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Applying the techniques of light-front quantization to quantize a scalar field in a monochromatic
gravitational wave background, we manage to investigate the response of the Unruh-DeWitt detector
coupled to a scalar field in the presence of a gravitational wave for the two cases moving along a free-
falling trajectory and a constant-accelerating trajectory. The transition rate of the Unruh-DeWitt
detector, in both cases, is different from the result with no gravitational wave, and the leading-order
correction due to the gravitational wave survives the long-wavelength limit that formally takes the
wavelength of the gravitational wave to infinity. This new effect of the gravitational wave on a quantum
system is qualitatively different from that on a classical mechanical system, and cannot be understood
in terms of gravitational wave tidal force.
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I. MOTIVATIONS AND OVERVIEW

One of the most vexed problems that causes consid-
erable confusion about gravitational waves is what their
physical effects on matter really are. The confusion arose
partly because one cannot define a localized energy-
momentum for the gravitational field, and consequently
the notion of stress-energy tensor of gravitational waves
makes sense only as an average over several wavelengths
in a “coarse-grain” sense (see Secs. 20.4, 35.7, and 35.15
in [1]), rendering it somewhat unclear how the energy of
a gravitational wave is transferred into matter. Opinions
on this issue had widely diverged until the sticky bead
argument was proposed (anonymously) by Feynman
[2,3] and by Bondi [4]. The sticky bead argument
suggests that, as a gravitational wave passes over two
beads sliding with friction on a rigid rod, the beads will
rub against the rod, thus absorbing some of the energy
carried by the wave and dissipating it into heat. A similar
argument also applies to different classical mechanical
systems, the response of which can be used to detect
gravitational waves (see Chapter 37 of [1]). A notable
example is the resonant mass detector, which has been
operated in various experiments (see [5] for a review) as
alternatives to interferometric gravitational wave detectors
(see [6,7] for reviews).

To derive the response of a classical mechanical
system to a gravitational wave, the equation of motion
for mass elements of the system is dealt with in a
standard Newtonian manner, except that, as a non-
Newtonian effect, the tidal force produced by the
gravitational wave provides the driving force against
the Newtonian interacting force (e.g., friction in the
sticky bead system, elastic and damping forces in the
resonant mass detector, etc.) between mass elements (see
Chapter 37, especially Sec. 37.2, of [1] for a detailed
account). This analysis is straightforward and easy to
understand, but it might not manifest some subtle effects
of gravitational waves not directly resulting from the tidal
force. Therefore, instead of phenomenologically consid-
ering the response of a classical mechanical system, it
will yield valuable new insight into the gravitational wave
effects on matter, if the response of a quantum system to
gravitational waves can be studied from a more funda-
mental setting.
In this paper, we consider probably the simplest kind

of such a theoretical quantum system—the Unruh-DeWitt
detector coupled to a massless real scalar field—and
manage to investigate its response to a gravitational wave
background for the two cases of a free-falling trajectory
and a constant-accelerating trajectory. Our investiga-
tion shows that, in both cases, the transition rate of
the Unruh-DeWitt detector is different from the result
with no gravitational wave, and the leading-order cor-
rection due to the gravitational wave survives the long-
wavelength limit—an intriguing effect that cannot be
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explained out in terms of the gravitational wave tidal
force.1

In the literature of the Unruh-DeWitt detector, it has been
shown that the response of the Unruh-DeWitt detector is
modified in the presence of boundaries [8,9], essentially
because the boundary condition alters the mode expansion
of the quantum field. In the limit that the length scale
delimited by the boundaries goes to infinity, the modifi-
cation becomes negligible. In the case of a gravitational
wave background, the detector’s response is anticipated to
change as well, since the gravitational wave also alters the
mode expansion. However, in the formal limit that the
wavelength of the gravitational wave goes to infinity, this
change does not diminish as long as the amplitude of the
gravitational wave remains finite. The gravitational wave
effect on the Unruh-DeWitt detector is more involved than
merely imposing a large length scale of the wavelength.
This paper is organized as follows.2 In Sec. II, we give a

brief review on the Unruh-DeWitt detector.3 In Sec. III, we
solve the equation of motion of a scalar field, i.e., the Klein-
Gordon equation, in a gravitational wave background. We
then quantize the scalar field in the gravitational wave
background using the light-front quantization [10] in
Sec. IV, and compute the Wightman function in Sec. V.
With the Wightman function at hand, we compute the
response of the Unruh-DeWitt detector along a free-falling
trajectory and a constant-accelerating trajectory in Secs. VI
and VII, respectively. Finally, in Sec. VIII, the results and
their implications are summarized and remarked.
Additionally, we also explicitly solve the geodesic equation
in a gravitation wave background in the Appendix.

II. THE UNRUH-DEWITT DETECTOR

Whereas the notion of “particles” of a quantum field is
clear to recognize and understand in flat spacetime, it is

rather ambiguous in the context of quantum field theory in
curved spacetime, as the particle content, quite surprisingly,
turns out to be observer dependent [11]. To have an
unequivocal notion of particles, it thus requires an opera-
tional definition in terms of the response of a well-defined
“particle detector” (the idea of a particle detector has
already been considered for a different motivation in
quantum optics by Glauber in 1963 [12]). In 1976,
Unruh proposed a theoretical model of such a particle
detector and used it to address the problem of the particle
content in relation to the observer’s trajectory [13]. Unruh’s
detector is modeled as a point object in a small box coupled
to the quantum field of interest, by which a particle of
the quantum field is said to be detected if the object in the
box is excited from its initial ground state to some excited
state. (A similar model was also developed by Sánchez
in 1981 [14].) In 1979, DeWitt [15] further improved
Unruh’s idea by simplifying the model as a two-level point
monopole detector, which is now generally referred to as
the Unruh-DeWitt detector and widely used as a theoretical
tool to probe quantum field effects in various settings of
spacetime.
In this section, we briefly review the model of the Unruh-

DeWitt detector, following closely the line of Sec. 3.3 in
[16]. Unlike [16], we consider the transition rates of both
excitation (ΔE > 0) and de-excitation (ΔE < 0), and also
take into account the switching function χðτÞ as introduced
in [17–19] in order to address the issue of regularization.
We also briefly recap some passages in Appendix A of [8]
to address the measurement of the transition rate and the
concept of detailed balance. For more about the Unruh-
DeWitt detector and also the Unruh effect, see [16,20,21]
and especially the comprehensive review article [22].
The Unruh-DeWitt detector is an idealized model with

two energy levels, jE0i and jEi, coupled to a scalar field ϕ
via a monopole interaction. If the detector moves along a
world line xμðτÞ, where τ is the detector’s proper time, the
Lagrangian for the monopole interaction is given by

κχðτÞμðτÞϕðxμðτÞÞ; ð2:1Þ

where κ is a small coupling constant, μðτÞ is the operator of
the detector’s monopole moment, and χðτÞ is the switching
function, which accounts for the switch-on and switch-off
of the detector. As the switching function χðτÞ can be
modeled as a smooth enough function with a compact
support as depicted in Fig. 1, its inclusion introduces a
finite timescale Δ for the switch-on period.
Moving along a given trajectory xμðτÞ, the detector in

general does not remain in its initial state jE0i but can be
excited (if ΔE ≔ E − E0 > 0) or de-excited (if ΔE < 0) to
the other state jEi, while at the same time the field ϕmakes
a transition from the vacuum state j0i to an excited state
jΨi. By the first-order perturbation theory, the amplitude
for the transition

1The underlying mechanism of state transition of the Unruh-
DeWitt detector is that the detector is coupled to quantum
fluctuations of a quantum field of interest in the vacuum back-
ground, akin to spontaneous emission of an atom as a conse-
quence of being coupled to quantum fluctuations of the
electromagnetic field. Accordingly, simply by moving the Un-
ruh-DeWitt detector in the vacuum background, it will yield a
certain transition rate, which is measurable at least in principle.
Experimentally speaking, it seems more realistic to model the
detector as coupled to the electromagnetic field, instead of a
massless scalar field, as nature evidently has quantum fluctua-
tions of the former in vacuum, but may not of the latter.
Nevertheless, we adopt the model of a real scalar field, because
not only it is theoretically the simplest but also it may still give
the same measurement result of the detector that is coupled to
the electromagnetic field but insensitive to its polarization.
Section II will further elaborate on the related issues concerning
measurement.

2Throughout this paper, we adopt the convention ð−;þ;þ;þÞ
for the metric signature and use the natural units with both the
Plank constant ℏ and the speed of light c set to unity.

3Section II is based on Sec. II and Appendix A of [8].
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j0; E0i → jΨ; Ei ð2:2Þ

is given by

iκhΨ; Ej
Z

∞

−∞
χðτÞμðτÞϕðxμðτÞÞdτj0; E0i; ð2:3Þ

which leads to the factorized form

iκhEjμð0ÞjE0i
Z

∞

−∞
eiðE−E0ÞτχðτÞhΨjϕðxμðτÞÞj0idτ ð2:4Þ

by the equation of evolution for μðτÞ,

μðτÞ ¼ eiH0τμð0Þe−iH0τ; ð2:5Þ

where H0 is the Hamiltonian of the detector. Summing the
squared norm of the amplitude given in (2.4) over all
possible jΨi,4 we obtain the transition probability of
jE0i → jEi as

κ2jhEjμð0ÞjE0ij2FðE − E0Þ; ð2:6Þ

where

FðΔEÞ¼
Z

∞

−∞
dτ

Z
∞

−∞
dτ0e−iΔEðτ−τ0ÞχðτÞχðτ0ÞDþðxðτÞ;xðτ0ÞÞ

ð2:7Þ

is the response function, which depends on the trajectory
but not the internal properties of the detector. The remain-
ing factor, c2jhEjμð0ÞjE0ij2, represents the selectivity,
which depends only on the detector’s internal properties.5

The Wightman functions D� are defined as

Dþðx; x0Þ ≔ h0jϕðxÞϕðx0Þj0i; ð2:8aÞ

D−ðx; x0Þ ≔h0jϕðx0ÞϕðxÞj0i: ð2:8bÞ

It should be noted that the first-order perturbation method is
viable only for a short range of evolution time, since the
squared norm of transition amplitude has to remain much
smaller than unity. Therefore, (2.3) with the unbounded
integral

R∞
∞ dτ is problematic, unless a smooth enough

switching function χðτÞ with a finite switch-on duration is
imposed. The imposition of χðτÞ can be viewed as a
prescription of regularization to make sense of the pertur-
bation method.
The detector moving along a given trajectory xðτÞ is said

to be in equilibrium with the field ϕ if

Dþðτ; τ0Þ≡DþðxðτÞ; xðτ0ÞÞ ¼ DþðΔτÞ; Δτ ≔ τ − τ0;

ð2:9Þ

which depends only on Δτ. In this case, even though (2.7)
becomes infinite without the inclusion of χðτÞ, simply by
setting χðτÞ ¼ 1, the (infinite) total transition probability
divided by the (infinite) total proper time still sensibly
yields a finite equilibrium transition rate (i.e., probability
per unit proper time) given as

R ¼ κ2jhEjmð0ÞjE0ij2 _FðΔEÞ; ð2:10Þ

where

_FðΔEÞ ≔
Z

∞

−∞
dðΔτÞe−iΔEΔτDþðΔτÞ: ð2:11Þ

However, the burden of regularization is now carried over
to the Wightman function Dþðx; x0Þ, which will require
some proper regularization procedure, such as the standard
iϵ-regularization used in the case of a detector moving in
Minkowski spacetime.6 We will make more comments on
this point when we encounter the issue of regularization for
the Wightman function in Sec. V.
On the other hand, if the detector is not in equilibrium

with ϕ (i.e.,Dþðτ; τ0Þ depends on both τ and τ0 for the given
trajectory), we can no longer make sense of the notion of
equilibrium transition rate but can only refer to the total
transition probability, which now depends on the exact
form of χðτÞ. Provided that χðτÞ is smooth enough and its
switch-on duration Δ is short enough (so that the first-order
perturbation is viable), (2.6) with (2.7) is well defined and
yields a finite total transition probability. By taking the time
derivative of the total transition probability, we can still
define the instantaneous transition rate observed at a
particular instant. We refer readers to [8,17–19] for more

FIG. 1. A typical switching function χðτÞ with a finite timescale
Δ for the switch-on period.

4Here, we use the completeness relation
P

jΨi jΨihΨj ¼ 1, but
note that, at the level of the first-order perturbation, only the one-
particle states of jΨi contribute.

5In following sections, we will focus on the response function
FðΔEÞ and ignore the factor of selectivity.

6The standard iϵ-regularization can be replaced with different
regularization procedures, e.g., by imposing a switching function
χðτÞ or introducing a spatial profile of the Unruh-DeWitt detector.
See [17–19] for more discussions on the issue of regularization.
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discussions on the nonequilibrium case, as we will only
focus on the equilibrium case in this paper.
Both the equilibrium transition rate and the instanta-

neous transition rate in principle can be experimentally
measured by deploying a large ensemble of identical
Unruh-DeWitt detectors (with the same coupling constant
and the same switching function, moving in the same
trajectory). Measuring the ratio of the population of the
detectors in the ensemble staying in the initial state jE0i to
that of the detectors excited or de-excited to the other state
jEi, one can deduce the transition rate. (See Appendix A of
[8] for more details.)
In some situations, the transition process (2.2) and its

reverse process jΨ; Ei → j0; E0i can reach detailed bal-
ance. If the detailed balance is established, the principle of
detailed balance dictates that the transition rate _P of (2.2)
and the transition rate _Pr of its reverse process are both
independent of τ and satisfy

_P
_Pr

¼ e−βΔE; ð2:12Þ

where 1=β≡ kBT is to be interpreted as the corresponding
temperature. The ratio _P= _Pr and therefore the temperature
of detailed balance in principle can be measured again in
terms of a large ensemble of identical detectors (but with a
different measuring operation performed upon the ensem-
ble). Because the amplitudes of the transition process (2.2)
and its reverse process are complex conjugate to each other
as a consequence of unitarity, the temperature of detailed
balance is independent of the explicit design of the detector,
as we can see in the examples below. It should also be
remarked that, whereas the condition that the trajectory is in
equilibrium with the background field is necessary for
detailed balance, it is unclear whether the condition is also
sufficient. (See Appendix A of [8] and Sec. 3.A.4 of [22]
for more discussions about detailed balance.)
In the celebrated example of the Unruh-DeWitt detector

moving with a constant acceleration in the Minkowski
spacetime, the detailed balance relation is satisfied and the
corresponding temperature is given by

T ¼ jaccelerationj
2πkB

; ð2:13Þ

which is called the Unruh temperature. This is a conse-
quence of the fact that the Minkowski vacuum is a thermal
state of the right (left) Rindler modes (which are the modes
of particles seen by the constant-accelerating observer) if
the left (right) Rindler modes (which are the modes beyond
the apparent event horizon of the constant-accelerating
observer) are ignored. More precisely, tracing out the left
(right) Rindler modes upon the Minkowski vacuum state
gives rise to a density matrix for the many-particle system
of the right (left) Rindler modes at the temperature (2.13)

(see Secs. III.A.2 and III.A.4 of [22] for more details).
From the perspective of the right (left) Rindler observer, we
have

_P
_Pr

¼ jAj2nðΔEÞ
jArj2ð1þ nðΔEÞÞ ¼

nðΔEÞ
1þ nðΔEÞ ¼ e−βΔE; ð2:14Þ

where A and Ar are the amplitudes measured by the right
(left) Rindler observer for the process (2.2) and its reverse
process, respectively, which are complex conjugate to each
other, and

nðωÞ ¼ 1

eβω − 1
ð2:15Þ

is the Rindler particle number density for the thermal state
at the Unruh temperature (2.13). The factor nðΔEÞ in the
numerator in (2.14) is associated with the induced absorp-
tion of a Rindler particle from the thermal bath, and the
factor 1þ nðΔEÞ in the denominator is associated with the
spontaneous and induced emissions of a Rindler particle to
the thermal bath.7

For the case of an Unruh-DeWitt detector moving with a
constant velocity in the Minkowski spacetime, from the
perspective of a nonmoving observer, one can easily
compute

_P
_Pr

¼ jAj2ð1þ nðΔEÞÞ
jArj2nðΔEÞ

; ð2:16Þ

where A and Ar are the amplitudes measured by the
nonmoving observer, which are complex conjugate to each
other, and where

nðωk⃗Þ ≔ h0ja†
k⃗
ak⃗j0i ¼ 0 ð2:17Þ

is the particle number density for the Minkowski vacuum
state j0i. The factor 1þ nðΔEÞ is associated with the
spontaneous and induced emissions of a particle to j0i,
and the factor nðΔEÞ is associated with the induced
absorption of a particle from j0i. For ΔE < 0, it turns
out that jAj2 ¼ jArj2 ≠ 0, and consequently (2.16) yields
_P= _Pr ¼ ∞. Therefore, the detailed balance is satisfied
in the trivial way corresponding to the zero temperature
T ¼ 0 (i.e., β ¼ ∞). For ΔE > 0, it turns out that
jAj2 ¼ jArj2 ¼ 0, and the temperature is ill-defined.
In this paper, we study the Unruh-DeWitt detector

moving along a free-falling trajectory or along a constant-
accelerating trajectory in a monochromatic gravitational

7The amplitude of the transition of (2.2) as jE0i → jEi
accompanied by the emission of a Minkowski-mode particle
into the Minkowski vacuum can be reproduced from the Rindler
observer’s perspective as accompanied by the absorption of a
Rindler-mode particle from the thermal bath (see Sec. 3.A.2 of
[22] for more details).
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wave background, instead of the Minkowski background.
As we will see, in various settings in the long-wavelength
or short-wavelength limit of the gravitational wavelength,
a free-falling or constant-accelerating detector is in equi-
librium with ϕ. The equilibrium transition rate depends on
the amplitude of the gravitational wave, which can be
viewed as a measurable effect of gravitational waves acting
on a quantum system. However, we do not consider
detailed balance and the corresponding temperature. It is
unclear whether detailed balance can be established in the
presence of a gravitational wave. Even if detailed balance is
established in certain settings, it is difficult to obtain the
particle number density nðωÞ in the gravitational wave
background that can be used to compute the ratio _P= _Pr. We
leave the issue of detailed balance for future research.
Finally, we remark that the underlying mechanism of the

transition (2.2) is that the Unruh-DeWitt detector is coupled
to quantum fluctuations of ϕ in the vacuum j0i, akin to
spontaneous emission of an atom or a molecule as a
consequence of being coupled to quantum fluctuations
of the electromagnetic field. From the experimental per-
spective, it seems more realistic to model the detector as
coupled to the electromagnetic field, rather than a scalar
field ϕ, as nature evidently has quantum fluctuations in the
vacuum of the electromagnetic field, but may not of a scalar
field. Indeed, generalized Unruh-DeWitt models coupled
with different kinds of quantum fields have been formu-
lated, including the electromagnetic field [23,24] and the
Dirac field [25]. However, in this paper, we adhere to the
original Unruh-DeWitt model with a scalar field, as it is
theoretically the simplest and its simplicity enables us to
obtain the transition rate in a closed form that is easier to
analyze. The transition rate of the Unruh-DeWitt detector
coupled to a nonscalar field in general depends not only on
the detector’s trajectory but also its orientation, as it can be
sensitive to polarization of the filed. On the other hand,
when a large ensemble of detectors is used to measure the
transition rate, the ensemble as a whole may become
insensitive to the field’s degrees of polarization if each
detector in the ensemble is randomly oriented. The tran-
sition rate measured by the randomly oriented ensemble as
a whole can be represented by the simple model coupled to
a scalar field (up to some detailed dependence on the
explicit form of coupling). It is in this sense that the simple
model with a scalar field is still relevant to realistic concern.

III. SCALAR FIELD IN A GRAVITATIONAL
WAVE BACKGROUND

In this section, we solve the equation of motion of a real
scalar field, i.e., the Klein-Gordon equation, in a gravita-
tional wave background, which is otherwise a flat
spacetime in the absence of gravitational waves. The
gravitational waves are assumed to be weak enough so
that the linearized theory, which neglects nonlinear gravi-
tational wave effects, is adequate. In the linearized theory,

any arbitrary gravitational wave can be decomposed into a
linear superposition of plane waves. For simplicity, we only
consider a monochromatic plane wave. To make the
calculation simpler, we work in the transverse-traceless
(TT) gauge.8

The action of a scalar field ϕðxÞ in a curved spacetime is
given by

S ¼
Z

L½ϕðxÞ�d4x; ð3:1Þ

with the Lagrangian density

L ¼ 1

2

ffiffiffiffiffiffi
−g

p ð−gμν∇μϕ∇νϕ −m2ϕ2 − ξRϕ2Þ; ð3:2Þ

where m is the mass of the scalar particle, R is the Ricci
scalar, and ξ is the coupling constant for the interaction
between ϕ and R (see, e.g., [16] for more details). In order
to obtain the Wightman function in a closed form, we
consider the simplest case that ϕ is massless and does not
couple with the curvature, i.e., m ¼ 0 and ξ ¼ 0. Variation
with respect to ϕ, i.e., δS=δϕ ¼ 0, then leads to the
massless Klein-Gordon equation in curved spacetime,

□ϕ ¼ 0; ð3:3Þ

where

□ϕ ≔ gμν∇μ∇νϕ≡ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νϕÞ

¼ gμν∂μ∂νϕþ ∂μgμν∂νϕþ 1

2
gμνgαβ∂μgαβ∂νϕ: ð3:4Þ

The metric of the spacetime with a gravitational plane
wave is given by

gαβðxÞ ¼ ηαβ þ hαβðxÞ; ð3:5aÞ

hαβðxÞ ¼ Aαβe−ikμx
μ
: ð3:5bÞ

It follows that

gαβ∂μgαβ ¼ gαβ∂μhαβ ¼ kμgαβhαβ ¼ kμhαβhαβ ≈Oðh2Þ;
ð3:6aÞ

∂μgμν ¼ ∂μhμν ¼ kμhμν ¼ 0; ð3:6bÞ

where we have applied the TT gauge to have kμhμν ¼ 0.
Consequently, up to the first order of h, the Klein-Gordon
equation reads as

8For the issue that the TT gauge is always possible for any
arbitrary gravitational wave, see Sec. 35.4 of [1] for more details.
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gμν∂μ∂νϕ ¼ 0: ð3:7Þ

Given a gravitational plane wave prorogating along the z
direction, in the TT gauge, hμν takes the form

hμνðxÞ ¼

0
BBB@

0 0 0 0

0 hþ h× 0

0 h× −hþ 0

0 0 0 0

1
CCCA; ð3:8aÞ

hþ=×ðxÞ ¼ Aþ=× cosðkz − ωtþ θþ=×Þ; ð3:8bÞ

where ω ¼ jkj, and hþ and h× are the two independent
modes of polarization with the amplitudes Aþ and A× and
phase shifts θþ and θ×, respectively. Note that the metric
given in (3.8) admits the Killing vector fields: X ¼ ∂x,
Y ¼ ∂y, and V ¼ ∂v ¼ ð∂t þ ∂zÞ=

ffiffiffi
2

p
. Accordingly, it is

privileged to introduce the light-front variables:

u ¼ ðt − zÞ=
ffiffiffi
2

p
; v ¼ ðtþ zÞ=

ffiffiffi
2

p
: ð3:9Þ

In terms of the coordinates ðu; v; x; yÞ, the Klein-Gordon
equation in the gravitational wave background reads as

�
−2

∂2

∂u∂vþ
∂2

∂x2 þ
∂2

∂y2 − Aþ cosðwuþ θþÞ
� ∂2

∂x2 −
∂2

∂y2
�

−2A× cosðwuþ θ×Þ
∂2

∂x∂y
�
ϕ ¼ 0; ð3:10Þ

where we define the shorthand notation w as

w ≔
ffiffiffi
2

p
ω: ð3:11Þ

As (3.10) is invariant under the translations along the x,
y, and v coordinates in accordance with the Killing vectors,
we make the ansatz that the solution of ϕ takes the form

ϕðu; v; x; yÞ ¼ eiðkxxþkyy−ωvÞχðuÞ; ð3:12Þ

where χðuÞ is a function of u to be determined. Substituting
(3.12) into (3.10), we have

2iωχ0ðuÞ ¼ ½k2x þ k2y − Aþ cosðwuþ θþÞðk2x − k2yÞ
− 2A× cosðwuþ θ×Þkxky�χðuÞ: ð3:13Þ

Integrating this equation then yields

χðuÞ ∝ e−ikuueikugcðkx;kyÞsin wu
w eikugsðkx;kyÞcos wuw ; ð3:14Þ

where ku ≔ ðk2x þ k2yÞ=2ω, or, equivalently, the mode
frequency as a function of ku, kx, and ky is given by

ω≡ ωku;kx;ky ≔
k2x þ k2y
2ku

; ð3:15Þ

and

gcðkx;kyÞ≔
1

ðk2xþk2yÞ
½Aþðk2x−k2yÞcosθþþ2A×kxkycosθ×�;

ð3:16aÞ

gsðkx;kyÞ≔
1

ðk2xþk2yÞ
½Aþðk2x−k2yÞsinθþþ2A×kxky sinθ×�:

ð3:16bÞ

For a given gravitational plane wave parametrized by Aþ;×,
θþ;×, and w≡ ffiffiffi

2
p

ω, we have obtained the eigenmode
solutions of ϕðu; v; x; yÞ parametrized by kx, ky, and ku.
Based on these eigenmodes, we can perform the field
quantization in the next section.

IV. LIGHT-FRONT QUANTIZATION

The ordinary equal-time quantization scheme in curved
spacetime requires a timelike Killing vector field to make
sense of the notion of time [16]. As the metrics given by
(3.8) exhibits two spacelike and one lightlike Killing vector
fields, but no timelike one, the ordinary scheme cannot
apply. Instead, we adopt the light-front quantization for-
malism, which is primarily used in the study of deep
inelastic scattering in quantum chromodynamics (QCD)
(see [10] for a review). Under the light-front quantization
scheme, the light-front direction in accordance with the
lightlike Killing vector is treated as the direction of time.
More precisely, we treat the light-front coordinate v as the
evolution parameter, and correspondingly define the fre-
quency modes as eigenmodes of the Lie derivative via

LVϕ ¼ −iωkϕ; with V ¼ ∂v; ð4:1Þ

where ωk is the frequency.
The Lagrangian density (3.2) in the gravitational

wave background given by (3.8) takes the form L ¼ffiffiffiffiffiffi−gp ð∂uϕ∂vϕþ…Þ in the coordinates ðu; v; x; yÞ, where
the part of “…” does not involve ∂vϕ. Consequently, the
canonical momentum conjugate to ϕ is given by

π ≔
∂L

∂ð∂vϕÞ
¼ ffiffiffiffiffiffi

−g
p ∂uϕ: ð4:2Þ

The light-front quantization then demands the commutation
relations given at equal light-front time v as

½ϕðx;u;vÞ;πðx0;u0;vÞ�¼ i
2

ffiffiffiffiffiffi
−g

p
δ2ðx−x0Þδðu−u0Þ; ð4:3Þ

and
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½πðx; u; vÞ; πðx0; u0; vÞ� ¼ 0: ð4:4Þ

Note that (4.3) implies the nonlocal commutation relation,

½ϕðx; u; vÞ;ϕðx0; u0; vÞ� ¼ −
i
4

ffiffiffiffiffiffi
−g

p
δ2ðx − x0Þsgnðu − u0Þ;

ð4:5Þ
which is a new feature that does not appear in the ordinary
equal-time quantization scheme.9 Here and hereafter,
we use boldfaced letters to denote “transverse” vectors
in shorthand: e.g., x ≔ ðx; yÞ, k ≔ ðkx; kyÞ, and k · x ≔
kxxþ kyy.
By virtue of (3.12) and (3.14), the fields ϕðxÞ can be cast

in terms of the mode expansions as

ϕðu; v; xÞ ¼
Z

d3k

ð2πÞ3=2 Nku;kðaku;kfku;kðx; u; vÞ

þ a†ku;kf
�
ku;k

ðx; u; vÞÞ; ð4:6Þ
where

fku;kðu; v; xÞ ≔ eiðk·x−kuu−ωku;kvÞχðuÞ; ð4:7Þ

with χðuÞ given by (3.14), and where Nku;k are normali-
zation factors to be determined later. The conjugate
momentum field π given by (4.2) then reads as

πðu; v; xÞ ¼ ffiffiffiffiffiffi
−g

p Z
d3k

ð2πÞ3=2Nku;kð−ikuÞgkðuÞ

× ðaku;kfku;kðx; u; vÞ − a†ku;kf
�
ku;k

ðx; u; vÞÞ;
ð4:8Þ

where

gkðuÞ≔ 1− gcðkx;kyÞcosðwuÞþ gsðkx;kyÞ sinðwuÞ: ð4:9Þ

Note that ku ≥ 0 according to (3.15),10 and the
notation

R
d3k is a shorthand for

R∞
−∞ d2k

R∞
0 dku≡R

∞
−∞ dkx

R
∞
−∞ dky

R
∞
0 dku.

By prescribing the commutation relations for aku;k and

a†ku;k as

½aku;k; a†k0u;k0 � ¼ δ2ðk − k0Þδðku − k0uÞ; ð4:10aÞ

½aku;k; ak0u;k0 � ¼ ½a†ku;k; a
†
k0u;k0

� ¼ 0; ð4:10bÞ

and the normalization factor as

Nku;k ¼
1ffiffiffiffiffiffiffi
2ku

p ; ð4:11Þ

the commutation relations (4.3) and (4.4) can be realized.
To show this, we first calculate

½ϕðx; u; vÞ; πðx0; u0; vÞ�

¼ ffiffiffiffiffiffi
−g

p Z
d3k

ð2πÞ3=2
Z

d3k0

ð2πÞ3=2
igkðu0Þk0uffiffiffiffiffiffiffiffiffiffiffiffi

4kuk0u
p

× f½aku;k; a†k0u;k0 �fku;kðx; u; vÞf�k0u;k0 ðx0; u0; vÞ
þ ½ak0;ku ; a†k;ku �fk0u;k0 ðx0; u0; vÞf�ku;kðx; u; vÞg

¼ i
4

ffiffiffiffiffiffi
−g

p Z
∞

−∞

d2k
ð2πÞ2 gkðu

0Þðeik·ðx−x0Þ þ e−ik·ðx−x0ÞÞ

×
Z

∞

−∞

dku
2π

e−ikuλðuÞ

¼ i
4

ffiffiffiffiffiffi
−g

p Z
∞

−∞

d2k
ð2πÞ2 δðλðuÞÞgkðu

0Þðeik·ðx−x0Þ þ e−ik·ðx−x0ÞÞ;

ð4:12Þ

where

λðuÞ ≔ u − u0 þ w−1½gcðkx; kyÞðsin wu − sin wu0Þ
þ gsðkx; kyÞðcos wu − cos wu0Þ�: ð4:13Þ

Since λðuÞ has a single root at u ¼ u0, the identity

δðλðuÞÞ ¼ δðu − u0Þ
jλ0ðu0Þj ¼ δðu − u0Þ

gkðu0Þ
ð4:14Þ

9Note that (4.2) does not contain any time derivative ∂v, and
thus should be considered as a constraint equation. In other
words, the phase space variables ϕðxÞ and πðxÞ at a given time v
are not completely independent of each other. In the presence of
constraints, one has to apply the Dirac-Bergmann algorithm to
arrive at a consistent Hamiltonian formalism, which then pro-
vides a proper starting point for the quantization procedure.
Following the Dirac-Bergmann procedure, it is the Dirac bracket,
instead of the Poisson bracket, that is to be promoted to the
commutator ½·; ·� for quantization. The difference between the
Dirac bracket and the Poisson bracket gives rise to the extra factor
1=2 in (4.3). See the Appendix of [10] for more details. In the
light-front formalism, one has to address the additional issue
arising from zero modes, which correspond to the states that are
independent of u and have to be treated separately with special
care. The resulting modified Dirac-Bergmann procedure could be
very complicated, as the main difficulty lies in the fact that the
constraint equation for zero modes is generally nonlinear.
Fortunately, in our case as well as in many cases of free theories,
the zero mode constraint does not get involved with the Hilbert
space orthogonal to the zero modes, and thus can be simply
projected out before the standard Dirac-Bergmann procedure is
applied. For more about the zero-mode problem, see the
Appendix of [10] and the references therein.

10We have adopted the convention that ωku;k ≥ 0. That is,
positive-frequency modes (i.e., ∝ eiωku;kv) are associated with
creation operators, while negative-frequency (i.e., ∝ e−iωku;kv)
with annihilation operators in (4.6).
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can be used to obtain

½ϕðx; u; vÞ; πðx0; u0; vÞ�

¼ i
4

ffiffiffiffiffiffi
−g

p
δðu − u0Þ

Z
∞

−∞

d2k
ð2πÞ2 ðe

ik·ðx−x0Þ þ e−ik·ðx−x0ÞÞ;

¼ i
2

ffiffiffiffiffiffi
−g

p
δ2ðx − x0Þδðu − u0Þ; ð4:15Þ

in agreement with (4.3). Meanwhile, it is can be readily
shown that (4.10) leads to (4.4).
In summary, the mode expansion of ϕðxÞ≡ ϕðu; v; xÞ in

terms of creation and annihilation operators is given by

ϕðxÞ ¼
Z

dk3

ð2πÞ3=2
1ffiffiffiffiffiffiffi
2ku

p ðaku;kfku;kðu; v; xÞ

þ a†ku;kf
�
ku;k

ðu; v; xÞÞ: ð4:16Þ

The Hilbert space is spanned by the Fock states in the form

j1nku1;k1 ; 2nku2;k2 ;…; jnkuj;kji
≔ ð1n!2n!…jn!Þ−1=2ða†ku1;k1Þ

1nða†ku2;k2Þ
2n…ða†kuj;kjÞ

jnj0i;
ð4:17Þ

which is a many-particle state with 1n particles in the mode
ðku1; k1Þ, 2n particles in the mode ðku2; k2Þ, and so on. The
no-particle state j0i is the vacuum, which is annihilated by
all annihilation operators, i.e.,

aku;kj0i ¼ 0; for all ðku; kÞ: ð4:18Þ

V. THE WIGHTMAN FUNCTION

As we have successfully quantized the scalar field ϕðxÞ
in a monochromatic gravitational wave background, we are
now ready to calculate the corresponding Wightman
function. According to (4.16), the Wightman function
Dþðx; x0Þ takes the form

Dþðx; x0Þ
≔ h0jϕðxÞϕðx0Þj0i

¼
Z

dk3

ð2πÞ3=2
Z

dk03

ð2πÞ3=2
1ffiffiffiffiffiffiffiffiffiffiffiffi
4kuk0u

p h0jaku;ka†k0u;k0 j0ifku;kf�ku;k

¼
Z

dk3

ð2πÞ3
1

2ku
eik·ðx−x0Þe−ikuðu−u0Þe−iωku;kðv−v0Þ

× eikugcðkÞðsin wu−sinwu0Þ=weikugsðkÞðcos wu−cos wu0Þ=w: ð5:1Þ

This expression is complicated and does not have a closed
form. Fortunately, it can be greatly simplified if we
consider the two limiting situations: the long-wavelength
limit and the short-wavelength limit.

The Unruh-DeWitt detector naturally provides two
characteristic timescales. The first is ∼1=ΔE, which char-
acterizes the detector’s response time for the two-level
transition. The second is ∼Δ, which characterizes the
detector’s switch-on period as shown in Fig. 1. As will
be seen shortly, we will apply a particular form of iϵ-
regularization to compute theWightman function instead of
specifying the switching function χðτÞ with a finite switch-
on period Δ. In reality, however, a detector is always
switched on only for a finite period Δ, which lays down a
timescale to be compared with the period 1=ω of the
gravitational wave. Therefore, we should keep in mind that
the resulting transition rate of the Unruh-DeWitt detector
computed from the iϵ-regularized Wightman function is
legitimate only if the measurement performed at time τ is
well within the switch-on period.11

The background gravitational wave is said to be in the
long-wavelength limit, if the wavelength of the gravita-
tional wave is so large that, within the whole switch-on
period, the detector does not see any gravitational wave
modulation, but effectively only sees a persisting gravita-
tional wave amplitude. See Fig. 2 for illustration. More
precisely, during the switch-on period, if the detector
moves from xμðτÞ ¼ ðt; x⃗Þ≡ ðt; x; y; zÞ to xμðτ þ ΔÞ ¼
ðt0; x⃗0Þ≡ ðt0; x0; y0; z0Þ, we have

t0 ≈ tþ 1

1 − v2
Δ; z0 ≈ zþ vz

1 − v2
Δ; ð5:2Þ

where v⃗ ¼ ðvx; vy; vzÞ is the detector’s moving velocity
(averaged over the switch-on period). The phase difference
of the gravitational wave experienced by the detector
during this period is given by

δϕ ¼ ðkz0 − ωt0Þ − ðkz − ωtÞ ≈ ωΔffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ðvz − 1Þ; ð5:3Þ

for a gravitational plane wave propagating in the z direction
(k ¼ ω > 0). The precise condition for the long-wave-
length limit is jδϕj ≪ 1, or equivalently,

1

ΔE
≪ Δ ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p

jvz − 1j
1

ω
: ð5:4Þ

It should be noted that, in the case of a detector moving in
the z direction at an extremely fast speed close to the speed
of light, i.e., vz ≈ 1, the condition (5.4) is always satisfied
even if the gravitational wavelength 1=ω is small. The
asymptotic behavior of the constant-accelerating trajectory
given by (7.1) is a typical example (see Fig. 2). At the
opposite extreme, if the detector moves in the negative z

11Accordingly, the condition 1=ΔE ≪ Δ must be satisfied in
order to yield a sensible result in agreement with the transition
rate computed from the regularized Wightman function.
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direction at a speed close to the speed of light, i.e., vz ≈ −1,
the condition (5.4) cannot be satisfied, no matter how long
1=ω is.
If we neglect any corrections equal to or higher than the

order ofOðωΔÞ, we can simply take the formal limit ω → 0
for the result of the long-wavelength limit. In this formal
limit, wherever the portion of the trajectory within the
switch-on period is located in the spacetime, the phase of
the gravitational wave upon this portion is to be treated as
the same as that upon the hypersurface u ¼ 0 (see the right
panel of Fig. 2, imaging that the wavelength becomes
infinity). Therefore, the persisting amplitude the detector
experiences during the switch-on period is given by
hþ=×ðxÞju¼0

≡Aþ=× for þ and × modes, respectively,
which is defined as

Aþ ≔ Aþ cos θþ; A× ≔ A× cos θ×: ð5:5Þ

In a real physical setting (contrary to the formal limit
ω → 0), if the long-wavelength condition (5.4) is satisfied,
Aþ andA× used in the formal limit are to be understood as
representing the persisting amplitudes experienced by the
detector during the switch-on period.
On the other hand, the background gravitational wave is

said to be in the short-wavelength limit, if the condition

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p

jvz − 1j
1

ω
≪

1

ΔE
≪ Δ ð5:6Þ

is satisfied. That is, the frequency of gravitational-wave
modulation experienced by the moving detector is much

higher than the frequency of the two-level energy differ-
ence. If we neglect any corrections equal to or higher than
the order of OðΔE=ωÞ, we can simply take the formal limit
ω → ∞ for the result of the short-wavelength limit.
Although we cannot obtain a closed-form expression for

the response of the Unruh-DeWitt detector in the case of
arbitrary wavelengths, we can still learn a great deal from
the two opposite limits.

A. Long-wavelength limit

We first consider the long-wavelength limit conditioned
by (5.4). Neglecting any corrections in or higher than the
order of OðωΔÞ, we take the formal limit w≡ ffiffiffi

2
p

ω → 0
upon (5.1):

Dþ
lwðx − x0Þ≡ lim

w→0
Dþðx; x0Þ

¼
Z

d3k
ð2πÞ3

1

2ku
eik·ðx−x0Þe−ikuð1−gcðkx;kyÞÞðu−u0Þ

× e−iωku;kðv−v0Þ: ð5:7Þ

By performing the change of variables,

k0u ≡ k0uðku; kx; kyÞ ¼ kuð1 − gcðkx; kyÞÞ; ð5:8aÞ

ωk0u;k ≡ ωðk0u; kx; kyÞ ¼ ωku;k ¼
k2x þ k2y
2k0u

½1 − gcðkx; kyÞ�;

ð5:8bÞ

(5.7) is simplified into the form

FIG. 2. Left: Modulation of the phase of a gravitational plane wave propagating in the z direction. The axes of ðt; zÞ and ðu; vÞ are both
shown for reference. Right: A case of a very long wavelength is drawn to illustrate the long-wavelength condition (5.4). A world line
given by (7.1) (with t0 ¼ 0) is depicted as an example of the detector’s trajectory, and the segment within the switch-on period,
τ0 ≲ τ ≲ τ0 þ Δ, is highlighted in a deeper shade (with τ0 chosen to be a certain positive value). The wavelength is so large that the phase
of the gravitational wave is almost the same over the whole switch-on segment. Furthermore, if τ0 is chosen to be positive and very large,
the switch-on segment will asymptote to the line of u ¼ 0, and the corresponding velocity will asymptote to vz ≈ 1. In this asymptotic
situation, the long-wavelength condition is satisfied even if 1=ω is small.
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Dþ
lwðx−x0Þ ¼

Z
d2kdk0u
ð2πÞ3

1

2k0u
eik·ðx−x0Þe−ik0uðu−u0Þe−iωk0u;kðv−v

0Þ;

ð5:9Þ

where we have used dku ¼ ð1 − gcðkx; kyÞÞ−1dk0u. The
Wightman function is in fact not a genuine function but
a distribution. When substituted into (2.7), it yields an
unambiguous result for the response function FðΔEÞ as
long as the switching function χðτÞ is smooth enough and
of compact support. Without specifying χðτÞ, however, the
expression (5.9) by itself is ambiguous and requires a
proper regularization procedure to yield a sensible result in
agreement with the condition of causality.12 Here, we
prescribe the particular form of iϵ-regularization (with an
infinitesimal parameter ϵ > 0) as follows:

Dþ
lwðx − x0Þ ¼

Z
d2kdk0u
ð2πÞ3

1

2k0u
eik·ðx−x0Þe−ik0uðu−u0−iϵÞ

× e−iωk0u;kðv−v
0−iϵÞ: ð5:10Þ

This iϵ-regularization conforms with the condition of
causality, as we will see shortly that it reduces to the
standard iϵ-regularization when the gravitational wave
amplitude is turned off. This particular regularization can
also be understood as providing a large-value cutoff for
both ωkμ;k and ku.
Applying the Gaussian integral formula

Z
∞

−∞
dxe−ax

2þbxþc ¼
ffiffiffi
π

a

r
e
b2
4aþc ð5:11Þ

to the integration over kx and ky, we have

Iðk0uÞ ≔
Z

dkx
2π

Z
dky
2π

eikxΔxeikyΔye−iωk0 ðv−v0−iϵÞ

¼ k0u
2πi

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −A2

p 1

ðv − v0 − iϵÞ e
ik0uRðΔx;ΔyÞ=2ðv−v0−iϵÞ;

ð5:12Þ

where Δx ≔ x − x0, Δy ≔ y − y0, and RðΔx;ΔyÞ is
defined as

RðΔx;ΔyÞ≔ ð1þAþÞΔx2 þ 2A×ΔxΔyþ ð1−AþÞΔy2
1−A2

;

ð5:13Þ

with Aþ and A× defined in (5.5) and A2 defined as

A2 ≔ A2þ þA2
×: ð5:14Þ

It then follows from (5.10) and (5.12) that

Dþ
lwðx− x0Þ

¼−i
Z

∞

0

dk0u
2π

1

2k0u
Iðk0uÞe−ik0uðu−u0−iϵÞ

¼−
1

8π2
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1−A2
p 1

ðu−u0 − iϵÞðv−v0 − iϵÞ−RðΔx;ΔyÞ=2 :

ð5:15Þ

Finally, the result in the coordinates ðt; x; y; zÞ takes the
form

Dþ
lwðx − x0Þ ¼ −

1

4π2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −A2
p

×
1

ðt − t0 − iϵÞ2 − ðz − z0Þ2 − RðΔx;ΔyÞ :

ð5:16Þ

When Aþ ¼ A× ¼ 0, (5.16) reduces to the ordinary
Wightman function in the Minkowski spacetime with the
standard iϵ-regularization:

Dþ
Mðx − x0Þ ¼ −

1

4π2
1

ðt − t0 − iϵÞ2 − jx⃗ − x⃗0j2 ; ð5:17Þ

where x⃗≡ ðx; y; zÞ.

B. Short-wavelength limit

Next, we consider the short-wavelength limit condi-
tioned by (5.6). Neglecting any corrections in or higher
than the order of OðΔE=ωÞ, we take the formal limit w≡ffiffiffi
2

p
ω → ∞ upon (5.1). The result simply reduces to

Dþ
swðx − x0Þ≡ lim

w→∞
Dþðx; x0Þ ¼

Z
d3k
ð2πÞ3

1

2ku

× eik·ðx−x0Þe−ikuðu−u0Þ−iϵe−iωku;kðv−v−iϵÞ;

ð5:18Þ

where the iϵ-regularization is again prescribed. The
dependence of the gravitational wave amplitude disappears,
and Dswðx − x0Þ in the coordinates ðt; x; y; zÞ reads as

Dþ
swðx; x0Þ ¼ −

1

4π2
1

ðt − t0 − iϵÞ2 − jx⃗ − x⃗0j2 ; ð5:19Þ

which formally is identical to the ordinary Wightman
function in the Minkowski spacetime as given in (5.17).
Although (5.19) apparently looks the same as that in the

Minkowski spacetime, the physics it implies can be quite
different from the latter. For one thing, the geodesic
equation in the short-wavelength limit is different from
that in the Minkowski spacetime (see the Appendix).12Recall the comments after (2.11).
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Once the detector’s trajectory is given and the Wightman
function is known, we are ready to compute the transition
rate by (2.11). First, we consider the case that the detector
follows a free-falling (i.e., geodesic) trajectory, and then the
case that the detector moves with a constant acceleration in
the z direction.

VI. FREE-FALLING TRAJECTORY

In this section, we study the response of an Unruh-DeWitt
detector falling freely in a gravitational wave background.
The free-falling trajectory is given by the geodesic equation,
which is solved explicitly in the Appendix.

A. Long-wavelength limit

In the long-wavelength limit ω → 0, according to (A17),
a free-falling trajectory takes the form

xμðτÞ ¼ Uμτ þ xμ0; ð6:1Þ
where the four-velocity

Uμ ¼ ðut; ux; uy; uzÞ ð6:2Þ
is given by four constants, ut, ux, uy, and uz, subject to the
constraint (A19), and xμ0 are displacement parameters.
Substituting (6.1) into (5.16) yields

Dþ
lwðτ; τ0Þ ¼ −

1

4π2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −A2
p 1

ðutΔτ − iϵÞ2 − ðuzΔτÞ2 þ 1−u2tþu2z
ð1−A2Þ Δτ

2 − RðΔx;ΔyÞ
;

¼ −
1

4π2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −A2
p 1

Δτ2ððutÞ2 − ðuzÞ2 − iϵ0Þ − Δτ2
1−A2 ððutÞ2 − ðuzÞ2 − 1Þ ;

¼ −
1

4π2
1 −A2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −A2

p 1

Δτ2½ð1 −A2ÞððutÞ2 − ðuzÞ2 − iϵ0Þ − ððutÞ2 − ðuzÞ2Þ þ 1� ;

¼ −
1

4π2
1 −A2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −A2

p 1

Δτ2½1 −A2ððutÞ2 − ðuzÞ2Þ − iϵ00� ;

¼ −
1

4π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −A2

p

1 −A2ððutÞ2 − ðuzÞ2Þ
1

ðΔτ2 − iϵ000Þ2 ; ð6:3Þ

where ϵ, ϵ0, ϵ00, and ϵ000 are infinitesimal positive numbers (rescaled differently). The fact that Dþ
lwðτ; τ0Þ depends only on

Δτ≡ τ − τ0 suggests that a free-falling Unruh-DeWitt detector is in equilibrium with ϕ in the long-wavelength limit.
Substituting (6.3) into (2.11) then yields the equilibrium transition rate

_FðΔEÞ ¼ −
1

4π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −A2

p

1 −A2ððutÞ2 − ðuzÞ2Þ
Z

∞

−∞
dΔτ

e−iΔEΔτ

ðΔτ − iϵÞ2 : ð6:4Þ

If Δτ is considered to be a complex number, the transition rate can be calculated by a contour integral. The integrand has a
pole of order 2 at Δ ¼ iϵ.
For ΔE > 0, the transition rate can be calculated by a contour integral along an infinite semicircle contour on the lower

half of the Δτ plane. As the contour does not enclose the pole, the contour integral turns out to be zero.
For ΔE < 0, the integration can be calculated by a contour integral along an infinite semicircle contour on the upper half

of the Δτ plane. The residue theorem applied to the pole at Δτ ¼ iϵ gives

_FðΔEÞ ¼ −
ΔE
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −A2

p

1 −A2ððutÞ2 − ðuzÞ2Þ ; ð6:5aÞ

≡ −
ΔE
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −A2

p

1 −A2ð1þ ðuxÞ2 þ ðuyÞ2 þAþððuxÞ2 − ðuyÞ2Þ þ 2A×uxuyÞ
; ð6:5bÞ

where we have used (A19) to recast ðutÞ2 − ðuzÞ2 in terms of ux and uy.13

13Under a rotation by θ around the z axis, ux, uy, and Aþ=× transform as

ux0 ¼ cos θux þ sin θuy; uy0 ¼ − sin θux þ cos θuy; A0þ ¼ cos 2θAþ þ sin 2θA×; A0
× ¼ − sin 2θAþ þ cos 2θA×:

Note that A2, ðuxÞ2 þ ðuyÞ2, and AþððuxÞ2 − ðuyÞ2Þ þ 2A×uxuy are all invariant under this transformation.
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In summary, we have

_FðΔEÞ ¼ 0; for ΔE > 0; ð6:6aÞ

¼ −
ΔE
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −A2

p

1 −A2ððutÞ2 − ðuzÞ2Þ ; for ΔE < 0: ð6:6bÞ

As expected, in the limit that the gravitational wave
amplitude goes to zero, i.e., A2 → 0, (6.6) reduces to
the ordinary result in the Minkowski spacetime:

_FðΔEÞ⟶
A2→0

−
ΔE
2π

Θð−ΔEÞ: ð6:7Þ

Compared to the Minkowskian result, the transition rate
(6.6) is modified by an overall proportional factor that
depends on the amplitude of the gravitational wave and the
detector’s velocity. When ðutÞ2 − ðuzÞ2 ¼ 1 or, equiva-
lently, ux ¼ uy ¼ 0, (6.6) in the case of ΔE < 0 yields
the maximum value:

max
Uμ

_FðΔEÞ ¼ −
ΔE
2π

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −A2

p : ð6:8Þ

On the other hand, when ðutÞ2 − ðuzÞ2 ¼ 1 or, equivalently,
ux and uy satisfy

1þ ðuxÞ2 þ ðuyÞ2 þAþððuxÞ2 − ðuyÞ2Þ þ 2A×uxuy ¼ 0;

ð6:9Þ

(6.6) in the case of ΔE < 0 yields the minimum value:

min
Uμ

_FðΔEÞ ¼ −
ΔE
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −A2

p
: ð6:10Þ

It is instructive to compare (6.6) with the case in flat
spacetime with a compact dimension. In a flat spacetime
where the z direction is compactified with a finite length L,
the transition rate of the Unruh-DeWitt detector moving
with the four-velocity Uμ ¼ ðut; ux; uy; uzÞ is given by
(see [8])

_FLðΔEÞ ¼ 0; for ΔE > 0; ð6:11aÞ

¼ −
ΔE
2π

−
i

4πLut
ln

�
1 − ei

ΔEL
utþuz

1 − e−i
ΔEL
utþuz

1 − ei
ΔEL
ut−uz

1 − e−i
ΔEL
ut−uz

�
;

for ΔE < 0: ð6:11bÞ

The correction due to the compact length L in (6.11) is
scaled as OðL−1Þ, which vanishes in the formal limit
L → ∞. By contrast, the leading-order correction due to
the gravitational wave is scaled as Oðð1=ωÞ0Þ as shown in
(6.6), which survives the formal limit ω → 0, i.e., as the
gravitational wavelength goes to infinity. In both cases, the

transition rates are different from the ordinary result in the
Minkowski spacetime, essentially because the mode expan-
sion of the quantum field ϕ is altered in the presence of the
compact dimension or the gravitational wave. However, the
gravitational wave effect is more involved and cannot be
explained out simply by saying that the gravitational wave
imposes a large length scale of the wavelength 1=ω as well
as the compact dimension does of the finite length L.
It is rather surprising that a detector that apparently has

no spatial extent can sense the presence of a gravitational
wave, as sensing tidal force requires a certain spatial extent.
One might try to argue that the Unruh-DeWitt detector has
an intrinsic energy scale ΔE and therefore, according to the
energy-time uncertainty principle, exhibits a temporal scale
∼1=ΔE, which in turn gives rise to a spatial scale ∼v=ΔE,
where v < 1 is the velocity of the detector. However, even
if the detector has a finite extent δl (and even if δl is much
larger than ∼1=ΔE for whatever reason),14 the tidal force
produced by a gravitational wave over a spatial separation
of δl is proportional to ðδlÞḧþ=× ∼Aþ=×ω

2δl, which
vanishes in the limit ω → 0. Since the correction in (6.6)
survives the formal limit ω → 0, this gravitational wave
effect on a quantum system is qualitatively different from
that on a classical mechanical system, and cannot be
understood in terms of gravitational wave tidal force.
This is a genuine quantum effect that has no classical
analogue.

B. Short-wavelength limit

The solution to the geodesic equation in a gravitational
wave background is given by (A7), which in general is very
complicated. The solution takes a simple form in the long-
wavelength limit as given by (A17), but it remains
complicated under the short-wavelength condition (5.6).
Therefore, even though the Wightman function in the

limit ω → ∞ as given in (5.19) apparently is identical to the
ordinaryWightman function in the Minkowski spacetime, a
free-falling Unruh-DeWitt detector in a gravitational wave
background in general is not in equilibrium with ϕ,
contrary to that in the Minkowski spacetime.
However, we do have a special geodesic solution given

by (A16), which is simple and corresponds to a free-falling
trajectory moving in the propagation direction of the
gravitational wave, i.e.,

xμðτÞ ¼ ðutτ; 0; 0; uzτÞ þ xμ0: ð6:12Þ

Substituting this trajectory into Dþ
swðx; x0Þ in (5.19), we see

that Dþ
swðτ; τ0Þ depends only on Δτ≡ τ − τ0. Therefore, the

Unruh-DeWitt detector that freely falls along the trajectory
(6.12) is in equilibrium with ϕ in the short-wavelength limit
ω → ∞. Since Dþ

swðx; x0Þ is formally the same as the

14In fact, particle detectors with finite spatial extent have been
discussed in the literature [26].

BO-HUNG CHEN and DAH-WEI CHIOU PHYS. REV. D 105, 024053 (2022)

024053-12



ordinary Wightman function in the Minkowski spacetime,
the transition rate _FðΔÞ along (6.12) is the same as the
ordinary result in the Minkowski spacetime, signaling no
presence of the gravitational wave at all. This can be
understood intuitively: since the oscillation of the gravita-
tional wave is much faster than the detector’s response time
∼1=ΔE for the two-level transition, the detector has no time
to respond to the driving oscillation (provided that the
gravitational wave is weak enough so that the linearized
theory is legitimate).

VII. CONSTANT-ACCELERATING
TRAJECTORY

In this section, we study the response of an Unruh-
DeWitt detector that moves with a constant acceleration
1=α in the z direction. The trajectory is given by

t ¼ α sinh
τ

α
þ t0; x ¼ y ¼ const; z ¼ α cosh

τ

α
þ z0;

ð7:1Þ

where t0 and z0 are displacement parameters.

A. Long-wavelength limit

In the long-wavelength limit, substituting (7.1) into
Dþ

lwðx; x0Þ in (5.16), we have15

Dþ
lwðΔτÞ ¼ −

α2

16π2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −A2
p 1

sinh2 ðΔτ
2α −

iϵ
2αÞ

¼ −
1

4π2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −A2
p

X∞
k¼−∞

1

ðΔτ − iϵþ 2πikαÞ2 ;

ð7:2Þ

where we have applied the identity

csc2 πx ¼ 1

π2
X∞
k¼−∞

1

ðx − kÞ2 : ð7:3Þ

As Dþ
lwðτ; τ0Þ depends only on Δτ≡ τ − τ0, the Unruh-

DeWitt detector is in equilibrium with ϕ.
Substituting (7.2) into (2.11) and performing the contour

integral, we obtain the transition rate

_FðΔEÞ ¼ ΔE
2π

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −A2

p 1

e2πΔEα − 1
; ð7:4Þ

for both ΔE > 0 and ΔE < 0. Except for the overall
proportional factor ð1 −A2Þ−1=2, this result is exactly the
same as the ordinary result of a constant-accelerating

Unruh-DeWitt detector moving in the Minkowski space-
time given by16

_FðΔEÞ ¼ ΔE
2π

1

e2πΔEα − 1
: ð7:5Þ

The overall proportional factor is in perfect agreement with
the free-falling case with ux ¼ uy ¼ 0 as shown in (6.8).
It is again instructive to compare (7.4) with the case in

flat spacetime with a compact dimension. In a flat space-
time where one spatial dimension perpendicular to the z
direction is compactified with a finite length L, the
transition rate of the Unruh-DeWitt detector moving along
(7.1) is given by (see [8])

_FLðΔEÞ ¼
ΔE
2π

1

e2πΔEα − 1

− Θð−ΔEÞ
X∞
n¼1

sin ð2αΔEsinh−1 nL
2αÞ

nπL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðnL

2αÞ2
q : ð7:6Þ

The correction due to the compact length L in (7.6) is
scaled as OðL−1Þ, which vanishes in the formal limit
L → ∞. By contrast, the leading-order correction due to
the gravitational wave is scaled as Oðð1=ωÞ0Þ as shown in
(7.4), which survives the formal limit ω → 0.
Just as we have commented for the case of a free-falling

detector, the gravitational wave effect on a constant-accel-
erating Unruh-DeWitt detector is a genuine quantum effect
that cannot be understood in terms of gravitational wave
tidal force.

B. Short-wavelength limit

In the short-wavelength limit, substituting the constant-
accelerating trajectory (7.1) into Dþ

swðx; x0Þ in (5.19) yields
the same result in the Minkowski spacetime. Consequently,
in the short-wavelength limit ω → ∞, the detector moving
along (7.1) is in equilibrium with ϕ, and the transition rate
is the same as the ordinary result in the Minkowski
spacetime.

15The derivation involves some details, which can be found in
Appendix C of [8].

16It is often said that the transition rate (7.5) for a constant-
accelerating detector moving in the Minkowski spacetime cor-
responds to the transition rate for a detector lying at rest in a
thermal bath of particles of ϕ at the Unruh temperature
T ¼ ð2πkBαÞ−1. This is common confusion, and it is only a
coincidence solely for the case of m ¼ 0 and ΔE > 0 that the
transition rate of the former happens to be identical to that of the
latter (see Sec. 3.A.4 of [22] for a detailed clarification for this
confusion). In fact, as discussed in Sec. II (and more in
Appendix A of [8]), the temperature of a detector, including
the Unruh temperature (2.13), is a notion of detailed balance
between a transition process and its reverse process via (2.12),
whereas the transition rate per se does not makes any sense of
temperature.
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Again, this can be understood intuitively: the gravita-
tional oscillates so fast that the detector has no time to
respond to it.

VIII. SUMMARY AND REMARKS

Applying the techniques of light-front quantization used
in the literature of QCD, we have successfully quantized
the real scalar field ϕðxÞ in a monochromatic gravitational
wave background, obtaining the formulae (4.10) and
(4.16). This enables us to compute the corresponding
Wightman function Dþðx; x0Þ as given by (5.1), which is
greatly simplified in the long-wavelength limit ω → 0 and
the short-wavelength limit ω → ∞, as given by (5.16) and
(5.19), respectively.
With the Wightman function at hand, we then investigate

the response of the Unruh-DeWitt detector in a gravita-
tional wave background for the two cases of a free-falling
trajectory and a constant-accelerating trajectory moving in
the propagation direction of the gravitational wave.
In the long-wavelength limit ω → 0, the equilibrium

transition rate of the detector moving along a free-falling
trajectory (6.1) is given by (6.6), and that along a constant-
accelerating trajectory (7.1) is given by (7.4). These results
are different from their corresponding counterparts (6.7)
and (7.5), respectively, in flat spacetime (without any
gravitational wave) by an overall proportional factor, which
depends on the amplitude of the gravitational wave but not
the gravitational wave wavelength 1=ω. That is, in both
cases, the leading-order correction due to the gravitational
wave is of OððωΔÞ0Þ, which survives the formal limit
ω → 0 as long as the gravitational wave amplitude
remains finite. This suggests that the gravitational wave
effect on the Unruh-DeWitt detector is more involved than
merely imposing a large length scale of the wavelength as
well as the presence of spatial boundaries does of the
length scale delimited by the boundaries (see [8,9]).
Furthermore, even if we suppose that the Unruh-DeWitt
detector has a finite spatial extent, this effect is qualitatively
different from that on a classical mechanical system and
cannot be explained out in terms of gravitational wave tidal
force. This is a genuine quantum effect that has no classical
analogue.
On the other hand, in the short-wavelength limit ω → ∞,

the Unruh-DeWitt detector following a free-falling trajec-
tory in a gravitational wave background is not in equilib-
rium with the field ϕ in general, except for the free-falling
trajectory moving in the propagation direction of the
gravitational wave as given by (6.12). The equilibrium
transition rate along (6.12) is the same as the ordinary result
in flat spacetime, showing no response to the gravitational
wave. Furthermore, along a constant-accelerating trajectory
given by (7.1), the equilibrium transition rate is again the
same as the ordinary result in flat spacetime. The fact that
the Unruh-DeWitt detector in equilibrium with ϕ does not
respond to the gravitational wave background in the limit

ω → ∞ can be understood intuitively: the gravitational
wave oscillates so fast that the detector has no time to
respond to the driving oscillation within the timescale
∼1=ΔE for the two-level transition.
The results of our study also raise some open questions.

We have demonstrated that the transition rate of an Unruh-
DeWitt detector can be affected by the presence of a
gravitational wave. It is unclear whether the gravitational
wave is involved with energy transfer for the transition
process (2.2) as it is for the response of a classical
mechanical system, or perhaps it merely acts as a “catalyst,”
which increases the transition efficiency but does not
deposit or withdraw any net energy. Neither does our
study investigate the aspect of detailed balance. It is
uncertain whether detailed balance can be established in
some particular settings in a gravitational wave back-
ground. If detailed balance can be established after all, it
is important to know whether the temperature of detailed
balance is shifted by the gravitational wave background and
whether the temperature shift can be understood in terms of
energy transfer from the gravitational wave. Furthermore, it
was recently shown that the concurrence of transition
probability of a pair of free-falling Unruh-DeWitt detectors,
which serves as a probe of vacuum entanglement, responds
to the presence of a gravitational wave and exhibits certain
resonance effects [27]. As our study considers arbitrary
gravitational wave polarization and more general trajecto-
ries, including both free-falling and constant-accelerating
ones, our results may help to investigate the interplay
between vacuum entanglement and gravitational waves in
broader settings.
The analysis in this paper is performed entirely in the

framework of quantum field theory in curved spacetime.
The scalar field ϕ is quantized in the gravitational wave
background, and the Unruh-DeWitt detector is modeled as
a quantum system coupled to ϕ. The gravitational field, on
the other hand, is treated completely as a classical back-
ground and not quantized at all. Although the gravitational
wave effect on the Unruh-DeWitt detector is a quantum
effect with no classical analogue, it is not a consequence of
quantum gravity. Nevertheless, it is an intriguing open
question whether the effect we found here can be under-
stood in terms of a quantum detector coupled to both
particles of ϕ and gravitons (quantized particles of the
degrees of freedom of gravitational waves). This question
might also be related to the aforementioned issue of energy
transfer from the gravitational wave.
Finally, while it is conceptually important to understand

the effects of a gravitational wave on a quantum system,
it should be remarked that our investigation on the
Unruh-DeWitt in response to a gravitational wave is mainly
for theoretical concerns. Experimentally, measuring the
response of the Unruh-DeWitt detector is extremely
challenging, if not completely out of reach of current
technology. In the case of a constant-accelerating trajectory,
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an experimentally reachable value for the acceleration 1=α
is extremely small compared to jΔEj (i.e., jΔEjα ≫ 1) for a
typical two-level quantum system of which one can reliably
measure the transition rate. This renders the transition rate
given by (7.4) experimentally indistinguishable from the
result of a free-falling trajectory as given by (6.6). With
regard to the transition rate (6.6) of a free-falling trajectory,
its response to the gravitational wave seems to be meas-
urable for ΔE < 0, provided that the amplitude of the
gravitational wave is strong enough. However, as the
transition rate, in principle, has to be measured by a large
ensemble of identical Unruh-DeWitt detectors (see Sec. II
and Appendix A of [8] for more discussions), the inter-
actions between detectors of the ensemble and between the
system and its surroundings will inevitably introduce
noises that will spoil the signal in response to a gravita-
tional wave that is extremely weak when arriving on earth.
Nevertheless, as the techniques of quantummeasurement

advance drastically in recent years, it might be possible to
overcome the noise problem and eventually use an Unruh-
DeWitt-type quantum system as a gravitational wave
detector in the near future. Compared to resonance mass
detectors and interferometric gravitational wave detectors,
a quantum detector is expected to be sensitive to gravita-
tional waves of much higher frequencies, since the char-
acteristic timescale of a quantum system is typically much
shorter than that of a resonance mass detector or an
interferometric gravitational detector. Furthermore, an
Unruh-DeWitt-type detector may also have a quite wide
bandwidth of sensitivity, because, as indicated by (6.6), the
leading-order correction is insensitive to ω in the long-
wavelength limit. In order for the Unruh-DeWitt-type
detector to be used as a gravitational wave detector, for
the theoretical aspect, one will have to perform a detailed
numerical analysis to know how exactly it responds to any
arbitrary wavelength 1=ω, not only the results obtained in
this paper for the long-wavelength and short-wavelength
extremes.
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APPENDIX: GEODESIC EQUATION IN A
GRAVITATIONAL WAVE BACKGROUND

In this appendix, we solve the geodesic equation in a
monochromatic gravitational wave background of an arbi-
trary elliptical polarization (linear and circular polarizations
are special cases).

In the light-front coordinates ðu; v; x; yÞ, the metric of a
monochromatic gravitational background wave propagat-
ing in the z direction is given by

gμν ¼

0
BBB@

0 −1 0 0

−1 0 0 0

0 0 1þ hþðuÞ h×ðuÞ
0 0 h×ðuÞ 1 − hþðuÞ

1
CCCA; ðA1Þ

where hþ=×ðuÞ ≔ Aþ=× cosðωuþ θþ=×Þ in accord with
(3.8). The lower-indexed Christoffel connection is defined
as

Γμνα ≔ gαβΓ
β
μν ≈

1

2
ðhαν;μ þ hμα;ν − hμν;αÞ: ðA2Þ

In the coordinates ðu; v; x; yÞ, the components of Γμνα are
given by

Γxxu ¼ −Γxux ¼ −Γyyu ¼ Γyuy ¼
−h0þðuÞ

2

¼ Aþω
2

sinðωuþ θþÞ; ðA3aÞ

Γxyu ¼ −Γxuy ¼ −Γyux ¼
−h0×ðuÞ

2
¼ A×ω

2
sinðωuþ θ×Þ;

ðA3bÞ

where h0þ=× ≔ ∂uhþ=×, and all the other components
vanish. These lead to

Γv
xx ¼ −Γv

yy ¼ Γx
ux ¼ −Γy

uy ¼ h0þ
2
; ðA4aÞ

Γv
xy ¼ Γy

ux ¼ Γx
uy ¼

h0×
2
: ðA4bÞ

Consequently, the geodesic equation is given by

dUu

dτ
¼ 0; ðA5aÞ

dUv

dτ
¼ −Γv

xxUxUx − Γv
yyUyUy

¼ h0þ
2
ðUyUy − UxUxÞ − h0×UxUy; ðA5bÞ

dUx

dτ
¼ −2Γx

uxUuUx − 2Γx
uyUuUy

¼ −ðh0þUx − h0×UyÞUu; ðA5cÞ

dUy

dτ
¼ −2Γy

uyUuUy − 2Γy
uxUuUx

¼ ðh0þUy − h0×UxÞUu; ðA5dÞ
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whereUμ is the four-velocity and is subject to the constraint

gμνUμUν ¼ −1: ðA6Þ

The solution of the differential equation (A5) is given by

Uu ¼ constant; ðA7aÞ

Uv ¼ c3 þ
Z

du
Uu

�
h0þ
2
ðUyUy − UxUxÞ − h0×UxUy

�
;

ðA7bÞ
�
Ux

Uy

�
¼ c1a1ðuÞeλðuÞ þ c2a2ðuÞe−λðuÞ; ðA7cÞ

where

u ¼ Uuτ; ðA8Þ

and where the function λðuÞ is

λðuÞ ¼
Z

duλ0 ¼
Z

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h02þ þ h02×

q
ðA9Þ

¼ ω

Z
du

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2þ sin2ðωuþ θþÞ2 þ A2

× sin2ðωuþ θ×Þ
q

;

ðA10Þ

the doublets a1ðuÞ, a2ðuÞ are solutions to

�−h0þ ∓ λ0 −h0×
−h0× h0þ ∓ λ0

�
a1;2 ¼ 0; ðA11Þ

and c1, c2, and c3 are constants to be determined by the
initial condition.
Particularly, in the case of a linear polarization in the þ

mode, by setting A× ¼ 0 we have the closed-form solution
given by

Uu ¼ constant; ðA12Þ

Ux ¼ c1e−Aþ cosðωuÞ; ðA13Þ

Uy ¼ c2eAþ cosðωuÞ; ðA14Þ

Uv ¼ −Aþω
2

Z
du
Uu sinðωuÞðc22e2Aþ cosðωuÞ − c21e

−2Aþ cosðωuÞÞ

¼ c3 þ
1

4Uu ðc21e−2Aþ cosðωuÞ þ c22e
2Aþ cosðωuÞÞ: ðA15Þ

The closed-from solution for the × mode is similar.
The general solution (A7) admits a simple solution in the

case of c1 ¼ c2 ¼ 0. Taking c1 ¼ c2 ¼ 0 corresponds to
Ux ¼ Uy ¼ 0. Consequently, the integrand in (A7b) is
zero, and thus Uv is a constant of motion as well as Uu. In
the coordinates ðt; x; y; zÞ, we then have

Uμ ¼ ðut; 0; 0; uzÞ; ðA16Þ

where ut and ut are constants subject to (A6). That is, if a
free-falling point object moves in the z direction, its
geodesic trajectory looks as if the gravitational wave were
absent. This is anticipated, as the geodesic deviation
induced by the gravitational wave is only in the transverse
(i.e., x and y) directions.
In the long-wavelength limit ω → 0, we have

h0 ¼ −ω sinðωuþ θþ=×Þ → 0, and thus dependence on u
becomes negligible in (A7). Consequently,Uu,Uv,Ux, and
Uy are all constants of motion. In the coordinates ðt; x; y; zÞ,
we then have

Uμ ¼ ðut; ux; uy; uzÞ; ðA17Þ

where ut, ux, uy, and uz are all constants subject to (A6). In
the limit ω → 0, the metric (A1) in the coordinates
ðt; x; y; zÞ takes the form

gμν →
ω→0

0
BBB@

−1 0 0 0

0 1 0 0

0 0 1þAþ A×

0 0 A× 1 −Aþ

1
CCCA; ðA18Þ

where Aþ=× are defined in (5.5). The condition (A6) then
reads as

1þ ðuxÞ2 þ ðuyÞ2 þAþððuxÞ2 − ðuyÞ2Þ
þ 2A×uxuy ¼ ðutÞ2 − ðuzÞ2: ðA19Þ
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