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It has been argued that ultracompact objects, which possess light rings but no horizons, may be unstable
against gravitational perturbations. To test this conjecture, we revisit the quasiblack hole solutions, a family
of horizonless spacetimes whose limit is the extremal Reissner-Nordström black hole. We find a critical
parameter at which the light rings just appear. We then calculate the quasinormal modes of the quasiblack
holes. Both the WKB result and the numerical result show that long-lived modes survive for the range
where light rings exist, indicating that horizonless spacetimes with light rings are unstable. Our work
provides a strong and explicit example that light rings could be direct observational evidence for black
holes.
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I. INTRODUCTION

Generally speaking, black holes are seen as the most
fundamental particles in general relativity and modified
theories of gravity. The first black hole solution, the
Schwarzschild solution, was found in 1916 [1]. Since then,
theoretical properties of black holes have been extensively
and deeply studied, including but not limited to the
spacetime structure, thermodynamics, geodesics, quasi-
normal modes (QNMs) and the like. Compared to the
great achievements in the theoretical aspect, the progress of
experimental observations of black holes had been slow for
a long time until the discoveries of gravitational waves
made by LIGO and Virgo [2–4] and the appearance of the
first image of the black hole at the center of Messier 87
(M87) photographed by the Event Horizon Telescope
(EHT) [5–9].
The picture of M87* taken by the EHT can be well

explained by models of black holes [5]. Furthermore, some
parameters of M87* can be identified based on some
specific black hole models [10–23]. However, the existence
of black holes has not been completely confirmed in terms
of information encoded in the present photo of M87*. The
main reason is that it is hard to distinguish a black hole
from ultracompact objects (UCOs), which have no hori-
zons. Previous works have found that light rings (LRs),
which are closed photon orbits, can exist not only outside
black holes, but also some UCOs [24–29]. Furthermore, it
has been suggested that, apart from black holes, UCOs can
also form shadow structures, like boson stars [24], proca

stars [30] and wormholes [31,32]. In other words, it is
going to get really tricky when black holes and UCOs can
cast the same shadow structure. In addition, it has been
found that UCOs can be relevant to other observations of
the black holes at the centers of galaxies. For example,
although most people believe there is no way to understand
dark matter without involving black holes, many recent
works revealed that some models related to UCOs are also
able to explain known observations concerning dark
matters including the rotational curve of stars [33–36].
A natural question then arises. Can we convince people

that we are observing a black hole, other than a UCO, from
the picture of M87* [36–39]? First of all, as a kind of UCO,
wormholes are generally ruled out since to form a worm-
hole, exotic matters are always involved [40–43]. Other
typical UCOs include boson stars, which can be formed
dynamically from a process of gravitational collapse and
cooling [44], and Proca stars, which satisfy Einstein’s
equation and energy conditions [30,45,46]. Most people
prefer to believe that the photos taken by the EHT are
indeed formed by black holes. Some researchers have
speculated that although some existing UCOs can form
shadow structures, such UCOs may have stability problems
and they cannot exist long enough. For example, it has
been argued that highly spinning horizonless UCOs with an
ergoregion are unstable [47–50]. For nonrotating black
holes, in [51], the author found a new mechanism
suggesting that all ultracompact neutron stars with radii
R < 3M might be unstable.
Along this line, Cardoso et al. have made a remarkable

progress [24]. They focused on spherically symmetric
ultracompact stars. The radius of the star is always smaller
than 3M, and the outer spacetime is described by the
Schwarzschild metric. Obviously, there exists an unstable
LR at rLR ¼ 3M. Considering that the effective potentials
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of photons are divergent and positive at the center of the
star, they showed that a stable LR has to be existent
between the origin and the unstable LR in the radial
direction. Furthermore, they investigated the QNMs
of gravitational perturbations by focusing on specific
constant-density stars and thin-shell gravastars with
2M < R < 3M, and showed the existence of very long-
lived modes localized near the stable light ring, which may
indicate that such ultracompact stars are nonlinearly unsta-
ble under fragmentation. This result is very important and
significantly supports that ultracompact stars may not be
black hole mimickers [52].
However, the ultracompact stars discussed in [24] always

have a radius smaller than 3M, and thus the existence of
LRs is guaranteed. To investigate the relationship between
the LR and the stability of the QNM, we need a one-
parameter family of solutions where the LR appears at a
certain critical value, and then we can check if this is also a
critical point for the stability of the spacetime. Such
solutions are not easy to find. Fortunately, a series of
horizonless spacetimes, which are called quasiblack holes
(QBHs), have been constructed and discussed by Lue,
Weinberg, and Lemos, et al. [53–58]. The QBH was
motivated by the question of whether static and horizonless
spacetimes can come arbitrarily close to a black hole.
A charged dust model was constructed, which satisfies the
Einstein-Maxwell equations [55]. To make the solution
approach a black hole, it turns out that the dust must be
extremal, i.e., the energy density of the dust must be equal
to its charge density. This is a family of solutions para-
metrized by c. When c ¼ 0, it is just the extremal Reissner-
Nordström (RN) black hole. This model can show how
horizonless spacetimes continuously transfer to a true black
hole. So when c → 0, we expect the existence of LRs since
black holes always have LRs. Also, we expect that the LRs
disappear for some larger values of c which correspond to
configurations far away from the black hole. In this paper,
we show that it is indeed the case. By using null geodesic

equations, we find a critical parameter c ¼
ffiffiffiffi
2
27

q
. For

0 < c <
ffiffiffiffi
2
27

q
, there always exists two LRs. For

c >
ffiffiffiffi
2
27

q
, the LRs disappear. This allows us to check the

relation between the LR and the stability of the spacetime
by calculating the quasinormal modes for QBHs. We find
that the long-lived modes survive for the range where LRs
exist, indicating the instability of the spacetime. For the
parameter range where the LRs do not exist, the long-lived
modes also disappear. Therefore, we use QBHs to show
explicitly that the existence of LRs is closely related to the
stability of spacetimes.
The remaining parts of the paper are organized as

follows. In Sec. II, we give a quick review of the quasiblack
holes. In Sec. III we present a detailed study of LRs in
quasiblack hole spacetimes. In Sec. IV, we study the

quasinormal modes of gravitational perturbations for qua-
siblack holes. We summarize and discuss our results
in Sec. V.

II. REVIEW ON QUASIBLACK HOLES

The Einstein-Maxwell equation for charged dust takes
the form [55]

Gab ¼ 8πðTdust
ab þ Tem

ab Þ; ð2:1Þ

where

Tdust
ab ¼ ρuaub; ð2:2Þ

with ρ being the energy density and ua the four-velocity of
the dust. The electromagnetic stress-energy tensor is given
by

Tem
ab ¼ 1

4π

�
Fa

cFbc −
1

4
gabFcdFcd

�
; ð2:3Þ

where the electromagnetic field strength Fab satisfies

∇bFab ¼ 4πρeua; ð2:4Þ

with ρe being the charge density. We are interested in the
extremal dust solution, i.e., ρ ¼ ρe. It turns out that such
solutions take the form [55]

ds2 ¼ −
dt2

U2
þU2½dR2 þ R2ðdθ2 þ sin2 θdϕ2Þ�: ð2:5Þ

By using Einstein’s equation, one can show that

1

R2

∂
∂R

�
R2

∂U
∂R

�
¼ −4πU3ρ: ð2:6Þ

We are interested in a series of solutions which
can smoothly transfer from nonblack hole solutions to
black hole solutions. Such solutions can be obtained by
choosing [55]

UðRÞ ¼ 1þ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ c2

p ; ð2:7Þ

where q is the total charge of the spacetime.
We see that when c → 0, the solution reduces to the

extremal RN black hole and R ¼ 0 is the black hole
horizon. In order to facilitate the following calculations,
we introduce a non-negative parameter z such that

z2 ¼ R2 þ c2: ð2:8Þ

Then the areal radius r is related to R by
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r ¼ RU ¼ Rþ qRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ c2

p ¼ Rþ qR
z
: ð2:9Þ

From the components of the metric we can see that when
c ≠ 0 quasiblack hole spacetime could describe a spheri-
cally symmetric compact star with R ¼ 0 (r ¼ 0) being its
center. While for c ¼ 0, the solution is just an extremal RN
black hole and

r ¼ Rþ q; ð2:10Þ

and the horizon r ¼ q corresponds to R ¼ 0 (z ¼ 0).

III. LIGHT RINGS

Unlike black holes, the existence of LRs for horizonless
spacetimes are not guaranteed. In this section, we shall
study photon orbits for QBHs and see whether LRs could
exist. Since the QBH spacetimes are spherically symmetric,
it is sufficient to focus the photon orbits on the equatorial
plane θ ¼ π=2. Then, the four-momentum of the photon
takes the form

pa ¼ _t

� ∂
∂t
�

a
þ _R

� ∂
∂r

�
a
þ _ϕ

� ∂
∂ϕ

�
a
; ð3:1Þ

where the dot denotes the derivative of the affine parameter
τ. Considering the Killing vectors of the spacetime, the
conserved energy and angular momentum are given by

E ¼ −gabpa

� ∂
∂t
�

b
¼ −gtt_t ¼

1

U2
_t; ð3:2Þ

L ¼ gabpa

� ∂
∂ϕ

�
b
¼ gϕϕ _ϕ ¼ U2R2 sin2 θ _ϕ: ð3:3Þ

In addition, we have the null condition

0 ¼ gabpapb: ð3:4Þ

By solving Eqs. (3.2), (3.3) and (3.4), we get the radial
equation

_R2 þ L2

R2U4
¼ E2: ð3:5Þ

Next, we define the potential

VðRÞ ¼ L2

R2U4
; ð3:6Þ

and then

VðRÞ ¼ L2

R2U4
¼ L2

R2ð1þ qffiffiffiffiffiffiffiffiffiffi
c2þR2

p Þ4 ¼
L2z4

ðz2 − c2Þðzþ qÞ4 :

ð3:7Þ

The light rings occur at V 0ðRÞ ¼ 0 and E2 ¼ VðRÞ. Noting
that dz

dR ¼ R
z , we can use V − E2 ¼ dV

dz ¼ 0 to determine the
positions and the impact parameters of light rings instead.
Thus, from dV

dz ¼ 0, we have

z3 − qz2 þ 2qc2 ¼ 0: ð3:8Þ

For c ¼ 0, we see immediately that there are two solutions
z ¼ 0 and z ¼ q, or R ¼ 0 and R ¼ q. R ¼ q is just the
light ring located outside the black hole horizon. By
calculating the second derivative of the potential, we see
that the LR is unstable in the radial direction. One may
think that R ¼ 0 (or r ¼ q) is also a LR. However, since the
horizon R ¼ 0 is a null hypersurface, the only null geodesic
on it is in the radial direction with no angular component.
Thus, such a null geodesic does not form a closed orbit
in space.
Next, we turn to the case c ≠ 0. To solve Eq. (3.8), we let

y ¼ z − q=3 > −q=3: ð3:9Þ

In the following, for simplicity but without loss of general-
ity, we set q ¼ 1. Then Eq. (3.8) becomes

y3 −
1

3
yþ 2c2 −

2

27
¼ 0: ð3:10Þ

In order to find the roots of the cubic equation, it’s
convenient to define

u ¼ −
1

3
; v ¼ 2c2 −

2

27
; and

Δ ¼
�
v
2

�
2

þ
�
u
3

�
3

¼ c2
�
c2 −

2

27

�
: ð3:11Þ

Then, from Δ ¼ 0, we can identify a critical constant
K ≡ 2

27
. And, when c2 > K, Eq. (3.10) has only one real

root in this form,

yd¼
−1−

ffiffiffi
3

p
iþ iðiþ ffiffiffi

3
p Þð1−27c2þ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−6c2þ81c4

p
Þ2=3

6ð1−27c2þ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−6c2þ81c4

p
Þ1=3 ;

ð3:12Þ

where i is the imaginary unit. One can then easily check
that yd þ 1=3 < 0 is always true for c2 > K which does not
satisfy Eq. (3.9) (see the upper panel in Fig. 1), meaning
there is no light ring.
Next, we consider the case Δ ¼ 0, that is, c2 ¼ K. We

find that the roots of the cubic equation read
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ym1 ¼ ym2 ¼ 1=3 and ym3 ¼ −2=3: ð3:13Þ

Obviously, ym3 should be dropped and we find there are
two degenerate light rings.
Now, let us turn to the case Δ < 0, that is c2 < K. We

have three different real roots,

yw ¼ 2

3
cos

Θþ 2wπ
3

; ð3:14Þ

where w ¼ −1, 0, 1 and

Θ ¼ arccosð1 − 27c2Þ: ð3:15Þ

From the lower panel of Fig. 1, we can see ðy1 þ 1=3Þ2 −
c2 < 0 for 0 < c2 < K and thus y1 should be excluded. The
other two LRs occur at

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z20 − c2

q �
1þ 1

z0

�
; ð3:16Þ

r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2−1 − c2

q �
1þ 1

z−1

�
; ð3:17Þ

where

zw ¼ 1

3

�
1þ 2 cos

Θþ 2wπ
3

�
; ð3:18Þ

withw ¼ −1, 0. One can check that the outer LR (r ¼ r1) is
unstable and the inner LR (r ¼ r2) is stable. This is
consistent to the general conclusion for UCOs [25,29].
Now we pay special attention to the regime c → 0, i.e.,

the black hole limit. We can expand the roots to the order of
c2 and find

R0 ¼ 1 −
5

2
c2; ð3:19Þ

R−1 ¼ c; ð3:20Þ

which correspond to

r0 ¼ 2q − 3
c2

q
; ð3:21Þ

r−1 ¼
qffiffiffi
2

p þ 3

2
c −

9c2

4
ffiffiffi
2

p
q
; ð3:22Þ

where we have put the charge q back to the formula. We see
that as c → 0, r0 → 2q which just reduces to the light ring
of the extremal RN black hole. However, as c → 0,
r−1 → q=

ffiffiffi
2

p
. This result does approach the RN limit

c ¼ 0, where such a light ring does not exist. To understand
this apparent inconsistency, we notice that Eq. (3.22) is
obtained by substituting Eq. (3.20) into Eq. (2.9) and then
taking the limit c → 0. For the extremal RN solution, we let
c ¼ 0 in Eq. (2.9) and then take the limit R → 0. This leads
to r ¼ q, which is not a LR as we have discussed.

IV. LONG-LIVED QNM MODES OF A
QUASIBLACK HOLE SPACETIME

In Sec. III, we have found that when 0 < c2 < K, the
quasiblack hole can be seen as an UCO with an inner stable
light ring and an outer unstable light ring. In this section,
we are going to verify whether QBHs have a stability
problem under linear gravitational perturbations. More
precisely, we would calculate the frequencies of QNMs
to see if there are long-lived modes in the parameter range
where the LRs exist. Considering that QNMs have been
studied widely in the standard coordinates ðt; r; θ;ϕÞ, our
strategy for dealing with the QNMs is that we first obtain
the QNM equations in the coordinates ðt; r; θ;ϕÞ based on a
general formula for any spherically symmetric metric in
[24], and then we transform the equations into a form of the
coordinate R, since it is more convenient to use R for the
calculations of QBHs, as we have done in Sec. III. Now, let
us rewrite the spherically symmetric metric in the form

ds2 ¼ −BðrÞdt2 þ AðrÞdr2 þ r2ðdθ2 þ sin2 θdϕ2Þ: ð4:1Þ

FIG. 1. The functions zd ¼ yd þ 1=3 and z1 ¼ y1 þ 1=3. The
upper panel corresponds to the real root of the cubic equation for
K < c2 < 1. The lower panel corresponds to the root y1 when
0 < c2 < K. They are both monotonic decreasing functions of c
and remain negative. Thus, these solutions do not give light rings.
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It is not difficult to find that the two metric components in
Eqs. (4.1) and (2.5) are related by

B ¼ 1

U2
¼ z2

ðzþ qÞ2 ; ð4:2Þ

1ffiffiffiffi
A

p ≡ 1

W
¼ 1þ R

U
dU
dR

¼ z2ðqþ zÞ
z2ðqþ zÞ − qR2

: ð4:3Þ

To calculate the quasinormal modes, we start with the
master equation [24]

�∂2

∂2
t
−

∂2

∂2
r�
þ VslðrÞ

�
Ψðr; tÞ ¼ 0; ð4:4Þ

which can describe perturbations of different fields in the
background of the metric (4.1). In the potential VslðrÞ,
when l ≥ s, s ¼ 0, 1, 2 correspond to the perturbations of
massless scalar fields, Maxwell fields and a generically
anisotropic fluid, respectively. The tortoise coordinate r� is
defined by dr=dr� ¼

ffiffiffiffiffiffiffiffiffi
B=A

p
, and the potential VslðrÞ takes

the form

VslðrÞ¼B

�
lðlþ1Þ

r2
þ1−s2

2rA

�
B0

B
−
A0

A

�
þ8πðprad−ρÞδs2Þ

�
:

ð4:5Þ

Alternatively, from the relationship between r and R, that is
r ¼ RU, VslðrÞ can be reexpressed in the coordinate R as

V̄slðRÞ≡ VslðrÞ ¼
1

U2

�
lðlþ 1Þ
R2U2

−
1 − s2

RUW2

d
dR

ðlogU þ logWÞ dR
dr

þ 8πðprad − ρÞδs2
�
: ð4:6Þ

where W ≡ ffiffiffiffi
A

p
is introduced in Eq. (4.2). The radial pressure prad and the energy density ρ of the QBH are needed to be

introduced and we find they have the following expressions:

prad ¼ Tr
r ¼ −

q2R2

8πz2ðqþ zÞ4 andρ ¼ −Tt
t ¼

q½qR2 þ 6c2ð1þ zÞ�
8πz2ðqþ zÞ4 : ð4:7Þ

By the way, we want to stress that by calculating

prad þ ρ ¼ 3c2ð1þ zÞ
4πz2ð1þ zÞ4 > 0 ð4:8Þ

we can confirm that the weak energy condition always
holds for the QBH. Next, assuming a time dependence
Ψðr; tÞ ¼ ψðrÞe−iωt, from Eq. (4.4) we can see that the
radial function ψðrÞ satisfies a Schrödinger-like equation,

d2ψ
dr2�

þ ½ω2 − VslðrÞ�ψ ¼ 0; ð4:9Þ

with

r� ¼
Z

R

0

UR
dr
dR

dR¼RþarctanðR=cÞ
c

þ2arctanh
Rffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2þR2
p :

ð4:10Þ

Alternatively, we have

ðc2 þ R2Þ2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ R2

p
Þ4 ψ̄

00ðRÞ þ 2Rðc2 þ R2Þ
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ R2

p
Þ5 ψ̄

0ðRÞ

þ ½ω2 − V̄slðRÞ�ψ̄ðRÞ ¼ 0; ð4:11Þ

where we have used ψ̄ðRÞ≡ ψðrÞ.

In this article, we focus on gravitational perturbations,
that is, s ¼ 2. Thus at the center of the quasiblack hole,
R → 0, we find

r�→
ð

ffiffiffiffiffi
c2

p
þ1Þ2
c2

R→0; V̄2l→
c4lðlþ1Þ

ð1þ
ffiffiffiffiffi
c2

p
Þ4R2

¼ lðlþ1Þ
r2�

;

ð4:12Þ

and at infinity, R → ∞, we have

r� → R; V̄2l →
lðlþ 1Þ

R2
¼ lðlþ 1Þ

r�
: ð4:13Þ

Furthermore, we have at the center

R → 0; ψ̄ ∼ C1Rlþ1 þ C2R−l; ð4:14Þ

and at infinity

R → ∞; ψ̄ ∼D1e−iωR þD2eiωR: ð4:15Þ

Regular gravitational perturbations should have C2 ¼ 0 at
the center, and at infinity the gravitational perturbations
should be outgoing, that is, D1 ¼ 0. In the following, we
shall determine the values of ω in terms of the coordinate R.
We rewrite ψ̄ðRÞ in this form:
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ψ̄ðRÞ ¼ Rlþ1eiωRχðRÞ: ð4:16Þ

This asymptotic solution corresponds to an outgoing
boundary condition at infinity and a regular boundary
condition near the center of the quasiblack hole. The
frequencies of the perturbations can be seen as composi-
tions of quasinormal modes. With the specific boundary
conditions (4.14) and (4.15), the radial equation (4.11) can
be solved as an eigenvalue problem. Note that only some
discrete eigenfrequencies ω can satisfy both the radial
equation and boundary conditions. Since the frequency ω
would be a complex number in general, one can always
write the eigenfrequency as the form ω ¼ ωR þ iωI. As we
assume Ψðr; tÞ ¼ ψðrÞe−iωt, the amplitude of perturbation
will grow exponentially when the imaginary part ωI > 0,
which implies that the black hole is unstable (at least at the
linear perturbation level). Then, in principle, we can
identify the eigenvalues of ω by solving this equation
for any l ≥ s numerically.
In practice, the behaviors of ω are very sensitive to the

effective potential V2l. In particular, we are interested in the
eikonal regime, that is, l ≫ 1. In Fig. 2, we show examples
of the effective potential V2l at l ¼ 10. Obviously, we can
see that at c2 ¼ 1=27, the effective potential V2l has a local
maximun and a local minimum, while for c2 ¼ 3=27, the
effective potential V2l only has a local maximun. At
c2 ¼ 2=27, the effective potential has a degenerate extreme
point. It has been argued in [24,51] that long-lived modes
may be possible in the eikonal limit, that is, for l ≫ 1.
Compared to the usual modes, there may be some long-
lived modes whose damping time grows exponentially
with l, when the potential necessarily has a local minimum.
In addition, from Eq. (4.5) we observe that when l ≫
r
2A ðB

0
B − A0

AÞ and l ≫ 8πr2ðprad − ρÞ, the effective potential

Vsl ≃ l2

r2U2, which has the same expression as the effective

potential V ¼ L2

R2U4 for null geodesics [see Eq. (3.6)] if we

identify l with L. Note that for asymptotic spacetimes, we
have r

2A ðB
0

B − A0
AÞ ∼ 1

rm with m ≥ 1 and 8πr2ðprad − ρÞ ∼ 1
r2

when r → ∞. Thus, as long as l is big enough, we always
have V2l ≈ V. In Sec. III, we have found that c2 ¼ K is a
critical point for the effective potential of null geodesics.
For c2 < K, the effective potential V has a local minimum,
corresponding to a stable LR. So for gravitational pertur-
bations, the effective potential V2l also has a local minimun
when l is large enough in the eikonal regime. Therefore, we
can infer that when c2 < K, i.e., a stable LR exists in the
QBH spacetime, it becomes possible that the spectrum of
linear QNMs contains the long-lived modes. Next, we
are going to verify this relation by calculating the values
of ω.
Following standard numerical methods, we would use

the method of direct integration to obtain the values of ω.
On the other hand, as shown in [24,59,60], when the
potential V2l has a local maximum and a local minimum
(see Fig. 3), for l ≫ 1, the real part of the frequency ωR in
four spacetime dimensions is given by the WKB approxi-
mation

Z
rb

ra

drffiffiffiffiffiffiffiffiffi
B=A

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
R − V2lðrÞ

q
¼ πðnþ 1=2Þ

¼
Z

Rb

Ra

dRUðRÞWðRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
R − V̄2lðRÞ

q dr
dR

; ð4:17Þ

where n is a positive integer and ra and rb are two smaller
roots of the equation ω2

R − Vsl ¼ 0 (see Fig. 3). Obviously,
we can easily conclude that ωR ∈ ðVmin

2l ; Vmax
2l Þ. In addition,

Ra and Rb are the roots corresponding to ra and rb in the R
coordinate, that is, ra;b ¼ Ra;bUðRa;bÞ. In addition, the
imaginary part of the frequency ωI is given by

ωI ¼ −
1

8ωRγ
e−Γ; ð4:18Þ

FIG. 2. The variations of the effective potential function V2l

with respect to r for c2 ¼ 1=27; 2=27; 3=27, respectively. Here
we choose l ¼ 10 ≫ 1. FIG. 3. A diagram of the potential function V2l with respect to r

for 0 < c2 < 2=27.
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with

Γ ¼ 2

Z
rc

rb

drffiffiffiffiffiffiffiffiffi
B=A

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VslðrÞ − ω2

R

q
¼

Z
Rc

Rb

dRUðRÞWðRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̄2lðRÞ − ω2

R

q dr
dR

; ð4:19Þ

γ ¼
Z

rb

ra

drffiffiffiffiffiffiffiffiffi
B=A

p cos2 χðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
R − VslðrÞ

p ¼
Z

Rb

Ra

dR
UðRÞWðRÞ cos2 χ̄ðRÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
R − V̄2lðrÞ

p dr
dR

; ð4:20Þ

χðrÞ¼−
π

4
þ
Z

rb

r

drffiffiffiffiffiffiffiffiffi
B=A

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
R−V2lðrÞ

q

¼ χ̄ðRÞ¼−
π

4
þ
Z

Ra

R
dRUðRÞWðRÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
R− V̄2lðRÞ

q dr
dR

; ð4:21Þ

where rc ¼ RcUðRcÞ is the largest root of the equation
ω2
R − Vsl ¼ 0. We show the values of ω in Fig. 4 from both

the numerical integration and the WKB method. From the
figure, we can see that the results given by the two methods
agree very well. Furthermore, the imaginary parts of the
results show that the QNMs are indeed long-lived modes.
On the other hand, wewould like to give some comments

on the case c2 ≥ K, in which there have been found no
stable LRs in Sec. III. As shown in Fig. 2, the effective
potential V2l would have no local maximum in the eikonal
limit. Following the similar analysis for planar anti–
de Sitter black holes in [59], one can see that there are

no long-lived modes that survived in the linear perturba-
tions of gravitations when c2 ≥ K; that is, there are no
stable LRs.

V. CONCLUSION

We have revisited the quasiblack hole spacetimes. In the
parameter range 0 < c2 < 2=27, we have found two LRs of
which the inner one is stable and the outer one is unstable.
They disappear altogether for c2 > 2=27 with the critical
value c2 ¼ 2=27 corresponding to a degenerate LR. It’s
worth noting that near the black hole limit, i.e., c → 0, we
found there always exists a stable inner LR while it has no
correspondence in the black hole solution (when c is
strictly zero). We have also calculated the quasinormal
modes of the QBHs. The WKB method and numerical
method both suggest that long-lived modes survive when
light rings exist, indicating that quasiblack hole spacetimes
containing LRs, as a kind of ultracompact object, may not
be stable. Compared to the previous results on ultracompact
stars (that the exteriors are Schwarzschild solutions) the
LRs in the QBH model can turn on smoothly at a critical
value of c. Therefore, from another perspective, our work
provides a concrete example to support the conjecture that
the observation of light rings may be strong evidence for
black holes.
The quasiblack hole model indicates that LRs could be a

signature exclusive of black holes. However, a quasiblack
hole cannot be treated as a real astrophysical body, since it
has the total charge q equal to the mass M, while in
astrophysically reasonable situations, the charge is usually
much smaller than the mass [61]. Thus, future studies shall
focus on more realistic objects. For example, it would be
important to consider UCO models with rotation since
astrophysical bodies with a high spin-mass ratio have been
observed.
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FIG. 4. Real and imaginary parts of the QNMs of the QBH with
c2 ¼ 1=27. The red lines are the WKB results and the blue
inverted triangles reveal the numerical results obtained from the
direct integration method. From the lower panel, we can see that
QNMs are indeed long-lived modes, which indicates a possible
nonlinear instability of the spacetime.
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