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In recent years, gravitational-wave astronomy has motivated increasingly accurate perturbative studies of
gravitational dynamics in compact binaries. This in turn has enabled more detailed analyses of the
dynamical black holes in these systems. For example, Pound et al. [Phys. Rev. Lett. 124, 021101 (2020)]
recently computed the surface area of a Schwarzschild black hole’s apparent horizon, perturbed by an
orbiting body, to second order in the binary’s mass ratio. In this paper, we take that as the starting point for a
comprehensive study of a perturbed Schwarzschild black hole’s apparent and event horizon at second
perturbative order, deriving generic formulas for the first- and second-order corrections to the horizons’
radial profiles, surface areas, Hawking masses, and intrinsic curvatures. We find that the two horizons are
remarkably similar, and that any teleological behavior of the event horizon is suppressed in several ways.
Critically, we establish that at all orders, the perturbed event horizon in a small-mass-ratio binary is
effectively localized in time. Even more pointedly, the event horizon is identical to the apparent horizon at
linear order regardless of the source of perturbation, implying that the seemingly teleological “tidal lead,”
previously observed in linearly perturbed event horizons, is not genuinely teleological in origin. The two
horizons do generically differ at second order, but their Hawking masses remain identical, implying that the
event horizon obeys the same energy-flux balance law as the apparent horizon. At least in the case of a
binary system, the difference between their surface areas remains extremely small even in the late stages of
inspiral. In the course of our analysis, we also numerically illustrate puzzling behavior in the black hole’s
motion around the binary’s center of mass.
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I. INTRODUCTION

A. Black holes in modern experimental physics

Over the past few decades, black holes have gone from
hypothetical objects of theoretical interest to ubiquitous
elements of observational astrophysics. LIGO and Virgo
now regularly detect binary black hole mergers [1], and the
Event Horizon Telescope has provided the first radio
image of a black hole [2]. Future technological advances
will enable far more precise observations, both with next-
generation gravitational-wave detectors [3,4] and very-long-
baseline radio interferometers [5–7]. These will allow us to
more stringently testwhether the dark objectswe observe are
genuine black holes or some other exotic compact objects
[8], and assuming they are black holes, whether they are
accurately described by general relativity (GR).
In the near term, the most exacting measurements of

black hole geometries will be made possible with the
launch of the space-based gravitational-wave detector
LISA in the early 2030s [9,10]. LISA will be sensitive

to the merger of supermassive black holes, and the post-
merger ringdown spectra from such systems will encode
precise information about the nature of the final, merged
object. Even more accurate measurements will be possible
with LISA observations of extreme-mass-ratio inspirals
(EMRIs), in which stellar-mass objects slowly spiral into
massive black holes [11,12]. The companion in an EMRI
acts as a probe of the massive black hole’s geometry,
performing ∼104 or more intricate orbits while in the LISA
band, most or all of them within 10 Schwarzschild radii of
the black hole. The emitted, long-lived waveforms have a
rich harmonic structure carrying detailed information about
the black hole (or exotic compact object) spacetime.
Measurements of this kind, with precise characteriza-

tions of deviations from GR’s black hole spacetimes, are
possible because of the remarkable simplicity of isolated
black holes in GR. In the postmerger ringdown phase, and
through all phases of an EMRI, the spacetime can be
approximated as that of an isolated, stationary black hole
subject to small perturbations—either quasinormal modes
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after a merger or the perturbations generated by the
companion in an EMRI. In GR, an isolated black hole is
uniquely described by the Kerr-Newman metric, which is
fully specified by its mass, spin, and charge. In an
astrophysical scenario, a black hole is unlikely to carry
charge, as any nonzero charge will be quickly neutralized.
Therefore an astrophysical black hole in GR should be
uniquely described as a Kerr black hole, which has a unique
set of quasinormal modes and a unique multipole structure
that are fully determined by the black hole’s mass and spin.
By measuring the ringdown spectrum or the black hole’s
multipole structure, we can detect small deviations from the
Kerr geometry.
These prospects have motivated increasingly accurate

theoretical studies of dynamically perturbed black holes in
GR, moving beyond traditional linearized black hole
perturbation theory onto second-order perturbation theory.
There are ongoing efforts to calculate second-order effects
in the ringdown of Kerr black holes [13–15] (building on
earlier work in Ref. [16]). And there is now a large body of
work on EMRI models using gravitational self-force
theory. In this method, the metric is expanded in p
owers of the binary’s mass ratio m=M, where M is the
central black hole’s mass and m the small companion’s.
The perturbations effectively exert a self-force on the
companion, accelerating it away from geodesic motion
in the Kerr background. Surveys of self-force theory and
EMRI modeling can be found in the recent reviews [17,18].
It is well known that EMRI models sufficiently accurate

for LISA science must be carried to second perturbative
order in m=M. Recently, Pound et al. reported the first
calculation of a physical quantity at that order [19]: the
second-order contribution to the binding energy of quasi-
circular orbits around a Schwarzschild black hole. This
calculation required a measurement of the Bondi mass of
the binary, but also of the mass of the central black hole. In
this paper, we take that calculation as the starting point for a
more comprehensive study of perturbed Schwarzschild
black holes at second order in perturbation theory. More
specifically, we analyze the location and properties of a
black hole’s perturbed horizon(s).

B. Black hole horizons

In principle, the defining feature of a black hole is its
event horizon. However, event horizons are intrinsically
teleological surfaces: we can only identify their precise
location if we know the entire future history of the universe.
This has motivated the development of alternative ways of
characterizing dynamically evolving black holes based on
locally identifiable criteria [20–28]. The common charac-
terization is via an apparent horizon or marginally outer
trapped surface. Such a surface is defined in terms of the
local-in-time, rather than global-in-time, behavior of null
rays: given a slice of spacetime, an orientable, closed,
spacelike 2-surface within the slice is a marginally outer

trapped surface if future-directed null rays passing ortho-
gonally outward through it have zero expansion. The
apparent horizon is the outermost of these surfaces in
the slice.
In GR, assuming appropriate energy conditions, the

existence of an apparent horizon implies the presence of
an event horizon, and the apparent horizon always either
coincides with the event horizon or lies entirely inside the
black hole. The converse is not true: the apparent horizon
depends on one’s foliation of spacetime, and one can find
pathological foliations in which no apparent horizon is
present on a slice even though the slice cuts through the
event horizon [29]. However, for reasonable choices of
foliation [30], the apparent horizon in a binary spacetime is
found to be an excellent proxy for the event horizon except
at moments very near merger [31].
Event and apparent horizons have been extensively

studied and compared in numerical relativity; see,
for example, Refs. [25,31–36]. There is also a long history
of research on linear perturbations of horizons. In
recent years, perturbed horizons have been studied in
Refs. [37–41], building on much earlier work in
Refs. [42–46], for example. The series of papers [39–41]
by O’Sullivan, Hughes, and Penna, in particular, have
examined linearly perturbed black hole horizons specifi-
cally in EMRI scenarios at times significantly before the
companion plunges into the black hole. A related line of
work has examined linearly perturbed horizons in the
specific case of a plunging companion [47–50].
Our treatment extends these analyses to second pertur-

bative order, restricted to a Schwarzschild background and
largely following Poisson and collaborators’ treatment of
the linear case in Refs. [37,38]. The extension to second
order is necessary for the calculation of mechanical
quantities in binaries, such as the binding energy in
Ref. [19]. But the extension is also interesting for one
other major reason: in a binary inspiral, at times after
merger or significantly before, it is precisely at second
order that the apparent horizon (on a naturally chosen
slicing) becomes distinguishable from the event horizon. It
is also at this order that various definitions of the black
hole’s properties begin to differ. For example, there is a
natural, unambiguous measure of the black hole’s mass at
linear order, but at second order one can define various
nonequivalent measures of mass. In Ref. [19], Pound et al.
specifically calculated the irreducible mass of the apparent
horizon. Here, we show that the irreducible masses of the
apparent and event horizon differ at second order, but that
their Hawking mass (and Hawking-Hayward mass)
remains identical.

C. Outline and summary

In Sec. II we begin by reviewing basic methods in black
hole perturbation theory. We emphasize two-timescale
expansions, which play an important role in our
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characterization of the event horizon in small-mass-ratio
binaries. In Sec. III, we analyze the geometry of a generic
3-surface, foliated by spacelike 2-surfaces, near the back-
ground horizon; in later sections, this will be either the
apparent or event horizon. We derive second-order pertur-
bative formulas for the surface’s intrinsic metric, surface
area, Hawking mass, and scalar curvature.
In Secs. IV and V, we then obtain second-order formulas

for the location of the apparent and event horizon in terms
of the perturbations of the metric. We show that in a small-
mass-ratio binary, the event horizon can be localized in time
except in the final phase of inspiral, when the companion
transitions into a plunging orbit.
Section VI constructs simplified, gauge-invariant ver-

sions of the horizons’ area, mass, and curvature. Using
these measures, we show that in a dynamical region of
spacetime, the apparent and event horizon first differ from
one another at second perturbative order. We derive simple
formulas relating their radial profiles, surface areas, masses,
and curvatures. As alluded to above, we show that despite
their other differences, the two horizons have identical
Hawking mass through second order.
Next, in Sec. VII, we specialize to the case of quasicir-

cular inspirals. In that context, we demonstrate numerically
that the difference between the horizons’ surface areas
remains extremely small until near the innermost stable
circular orbit (ISCO), and we explain how the same is true
for generic inspirals. We also examine the shape and
location of the horizon at linear order, where we highlight
two aspects. First, we emphasize that because the two
horizons are identical at linear order, behavior that has
previously been described as teleological must actually be
entirely causal, and we suggest a nonteleological explan-
ation for it. Second, we discuss a physically meaningful
effect that has been omitted from previous depictions of the
horizon at linear order: the motion of the black hole around
the binary’s center of mass. We show that well-motivated
definitions of the black hole’s “position” do not have the
expected Newtonian limit for large orbital radii, suggesting
a more robust analysis is required.
We conclude in Sec. VIII with a discussion of the

implications of our results and their possible future devel-
opments. Among other applications, our results may be
useful in sharpening the observed symmetry between
quantities on the horizon and quantities at asymptotic
infinity [51] and in concretely calculating black hole
memory effects in realistic scenarios [52,53].
Although motivated by EMRIs (and other small-mass-

ratio systems such as intermediate-mass-ratio inspirals),
most of our analysis applies to completely generic pertur-
bations. Our only restriction is that in the intervals of time
we consider, the number of null generators on the event
horizon must remain fixed. This restriction is violated
when additional generators join the horizon via caustics, as
occurs when a body plunges into the black hole [47–50].

In the case of a binary inspiral, our analysis therefore fails
in an interval containing the final plunge. However, for
reasons explained in Sec. V, our analysis remains valid until
shortly before the transition to plunge.

II. SECOND-ORDER PERTURBATIONS OF
SCHWARZSCHILD SPACETIME

We begin in this section with an overview of the basic
tools and conventions we use: second-order perturbation
theory, the Schwarzschild metric, tensor spherical harmon-
ics, and two-timescale expansions. Throughout the paper,
we use geometric units with G ¼ c ¼ 1.

A. Perturbation theory through second order

We assume the spacetime metric gαβðϵÞ depends on a
small parameter ϵ, and we expand the metric up to second
order,

gαβðϵÞ ¼ gð0Þαβ þ ϵhð1Þαβ þ ϵ2hð2Þαβ þOðϵ3Þ; ð1Þ

where gð0Þαβ is the background metric and hð1Þαβ , h
ð2Þ
αβ are,

respectively, the first- and second-order metric perturba-
tions. In the context of a small-mass-ratio binary, ϵ will be
the small mass ratio m=M, but in most of our analysis we
work with generic perturbations due to an unspecified
source. It will sometimes be convenient to use the total
perturbation

hαβ ¼ ϵhð1Þαβ þ ϵ2hð2Þαβ þOðϵ3Þ: ð2Þ

We focus on a region around the black hole, where we
assume the spacetime is vacuum, satisfying the vacuum
Einstein equation

Rαβ½gðϵÞ� ¼ 0: ð3Þ

Substituting the expansion (1) into the Ricci tensor, one
obtains

Rαβ½gðϵÞ� ¼ Rαβ þ ϵδRαβ½hð1Þ� þ ϵ2δRαβ½hð2Þ�
þ ϵ2δ2Rαβ½hð1Þ� þOðϵ3Þ; ð4Þ

where δRαβ is linear in its argument and δ2Rαβ is quadratic
in its argument; this expansion is reviewed in Appendix A.
Equation (3) then becomes a sequence of equations, one at
each order in ϵ:

Rαβ½gð0Þ� ¼ 0; ð5Þ

δRαβ½hð1Þ� ¼ 0; ð6Þ

δRαβ½hð2Þ� ¼ −δ2Rαβ½hð1Þ�: ð7Þ

DEFORMED SCHWARZSCHILD HORIZONS IN SECOND-ORDER … PHYS. REV. D 105, 024048 (2022)

024048-3



The zeroth-order equation states that the background metric
must be a vacuum solution. The first-order equation is the
standard linearized Einstein equation. In the second-order

equation, the second-order perturbation hð2Þαβ is sourced by
quadratic combinations of the first-order perturbation.
In this paper, we will not focus our attention on solving

these equations; we refer to Refs. [18,54,55] for descrip-
tions of practical methods of obtaining solutions at first and
second order in the case of a Schwarzschild background.
Instead, taking the solution as a given, we analyze the effect
the perturbations have on the black hole’s horizons. For the
most part, as stated above, we allow the perturbation to be
completely generic. However, at various points, we spe-
cialize to an important class of perturbations that depend on
two disparate timescales, and in the final section of the
paper we numerically compute properties of the horizon in
the specific scenario of a quasicircular inspiral.
Most of our analysis will also leave the gauge of the

metric perturbations unspecified. But one aspect of our
calculations will make critical use of the gauge freedom
within perturbation theory. In the perturbative context a
gauge transformation corresponds to the infinitesimal
coordinate transformation [56]

x0μ ¼ xμ − ϵξμð1Þ − ϵ2
�
ξμð2Þ −

1

2
ξνð1Þ∂νξ

μ
ð1Þ

�
þOðϵ3Þ; ð8Þ

under which the metric perturbations transform to

h0ð1Þαβ ¼ hð1Þαβ þ Lξð1Þg
ð0Þ
αβ ; ð9Þ

h0ð2Þαβ ¼ hð2Þαβ þ Lξð2Þg
ð0Þ
αβ þ 1

2
L2
ξð1Þg

ð0Þ
αβ þ Lξð1Þh

ð1Þ
αβ : ð10Þ

Our conventions here follow Ref. [57].

B. Schwarzschild background

Throughout this paper, we take gð0Þαβ to be the
Schwarzschild metric. We follow Refs. [38,54] by writing
the spacetime manifold as the Cartesian product
M ¼ M2 × S2, with M2 charted by, for example, xa ¼
ðt; rÞ or xa ¼ ðv; rÞ, and S2 charted by, for example, polar
coordinates θA ¼ ðθ;ϕÞ. The background 4-metric is then
divided into an induced metric on each submanifold,

gð0Þμν dxμdxν ¼ gð0Þab dx
adxb þ r2ΩABdθAdθB: ð11Þ

Here r is the areal radius and ΩAB is the metric on the unit
sphere. On M2 we exclusively use ingoing Eddington-
Finkelstein coordinates, ðv; rÞ, such that

gð0Þab dx
adxb ¼ −fðrÞdv2 þ 2dvdr; ð12Þ

where fðrÞ ¼ 1 − 2M
r . On S2 we for the most part work

covariantly, without specifying coordinates.
Our conventions for covariant derivatives and for raising

and lowering indices are somewhat nonstandard. ∇μ

denotes the covariant derivative compatible with the exact
metric, gαβ, and we use gαβ and its inverse, gαβ, to raise and
lower Greek indices on nonperturbative quantities. ð0Þ∇μ

and a semicolon denote the covariant derivative compatible

with gð0Þαβ . For the most part, we avoid raising or lowering
indices on perturbative quantities, but for the sake of

brevity we occasionally use gð0Þαβ and its inverse, gαβð0Þ, for
that purpose; in such instances, we explicitly warn the
reader that we have done so. We also introduce DA as the
covariant derivative compatible with the unit-sphere metric
ΩAB. We use ΩAB and its inverse, ΩAB, to raise and lower
indices on quantities associated with ΩAB, such as DA and
ϵAB (the Levi-Civita tensor associated withΩAB). We do not
use them to raise or lower capital Latin indices on other
quantities.
We refer to Sec. II of Ref. [54] for additional useful

identities related to the 2þ 2 split of the Schwarzschild
metric.

C. Tensor spherical harmonics

Given Schwarzschild spacetime’s spherical symmetry, it
is often convenient to expand quantities in spherical
harmonics. With an appropriate choice of spherical basis
functions, the Einstein equations separate into decoupled
equations for each lm mode. In this paper, we assume that
the metric perturbation is obtained mode by mode in this
way. Such a harmonic decomposition will also allow us to
easily solve the differential equations governing the loca-
tion of the horizon and to evaluate various integrals over the
horizon surface.
For the harmonics we adopt the conventions of Martel

and Poisson [54]. We start with the scalar spherical
harmonics, YlmðθAÞ, which satisfy the eigenvalue equation

D2Ylm ¼ −λ21Ylm; ð13Þ

where D2 ≔ DADA and λs is defined for any integer s in
Eq. (B13). From the scalar harmonics we define the vector
harmonics

Ylm
A ≔ DAYlm; ð14Þ

Xlm
A ≔ −ϵABDBYlm: ð15Þ

Ylm
A , Xlm

A are respectively referred to as even-parity and odd-
parity vector harmonics. Finally we define the even- and
odd-parity tensor harmonics
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Ylm
AB ≔ DADBYlm þ 1

2
λ21ΩABYlm; ð16Þ

Xlm
AB ≔

1

2
ðDAXlm

B þDBXlm
A Þ; ð17Þ

which are both symmetric and trace-free with respect
to ΩAB.
These harmonics satisfy the orthogonality relationsZ

ȲlmYl0m0
dΩ ¼ δll

0
δmm0

; ð18Þ
Z

Ȳlm
A YA

l0m0dΩ ¼ λ21δ
ll0δmm0

; ð19Þ
Z

X̄lm
A XA

l0m0dΩ ¼ λ21δ
ll0δmm0

; ð20Þ
Z

X̄lm
A YA

l0m0dΩ ¼ 0; ð21Þ
Z

Ȳlm
ABY

AB
l0m0dΩ ¼ 1

2
λ22δ

ll0δmm0
; ð22Þ

Z
X̄lm
ABX

AB
l0m0dΩ ¼ 1

2
λ22δ

ll0δmm0
; ð23Þ

Z
Ȳlm
ABX

AB
l0m0dΩ ¼ 0: ð24Þ

Here dΩ is the surface element on the unit sphere, and we
use ΩAB to raise indices. An overbar denotes complex
conjugation; the harmonics of all ranks satisfy identities of
the form

Ȳlm ¼ ð−1ÞmYl−m: ð25Þ
It will be useful to split tensors on S2 into their trace-free

and traceful parts,

TAB ¼ ThABi þ T∘ΩAB; ð26Þ

where ΩABThABi ¼ 0 and T∘ ≔ 1
2
ΩABTAB. Given this split,

we expand the metric perturbations in spherical harmonics
according to

hðnÞab ¼
X
lm

hðnlmÞ
ab Ylm; ð27Þ

hðnÞ∘ ¼
X
lm

hðnlmÞ∘ Ylm; ð28Þ

hðnÞaA ¼
X
lm

ðhðnlmÞ
aþ Ylm

A þ hðnlmÞ
a− Xlm

A Þ; ð29Þ

hðnÞhABi ¼
X
lm

ðhðnlmÞ
þ Ylm

AB þ hðnlmÞ
− Xlm

ABÞ: ð30Þ

Each of the coefficients hðnlmÞ
ab , hðnlmÞ∘ , hðnlmÞ

a� , and hðnlmÞ
� is a

function of v and r.
Our second-order calculations will naturally

involve products of functions on S2, and we will need to
decompose such products into harmonics. As the simplest
example, consider

R
ψðθAÞχðθAÞdΩ, which is (up to a

factor of 1=
ffiffiffiffiffiffi
4π

p
) the scalar monopole mode of the product

ψχ. Expanding each function in harmonics, as ψ ¼P
lm ψ lmYlm and χ ¼ P

lm χlmYlm, and using Eqs. (18)
and (25), we obtainZ

ψχdΩ ¼
X
lm

ψ lmχ̄lm ¼
X
lm

ψ̄ lmχlm; ð31Þ

where we have used the fact that χ̄lm ¼ ð−1Þmχl−m for any
real-valued function χðθAÞ. The analogous rule applies for
integrals of the form

R
ψAΩABχBdΩ and

R
ψACΩAB

ΩCDχBDdΩ. In Appendix B we describe our procedure
for evaluating more general integrals.

D. Two-timescale expansion

Most of our analysis utilizes regular perturbation theory,
in which the coefficients hðnÞαβ in Eq. (1) are independent of
the small parameter ϵ. However, at various points we adopt
an expansion that is better suited to a small-mass-ratio
binary: a two-timescale expansion. We refer to textbooks
on singular perturbation theory for introductions to the
method (e.g., [58]). In the particular context of an inspiral
into a black hole, the use of the method is inspired by the
fact that during the inspiral, the system evolves on two
distinct timescales: the short orbital timescale ∼1=Ω ∼M
associated with the companion’s orbital frequency Ω; and
the long radiation-reaction time trr ∼Ω=ðdΩ=dtÞ ∼M=ϵ,
over which the orbital frequencies evolve due to gravita-
tional-wave emission. A two-timescale expansion allows us
to maintain accuracy on both timescales, while regular
perturbation theory would break down well before a
radiation-reaction time [18].
Concretely, an orbiting, nonspinning body in the equa-

torial plane of Schwarzschild spacetime has two indepen-
dent frequencies, Ωr and Ωϕ, associated with radial and
azimuthal motion. Specialized to a region around the
horizon, the two-timescale ansatz for the metric is then

gαβ ¼ gð0Þαβ þ
X
n≥1

X
k

ϵnhðn;kÞαβ ðṽ; r; θAÞe−iφk ; ð32Þ

where φk ≔ kiφi, and the sum runs over all pairs of integers
k ¼ ki ¼ ðkr; kϕÞ. In this expansion we have introduced the
slow time variable ṽ ≔ ϵv and the orbital phases
φi ¼ ðφr;φϕÞ, which are given by

φiðv; ϵÞ ¼
Z

v

0

Ωiðϵv0Þdv0 þ φið0; ϵÞ ð33Þ
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or equivalently, dφi=dv ¼ Ωi; the unspecified lower limit
in Eq. (33) represents an arbitrary choice of initial con-
dition. The metric perturbations in Eq. (32) hence have the
character of a sum of slowly varying amplitudes multiplied
by rapidly varying phase factors. We refer to Refs. [18,59]
for more detailed descriptions of such two-timescale
expansions of the metric, which are further developments
of Hinderer and Flanagan’s seminal work on the two-
timescale expansion of inspiral orbits [60]. Such an
approximation should be uniformly accurate until a time
shortly before the inspiraling body transitions to a plunging
orbit [61]; we describe that cutoff in Sec. V.
Treated as a function of the coordinates xα on M, the

coefficients of ϵn in the expansion (32) depend on ϵ,
meaning (32) is not a Taylor series around ϵ ¼ 0; this is a
defining characteristic of singular perturbation theory [62].
However, the dependence on ϵ comes in a circumscribed
form that allows us to solve the field equations through
any desired order on the radiation-reaction timescale. We
can also view Eq. (32) as a regular Taylor expansion of a
field on a higher-dimensional manifold M̃ charted by
ðṽ;φi; r; θAÞ. M is embedded into this larger manifold
with a map Tϵ∶M → M̃ defined by Tϵðv; r; θAÞ ¼
½ϵv;φiðv; ϵÞ; r; θA�. After performing the ordinary Taylor
expansion of the function on M̃, we then pull it back to its
restriction on the physical spacetime manifold M.
Quantities on the horizon inherit the metric’s two-time-

scale form, which has several important consequences.
First, v derivatives involve terms that are suppressed by one
order in ϵ. To see this, let χ̃ be a field on M̃, and let χ
be its restriction to M, such that χ̃½ϵv;φiðv; ϵÞ; r; θA� ¼
χðv; r; θAÞ. The v derivative of χ then becomes

dχ
dv

¼ ϵ
∂χ̃
∂ṽþΩi

∂χ̃
∂φi

: ð34Þ

The first term, which characterizes the field’s slow evolu-
tion, will be demoted to the next order, such that if χ
appears on the horizon at first perturbative order, for
example, then its ṽ derivative will contribute to second-
order quantities on the horizon. For notational simplicity,
we will not distinguish between χ̃ and its pullback χ.
The second consequence of the two-timescale expansion

is that it transforms differential equations in v into algebraic
ones. Suppose we have a differential equation governing a
quantity’s behavior on the horizon, of the form

dχðv; ϵÞ
dv

¼ Sðv; ϵÞ: ð35Þ

If we expand in the Fourier series χðvÞ ¼ P
k χkðṽÞe−iφk

and SðvÞ ¼ P
k SkðṽÞe−iφk , then at leading order Eq. (35)

becomes

−iΩkχk ¼ Sk; ð36Þ

where Ωk ≔ kiΩi. This kind of transformation is one of the
key utilities of the two-timescale expansion. For example, it
puts the Einstein field equations (6) into precisely the same
form they would have in a standard frequency-domain
treatment, while correctly capturing the system’s slow
evolution.
Transforming differential equations in this way implic-

itly localizes them in time: rather than having to integrate
over v from some initial condition, we algebraically
determine the solution at a given value of slow time ṽ.
This is especially relevant for the event horizon, which is
inherently a nonlocal-in-time surface that depends on the
spacetime’s distant future. The underlying reason for this
localization in time is that integrals over large ranges of v
collapse to local-in-ṽ quantities when the integral contains
multiple timescales. For example, consider the integralR
∞
v Fðϵv0Þe−iφkðv0;ϵÞdv0, which extends from the present
time v into the infinite future. If F=Ωk vanishes when
v → ∞, then we can repeatedly integrate by parts to obtain1Z

∞

v
Fðϵv0Þe−iφkðv0;ϵÞdv0

¼ e−iφkðv;ϵÞ
�
FðṽÞ
iΩkðṽÞ

þ ϵ

iΩk

d
dṽ

FðṽÞ
iΩkðṽÞ

þ oðϵÞ
�
: ð37Þ

Depending on the behavior of F and Ωi in the far future,
this approximation can be carried to arbitrary order in ϵ,
making nonlocal effects arbitrarily small. We will see in
Sec. V how this type of approximation applies to the
location of the event horizon.
Because it cleanly separates slow and fast evolution, a

two-timescale expansion also allows us to unambiguously
identify the time average of a quantity as the zero mode in
its fast-time Fourier series:

hχi ≔ 1

ð2πÞ2
I

χðṽ;φiÞd2φ ¼ χ0ðṽÞ: ð38Þ

This will enable us to characterize the black hole’s average
evolution, discarding fluctuations on the orbital timescale.
Finally, we note that the mode number kϕ is precisely

the azimuthal mode number m. This is because, due to the
background spacetime’s axisymmetry, the small body’s
stress-energy can only depend on ϕ and φϕ in the
combination ðϕ − φϕÞ, and the metric perturbations inherit
that dependence; see Sec. 7.1 of Ref. [18]. As a conse-
quence, we can write the expansion (32) in the form

1For resonant modes that pass through Ωk ¼ 0 for some value
of ṽ [63], this approximation breaks down. The integral should in
that case be approximated using the stationary-phase approxi-
mation [18]. For simplicity we exclude resonances from our
analysis.
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hαβ ¼
X
n≥1

X
m;k

ϵnhðnmkÞ
αβ ðṽ; r; θAÞe−iðmφϕþkφrÞ: ð39Þ

For the quasicircular orbits we consider in Sec. VII, this
reduces to

hαβ ¼
X
n≥1

X∞
m¼−∞

ϵnhðnmÞ
αβ ðṽ; r; θAÞe−imφϕ : ð40Þ

III. GEOMETRY OF A PERTURBED HORIZON

Before considering the apparent horizon and event
horizon in detail, we begin by describing the geometry
of a generic 3-surface H close to the background horizon,
which may be either of the two horizons. This serves to set
our notation and to present formulas that will be common to
both horizons.
Over the course of the section, we introduce a convenient

basis of vectors and the induced metric on the surface, and
we then derive perturbative formulas for the horizon’s
surface area and intrinsic curvature. We conclude by show-
ing the consistency between our formulas for the area and
curvature, as dictated by the Gauss-Bonnet theorem.

A. Embedding and induced metric

As coordinates on H, we use the extrinsic coordinates
yi ¼ ðv; θAÞ. H is then described by an embedding

xαHðyi; ϵÞ ¼ ½v; rHðyi; ϵÞ; θA�: ð41Þ

We assume that the perturbed horizon’s radial profile can be
written as an expansion around the background horizon
radius:

rH ¼ 2M þ ϵrð1ÞðyiÞ þ ϵ2rð2ÞðyiÞ þOðϵ3Þ: ð42Þ

The perturbations rðnÞ will depend on whether H is the
apparent horizon or the event horizon. In Secs. IVand V, we

express rðnÞ in terms of the metric perturbations hðnÞαβ in each
of the two cases.
The embedding (41) defines a basis of vectors fields

tangent to H,

eαi ∂α ¼
∂xαH
∂yi ∂α ¼ ∂i þ

∂rH
∂yi ∂r: ð43Þ

In terms of these tangent vectors, the induced metric onH is

γij ¼ eαi e
β
j gαβ: ð44Þ

However, we will be more interested in the foliation of H
into spacelike slices of constant v, Hv, on which we use
coordinates θA. The basis of vectors tangent to Hv is

eαA∂α ¼
∂xαH
∂θA ∂α ¼ ∂A þ ∂rH

∂θA ∂r; ð45Þ

and the induced metric on Hv is

γAB ¼ eαAe
β
Bgαβ: ð46Þ

If we substitute the expandedmetric (1), we can write this as

γAB ¼ γð0ÞAB þ ϵγð1ÞAB þ ϵ2γð2ÞAB þOðϵ3Þ; ð47Þ

where γð0ÞAB ≔ eαAe
β
BgαβðxμHÞ and γðnÞAB ≔ eαAe

β
Bh

ðnÞ
αβ ðxμHÞ for

n > 0. The components of γAB are functions of the coor-
dinates θA on Hv, and they inherit an additional parametric
dependence on v.
We do not provide more explicit expressions for the

coefficients γðnÞAB because we ultimately perform an addi-
tional expansion of them. This second expansion is called
for because Eq. (47) is written in terms of tensors at points
on Hv. It will generally be more useful to expand all such
tensors around their values on the background horizon. By
substituting the expansion (42), we can expand any tensor’s
components Tα

β on Hv as

Tα
βðv; rH; θAÞ ¼ Tα

βðv; 2M; θAÞ þ ϵrð1Þ∂rTα
β

þ ϵ2rð2Þ∂rTα
β þ

1

2
ϵ2ðrð1ÞÞ2∂2

rTα
β

þOðϵ3Þ; ð48Þ

where derivatives of Tα
β on the right are evaluated at

ðv; 2M; θAÞ. Geometrically, this represents an expansion of
the pullback φ�Tα

β, where φ∶ðv; 2M; θAÞ ↦ ðv; rH; θAÞ
maps points on the background horizon to points on the
perturbed horizon. The pullback can be expressed in terms
of Lie derivatives as φ�Tα

β ¼ eδrHLΞTα
β with δrH ≔ rH −

2M and Ξα∂α ¼ ∂r.
Performing such an expansion for the induced metric, we

find

γAB ¼ 4M2ΩAB þ ϵγ̆ð1ÞAB þ ϵ2γ̆ð2ÞAB þOðϵ3Þ; ð49Þ

where

γ̆ð1ÞAB ¼ hð1ÞAB þ 4Mrð1ÞΩAB; ð50Þ

γ̆ð2ÞAB ¼ hð2ÞAB þ 4Mrð2ÞΩAB þ 2hð1ÞrðADBÞrð1Þ

þ rð1Þ∂rh
ð1Þ
AB þ ðrð1ÞÞ2ΩAB: ð51Þ

All quantities on the right are evaluated at ðv; 2M; θAÞ. The
inverse metric is then
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γAB ¼ 1

4M2
ΩAB −

ϵ

ð4M2Þ2Ω
ACΩBDγ̆ð1ÞCD

−
ϵ2

ð4M2Þ2 Ω
ACΩBDγ̆ð2ÞCD

þ ϵ2

ð4M2Þ3Ω
ACΩBEΩDFγ̆ð1ÞCDγ̆

ð1Þ
EF þOðϵ3Þ: ð52Þ

Similarly, the basis vectors (45) on Hv become

eαA ¼ ĕð0ÞαA þ ϵĕð1ÞαA þ ϵ2ĕð2ÞαA þOðϵ3Þ; ð53Þ

with

ĕð0ÞαA ∂α ¼ ∂A; ð54Þ

ĕð1ÞαA ∂α ¼ DArð1Þ∂r; ð55Þ

ĕð2ÞαA ∂α ¼ DArð2Þ∂r: ð56Þ

Later calculations will require the expansion of these
quantities in spherical harmonics. We write the radial
perturbations as

rðnÞðv; θAÞ ¼
X
lm

rðnÞlm ðvÞYlmðθAÞ; ð57Þ

and we write γ̆ðnÞAB ¼ γ̆ðnÞhABi þ γ̆ðnÞ∘ ΩAB as

γ̆ðnÞ∘ ¼
X
lm

γ̆ðnlmÞ∘ ðvÞYlmðθAÞ; ð58aÞ

γ̆ðnÞhABi ¼
X
lm

�
γ̆ðnlmÞ
þ ðvÞYlm

AB þ γ̆ðnlmÞ
− ðvÞXlm

AB

�
: ð58bÞ

The coefficients γ̆ðnlmÞ∘ and γ̆ðnlmÞ
� are straightforwardly

expressed in terms of the coefficients in the harmonic

expansions of hðnÞαβ and rðnÞ. At first order,

γ̆ð1lmÞ∘ ¼ hð1lmÞ∘ þ 4Mrð1Þlm ; ð59aÞ

γ̆ð1lmÞ
� ¼ hð1lmÞ

� : ð59bÞ

At second order, we must decompose products of
harmonics into pure harmonics, as described in
Appendix B. The result is

γ̆ð2lmÞ∘ ¼ hð2lmÞ∘ þ 4Mrð2Þlm

þ
X
l0m0
l00m00

�
ð1ÞΓlm

l0m0l00m00 ðvÞClm0
l0m01l00m00−1

þ ð0ÞΓlm
l0m0l00m00 ðvÞClm0

l0m00l00m000

�
; ð60aÞ

γ̆ð2lmÞ
� ¼ hð2lmÞ

� þ
X
l0m0
l00m00

�
ð2ÞΓlm�

l0m0l00m00 ðvÞClm2
l0m02l00m000

þ ð1ÞΓlm�
l0m0l00m00 ðvÞClm2

l0m01l00m001

�
; ð60bÞ

where the C symbols are given in Eq. (B15), and their
v-dependent coefficients are given by

ð0ÞΓlm
l0m0l00m00 ¼ rð1Þl0m0∂rh00∘ þ rð1Þl0m0r

ð1Þ
l00m00 ; ð61aÞ

ð1ÞΓlm
l0m0l00m00 ¼ −

λ01λ
00
1

2
rð1Þl00m00 ðσþh0rþ − iσ−h0r−Þ; ð61bÞ

ð2ÞΓlmþ
l0m0l00m00 ¼ λ02

2λ2
rð1Þl00m00 ðσþ∂rh0þ − iσ−∂rh0−Þ; ð61cÞ

ð1ÞΓlmþ
l0m0l00m00 ¼ λ01λ

00
1

λ2
rð1Þl00m00 ðσþh0rþ − iσ−h0r−Þ; ð61dÞ

ðsÞΓlm−
l0m0l00m00 ¼ ðsÞΓlmþ

l0m0l00m00 with σ� → −iσ∓: ð61eÞ

Here we use the compact notation described in
Appendix C. These formulas will substantially collapse
in Sec. VI.

B. Null basis vectors

On each slice Hv we introduce a pair of future-directed
null vectors kα and nα. Both are orthogonal to Hv,
satisfying

gαβkαe
β
A ¼ 0; ð62Þ

gαβnαe
β
A ¼ 0: ð63Þ

kα is chosen to point outward from Hv, toward the
horizon’s exterior, and nα to point inward, into the black
hole’s interior. Together with eαA, these vectors form a basis
for 4-vectors at points on Hv. In the case of the event
horizon, kα will be the tangent vector of the horizon
generators; in the case of the apparent horizon, kα will
not, generically, be tangent to the surface H.
In both cases, we normalize kα such that kv ¼ 1, and we

scale nα such that it satisfies

gαβkαnβ ¼ −1: ð64Þ

RICCARDO BONETTO, ADAM POUND, and ZEYD SAM PHYS. REV. D 105, 024048 (2022)

024048-8



The metric can then be written as

gαβ ¼ −nαkβ − kαnβ þ γABeAαeBβ ; ð65Þ

where eAα ≔ γABgαβe
β
B, and the metric’s inverse can be

written as

gαβ ¼ −nαkβ − kαnβ þ γABeαAe
β
B: ð66Þ

Given the normalization kv ¼ 1, the orthonormality
conditions (62)–(64) uniquely determine kα and nα in
terms of rH, DArH, and ΩAB. Assuming expansions of
the form

kα ¼ kαð0Þ þ ϵkαð1Þ þ ϵ2kαð2Þ þOðϵ3Þ; ð67Þ

and analogous for nα, we can solve the orthonormality
equations for the coefficients at each order. At leading
order,

kαð0Þ∂α ¼ ∂v þ
1

2
½fðrHÞ − r−2H ΩABDArHDBrH�∂r

− r−2H DArHΩAB∂B; ð68Þ

nαð0Þ∂α ¼ −∂r: ð69Þ

We again elide explicit expressions for kαðnÞ and nαðnÞ to
higher order, instead presenting results for the re-expan-
sions around the background horizon,

kα ¼ k̆αð0Þ þ ϵk̆αð1Þ þ ϵ2k̆αð2Þ þOðϵ3Þ; ð70Þ

nα ¼ n̆αð0Þ þ ϵn̆αð1Þ þ ϵ2n̆αð2Þ þOðϵ3Þ: ð71Þ

The leading terms in these expansions are

k̆αð0Þ∂α ¼ ∂v; ð72Þ

n̆αð0Þ∂α ¼ −∂r: ð73Þ

The first subleading terms are

k̆αð1Þ∂α ¼ −
1

4M
ð2Mhð1Þvv − rð1ÞÞ∂r

−
1

4M2
ðhð1ÞvA þDArð1ÞÞΩAB∂B; ð74Þ

n̆αð1Þ∂α ¼
1

2
hð1Þrr ∂v þ hð1Þvr ∂r þ

1

4M2
hð1ÞrAΩAB∂B; ð75Þ

where all terms on the right are evaluated at ðv; 2M; θAÞ.
The second-order terms in kα are

k̆vð2Þ ¼ 0; ð76aÞ

k̆rð2Þ ¼
1

8M2

�
2Mrð2Þ − 4M2hð2Þvv þ ΩABhð1ÞvAh

ð1Þ
vB

þ 4M2hð1Þvv h
ð1Þ
vr − 4M2∂rh

ð1Þ
vv rð1Þ

− 2Mhð1Þvr rð1Þ − ðrð1ÞÞ2 − hð1ÞvAD
Arð1Þ

þ hð1ÞvAD
Arð1Þ −DArð1ÞDArð1Þ

�
; ð76bÞ

k̆Að2Þ ¼
1

16M4

�
ΩACΩBDhð1ÞBCh

ð1Þ
vD þΩABhð1ÞrB k̆

r
ð1Þ

− 4M2ΩABhð2ÞvB − 4M2ΩAB∂rh
ð1Þ
vBr

ð1Þ

þ 4MΩABhð1ÞvBr
ð1Þ − 4M2hð1Þvr DArð1Þ

þ 4Mrð1ÞDArð1Þ − 4M2DArð2Þ

þΩAChð1ÞBCD
Brð1Þ

�
: ð76cÞ

In our analysis we will not require the explicit expressions
for n̆αðnÞ beyond n ¼ 0, but we use them as a consistency

check in some of our calculations. We include them here for
completeness:

n̆vð2Þ ¼
1

8M2

�
4M2hð2Þrr − hð1ÞrA h

ð1Þ
rBΩAB − 8M2hð1Þvr h

ð1Þ
rr

þ 4M2∂rh
ð1Þ
rr rð1Þ

�
; ð77aÞ

n̆rð2Þ ¼
1

8M2

�
8M2hð2Þvr − 2hð1ÞvAh

ð1Þ
rBΩAB − 6M2hð1Þvv h

ð1Þ
rr

þ 8M2∂rh
ð1Þ
vr rð1Þ þ 3Mhð1Þrr rð1Þ

− 8M2hð1Þvr h
ð1Þ
vr

�
; ð77bÞ

n̆Að2Þ ¼
ΩAB

16M4

�
4M2hð2ÞrB − 4M2hð1Þvr h

ð1Þ
rB − hð1ÞBCh

ð1Þ
rDΩCD

− 2M2hð1ÞvBh
ð1Þ
rr þ 4M2∂rh

ð1Þ
rB r

ð1Þ

− 4Mhð1ÞrB r
ð1Þ þ 2M2hð1Þrr DBrð1Þ

�
: ð77cÞ

C. Surface area and mass

The surface area of the slice Hv is given by the integral

A ¼
Z
Hv

ffiffiffi
γ

p
d2θ; ð78Þ

where γ is the determinant of the 2-metric γAB. By
substituting the expansion (49), we can write the surface
element as an expansion
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ffiffiffi
γ

p
d2θ ¼ 4M2

�
1þ ϵ

ffiffiffi
γ

p ð1Þ þ ϵ2
ffiffiffi
γ

p ð2Þ þOðϵ3Þ
�
dΩ; ð79Þ

where the subleading terms are

ffiffiffi
γ

p ð1Þ ¼ γ̆ð1Þ∘
4M2

; ð80Þ

ffiffiffi
γ

p ð2Þ ¼ γ̆ð2Þ∘
4M2

−
ΩACΩBDγ̆ð1ÞhABiγ̆

ð1Þ
hCDi

64M4
: ð81Þ

We omit breves on the quantities
ffiffiffi
γ

p ðnÞ for notational
simplicity.
To evaluate the integral, we appeal to the harmonic

expansions (58), orthogonality relations (18)–(24), and the
identity

R
Y00dΩ ¼ ffiffiffiffiffiffi

4π
p

. The result is

A ¼ 16πM2 þ ϵAð1Þ þ ϵ2Að2Þ þOðϵ3Þ; ð82Þ

where

Að1Þ ¼
ffiffiffiffiffiffi
4π

p
γ̆ð100Þ∘ ; ð83Þ

Að2Þ ¼
ffiffiffiffiffiffi
4π

p
γ̆ð200Þ∘

−
X
lm

λ22
32M2

�
jγ̆ð1lmÞ

þ j2 þ jγ̆ð1lmÞ
− j2

�
: ð84Þ

The area of the horizon provides a measure of the black
hole’s irreducible mass,

Mirr ≔
ffiffiffiffiffiffiffiffi
A
16π

r
; ð85Þ

sometimes called the Christodoulou mass. As its name
suggests, the irreducible mass cannot be lowered by any
(classical) physical process. Historically, this definition
arose from the case of a Kerr black hole [64], from which
some amount of energy can be extracted via the Penrose
process [65]. After substitution of the expansion (82), the
irreducible mass reads

Mirr ¼ M

�
1þ ϵ

Að1Þ

2Að0Þ þ ϵ2
4Að0ÞAð2Þ − ðAð1ÞÞ2

8ðAð0ÞÞ2
�
; ð86Þ

where Að0Þ ¼ 16πM2.
The irreducible mass is closely related to another

quasilocal measure of mass: the Hawking mass [66,67],

MH ≔ Mirr

�
1þ 1

8π

Z
Hv

ϑþϑ−
ffiffiffi
γ

p
d2θ

�
: ð87Þ

Here ϑ− ≔ γABeαAe
β
B∇αnβ and ϑþ ≔ γABeαAe

β
B∇αkβ are the

expansion scalars associated with nα and kα, respectively.

Unlike irreducible mass, which simply measures the area of
a surface, the Hawking mass directly involves the gravi-
tational pull at the surface, as characterized by the expan-
sion or contraction of the two null congruences. In our case,
ϑ− will always be negative, while θþ will be either zero or
positive. An apparent horizon is defined by θþ ¼ 0, mean-
ing MH ¼ Mirr for an apparent horizon. But for the event
horizon θþ > 0, meaningMH provides a simple alternative
measure of the mass within the event horizon.
We return to these quantities in later sections.

D. Intrinsic curvature

SinceHv is a 2-surface, its intrinsic curvature tensor can
be written in terms of its Ricci scalar as

RABCD ¼ 1

2
RðγACγBD − γADγBCÞ; ð88Þ

where we use a calligraphic R to avoid confusion with the
curvature tensor of the unit two-sphere. In this section, we
derive a perturbative formula forR through second order in ϵ,

R ¼ 1

2M2
þ ϵR̆ð1Þðv; θAÞ þ ϵ2R̆ð2Þðv; θAÞ þOðϵ3Þ: ð89Þ

To carry out the expansion, we consider the metric γAB ¼
γ̆ð0ÞAB þ γ̆AB with γ̆ð0ÞAB ≔ 4M2ΩAB. The scalar curvature of
this metric can be expanded in powers of γ̆AB as

R½γ� ¼ R½γ̆ð0Þ� þ δR½γ̆� þ δ2R½γ̆� þO½ðγ̆Þ3�; ð90Þ

following the notation in Appendix A. Explicitly,
Eqs. (A12) and (A13) (with RAB½γ̆ð0Þ� ¼ ΩAB) reduce to

δR½γ̆� ¼ 1

16M4
½DADBγ̆hABi − 2γ̆∘ −D2γ̆∘� ð91Þ

δ2R½γ̆� ¼ 1

64M6

�
3

4
DEγ̆CDDEγ̆AB −

1

2
DEγ̆CDDAγ̆EB

−DBγ̆
�
CDD

Eγ̆�AE − γ̆CDðDBDEγ̆AE

þDEDBγ̆AE − 2DADBγ̆∘ −D2γ̆ABÞ

þ γ̆ABγ̆CD

�
ΩACΩBD; ð92Þ

where γ̆�AB ¼ γ̆AB − 2ΩABγ̆∘. Letting γ̆AB ¼ ϵγ̆ð1ÞAB þ ϵ2γ̆ð2ÞABþ
Oðϵ3Þ, we then have

R̆ð1Þ ¼ δR½γ̆ð1Þ�; ð93Þ

R̆ð2Þ ¼ δR½γ̆ð2Þ� þ δ2R½γ̆ð1Þ�: ð94Þ

Decomposing these quantities into harmonics, we find at
first order
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Rð1Þ
lm ¼ 1

16M4

�
μ2γ̆ð1lmÞ∘ þ 1

2
λ22γ̆

ð1lmÞ
þ

�
; ð95Þ

where μ2 ≔ ðlþ 2Þðl − 1Þ. This agrees with the result from
Vega et al. [38]. Decomposing the quadratic quantity
δ2R½γ̆ð1Þ� requires decompositions of products of angular
functions into scalar harmonics. We perform that decom-
position following the method outlined in Appendix B,
eventually arriving at

Rð2Þ
lm ¼ 1

16M4

�
μ2γ̆ð2lmÞ∘ þ 1

2
ðλ2Þ2γ̆ð2lmÞ

þ

�

þ
X
l0m0
l00m00

�
ð3ÞRlm

l0m0l00m00Clm0
l0m03l00m00−3

þ ð2ÞRlm
l0m0l00m00Clm0

l0m02l00m00−2

þ ð1ÞRlm
l0m0l00m00Clm0

l0m01l00m00−1

þð0ÞRlm
l0m0l00m00Clm0

l0m00l00m000;

�
; ð96Þ

where the C symbols are given by Eq. (B15) and the
functions ðsÞRlm

l0m0l00m00 ðvÞ are given in Eq. (C1).

E. Gauss-Bonnet theorem

For any closed two-dimensional Riemannian surfaceS, the
Gauss-Bonnet theorem states that the surface’s total curvature
is related to its Euler characteristic χðSÞ according toZ

S
RdS ¼ 4πχðSÞ; ð97Þ

wheredS is the area element onS. Applied to our case, where
the surface Hv has the topology of a 2-sphere, the equality
becomes Z

Hv

R
ffiffiffi
γ

p
d2θ ¼ 8π: ð98Þ

In this section, we use this identity as a consistency check of
our results for the surface area and intrinsic curvature.
Substituting the expansions (79) and (89) into the left-

hand side of the identity, we obtain

Z
Hv

R
ffiffiffi
γ

p
d2θ ¼ 8π þ 4M2ϵ

�Z
R̆ð1ÞdΩþ Að1Þ

8M4

�

þ 4M2ϵ2
�Z

ðR̆ð2Þ þRð1Þ ffiffiffi
γ

p ð1ÞÞdΩ

þ Að2Þ

8M4

�
þOðϵ3Þ: ð99Þ

Here we have used 4M2
R ffiffiffi

γ
p ðnÞdΩ ¼ AðnÞ. Equating this

expansion to the right-hand side of Eq. (98) yields an
equation at each order in ϵ,

−
Að1Þ

8M4
¼

Z
R̆ð1ÞdΩ; ð100Þ

−
Að2Þ

8M4
¼

Z
ðR̆ð2Þ þ R̆ð1Þ ffiffiffi

γ
p ð1ÞÞdΩ: ð101Þ

The right-hand side of Eq. (100) evaluates toZ
R̆ð1ÞdΩ ¼

ffiffiffiffiffiffi
4π

p
R̆ð1Þ

00 ð102aÞ

¼ −
ffiffiffiffiffiffi
4π

p
γ̆ð100Þ∘

8M4
; ð102bÞ

where we have appealed to Eq. (95). Comparing this result
to Eq. (83) for Að1Þ, we see that Eq. (100) is satisfied.
Next, the right-hand side of Eq. (101) evaluates toZ
ðR̆ð2Þ þ R̆ð1Þ ffiffiffi

γ
p ð1ÞÞdΩ

¼
ffiffiffiffiffiffi
4π

p
R̆ð2Þ

00 þ
X
lm

R̄ð1Þ
lm

ffiffiffi
γ

p ð1Þ
lm ð103aÞ

¼ −
ffiffiffiffiffiffi
4π

p
γ̆ð200Þ∘

8M4
þ

ffiffiffiffiffiffi
4π

p
δ2R00½γ̆ð1Þ�

þ 1

128M6

X
lm

�
2μ2jγ̆ð1lmÞ∘ j2þλ22γ̄

ð1lmÞ
þ γ̆ð1lmÞ∘

�
: ð103bÞ

To avoid stacking bars on top of breves, here we let an
overbar denote the complex conjugate of a quantity that
otherwise would carry a breve. The monopole mode of the
quadratic term in Eq. (96) can be simplified to

δ2R00½γ̆ð1Þ� ¼
1ffiffiffiffiffiffi

4π
p

256M6

X
lm

�
−4μ2jγ̆ð1lmÞ

o j2

þ λ22ðjγ̆ð1lmÞ
− j2 þ jγ̆ð1lmÞ

þ j2Þ − 2λ22γ̄
ð1lmÞ
þ γ̆ð1lmÞ∘

�
:

ð104Þ
Substituting this into Eq. (103) and comparing the result to
Eq. (84) for Að2Þ, we find that Eq. (101) is satisfied.

IV. APPARENT HORIZON

We now consider the apparent horizon. In this section,
we obtain a perturbative description of the horizon’s radial
profile in terms of the metric perturbation. The horizon’s
area, mass, and curvature are then given by the generic
formulas of the previous section. Our notation and con-
ventions largely follow the textbook of Poisson [68].

A. Specification of the horizon

We first foliate the spacetime with surfaces Σv of
constant v. On each Σv, the apparent horizon Av is a
closed spatial 2-surface; this now plays the role ofHv from
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our generic treatment.2 On this surface, we have the two
future-directed null vector fields, kα and nα, that are
orthogonal to Av. To illuminate the definition of the
apparent horizon, we extend kα and nα off of Av by taking
them to be the tangent vector fields to congruences of null
curves, Ck and Cn, respectively. The choice of these
congruences is arbitrary; the curves making up Ck (Cn)
may be accelerating and nonaffinely parametrized, for
example, so long as they are tangent to kα (nα) at Av.
The congruences’ kinematics at Av are described by the 2-
tensors

Bþ
AB ≔ eαAe

β
B∇αkβ; ð105Þ

B−
AB ≔ eαAe

β
B∇αnβ; ð106Þ

and their expansion scalars are

ϑþ ≔ γABBþ
AB; ð107Þ

ϑ− ≔ γABB−
AB: ð108Þ

A spatial 2-surface in Σv is a trapped surface if ϑ− < 0
and ϑþ < 0, and it is marginally trapped if ϑ− < 0 and
ϑþ ¼ 0. The apparent horizon Av is the outermost margin-
ally trapped surface in Σv. The collection of apparent
horizons forms a 3-surfaceA ≔∪v Av, which we also refer
to as the apparent horizon. This plays the role ofH from our
generic treatment. A is spacelike in dynamical regions of
spacetime; it is then a dynamical horizon in the sense of
Ashtekar [23]. It is null in stationary regions of spacetime;
it is then an isolated horizon [23].
ϑ− will always be negative when ϑþ vanishes, allowing

us to calculate only ϑþ. The equation determining the
apparent horizon’s location is then

ϑþ ¼ 0: ð109Þ

One might imagine there being multiple solutions to this
equation, requiring us to find the outermost one. (A would
represent a dynamical or isolated horizon in any case, but not
an apparent horizon.) However, in our context of a perturbed
Schwarzschild black hole, we will find that Eq. (109)
specifies a unique surface near the background horizon.
Before calculating the expansion, we note that ϑþ and ϑ−

only involve derivatives of kα and nα within Av. Therefore
although it can be helpful to think of the expansion scalars

in terms of congruences of curves, they are actually fully
specified by the basis vectors kα and nα onAv. They do not
depend on the complete congruences, nor do they depend
on the vectors being tangent to geodesics. In the literature
one more commonly sees the simplified form ϑþ ¼ ∇αkα,
which holds for an affinely parametrized congruence.
Generically, for accelerating, nonaffinely parametrized
curves, the curves in Ck satisfy

kβ∇βkα ¼ κkα þ κAeαA ð110Þ

on Av, for some κ and κA. [There is no component
along nα because the contraction with kα must vanish:
kαkβ∇βkα ¼ 1

2
kβ∇βðkαkαÞ ¼ 0.] Using Eq. (66), we can

therefore write the expansion as

ϑþ ¼ ∇αkα − κ: ð111Þ

If the curves are affinely parametrized, regardless of
whether they are geodesics or accelerated, this simplifies
to the standard expression ϑþ ¼ ∇αkα. However, because
these expressions require an extension off ofAv, we instead
exclusively use Eq. (107).

B. Radial profile of the horizon

In this section, we solve Eq. (109) to find the horizon’s
radial profile.
We first write Eq. (107) in terms of background

quantities and perturbative quantities. The tensor Bþ
AB

defined in Eq. (105) can be written as

Bþ
AB¼eαAe

β
B

�
gð0Þβγ þhβγ

��
ð0Þ∇αkγþCγ

αβ½h�kβ
�
: ð112Þ

Here Cγ
αβ is given by Eq. (A2). In evaluating Eq. (112), we

first take derivatives at the coordinate location of the
perturbed horizon, xμH, using expansions of the form
(67) for the null vector and applying radial derivatives
as ∂r ¼ ∂rH . After that, we carry out expansions of the form
(48), using Eqs. (53) and (70). Finally, when evaluating the
contraction γABBþ

AB, we use Eq. (52).
As a check of our calculation, we have also performed

the operations in an alternative order, leaving Bþ
AB and γAB

at rH, using the form Eq. (47) for γAB, and then performing
the expansion (48) at the level of the scalar quantity ϑþ. As
an additional check, we have also used the alternative form
ϑþ ¼ ðgαβ þ nαkβ þ kαnβÞ∇αkβ to obtain the same result.
In all variations of the calculation, we arrive at

ϑþ ¼ ϵϑð1Þþ ðv; θAÞ þ ϵ2ϑð2Þþ ðv; θAÞ þOðϵ3Þ: ð113Þ

The zeroth-order term identically vanishes because the
background horizon has zero expansion in the background
spacetime. The first-order term is

2An apparent horizon is more commonly described as a
2-surface embedded in a spatial hypersurface. One can always
find some foliation into spacelike 3-surfaces Στ for some time
function τ such that the apparent horizon Aτ in Στ is identical to
Av. The construction in this section is indifferent to which of
these submanifolds the apparent horizon is embedded into, but
the foliation into surfaces labeled by v is most natural in our
perturbative context.
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ϑð1Þþ ¼ −
1

4M2

�
2Mhð1Þvv − ∂vh

ð1Þ∘ þDAhð1ÞvA þ ðD2 − 1Þrð1Þ
�
:

ð114Þ

The second-order term is given in Eq. (C2).
To solve the equations ϑðnÞþ ¼ 0, we expand all quantities

in tensorial spherical harmonics using Eqs. (27)–(30) and
(57) and then decompose ϑðnÞþ into scalar-harmonic modes

ϑðnÞþ;lm. After appealing to the identity (13) and the defi-
nitions (14) and (15), we immediately find

ϑð1Þþ;lm ¼ −
1

4M2

�
2Mhð1lmÞ

vv − ∂vh
ð1lmÞ∘ − λ21h

ð1lmÞ
vþ

− ð1þ λ21Þrð1Þlm

�
: ð115Þ

The solution to ϑð1Þþ;lm ¼ 0 is therefore

rð1Þlm ðvÞ ¼ 2Mhð1lmÞ
vv − λ21h

ð1lmÞ
vþ − ∂vh

ð1lmÞ∘
1þ λ21

: ð116Þ

All quantities on the right are evaluated at ðv; r ¼ 2MÞ.
Finding ϑð2Þþ;lm requires decomposing products of tenso-

rial harmonics into Ylm modes. As in our decompositions in
Sec. III, our method of decomposing such products is
described in Appendix B. Our calculation in this section in
particular utilizes the identities (B21)–(B24). The result is
an equation of the form

ϑð2Þþ;lm¼−
1

4M2

�
2Mhð2lmÞ

vv −∂vh
ð2lmÞ∘ −λ21h

ð2lmÞ
vþ

þ
X
l0m0
l00m00

�
ð2ÞΘlm

l0m0l00m00 ðvÞClm0
l0m02l00m00−2

þð1ÞΘlm
l0m0l00m00 ðvÞClm0

l0m01l00m00−1

þð0ÞΘlm
l0m0l00m00 ðvÞClm0

l0m00l00m000

�
−ð1þλ21Þrð2Þlm

�
; ð117Þ

where the C symbols are defined in Eq. (B15) and the
functions ðs0ÞΘlm

l0m0l00m00 are given in Eq. (C3). The solution to

ϑð2Þþ;lm ¼ 0 is therefore

rð2Þlm ðvÞ ¼
2Mhð2lmÞ

vv − λ21h
ð2lmÞ
vþ − ∂vh

ð2lmÞ∘
1þ λ21

þ 1

1þ λ21

X
l0m0
l00m00

�
ð2ÞΘlm

l0m0l00m00 ðvÞClm0
l0m02l00m00−2

þ ð1ÞΘlm
l0m0l00m00 ðvÞClm0

l0m01l00m00−1

þ ð0ÞΘlm
l0m0l00m00 ðvÞClm0

l0m00l00m000

�
: ð118Þ

C. Surface area, mass, and intrinsic curvature

Given the perturbations (116) and (118) to the horizon’s
radial profile, we can compute the intrinsic metric (49)
using (58) with Eqs. (59) and (60). From the intrinsic metric
we can then compute the surface area, mass, and intrinsic
curvature using Eqs. (82), (86), and (89) [with Eqs. (95)
and (96)]. Because ϑþ ¼ 0 on the apparent horizon, the
horizon’s Hawking mass (87) is identical to its irreduc-
ible mass.
The surface area and the mass both require the monopole

mode of rðnÞ. For l ¼ 0, Eqs. (116) and (118) reduce to

rð1Þ00 ¼ 2Mhð100Þvv − ∂vh
ð100Þ∘ ; ð119Þ

rð2Þ00 ¼ 2Mhð200Þvv − ∂vh
ð200Þ∘ þ

X
lm

ð−1Þmffiffiffiffiffiffi
4π

p
�

ð2ÞΘ00
lml;−m

− ð1ÞΘ00
lml;−m þ ð0ÞΘ00

lml;−m

�
: ð120Þ

The explicit expression for rð2Þ00 is given in Eq. (C5).
The surface area and mass at first order are easily

evaluated. Note that an l ¼ 0 vacuum perturbation is
necessarily a perturbation toward another Schwarzschild
solution, which (with an appropriate choice of gauge) we
can write as

δM
∂gð0Þαβ

∂M dxαdxβ ¼ 2δM
r

dv2; ð121Þ

for some δM. Therefore the l ¼ 0 correction to the horizon
radius, as given in Eq. (119), is

rð1Þ00 ¼
ffiffiffiffiffiffiffiffi
16π

p
δM: ð122Þ

With Eqs. (83) and (59), this implies that the correction to
the surface area is

Að1Þ ¼ 32πMδM; ð123Þ

and the correction to the black hole mass, given in terms of
the surface area in Eq. (86), is

Mð1Þ
irr ¼ Mð1Þ

H ¼ δM ð124Þ

(noting again that the Hawking and irreducible mass are
necessarily identical for the apparent horizon). δM can also
be invariantly defined as the Abbott-Deser mass contained
in Av [69,70]; for linear perturbations of Schwarzschild
spacetime, all sensible definitions of mass agree.
In the context of a binary inspiral, where the two-

timescale expansion (32) applies, all the same results hold
true except that (i) the black hole’s gradual absorption of
energy requires that δM becomes a function of ṽ [59], and

(ii) rð2Þlm picks up an additional slow-time derivative term,
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δrð2Þlm ¼ −
∂ ṽh

ð1lmÞ∘
1þ λ21

; ð125Þ

coming from the chain rule (34) applied to the v derivative
in Eq. (116). After this correction is accounted for, all v
derivatives are then to be interpreted as the fast-time
derivative Ωi

∂
∂φi

. The correction (125) plays an important
role in our comparison of the apparent and event horizons
in later sections.
We defer any evaluation of the scalar curvature or the

second-order expressions to Sec. VI, where they will be
substantially simplified.

V. EVENT HORIZON

In this section, we obtain a perturbative description of the
event horizon’s radial profile in terms of the metric
perturbation, following the method of Refs. [37,38]. We
then show that in the context of a two-timescale expansion,
the event horizon is effectively localized in time. At the end
of the section we begin our comparison of the two horizons.

A. Specification of the horizon

A black hole B is intrinsically a nonlocal object. It is
formally defined as a region that is causally disconnected
from future null infinity Iþ:

B ¼ M − J−ðIþÞ; ð126Þ

where J−ðIþÞ is the causal past ofIþ. Its event horizon is
the boundary of this region,

Hþ ¼ ∂B: ð127Þ

We denote the horizon as Hþ to indicate that it is
perturbatively close to the background spacetime’s future
horizon rather than its past horizon. Hþ here plays the role
of our generic surfaceH from Sec. III, and cuts of constant
v,Hþ

v , play the role ofHv. The definition (127) implies that
the location of the event horizon at a given advanced time v
depends on the entire future history of the spacetime.
To locate the horizon in practice, we first note that

because it is a null surface, it is necessarily generated by a
family of null geodesics. Each of these geodesics can be
parametrized with advanced time v, such that it has
coordinates xαGðvÞ. Since the curve must be within the
horizon surface, which we parametrized as xαHðv; θAÞ, we
can write xαGðvÞ as

xαGðvÞ ¼ xαHðv; θAGðvÞÞ: ð128Þ

Its tangent vector kα ¼ dxαG
dv is then given by

kα ¼ ∂xαH
∂v þ _θAGeαA; ð129Þ

where

∂xαH
∂v ∂α ¼ ∂v þ

∂rH
∂v ∂r; ð130Þ

_θAGeαA∂α ¼ _θAG
∂rH
∂θA ∂r þ _θAG∂A; ð131Þ

and _θAG ≔ dθAG=dv. This implies kv ¼ 1, kA ¼ _θAG and

kr ¼ ∂rH
∂v þ _θAGDArH: ð132Þ

Because it is tangent to the null surface’s generators, kα

must also be orthogonal to the horizon. This means kα

satisfies all the same orthonormality conditions as in our
generic treatment in Sec. III: kαkα ¼ 0, (62), and (64).
Therefore on each cut of the horizon, Hþ

v , kα is uniquely
determined as a function of rH and hαβ exactly as in the

generic treatment. So in particular, kA (or equivalently, _θAG)
is given in terms of kr by Eq. (70) with the A component of
Eq. (74) and with (76c). However, rather than using
Eqs. (74) and (76b) for kr, we can instead use the form
(132). The null condition kαkα ¼ 0 then becomes a first-
order differential equation for the radial profile rH as a
function of v.
So far, this description only specifies that Hþ is a null

surface. To specify which null surface it is, we need to
impose teleological boundary conditions. We assume that
in the distant future, the spacetime settles to a stationary,
Kerr black hole. In that stationary state, the event horizon
has the standard radial profile of the Kerr horizon. Our
teleological condition on rHðv; θÞ is that when v → ∞, rH
reduces to the Kerr horizon’s radial profile. In other words,
the integral curves of kα must start in the distant future as
the generators of the Kerr horizon and then be evolved
backward in time from that end state. In Sec. V C we
comment on some subtleties in this condition.

B. Radial profile of the horizon

We obtain evolution equations for rH by expanding
Eq. (132) in the form (70), which implies

k̆rð1Þ ¼
∂rð1Þ
∂v ; ð133Þ

k̆rð2Þ ¼
∂rð2Þ
∂v þ kAð1ÞDArð1Þ: ð134Þ

The other components are described above.
Substituting our expansion of kα into ðgð0Þαβ þhαβÞkαkβ¼0,

we find
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rð1Þ − 4M
∂rð1Þ
∂v ¼ 2Mhð1Þvv ð135Þ

and

rð2Þ − 4M
∂rð2Þ
∂v ¼ 2Mhð2Þvv þ ðrð1ÞÞ2

2M
þ 4Mhð1Þvr

∂rð1Þ
∂v

−
ΩABhð1ÞvAh

ð1Þ
vB

2M
−
hð1ÞvAD

Arð1Þ

M

−
DArð1ÞDArð1Þ

2M
þ rð1Þ∂rh

ð1Þ
vv ; ð136Þ

where all quantities on the right are evaluated at ðv; 2M; θAÞ.
We can write these equations in the common form

∂rðnÞ
∂v − κ0rðnÞ ¼ −κ0FðnÞðv; θAÞ; ð137Þ

where we have introduced κ0 ≔ 1=ð4MÞ, the surface
gravity of the unperturbed Schwarzschild black hole.
Expanding the equations in scalar spherical harmonics,
we obtain

drðnÞlm

dv
− κ0r

ðnÞ
lm ðvÞ ¼ −κ0F

ðnÞ
lm ðvÞ: ð138Þ

The first-order driving term is immediately found to be

Fð1Þ
lm ðvÞ ¼ 2Mhð1lmÞ

vv ðv; 2MÞ: ð139Þ

Calculating the lm modes of the second-order driving term
requires decomposing products of vector harmonics into
single scalar harmonics; as stated previously, this is
described in Appendix B. The result is

Fð2Þ
lm ðvÞ ¼ 2Mhð2lmÞ

vv ðv; 2MÞ

þ
X
l0m0
l00m00

�
ð1ÞHlm

l0m0l00m00 ðvÞClm0
l0m01l00m00−1

þ ð0ÞHlm
l0m0l00m00 ðvÞClm0

l0m00l00m000

�
; ð140Þ

with

ð1ÞHlm
l0m0l00m00 ¼ λ01λ

00
1

8M
ffiffiffi
π

p
�
σ⊗ðh0v−h00v− þ h0vþh00vþÞ

þ 2ðσþh0vþ − iσ−h0v−Þrð1Þl00m00þσþr
ð1Þ
l0m0r

ð1Þ
l00m00

�
;

ð141Þ

ð0ÞHlm
l0m0l00m00 ¼ 1

4M
ffiffiffi
π

p
�
2Mh0vrr

ð1Þ
l00m00 − 4M2h0vvh00vr

þrð1Þl0m0r
ð1Þ
l00m00 þ 4M2rð1Þl0m0∂rh00vv

�
: ð142Þ

Here we use the compact notation described in
Appendix C, and we additionally define σ⊗ ≔ σþ − iσ−.
The differential equations (138) have the teleological

solutions

rðnÞlm ðvÞ ¼ κ0

Z
∞

v
e−κ0ðv0−vÞFðnÞ

lm ðv0Þdv0: ð143Þ

Under the assumption that FðnÞ
lm can be treated as effectively

constant after some late time T, the solution (143) correctly

becomes the constant rðnÞlm ¼ FðnÞ
lm ðTÞ for all v > T. If we

adopted a causal solution instead, the solution would grow
exponentially as eκ0v at late times.
To exactly evaluate the integral (143) at a given time v, we

need to knowFðnÞ
lm for all v0 > v. This requires simulating the

spacetime’s entire evolution, allowing it to settle to a
stationary state, and only then finding the location of the
horizon at earlier times.

C. Timescales and temporal localization
on the horizon(s)

In Refs. [37,38], Poisson and collaborators show that under
certain circumstances, the teleological effects on the horizon’s
location are strongly suppressed, and the horizon is effectively
localized in time. In this section, we review that argument,
recallwhy it does not apply to binaries, and then apply avariant
of it to show that in a small-mass-ratio inspiral, the timescales
are such that the horizon is always temporally localized except
in an interval of advanced time around the final plunge.
The essential idea of the localization is that the expo-

nential factor in Eq. (143) exponentially suppresses the
effects of the distant future. Integrating by parts, as we did
to obtain Eq. (37), we can express Eq. (143) as

rðnÞlm ðvÞ ¼ FðnÞ
lm ðvÞ þ

Z
∞

v
e−κ0ðv0−vÞ

dFðnÞ
lm

dv0
dv0 ð144aÞ

..

.

¼ FðnÞ
lm ðvÞ þ 1

κ0

dFðnÞ
lm

dv
þ 1

κ20

d2FðnÞ
lm

dv2
þ… ð144bÞ

This is a sensible approximation if the characteristic
frequency of FðnÞ

lm is much smaller than κ0.
In a binary inspiral, the frequencies Ωk can be

much larger than κ0, meaning this approximation is
inappropriate. However, we can nevertheless develop a
similar localization approximation. We do this in two steps:
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First, we show that the far future has negligible impact on
the location of the horizon at times significantly before
plunge. Second, we show that during the inspiral phase, the
approximations (37) and (144) can be combined to localize
the horizon.
Generically, a small-mass-ratio binary evolves through

four phases [71]: the slow inspiral; the transition to plunge
when the companion approaches the ISCO (or more
generically, when it approaches the separatrix between
stable and plunge orbits [72]); the plunge itself; and finally,
the postmerger ringdown, when the black hole settles to a
stationary, Kerr state. Each of these phases has an asso-
ciated evolution timescale. The inspiral is characterized by
the orbital timescale ∼1=Ωk and the long radiation-reaction
time trr ∼M=ϵ. The transition to plunge is characterized
again by the orbital timescale, but also by the transition
timescale ∼M=ϵ1=5 [61], as the orbit more rapidly evolves
during the transition phase. The plunge itself occurs
rapidly, on the timescale ∼M. Finally, the ringdown phase
itself has two types of evolution: the rapid exponential
decay of the black hole’s quasinormal modes [73], and the
late-time tails [74] that decay with a power law v−2l−3 along
the horizon [75].
We now consider a time v in the inspiral phase. Our first

goal is to show that all the later phases have negligible
impact on the location of the horizon at time v. In the
process, we find an estimate of the cutoff time where our
treatment breaks down.
We first split the integral (143) into four segments

corresponding to the different phases of the system,R∞
v ¼ R

vT
v þ R

vP
vT

þ R
vR
vP

þ R∞
vR
, where the labels refer respec-

tively to transition, T, to plunge, P, and to ringdown, R. We
then consider these one by one, starting with the integral
over the transition regime, which we write as

IT ¼ κ0eκ0ðv−vT Þ
Z

vP

vT

e−κ0ðv0−vT ÞFðnÞ
lm ðv0Þdv0: ð145Þ

To ensure that we can neglect this integral, we require it to
be much smaller than ϵ, such that the contribution for n ¼ 1

is negligible compared to the Oðϵ2Þ effects that we
calculate.
Although the transition is rapid compared to the inspiral,

it is slow compared to the orbital period, and throughout the
transition we can adopt an adapted two-timescale form for
the forcing function, FðnÞðvÞ ¼ P

k F
ðnÞ
k ðϵ1=5vÞe−iφkðv;ϵÞ,

where dφk
dv ¼ Ωkðϵ1=5vÞ. (We suppress lm indices for the

remainder of this discussion; the approximations can be
carried out at the level of the sum of lm modes or at the
level of individual modes). For each k mode, the integral
then has the form

IkT ¼ κ0eκ0ðv−vT Þ
Z

vP

vT

e−ψ
T
k ðv0;ϵÞFðnÞ

k ðϵ1=5v0Þdv0; ð146Þ

where ψT
k ðv0; ϵÞ ≔ κ0ðv0 − vTÞ þ iφkðv0; ϵÞ. This function

has the properties

ψT
k ðvT; ϵÞ ¼ iφkðvT; ϵÞ; ð147Þ

dψT
k

dv0
≔ ωT

k ðϵ1=5v0Þ ¼ κ0 þ iΩkðϵ1=5v0Þ: ð148Þ

Repeatedly integrating by parts, we obtain

IkT ¼ κ0eκ0ðv−vT Þ

ωT
k

�
e−ψ

T
k ðvT;ϵÞFðnÞ

k ðϵ1=5vTÞ

− e−ψ
T
k ðvP;ϵÞFðnÞ

k ðϵ1=5vPÞ þOðϵ1=5Þ
�
: ð149Þ

The quantity in brackets is order 1. Therefore, for IT to be
much smaller than ϵ, we need eκ0ðv−vT Þ ≪ ϵ. This relation
translates into a relation for ðv − vTÞ:

κ0jv − vT j ≫ j ln ϵj: ð150Þ
So we conclude that during the inspiral phase, we may
neglect the impact of the transition phase so long as we
restrict ourselves to advanced times satisfying Eq. (150).
Note that this is a far smaller time interval than the
radiation-reaction time, implying that the companion can
get very near to the transition before the transition’s
influence on the horizon is felt.
Next, we consider the integral over the plunge phase,

which can be written as

IP ¼ κ0eκ0ðv−vPÞ
Z

vR

vP

e−κ0ðv0−vPÞFðnÞ
lm ðv0Þdv0: ð151Þ

During the plunge, the timescale on which FðvÞ varies is
∼M, implying the contribution from the integral is of order
1, excluding the exponential factor outside it. Therefore the
cutoff (150) ensures that IP is much smaller than ϵ.
The same argument applies to the integral over the

ringdown phase,

IR ¼ κ0eκ0ðv−vRÞ
Z

∞

vR

e−κ0ðv0−vRÞFðnÞ
lm ðv0Þdv0: ð152Þ

The cutoff (150) ensures that IR is much smaller than ϵ.
We have now shown that all the future phases have

negligible impact on the horizon during the inspiral phase.
We have only one remaining integral,

rðnÞlm ¼ κ0

Z
vT

v
e−κ0ðv0−vÞFðnÞ

lm ðv0Þdv0; ð153Þ
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which we are able to localize in time using the now-familiar
integration by parts. If we expand the forcing function in
two-timescale form, as FðnÞ ¼ FðnÞ

k ðṽÞe−iφkðv;ϵÞ, then for
each mode k, we have an integral

rðnÞk ¼ κ0

Z
vT

v
e−ψkðv0;v;ϵÞFðnÞ

k ðϵv0Þdv0; ð154Þ

where we have defined

ψkðv0; v; ϵÞ ≔ κ0ðv0 − vÞ þ iφkðv0; ϵÞ: ð155Þ

This function has the properties

ψkðv; v; ϵÞ ¼ iφkðv; ϵÞ; ð156Þ

dψk

dv0
≔ ωkðϵv0Þ ¼ κ0 þ iΩkðϵv0Þ: ð157Þ

If we now repeatedly integrate by parts while appealing to
these properties and the cutoff (150), we obtain the
approximation

Z
vT

v
FðnÞ
k ðϵv0Þe−ψkðv0;v;ϵÞdv0

¼ e−iφkðv;ϵÞ
�
FðnÞ
k ðṽÞ
ωkðṽÞ

þ ϵ

ωk

d
dṽ

FðnÞ
k ðṽÞ
ωkðṽÞ

�
þ oðϵÞ: ð158Þ

As promised, although neither of the approximations (37)
or (144) is alone accurate, a variant which combines them
does provide an accurate approximation that localizes the
teleological integral. The oscillations in the two-timescale
approximation approximately average out over the inte-
gration domain, while the exponential decay eliminates the
impact of the very far future. In the case of quasistationary
modes, with k ¼ 0, the approximation (158) simply
reduces to Eq. (144), but for these modes FðnÞ is the

slowly varying function FðnÞ
0 ðṽÞ, meaning each derivative

in Eq. (144) comes with a power of ϵ.
By substituting Eq. (139) for Fð1Þ, we now obtain the

temporally localized perturbations to the event horizon’s
radius:

rð1Þk ¼ 2Mκ0h
ð1;kÞ
vv

ωk
; ð159Þ

and

rð2Þk ¼ κ0F
ð2Þ
k

ωk
þ 2Mκ0∂ ṽh

ð1;kÞ
vv

ω2
k

−
2Miκ0h

ð1;kÞ
vv

ω3
k

dΩk

dṽ
: ð160Þ

These formulas can be made more explicit using

κ0
ωk

¼ 1

1þ 4iMΩk
: ð161Þ

For quasistationary modes, these results give the slowly
evolving average corrections to the horizon radius:

hrð1Þi ¼ 2Mhhð1Þvv i; ð162Þ

hrð2Þi ¼ hFð2Þi þ 8M2
d
dṽ

hhð1Þvv i; ð163Þ

where we recall the definition (38) of the average of a two-
timescale function.
Before moving to the next section, we comment on how

applicable our results are to other scenarios and phases. In
this section we have focused on the location of the horizon
in the inspiral phase. The same arguments apply to the
transition phase, and we expect the event horizon to remain
localized for a significant portion of the transition
(although, to our knowledge, there has not yet been a
complete multiscale treatment of the transition phase,
including the metric perturbation in addition to the com-
panion’s trajectory).
In the plunge phase, the horizon is not localizable, and

moreover, much of our analysis throughout this paper
breaks down. As the companion approaches the black
hole, additional generators join the horizon [47–50]. The
caustics they form create a cusp on the horizon. Although
our treatment of individual generators remains valid in that
case, the horizon does not have a smooth induced metric,
and the generic treatment in Sec. III becomes invalid. The
additional generators that join the horizon can also begin
from a great distance away from it. The cusp extends into
the infinite past on the horizon, suggesting one should
worry that this spoils our treatment of the inspiral phase as
well. However, the cusp is exponentially suppressed in the
same way as other effects discussed in this section, and we
can safely ignore it.
Finally, in the ringdown phase, our generic treatment of

the horizons apply perfectly well. But since quasinormal
modes have frequencies and decay rates comparable to κ0,
there is no temporal localization in the early stage of
the ringdown. At late times, if the power-law tails die out
on a much larger timescale than 1=κ0, then Eq. (144)
should apply.

D. Surface area, mass, and intrinsic curvature

Just as in the case of the apparent horizon, given the
perturbations (143) to the horizon’s radial profile, or (159)
and (160) in an inspiral, we can compute the intrinsic
metric (49) using (58) with Eqs. (59) and (60). From the
intrinsic metric we can then compute the surface area,
irreducible and Hawking mass, and intrinsic curvature
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using Eq. (82), Eqs. (86) and (87), and Eq. (89) [with
Eqs. (95) and (96)].
The surface area and masses require the l ¼ 0 term in the

horizon radius, rðnÞ00 . These are obtained from the l ¼ 0

forcing functions in Eqs. (139) and (141), which read

Fð1Þ
00 ¼ 2Mhð100Þvv ; ð164Þ

Fð2Þ
00 ¼ 2Mhð200Þvv þ 1

4M2
ffiffiffi
π

p
X
lm

�
2Mhð1lmÞ

vr r̄ð1Þlm

− 2λ21h
ð1lmÞ
vþ r̄ð1Þlm − 4M2hð1lmÞ

vv h̄ð1lmÞ
vr

− ðλ21 − 1Þjrð1Þlm j2 − λ21ðjhð1lmÞ
v− j2 þ jhð1lmÞ

vþ j2Þ

þ 4M2rð1Þlm ∂rh̄
ð1lmÞ
vv

�
: ð165Þ

Like we did for the apparent horizon, we can quickly
obtain the surface area and mass at first order.
Using Eq. (121) for hð100Þvv in Eq. (143), we recover

rð1Þ00 ¼ ffiffiffiffiffiffiffiffi
16π

p
δM; this is identical to the result (122) for

the apparent horizon. The same can also be obtained from
Eq. (162), noting that a vacuum monopole perturbation can
always be written in a gauge in which it is a pure k ¼ 0

mode. Equations (83) and (86) then imply Að1Þ ¼ 32πMδM

and Mð1Þ
irr ¼ δM, just as for the apparent horizon.

Unlike the apparent horizon, the event horizon’s
Hawking mass (87) differs from its irreducible mass.
However, the difference only enters at second order. At
first order, the expansion ϑþ vanishes [37,38]; we repro-
duce this result in the next section. We therefore have

ϑþ ¼ ϵ2ϑð2Þþ þOðϵ3Þ. The expansion scalar for the ingoing
null vector is easily calculated to be ϑ− ¼ − 1

M þOðϵÞ.
Therefore the Hawking mass of the event horizon is

MH ¼ Mirr −
ϵ2M2

2π

Z
ϑð2Þþ dΩþOðϵ3Þ: ð166Þ

We simplify this formula in the next section. There, we
make a thorough comparison of the two horizons. To
preface that comparison, we note that because ϑþ ¼ Oðϵ2Þ,
the event horizon is in fact identical to the apparent horizon
at first order. As alluded to in the Introduction, they only
begin to differ at second order.

VI. GAUGE FIXING AND INVARIANT
PROPERTIES OF THE HORIZONS

So far our calculations have not specified a choice of
gauge. At first order, it is straightforward to show that
quantities such as the black hole mass are invariant under
the linear transformation (9). Moreover, the horizons
themselves are invariant 3-surfaces. However, their folia-
tions into surfaces of constant v are inherently gauge

dependent. Even given some foliation, a transformation
within each 2-surface does not leave all our quantities
invariant. As a simple example, consider the horizon’s
scalar curvature. Under a gauge transformation generated
by a vector ξα that is tangent to Hv, the first-order
correction to the scalar curvature, Rð1Þ, transforms as
Rð1Þ → Rð1Þ þ LξRð0Þ. Since the zeroth-order curvature
is constant on the horizon, this implies thatRð1Þ is invariant
under these transformations. However, Rð2Þ then trans-
forms asRð2Þ → Rð2Þ þ LξRð1Þ. SinceRð1Þ is not constant,
Rð2Þ is not invariant.
Quantities such as the horizon area and mass of Hv are

invariant under transformations within Hv, since they are
defined as integrals over Hv. But they are not invariant
under a transformation that alters the foliation. And
analyzing how they transform is nontrivial because we
have described the horizons’ locations using gauge-depen-
dent parametrizations xαH.
In this section, we construct invariant quantities asso-

ciated with the curvature, area, and mass of the horizons.
Our procedure for constructing these invariant quantities is
based on gauge fixing: we write all variables in terms of the
transformation to a preferred, fully fixed gauge in which the
perturbed event horizon remains at the coordinate location
r ¼ 2M. Such a gauge is described as horizon locking [38].
Our procedure also gives invariant geometrical meaning to
our foliation and to the apparent horizon’s location relative
to the event horizon. At the end of the section, we are able
to isolate the precise differences between the two horizons.
Since we will be comparing between quantities onA and

Hþ, in this section we explicitly add a “A” or “Hþ” label to
quantities such as rðnÞ, Mirr, and R.

A. Gauge-fixed metric perturbations

Referring to Eqs. (9) and (10), we define the gauge-fixed
metric perturbations to be

ĥð1Þαβ ¼ hð1Þαβ þ Lζð1Þg
ð0Þ
αβ ; ð167Þ

ĥð2Þαβ ¼ hð2Þαβ þ Lζð2Þg
ð0Þ
αβ þ 1

2
L2
ζð1Þg

ð0Þ
αβ þ Lζð1Þh

ð1Þ
αβ : ð168Þ

In terms of Eddington-Finkelstein components, these
equations read

ĥð1Þvv ¼ hð1Þvv −
2M
r2

ζrð1Þ þ 2∂vζ
r
ð1Þ − 2f∂vζ

v
ð1Þ; ð169aÞ

ĥð1Þvr ¼ hð1Þvr þ ∂vζ
v
ð1Þ þ ∂rζ

r
ð1Þ − f∂rζ

v
ð1Þ; ð169bÞ

ĥð1ÞvA ¼ hð1ÞvA þ r2ΩAB∂vζ
B
ð1Þ − fDAζ

v
ð1Þ þDAζ

r
ð1Þ; ð169cÞ

ĥð1Þrr ¼ hð1Þrr þ 2∂rζ
v
ð1Þ; ð169dÞ
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ĥð1ÞrA ¼ hð1ÞrA þ r2ΩAB∂rζ
B
ð1Þ þDAζ

v
ð1Þ; ð169eÞ

ĥð1Þ∘ ¼ hð1Þ∘ þ 2rζrð1Þ þ r2DAζ
A
ð1Þ; ð169fÞ

ĥð1ÞhABi ¼ hð1ÞhABi þ 2r2ΩChADBiζCð1Þ: ð169gÞ

The components of ĥð2Þαβ are given by the same equations

with the replacements ζαð1Þ → ζαð2Þ and hð1Þαβ → Hð2Þ
αβ , where

Hð2Þ
αβ ≔ hð2Þαβ þ 1

2
L2
ζð1Þg

ð0Þ
αβ þ Lζð1Þh

ð1Þ
αβ : ð170Þ

In these expressions, ζαðnÞ is the unique vector that
transforms from the “user gauge” (whichever gauge one
happens to use to solve the field equations) to the fixed

gauge. By imposing geometrical conditions on ĥðnÞαβ , we will

express ζαðnÞ explicitly in terms of hðnÞαβ . This process will be

expedited by introducing the tensor-harmonic expansion

ζaðnÞ ¼
X
lm

ζaðnlmÞY
lm; ð171Þ

ζAðnÞ ¼
X
lm

ðζþðnlmÞY
A
lm þ ζ−ðnlmÞX

A
lmÞ: ð172Þ

Once ζαðnÞ is determined, the quantities ĥðnÞαβ will then be

given by simple formulas in terms of hðnÞαβ . These formulas

will be gauge invariant: ĥðnÞαβ takes the same value regardless

of the gauge that hðnÞαβ is in. The horizons’ surface area,
curvature, and mass will then be written in terms of
manifestly invariant quantities with clear geometrical
meanings.
Finally, to facilitate this gauge-fixing procedure in the

case of a binary inspiral, we introduce a division of each
field into its quasistationary and oscillatory pieces,

hðnÞαβ ¼ hhðnÞαβ i þ jðnÞαβ ; ð173Þ

ĥðnÞαβ ¼ hĥðnÞαβ i þ ĵðnÞαβ ; ð174Þ

Hð2Þ
αβ ¼ hHð2Þ

αβ i þ Jð2Þαβ ; ð175Þ

ζαðnÞ ¼ hζαðnÞi þ ηαðnÞ: ð176Þ

Each of the oscillatory quantities has an expansion of the
form

jðnÞαβ ¼
X
k≠0

jðnkÞαβ ðṽ; r; θAÞe−iφk ; ð177Þ

which excludes the quasistationary, k ¼ 0 terms from
expansions of the form (32). When substituting these
two-timescale forms into Eqs. (167) and (168), the first-
order equation becomes (169) with ∂v → Ωi∂φi

. A v
derivative acting on ṽ dependence is demoted to second

order. We can absorb those terms into a redefinition ofHð2Þ
αβ :

Hð2Þ
vv → H̃ð2Þ

vv ≔ Hð2Þ
vv þ 2∂ ṽζ

r
ð1Þ − 2f∂ ṽζ

v
ð1Þ; ð178aÞ

Hð2Þ
vr → H̃ð2Þ

vr ≔ Hð2Þ
vr þ ∂ ṽζ

v
ð1Þ; ð178bÞ

Hð2Þ
vA → H̃ð2Þ

vA ≔ Hð2Þ
vA þ r2ΩAB∂ ṽζ

B
ð1Þ; ð178cÞ

with other components unchanged. All other v derivatives
in the second-order expressions are then replaced
with Ωi∂φi

.

B. Gauge fixing

1. Horizon locking

We first impose the condition that the event horizon of
the perturbed spacetime lies at the coordinate radius
r ¼ 2M. An example of a gauge condition that enforces

this is the Killing gauge [38], defined by hðnÞvα ¼ 0 for all α.
For reasons we describe momentarily, we impose a slight
variant of that condition. We first impose

ĥð1Þvv jH0 ¼ 0; ð179Þ

ĥð2Þvv jH0 ¼ ΩABĥð1ÞvA ĥ
ð1Þ
vB jH0

4M2
: ð180Þ

Here jH0 indicates evaluation at ðv; 2M; θAÞ; we do not
require these conditions to hold at any points away from
r ¼ 2M. Examining Eq. (135), we see that in a gauge
satisfying Eq. (179), the leading perturbation to the event

horizon’s radius, rð1ÞHþ , vanishes. Given this, examining
Eq. (136), we see that in a gauge satisfying both

Eqs. (179) and (180), the second-order perturbation rð2ÞHþ

likewise vanishes. In both cases, we assume the teleological

solution for rðnÞHþ, which rules out the nontrivial homo-
geneous solutions.
By combiningEq. (169a)withEqs. (179) and (180),we find

∂vζ
r
ð1Þ − κ0ζ

r
ð1Þ ¼ −

1

2
hð1Þvv ; ð181Þ

∂vζ
r
ð2Þ − κ0ζ

r
ð2Þ ¼ −

1

2
Hð2Þ

vv þΩABĥð1ÞvA ĥ
ð1Þ
vB

8M2
: ð182Þ

It should be understood that all quantities are evaluated at
r ¼ 2M in these expressions. These equations are identical in
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form to the equations (135) and (136) for the perturbations to
the event horizon’s radius. So they also have the teleological
solution provided by the formula (143),

ζrð1ÞjH0 ¼ 1

2

Z
∞

v
e−κ0ðv0−vÞhð1Þvv jH0dv0; ð183Þ

ζrð2ÞjH0 ¼ 1

2

Z
∞

v
e−κ0ðv0−vÞ

�
Hð2Þ

vv −
ΩABĥð1ÞvA ĥ

ð1Þ
vB

4M2

�				
H0

dv0:

ð184Þ

Note that the conditions (179) and (180) do not dictate that
the perturbed horizon’s generators have the same coordinate
description as the background horizon’s. The generators all
lie within the surface r ¼ 2M, but the perturbed generators
do not correspond to lines of constant θA within that surface.
In many (but not all) cases, we can freely enforce that they
are lines of constant θA by demanding

ĥðnÞvA jH0 ¼ 0: ð185Þ

From Eq. (169c), this implies

ζþð1ÞjH0 ¼ ζþð1ÞjS0 −
1

4M2

Z
v

−∞
ðhð1Þvþ þ ζrð1ÞÞjH0dv0; ð186Þ

ζ−ð1ÞjH0 ¼ ζ−ð1ÞjS0 −
1

4M2

Z
v

−∞
hð1Þv− jH0dv0; ð187Þ

where S0 is the bifurcation sphere, ðr ¼ 2M; v ¼ −∞Þ, and
we have omitted lm indices for visual simplicity. The same
equations apply at second order with the replacements

ζαð1Þ → ζαð2Þ and hð1Þv� → Hð2Þ
v�.

We can see from Eqs. (74) and (76) that with the above
conditions, the normal vector to the event horizon (and
therefore the tangent to the event horizon generators) now
has the same components as the background normal vector,

k̂αHþ∂α ¼ ∂v: ð188Þ

However, we cannot make the simplifications (185) and
(188) in the case of a binary inspiral. In an inspiral, the
condition (185) leads to a large, order-ϵ−1 vector field,

hζ−ð1lmÞijH0 ¼ −
1

4M2ϵ

Z
ṽ

−∞
hhð1lmÞ

v− ijH0dṽ0; ð189Þ

invalidating our asymptotic expansions. This will occur, for
example, due to the black hole’s slowly varying spin, which
accumulates over the course of the inspiral as the black hole
absorbs gravitational waves.
To adapt the condition (185) to an inspiral, we split our

fields into quasistationary and oscillatory terms, following
Eqs. (173)–(176). We then impose

ĵðnÞvA jH0 ¼ 0; ð190Þ

implying the analogs of Eqs. (186) and (187),

ηþð1kÞjH0 ¼ 1

4iM2Ωk
ðjð1kÞvþ þ ηrð1kÞÞjH0 ; ð191Þ

η−ð1kÞjH0 ¼ 1

4iM2Ωk
jð1kÞv− jH0 : ð192Þ

Here we have again omitted lm indices. At second order the
same equations hold with the replacements ηαð1Þ → ηαð2Þ and

jð1Þv� → J̃ð2Þv�, where J̃ð2Þv� includes the slow-time derivative
terms from Eq. (178). Referring to Eqs. (74) and (76), we
see that these conditions enforce

k̂αHþ∂α ¼ ∂v þ k̂AHþ∂A; ð193Þ

where

k̂AHþ ¼ −
ϵ

4M2
ΩABhĥð1ÞvBijH0 þOðϵ2Þ ð194Þ

is (at least at leading nonzero order) a slowly varying
angular component. The horizon generators in this case
wrap around the horizon slowly, with a small, slowly
varying frequency dθA

dv ¼ k̂AHþ.
There is a straightforward analogy between our gauge

fixing in the two cases. In the case that we do not have
quasistationary effects, Eqs. (186) and (187) leave the
constants ζ�ðnÞjS0 unspecified; this is an incomplete gauge
fixing on the horizon. In the case of an inspiral, we instead
have the slowly varying vector fields hζ�ðnÞijH0 unspecified.

Similarly, we can immediately relate the time-varying
pieces of Eqs. (186) and (187) to Eqs. (191) and (192)
using the time-localizing approximation (37). Moreover,
Eqs. (179)–(184) apply in both cases.
To bring all the equations into two-timescale form, we

can localize Eqs. (183) and (184) using the approximation
(158). One can use only the leading term in that approxi-
mation and then make the adjustments in Eq. (178), or
equivalently, one can include the subleading term in the
approximation and omit the adjustments in Eq. (178). The
result is

ζrð1kÞjH0 ¼ hð1kÞvv

2ωk
; ð195Þ

ζrð2kÞjH0 ¼ H̃ð2kÞ
vv

2ωk
−
ΩABhĥð1ÞvA ihĥð1ÞvBiδk;0

2M
; ð196Þ

where all quantities are evaluated at r ¼ 2M, and we have
used Eq. (190).
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2. Foliation locking

Having locked the event horizon to r ¼ 2M and its
generators to lines of constant (or slowly varying) θA, we
now impose the foliation-locking condition

ĝαβ∂αv∂βv ¼ 0: ð197Þ

This condition enforces that a surface of constant v is a null
surface. It does not enable us to uniquely identify a specific
cut of the horizon, but it does enforce that our cuts of
constant v correspond to a foliation defined by the
intersections of the horizon with a family of ingoing null
surfaces Σv.
There are several ways to satisfy Eq. (197). A straight-

forward method is to impose

ĥðnÞrα ¼ 0: ð198Þ

This is referred to as a lightcone gauge condition [76]. If we
additionally enforced ĥðnÞ∘ ¼ 0, it would put the metric in

the standard radiation gauge, in which ĥðnÞhABi represents the
transverse-tracefree ingoing gravitational waves at the
horizon. However, we will not impose this additional
condition. The condition (198) alone enforces not only

that Σv is a null surface, but also (through ĥ
ðnÞ
rA ¼ 0) that the

generators of Σv are lines of constant θA, and that their
tangent vector (or equivalently, the normal to the surface)
has components

n̂αHþ∂α ¼ −∂r ð199Þ

[which is consistent with Eqs. (75) and (77)]. As a
consequence, r is an affine parameter along the surface’s
generators. We will see that Eq. (199) also applies for the
ingoing null vector orthogonal toAv (through second order
in ϵ).
By combining ĥðnÞrr ¼ 0 with Eq. (169d), we find

ζvð1Þ ¼ ζvð1ÞjH0 −
1

2

Z
r

2M
hð1Þrr dr0: ð200Þ

Here, and in all cases in this section, the same equation
applies at second order with the replacements ζαð1Þ → ζαð2Þ
and hð1Þαβ → Hð2Þ

αβ . These equations uniquely determine ζvðnÞ
up to its value at the horizon. Similarly, combining ĥðnÞvr ¼ 0
with Eq. (169b), we find

ζrð1Þ ¼ ζrð1ÞjH0 −
Z

r

2M

�
hð1Þvr þ∂vζ

v
ð1Þ þ

fðr0Þ
2

hð1Þrr

�
dr0: ð201Þ

Equation (201) with Eqs. (200) and (183) (with their
second-order analogs) fully determine ζrðnÞ.

Next, ĥðnÞrA ¼ 0 combined with Eq. (169e) implies

ζþð1Þ ¼ ζþð1ÞjH0 −
Z

r

2M

hð1Þrþ þ ζv

r02
dr0; ð202Þ

ζ−ð1Þ ¼ ζ−ð1ÞjH0 −
Z

r

2M

hð1Þr−

r02
dr0: ð203Þ

These relations are in terms of individual lmmodes, but for
visual simplicity we have suppressed lm indices on all
quantities. Equations (202) and (203) and their second-
order analogs, with Eqs. (200), (186), and (187) [or
Eqs. (191) and (192)], fully specify ζ�ðnÞ up to the constants

ζ�ðnÞjS0 or up to the slowly varying quantities hζ�ðnÞijH0 .
We have now fully fixed the gauge up to ζvðnÞjH0 and

ζ�ðnÞjS0 . ζ�ðnÞjS0 corresponds to a transformation within Hþ
v ,

while ζvðnÞjH0 directly corresponds to a specification of the

cut Hþ
v ; given this Hþ

v , Σv is then the specific null surface
that intersects Hþ at that cut. To fix the choice of cut, we
impose the even-parity part of the condition (185) to linear
order in distance from the horizon, in the sense that

∂rĥ
ðnlmÞ
vþ jH0 ¼ 0: ð204Þ

Geometrically, this condition, together with our other
gauge-fixing conditions, enforces that the 2-vector

ω̂A ≔ −n̂Hþ
α ðêHþÞβA∇̂βk̂

α
Hþ ð205Þ

has no even-parity piece (the odd-parity piece of this vector
is gauge invariant [38], at least at first order). When
combined with Eq. (169c), Eq. (204) implies

2ð∂v þ κ0Þζvð1Þ ¼ ∂rh
ð1Þ
vþ − ∂vh

ð1Þ
rþ − hð1Þvr

−
1

M
ðζrð1Þ þ hð1ÞvþÞ ðl > 0Þ; ð206Þ

where all fields are evaluated at r ¼ 2M, and we have
suppressed lm indices. To obtain this form of the equation,
we have substituted Eq. (202) for ∂rζ

þ
ð1Þ and Eq. (201) for

∂rζ
r
ð1Þ. The well-behaved solution to Eq. (206) is

ζvð1ÞjH0 ¼ 1

2

Z
v

−∞
eκ0ðv0−vÞ

�
∂rh

ð1Þ
vþ − ∂vh

ð1Þ
rþ − hð1Þvr

−
1

M
ðζrð1Þ þ hð1ÞvþÞ

�				
H0

dv0 ðl > 0Þ: ð207Þ

If we mirror the derivation of Eq. (158), we can expand this
in the two-timescale form3

3The subleading term, which will contribute to the second-
order vector in the two-timescale expansion, is straightforwardly
obtained in analogy with Eq. (158).
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ζvð1kÞ ¼
∂rh

ð1kÞ
vþ þ iΩkh

ð1kÞ
rþ − hð1kÞvr − 1

M

�
ζrð1kÞ þ hð1kÞvþ

�
2ðκ0 − iΩkÞ

þOðϵÞ; ð208Þ

where all quantities are evaluated at r ¼ 2M. These
equations, with Eq. (200) (and their second-order analogs),
now determine ζvðnÞ for all r and all l > 0.
To partially fix the l ¼ 0mode, we impose the conditions

(179) and (180) to linear order in distance,

∂rĥ
ðn00Þ
vv jH0 ¼ 0; ð209Þ

noting that for n ¼ 2 this is only applied outside the two-

timescale context, where ĥðnÞvA ¼ 0. The condition (209),
together with our other gauge-fixing conditions, enforces
that the average surface gravity on the horizon remains
equal to its background value,

1

4π

Z
Hþ

v

κ̂dΩ ¼ κ0 þOðϵ3Þ; ð210Þ

where κ̂ is defined from k̂βHþ∇̂βk̂
α
Hþ ¼ κ̂k̂αHþ .

Taking a derivative of Eq. (169) and applying these
conditions, we find

ζvð1ÞjH0 ¼ ζvð1ÞjS0 þ
Z

v

−∞

Z
v0

−∞
eκ0ðv00−v0Þ

�
1

2
∂rh

ð1Þ
vv − ∂vh

ð1Þ
vr

þ κ0
M

ζrð1Þ þ κ0h
ð1Þ
vr

�				
H0

dv00dv0 ðl ¼ 0Þ ð211Þ

and analogous at second order. This solution to Eq. (209) is
well behaved in the infinite past. However, there is no
solution that is well behaved in the infinite future: the
vector field grows linearly with v if the metric perturbation
becomes stationary at late times. We should therefore
consider Eq. (211) as fixing any nonstationary part of
the metric perturbation, taking that part to vanish at
late times.
This division is clearer in a two-timescale expansion,

where in place of Eq. (209) we can impose a condition on
the purely oscillatory part of the perturbation,

∂rĵ
ðn00Þ
vv jH0 ¼ 0: ð212Þ

This fixes the oscillatory part of the vector field:

ηvð1kÞjH0 ¼
ηrð1kÞ þ 2M2∂rj

ð1kÞ
vv þ 4M2ωkj

ð1kÞ
vr

4M2iΩkðiΩk − κ0Þ
				
H0

ðl ¼ 0Þ;

ð213Þ
where ωk was defined in Eq. (157), and at second order the

same holds with ηαð1Þ → ηαð2Þ and j
ð1Þ
αβ → J̃ð2Þαβ . Equation (212)

enforces that the average surface gravity contains no
oscillatory part:

1

4π

Z
Hþ

v

κ̂dΩ ¼ 1

4π

Z
Hþ

v

hκ̂idΩ: ð214Þ

The final, unspecified freedom in the foliation is the
choice of hζvðn00ÞijH0 (or ζvðn00ÞjS0, outside a two-timescale
context), which corresponds to a slowly varying (or
constant), uniform shift in time along the horizon. We
return to this freedom below.

3. Euclidean radius locking

Having locked the horizon and specified the foliation (up
to uniform time translations), we now fix the gauge within
each cut. We specify ζAðnÞjS0 by imposing

ĥðnÞhABijS0 ¼ 0: ð215Þ

The analogous condition is more impactful in the case of an
inspiral, where we impose

hĥðnÞhABiijH0 ¼ 0: ð216Þ

This puts the time-averaged induced metric on Hþ
v in a

“pure trace” form,

hγ̂Hþ
AB i ¼

�
4M2 þ ϵhγ̂ð1Þ∘ i þ ϵ2hγ̂ð2Þ∘ i þOðϵ3Þ

�
ΩAB; ð217Þ

giving it the same appearance as the metric on a closed 2-
surface with radial profile

hr̂EðθAÞi ¼ 2M

�
1þ ϵ

4M2
hγ̂ð1Þ∘ i þ ϵ2

4M2
hγ̂ð2Þ∘ i þOðϵ3Þ

�
1=2

ð218Þ

in flat, Euclidean 3-space. There is then a one-to-one
association between the metric’s trace and a Euclidean
radius. We expand on this association in Sec. VII C.
Combining Eq. (169g) with Eq. (216), we find

hζ�ð1lmÞijH0 ¼ −
1

8M2
hhð1lmÞ

� ijH0 ðl > 1Þ; ð219Þ

hζ�ð2lmÞijH0 ¼ −
1

8M2
hHð2lmÞ

� ijH0 ðl > 1Þ: ð220Þ

Outside the two-timescale context, these equations instead
apply for ζ�ðnÞjS0 (after removing the angular brackets). With
this, we have fully fixed the l > 1modes of the vector field.
To fix the even-parity dipole mode of hζAðnÞijH0 , we

impose that
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hĥðn1mÞ∘ ijH0 ¼ 0: ð221Þ

This enforces that the intrinsic metric (217) has no l ¼ 1
contribution, meaning that the geometry is manifestly
round for l ¼ 0, 1. The fact that we can eliminate the
l ¼ 1 contribution corresponds to the fact that a spatial
translation cannot affect the intrinsic curvature of a surface
in Euclidean space. Combining Eq. (169f) with Eq. (221),
we find

hζþð11mÞijH0 ¼ hhð11mÞ∘ ijH0

8M2
þ
hζrð11mÞijH0

2M
; ð222Þ

hζþð21mÞijH0 ¼ hHð21mÞ∘ ijH0

8M2
þ
hζrð21mÞijH0

2M
: ð223Þ

We return to this type of gauge fixing of the even-parity
dipole in Sec. VII C.

4. Residual Killing fields

We are now left with two unrestricted modes: the l ¼ 0

piece of ζvðnÞjS0 and the l ¼ 1, odd-parity piece of ζAðnÞjS0 .

These pieces of the vector field cannot be fixed by

imposing conditions on ĥð1Þαβ . They correspond to the
timelike and rotational Killing fields of the background
spacetime, which trivially contribute nothing in Eq. (167).
If we were only concerned with first-order perturbations,
we could entirely ignore these pieces, as they would have
no impact on the metric perturbation. However, by leaving
the first-order vectors ζvð100ÞjS0 and ζ−ð11mÞjS0 unspecified, we

leave our second-order metric perturbations unfixed.
More concretely, consider a gauge transformation

generated by a vector ξαð1Þ, as in Eq. (9). If we let

hð1Þαβ →hð1Þαβ þLξð1Þg
ð0Þ
αβ and ζαð1Þ→ ζαð1Þ þΔζαð1Þ in Eq. (167),

we find that the transformation induces a change

Δĥð1Þαβ ¼ LΔζð1Þg
ð0Þ
αβ þ Lξð1Þg

ð0Þ
αβ : ð224Þ

If we substitute the transformation (9) into our equations for
ζαð1Þ, we find that ζαð1Þ transforms as

Δζαð1Þ ¼ −ξαð1Þ þ Ξα
ð1Þ; ð225Þ

where

Ξα
ð1Þ∂α ≔ ξvð100ÞjS0Y00∂v þ

X
m

ξ−ð11mÞjS0XA
1m∂A ð226Þ

is a linear combination of Killing fields. These Killing

fields arise in Δζαð1Þ from letting hð1Þαβ → hð1Þαβ þ Lξð1Þg
ð0Þ
αβ in

Eqs. (211) and (187); the integral in each case introduces a
mode of ξαð1Þ at S

0. Returning to Eq. (224), we now see

Δĥð1Þαβ ¼ 0: ð227Þ

In words, ĥð1Þαβ is invariant, as we would expect.
However, if we next consider a second-order gauge

transformation generated by vectors ξαð1Þ and ξαð2Þ, as in
Eq. (10), then a short calculation starting from Eq. (168)
reveals that

Δĥð2Þαβ ¼ Lϒg
ð0Þ
αβ þ LΞð1Þh

ð1Þ
αβ ; ð228Þ

where

ϒα ≔ Δζαð2Þ þ ξαð2Þ þ
1

2
½ζð1Þ þ Ξð1Þ; ξð1Þ�α: ð229Þ

Here ½·; ·� denotes the commutator. It is easy to check that

ĥð2Þαβ is not invariant because ζαð1Þ is not fully fixed. To show

this, note that by construction, ĥð2Þvα jH0 ¼ 0 in all gauges,

implying Δĥð2Þvα jH0 ¼ 0. Substituting this condition in
Eq. (228) and solving for ϒα, we find

ϒrjH0 ¼
Z

∞

v
e−κ0ðv0−vÞLΞð1Þh

ð1Þ
vv jH0dv0; ð230Þ

ϒAjH0 ¼ ϒAjS0

−
ΩAB

4M2

Z
v

−∞
ðDBϒr þ LΞð1Þh

ð1Þ
vB ÞjH0dv0: ð231Þ

If we now examine Δĥð2Þ∘ ¼ 1
2
ΩABΔĥð2ÞAB, for example,

substituting Eqs. (230) and (231) into Eq. (228), we find
that

Δĥð2Þ∘ ¼ 2rϒr þ r2DAϒA þ Ξα
ð1Þ∂αh

ð1Þ∘ ð232Þ

is a manifestly nonzero quantity. We then conclude that ĥð2Þ∘
is prevented from being invariant by the fact that Ξα

ð1Þ is not
a Killing field of the perturbed spacetime.
To fix ζvð100ÞjS0 and ζ−ð11mÞjS0 , we can impose additional

conditions on ĥð2Þαβ . However, we will be satisfied with the
fact that some choice can be made; we will not make any
particular choice.
We equivocate in this way because the quantity we

calculate explicitly in Sec. VII is invariant (within a large
class of gauges) under the residual gauge freedom. The
quantity we calculate is the surface area of the horizon,
which transforms as

ΔÂ ¼
ffiffiffiffiffiffi
4π

p
ϵ2Δĥð200Þ∘ jH0 þOðϵ3Þ ð233Þ

under the residual gauge freedom. This follows from
Eqs. (258) and (259) in the case of the event horizon.
[Equation (283) with Eq. (264) implies that an additional
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term appears for the apparent horizon, but it is also
proportional to Δĥð200Þ∘ .] Appealing to Eq. (232), we see
that

ΔÂ ¼
ffiffiffiffiffiffi
4π

p
ϵ2ð4Mϒr

00 þ Ξv
ð1Þ∂vh

ð100Þ∘ ÞjH0 þOðϵ3Þ: ð234Þ

Both terms on the right vanish in the case that hð100Þvv and

hð100Þ∘ are independent of v. Since there always exist gauges
in which a spherically symmetric vacuum perturbation is
stationary, we conclude that Â is invariant within that class
of gauges even if we do not fix the residual Killing degrees
of freedom.
Here we have focused on the case of regular perturbation

theory. The story is very much the same in a two-timescale
expansion, except that the residual freedoms hζvð100ÞijH0 and

hζþð11mÞijH0 appear in ĥð2Þαβ in two ways: through the Lie

derivatives L2
ζð1Þg

ð0Þ
αβ and Lζð1Þh

ð1Þ
αβ and through slow-time

derivatives ∂ ṽhζvð100ÞijH0 and ∂ ṽhζþð11mÞijH0 .

5. Summary

In summary, our gauge-fixing procedure has accom-
plished the following:
(1) fixed the coordinate radius of the event horizon Hþ

to be r ¼ 2M
(2) fixed surfaces of constant v, Σv, to be null
(3) fixed the foliation into 2-surfaces Hþ

v ¼ Hþ ∩ Σv,
to enforce the conditions (204) and (209) [or (212)]

(4) fixed the coordinates ðr; θAÞ such that the generators
of Σv are given by lines of constant θA, with r an
affine parameter

(5) fixed the angular coordinates θA on the horizon such
that the horizon generators are lines of constant θA

(or, in an inspiral, such that they wrap around the
horizon slowly, on the radiation-reaction timescale)

(6) further fixed the angular coordinates on the horizon
such that the slowly varying part of the induced
metric on Hv has the same form as a 2-surface
embedded (with the natural identification of angular
coordinates) in Euclidean 3-space.

If we use regular perturbation theory (i.e., with no two-
timescale expansion), our choices put the gauge-fixed
metric perturbation in the form

ĥαβdxαdxβ ¼ ½OðfÞ�dv2 þ 2½OðfÞ�AdvdθA þ ĥABdθAdθB;

ð235Þ

where the individual components are given by Eq. (169).
Here we use f ¼ 1–2M=r as a measure of coordinate
distance from the horizon. At r ¼ 2M the metric perturba-
tion reduces to

ĥαβdxαdxβ ¼ ĥABdθAdθB: ð236Þ

The lm modes of hð1ÞAB at r ¼ 2M are given by

ĥð1Þ∘ ¼ hð1Þ∘ þ 4Mζrð1Þ − 4M2λ21ζ
þ
ð1Þ; ð237Þ

ĥð1Þ� ¼ hð1Þ� þ 8M2ζ�ð1Þ ð238Þ

(suppressing lm labels) with ζrð1Þ given by Eqs. (183) and

ζ�ð1Þ by Eqs. (186) and (187) [with ζ�ð1ÞjS0 given by

Eqs. (219) and (222)]. The modes of ĥð2ÞAB are given by

the same formulas with ζαð1Þ → ζαð2Þ and hð1ÞAB → Hð2Þ
AB.

In a two-timescale expansion, the gauge-fixed perturba-
tion is more complicated due to the slow evolution of the
black hole. The components ĥvv and ĥvA have slowly
varying pieces that do not scale with f, and the metric
perturbations at r ¼ 2M are instead

ĥð1Þαβ dx
αdxβ ¼ 2hĥð1ÞvA idvdθA þ ĥð1ÞABdθ

AdθB; ð239Þ

ĥð2Þαβ dx
αdxβ ¼ hĥð2Þvv idv2 þ 2hĥð2ÞvA idvdθA þ ĥð2ÞABdθ

AdθB:

ð240Þ

According to Eqs. (169c) and (180), the slowly varying vα
components on H0 are given by

hĥð1ÞvA i ¼ hhð1ÞvA þ 2MDAh
ð1Þ
vv i; ð241Þ

hĥð2Þvv i ¼ ΩABhĥð1ÞvA ihĥð1ÞvBi
4M2

; ð242Þ

hĥð2ÞvA i ¼ hH̃ð2Þ
vA þDAζ

r
ð2Þi; ð243Þ

with ζrð2Þ given by Eq. (196).
The metric perturbation on a constant-v cut of H0

divides into a purely oscillatory trace-free piece plus a
trace piece that contains both slowly varying and oscil-
latory contributions:

ĥðnÞAB ¼ ĵðnÞhABi þ ðhĥðnÞ∘ i þ ĵðnÞ∘ ÞΩAB: ð244Þ

At first order, the oscillatory contributions are

ĵð1kÞþ ¼ jð1kÞþ þ 2

iΩk

�
jð1kÞvþ þ jð1kÞvv

2ωk

�
; ð245aÞ

ĵð1kÞ− ¼ jð1kÞ− þ 2jð1kÞv−

iΩk
; ð245bÞ

ĵð1kÞ∘ ¼ jð1kÞ∘ þ 2M
ωk

jð1kÞvv −
λ21
iΩk

�
jð1kÞvþ þ jð1kÞvv

2ωk

�
; ð245cÞ
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and the slowly varying piece is

hĥð1Þ∘ i ¼

8>><
>>:



hð1Þ∘ þ 8M2hð1Þvv þ λ2

1

2
hð1Þþ

�
ðl ≠ 1Þ;

0 ðl ¼ 1Þ:
ð246Þ

At second order, the same equations apply for ĵð2Þ� , ĵð2Þ∘ , and

hĥð2Þ∘ i with the replacements jð1Þαβ → J̃ð2Þαβ and hð1Þαβ → H̃ð2Þ
αβ .

C. Expansion scalar

In the next two sections, we express the properties
of the event and apparent horizon in terms of our gauge-
fixed perturbations. To aid that analysis, we derive here
simplified expressions for the expansion scalar of either
horizon.
In gauge-fixed form, for either horizon, the expansion

scalar (115) is

ϑ̂ð1Þþ;lm ¼ 1

4M2

�
∂vĥ

ð1lmÞ∘ þ λ21ĥ
ð1lmÞ
vþ þ ð1þ λ21Þr̂ð1Þlm

�
: ð247Þ

It is straightforward to show that the linearized vacuum
Einstein equation at r ¼ 2M implies

ˆδRvvjH0 ¼ −
ð∂v − κ0Þ

�
∂vĥ

ð1Þ∘ þ λ21ĥ
ð1Þ
vþ

�
4M2

¼ 0: ð248Þ

This has the now-familiar form (138), implying the unique
well-behaved solution

∂vĥ
ð1Þ∘ þ λ21ĥ

ð1Þ
vþ ¼ 0 ð249Þ

or equivalently, ∂vĥ
ð1Þ∘ ¼ DAĥð1ÞvA . Therefore

ϑ̂ð1Þþ;lm ¼ ð1þ λ21Þr̂ð1Þlm

4M2
: ð250Þ

For the event horizon, where r̂ð1ÞHþ ¼ 0, this implies

ϑð1ÞHþ ¼ 0: ð251Þ

(Here we omit the subscriptþ, but it is understood that ϑ̂Hþ

refers to the expansion scalar associated with k̂α.) For the

apparent horizon, where ϑð1ÞA ¼ 0, it instead implies

r̂ð1ÞA ¼ 0: ð252Þ

In words, the event and apparent horizon are identical at
first order. The fact that the event horizon’s expansion
vanishes at this order is well known [37], although we are
unaware of its implications having been spelled out.

Given the above, on both horizons the expansion
reduces to

ϑþ ¼ ϵ2ϑ̂ð2Þþ þOðϵ3Þ; ð253Þ

with the expression (C2) collapsing to

ϑ̂ð2Þþ ¼ 1

32M4

�
8M2ð1 −D2Þr̂ð2Þ þ 8M2∂vĥ

ð2Þ∘

−
1

2
∂vðΩACΩBDĥð1ÞhABiĥ

ð1Þ
hCDiÞ þ 2DBðĥð1ÞvAΩACĥð1ÞhBCiÞ

�
:

ð254Þ

To obtain this form we have written ĥð1ÞvAD
Aĥð1Þ∘ as a total

divergence minus DAĥð1ÞvA ĥ
ð1Þ∘ and then appealed to

Eq. (249). Equation (254) simplifies further in the case

that ĥð1ÞvA ¼ 0, but the important features are present in either
case: every term involving the metric perturbation is either
a total divergence (which vanishes upon integration over
the horizon) or a total time derivative (which vanishes upon
averaging over fast time in a two-timescale expansion).

D. Invariant properties of the event horizon

By construction, our gauge fixing ensures that

r̂ðnÞHþ ¼ 0: ð255Þ

This implies that the gauge-fixed metric on Hþ
v , from

Eq. (49), is

γ̂H
þ

AB ¼ 4M2ΩAB þ ϵĥð1ÞAB þ ϵ2ĥð2ÞAB þOðϵ3Þ; ð256Þ

where ĥðnÞAB is given in Eqs. (237) and (238) or (244). The
null vectors k̂αHþ and n̂αHþ are given by Eqs. (188) [or (193)]
and (199), and the tangent vectors ðêHþÞαA by δαA.
Given this geometry, the scalar curvature of Hþ

v is given

by Eq. (89) with the replacement γ̆ðnÞAB → ĥðnÞAB. Similarly, the
surface area of Hþ

v , given by Eq. (82), is

ÂHþ ¼ 16πM2 þ ϵAð1Þ
Hþ þ ϵ2Að2Þ

Hþ þOðϵ3Þ; ð257Þ

with

Âð1Þ
Hþ ¼

ffiffiffiffiffiffi
4π

p
ĥð100Þ∘ ; ð258Þ

Âð2Þ
Hþ ¼

ffiffiffiffiffiffi
4π

p
ĥð200Þ∘ −

X
lm

λ22
32M2

ðjĥð1lmÞ
þ j2þjĥð1lmÞ

− j2Þ: ð259Þ

In order to calculate the mass of the horizon, we require
the expansion scalar. Referring to Eq. (254), we see that
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ϑ̂Hþ ¼ ϵ2ϑ̂ð2ÞHþ þOðϵ3Þ; ð260Þ

with

ϑ̂ð2ÞHþ ¼ 1

32M4

�
8M2∂vĥ

ð2Þ∘ þ 2DB

�
ĥð1ÞvAΩACĥð1ÞhBCi

�

−
1

2
∂v

�
ΩACΩBDĥð1ÞhABiĥ

ð1Þ
hCDi

��
: ð261Þ

Therefore the event horizon’s Hawking mass (166) reads

M̂Hþ
H ¼ M̂Hþ

irr −
ϵ2M2

2π

Z
ϑð2ÞHþdΩþOðϵ3Þ; ð262Þ

where M̂Hþ
irr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ÂHþ=ð16πÞ

q
is the irreducible mass of the

event horizon. It will also be helpful, when comparing to
the apparent horizon’s mass in the next section, to write this
as

M̂Hþ
H ¼ M̂Hþ

irr − 2ϵ2M2ϑð2ÞHþ;00Y
00 þOðϵ3Þ: ð263Þ

The monopolar piece of the expansion scalar simplifies to
the total time derivative

ϑð2ÞHþ;00Y
00 ¼ 1

128M4
∂v

�
32M2ĥð200Þ∘ Y00

−
X
lm

λ22
4π

ðjĥð1lmÞ
þ j2 þ jĥð1lmÞ

− j2Þ
�
: ð264Þ

Note that since the expansion is non-negative (by the area
theorem), the Hawking mass is less than or equal to the
irreducible mass. We see that in stationary cases, the
expansion vanishes, as we would expect, and the two types
of mass become equal to one another.
So far in this section we have implicitly worked in

regular perturbation theory. In the context of a two-time-
scale expansion, all of the above equations hold true except

that ϑ̂ð2ÞHþ picks up an additional term from the v derivative
in Eq. (247),

δϑ̂ð2ÞHþ ¼ ∂ ṽĥ
ð1Þ∘

4M2
: ð265Þ

We can use this to obtain a simplified relation between the
slowly varying parts of the Hawking and irreducible
masses, hMHþ

H i and hMHþ
irr i. Since Eq. (264) is a total time

derivative, it implies

hϑ̂ð2ÞHþi ¼ hδϑ̂ð2ÞHþi ¼ 1

4M2
∂ ṽhĥð1Þ∘ i: ð266Þ

We then have

hMHþ
H i ¼ hM̂Hþ

irr i −
ϵ2

8π
∂ ṽ

Z
ĥð1Þ∘ dΩþOðϵ3Þ: ð267Þ

The integral picks out the spherically symmetric piece of

hð1Þ∘ , and the slow-time derivative picks out the quasista-
tionary piece. Such a piece is necessarily a perturbation
toward another Schwarzschild black hole, as given in
Eq. (121), with δM a function ṽ. According to
Eq. (246), this corresponds to a gauge-fixed perturbation

ĥð1Þ∘ ¼ 8MδM; ð268Þ

and so

hM̂Hþ
H i ¼ hM̂Hþ

irr i −
ϵ2

κ0

dδM
dṽ

þOðϵ3Þ: ð269Þ

We may also note, from Eq. (124) and the surrounding
discussion, that



dMirr

dv

�
¼ ϵ2

dδM
dṽ

þOðϵ3Þ; ð270Þ

regardless of which horizonMirr refers to or whether we use
its horizon-locked variant. Therefore Eq. (269) can be
written as

hM̂Hþ
H i ¼ hM̂Hþ

irr i −
1

κ0



dM̂Hþ

irr

dv

�
þOðϵ3Þ: ð271Þ

We recognize this as precisely the form of the equation
governing the horizon location, Eq. (138).
In principle we can convert Eq. (271) into a teleological

integral relationship:

hM̂Hþ
irr i ¼ κ0

Z
∞

v
e−κ0ðv0−vÞhM̂Hþ

H idv0 þOðϵ3Þ: ð272Þ

But it should be noted that our derivation only applies well
before merger, in the sense described in Sec. V C. So a
cutoff should be imposed on the upper limit of integration
in this relationship.

E. Invariant properties of the apparent horizon

Our horizon-locking condition does not place the ap-
parent horizon at the coordinate location r ¼ 2M. Instead,
with the event horizon at r ¼ 2M, the gauge-fixed radius of
the apparent horizon is

r̂A ¼ 2M þ ϵ2r̂ð2ÞA þOðϵ3Þ; ð273Þ

where we have used the result (252) to set r̂ð1ÞA ¼ 0. We can
also write this as
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r̂A ¼ r̂Hþ þ ϵ2r̂ð2ÞA þOðϵ3Þ: ð274Þ

We stress that the equality at linear order, rð1ÞA ¼ rð1ÞHþ , is an

invariant statement. Since rð1ÞA and rð1ÞHþ transform in the
same way under a gauge transformation, their equality in
the horizon-locked gauge implies their equality in all

gauges. The second-order term, r̂ð2ÞA , then provides an
invariant measure of the apparent horizon’s displacement
from the event horizon.
The second-order radial displacement follows from

Eq. (254) with ϑð2Þþ;A ¼ 0, or equivalently from Eq. (118).
We write the result in terms of the expansion scalar of the
event horizon:

r̂ð2ÞA;lmðvÞ ¼ −
4M2ϑ̂ð2ÞHþ;lm

1þ λ21
: ð275Þ

The modes of the expansion are given by

ϑ̂ð2ÞHþ;lm ¼ ∂vĥ
ð2lmÞ∘

4M2

þ
X
l0m0
l00m00

�
ð2ÞΘ̂lm

l0m0l00m00ðvÞClm0
l0m02l00m00−2

þ ð1ÞΘ̂lm
l0m0l00m00ðvÞClm0

l0m01l00m00−1

�
ð276Þ

with the explicit coefficients given in Eq. (C4). This

formula for ϑ̂ð2ÞHþ;lm can be obtained directly from
Eq. (117) or from Eq. (261). Since the event horizon’s
expansion is nonnegative, these relationships suggest that

r̂ð2ÞA;lm is negative or zero; the apparent horizon lies inside the
event horizon, as it should.
Equation (273) implies that the gauge-fixed metric on

Av, given by Eq. (49), is

γ̂AAB¼4M2ΩABþϵĥð1ÞABþϵ2
�
ĥð2ÞABþ4Mr̂ð2ÞA ΩAB

�
þOðϵ3Þ:

ð277Þ

Or in terms of the metric on Hþ
v ,

γ̂AAB ¼ γ̂H
þ

AB þ 4Mϵ2r̂ð2ÞA ΩAB þOðϵ3Þ: ð278Þ

From Eqs. (74)–(77) and (45), the basis vectors on Av are
given by

k̂αA∂α ¼ k̂αHþ∂α þ ϵ2
r̂ð2ÞA

4M
∂r þOðϵ3Þ; ð279Þ

n̂αA∂α ¼ n̂αHþ∂α þOðϵ3Þ; ð280Þ

ðêAÞαA∂α ¼ ðêHþÞαA∂α þ ϵ2DAr̂
ð2Þ
A ∂r þOðϵ3Þ: ð281Þ

Note that since these quantities have all been pulled back to
H0, the relationships between them do not involve compar-
ing tensors at different points.
This metric’s intrinsic curvature, from Eq. (89), can be

written in terms of the event horizon’s curvature as

RA ¼ RHþ þ ϵ2

4M3

X
lm

μ2r̂ð2ÞA;lm þOðϵ3Þ; ð282Þ

where, recall, μ2 ≔ ðlþ 2Þðl − 1Þ. Similarly, the surface
area of Av, from Eq. (82), is

ÂA ¼ ÂHþ þ 16πMr̂ð2ÞA;00Y
00: ð283Þ

This involves the monopolar correction to the apparent
horizon radius, which reads

r̂ð2ÞA;00 ¼ −4M2ϑ̂ð2ÞHþ;00; ð284Þ

with Eq. (264).
From the surface area, with Eq. (86), we can read off the

second-order contribution to the apparent horizon’s irre-
ducible mass:

M̂ð2Þ
irr;A ¼ M̂ð2Þ

irr;Hþ − 2M2ϑ̂ð2ÞHþ;00Y
00: ð285Þ

Comparing this result for the irreducible mass to Eq. (263),
we observe that it is precisely the second-order contri-
bution to the Hawking mass of the event horizon. Since
M̂A

irr ¼ M̂A
H, this implies that the two horizons have

identical Hawking masses through second order:

M̂A
H ¼ M̂Hþ

H þOðϵ3Þ: ð286Þ

Because the event horizon is larger than or equal to the
apparent horizon, its irreducible mass is slightly larger
(by an amount of order ϵ2) than the apparent horizon’s.
However, the event horizon’s Hawking mass is slightly
smaller than its irreducible mass, and here we see that the
slight difference is precisely the same as the difference
between the two horizons’ irreducible mass.
All of the above applies in regular perturbation theory. In

the context of a two-timescale expansion, it all remains
valid except that the apparent horizon radius picks up the
additional term (125), which we reproduce here in terms of
the gauge-fixed metric perturbation,

δr̂ð2ÞA;lm ¼ −
∂ ṽĥ

ð1lmÞ∘
1þ λ21

: ð287Þ

Since the contribution in Eq. (275) is a total fast-time
derivative, δr̂ð2ÞA;lm is the only contribution that does not
average to zero. That is,
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hr̂ð2ÞA;lmi ¼ hδr̂ð2ÞA;lmi ¼ −
∂ ṽhĥð1lmÞ∘ i
1þ λ21

: ð288Þ

The averaged horizon radius allows us to derive averaged
equations for the apparent horizon area and mass.
Following the same arguments as led to Eq. (269), we find

hr̂ð2ÞA;00iY00 ¼ hδr̂ð2ÞA;00iY00 ¼ −8M
dδM
dṽ

: ð289Þ

Equation (283) then tells us that the slowly varying piece of
the horizon area is

hÂAi ¼ hÂHþi − 32Mπϵ2

κ0

dδM
dṽ

þOðϵ3Þ; ð290Þ

and the slowly varying irreducible mass is

hM̂A
irri ¼ hM̂Hþ

irr i −
1

κ0



dM̂Hþ

irr

dv

�
þOðϵ3Þ: ð291Þ

Of course, since Eq. (286) is valid even without averaging,
it is also valid on average:

hM̂A
Hi ¼ hM̂Hþ

H i þOðϵ3Þ: ð292Þ

VII. CASE STUDY: QUASICIRCULAR
BINARIES

In this section, we apply our results in the particular case
studied in Ref. [19]: a quasicircular binary. We start by
summarizing key properties of the metric in this scenario.
We then describe Ref. [19]’s calculation of the apparent
horizon’s irreducible mass, and we present new results for
the numerical difference between the two horizons’ irre-
ducible masses. We conclude by presenting a visualization
of the horizon at first order, specifically highlighting the
motion of the black hole, which has not been accounted for
in previous visualizations in the literature.

A. Two-timescale character

The two-timescale expansion for quasicircular binaries
was detailed in Ref. [59]. The orbiting companion is placed
on a quasicircular orbit

xμpðt; ϵÞ ¼ ½t; rpðϵt; ϵÞ; π=2;ϕpðt; ϵÞ�; ð293Þ

where the subscript p refers to “particle”; at leading order
in the system’s mass ratio m=M, the companion can be
represented as a point mass. In the parametrization (293),
the orbital radius is slowly decaying, and the orbital phase
is the integral of a slowly increasing orbital frequency:

ϕpðt; ϵÞ ¼
Z

t

0

Ωðϵt0Þdt0: ð294Þ

On timescales much shorter than M=
ffiffiffi
ϵ

p
, this phase can be

approximated by the geodesic phase,

ϕpðt; ϵÞ ¼ Ω0tþOðϵt2Þ; ð295Þ

where Ω0 ≔ Ωð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=rpð0Þ3

q
. As a consequence, the

timeM=
ffiffiffi
ϵ

p
is referred to as the dephasing time. In addition

to determining the phase evolution, the orbital frequency
provides a convenient parametrization of the orbital radius,
and we can write rp ¼ r0ðΩÞ þOðϵÞ, where r0ðΩÞ ≔
ðMΩÞ2=3 is the geodesic relationship.
The quasicircular orbit is linked to a distinct two-time-

scale behavior of the metric perturbation. We can see how
this comes about from the leading-order stress-energy
tensor of the companion, which reads

Tαβ ¼ muαuβ

utr2p
δðr − rpÞδðθ − π=2Þδðϕ − ϕpÞ: ð296Þ

Here

uα ≔
dxαp
dτ

¼ ut
�
1; ϵ

drp
dt̃

; 0;Ω
�

ð297Þ

is the four-velocity of the particle, normalized to satisfy

gð0Þαβ u
αuβ ¼ −1, and t̃ ¼ ϵt. The completeness relation

δðθ − π=2Þδðϕ − ϕpÞ ¼
P

lm YlmðθAÞȲlmðπ=2;ϕpÞ,
together with the fact that

Ȳlmðπ=2;ϕpÞ ∝ e−imϕp ; ð298Þ

immediately implies that each lmmode of the stress-energy
has the form of a slowly varying amplitude times a rapidly
oscillating phase factor e−imϕp. The Einstein equations
ensure that the metric perturbation inherits this same form.
In a neighborhood of the event horizon, we then arrive at
solutions of the form

hðnÞab ¼
X
lm

hðnmlÞ
ab Ylme−imϕpðv;ϵÞ; ð299aÞ

hðnÞ∘ ¼
X
lm

hðnlmÞ∘ Ylme−imϕpðv;ϵÞ; ð299bÞ

hðnÞaA ¼
X
lm

�
hðnlmÞ
aþ Ylm

A þ hðnlmÞ
a− Xlm

A

�
e−imϕpðv;ϵÞ; ð299cÞ

hðnÞhABi ¼
X
lm

�
hðnlmÞ
þ Ylm

AB þ hðnlmÞ
− Xlm

AB

�
e−imϕpðv;ϵÞ; ð299dÞ
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where the coefficients are functions of ðr; ṽÞ. This is
the two-timescale expansion (40) with the identification
of the fast-time phase variable as φϕ ¼ ϕp. The periodic
dependence on ϕpðt; ϵÞ at the particle translates into the
same periodic dependence on ϕpðv; ϵÞ at the horizon. The
slow-time dependence of the mode amplitudes, such as

hðnmlÞ
ab ðr; ṽÞ, represents a dependence on the orbital fre-

quency Ω, the perturbation δMðṽÞ to the black hole’s mass,
and an analogous perturbation δJðṽÞ to the black hole’s
spin. Following Ref. [19], in this paper we restrict ourselves
to “moments” of slow time at which δJ vanishes.
Beyond its general two-timescale character, the metric

perturbation in this scenario has an important feature: it
only depends on ϕ and ϕp in the combination ðϕ − ϕpÞ.
This means that averages over the horizon surface Hv are
also averages over fast time. Quantities such as the horizon
area and mass therefore have no oscillatory parts, meaning

A ¼ hAi and MBH ¼ hMBHi: ð300Þ

Here “MBH” can be either the irreducible or Hawking mass.
Another way of saying this is that the black hole’s area and
mass are approximately conserved quantities: they only
change very slowly, on a timescale much longer than the
orbital period. We can view this as a consequence of the
spacetime possessing an approximate Killing vector. Since
the metric only depends on the combination ðϕ − ϕpÞ, the
helical vector Kα∂α ¼ ∂t þΩ∂ϕ satisfies Lξgαβ ¼ Oðϵ2Þ.
However, the event horizon is not a Killing horizon at this
order, as Kα is not null at the horizon.
As discussed in Sec. V C, our two-timescale approxi-

mation and our treatment of the event horizon both break
down as the companion approaches the transition to plunge.
For a quasicircular orbit, this implies we must cut off our
treatment at a time before the companion reaches the ISCO
at r0 ¼ 6M. Estimating an appropriate cutoff would require
a careful matching between our two-timescale expansion
and a transition-regime expansion near the ISCO. But we
can surmise a rough estimate. In the transition regime, the

orbital radius has the form rp ∼ 6M þ ϵ2=5rð1Þp ðϵ1=5tÞ [61],
implying that we should switch from our two-timescale
expansion to a transition-regime expansion at a radius
rpðṽTÞ satisfying M ≫ ðrp − 6MÞ≳ ϵ2=5M. We must
then additionally satisfy the cutoff (150) to ensure that
the transition regime does not significantly impact the event

horizon. Since drp
dv ∼ ϵ in the inspiral regime, the cutoff

jv − vT j ≫ j ln ϵj translates to ½rpðṽÞ − rpðṽTÞ� ≫ jϵ ln ϵj.
However, since ϵ2=5 ≫ jϵ ln ϵj, this secondary restriction
has negligible impact.
In the following sections, we use data for the mode

amplitudes hðnmlÞ
ab , hðnmlÞ

a� , hðnmlÞ∘ , and hðnmlÞ
� that were

obtained as a part of the calculations in Ref. [19]. The
modes were computed in the Lorenz gauge by solving the
two-timescale expansion of the field equations, as

described in Ref. [59]. The first-order mode amplitudes
satisfy the same field equations as they would in an
ordinary frequency-domain treatment, and they were com-
puted using the frequency-domain code described in
Ref. [77]; in this paper we use data up to l ¼ 30 for a
sequence of values of r0 from 6M to 25M. The only
second-order mode we use is the monopole mode,
l ¼ m ¼ 0. The explicit details of its computation will
be presented elsewhere.

B. Mass of the black hole

We compute the mass of the black hole in several ways.
We first summarize the calculation as performed
in Ref. [19]:
(1) Compute the lm modes of the first-order perturba-

tion of the horizon radius, rð1ÞA;lm ¼ rð1ÞHþ;lm, from
either Eq. (116) or (159).4 For quasicircular orbits,
the latter reduces to

rð1ÞA;lm ¼ rð1ÞHþ;lm ¼ 2Mhð1lmÞ
vv

1þ 4iMΩm
; ð301Þ

with Ωm ≔ mΩ. Here rðnÞH;lmðṽÞ is the coefficient in
the expansion

rðnÞH ¼
X
lm

rðnÞH;lmðṽÞe−imϕpðv;ϵÞYlm: ð302Þ

(2) Compute the monopolar second-order correction to
the apparent horizon radius, rð2ÞA;00, using Eq. (C5). In
this formula, ∂v ¼∓ iΩm or 0, depending on
whether it acts on an unconjugated quantity (−), a
conjugated quantity (þ), or an absolute value (0).

Note that since rð2Þ00 is an m ¼ 0 mode, it does not
depend on the phase ϕp; in Eq. (C5), all terms in the
sum come as pairs χlmψ̄ lm, meaning the fast-time
phase factors e�imϕp cancel.

(3) Compute the correction δrð2ÞA;00 from Eq. (125). In the
Lorenz gauge, this correction can be found analyti-
cally to agree with the gauge-fixed formula (289):

δrð2Þ00 Y
00 ¼ −8M

dδM
dṽ

: ð303Þ

This is not true in all gauges; Eq. (289) is gauge
invariant, but Eq. (125) is not.

(4) Compute the intrinsic metric (49) on the apparent
horizon using (58) with (59) and (60). Note that only
the monopole, trace mode γ̆ð200Þ∘ is required at
second order.

4We have confirmed that the two formulas yield identical
numerical results.
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(5) Compute the surface area and irreducible mass of the
apparent horizon using Eqs. (82) and (86).

Given our results in this paper, we can now carry out
several alternative calculations. First, we can calculate the
irreducible mass of the event horizon using identical steps,
simply replacing rð2ÞA;00 with rð2ÞHþ;00, as given in Eq. (160)

with Eq. (136). Because hðn00Þvv vanishes at r ¼ 2M in the
Lorenz gauge, this formula reduces to

rð2ÞHþ;00 ¼
Fð2Þ
00

1þ 4iMΩm
ð304Þ

with Fð2Þ
00 as given in Eq. (165). Note that we do not require

an analog of Eq. (303) in this case because Eq. (160)
already contains the complete second-order contribution to

rð2ÞHþ in the two-timescale expansion.
Another alternative is to utilize our gauge-fixed

expressions:
(1) Compute the gauge-fixed perturbations ĥð1lmÞ∘ and

ĥð1lmÞ
� on the horizon, from Eqs. (245) and (246).

Here jð1kÞ → hð1lmÞ for m ≠ 0 modes and
hhð1lmÞi ¼ hð1l0Þδm0 .

(2) Compute the monopole mode of the gauge-fixed
second-order perturbation on the horizon,

ĥð200Þ∘ ¼ Hð200Þ∘ þ 8M2Hð200Þ
vv ; ð305Þ

with Hð200Þ∘ and Hð200Þ
vv as given in Eqs. (C7)

and (C6).
(3) Compute the event horizon’s area using Eq. (259)

and its irreducible mass M̂ð2Þ
Hþ;irr using Eq. (86).

(4) If desired, add the correction in Eq. (269) to obtain
the Hawking mass of the event horizon or, equiv-
alently, the irreducible mass of the apparent horizon:

M̂ð2Þ
Hþ;H ¼ M̂ð2Þ

A;irr ¼ M̂ð2Þ
Hþ;irr − 4M

dδM
dṽ

: ð306Þ

Figure 1 shows the result of all three calculations of

Mð2Þ
A;irr andM

ð2Þ
Hþ;H as a function of r0. However, we must be

careful in interpreting the results for two reasons.
First, the data do not represent the evolution of a single

system. The data at each orbital radius was obtained with
the black hole’s angular momentum set to zero. While we
can freely choose to set it to zero at a single moment of an
inspiral, we cannot set it to zero throughout the inspiral: as
the system evolves, the black hole’s spin changes due to
gravitational-wave flux through the horizon, which is
always nonzero. Hence, instead of representing snapshots
over the course of an inspiral, the data from different orbital
radii represent snapshots from different inspirals. In prac-
tice, the black hole’s spin evolves by a very small amount

over an inspiral, so our results are strongly indicative of the
behavior in a true evolution, but the conceptual distinction
should be kept in mind.
The second reason for caution is that these results on

their own do not represent a meaningful correction to the
black hole mass. This is because we can always freely add a
stationary mass perturbation to the second-order metric
perturbation (i.e., a perturbation toward another
Schwarzschild solution). Since this perturbation is a vac-
uum solution, regular at the horizon and at infinity, there is
no restriction on it. The method used to calculate hð2Þαβ in
Ref. [19], which involves integrating the second-order
source against a retarded Green’s function, picks out a
particular solution, but we do not have a specific measure of
how much of that solution corresponds to a perturbation
toward another Schwarzschild metric. A meaningful meas-
urement would only come from measuring differences
between masses. The calculation in Ref. [19] provides
an example in the calculation of the binary’s gravitational
binding energy. The binding energy is the difference
between the system’s Bondi mass and the two components’
total rest mass. In that difference, perturbations toward
another Schwarzschild solution cancel out, as they con-
tribute an identical amount to MBondi as to MBH.
Nevertheless, the results in Fig. 1 do contain valuable

information. They show that the gauge-fixed mass differs
from the mass in the Lorenz gauge by a quite small amount,
despite the fact that the mass is a foliation-dependent
quantity. Likewise, they show that the irreducible mass of
the event horizon is virtually indistinguishable from that of
the apparent horizon. We must also keep in mind that the

FIG. 1. Second-order contribution to the black hole’s irreduc-
ible mass as a function of orbital radius. The upper plot shows
values as measured from the apparent horizon in the Lorenz
gauge (Mð2Þ

A;irr , solid purple squares), from the apparent horizon

with gauge fixing (M̂ð2Þ
A;irr , solid orange triangles), and from the

event horizon in the Lorenz gauge (Mð2Þ
Hþ;irr , open blue circles).

The inset shows the relative differences jðM̂ð2Þ
A;irr −Mð2Þ

A;irrÞ=Mð2Þ
A;irrj

(orange triangles) and jðMð2Þ
Hþ;irr −Mð2Þ

A;irrÞ=Mð2Þ
A;irrj (blue circles).
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absolute differences between these quantities are multiplied
by ϵ2, making them truly tiny in a realistic small-mass-ratio
binary. Moreover, our calculations have established that the
difference between the irreducible masses of the two
horizons is invariant (given the choice of foliation in
Sec. VI): according to Eq. (269) or (291), the (averaged)
irreducible masses of the two horizons always differ by

4M dhMBHi
dv ¼ 4Mϵ2FH, whereFH is the dimensionless flux

of energy into the black hole, normalized by ϵ2. FH is
numerically small for all orbital configurations [78],
suggesting that even aside from the suppression by ϵ2,
the two measures of black hole mass always agree to
several significant digits. While this is a generally accepted
conclusion from full numerical relativity simulations, our
results provide a complementary, sharper statement in the
perturbative context.
This robustness of the black hole mass has practical

implications. It implies that the binding energy computed in
Ref. [19] is largely insensitive to the definition of black
hole mass. That in turn suggests that the waveforms
currently being generated using the binding energy [79]
are similarly robust.

C. Motion and teleology of the horizon

As a final element of our discussion, we present a
visualization of the horizon. Unlike the rest of the paper,
this section is necessarily restricted to linear perturba-
tions. The reason is simple: the visualization requires
modes with l > 0, and no second-order data is yet
available for these modes. Because of this restriction,
our presentation here largely reproduces earlier literature.
However, we highlight an aspect of the visualization that
was omitted in earlier descriptions: the motion of the
black hole. We also point out that features described as
teleological in the literature cannot have a truly teleo-
logical origin, and we offer an alternative explanation for
the behavior.
In this section we also depart from our treatment in other

sections in that we specifically focus on behavior on the
orbital timescale 1=Ω rather than trying to maintain
accuracy on both the orbital and radiation-reaction time-
scale. This means that we may make the replacement
φpðv; ϵÞ → Ωv, as in Eq. (295), which is consistent at first
order in ϵ on the orbital timescale.

1. Motion of the black hole

We first review the visualization method outlined in
Refs. [38,39] (following earlier work in Refs. [43,44]).
Since the horizon’s coordinate radius is inherently gauge
dependent, and actually identical to the background
horizon’s radius in a horizon-locking gauge, the method
instead depicts the shape of the horizon based on its
intrinsic curvature. To do so, one embeds the horizon into
3-dimensional Euclidean space.

The embedding is found by constructing a closed
2-surface in Euclidean space that has the same intrinsic
curvature as the horizon. In Cartesian coordinates
xi ¼ ðx; y; zÞ, at a given value of v, such a surface can
be parametrized as

xiEðθA; vÞ ¼ rEðθA; vÞΩiðθAÞ; ð307Þ

where Ωi ≔ ðsin θ cosϕ; sin θ sinϕ; cos θÞ is the usual
radial unit vector, which satisfies δijΩiΩj ¼ 1. We write
the radius of the surface as

rEðθA; vÞ ¼ 2M½1þ ρðθA; vÞ�; ð308Þ

and we expand the small correction as

ρðθA; vÞ ¼
X
lm

ρlmYlmðθAÞe−iΩmv: ð309Þ

The metric on the surface, induced from the Euclidean
metric ds2 ¼ δijdxidxj, is

ds2 ¼ r2EðθA; vÞdΩ2 ¼ 4M2½1þ 2ρðθA; vÞ�dΩ2; ð310Þ

where we have discarded the term of order ρ2. Noting that
this metric is of the form (47), we can read off its scalar

curvature from Eqs. (89) and (95), with γ̆ð1lmÞ
þ → 0 and

γ̆ð1lmÞ∘ → 8M2ρlme−iΩmv. This yields

RE ¼ 1

2M2

�
1þ

X
lm

μ2ρlmYlmðθAÞe−iΩmv

�
; ð311Þ

where, recall, μ2 ≔ ðlþ 2Þðl − 1Þ, and we again omit
Oðρ2Þ terms.
Finally, equating the curvature RE to the intrinsic

curvature (89) of the horizon, we obtain the radial profile
through linear order:

rE ¼ 2M

�
1þ 2ϵM2

X
lm

Rð1Þ
lm YlmðθAÞ

ðlþ 2Þðl − 1Þ e
−iΩmv

�
: ð312Þ

Rð1Þ
lm is calculated from the coefficients hð1lmÞ∘ and hð1lmÞ

þ in
the expansion (299), evaluated at r ¼ 2M, using Eq. (95)
with Eqs. (59) and (301). Since the scalar curvature is
invariant at first order, Eq. (312) then provides an invariant
representation of the horizon’s radial profile.
There are several things to note about this construction.

First, the metric (310) is manifestly identical to the intrinsic
metric γAB on Hv for a particular choice of gauge, as
described in Sec. VI B 3. In that section we imposed the
gauge choice only on the slowly varying part of the intrinsic
metric, but it can be imposed on the oscillatory part as well.
The second thing to note is that because the two horizons
are identical at linear order, this visualization represents the
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apparent horizon as well as the event horizon. Finally, we
note that Eq. (312) has a significant shortcoming as a
representation of the horizon. While it provides a mean-
ingful depiction of the horizon’s shape, it does not contain
any information about the horizon’s location. In a binary
system, both bodies orbit around the system’s center of
mass, and a faithful representation of the black hole horizon
should encode this motion.
The information about the horizon’s location is encoded

in the l ¼ 1 term in the metric perturbation. Since the
construction leading to Eq. (312) only requires that
the embedded surface has the same intrinsic geometry as
the horizon, and since R gets zero contribution from l ¼ 1
modes, we can in principle add any arbitrary l ¼ 1 term to
rE. In previous analyses, the dipole term was simply set to
zero, as we have implicitly done in Eq. (312). This is a
sensible choice if we are only concerned with the horizon’s
shape, but not if we are concerned with its location. To
construct a more faithful representation of the black hole
horizon, we should instead replace the embedding (307)
with

xiEðθA; vÞ ¼ xiBHðvÞ þ rEðθA; vÞΩiðθAÞ: ð313Þ

In this representation, at each moment v, the surface
rEðθA; vÞ is drawn around the black hole’s “center”
xiBHðvÞ. We must now find a meaningful way of measuring
this center.
To see how xiBH relates to an l ¼ 1 mode, assume

xiBH ∼ ϵ. Then the radial location of a point on the surface
xiE is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δijxiEx

j
E

q
¼ rE þ δijxiBHΩj þOðϵ2Þ: ð314Þ

The quantity δijxiBHΩj is a pure dipole. If we define a new
radial profile r0EðθAÞ ¼ rE þ δijxiBHΩj and expand it as
r0E ¼ P

lm r0lmY
lm, then xiBH corresponds to the l ¼ 1

coefficients:

xiBH ¼
ffiffiffiffiffiffi
3

4π

r �
−

ffiffiffi
2

p
Reðr011Þ;

ffiffiffi
2

p
Imðr011Þ; r010

�
: ð315Þ

In these expressions we absorb the v dependence into the
coefficients. Note that although we have this one-to-one
relationship, the embedding (313) should be used rather
than xiEðθA; vÞ ¼ r0EðθA; vÞΩiðθAÞ; in Eq. (313), the term
xiBH represents a uniform translation, shifting the center of
the black hole without altering its shape, while in
xiEðθA; vÞ ¼ r0EðθA; vÞΩiðθAÞ it does visibly alter the shape.
We now require a meaningful r01m to use in Eq. (315).

One option would be to simply use the l ¼ 1 mode of the
coordinate profile (301) in the Lorenz gauge. While the
coordinate profile is a gauge-dependent quantity, there is
good reason to think the Lorenz-gauge profile contains a

meaningful dipole mode. As explained in Ref. [80], if the
coordinate system is centered on the moving black hole,
then the coordinates are noninertial, causing the metric at
large r to grow rather than decay. The transformation from
such a gauge to the Lorenz gauge eliminates this feature,
and in the Lorenz gauge one can identify the system’s
center of mass with the coordinate origin r ¼ 0 (of course
keeping in mind that this is only an effective identification
because the coordinate origin is deep inside the black hole
and not a well-defined curve in the true spacetime
manifold).
Unfortunately, the Lorenz-gauge dipole leads to counter-

intuitive behavior that does not scale correctly in the
Newtonian limit. In Newtonian theory, if the black hole
moves on a trajectory Zi and the particle on a trajectory zi,
then the system’s center of mass is MZiþmzi

Mþm , and if the center
of mass is at the coordinates’ origin, then Zi ¼ −ϵzi. The
magnitude of the black hole’s displacement should then be

rBH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δijZiZj

q
¼ ϵr0, growing linearly with the par-

ticle’s orbital radius r0. In fact, the Lorenz-gauge dipole
does encode such linear growth [81], and we can even
observe the growth in the metric perturbation on the
horizon. However, the radial profile (301) only depends

on a specific piece of this perturbation, hð1lmÞ
vv , and we find

that this decays as 1=
ffiffiffiffiffi
r0

p
at large r0.

5 We then arrive at a
puzzling conclusion. If we follow an inspiral backward in
time, such that the particle spirals outward toward greater
radii, then far from the system, in the wave zone, the metric
appears to behave as if the coordinates are centered on the
center of mass, with the black hole also spiraling outward.
But if we make a local measurement of the horizon’s
location, we find that while the particle spirals outward, the
black hole spirals inward, eventually settling precisely at
the coordinate origin.
As an alternative to the Lorenz-gauge measure of the

black hole’s center, we can follow the idea that Eq. (310) is
a gauge-fixed version of the horizon’s intrinsic metric γAB.
After eliminating γhABi via a gauge choice, we have
γAB ¼ γ∘ΩAB ≔ ðr0EÞ2ΩAB. We can then put this in the
form (310) by performing a uniform translation, by an
amount −xiBH, to eliminate the dipole mode from γ∘. This
transformation would make the induced metric perfectly
round up to l > 1 contributions, as it should be if the
coordinates are centered on the center of the black hole. We
can then undo the translation, but now treating it exactly
rather than perturbatively, to obtain the displaced surface
(313). In that expression, xiBH is given by Eq. (315) with

r01m ¼ γð11mÞ∘ e−iΩmv

4M . Explicitly, appealing to Eq. (59) for γð11mÞ∘ ,
we see that

5The alternative formula (116) does depend on other pieces of
the dipole perturbation, but those pieces are found to precisely
cancel.
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r01m ¼
�
hð11mÞ∘
4M

þ r1m

�
e−iΩmv; ð316Þ

where r1m is given by Eq. (301).
We use this definition of black hole’s center in Figs. 2

and 3, which display the horizon surface (313) in the x-y
plane at several values of v and for two values of r0. In
these plots, we see two effects: the horizon is tidally
distorted by the orbiting companion, and it follows a
counterclockwise orbit around the center of mass. (We
have artificially multiplied l > 1 modes of rE by a factor of
200 to make the tidal distortion clearly visible. Other
parameters are described in the captions.)
Unfortunately, this definition of the black hole’s position

does not exhibit the expected Newtonian behavior. We find
numerically that xiBH tends to − 1

2
ϵxip at large r0 rather than

to xiBH ¼ −ϵxip. The linear scaling with r0 is correct, and it
is quite unlike the ∼1= ffiffiffiffiffi

r0
p

behavior of the Lorenz-gauge
coordinate position. But there is a confounding factor-of-2
disagreement. This suggests that a different definition of
xiBH is required. We leave investigation of this issue to
future work.
For completeness, in Fig. 4 we display complementary

three-dimensional views of the horizon. Since this figure
illustrates the shape (rather than motion) of the horizon, for
it we use the traditional embedding (307).

FIG. 2. Snapshots of the event horizon in the x-y plane at four
moments of advanced time, with deformations due to a particle in
circular orbit at r0 ¼ 7M and a mass ratio ϵ ¼ 0.1. Here
vmax ¼ 2π=Ω, such that the four snapshots show one complete
orbital period. To make the distortion visible on the scale of the
plot, we have omitted m ¼ 0 modes and multiplied l > 1 modes
by a factor of 200. The dotted line points toward the position of
the particle at advanced time v, while the dashed line points
toward the maximal deformation of the horizon (the “tidal
bulge”); the relative angle between them is 31.7°. The large
reference circle represents the unperturbed horizon at r ¼ 2M.
The blue dot indicates the coordinate “center” of the black hole,
which traces out the circular trajectory of radius rBH ¼ 0.350M
represented by the smaller reference circle.

FIG. 3. Snapshots of the horizon for a particle in circular orbit
at r0 ¼ 25M, with other details as described in the caption of
Fig. 2. The relative angle between the tidal bulge and the particle
location is 14.5°, and the radius of the black hole’s orbit is
rBH ¼ 1.21M.

FIG. 4. Three-dimensional visualizations of the horizon surface
at v ¼ 0, with the same parameters as Fig. 2. Here we use the
embedding (307) rather than (313).
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2. Horizon teleology

Like the black hole, the companion follows a counter-
clockwise orbit, with a trajectory xipðtÞ ¼ ½r0 cosðΩtÞ;
r0 sinðΩtÞ; 0�, such that at advanced time v it is at a position

xip ¼ fr0 cos½Ωðv − r�0Þ�; r0 sin½Ωðv − r�0Þ�; 0g; ð317Þ

where r�0 is the tortoise coordinate at the particle’s location.
In each plot, the dotted line points toward this position. The
dashed line points toward the location of greatest tidal
distortion of the horizon—the tidal bulge. As we can see
from the plots, the tidal bulge consistently leads the
companion’s orbit by a constant angle, seeming to point
toward the companion’s future location.6

This lead angle has been discussed many times in the
past [38,39,44,82]. It markedly contrasts with the behavior
of a fluid body. In Newtonian physics, the tidal bulge of an
inviscid fluid body points toward the companion’s instan-
taneous position. If the fluid is viscous, then the tidal bulge
lags behind the companion’s orbit. In relativistic physics,
the tidal bulge will also lag due to retardation. In no case
does the fluid body’s bulge lead the companion’s orbit.
Previous literature has offered the explanation that the tidal
lead is due to the teleological nature of the event horizon:
the horizon effectively anticipates the companion’s future
location. More mathematically, Eq. (143) tells us that the
horizon’s deformation leads the metric perturbation by a
time of order 1=κ0.
However, such an explanation cannot be wholly correct.

At linear order, the event horizon is indistinguishable from
the apparent horizon: their radial profiles (143) (with
n ¼ 1) and (116) are identical. Therefore the event hori-
zon’s location on a slice of constant advanced time v is
completely determined by information on that slice. This
rules out a truly teleological explanation, but it also
suggests a nonteleological one. An apparent horizon is
not pulled toward the orbiting companion; it is repelled by
it. This is because the companion pulls light rays toward
itself and hence away from the black hole, helping them to
escape. Therefore the tidal bulge of the horizon cannot be
interpreted in the same way as the tidal bulge of a fluid
body. The bulge of a fluid body is created by the companion
pulling the fluid toward itself, while the companion’s pull
on light rays has precisely the opposite effect on the black
hole’s horizon. Rather than thinking of the bulge leading
the orbit, we can think of the depression lagging the orbit
due to retardation.
Of course, this only describes the behavior of the side of

the horizon nearest the companion. But we can also explain
the behavior of the other sides. The bulge is created because
on the bulging sides of the horizon, light rays pulled toward

the companion fall into the hole, and the orientation of this
effect again lags the orbit due to retardation. There is a less
obvious reason why the far side of the horizon is depressed.
Naively, one would expect that since the companion pulls
light rays toward itself, it will pull them into the black hole
if they are on the far side of the hole. This would suggest
that the horizon should bulge outward on the far side, rather
than being depressed. However, it is depressed there for
the same reason that a fluid body bulges there: the
companion’s pull is weaker on the far side than at
the black hole’s “center”, meaning the companion pulls
the black hole’s center toward itself more than it pulls light
rays into the black hole.
Although these simplistic descriptions ignore the com-

plexity of field propagation in the strong gravity of the
black hole, it is clear that since the horizon is an apparent
horizon, there must be a nonteleological explanation of its
shape and orientation. This conclusion is reinforced by the
fact that similar behavior has been observed in the apparent
horizon in full numerical relativity [83].
One might wonder (a) how this is reconciled with the

teleological solution (143), and (b) whether the lead angle
is fundamentally a teleological effect that only becomes
effectively causal as a consequence of the temporal
localization of the event horizon in a binary. We believe
both questions are answered by the fact that the shape we
have plotted is an apparent horizon regardless of whether or
not it is the event horizon: the radial profile of the apparent
horizon, (116), encodes the lead angle. This tells us that the
tidal deformation at time v is determined solely by the
behavior of null vectors at time v. In the case that the event
horizon becomes temporally localized, reducing the tele-
ological solution (143) to the localized solution (159), then
it too only depends on the behavior of null vectors at time v;
the localized solution only encodes the teleological nature
of (143) in the weak sense of encoding the tangent vector to
a curve at time v (as opposed to only encoding the location
of the curve at that time). The “lead time” 1=κ0 is only
teleological in that same weak sense. It is simply a
statement about null tangent vectors, rather than a statement
about the far future of null curves.
Yet the teleological solution (143) does impose boundary

conditions in the future. What is their relevance? They only
serve to rule out exponentially growing solutions, which
would describe null curves that escape to infinity.7 The
future boundary conditions therefore only ensure that the
null curves are marginally trapped. In other words, they
ensure that the event horizon remains close to the apparent
horizon. Rather than inferring that the apparent horizon
exhibits the event horizon’s teleological behavior, we can
infer that the event horizon, by hewing close to the apparent

6Note that the displacement of the black hole from the center of
mass creates an Oðϵr0Þ correction to the angle between the two
lines.

7Note also that Eq. (159) is the unique solution to Eq. (135) if
we assume a two-timescale ansatz.
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horizon, exhibits the apparent horizon’s non teleological
behavior.
We also stress that the identification of the two horizons

does not depend on the localization: at linear perturbative
order, the event horizon is an apparent horizon under fairly
general conditions. In the context of a binary, the linear-
order identification only breaks down as the companion
enters into its plunge. In those final moments, teleological
effects do arise at linear order, as additional null rays join
the event horizon in anticipation of the companion’s entry
into the black hole [47–50].
To more starkly illustrate that difference between the

teleological and the nonteleological, we can consider a
thought experiment in which the companion orbits the
black hole while a pulse of null radiation approaches on a
radial trajectory. Suppose the pulse is timed such that it
strikes the companion and sends it into either a plunge or an
escape trajectory. The pulse approaches on a surface
v ¼ vpulse. For all v < vpulse, the pulse is out of causal
contact with the black hole, and the apparent horizon
behaves just as we have illustrated it. But the event horizon
anticipates the pulse, and additional generators begin to
join it. At a time vteleo ≈ vpulse − κ−10 , this teleological effect
becomes significant. If the pulse ultimately knocks the
companion into the black hole, then at vteleo, the event
horizon must already be significantly reaching out to meet
the companion’s plunge. If instead the pulse sends the
companion into an escape trajectory, then at vteleo the event
horizon must already be adjusting itself in a very different
way. Yet at vteleo the apparent horizon is identical in both
cases. Unaffected by the future events, it continues to
exhibit the same tidally deformed shape with the same
lead angle.

VIII. CONCLUSION

In this paper, motivated by the work that was necessary
in Ref. [19], we have focused on a few features of perturbed
horizons: their location and surface area, the quasilocal
mass they contain, and their scalar curvature. We have
primarily highlighted the degree to which the apparent and
event horizon differ beginning at second perturbative order.
In particular, we have established the relationships (274),
(278), (282), and (283) between the horizons’ radii,
intrinsic metrics, scalar curvatures, and surface areas, along
with the equality (286) of their Hawking masses. Although
we have not discussed the Hawking-Hayward mass MHH
[66], an immediate corollary of our results is that the two
horizons also have equal values of MHH through order ϵ2.
Our results have illuminated several important, but subtle

issues that arise in the study of perturbed black holes. First,
we have highlighted the fact that the apparent and event
horizons are identical at first perturbative order (except in
certain cases such as shortly before merger in a binary).
This was already known, as it is a simple consequence of

the event horizon’s expansion scalar vanishing at linear
order, but to our knowledge it has not been emphasized in
the literature. Because the event horizon is indistinguish-
able from an apparent horizon at linear order, one must be
cautious in ascribing any teleological interpretation to its
behavior at this order. In Sec. VII C we have explained how
even seemingly teleological behavior such as the “tidal
lead” in a binary is actually nonteleological in origin.
Along the same lines, in Sec. V C we have shown how, in

a small-mass-ratio binary, the event horizon of the central
black hole is effectively localized in time at all perturbative
orders. This result establishes that in the small-mass-ratio
context, teleological effects are negligible even beyond
linear order.
Another important conclusion follows from our result

that the apparent and event horizons have identical
Hawking masses through second order. The Hawking mass
of the apparent horizon grows monotonically, obeying a
physically intuitive “flux-balance” law [23], which implies
that the mass grows at the rate that energy crosses the
horizon. Our result therefore shows that the Hawking mass
of the event horizon obeys the same flux-balance law at
least through second order. Besides its intrinsic interest, this
may be useful in deriving and interpreting second-order
balance laws for small-mass-ratio inspirals, which would
relate the evolution of the companion’s orbit to (i) the
evolution of the central black hole, and (ii) the gravitational
waves emitted to infinity.
All our results have been obtained in two formulations:

in a form that does not specify a choice of gauge, and in a
gauge-fixed form. In either case, the metric-perturbation
inputs can be calculated in any gauge. If one uses the
unfixed formulas, one’s choice of gauge will influence
one’s results for the horizon area and scalar curvature, for
example. That may or may not be advantageous depending
on context; one might wish to use a gauge condition
corresponding to a specific choice of horizon foliation, for
example. On the other hand, the gauge-fixed formulation
provides invariant results carrying a specific geometric
interpretation.
From this starting point, there are many obvious follow-

ons that we leave to future work. First, one might derive
perturbative formulas for the black hole’s spin and higher
multipole moments.
Second, our results have revealed a puzzling discrepancy

between the location of the horizon and the expected
Newtonian limit. To better characterize the black hole’s
orbit around the system’s center of mass, one might derive a
perturbative formula for an invariant linear momentum
such as the Hawking momentum [84] or an analogous
orbital angular momentum.
Third, in a dynamically evolving spacetime with a two-

timescale character, can we meaningfully identify an
average horizon that only evolves on the slow timescale,
and is it precisely a Kerr horizon with slowly evolving mass
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and spin, or does it contain higher moments that deviate
from Kerr? Such a study might draw on the framework of
slowly evolving horizons in Ref. [85].
To characterize this average horizon, a critical step

would be obtaining flux-balance equations governing the
evolution of the averaged mass, spin, and higher moments.
This would involve higher-order extensions of standard
relations for the black hole’s mass and spin evolution in
terms of the shear of the horizon generators [37], as well as
equations for the higher moments that describe black hole
memory effects [52,53].
Finally, an important goal will be to numerically com-

pute these second-order effects on the horizon in realistic
binary scenarios. That programme of research was initiated
in the calculation of the apparent horizon’s irreducible mass
in Ref. [19], and more such calculations will soon be
possible. Since the event horizon begins to differ from the
apparent horizon at second order, these calculations may
also allow us to identify genuine teleological effects during
an inspiral.
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APPENDIX A: PERTURBATIVE FORMULAS
FOR CURVATURE TENSORS

In this appendix we review the derivation of perturbed
curvature tensors through second order. Because we use
these formulas for the curvature of the horizon, not solely
for the Einstein equations, we allow the background metric
to have nonvanishing Ricci curvature. Unlike in the body of

the paper, here we use the inverse of the background metric
to raise indices.
The derivation follows standard methods in Ref. [87], for

example. We consider a generic metric of the form

gαβ ¼ gð0Þαβ þ hαβ. The Christoffel symbols associated with

gαβ and those associated with gð0Þαβ are related by

Γα
βγ − ð0ÞΓα

βγ ¼ Cα
βγ; ðA1Þ

where

Cα
βγ½h� ≔

1

2
gαμðhμβ;γ þ hμγ;β − hβγ;μÞ; ðA2Þ

and a semicolon denotes covariant differentiation compat-

ible with gð0Þαβ . In terms of this tensor, the Riemann tensors
of the two metrics are related by

Rα
βγδ ¼ ð0ÞRα

βγδ þ 2Cα
β½δ;γ� þ 2Cα

μ½γC
μ
δ�β: ðA3Þ

The Ricci tensors are therefore related by

Rαβ ¼ Rð0Þ
αβ þ 2Cμ

α½β;μ� þ 2Cν
μ½νC

μ
β�α: ðA4Þ

We now expand the Ricci tensor in powers of hαβ using

gαβ ¼ gαβð0Þ − hαβ þ hαγhγβ þO½ðhÞ3�: ðA5Þ

The result is

Rαβ ¼ Rð0Þ
αβ þ δRαβ½h� þ δ2Rαβ½h� þO½ðhÞ3�; ðA6Þ

where

δRαβ ¼ −
1

2
ðhαβ;γγ þ hγγ ;αβÞ þ hμðα;βÞμ; ðA7Þ

and

δ2Rαβ ¼
1

4
hμν;αhμν;β þ

1

2
hμβ ;νðhμα;ν − hνα;μÞ

−
1

2
hμν� ;νð2hμðα;βÞ − hαβ;μÞ

−
1

2
hμνð2hμðα;βÞν − hαβ;μν − hμν;αβÞ; ðA8Þ

where a � denotes trace reversal, as in h�μν ≔ hμν − 1
2
gð0Þμν hγγ .

The perturbations of the Ricci scalar are straightfor-
wardly deduced from those of the Ricci tensor. We have

R ¼ Rð0Þ þ δR½h� þ δ2R½h� þO½ðhÞ3� ðA9Þ
with

δR½h� ¼ gαβð0ÞδRαβ½h� − hαβRð0Þ
αβ ; ðA10Þ
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δ2R½h� ¼ gαβð0Þδ
2Rαβ½h� − hαβδRαβ½h�

þ hαγhγβR
ð0Þ
αβ : ðA11Þ

Explicitly,

δR½h� ¼ −hαβRð0Þ
αβ − hαα;β

β þ hαβ ;αβ; ðA12Þ

and

δ2R½h� ¼ 3

4
hμν;βhμν;β −

1

2
hμβ;νhνβ;μ − hμν� ;νh�μα;α

− hμνðhμα;αν þ hμα;ν;α − hαα;μν − hμν;ααÞ
þ hαγhγβR

ð0Þ
αβ : ðA13Þ

APPENDIX B: COUPLING OF SPHERICAL
HARMONICS

In various places in the body of the paper, we must
decompose products of angular functions into scalar
spherical harmonics. That is, for a function ZðθBÞ ¼
χA1���An

ðθBÞψA1���AnðθBÞ, we require

Zlm ¼
Z

ȲlmZdΩ: ðB1Þ

Each of the angular functions in the integrand is itself
expressed as a sum of harmonics, leading to integrals with
the schematic form

Zlm ¼
X
l0m0
l00m00

χl0m0ψ l00m00

Z
ȲlmYl0m0

A1���An
XA1���An

l00m00 dΩ; ðB2Þ

where Yl0m0
A1���An

and XA1���An
l00m00 are constructed from Ylm

through linear operations involving ϵAB,ΩAB,ΩAB, andDA.
To evaluate such derivatives, we express the integrand in

terms of spin-weighted spherical harmonics, which are
constructed from a complex basis on S2. We define

mA ≔
�
1;

i
sin θ

�
; ðB3Þ

in spherical coordinates ðθ;ϕÞ; the basis is then fmA; m̄Ag.
These basis vectors have the useful properties

ΩABmAmB ¼ 0; ðB4Þ

ΩABmAm̄B ¼ 2; ðB5Þ

mBDBmA ¼ mA cot θ; ðB6Þ

m̄BDBmA ¼ −mA cot θ; ðB7Þ

ϵABmB ¼ iΩABmB; ðB8Þ

ΩAB ¼ 1

2
ðmAm̄B þ m̄AmBÞ: ðB9Þ

Our definition of mA differs by a factor of
ffiffiffi
2

p
relative to

that of Ref. [88], and it is normalized on the unit sphere
rather than a sphere of radius r. In terms of mA, we define
derivative operators ð and ð̄ that act on a scalar of spin-
weight s as

ðv ¼ ðmADA − s cot θÞv; ðB10Þ

ð̄v ¼ ðm̄ADA þ s cot θÞv: ðB11Þ

Our definitions here differ by an overall minus sign relative
to those of Ref. [88]. A quantity v has spin-weight s if it
transforms as v → eisφv under the complex rotation mA →
eiφmA:ðv raises the spin weight by 1, while ð̄ lowers it by 1.
The spherical harmonics of spin-weight s are

sYlm ≔
1

λs

� ð−1ÞsðsYlm; 0 ≤ s ≤ l;

ð̄jsjYlm; −l ≤ s ≤ 0;
ðB12Þ

where

λs ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ jsjÞ!
ðl − jsjÞ!

s
: ðB13Þ

The integral of three spin-weighted harmonics is

Clms
l0m0s0l00m00s00 ≔

I
sȲlm

s0Y
l0m0

s00Y
l00m00

dΩ: ðB14Þ

In the case that s ¼ s0 þ s00, the coupling constants are
given by

Clms
l0m0s0l00m00s00 ¼ ð−1Þmþs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l0 þ 1Þð2l00 þ 1Þ

4π

r

×

�
l l0 l00

s −s0 −s00

��
l l0 l00

−m m0 m00

�
;

ðB15Þ

where the arrays are 3j symbols. These symbols inherit
symmetries from the 3j symbols, specifically

Clms
l0m0s0l00m00s00 ¼ ð−1Þlþl0þl00Clm−s

l0m0−s0l00m00−s00 ; ðB16Þ

Clms
l0m0s0l00m00s00 ¼ ð−1Þlþl0þl00Cl−ms

l0−m0s0l00−m00s00 ; ðB17Þ

Clms
l0m0s0l00m00s00 ¼ Clms

l00m00s00l0m0s0 : ðB18Þ

For s ¼ 0 and s0 ¼ −s00, they have the special value
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C000
l0m0s0l00m00s00 ¼

ð−1Þm0þs0ffiffiffiffiffiffi
4π

p δl0l00δm0;−m00 : ðB19Þ

We evaluate all integrals of the form (B2) by expressing
the integrand as a sum of terms of the form (B14). This is
straightforwardly accomplished by applying the iden-
tities (B4)–(B9) and the definitions (14)–(17). For
example, DAYlm ¼ 1

2
ðmAmB� þm�

Am
BÞDBYlm together

with Eqs. (B10) and (B11) leads to

Ylm
A ≔ DAYlm ¼ 1

2
λ1ð−1YlmmA − 1Y

lmm�
AÞ: ðB20Þ

The specific integrals involved in calculating rð2Þlm are
found to beZ

ȲlmYA
l0m0Yl00m00

A dΩ ¼
Z

ȲlmXA
l0m0Xl00m00

A dΩ

¼ −
1

2
λ01λ

00
1σþC

lm0
l0m01l00m00−1; ðB21Þ

Z
ȲlmYA

l0m0Xl00m00
A dΩ ¼ i

2
λ01λ

00
1σ−C

lm0
l0m01l00m00−1; ðB22Þ

Z
ȲlmYAB

l0m0Yl00m00
AB dΩ ¼

Z
ȲlmXAB

l0m0Xl00m00
AB dΩ

¼ 1

4
λ02λ

00
2σþC

lm0
l0m02l00m00−2; ðB23Þ

Z
ȲlmYAB

l0m0Xl00m00
AB dΩ ¼ i

4
λ02λ

00
2σ−C

lm0
l0m02l00m00−2; ðB24Þ

where λ0s ≔ λsðl0Þ, λ00s ≔ λsðl00Þ,

σ ≔ ð−1Þlþl0þl00 and σ� ≔ σ � 1: ðB25Þ

In the calculation of Rð2Þ
lm , third angular derivatives of Ylm

arise. These are treated in the same way, with higher-order
versions of Eq. (B20) containing spin weights up to �3.

APPENDIX C: SECOND-ORDER EXPRESSIONS

In this appendix we compile results for various second-
order quantities.
The functions of v appearing in the mode decomposition

(96) of the second-order scalar curvature Rð2Þ are

ð3ÞRlm
l0m0l00m00 ¼ −

λ03λ
00
3

2048M6
ðγ̆0−γ00⊙ þ γ̆0þγ00⊕Þ; ðC1aÞ

ð2ÞRlm
l0m0l00m00 ¼ λ02λ

00
2

256M6
ðγ̆0−γ00⊙ þ γ̆0þγ00⊕Þ; ðC1bÞ

ð1ÞRlm
l0m0l00m00 ¼ λ01λ

00
1

2048M6

�
ðμ0Þ2ðμ00Þ2ðγ̆0−γ̆00⊙ þ γ̆0þγ̆00⊕Þ

− γ̆0∘½4γ̆00∘σþ − ðμ00Þ2γ̆00⊕�

− 12ðμ0Þ2γ̆∘00γ̆0⊖
�
; ðC1cÞ

ð0ÞRlm
l0m0l00m00 ¼ γ̆0∘

64M6

�
2γ̆00∘ ½1 − ðλ001Þ2� − γ̆00þðλ002Þ2

�
; ðC1dÞ

where λsðlÞ is defined in Eq. (B13), λ0s ≔ λsðl0Þ, λ00s ≔
λsðl00Þ, and σ and σ� are defined in Eq. (B25). In these
expressions we have introduced the compact notation

γ̆0∘ ≔ γ̆ð1l
0m0Þ∘ ðvÞ, γ̆00∘ ≔ γ̆ð1l

00m00Þ∘ ðvÞ, and so on, along with
the combinations γ⊗=⊙ ≔ σþγ− � iσ−γþ, and γ⊕=⊖ ≔
σþγþ � iσ−γ− (suppressing nlm labels).
The second-order term appearing in the expansion scalar

(113) is

ϑð2Þþ ¼ 1

32M4

�
8M2ð1 −D2Þrð2Þ − 16M3hð2Þvv þ 8M2∂vh

ð2Þ∘ − 8M2DAhð2ÞvA þ 4Mhð1ÞvAΩABhð1ÞvB þ 4Mhð1Þ∘ hð1Þvv

þ 16M3hð1Þvv h
ð1Þ
vr − 2hð1Þ∘ rð1Þ þ 8M2hð1Þvv rð1Þ − 2hð1ÞvAD

Ahð1Þ∘ − 8M2hð1Þvr rð1Þ − 8Mðrð1ÞÞ2 − ΩACΩBDhð1ÞAB∂vh
ð1Þ
CD

− 8Mrð1Þ∂vh
ð1Þ∘ þ 4MDArð1ÞDArð1Þ þ 8M2rð1Þ∂r∂vh

ð1Þ∘ þ 8Mrð1ÞDAhð1ÞvA þ 4M2hð1Þvv DAhð1ÞrA − 4M2hð1Þvv ∂rh
ð1Þ∘

þ 2Mrð1Þ∂rh
ð1Þ∘ − 2Mrð1ÞDAhð1ÞrA þ 12Mhð1ÞvAD

Arð1Þ − 8M2hð1Þvr D2rð1Þ þ 8Mrð1ÞD2rð1Þ þ 8M2∂vh
ð1Þ
rA D

Arð1Þ

− 2DArð1ÞDAhð1Þ∘ − 4M2DArð1ÞDAhð1Þvr − 4Mhð1ÞvAD
Arð1Þ − 8M2∂rh

ð1Þ
vAD

Arð1Þ − 4M2DAh
ð1Þ
vr DArð1Þ

þ 2ΩAChð1ÞvCD
Bhð1ÞAB þ 2DArð1ÞDBhð1ÞAB þ 2ΩACΩBDhð1ÞCDDBh

ð1Þ
vA þ 2hð1ÞABD

ADBrð1Þ − 8M2rð1Þ∂rDAhð1ÞvA

− 16M3rð1Þ∂rh
ð1Þ
vv

�
: ðC2Þ

The functions appearing in the mode decomposition (117) of ϑð2Þþ are given by

ð2ÞΘlm
l0m0l00m00 ¼ λ02λ

00
2

64M2
ffiffiffi
π

p
��

∂vh00− − 2h00v−

�
h0⊗ þ

�
∂vh00þ − 2h00vþ − 2rð1Þl00m00

�
h0⊕

�
; ðC3aÞ
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ð1ÞΘlm
l0m0l00m00 ¼ −

λ01λ
00
1

32M2
ffiffiffi
π

p
�
−4Mh00v⊖h0vþ − 4Mh00v⊙h0v− þ ðμ00Þ2h0v−h00⊙ þ ðμ00Þ2

�
h0vþ þ rð1Þl0m0

�
h00⊖ − 8Mh0v⊖r

ð1Þ
l00m00

þ 4M2σþ

�
h0vrr

ð1Þ
l00m00 þ h00vrr

ð1Þ
l0m0

�
− 4Mσþr

ð1Þ
l0m0r

ð1Þ
l00m00 þ 8M2rð1Þl00m00

�
∂rh0v⊖ − ∂vh0r⊖

��
; ðC3bÞ

ð0ÞΘlm
l0m0l00m00 ¼ 1

8M2
ffiffiffi
π

p
�
−2Mh00vvh0∘ þ ðλ001Þ2h00vþ

�
h0∘ þ 4Mrð1Þl0m0

�
−Mðλ001Þ2h00rþrð1Þl0m0 þ 4M2½1 − ðλ001Þ2�h0vrrð1Þl00m00

þ ½1þ ðλ001Þ2�
�
h0∘ þ 4Mrð1Þl0m0

�
rð1Þl00m00 þ

�
h0∘ þ 4Mrð1Þl0m0

�
∂vh00∘ − 4M2rð1Þl0m0∂r∂vh00∘ −Mrð1Þl0m0∂rh00∘

þ 2M2h0vv

�
−4Mh00vr þ ðλ001Þ2h00rþ − 2rð1Þl00m00 þ ∂rh00∘

�
þ 8M3rð1Þl0m0∂rh00vv − 4M2ðλ001Þ2rð1Þl0m0∂rh00vþ

�
; ðC3cÞ

where μ00 ≔ μðl00Þ ¼ ðl00 þ 2Þðl00 − 1Þ, and we define h0∘ ≔ hð1l
0m0Þ∘ ðv; 2MÞ, h00∘ ≔ hð1l

00m00Þ∘ ðv; 2MÞ, and so on. The
combinations h⊗=⊙, h⊕=⊖, ha⊗=⊙, and ha⊕=⊖ are defined in terms of h� and ha� following the notation described below
Eq. (C1). In the gauge-fixed form of Sec. VI, these coefficients become

ð2ÞΘ̂lm
l0m0l00m00 ¼ λ02λ

00
2

64M4

��
∂vĥ

00
− − 2ĥ00v−

�
ĥ0⊗ þ

�
∂vĥ

00
þ − 2ĥ00vþ

�
ĥ0⊕

�
; ðC4aÞ

ð1ÞΘ̂lm
l0m0l00m00 ¼ λ21λ

0
1λ

00
1

64M4

�
ĥ0vþĥ

00⊖ þ ĥ0v−ĥ
00
⊗

�
: ðC4bÞ

The l ¼ 0 term in the second-order correction to the apparent horizon’s radius, (118), is

rð2Þ00 ¼ 2Mhð200Þvv − ∂vh
ð200Þ∘ þ 1

32M2
ffiffiffi
π

p
X
lm

�
4λ21h

ð1lmÞ
vþ h̄ð1lmÞ∘ − 4Mλ21h

ð1lmÞ
rþ r̄ð1Þlm þ 4ðλ21 þ 1Þhð1lmÞ∘ r̄ð1Þlm

þ 8Mð2þ λ21Þjrð1Þlm j2 − 8Mλ21

�
jhð1lmÞ

v− j2 þ jhð1lmÞ
vþ j2

�
þ 16M2λ21r

ð1Þ
lm ∂rh̄

ð1lmÞ
vþ − 4Mrð1Þlm ∂rh̄

ð1lmÞ∘

− 8Mhð1lmÞ
vv

�
4M2h̄ð1lmÞ

vr −Mλ21h̄
ð1lmÞ
rþ þ h̄ð1lmÞ∘ þ 2Mr̄ð1Þlm −M∂rh̄

ð1lmÞ∘
�
þ 32M3rð1Þlm ∂rh̄

ð1lmÞ
vv

þ 16M2hð1lmÞ
vr r̄ð1Þlm − 16M2λ21r

ð1Þ
lm ∂vh̄

ð1lmÞ
rþ þ 1

2
λ22∂v

�
jhð1lmÞ

þ j2 þ jhð1lmÞ
− j2

�
þ 2∂vjhð1lmÞ∘ j2

þ 16Mrð1Þlm ð1 −M∂rÞ∂vh̄
ð1lmÞ∘

�
: ðC5Þ

Finally, the quantities Hð200Þ∘ and H̃ð200Þ
vv appearing in Eq. (305) are given by

H̃ð200Þ
vv ¼ hð200Þvv þ 2∂ ṽζ

r
ð100Þ þ

1ffiffiffiffiffiffi
4π

p
X
lm

�
ζað1lmÞ∂ap̄

ðlmÞ
vv þ λ21ζ

þ
ð1lmÞp̄

ðlmÞ
vv þ 2∂vζ

a
ð1lmÞp̄

ðlmÞ
va

þ 2λ21∂vζ
þ
ð1lmÞp̄

ðlmÞ
vþ þ 2λ21∂vζ

−
ð1lmÞp̄

ðlmÞ
v−

�
; ðC6Þ

Hð200Þ∘ ¼ hð200Þ∘ þ 1ffiffiffiffiffiffi
4π

p
X
lm

�
ζað1lmÞ∂ap̄

ðlmÞ∘ þ λ21ζ
a
ð1lmÞp̄

ðlmÞ
aþ þ 1

2
λ22

�
ζþð1lmÞp̄

ðlmÞ
þ þ ζ−ð1lmÞp̄

ðlmÞ
−

��
: ðC7Þ

All quantities here are evaluated at r ¼ 2M. When acting on a nonconjugated quantity, ∂v ¼ −imΩ; on a conjugated
quantity, ∂v ¼ þimΩ. The harmonic coefficients of ζαð1Þ are given in Sec. VI, with the mode-number replacement k → m:

(i) ζvð1lmÞ is given by (208) for l > 0 and by ζvð100Þ ¼ 0 for l ¼ 0;
(ii) ζrð1lmÞ by Eq. (195);
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(iii) ζ�ð1lmÞ by Eqs. (191) and (192) for m ≠ 0,
by Eq. (219) for m ¼ 0, l > 1, by Eq. (222) for
m ¼ 0 and l ¼ 1. ζ−ð110Þ does not contribute because
λ2 ¼ 0 for l ¼ 1.

The quantity pαβ ≔ hð1Þαβ þ 1
2
Lζð1Þgαβ has tensor-harmonic

coefficients pðlmÞ
vv ¼ 1

2
hð1lmÞ
vv , pðlmÞ

vr ¼ 1
2
hð1lmÞ
vr , pðlmÞ

r� ¼ 1
2
hð1lmÞ
r� ,

and

∂rp
ðlmÞ
vv ¼ ∂rh

ð1lmÞ
vv þ κ0

M
ζrð1lmÞ þ ð∂v − κ0Þ∂rζ

r
ð1lmÞ

−
1

2M
∂vζ

v
ð1lmÞ; ðC8Þ

pðlmÞ
vþ ¼ hð1lmÞ

vþ þ 2M2∂vζ
þ
ð1lmÞ þ

1

2
ζrð1lmÞ; ðC9Þ

pðlmÞ
v− ¼ hð1Þv− þ 2M2∂vζ

−
ð1lmÞ; ðC10Þ

pðlmÞ∘ ¼ hð1lmÞ∘ þ 2Mζrð1lmÞ − 2M2λ21ζ
þ
ð1lmÞ; ðC11Þ

∂rp
ðlmÞ∘ ¼ ∂rh

ð1lmÞ∘ þ ð1þ 2M∂rÞζrð1lmÞ

− 2Mλ21ð1þM∂rÞζþð1lmÞ; ðC12Þ

pðlmÞ
� ¼ hð1lmÞ

� þ 4M2ζ�ð1lmÞ; ðC13Þ

where, again, all quantities are evaluated at r ¼ 2M. ∂rζ
r
ð1lmÞ

and ∂rζ
þ
ð1lmÞ can be read off of Eqs. (201) and (202).
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