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We study conserved charges and thermodynamics of analytic rotating anti–de Sitter black holes with
extended horizon topology—also known as black strings—in dynamical Chern-Simons modified gravity.
The solution is supported by a scalar field with an axionic profile that depends linearly on the coordinate
that spans the string. We compute conserved charges by making use of the renormalized boundary stress-
energy tensor. Then, by adopting the Noether-Wald formalism, we compute the black string entropy and
obtain its area law. Indeed, the reduced Euclidean Hamiltonian approach shows that these methods yield a
consistent first law of thermodynamics. Additionally, we derive a Smarr formula using a radial
conservation law associated to the scale invariance of the reduced action and obtain a Cardy formula
for the black string. A first-order phase transition takes place at a critical temperature between the ground
state and the black string, above which the black string is the thermodynamically favored configuration.
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I. INTRODUCTION

Chern-Simons modified gravity (CSMG) is a well-
known scalar-tensor theory in four dimensions that was
first proposed in Ref. [1]. It is motivated by anomaly
cancellation in curved spacetimes, particle physics, and by
the low-energy limit of string theory (for a review see [2]).
The theory is endowed with a nonminimal coupling
between a scalar field and the Chern-Pontryagin density.
Quite notably, this interaction captures parity-violating
features in the strong gravity regime. Moreover, under
certain conditions (see Ref. [3]) its equations of motion
effectively reduce to those of topologically massive gravity
[4,5]—a 3D gravity theory constructed from a Chern-
Simons form. This theory does not belong to the Horndeski
family of theories [6], since the Chern-Simons coupling
generates higher-order field equations. Thus, in order to
avoid drawbacks with the Cauchy initial-value problem, it

should be considered as an effective theory arising from the
UV completion of general relativity (GR) [7].
Different physical consequences of this theory have been

explored since its conception. For instance, the Chern-
Simons coupling yields a nontrivial contribution to the
post-Newtonian parameter related to frame dragging and
gyroscopic precession [8]; observables that could be tested in
the near future [9]. When the scalar field is nondynamical and
invariant under SOð3Þ, all static and spherically symmetric
solutions of GR remain solutions of CSMG since the
Pontryagin density vanishes identically; this is not true for
axially symmetric configurations, where only slowly rotating
and numerical black hole solutions with and without
Newman-Tamburino-Unti (NUT) charge are known [9–16].
Shadows of the latter were analyzed in [17] by integrating
null geodesics, showing how the Chern-Simons coupling
modifies the shape of the shadow. Perturbations and quasi-
normal modes around Schwarzschild and slowly rotating
black holes have been recently attracted a lot of interest and
they have been studied in Refs. [18–22]. On the other hand,
CSMG is the only parity-violating extension of GR com-
patible with luminal propagation of gravitational waves [23].
However, the nonminimal coupling does affect the polari-
zation of the latter, producing an amplitude birefringence in
their propagation [24]. Regarding holographic applications,
the scalar-Chern-Simons coupling generates spontaneous
angular momentum on the conformal field at the boundary,
even for static configurations in the bulk [25]. Moreover, this
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theory provides a simple model to study Hall viscocity of
holographic fluids; the latter depending only on near-horizon
information of the background [26,27].
Recently, analytic rotating solutions were found in CSMG

by relaxing the symmetry assumptions on the scalar field
[28] (see for instance Refs. [11,29,30]). These solutions
represent rotating black holes with an extended horizon.
They correspond to the uplift of the Bañados-Teitelboim-
Zanelli (BTZ) black hole [31,32] to four dimensions
supported by scalar fields with axionic profile: a homo-
geneous BTZ black string. Black strings are related to line
mass gravitational sources in the sameway black holes relate
to point mass sources. Homogeneous black strings are
product spaces, i.e., a black hole times a one-dimensional
space. In this work, we strictly consider homogeneous black
strings, in particular those which have locally AdS3 × R
asymptotics (see [33] for the flat case). These spaces bear
some resemblance with Nariai and Bertotti-Robinson space-
times [34–36] and solutions in flux compactification of
string theory [37]. Indeed, the Chern-Simons modification to
GR yields a highly nontrivial contribution to the field
equations in presence of rotation, rendering this class of
solution scarce. Moreover, when metric and connection are
treated as independent variables in the tetrad formulation,
BTZ black strings with nontrivial torsion were found in [28].
Thus, these are valuable configurations for the study of
conserved charges and thermodynamics of rotating objects
in CSMG, as we do here.
Generically, black strings are higher-dimensional asymp-

totically flat vacuum solutions with extended topology of
their horizon that represent interesting counterexamples to
topological censorship [38] and to uniqueness theorems in
higher-dimensional GR [39–41]. They are also known in
the presence of nonlinear matter content and in theories
beyond GR (for an incomplete list of developments, see
[28,42–53]). Nevertheless, it is well known that these
solutions usually suffer from the Gregory-Laflamme insta-
bility: a long-wavelength linear instability driven by an
unstable mode traveling along the extended direction
[33,54,55]. In fact, numerical evolution suggests that this
instability remains at the nonlinear regime [56,57], as well
as perturbatively in Lovelock theory [58,59]. On the other
hand, constructing homogeneous black strings in GRwith a
nonvanishing cosmological constant is a nontrivial task due
to the dynamics. However, this issue can be circumvented
by introducing scalar fields with an axionic profile, i.e.,
with a linear dependence on the extended flat coordinates
[28,30,45]. Interestingly enough, this approach allows one
to find black strings in four dimensions, despite the fact that
these solutions were first believed to be strictly higher-
dimensional objects. Additionally, there exists evidence
that axionic fields might stabilize the Gregory-Laflame
instability at the perturbative level in four dimensions and
they could play an important role in the final state of black
strings with axionic charge [60]; something that it is not

guaranteed in higher dimensions [61,62]. Nevertheless, a
complete proof of stabilization of axionic black strings in
four dimensions at the full nonlinear level is still lacking.
In this work, we study conserved charges and thermo-

dynamics of black strings in dynamical Chern-Simons
modified gravity sourced by a scalar field with axionic
profile. To this end, we first compute conserved charges
using the renormalized boundary stress-energy tensor. This
allows us to obtain the mass and angular momentum of the
solution. Then, we compute the black string entropy via the
Noether-Wald formalism and obtain the corresponding area
law. Moreover, we carry out the Hamiltonian approach and
show explicitly that the conserved charges and the black
string entropy satisfy the first law of thermodynamics. The
Euclidean on shell action is computed by adding to it
standard boundary terms that render its value finite while
defining a well-posed variational principle. To lowest order
in the saddle-point approximation, we obtain the free
energy, mass, entropy, and angular momentum of the
solution, and show that the first law of thermodynamics
is satisfied. We also obtain a consistent Smarr formula
following the approach of Ref. [63]. Additionally, we find
the ground state and a non-Einstein product space that
belong to the space of solutions. We compute the mass of
the former through standard Euclidean methods and, as it
might be expected, they turn out to be negative, similar to
the hairy solitons found in Refs. [64–68]. Remarkably, by
analyzing global thermodynamic stability, we find that the
black string can develop a phase transition below a critical
temperature. Critical phenomena of black objects has
become an active area of research since the seminal works
of Hawking-Page [69] and it has been extensively studied
until today. Just to mention the well-known cases in the
literature, in the four-dimensional canonical approach,
i.e., with a fixed cosmological constant, phase transitions
of Reissner-Nördstrom-anti–de Sitter (AdS) and Kerr-
Newman-AdS have been analyzed. In the former, the black
hole free energy exhibits a “cusp” behavior respect to the
temperature, which means that there are two branches of
black holes, large and small ones [70]. In the latter, phase
transitions between the large and small black holes can
disappear for sufficiently large electric charge or angular
momentum [71]. From a qualitative perspective, the kind of
phase transitions that the black string configuration suffers
at a critical temperature, resembles the three-dimensional
case, where the critical temperature at which thermal AdS
collapse to the BTZ black hole, is parametrized by the AdS
radius. There is only one branch of BTZ black holes. In our
black string, this behavior is similar, but the critical
temperature is determined by the axionic charge.
The article is organized as follows. In Sec. II we review

Chern-Simons modified gravity as well as the rotating
black string solutions with nontrivial scalar field obtained
in Ref. [28]. In Sec. III we compute the asymptotic charges
through the renormalized boundary stress-energy tensors.
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Then, in Sec. IV we compute the black string entropy and
the renormalized Euclidean on shell action to obtain the
relevant thermodynamic quantities. We derive the Smarr
formula for these extended solutions in Sec. IV C.
Section V is devoted to presenting the ground state and
a new non-Einstein conformally flat product space as
solutions to CSMG. Both are supported by scalar fields
with linear dependence on the flat and time coordinate,
respectively. We show explicitly that the mass of the ground
state is negative and the non-Einstein conformally flat
product space is topologically R × S3. In Sec. VI we show
that, below a certain critical temperature, the ground state is
thermodynamically favored over the black string, devel-
oping a first order Hawking-Page phase transition. Finally,
in Sec. VII we present our conclusions and further remarks.

II. ROTATING BLACK STRINGS IN
CHERN-SIMONS MODIFIED GRAVITY

Let us review the black string solutions found in
Ref. [28], as they are the main subject of this work. The
theory under consideration is given by the Einstein-Hilbert
action modified by the nonminimal coupling between the
Chern-Pontryagin density and a dynamical scalar field.
This is to say, we focus on the action principle

I ¼ Ibulk þ IGHY þ Ict; ð1Þ

where

Ibulk ¼
1

2κ

Z
V
d4x

ffiffiffiffiffiffi
−g

p �
R − 2Λþ αϕ

4
�RR − κgμν∇μϕ∇νϕ

�

≡
Z
V
d4x

ffiffiffiffiffiffi
−g

p
Lbulk; ð2Þ

IGHY ¼ 1

κ

Z
∂V

d3x
ffiffiffiffiffiffi
−h

p �
K þ αϕ

2
nμϵμνλρKν

σ∇λKρσ

�

≡
Z
∂V

d3x
ffiffiffiffiffiffi
−h

p
LGHY; ð3Þ

Ict ¼
Z
∂V

d3x
ffiffiffiffiffiffi
−h

p
ðζ1 þ ζ2Rþ ζ3hμν∇μϕ∇νϕþ � � �Þ

≡
Z
∂V

d3x
ffiffiffiffiffiffi
−h

p
Lct: ð4Þ

Here, the gravitational constant is defined as κ ¼ 8πGN ,
with GN being Newton’s constant. The nonminimal cou-
pling is measured by the dimensionful parameter α and the
Chern-Pontryagin density is defined as

�RR≡ 1

2
ϵλρστRμ

νλρRν
μστ

¼ 2∇μ

�
ϵμναβΓσ

νλ

�
∂αΓλ

βσ þ
2

3
Γλ
αγΓ

γ
βσ

��
; ð5Þ

with ϵμνλρ being the Levi-civita tensor. The induced metric
on the boundary ∂V is given by hμν ¼ gμν − nμnν, where nμ

is a spacelike normal unit vector, and h ¼ det hμν is the
determinant of the induced metric. Moreover, Kμν ¼
hρμhλν∇ρnλ denotes the extrinsic curvature with K being
its trace. The first boundary term, IGHY, defines a well-
posed variational principle with Dirichlet boundary con-
ditions [72]. It is composed by the standard Gibbons-
Hawking-York term [73,74] and an additional piece that
involves the nonminimal coupling between the scalar field
and the Chern-Simons form for the extrinsic curvature at
the boundary [72]. The second boundary term, Ict, guar-
antees that the on shell action remains finite in spacetimes
with AdS asymptotics, provided a particular choice of
the ζ-couplings [75,76]1; in this case, Rμν

λρ is the intrinsic
curvature of the boundary, Rμν ¼ Rλ

μλν, and R ¼ hμνRμν.
Notice that the ζ couplings have different length units,
namely ½ζ1� ¼ L−3, ½ζ2� ¼ L−2, and ½ζ3� ¼ L. Hence, the
term Ict is constructed solely from intrinsic quantities in the
boundary, unaffecting the bulk dynamics.
The field equations are obtained by performing varia-

tions of the action (1) with respect to the metric and scalar
field, giving

Eμν ≡ Rμν −
1

2
gμνRþ Λgμν þ αCμν − κTμν ¼ 0; ð6aÞ

E ≡□ϕþ α

8κ
�RR ¼ 0; ð6bÞ

respectively. We use the notation □ ¼ gμν∇μ∇ν and

Tμν ¼ ∇μϕ∇νϕ −
1

2
gμν∇λϕ∇λϕ; ð7Þ

Cμν ¼ ∇ρϕϵ
ρσλðμ∇λRνÞ

σ þ∇ρ∇σϕ
�RσðμνÞρ; ð8Þ

with �Rμ
ν
λρ ¼ 1

2
ϵλρστRμ

νστ. The tensor Cμν is traceless and it
satisfies the property [1,2]

∇μCμν ¼ −
1

8
�RR∇νϕ: ð9Þ

We dub Cμν as the C tensor from hereon. Notice that its
contribution to the Einstein field equations involves covar-
iant derivatives of the Riemann tensor, yielding third order
equations for the metric. Thus, in order to avoid issues
with the initial value formulation, Chern-Simons modified
gravity should be considered as an effective field theory
coming from their ultraviolet completion [7].

1In GR, the renormalization prescription used here is equiv-
alent to the Kounterterms proposed in Ref. [77] and to early
proposals in [78–80] when the Weyl tensor vanishes at the AdS
boundary (see Ref. [81]).
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As shown in Ref. [28], the field equations can be solved
by assuming the following Ansätze for the line element and
scalar field

ds2 ¼ −N2ðrÞfðrÞdt2 þ dr2

fðrÞ þ r2ðNφðrÞdtþ dφÞ2 þ dz2;

ϕ ¼ ϕðzÞ; ð10Þ

respectively. Under this assumption, the Pontryagin density
vanishes identically. This is a consequence of the isometry
group used in Eq. (10) rather than an imposition to simplify

the field equations. Then, the Klein-Gordon equation is
directly solved by

ϕ ¼ ϕ0 þ λz; ð11Þ
where λ is an integration constant usually referred to as the
axionic charge. Additionally, the shift symmetry in field
space, i.e., ϕ → ϕ − ϕ0, allows one to set ϕ0 ¼ 0 without a
loss of generality.
When NðrÞ ¼ 1,2 and assuming that the solution of the

scalar field in Eq. (11) holds, the components of the field
equations for the metric, namely gμρEρν ¼ Eμ

ν ¼ 0, become

Et
t ¼ 2r3Nφ00

Nφ þ r3ðNφ0 Þ2 þ 2rκλ2 þ 6r2Nφ0
Nφ þ 4rΛþ 2f0

þ λα½6r4Nφ00
Nφ0

Nφ þ 2r4ðNφ0 Þ3 þ 12r3ðNφ0 Þ2Nφ þ 2r2Nφ000
f − r2f000Nφ

þ r2Nφ00
f0 − r2f00Nφ0 þ 10rNφ00

f þ 4rNφ0
f0 þ 6Nφ0

f� ¼ 0; ð12Þ

Er
r ¼ r3ðNφ0 Þ2 þ 2rκλ2 þ 4rΛþ 2f0 þ λα½2r4ðNφ0 Þ3 þ r2Nφ00

f0 − r2f00Nφ0 − 2rNφ00
f þ 4rNφ0

f0 − 6Nφ0
f� ¼ 0; ð13Þ

Eφ
φ ¼ 2r3Nφ00

Nφ þ 3r3ðNφ0 Þ2 − 2rκλ2 þ 6r2Nφ0
Nφ − 4rΛ − 2rf00

þ λα½6r4Nφ00
Nφ0

Nφ þ 4r4ðNφ0 Þ3 þ 12r3ðNφ0 Þ2Nφ þ 2r2Nφ000
f

− r2f000Nφ þ 2r2Nφ00
f0 − 2r2f00Nφ0 þ 8rNφ00

f þ 8rNφ0
f0� ¼ 0; ð14Þ

Et
φ ¼ 2r3Nφ00 þ 6r2Nφ0 þ λα½6r4Nφ00

Nφ0 þ 12r3ðNφ0 Þ2 − r2f000� ¼ 0; ð15Þ

Ez
z ¼ −r3ðNφ0 Þ2 − 2rκλ2 þ 4Λrþ 2rf00 þ 4f0 ¼ 0; ð16Þ

where a prime denotes differentiation with respect to the
radial coordinate r. Additionally, since the trace of the C
tensor vanishes, we have

gμνEμν ¼ −r3ðNφ0 Þ2 þ 2rκλ2 þ 8Λrþ 2rf00 þ 4f0 ¼ 0:

ð17Þ

The equation Ez
z − gμνEμν ¼ 0 implies immediately that the

integration constant associated to the scalar field is fixed in
terms of the cosmological constant through λ2 ¼ −Λ=κ.
Thus, in order for the scalar field to be real, the condition
Λ < 0 must be met in order to avoid problems with
unitarity. Additionally, the equation

Et
t−Er

r−NφEt
φ¼2λαf½r2Nφ000 þ6rNφ00 þ6Nφ0 �¼0 ð18Þ

implies that, for λα ≠ 0, the metric function NφðrÞ can be
integrated as

NφðrÞ ¼ j0 þ
j1
r
þ j
2r2

: ð19Þ

Indeed, the condition λα ≠ 0 shows that the rotating
solution is supported only if the axionic charge or

Chern-Simons coupling α are nonvanishing. It is worth
mentioning that, in general relativity, the asymptotically
(A)dS cylindrical black hole of Ref. [82] does not require
any scalar field. This is related to its horizon’s topology, T2; in
such a case, the equations of motion do not impose any
constraints on the cosmological constant whatsoever. Never-
theless, the topology of the homogeneous black string’s
horizon studied here, S1 ×R, requires the existence of a
nontrivial scalar fieldϕ ¼ λz alongside the condition λα ≠ 0,
due to the presence of the scalar-Chern-Simons coupling.
Replacing Eq. (19) into the remaining components of the

field equations, one finds that j1 ¼ 0 and the metric
function fðrÞ is found to be

fðrÞ ¼ −mþ r2

l2
þ j2

4r2
with l−2 ¼ −

Λ
2
: ð20Þ

The line element (10), alongside the metric functions (19)
and (20) (j1 ¼ 0), illustrates the rotating black string found
in Ref. [28]. It corresponds to the uplifting of the BTZ
black hole [31,32] with a nontrivial scalar field into
Chern-Simons modified gravity. It is locally equivalent
to AdS3 ×R, cf. [83]. Its horizons are determined by the
condition fðr�Þ ¼ 0 and are located at
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r� ¼ l

"
m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − j2=l2

p
2

#
1=2

: ð21Þ

Thus, for their existence, the condition m2 − j2=l2 ≥ 0
must be met. The extremal case is obtained when the latter
bound is saturated. As in the BTZ black hole, all curvature
invariants are constant and depend solely on the AdS
radius. However, identifications of points of AdS spacetime
by a discrete subgroup of SOð2; 2Þ yields a singularity in
the causal structure where closed timelike curves arise [32].
The same type of singularity appears in the BTZ black
string above. Finally, notice that the AdS radius is neither
l−2 ¼ −Λ nor l−2 ¼ −Λ=3, as in dimensions D ¼ 3 and
D ¼ 4, respectively. This is due to the presence of axionic
fields that generate an effective cosmological constant.

III. CONSERVED CHARGES

Identifying the conserved charges of a gravitational
configuration is an important issue in standard gravity.
In extensions to it, the issue becomes even more cumber-
some. There have been many techniques developed for this
purpose, each approach has its benefits and drawbacks. In
Chern-Simons modified gravity, conserved charges have
been studied in the context of background Killing vector
symmetries [84] and quasilocal methods [25]. In this
section, we use the latter to compute the mass and angular
momentum of the black string. Intuitively, since the trans-
verse section of the black string are BTZ black holes, we
expect the mass and angular momentum per unit length of
the black string to be related to these quantities. In what
follows we sort out the specifics of the computations
in CSMG.
First, it is well known that, in spacetimes with AdS

asymptotics, the standard Brown-York stress tensor [85]
needs to be supplemented by boundary counterterms to
render conserved charges finite [76]. The boundary stress-
energy tensor of Chern-Simons modified gravity is

TðbdyÞ
μν ¼ −

1

2κ
ð2Kμν − 2hμνK þ TðCSÞ

μν þ TðGMMÞ
μν Þ

þ ζ1hμν − 2ζ2

�
Rμν −

1

2
hμνR

�
− 2ζ3T

ðϕÞ
μν ; ð22Þ

where TðCSÞ
μν arises from the variation with respect to the

induced metric of the scalar-Chern-Simons term (for

instance see [25]). On the other hand, and TðGMMÞ
μν appears

from the second piece of Eq. (3), proposed by Grumiller,
Mann, and McNees (GMM) in Ref. [72]. However, it is
known that in asymptotically AdS spacetimes these two
contributions decay fast enough towards the boundary and
they do not contribute to the quasilocal charges [25].
Additionally, the last four terms of Eq. (22) renormalize

the stress-energy tensor in asymptotically AdS spacetimes
and they arise from variations of Ict with respect to

the induced metric [76]. Here, TðϕÞ
μν denotes the energy-

momentum tensor of the scalar fields constructed out of the
induced metric and we do not include the other contribu-
tions in Ict since they decay sufficiently fast as r → ∞
(see also [86–88]).
The quasilocal charge associated to a Killing vector field

ξ ¼ ξμ∂μ is defined through [76]

Q½ξ� ¼
Z
Σ
d2x

ffiffiffi
σ

p
TðbdyÞ
μν uμξν; ð23Þ

where uμ is the vector that generates the flow of time in ∂V
and σ is the determinant of the induced metric on Σ (see
[76] for details). Renormalization of the boundary stress-
energy tensor (22) on asymptotically AdS3 ×R spacetimes
demands that the counterterms must satisfy the relation

ζ1 ¼ −
2ζ3 þ l
κl2

: ð24Þ

This value can be obtained by expanding (23) at large but
fixed radius while choosing ζ1 such that the divergent terms
vanish. Afterward, one can take the limit r → ∞ safely and
obtain a finite asymptotic charge.
The mass, angular, and linear momentum per unit of

length L of the solution are obtained from the Killing
vectors field that generate the temporal, rotational, and
translational symmetry, respectively; these are

Q½∂t�≡M ¼ mL
8G

; ð25Þ

Q½∂φ�≡ J ¼ jL
8G

; ð26Þ

Q½∂z�≡ Pz ¼ 0: ð27Þ

Thus, this method shows that m and j are integration
constants related to the mass and angular momentum of the
solution. Moreover, homogeneity of the black string along
the z direction yields a vanishing conserved charge. Thus,
as long as the axionic charge remains fixed in terms of the
cosmological constant as λ2 ¼ −Λ=κ, it cannot be asso-
ciated to a conserved quantity. This could provide a first
glimpse of a counterexample to the stronger form of
correlated stability, at least in higher dimensions [62].
Nevertheless, it is worth mentioning that there exist differ-
ent approaches where the cosmological constant arises as
an integration constant [89–92]. In this case, the axionic
charge can be interpreted truly as a conserved quantity
associated to volume preserving diffeomorphisms, provid-
ing a natural scenario to introduce a thermodynamic
pressure in the extended phase space approach [93].
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IV. BLACK STRING THERMODYNAMICS

Our current understanding of black hole thermodynam-
ics is a deep-seated consequence of semiclassical gravity
[94,95]. It is the means by which we know horizon surface
area is not analogous to thermodynamic entropy, rather, it is
the black hole’s entropy [96]. This has been proved by
Noether charge analysis [97] and through Euclidean
methods [73]. Indeed, many advances have been made
possible thanks to the latter approach taken from quantum
physics [98]. Moreover, black hole thermodynamics has
been the inspiration of a plethora of works in theoretical
physics and is a key sector of quantum gravity. Even the
simplest black hole distinguishes itself from ordinary
thermodynamic substances, such as quantum fluids and
ferromagnetic matter [99]. This is due to the degree of
homogeneity of a black hole’s fundamental relation. Such a
number can be read off from a system’s Gibbs-Duhem
equation, which highlights the significance of a black holes
Smarr formula [100] (see for example [101]).
In this section, we obtain the black string entropy using

the Noether-Wald formalism. Then, we consider the analytic
continuation of the BTZ black string to calculate the
Euclidean on shell action, which corresponds to the free
energy of the system. The partition function is identified with
the Euclidean path integral at first order in the saddle point
approximation around the classical solution [102]. Fixing the
spacetime boundary conditions is akin to choosing a
thermodynamic ensemble. Indeed, in AdS, the boundary
conditions for minimally coupled scalar fields with radial
profile have been discussed in Ref. [103]. For homogeneous
black strings, the situation is different since the asymptotic
behavior is AdS3 ×R rather than AdS4. Nevertheless, since
the axion generates only an effective AdS radius in the
transverse section, the standard Henneaux-Teitelboim boun-
dary conditions for AdS gravity [104] should be enough to
ensure well-defined asymptotic charges in this particular
case. Still, one should consider all infilling geometries in the
path integral and sum over all possible topologies. This is
only sensible when enormous symmetry restrictions are
enforced, as we consider here. This strategy allows for the
thermodynamics of black holes to be completely determined
via the Euclidean approach. Then, we employ the reduced
Hamiltonian formalism on the Euclidean versions of the
black string to calculate its conserved charges. By con-
struction, these charges satisfy the first law of thermody-
namics. Indeed, we find that conserved charges and entropy
obtained through the Hamiltonian approach coincide with
those found in previous sections. Additionally, we derive a
Smarr formula using the scale invariance of the reduced
action following Ref. [63].

A. Wald entropy

A useful and covariant method to compute the black
string entropy is the Noether-Wald formalism [97,105].

This is based on the diffeomorphism invariance of a
gravitational action principle, generated by a vector field
ξ ¼ ξμ∂μ, which yields an on shell conserved current, Jμ,
satisfying ∇μJμ ¼ 0. The Poincaré lemma, in turn, implies
that the latter can be written locally as Jμ ¼ ∇νqμν, where

qμν ¼ −2ðEμν
λρ∇λξρ þ 2ξλ∇ρEμν

λρÞ ¼ −qνμ ð28Þ

is known as the Noether prepotential. Here, Eμν
λρ stands for

the functional derivative of the bulk Lagrangian with
respect to the Riemann tensor and derivatives thereof
(see [105] for details). In particular, for the action in
Eq. (1), we obtain

Eμν
λρ ≡ ∂Lbulk

∂Rλρ
μν

¼ 1

8κ
½2δμνλρ − αϕð�Rμν

λρ þ �Rλρ
μνÞ�; ð29Þ

where δ
μ1…μp
ν1…νp ¼ p!δ½μ1½ν1…δ

μp�
νp� is the generalized Kronecker

delta. Conserved charges associated to Killing vector fields
ξ are obtained by integrating the Noether prepotential on a
codimension-2 hypersurface, Σ, namely,

Q½ξ� ¼ 1

2

Z
Σ
ϵμνλρqμνdxλ ∧ dxρ ≡

Z
Σ
Qμνdxμ ∧ dxν; ð30Þ

where ∧ is the wedge product of differential forms. Wald
showed that the black hole entropy is the Noether charge
(30) evaluated at the horizon H [97]. More generally, it is
obtained by integrating the Noether prepotential over all
codimension-2 hypersurfaces that produce obstructions to
foliation by functions that define the unitary Hamiltonian
evolution of the system [106–108].
Since the black string in CSMG is stationary, we

consider the isometry generated by the asymptotically
timelike Killing vector field that vanishes at the horizon,
that is,

ξ ¼ ∂t þ Ω∂φ: ð31Þ

Here, Ω denotes the angular velocity at the horizon—
see Eq. (45) below. The relevant components of the dual
Noether prepotential for computing the entropy are

Qφz ¼
r
4κ

½2f0 − αλfðrNφ00 þ 3Nφ0 Þ�; ð32Þ

where ϕ ¼ λz has been used. In the case of the black
string, the horizon H is defined as the codimension-2
hypersurface at constant t − r coordinates, where the metric
function fðrÞ vanishes, i.e., fðrþÞ ¼ 0. Direct integration
leads to

S ¼ βτ

Z
2π

0

dϕ
Z

L

0

dzQφzjr¼rþ ¼ πrþL
2G

¼ A
4G

; ð33Þ
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where A ¼ 2πrþL is the area of the horizon and βτ is
related to the surface gravity K through β−1τ ¼ K=ð2πÞ.
Indeed, T ¼ β−1τ is the Hawking temperature of the black
string. Thus, the system studied above satisfies the black
hole area law, which is an unexpected result in gravity
theories beyond GR (for instance see [109]).

B. Hamiltonian approach

For the purposes of this work, it is sufficient to consider
the analytic continuation of the black hole metric (10) with
a base manifold of topology S1 ×R, namely,

ds2E ¼ N2ðrÞfðrÞdτ2 þ dr2

fðrÞ þ r2ðNφðrÞdτ þ dφÞ2 þ dz2;

ð34Þ

where the Euclidean time range is given by 0 ≤ τ ≤ βτ, the
angular coordinate satisfies 0 ≤ φ ≤ βφ and the flat coor-
dinate goes as 0 ≤ z ≤ L. Additionally, we consider a
scalar field with axionic profile, i.e., ϕ ¼ ϕðzÞ. Since the
black string has an event horizon, its Euclidean version
possesses a degenerate submanifold in its place, called a
bolt. The absence of conical singularities at the bolt
demands that the period of the Euclidean time, βτ,
and the period of the angular coordinate, βφ are fixed
according to the relations NðrþÞf0ðrþÞ ¼ 4π=βτ and
βφ ¼ −βτNφðrþÞ, respectively. Moreover, these quantities
are related to the Hawking temperature and angular
velocity of the black string at the horizon as T ¼ β−1τ
and Ω ¼ −βφ=βτ, respectively.
The Euclidean action is related to the free energy G by

IE ¼ βτG. Then, the reduced action in Hamiltonian form is

IE ¼ βτβφ

Z
ðNHþ NφHφÞdrdzþ BE: ð35Þ

Here, BE denotes a boundary term whose variation
cancels out all the contributions coming from variations
of the bulk action, defining a well-posed variation principle.
Additionally, the constraints and the nonvanishing compo-
nents of the conjugated momenta are, respectively, given by

H ¼ rΛ
κ

þ f0

2κ
− 4κrðπrφÞ2 þ 1

2
r

�
dϕ
dz

�
2

; ð36Þ

Hφ ¼ −2ðr2πrφÞ0; ð37Þ

πrφ ¼ rNφ0

4κN
: ð38Þ

Performing stationary variations of the action with
respect to fN; f; Nφ; πrφ;ϕg, we obtain a set of differential
equations equivalent to the ones of Chern-Simons modified
gravity in Euclidean signature [see Eq. (6)]. These

equations can be solved analytically, recovering the black
string solution of Sec. II, namely,

NðrÞ ¼ 1; ϕðzÞ ¼ λz; πrφðrÞ ¼ −
j

4κr2
;

NφðrÞ ¼ j0 þ
j
2r2

; fðrÞ ¼ r2

l2
−m−

j2

4r2
;

1

l2
¼ κλ2

2
;

ð39Þ

where λ,m, j0, and j are integration constants. Moreover, the
scalar field is rigid since λ is a constant without variation,
fixed in terms of the cosmological constant. It is worth
mentioning that, although the scalar field is endowed with a
linear dependence on the z coordinate, the shift symmetry
protects the theory for any stability problem related to the
unboundedness of the z coordinate. This can be seen by
noticing that all physical quantities depend purely on
derivatives of the scalar field. On the other hand, one could
impose periodicity on the z coordinate such that it becomes
compact; in that case, the topology of the horizon would be
S1 × S1, representing a black ring rather than a black string.
The variation of the boundary term, on the other hand,

yields

δBE ¼ −βτβφL
�
Nδf
2κ

− 2r2Nφδπrφ
�
r¼∞

r¼rþ
: ð40Þ

To compute the latter, we first evaluate the variation of
the boundary term on the solution given in Eq. (39).
Then, taking into account that the variation of the fields
at the bolt are

δfjrþ ¼ −
4π

βτ
δrþ and δπrφjrþ ¼ −

δj
4κr2þ

; ð41Þ

then it follows that the variation of the boundary term at the
bolt and infinity are, respectively, given by

δBEð∞Þ ¼ βτβφL

2κ
½δm − j0δj�; ð42Þ

δBEðrþÞ ¼
βτβφL

2κ

�
4πδrþ
βτ

−
�
j0 þ

j
2r2þ

�
δj

�
: ð43Þ

Thus, we conclude that the total variation of the boundary
term, evaluated at the solution (39), becomes

δBE ¼ δBEð∞Þ − δBEðrþÞ

¼ βτδ

�
σm
2κ

�
−
2π

κ
δAþ þ βτ

j
2r2þ

δ

�
σj
2κ

�
; ð44Þ

where σ ¼ βφL stands for the volume of the base manifold
and Aþ ¼ σrþ for the area of the black string horizon.
From this expression, we identify
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Ω ¼ j
2r2þ

; ð45Þ

as the conjugated thermodynamic variable associated to
the angular momentum: the angular velocity of the black
string.
Hereafter, we work in the grand canonical ensemble,

where the temperature and the angular velocity are kept
fixed at the bolt. This allows us to integrate the variation of
the boundary term. Its value determines the reduced on
shell action, giving

IE ¼ BE ¼ βτ

�
σm
2κ

�
−
2π

κ
Aþ − βτΩ

�
−
σj
2κ

�
; ð46Þ

up to an arbitrary additive constant without variation. Since
the Gibbs free energy and the Euclidean action are related
by IE ¼ βτG ¼ βτM − S − βτΩJ, the conserved charges
and entropy can be obtained through the standard thermo-
dynamical relations

M ¼
� ∂
∂βτ − β−1τ Ω

∂
∂Ω

�
IE ¼ σm

2κ
; ð47aÞ

J ¼ −
1

βτ

∂IE
∂Ω ¼ −

σj
2κ

; ð47bÞ

S ¼
�
βτ

∂
∂βτ − 1

�
IE ¼ Aþ

4G
: ð47cÞ

It is reassuring to verify that the Noether-Wald formalism
and the Hamiltonian approach lead to the Bekenstein-
Hawking entropy, considering that nonminimally coupled
scalar fields can produce additional contributions such as in
other scalar-tensor theories [110–112]. The sign flip in the
angular momentum is a consequence of the computation in
Euclidean signature. By construction, the first law of black
hole thermodynamics is satisfied, namely,

δM ¼ TδSþ ΩδJ: ð48Þ

Notice that j0 plays no role in the thermodynamics. This is
just a reflection of the fact that we can consider a rotating
asymptotic geometry AdS3 ×R where j0 emerges as the
boost parameter along the t-φ plane in this region. In
consequence, since the angular momentum of the black
string is measured respect to this background, without loss
of generality, we can always choose the comoving frame
where j0 ¼ 0. Therefore, we conclude that the Hamiltonian
approach leads to the same conserved quantities as the
renormalized boundary stress tensor.

C. Smarr formula

This section is devoted to deriving a Smarr formula for
the black string using a Euclidean Hamiltonian approach,

as in Ref. [63]. To this end, we compute a radial
conservation law associated to the scale invariance of the
reduced action. Let us recall that only regular solutions may
dominate the gravitational path integral. Thus, we demand
that matter fields must be finite at the bolt and additionally
that they vanish at infinity, which is satisfied along a finite
section of the base manifold.
Let us consider a minisuperspace determined by the

metric (10). Then, the reduced action of Chern-Simons
modified gravity [see Eq. (35)] is invariant under the set of
transformations ΦðxÞ → Φ̄ðx̄Þ generated by the rescaling
along the radial coordinate r̄ ¼ δr, where δ is a positive
constant, Φ ¼ fN; f; Nφ; πrφ;ϕg, and

N̄ðr̄Þ ¼ δ−2NðrÞ; f̄ðr̄Þ ¼ δ2fðrÞ; π̄rφðr̄Þ ¼ πrφðrÞ;
ϕ̄ðzÞ ¼ ϕðzÞ; N̄φðr̄Þ ¼ δ−2NφðrÞ: ð49Þ

The Noether theorem, in turn, implies that there exists a
conserved quantity CðrÞ associated to radial rescalings,
such that C0ðrÞ ¼ 0. Using the constraint H ¼ 0, we
rewrite the conserved quantity as

CðrÞ ¼
�
N

�
f0

2κ
r −

f
κ

�
þ Nφð4r2πrφÞ

�
σ: ð50Þ

Since the latter represents a conserved quantity along
the radial direction, it must satisfy Cð∞Þ ¼ CðrþÞ. A
direct computation using the black string solution (10)
with (11), (19), and (20) yields

CðrþÞ ¼
�
rþf0ðrþÞ þ

j2

r2þ

�
σ

2κ
¼ TSþ 2ΩJ

Cð∞Þ ¼ mσ

κ
¼ 2M; ð51Þ

where the definition of thermodynamic variables in
Sec. IV B have been used. Thus, by comparing these
two expressions, we obtain the Smarr relation for the black
string, namely,

M ¼ 1

2
TSþΩJ: ð52Þ

Moreover, the very same relation can be obtained by direct
application of the Euler theorem for homogeneous func-
tions, since the entropy can be regarded as a homogeneous
function of degree 1=2 in ðM; JÞ, i.e., SðλM; λJÞ ¼
λ1=2SðM; JÞ. Then,

1

2
S ¼ M

∂S
∂M

����
J
þ J

∂S
∂J

����
M
: ð53Þ

Using the first law TδS ¼ δM −ΩδJ, we obtain
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∂S
∂M

����
J
¼ 1

T
;

∂S
∂J

����
M
¼ −

Ω
T
: ð54Þ

It is straightforward to show that Eqs. (53) and (54) lead to
(52). This relation is the same as the Smarr formula of a
rotating BTZ black hole in three-dimensional gravity [113].
Of course, the Smarr relation is independent of the
Euclidean or Lorentzian signature.

V. GROUND STATE AND CONFORMALLY FLAT
NON-EINSTEIN PRODUCT SPACES

The conformal nature of quantum gravity on AdS3 [114]
and the Cardy formula for the asymptotic growth of the
number states in 2D conformal field theories [115] has
allowed for the microscopic derivation of the BTZ black
hole entropy [116]. This established AdS3 as the ground
state of the theory. In higher dimensions, the AdS soliton
was later found to play the same role [117,118]. Currently,
Cardy formulas are written so as to relate the entropy of a
black hole with its mass and the mass of its associated
ground state even for more general asymptotic behavior,
see for instance [64–66]. This motivates us to establish the
ground state of the BTZ black string under consideration.
By noticing that the homogeneous foliation of the four-

dimensional metric (10) admits an analytic continuation
along the symmetries generated by its Killing vector fields
∂t and ∂φ, we propose an Ansatz of the form

ds2 ¼ −N2ðrÞfðrÞdt2 þ dr2

fðrÞ þ hðrÞr2dφ2 þ dz2: ð55Þ

The metric (55) solves the field equations of Chern-
Simons modified gravity, recall Eq. (6), when

fðrÞ ¼ −μþ r2

l2
; N2ðrÞ ¼ r2

fðrÞl2
;

hðrÞ ¼ fðrÞl2

r2
; ϕðzÞ ¼ λz; ð56Þ

where l−2 ¼ −Λ=2 is the AdS radius, μ is an integration
constant, and the axionic charge λ is fixed in terms of the
cosmological constant through λ2 ¼ −Λ=κ. Reality of the
scalar field, on the other hand, implies that the cosmologi-
cal constant must be negative. Positivity of the Riemannian
section of (55) demands that the radial coordinate must be
restricted to r ≥ rs ≡ l

ffiffiffi
μ

p
. The absence of conical singu-

larities imposes that μ > 0 and φ ∼ φþ βðsÞφ , where

βðsÞφ ¼ 4π
f0ðrsÞl ¼ 2πffiffi

μ
p . With these conditions, the line element

(55) with metric functions (56) represents the ground state
with topology AdS3 ×R.
Its mass can be computed directly through standard

Euclidean methods of Sec. IV. To do so, we consider the
Gibbs-Duhem relation in absence of entropy. Moreover, the

temperature is arbitrary due to their lack of horizon. Thus,
the mass of the ground state (56) is given by

M0 ¼ −
L
8G

: ð57Þ

It is clear that the mass of the ground state in Eq. (57) is
negative. The negative-energy contribution can be inter-
preted as the Casimir energy that is generated in the dual
field theory when the fermions are antiperiodic on the
compact coordinate [119]. Additionally, it is direct to see
that all curvature invariants associated to this solution remain
finite. Therefore, it represents a negative-energy regular
solution without horizon. These configuration are relevant
when studying phase transitions, as we show further below.
The Casimir energy interpretation stems from the Cardy

formula. Before writing it here, let us remark that we have
used in Eq. (56) the same notation as for the black string. In
the Cardy formula, states of the same configuration are
compared. Thus, the ground state and the black string must
be comparable, i.e., they have the same boundary con-
ditions and global symmetries. Consequently, the entropy
of the black string can be written as

S ¼ 4πl

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−M0Δþ

2

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−M0Δ−

2

r �
; ð58Þ

where Δ� ¼ ðM � J=lÞ=2, cf. [120]. This is the Cardy
formula for the analytic rotating black string presented
in Sec. II.
Interestingly enough, metric (10) admits another analytic

continuation; this one along the symmetries generated by
the Killing fields ∂t and ∂z. Hence, we now explore a
metric Ansatz of the form

ds2 ¼ −dt2 þ dρ2

uðρÞ þ ρ2ðvðρÞdzþ dφÞ2 þ uðρÞdz2; ð59Þ

which solves the field equations (6) provided the metric
functions and scalar field are

uðρÞ ¼ μ1 −
γ2

4ρ2
−
Λρ2

2
; vðρÞ ¼ γ

2ρ2
; ϕðtÞ ¼ λ1t;

ð60Þ

where μ1, γ, and λ1 are integration constants, the latter
satisfying the condition λ21 ¼ Λ=κ. Notice that, in contrast
to the black strings in Sec. II, this solution is supported only
by a positive cosmological constant, such that the time-
dependent scalar field remains real. The Lorentzian sig-
nature of this solution is preserved provided μ1 >

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Λγ2=2

p
and the range for the radial coordinate is restricted to
ρ ∈ ½ρ−; ρþ�, where
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ρ� ¼
�
μ1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ21 − Λγ2=2

p
Λ

�1=2
: ð61Þ

The absence of conical singularities demands that the z

coordinate has to be identified as z ∼ zþ βð�Þ
z at ρ�, whose

period is βð�Þ
z ¼ 4π=u0ðρ�Þ. This, in turn, implies that the

periodicity of the angular coordinate is φ ∼ φþ βð�Þ
φ ,

where βð�Þ
φ ¼ −βð�Þ

z vðρ�Þ.
It is clear that this configuration is a product space

R ×M3, whereM3 is compact (as displayed above) and has
positive definite geometry. Moreover, a straightforward
calculation shows that M3 has positive curvature. Then, a
theorem by Richard S. Hamilton implies that M3 is
diffeomorphic to S3, considering that we want spacetime
to be simply connected, see [121] and references therein.
Indeed, one can check that it is a non-Einstein conformally
flat spacetime supported by a time-dependent scalar field.
This can be seen by computing its traceless Ricci and Weyl
tensor, respectively, and noticing that the former is non-
vanishing while the latter is zero.
In summary, by using the Cardy formula we have

established AdS3 × R as the ground state of the black
string. We have found that both AdS3 × R and R × S3 are
nontrivial solutions of CSMG. These spaces are confor-
mally flat non-Einstein product spaces sourced by non-
trivial scalar fields. These spaces are analogs of the
Plebański-Hacyan spacetimes, which have geometries
AdS2 ×R2 and R2 × S2 [122]. However, R × S3 is incom-
patible with the symmetries of the black string and they do
not share the same boundary conditions. This implies that
they cannot be compared as configurations that belong to
the same ensemble. We postpone a deeper study of its
properties for future investigations. Thus, from hereon, we
only consider the ground state in a thermodynamic context.

VI. THERMODYNAMIC STABILITY
AND PHASE TRANSITIONS

It is well known that the second law of thermodynamics
is equivalent to the weakly convex property of the internal
energy function [99]. In our framework, what is relevant is
to analyze the concavity of the free energy GðT;ΩÞ. Phase
transitions occur when this function is not analytic.
A function with multiple branches corresponds to a system
with various phases. The branch of the function which has
less free energy is statistically preferred and it represents a
stable state of the system under fluctuations.
From previous sections, we know that the free energy of

the black string is

GðT;ΩÞ ¼ −
2π2l2σT2

κð1 −Ω2l2Þ : ð62Þ

Notice that it satisfies the concavity conditions

∂2G
∂T2

≤0;
∂2G
∂Ω2

≤0;
∂2G
∂T2

∂2G
∂Ω2

−
� ∂2G
∂T∂Ω

�
2

≥0; ð63Þ

since the existence of event horizons is determined by
jjj < ml, which requires Ω2l2 < 1.
Now, the local stability of the black string can be

analyzed by studying its response under small perturbations
of its thermodynamic variables around equilibrium.
Conditions (63) can be interpreted as manifestations of
the response functions. For instance, the specific heat at
constant angular velocity, CΩ ¼ Tð∂S∂TÞΩ, measures the heat
absorption from a temperature stimulus, while the iso-
thermal compressibility for the angular momentum,
κT ¼ 1

J ð∂J∂ΩÞT , measures the response of the angular momen-
tum respect to an angular velocity stimulus. Specifically,
these quantities are

CΩ ¼ 4π2l2σT
κð1 −Ω2l2Þ and κT ¼ 1þ 3l2Ω2

Ωð1 − Ω2l2Þ : ð64Þ

The stability conditions for these quantities are CΩ ≥ 0 as
well as JκT ≥ 0. The former is clearly satisfied while the
latter is

JκT ¼ 4π2l2ð1þ 3l2Ω2ÞσT2

κð1 − Ω2l2Þ3 ≥ 0: ð65Þ

In consequence, the analytic rotating black string is always
able to reach a thermal equilibrium with a heat bath.3

We have seen that the action principle of dynamical
Chern-Simons modified gravity admits two solutions with
the same boundary conditions for a fixed temperature.
These are the rotating black string presented in Sec. II and
the AdS3 × R ground state described by the line element
(55) with (56). Both solutions share the same asymptotic
geometry and behavior, representing two phases of the
same system. Therefore, global stability is analyzed by
comparing their respective free energies. For simplicity, we
consider only static configurations and emphasize that we
require both configurations to be at the same temperature.
As it was pointed out in Sec. V, the ground state lacks an

event horizon and its temperature can be chosen arbitrarily
to match the black string temperature. Thus, from Eqs. (57)
and (62) we have

G ¼ −
2π2

κ
l2σT2 and G0 ¼ M0 ¼ −

σ

2κ
: ð66Þ

Since l−2 ¼ κλ2=2, then the difference between both Gibbs
free energies is

3The extremal case when jjj ¼ ml has G ¼ 0 and in conse-
quence is locally stable.
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ΔG ¼ G − G0 ¼
�
2π

κλ

�
2
�
κλ2

8π2
− T2

�
σ: ð67Þ

A phase transition between the static black string and the
ground state in Eq. (55) occurs at the critical temperature
Tc, when the condition ΔG ¼ 0 holds, namely,

Tc ¼
λ

2π

ffiffiffi
κ

2

r
: ð68Þ

Therefore, a phase transition is supported by the existence
of the scalar field, as it can be seen from the linear
dependence of the critical temperature on the axionic
charge λ. Moreover, this is a first order phase transition
because the slope of ΔG does not vanish at Tc. Taking into
account Eq. (67), we see that the ground state is preferred
for temperatures below the critical temperature, i.e.,
T < Tc, and the black string is thermodynamically favored
when T > Tc.

VII. CONCLUSIONS

In this work, we study black string spacetimes possess-
ing axionic charge in dynamical CSMG. We calculate their
conserved charges and use them to construct a Cardy
formula to establish the ground state. We later move on to
the thermodynamics of this black string/ground state
system, finding phase transitions between the pair.
The analysis is carry out by considering a scalar field

with linear dependence on the coordinate that spans the
string. Although this assumption might break the isometry
group, the shift symmetry in field space renders the energy-
momentum tensor of scalar fields compatible with the
symmetries of the metric. Indeed, this class of scalar fields
has been widely used in the context of holography,
providing simple models with momentum relaxation (see
[123] and references therein).
First, we review the analytic rotating BTZ black string

solution in CSMG found in Ref. [28]. It is worth recalling
that exact rotating configurations in this theory are scarce
since, in general, nontrivial contribution are introduced by
the Chern-Simons coupling in the field equations [11].
Nevertheless, we demonstrate that the presence of the
scalar field with axionic profile is crucial for obtaining
the locally AdS3 ×R rotating black string, due to the
addition of nontrivial contributions to the off-diagonal
components of the field equations.
Afterwards, we compute conserved charges by means of

the renormalized boundary stress-energy tensor, obtaining
the mass and angular momentum of the black string. The
entropy is obtained through the Wald formalism, by
evaluating the Noether charge at the horizon. The area
law is recovered despite the fact that we are in an effective
gravity theory with higher-curvature corrections. Using
the Hamiltonian approach, we obtain the free energy by
computing the renormalized Euclidean on shell action,

augmented by boundary terms that guarantee finiteness on
asymptotically locally AdS3 ×R spacetimes while defining
a well-posed variational principle. We recover the previous
conserved charges as thermodynamic quantities and find that
the first law of thermodynamics is satisfied. The axionic
charge is fixed in terms of the cosmological constant and it
can be only treated as a thermodynamic variable in the
extended phase space (see [93]); this is an approach that we
do not follow here. Additionally, exploiting the rescaling
symmetry along the radial direction, we derive a Smarr
formula from the Noether theorem following the approach of
Ref. [63]. We find that the latter is equivalent to that of the
rotating BTZ black hole in three-dimensional gravity.
Then, we obtain the ground state and a conformally flat

non-Einstein product space with axionic charge by per-
forming the analytic continuation of the black string along
the flow generated by their Killing vector fields. All the
solutions obtained through this method are regular and
horizonless. Therefore, their lack of entropy implies that
their energy can be obtained from the renormalized
Euclidean on shell action with arbitrary value of the
Euclidean time. We compute the energy of the ground
state explicitly and find that it is negative, representing the
Casimir energy in the dual field theory when the fermions
are antiperiodic on the compact coordinate [119].
We study thermodynamic stability and phase transitions

in Sec. VI. The Gibbs free energy of the black string is a
concave function of the temperature and angular velocity
implying that this configuration is thermodynamically
locally stable under small perturbations in temperature
and angular momentum. We verify that thermal equilibrium
with a heat bath can always be attained by analyzing the
response functions such as the heat capacity and the
isothermal compressibility of the angular momentum.
The global stability is a noteworthy aspect, considering
the existence of a ground state in presence of an axionic
scalar field. In particular, we find that a first-order phase
transition takes place at certain critical temperature Tc [see
Eq. (68)]. For T < Tc the gravitational ground state is
thermodynamically favored, while for T > Tc the black
string becomes the most probable configuration.
Interesting phenomena can be explored in future works.

For instance, a stabilization mechanism of the Gregory-
Laflamme instability due to axions in CSMG is worth
pursuing, similar to the one proposed in [60]. This might
provide evidence on the dynamical stability of the black
string, as it has been recently analyzed in GR [61,62].
Additionally, the extended phase space could certainly
enrich the thermodynamics of phase transitions. This is
because the relation between the axionic charge and the
cosmological constant may offer a scenario where the
former, as a free parameter, is interpreted as a pressure.
Finally, a natural extension of these solutions is to include
Maxwell fields. To this end, one could implement the
approach of Refs. [52,124,125], rendering this class of
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solutions compatible with the presence of electric/
magnetic charge.
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