)éF(f)
+ ([’FF*gaﬂFayF/}y + EF*F*F*guy)aFiﬁ}' (19)
Here Ly = OL/OF, Lpp = 0*L/OF?, and so on. To derive the equations above, we use the fact that to first order
F =F +6F,
F,=F,+6F,, (20)

*We correct a typo in [26], which appears in the fourth term of the left-hand side of Eq. (15). The correct expression can also be found
n [27].
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where 6F = 6F") 1+ 6FU) and 6F, = sF" + 6FY), in
which

1
SF) = -3 GPF o F 5h, (21)
1

5F(f) = Efa/}Fa/}v (22)
sFW =Yg o pb _ g g 23
Y «9ap =G yql g0, ( )

1 p
5F£f) = Ef(t/fF*ﬁ' (24)

In the above, we also use the first order Taylor expansions

L =L+ LpSF + Lp SF,, (25)
zF = ‘CF + EFFéF + Epp*éF*, (26)
Ly, = Lp + Lpp8F. + LppdF. (27)

The perturbed Einstein-NLED equations (15) and (16)
reduce to the Reissner-Nordstrom results in [26] when we
choose £ = F and A = 0.

In addition to the above perturbed field equations, some
of the background field equations are useful for this work.
A combination of the line element (6) and the Einstein
equation in the form

G, = 8nE," (28)

lead to the background field equations

| 1 20%L
G,':zeev<”—+—2> L Yoy
r T

(29)

and

v 2 /!
Gy =Gyt = % (1/' +u2 + 7”) =-2L-A. (30)

The above equations will be used extensively in the
following sections. For more details on the background
field equations, see [25].

An electrically charged black hole in NLED should
satisfy some reasonable energy condition. We denote
E'=—p, E/ =p,, E’ = py, and E;? = p,, where p
is the energy density and p; (i = r, 0, ¢) represents the
pressure in the i direction. From Eq. (12), we obtain

1 A Q*p
p——pr—4ﬂ<£+2+ 3 ) (31)

P0:P¢=—E<E+§>. (32)

Using the above expressions for the energy density and
pressure, we examine the following well-known options for
the energy condition:
(1) The weak energy condition, where p >0 and
p+ p; =0, gives

A QLp
£+E+ &

>0 and Ly>0. (33)

(2) The null energy condition, where p + p; > 0, gives
Lp>0. (34)
(3) The dominant energy condition, where p > |p;l,
gives
(a) If L+ A/2 >0, then
Lp>0. (35)
(b) If L+ A/2 <0, then

Q*Ly

I

2L+ A+ > 0. (36)

(4) The strong energy condition, where p + p;, > 0 and
p+2.ipi 20, gives

Lp>0 and —-(2L+A)>0. (37)

Note that all the above conditions force £ > 0. Also, for

the background field strength (9) to be finite, we need

L # 0. Therefore, we will assume Lz > 0 in the rest of
the paper.

III. ODD PARITY PERTURBATIONS

The next step is to expand the perturbations £, and f,,
in tensor harmonics. The odd parity (magnetic or axial)
tensor expansion of the geometric perturbation is

0 0 —ho ﬁ 84, Y[m h() sin 989 Ylm
||h || _ 0 —hlﬁﬁ{/,Ylm h1 sinH@eY,m
vil — .
: sym l’lz lem —h2%51n (9W1m
sym  sym sym —h, % sin 60X,
(38)

where hg, h;, and h, are functions of the time and radial
coordinates only. Y, (6, ¢) are the spherical harmonics and
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le = 2845(845 - COtg)Ylm,

1
_ 2 _ 2
W Im = <89 cot 963 —Sln96¢> Ylm' (39)

The integer />2 1is the multipole number and
m=-—1,...,0,...,1. The freedom to make infinitesimal
coordinate transformations allows us to fix the gauge in a
way that h, = 0 (Regge-Wheeler gauge [23]).

The odd parity tensor expansion of the NLED perturba-
tion is

0 0 forsig0pYim —fo2sindyY,,
00 J_rlzs%a Yin —f,zsineagY,m
Ifll = no 2 . (40)
ko ok 0 f23Sln9Y[m
* % * 0

where f,w denote angle-independent parts of f,,. The
asterisk denotes the antisymmetric components of the
matrix.

As noted by Zerilli in [26], the odd (even) parity
geometric perturbations couple only to odd (even) parity
electromagnetic perturbations. More specifically, when we
combine odd with even parity, the Einstein-Maxwell

equations lead to fﬂv = 0. We find this to be true for the
NLED case considered here. This, however, is not always
true. In a black hole with a magnetic monopole charge, odd
parity geometric perturbations couple only to even parity
electromagnetic perturbations and vice versa [25].

Since the electromagnetic field tensor F w18 derived
from a vector potential A > Where F w = AW —A,,, wecan
write

8%

f;w =dyy — Ay, (41)

where a,, is the perturbed vector potential. This is equiv-
alent to having the field equations of the form
Suwa+ Fouw + fuay = 0. These field equations lead to
the following relations:

1

f12 = marf%v
- 1 -
f02 = matf%- (42)

After inserting tensors (38) and (40) into Eq. (15), we
obtain three equations from the components r6, 10, and 66,
respectively,

2 2V _
e‘”@?hl — e‘”@,@tho + —e“’@,ho + e <IJ// + 1//2 + —l/) hl + 2/1}"_2]11 = —4£h1 - 2Al’l1 — 4r_2Qe_”[,Ff02, (43)
r r

2 2V 2 -
—e"zhy + €0,0,hy 4= e*d,hy + ¢ <l// +2 4 _2> ho +24r72hy = —=4Lhg — 2Ahg — 4r2 Qe Lif1y,  (44)
r r r

—e7Y0,hy + €Y0,.h) + "V h; =0, (45)

where A =1[I(I + 1) — 2]. Throughout this paper, we use a prime to denote the derivative with respect to the radial
coordinate r. In addition, from the rr component of the perturbed Einstein equation, we find that

EFF* = 0 (46)

when F', = 0, which is the case for an electric charge. This constraint on £ is also noticed by the authors of [25], where they

suggest a general form for £ in which

(s

L(F.F,) = Lo(F) + Y~ £, (F)FL. (47)

|
n=2 n

Inserting tensors (38) and (40) into Eq. (16) and using Eq. (42), we obtain

‘CFeDar(eyarfB) - EFazzfzs + ﬁ%ezyarj_cm T 6

(1+1)

= S QL= + R0, (ho/ )] + 5

I(1+1)

e (r'Lp+ Q2£F*F* )f23
I(1+1)

€D(Q/£F + QCIF)hO (48)
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We then solve Eq. (45) for i and substitute it into Eq. (43). After defining R0 = (1/r)é*hy, f ,;dd VLf2s/ (14 1)),

Im

using the tortoise coordinate r, where dr,/dr = e, and using Eq. (30), we get

d*R\ 24 Vo2 (odd)
Casr {p e[ (5B

while Eq. (48) becomes

d2 f]Odd
d T2

T Rodd
F .

In the above two equations, we assume all field functions
depend on time as e~!, where o is the quasinormal mode
frequency of the perturbations. This is formally equivalent
to a Fourier transform of the field functions where
0, —» —iw. Recall, we are also requiring £ > 0, which
makes /L well-defined. Equations (49) and (50) reduce
to the Reissner-Nordstrom wave equations when £ = F,
A=0,and ¢* =1 —27M+"—§.

Wave equations (49) and (50) are valid for multipole
numbers of [ > 2. In the case of [ = 1, where 1 = 0, wave
equation (50) decouples from (49). In this case, only the
electromagnetic perturbations are dynamical degrees of
freedom and the perturbations are completely described by
Eq. (50). This is because Ay is only deﬁned for/>2. Asa

result, for [ = 1, h; (and consequently R )1s no longer a
physical degree of freedom. This can be shown by
simplifying Eq. (43) using the background field equa-
tion (30) and taking A, and A to be zero, which gives

2q - 0
- 2f23 flmdd' (51)
iwr

iw r2\/_

IV. STABILITY FOR ODD PARITY
PERTURBATIONS

To derive the stability condition for odd parity perturba—
tions, we follow the method in [24]. Defining f im odd) _
2iw f (odd)

I

n » We can rewrite the wave equations (49) and

(50) as
i)
— VIR = Vi fin® =0, (52)
ot ()
VLpdr dr*
—Vhfm? = VLR =0, (53)

(141

- = 3 Q \/E_F lOdd (49)

4 2 e’ dﬁp 2 dZEF (odd)
P T ((dm) ~2hrg )| ffm
(50)
|
where
24
Vii==. (54)
r
2\2ALFQ
Vo=V =~ ———73—5;—» (55)
I(I+1 4
Vi = ( 6+ ) (FLp+ Q*Lrr) +—50QLr. (56
r°Lg r

Equations (52)—(56) are in good agreement with the results
found in [24]. The contribution from including the Hodge
dual scalar invariant F, can be found in the potential (56).

The stability condition in [24], given by requiring the
potential matrix

Vi Vi
Vi= [ Lo ] (57)
V21 V22

to be positive definite, will be modified due to the inclusion
of Hodge dual fields. We require the determinant and trace

41+ 1
da(v) =D g, 4 oo, (o
F
24 2(A+1 4
(V) ==+ # (r'Lp+ Q*Lrp ) +— 0Ly
r L r
(59)

to be positive. Since 1 > 0 and Ly > 0, this gives the
stability condition as

2L Ly
QLrr _y_optrr (60)

|
AL, LZF

For [ = 1, where 1 = 0, the perturbations are completely
described by Eq. (53) where V, = 0. Therefore, for the
black hole stability against electromagnetic perturbations
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with / = 1, the only requirement is V', > 0. This gives us a V. EVEN PARITY PERTURBATIONS
condition that holds when Eq. (60) is satisfied. Therefore,
the stability condition (60) can be applied to multipole
numbers [ > 1.

The even parity (electric or polar) tensor expansion of the
geometric perturbation is

HyY,,  H\Y, W 0pY 1 W0, 1
||h || _ sym €_VH2Y[m h(le)ﬁngm hge)ﬁ,/,Ylm (61)
uv s
sym sym rz(KYln1+GaﬂYlm) l 2G‘lem
sym sym sym r?sin H[KYlm + G(O5Y 1y — Win)]

where H,, Hy, hée), hﬁe), K, and G are functions of the time and radial coordinates only. In the Regge-Wheeler gauge,
h(()e) = hge) = G =0. The even parity tensor expansion of the NLED perturbation is

0 for¥im [0200Yim Ff0204Yim

F1200Y 1 F1204Y
||fﬂy|| _ * 0 f128(9 Im leadl Im , (62)
* * 0 0

* * 0 0

where £y, fo2, and f, are functions of the time and radial coordinates only. One can use the same idea as in Eq. (41) to find
the homogeneous Maxwell equation

.]_COI = 8r.]_COZ - 8:]?12 (63)

for even parity perturbations.
The ¢, rr, a combination of 66 and ¢¢,4 tr, 10, @, and 6¢ components of Eq. (15) are, respectively,

2”{282K—6H2+<1/+ >8K 2<1 I/>(H0+H2)]

2 2 [+1 2
+e”<ﬁH0__2K (r )H2>— rQ Y(QHy + 2P for)(r* Lp — Q* L)

r

0’ o*
+2e¢*H <A+2£+7£F+FEFF>’ (64)
4 2 2 2 I(l+1 22
207K ——e7Y0,H, +-0,H, — <1/ + ) 0,K +—e"H, — ( _I; )e‘”HO +—eK
r r r r r r
Q eV 2 4 2 -V Q2 Q4
(QHo —212f01)(F*Lr — Q* L) +2¢™Hy [ A+ 2L +7£F +?['FF , (65)
2 2
r? {e‘”@%K —e’O’K — ¢ (1/ + —) 0K — <I/ + —> 0,H, + e0?H, —20,0,H, + ¢"0?H,,
r
1 3 I(1+1
+ <—l/+ >8H2+€ <—U+ >8H0 ( )(HZ—H())
2 2 272
v " 2 21/ Q
+€ 14 +l/ +T (Hz— ) —2}’ (A+2£)K+4Q£Ff01+2 ﬁF(HZ_HU) (66)

“The 66 and p¢p components of Eq. (15) are the same with the exception of one angle-dependent term in each component, both of
which involve H, — H,. However, these angle-dependent terms can be combined to become angle-independent by simply taking the
average of the 0 and ¢¢ components.
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28,8tK—%8tH2— (u ——>8K—e <2: +%)H1 2/1H1 2<A+2£+2Q £F>H1, (67)
r
40 -
—e"0,H, + 0,K + 0,H, — e"VH, = —— e’ Lpf 12, (68)
r
! 1 U | 4
eVOH; —0,Hy+ 0,K — (Z-F—)Hz - (D———>Ho = Qe “Lrfo2 (69)
2 r 2 r

Note that Egs. (64), (65), and (66) do not reduce to Zerilli’s results in [26] for the Reissner-Nordstrém case. For an

explanation, see Appendix C.

The r, € or ¢, and t components of the perturbed NLED equation (16) are, respectively,

2 - 1
<£F - % EFF) Aifor — 2 I+ 1)e"Lifiy =

e Lr0fon — 6r<ey£F]_cl2) =0

1
’

2 _ 1 _ 1
-0, [(rZEF _%LFF>fOI:| —ﬁl(l + e Lefo = ﬁar [Q(l -2Lp +=¢ LFF)( - Hy) + 2QK]-

Note that, in addition to Eq. (72), the 8 or ¢» component of the perturbed NLED equation requires

<£F* - FﬁF*F>f01 + Lr (0f12 = 0rfo2) = L for =

which is satisfied only if £r =0 and fo, +8,f12 —
8,]_502 = ( that we already determined in Eqs. (46) and (63).
This provides a good consistency check.

Note that the Hodge dual of the electromagnetic field
does not appear anywhere in Eqs. (64)—(73). Therefore, the
even parity perturbations are unaltered by the inclusion of
Hodge dual fields. So, Egs. (64)—(73) should, and do,
reduce to a pair of coupled Schrodinger-type wave equa-
tions, which agree with those in [24]. Likewise, the stability
conditions for even parity perturbations do not change from
those that appear in [24].

Since our method is different from that used in [24], we
include the derivation of the wave equations in
Appendixes A and B. In Appendix A, we use a method
similar to that in [26] to find the wave equations that reduce
to those in [26] in the Reissner-Nordstrom case. In
Appendix B, we show how to rewrite the wave equations
in the form in which they appear in [24] and are more
suitable for stability analysis.

VI. AN APPLICATION: BORN-INFELD THEORY

In this section, we provide an example of a viable theory
that involves Hodge dual fields. In the original work of

2
2 |:<'CF Q—LFF> (0,Hy — 0,H,) + 2£F31K] , (71)
(72)
2
¢ (73)
Q3
QL (Hy~ Hy) (74)

Born and Infeld [18], they removed the divergence of an
electron’s self-energy in classical electrodynamics by
introducing a nonlinear Lagrangian density of the form

2F F2

L(F,F.) =p*' |1 +— ———p, (75)
uoo

where 4 is a scale parameter of dimension mass. It is easy to
see this Lagrangian density reduces to Maxwell’s when
F/u* < 1. Born-Infeld theory in curved spacetime
(Einstein-Born-Infeld gravity) has been explored in the
literature. For electrically charged black hole solutions, see
for example [28,29].

If we use a metric function of the form

2M(r) B é 2 (76)

I/Zl_
¢ r 37

together with the background field equations (29) and (30),
we find

!

M
—2:£—2Fﬁp,

- (77
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M"
;

2L. (78)

We then take the derivative of Eq. (75) with respect to F.

Replacing F and F', with their background values of — ﬁ
and 0 gives an equation in L. Using L > 0 as required by
the energy conditions listed at the end of Sec. II, we obtain

Le(r) = (1 +/%> " (79)

We can use Eq. (79) to write F, and consequently L, as
functions of » only. This allows us to integrate the back-
ground field equation (77) to get

1 1
M(r) = =3u'r’ +302r\/ @ + u'r
2
-3 i,u2q3[F[arcsin (—ir\/,uz/q)’ - 1}, (80)

where F(¢|k?) is the elliptic integral of the first kind. In the

asymptotic region of r — 0, M(r) ~ \/q*u*r. As r — oo,

M(r) approaches a positive constant (1.23605|q|3/?w).
i

Therefore, for |g| > e the metric function e” starts with

a finite negative value of 1-2y/¢’u* at r=0 and
approaches 1 (for A = 0) as r — oo. This provides us with
the spacetime of a black hole. We show the behavior of M
and e” as a function of r in Fig. 1.

For this black hole, the stability condition (60) translates to

wrrt > 0. (81)

Since this is always true, we can conclude that electrically
charged black hole solutions in Einstein-Born-Infeld gravity
are stable against odd parity perturbations. This includes
purely electromagnetic perturbations with [ = 1 as discussed
at the end of Sec. IV.

S " __
ofp L7
I,
4
0sf / /
/
14
1
0.0r*
-0.5¢
—-1.0f
0 2 4 6 8 10
r
FIG. 1. The plot shows M, in dashed blue line, and ¢*, in solid

red line, as a function of the radial coordinate r. Here u =1,
|g| = 1.1/p?, and A = 0.

For even parity perturbations, we can use the same
stability conditions derived in [24]. These are

H <0, (82)

Hp > 0, (83)

0<ev(1+2@P> <3, (84)
Hp

where H=2FLy— L and P = —%. These conditions
apply to the region outside the event horizon. We combine
Egs. (11), (75), and (79) to get

H(P) =ﬂ4<1— 1-25). (85)

The stability condition (82) gives

¢\ 12
(H/W) > 1, (86)

which is the same as L > 1. This is true as long as ¢ is not
zero. It is easy to show that the condition (83) is satisfied
when inequality (86) holds. The condition (84) gives

q2 -1
0< €D<1 “r‘ﬂ) <3. (87)
utr

For A =0, since 0 < ¢¥ < 1 outside the event horizon,
condition (87) is always satisfied. We conclude that electri-
cally charged black holes in an asymptotically Minkowski
spacetime in Einstein-Born-Infeld gravity are stable.

VII. SUMMARY AND CONCLUSION

We studied the perturbations of the Einstein equation
coupled to general NLED for a spherically symmetric black
hole solution with electric charge. We also included the
cosmological constant and the Hodge dual of the electro-
magnetic field strength tensor in our calculations. The
NLED Lagrangian density is a generic function of the
Lorentz invariant scalar quantities of the electromagnetic
fields, i.e., F' and F,. The wave equations for odd and even
parity perturbations of gravitational and NLED fields were
derived. For each parity, we reduced the Einstein-NLED
field equations to two coupled Schrodinger-type equations,
one of which determines the gravitational and the other the
NLED field oscillations.

Our results are consistent with those found in [24],
although we did not use the gauge-invariant technique
utilized by Moreno and Sarbach in [24]. Our method,
where we fixed the gauge early on, is more in line with the
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work done by Nomura et al. in [25] and by Zerilli in [26].
We also included the Hodge dual of the electromagnetic
field strength tensor, which was ignored in [24]. In
addition, all our equations reduce to the correct results
for the Reissner-Nordstrom case when we use Maxwell’s
Lagrangian density (£ = F) and take the cosmological
constant A to be zero.

The inclusion of the Hodge dual of the electromagnetic
field modifies the results of [24] only for odd parity
perturbations. The even parity perturbations stay unaltered.
Therefore, we conclude that the inclusion of F, does not
change the stability conditions for even parity perturbations
that were explored earlier in the literature. We provided

/

_ L _ _
D2 Lrf1p) + (V/ - —F) 0,(e"Lrf1r) — e 07 (" Lif12) —

Ly
B erﬁlzp
B ey(r4‘CF - Q2£FF)

9,K.

new stability conditions for the odd parity perturbations
that include the Hodge dual of the electromagnetic field.

APPENDIX A: DERIVATION OF EVEN PARITY
WAVE EQUATIONS

In this appendix, we show how to use Egs. (64)—(73) to
derive two coupled Schrodinger-type wave equations for
even parity perturbations.

First, we find fy; and fy, in terms of f;, by solving
Egs. (71) and (72), respectively. We then substitute these
values to Eq. (63) to find a second order differential equation

for f1,:

l(l + I)VZEF

We define fﬁfnven) = e“\/Lrf 12, and use the tortoise coordinate r, where dr,/dr = e, to find

1+ 1)L

a%*fgzlven) _ 6tzf§even)

I’2€DQ[3;/2
=———0,K.
(r*Lr—Q*Lpp) '

mo e {(74517 - Q’Lrr)

Ve .
eu(rét[:F _ Q2£FF) (e Fle)
(A1)
e’V d,CF 2 dz»CF (even)
Tag [3<dr*> “2r g | gl
(A2)

In the remainder of this section, we assume all field functions depend on time as e~ where w is a complex constant that

turns out to be the quasinormal mode frequency of the perturbations. We now look at the geometric perturbation
equations (64)—(70). We use Eq. (70) to eliminate H, in Egs. (67)—(69). We then substitute 9,K and 0,H, as given by these
equations, into Eq. (65). This gives an algebraic equation that involves H,, H,, K and the electromagnetic functions f,,
fo2» f12- We now solve this equation for H,, and substitute into Eqs. (67) and (68). Using Egs. (71) and (72), we replace f,
and f, with f,. This procedure gives the following two equations:

Cfi—lf =a,(nNK + o 'B,(r)H, + S, (A%)
B % =70(r)K + @715, (rHi +5,. (A4)
where
aw(r) _ 4eVQ2£F - rzé"(e” - A= 1) —}i:;(;(:; 1)2 + 2}’26”(2/1 + 1) 2 | (AS)
DA+ -]+ 0
pulr) = PE() ’ (A6)
8 QM Lp + (6= 22— 2)7 — 4% (24 + 1) + 4ot
Y(u(r) =1 21"262”5(7‘) , (A7)
- —2¢") — vV_)— 2.2
5, (r) = E+EA+1=2¢")=2(A+1)(e* =2 —1) + 2w "

re’&(r) ’
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i4Q{2"eD(9D£FJ_C12)/ +2(A+1)(e"Lpf12)}

Si1 = wr3é(r) » (A9)
g — 40{2re*(e*Lrf1o) + (E+2442)(e"Lif12)}
27 wr?e’E(r) ’
(A10)
Here
E(ry=re’v/ =2¢"+1(1+1)
= P(2L4+A) =220 —3e 12143, (All)

Equations (A5)—(A10) are simplified using the background
equations (29) and (30).

We wish to combine Eqgs. (A3) and (A4) to a second
order wave equation of the form

2RE

ar V(even)(r)}R(even) _ Slm-

+ [w2 - Im (A 1 2)

To do this, we follow the method outlined by Zerilli in [26].
The first step is to transform Eqs. (A3) and (A4) to the form

dk . .
=L+, Al3
aF + 5 ( )
dL IR
e —[w?* = V(#)]K + S5, (Al4)

A

where the new variable 7 is given in terms of r by
d#/dr = 1/n(r). For brevity, one can rewrite Eqs. (A3),
(A4), (A13), and (A14) in the matrix form

dy
' S, Al5
dr vt ( )
dy - o
— =AYy +S, Al6
ai VT (A16)
where
K a, P S
w Hl Yo 560 SZ

and

We can now express the potential in the following form:

8e’ QL2

V(even)(r) _ eu{é(
8

—(e* =2=1)(Ar* +20%Ly) —

~

MLy — Q*Lpr)

<[ A=l o =[] aw
VSl T leerrvool TS

We now look for a transformation

v = Fyr, (A19)
where
[ f(r) g(r)
d {hm k<r>] (A20)

is to be determined. Inserting Eq. (A19) into (A15) and then
comparing the result to Eq. (A16) tells us that

dF

—1 _e )
nF (AJ—' dr) A, (A21)

S =nF-ls. (A22)
Using the above equations, one can determine n(r), F, and

consequently S. The results for the components of the
matrix F are

() = 26”(2Q2}§§ + Ar?) N A+ 1r— e 7 (A23)
g(r) =1, (A24)
h(r) = —ie™ 2e”(2Q2}§§F ) sl —g :
(A25)
k(r) = —ire™, (A26)

where we have used Eq. (30) to simplify the above
functions. Also

n(r)=eé, (A27)

which shows that the new variable 7 is just the tortoise
coordinate r,. Note that the functions f(r) and h(r) given
in Egs. (A23) and (A25) do not reduce to Zerilli’s results in
[26] for the Reissner-Nordstrom case. For an explanation,
see Appendix C.

& 2 40* L
p+p(€ —2&—1)— r4
8e¥ . 5 2, V2
g (ArF +20Lp)* ;. (A28)
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In addition, we can use Eq. (A22) to determine S’l and 3’2. Comparing Egs. (A13) and (A14) with (A12), we get

. dS,
S, =8 .
Im 2+ ar.

It is also easy to combine Egs. (A13) and (A19) to obtain

(even)
2 2 even dR m P
K =fK+gL = fR" >+d’7r—sl.

Using the results for §;,, and K we can write the final wave equations as

(A29)

(A30)

d2R§Z:]en> even (even) 1616DQ V ‘CF 1 v v r6eU§£F (even)
T [w? = Ve ()R, " = —Tséz{yzé(f—‘u—@ —4e"Q* L4277 (&~ 1) _m}flm :
(A31)
Lfer 11+ 1)L [ (dLF\? &L 8e* QL2
fliﬂé"’ @’ — e 4( )rz - +62 3 =) -2, zF + 4€Q 7 fgm :
dl"* VL:F—Q ;C[:F 4£F dr* dr* 5(}’ ;CF—Q EFF)
iorterQLY? (even) dR!™"™
= =F RN L m A32
St | R ] (a%2)
Equations (A31) and (A32) are similar in structure to the results found by Zerilli in [26].
|
APPENDIX B: STABILITY FOR EVEN PARITY (r) =i 4e*Q (BS)
PERTURBATIONS =2y
To make the wave equations more suitable for the 4001+ 1
stability analysis conducted in [24], we want to eliminate (r) = i%, (B6)
the dREfnven) /dr, term in Eq. (A32). Below we explain how ren)
to systematically approach this problem. We first rewrite 40
Egs. (A1), (A3), and (A4) in the following form: x(r) = ) (B7)
dK
o o, (NK + o™ B, (r)H, + o~ e(r)F| + o~ 'n(r)F, (r) = 20(6+24+2) (BS)
’ P
(B1)
2r2 QL3
(r) = —i 7 , (B9)
H “(r*Lp— Q*L
o CL (K + 075, () e = O L)
r
!
+ w_l}{(r)Fl + a)_l/)(r)F, (B2) p(r) = -V + % (B10)
F
w_l%:T(F)K‘Fw_]qﬁ(r)Fl +w 'y, (r)F,  (B3) Ko(F) et + 2(4+ 1)r2‘CIZV (B11)
r ® = .
e’ (r'Lr — Q*Lrr)
d_F =F, (B4) We want to convert the system of equations (B1)—(B4) to
dr ’
dR
- =R, B12
where F = 2e¢*Lf, and dr : (B12)
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K a, P, € 0
P (- Vr®R+a(NB.  (BI3) o' H 6, *
d? ’ Y= ’ L " s
o™ 'F, T 0 ¢ x,
dB, o 'F 0 0 1 0
T b(r)R — [@* = V(?)]B, (B14)
>
and
daB
— =B, B15
=B (B15) R 0 10 0
. R, - +Vyp 0 0 a
. N . . \P: =
where the new variable 7 is given in terms of r by B, b 00 —a®+Vy
di/dr = 1/n(r). We first put the equations in matrix form: B 0 01 0
a¥ (B19)
—=MY, B16
dr (B16)
We now look for a matrix transformation ¥ = NV, which
P combined with (B16) gives
— = MY, (B17)
ar N
nN-! <M/\/ - —> = M. (B20)
where dr

We can now solve for n, N, and M. We find n(r) = ¢*, which means 7 = r,. Putting these into ¥ = N\ P gives

1 1 2Ae” 2¢*QO+/Lr
K=—R/+——(A+1—-¢"+ R-————"-B B21
V21 2+ 1) ( - ) rE(A+1) (B21)
iwr iw & 2iwQ/Lr
H=——————R + Z—A=-14¢e" - R+—B, B22
T evaa+ ) VA + 1) (2 ‘ ) ré(A+1) (B22)
- iwQ 0]
= R + B, B23
T = ) s Dy (B23)
and Eq. (B17) gives
d*R ) 160e*Q*Lr & 2224+ 1—-¢") 8A(A+1—¢") 82%
dr? Tt { e 2 r? + * r& ] }R
1 4e 4 2re’ L
= \/8ALpe" QS — — M 4202Lp) ——(A+1—¢") — a B, B24
re Q{”3 r5£2( r 20 L) 735( * ¢) f(”4£F—Q2£FF)} ( )
dQ_B N P 32¢*Q* L3 160V Q* L 3 4Q%Ly 1 404+ 1-¢)
dl"z r6§2 },452 r4 5
_2(/1+ 1—e") —§+ 16e* QL2 PLp(2A+2— e —§)
r? 5(74/3F - Q2£FF) r4£F - Q2£FF
B 7r%ev L% 2r2e L2(3r8 Ly — Q* Lppr) B
(r4£F - Q2£FF)2 (r4‘CF - Qzﬁw)3
1 4e 4 2re'L
= \/8ALpe" 0 — — — (A2 +20%Lyp) ———(A+1—¢") — a R, B25
re@ - i +20°00) - S 1 - )~ o 52)

where the relation between R and B and our original functions can easily be derived from Egs. (B21)-(B23).
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The wave equations (B24) and (B25) can be rewritten in the form

—v 1 d ,» d (R 2 0o _ylpr_
L4 (2 (2)) o] - - v —o o2
- 1 d d B 2 iy i
v - _ — —_— = BZ
(e (7)) o] - v viR <o (B27)
where
20 BAMA+1-¢) 81%e*  161e*Q*Ly
Vi = 2 + e =y + A (B28)
viL = vl = \/8/1£FQ{ S (0 4 20°Lp) - A 41— e - . 2”%’; } (B29)
5 r E(r*Lr — Q*LpF)
VL _ 326”Q4[,2F n 164" QL 3 4Q°L | 4(A+1-¢")
22 r6§2 7”452 p 5
_2(22+2-¢"-9) 16e*Q*L% 2rLp(2A+2+4 ¢ = ¢)
r? 5(7’451F - QZEFF) V4£F - QZEFF
16r6€1'/£%~ 47'26”,6%:(3]"8,617 - Q4£FFF>
T4 2 2 4 2 3 : (B?’O)
(r*Lr— Q" LFr) (r*Lr— Q°Lpr)

These equations agree with those in [24].

APPENDIX C: COMPARISON WITH THE REISSNER-NORDSTROM RESULTS

There are multiple mistakes in Eqs. (22)—(24) of [26]. These mistakes are also noticed by Pani et al. in [30]. We provide
the correct equations in (64)—(66). In addition, Egs. (A23) and (A25) for the Reissner-Nordstrom black hole, where £ = F,

2
A =0, and e”:1—27M+Z—2, reduce to

16g* —4¢*r[11M + 2(A —

1)r] + r?{24M? + 12AMr + 44(A + 1)r*}

f(r) =

, Cl
4r3(3Mr + Ar* = 2¢%) (CD)
3Mr — 44>
h(r) =—id 1= r2e™*(Mr— c2
) = =if 1= et - ) - o )

The above two functions are different from the f(r) and
h(r) provided by Zerilli in [26]. However, they are in
agreement with the results provided in [30].

The mistakes in [26] appear to be typos, because Zerilli’s
final wave equations [Egs. (48) and (49) of [26]] are in
good agreement with Egs. (A31) and (A32) when reduced

to the Reissner-Nordstrom case. It is important, however, to
keep in mind that when Zerilli’s wave equation for the even
parity gravitational field [Eq. (48) of [26]] is used, to
avoid obtaining wrong results, Zerilli’s function f(r)
should be replaced with the correct function provided in
Eq. (C1) above.
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