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Abstract In this paper we explore the different types of singularities that arise in the ΛCDMmodel when
dissipative processes are considered, in the framework of the Eckart’s theory. In particular, we study the
late-time behavior of ΛCDM model with viscous cold dark matter (CDM) and an early-time viscous
radiation domination era with cosmological constant (CC). The fluids are described by the barotropic
equation of state (EoS) p ¼ ðγ − 1Þρ, where p is the equilibrium pressure of the fluid, ρ their energy
density, and γ is the barotropic index. We explore two particular cases for the bulk viscosity ξ, a constant
bulk viscosity ξ ¼ ξ0, and a bulk viscosity proportional to the energy density of the fluid ξ ¼ ξ0ρ. Due to
some previous investigations that have explored how to describe the behavior of the Universe with a
negative CC, we extend our analysis to this case. We found that future singularities like Big Rip are allowed
but without having a phantom EoS associated with the DE fluid. Big Crunch singularities also appears
when a negative CC is present, but also de Sitter and even Big Rip types are allowed due to the negative
pressure of the viscosity, which opens the possibility of an accelerated expansion in anti–de Sitter (AdS)
cosmologies. We also discuss a very particular solution without Big Bang singularity that arises in the
early-time radiation dominant era of our model known as soft-Big Bang.
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I. INTRODUCTION

It is well known in current cosmology that the accel-
erated expansion of the Universe is one of the most
fascinating puzzles in physics. This behavior is supported
by the cosmological data coming from measurements of
Supernovae type Ia (SNe Ia) [1–3], the observational
Hubble parameter data (OHD) [4], the baryonic acoustic
oscillations (BAO) [5], the cosmic microwave background
(CMB) [6], and information from large-scale structures
(LSS) formation coming from WMAP [7]; showing also
that the Universe is spatially flat.
There are different approaches in order to describe this

accelerated expansion of the Universe. One of them is to
add in the energy-momentum tensor Tμν, in the right-hand
side of the Einstein gravity equation, an exotic fluid with
negative pressure, dubbed dark energy (DE), which can
cause an overall repulsive behavior of the gravity at large
cosmological scales (see [8–10] for some excellent
reviews). The other approach is by modifying the left-hand
side of the Einstein equation, i.e., the geometry of the space
time, that leads to different ideas of modified gravity (for

some theories of modified gravity which involve this idea
see [11–14]). For the first approach, the most simple model
is the ΛCDM model which it is also the best cosmological
model in order to describe the cosmological data [3,7]. In
this model, the current Universe is dominated by dark
matter (DM) and DE, representing approximately the 30%
and 70% of the total energy density of the Universe,
respectively. This DE is given by the cosmological constant
(CC) (Λ), which can be characterized by a barotropic
equation of state (EoS) with barotropic index γ ¼ 0,
causing the acceleration in the Universe expansion [1].
However, this model is not absent of problems, of which we
can highlight:

(i) The CC problem: The value of the CC predicted
from field theoretical estimations is about 60–120
orders of magnitude larger than the observed value
[15–17].

(ii) The coincidence problem: Current energy densities
of DM and DE have the same order of magnitude,
but in the ΛCDM model, these energy densities
evolve differently, so it is necessary to have a fine-
tuning between them in the early Universe in order
that both densities match in order of magnitude at
the current time [17–19].

(iii) The H0 tension: Measurements of the Hubble
parameter at the current time H0 show a discrepancy
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of 4.4σ between the value inferred from Planck
CMB and the locally measurements obtained by A.
G. Riess et al. [20].

(iv) EDGES: Most recently results of the experiment to
detect the global epoch of reionization (EoR) sig-
nature (EDGES) detect an excess of radiation that is
not predicted by the ΛCDM model in the reioniza-
tion epoch, specifically at z≈17 [21].

One approach to overcome some of these problems,
without going further than ΛCDM or modifying the
gravity, is to consider dissipative fluids as a more realistic
way of treating cosmic fluids [22–24]. In this sense, several
authors have shown that a bulk viscous DM in different
models without DE can cause the accelerated expansion of
the Universe [25–35], due to the negativeness of the viscous
pressure, which allows to alleviate in principle the CC and
the coincidence problems. The excess of radiation pre-
dicted by EDGES are explained in [36], where the authors
consider a viscous nature in DM. In [37,38] the authors
address the H0 tension problem as a good chance to
construct new cosmological models with viscous/inhomo-
geneous fluids in the context of a bulk viscosity.
Furthermore, tensions in the measurements of σ8 −Ωm
(where σ8 is the r.m.s. fluctuations of perturbations at
8 h−1Mpc scale) and H0 −Ωm coming from LSS obser-
vations and the extrapolated from Planck CMB parameters
using the ΛCDM model, can be alleviated if one assumes a
small amount of viscosity in the DM [24]. Some authors
also used bulk viscosity in inflationary phases of the
Universe [39,40].
It is important to mention that from Landau and Lifshitz

[41] we know that the bulk viscosity in the cosmic
evolution seems to be significant, and we can interpret
from the macroscopic point of view that it is equivalent to
the existence of slow processes of restoring the equilibrium
state. Some authors propose that bulk viscosity of the
cosmic fluid may be the result of nonconserving particle
interactions [42], and another has shown that different
cooling rates of the components of the cosmic medium can
produce bulk viscosity [43–45]. Also, for neutralino CDM,
bulk viscosity pressure appears in the CDM fluid due to the
energy transferred from the CDM fluid to the radiation fluid
[46]. Many observational properties of disk galaxies can be
reproduced by a dissipative DM component, which appears
as a residing component in a hidden sector [47,48]. On the
other hand, at perturbative level viscous fluid dynamics
provides a simple and accurate framework for extending the
description into the nonlinear regime [49]. Since, up to
date, it is unknown the nature of the DM and the dissipative
effect in cosmology can not be discarded, it is of physical
interest to explore the behavior of this type of DM in the
ΛCDM model.
In order to study dissipative processes in cosmology

it is necessary to develop a relativistic thermodynamic
theory out of equilibrium, with being Eckart’s the first who

developed it [50]. Later, it was discovered that Eckart’s
theory was not really relativistic, since it is a noncausal
theory [51,52]. A causal theory was proposed by Israel and
Stewart [53,54], but it presents a much greater mathemati-
cal difficulty than the Eckart’s theory, even in scenarios
where the bulk viscosity does not present very exotic forms.
Therefore, many authors work in the Eckart’s formalism in
order to have a first approximation of the cosmological
behavior with dissipative fluids [22,55–59], since the
Israel-Stewart theory is reduced to the Eckart’s theory if
the relaxation time for transient viscous effects is equal to
zero [60].
As we mentioned before, in both Eckart’s and Israel-

Stewart’s theories it is possible to describe the accelerated
expansion of the Universe without the inclusion of a CC.
Nevertheless, as it was previously discussed by Maartens
[60], in the context of dissipative inflation, the condition to
have an accelerated expansion due only to the negativeness
of the viscous pressure enters into direct contradiction with
the near equilibrium condition that is assumed in the
Eckart’s and Israel-Stewart’s theories:

����Πp
���� ≪ 1; ð1Þ

which means that the viscous stress Π must be lower than
the equilibrium pressure p of the dissipative fluid. So,
following this line, it has been proven in [61,62] that the
inclusion of a positive CC could preserve the near equi-
librium condition (1) in some regime. The price to pay is to
abandon the idea of unified DM models with dissipation as
models that can consistently describe the late-time evolu-
tion of the Universe. It is important to mention that a
negative CC can not be ruled out from study in cosmology
[63–71]. For example, a negative CC appears naturally in
superstring theory in the dual space AdS5 × S5 [72–74].
Some authors even mentioned the possibility of a transition
between a negative CC to a positive one [64,75]. Even
more, a negative CC has been explored by many authors
with the aim of alleviating the H0 tension [65–71].
Works with dissipation where the CC is included have

been studied in recent times, for example the authors in [57]
already work in Eckart’s formalism with CC and a bulk
viscosity proportional to the Hubble parameter, or more
interesting scenarios can be seen in [76] where the authors
also include a CC that is variable in time. On the other
hand, some authors have shown that the presence of bulk
viscosity in the DE could cause their effective barotropic
index to be less than 0 [58,59]. Fluids with a barotropic
index γ < 0 are dubbed “phantom” [77] and can not be
ruled out of the current cosmological data. For example,
some works indicated that the barotropic index of the DE is
inconsistent with the value of 0 at 2.3σ level [7,78]. The
possibility of phantom EoS for the DE opens an interesting
scenario known as Big Rip, in which the scale factor
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presents a singularity in a finite future time [79]. Following
this line, the authors in [80,81] have made a classification
of the different singularities obtained in models with
phantom DE.
Another interesting issue related to viscous fluid is the

possibility of avoid singularities. In the framework of
general relativity many studies found cosmological scenar-
ios where there are no singularities, corresponding to
emergent and bouncing universes [82–86]. A regular
universe without Big Bang was found in [55], where the
viscosity drives the early universe to a phase with a finite
space-time curvature. This regular scenario called “soft-Big
Bang” are also discussed in other contexts [85,86], describ-
ing universes with eternal physical past time, that come
from a static universe with a radius greater than the Planck
radius to be far out of the regime where quantum gravity
has to be employed.
The aim of this paper is to explore exact solutions of a

viscous ΛCDM-like model, looking for the conditions that
lead to early and late-time singularities, considering a bulk
viscosity term constant and proportional to the energy
density of the dissipative fluid. These two simple cases
open up a great variety of behaviors which will allow us to
study different singularity scenarios in the framework of the
Eckart’s theory. We will discuss our results according to the
classification given in [80]. Also, we will investigate
solutions which represent regular universes, as it was found
by Murphy in [55], but with the inclusion of a CC. It is
important to note that many authors have studied these
types of singularities within the framework of cosmological
models filled with a phantom DE [10,59,80,81,87]. In our
case, the model can be characterized by an effective EoS
that represents the behavior of the two fluids of the model,
the dissipative fluid and the CC, as a whole. Even more, we
will study solutions where the CC can take negative values.
Therefore, in this work we will try to give a more complete
understanding of the early and late-time singularities when
dissipative process are considered in a ΛCDM-like cos-
mological model.
The outline of this paper is as follows: In Sec. II we

describe briefly the noncausal Eckart’s theory and we find
the general differential equation to solve. In Sec. III we
present the possibility of de Sitter–like solutions that arise
from the general differential equation previously found.
In Sec. IV we start by describing briefly the different
types of singularities that arise for a Friedmann–Lematre–
Robertson–Walker (FLRW) metric. In Sec. IVA we study
the late-time singularities that arise in our model for a
constant dissipation, and a dissipation proportional to the
energy density of the dissipative fluid, for a positive CC.
In Sec. IVB we will do the same for the case of a negative
CC. In Sec. IVC we discuss early-time singularities for the
case of positive CC. In Sec. IVD we discuss early-time
singularities for the case of negative CC. In Sec. V we
discuss an early-time solution without Big Bang singularity

called “soft-Big Bang”. Finally, in Sec. VI we present some
conclusions and final discussions. 8πG ¼ c ¼ 1 units will
be used in this work.

II. THEORY OF ECKART WITH CC

In what follows, we will consider a flat FLRW cosmo-
logical spacetime, dominated by only two matter compo-
nents: a DE given by Λ, and a barotropic fluid with EoS
p ¼ ðγ − 1Þρ, where p is the equilibrium pressure of the
fluid, ρ their energy density, and γ is the barotropic index,
that takes the values of γ ¼ 1 for CDM and γ ¼ 4=3 for
radiation. This barotropic fluid experience dissipative
processes during their cosmic evolution, with a bulk
viscosity coefficient ξ that depends on their energy density
through the power-law

ξ ¼ ξ0ρ
m; ξ0 > 0; ð2Þ

where ξ0 and m are constant parameters, with ξ0 > 0 in
order to be consistent with the second law of thermody-
namics [88]. The behavior described by Eq. (2) for the
viscosity has been widely investigated in the literature as
one of the simplest and most natural choices since the bulk
viscosity of fluids depends, particularly, in its temperature
and pressure, and therefore it is physically suitable to take
this dependence. Other elections include, for example, the
function ξ ¼ ξ0 þ ξ1H [57], but in this case and since we
are including a CC, this election implies that the viscosity
of the fluid is a function not only of its properties but also of
the CC.
In the Eckart’s theory, the field equations in presence of

bulk viscosity are

H2 ¼
�
_a
a

�
2

¼ ρ

3
þ Λ

3
; ð3Þ

ä
a
¼ _H þH2 ¼ −

1

6
ðρþ 3PeffÞ þ

Λ
3
; ð4Þ

where “dot” accounts for the derivative with respect to the
cosmic time t, a is the scale factor,H the Hubble parameter,
and Peff is an effective pressure given by

Peff ¼ pþ Π; ð5Þ
being Π the bulk viscous pressure defined in the Eckart’s
theory by

Π ¼ −3Hξ: ð6Þ

The conservation equation takes the form

_ρþ 3Hðρþ pþ ΠÞ ¼ 0: ð7Þ
Therefore, we can obtain from Eqs. (2)–(7) a single
evolution equation for H, which is given by
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2 _H þ 3γH2 − 3ξ0Hð3H2 − ΛÞm − Λγ ¼ 0: ð8Þ

Since we are interested in comparing some solutions of
Eq. (8) for different values of m with the standard ΛCDM
model, we display below the solution for HðtÞ y aðtÞ with
the initial conditionsHðt ¼ 0Þ ¼ H0 and aðt ¼ 0Þ ¼ 1, for
the case without dissipation (ξ ¼ 0)

HðtÞ ¼ H0

ffiffiffiffiffiffiffi
ΩΛ

p ðð ffiffiffiffiffiffiffi
ΩΛ

p þ 1Þe3γH0t
ffiffiffiffiffi
ΩΛ

p
−

ffiffiffiffiffiffiffi
ΩΛ

p þ 1Þ
ð ffiffiffiffiffiffiffi

ΩΛ
p þ 1Þe3γH0t

ffiffiffiffiffi
ΩΛ

p
þ ffiffiffiffiffiffiffi

ΩΛ
p

− 1
; ð9Þ

aðtÞ ¼
�
cosh

�
3γ

ffiffiffiffiffiffiffi
ΩΛ

p
H0t

2

�
þ sinhð3γ

ffiffiffiffiffi
ΩΛ

p
H0t

2
Þffiffiffiffiffiffiffi

ΩΛ
p

� 2
3γ

; ð10Þ

where ΩΛ ¼ Λ=ð3H2
0Þ. From Eq. (9) we can see that H ¼ffiffiffiffiffiffiffiffiffi

Λ=3
p

for very late times, corresponding to the de Sitter
behavior.

III. DE SITTER–LIKE SOLUTIONS

Before to make a complete integration of Eq. (8), we will
explore the possibility of de Sitter–like solutions. Knowing
this behavior will help us to compare with the asymptotic
behaviors in cases when _H ≠ 0. Taking H ¼ HdS with
_HdS ¼ 0, Eq. (8) reduces to the following algebraic

equation:

3γH2
dS − 3ξ0HdSð3H2

dS − ΛÞm − Λγ ¼ 0: ð11Þ

One general result can be quickly found if the above
equation is written as

ð3H2
dS − ΛÞ½γ − 3ξ0HdSð3H2

dS − ΛÞm−1� ¼ 0; ð12Þ

which indicates that the values of HdS given by

HdS ¼ �
ffiffiffiffi
Λ
3

r
; ð13Þ

are two real solutions of Eq. (12), for m ≥ 1 and Λ > 0.
Note that the positive solution corresponds to the usual de
Sitter one and the contracting solution HdS < 0 it is not of
physical interest. The other possible de Sitter solutions are
obtained taking the square bracket of the left-hand side of
Eq. (12) equal to zero, for different values of m.

A. Case m = 0

In this case, the dissipation of the fluid is constant and
Eq. (12) becomes in a quadratic equation of the form

H2
dS −

ξ0
γ
HdS −

Λ
3
¼ 0; ð14Þ

with a discriminant given by

Δ0 ¼
�
ξ0
γ

�
2

þ 4Λ
3

: ð15Þ

Then, two solutions are allowed for the Hubble parameter

HdS� ¼ ðξ0=γÞ �
ffiffiffiffiffiffi
Δ0

p
2

: ð16Þ

The above equation depends on the values of ξ0, γ, and
Λ, and three type of solutions are obtained depending if Δ0

is positive, zero, or negative. This last one, where
Λ < −3ξ20=4γ2, is discarded because represents a complex
Hubble parameter without physical interest. If Δ0 ¼ 0, the
solution reduces to

HdS ¼
ξ0
2γ

for Λ ¼ −
3ξ20
4γ2

; ð17Þ

being the only de Sitter–like solution of the model for this
case, which is driven by the dissipative processes. Since ξ0
can be expressed in terms of jΛj it is straightforward to find
that in this case HdS in Eq. (17) can also be expressed as

HdS ¼
ffiffiffiffiffi
jΛj
3

q
. If Δ0 > 0, then Λ > −3ξ20=4γ2, and the model

for this case has only two de Sitter–like solutions,HdSþ and
HdS−, again directly driven by the dissipative processes.
But, HdS− only represents an expanding solution
when Λ < 0.
On the other hand, using the Eq. (3) it is possible to

obtain the energy density associated with the de Sitter
solutions (16) and (17), given respectively by

ρ� ¼ 3ξ0
2γ

�
ξ0
γ
�

ffiffiffiffiffiffi
Δ0

p �
; ð18Þ

ρ ¼ 3ξ20
2γ2

: ð19Þ

From the above expressions it is possible to see that ρþ > 0
and ρ > 0, i.e., the de Sitter–like solution given by
Eqs. (16) (positive one) and (17) do not have null fluid
energy density, contrary to the usual de Sitter solution (13)
(positive one), where ρdS ¼ 0 (DE dominant solution). It is
important to note that ρ− > 0 leads to the constraint Λ < 0,
expression that it is according with the constraint obtained
in order to HdS− represent an expanding solution.
Therefore, the de Sitter-like solutions with physical interest
for m ¼ 0 are HdSþ and HdS.

B. Case m = 1

In this case the dissipation is proportional to the energy
density of the dissipative fluid, and the other real solution of
Eq. (12), besides the positive de Sitter solution (13) when
Λ > 0, is given by
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HdS ¼
γ

3ξ0
; ð20Þ

which depends only of the values of γ and ξ0, i.e., being a
de Sitter–like solution that is a function of the parameters
related to the dissipative processes and, in principle,
independent of the values of Λ. But, using Eq. (3),
we obtain that the fluid energy density for this solution
is given by

ρ ¼ γ2

3ξ20
− Λ; ð21Þ

expression that when we impose ρ > 0 leads to
Λ < γ2=3ξ20. Again, this de Sitter–like solution does not
have null energy density, contrary to the usual de Sitter
solution, except when Λ ¼ γ2=3ξ20. The same result given
by Eq. (20) was found in [55] for the case of a null CC.
A surprising results in both, m ¼ 0 and m ¼ 1 cases, is

the possibility of de Sitter–like solutions of physical
interest despite the presence of a negative CC. It will find
that the corresponding exact solutions behave asymptoti-
cally with the de Sitter–like evolution found in this section.

IV. SINGULARITIES IN VISCOUS ΛCDMMODELS

In what follows we will study the solutions that arise
from Eq. (8), for the particular cases when m ¼ 0 and
m ¼ 1, and we discuss their behavior in terms of the free
parameters ξ0, γ, and Λ. The solutions for each case will be
compared with the ΛCDM model. We will focus our study
in the existence of different types of early and late-time
singularities, which can occur for some values of the free
parameters of each model, following the classifications
given in [80,81]:

(i) Type 0A (“Big Bang”): for t → 0, a → 0, ρ → ∞,
and jpj → ∞.

(ii) Type 0B (“Big Crunch”): for t → ts, a → 0, ρ → ∞,
and jpj → ∞.

(iii) Type I (“Big Rip”): for t → ts, a → ∞, ρ → ∞,
and jpj → ∞.

(iv) Type Il (“Little Rip”): for t → ∞, a → ∞, ρ → ∞,
and jpj → ∞.

(v) Type II (“Sudden”): for t → ts, a → as, ρ → ρs,
and jpj → ∞.

(vi) Type III (“Big Freeze”): for t → ts, a → as, ρ → ∞,
and jpj → ∞.

(vii) Type IV (“Generalized Sudden”): for t → ts, a → as,
ρ → 0, and jpj → 0, higher derivatives ofH diverge.

These singularities are typical in the following cosmologi-
cal scenarios: (i) type I emerges at late times in phantom DE
dominated universes [79,89–93]; (ii) type II corresponds to
a sudden future singularity [80,94], also known as a big
break or a big demarrage, which appear under the con-
ditions ρ > 0 and ρþ 3p > 0 (strong energy condition or
SEC) in an expanding universe [95]; type III occurs for

models with p ¼ −ρ − Aρα and the difference with the Big
Rip type I is that here the scale factor has a finite value in a
finite time [80,96]; and (iv) type IV which also appears in
the context of phantom DE of the form p ¼ −ρ − fðρÞ,
explored in [80] with a particular form of fðρÞ called “32”,
and in the context of quantum cosmology [97].
Since the singularities are characterized by the diver-

gences in the curvature scalar, we will use in our study the
Ricci scalar, given by the following expression:

R ¼ 6

�
äðtÞ
aðtÞ þ

_a2ðtÞ
a2ðtÞ

�
¼ 6ð _H þ 2H2Þ; ð22Þ

in order to explore the divergences in the solutions found.

A. Late-time singularities with Λ > 0

In this subsection we will study the singularities that
arise from the solutions of Eq. (8) for a positive CC when
m ¼ 0 andm ¼ 1. In order to compare with ΛCDMmodel,
we will set in the general solutions γ ¼ 1 (CDM) and
ΩΛ ¼ 0.69, which is the current value given by the
cosmological data [3]. From now, all solutions will be
expressed in terms of the dimensionless density parameters
ΩΛ and Ωξ ¼ 3mξ0H2m−1

0 , using the initial conditions
Hðt ¼ 0Þ ¼ H0 and aðt ¼ 0Þ ¼ 1, where t ¼ 0 is the
present time.

1. Cases for m= 0

The integration of Eq. (8) is straightforward and leads to
an integral of the form

R
dH
R ¼ − 3γ

2
tþ C, where R ¼ H2 −

ðξ0=γÞH − ðΛ=3Þ is a polynomial in H. In principle, three
different types of solutions emerge depending if the
discriminant Δ0, given by Eq. (15), is positive, negative,
or zero. For Λ > 0 the only solution is with Δ0 > 0. The
condition (15) in terms of dimensionless densities takes the
form Δ0 ¼ H2

0Δ̄0, where

Δ̄0 ¼
�
Ωξ

γ

�
2

þ 4ΩΛ > 0; ð23Þ

and Ωξ ¼ ξ0=H0. The exact solution for this case is

EðTÞ ¼
ffiffiffiffiffiffi
Δ̄0

p
2

tanh

�
3γ

ffiffiffiffiffiffi
Δ̄0

p
T

4
þ arctanh

�
2 − Ωξ

γffiffiffiffiffiffi
Δ̄0

p
��

þ Ωξ

2γ
;

ð24Þ

aðTÞ¼ exp

�
Ωξ

2γ
T

�
8>><
>>:
cosh

h
3γ

ffiffiffiffi
Δ̄0

p
4

Tþ arctanh
�
2−

Ωξ
γffiffiffiffi
Δ̄0

p
	i

cosh ½arctanhð2−
Ωξ
γffiffiffiffi
Δ̄0

p Þ�

9>>=
>>;

2
3γ

;

ð25Þ
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where EðTÞ ¼ HðTÞ=H0 and T ¼ H0t is a dimensionless
time, therefore their positive values represent future evo-
lution. It is important to note that the Hubble parameter (24)
does not exhibit a singularity for any time T and the scale
factor (25) represents a bouncing universe. Even more, the
asymptotic behavior of the Hubble parameter for T → ∞
gives us Hdsþ and for T → −∞ gives us Hds−, both
solutions given by Eq. (16), being HdSþ the de Sitter-like
solution of this model.

2. Case for m=1

In this case the polynomial in H is R ¼
ð1 − 3ξ0H=γÞðH2 − Λ=3Þ and the solution takes the dimen-
sionless form

TðEÞ ¼
Ωξ

ffiffiffiffiffiffiffi
ΩΛ

p
logðð1−ΩΛÞðγ−EΩξÞ2

ðE2−ΩΛÞðγ−ΩξÞ2Þ
3

ffiffiffiffiffiffiffi
ΩΛ

p ðγ2 −Ω2
ξΩΛÞ

þ
γ logðð

ffiffiffiffiffi
ΩΛ

p
−1Þð ffiffiffiffiffi

ΩΛ
p þEÞ

ð ffiffiffiffiffi
ΩΛ

p þ1Þð ffiffiffiffiffi
ΩΛ

p
−EÞÞ

3
ffiffiffiffiffiffiffi
ΩΛ

p ðγ2 −Ω2
ξΩΛÞ

; ð26Þ

where Ωξ ¼ 3ξ0H0. In Fig. 1 we have numerically found
the behavior of EðTÞ given by the above equation. Note that
T → ∞; ∀E when Ωξ ¼ γ; in other words, this case
represents the de Sitter case given by Eq. (20), that is
HðtÞ ¼ H0, ∀ t, as it can be seen from Fig. 1.
From Eq. (26) a singularity time, Ts, appears if we take

E → ∞, which gives

Ts ¼
2Ωξ log ½ð1−

ffiffiffiffiffi
ΩΛ

p
1þ ffiffiffiffiffi

ΩΛ
p Þ

γ

2Ωξ
ffiffiffiffi
ΩΛ

p ð1 −ΩΛÞ12ð −Ωξ

γ−Ωξ
Þ�

3ðγ2 − Ω2
ξΩΛÞ

: ð27Þ

At this future singularity, from Eqs. (3), (6), and the EoS,
we can see that ρ, p, and Π are divergent. If

Ωξ > γ; ð28Þ

then the argument of the logarithm in Eq. (27) is always
positive. Even more, if Ωξ ¼ γ=

ffiffiffiffiffiffiffi
ΩΛ

p
> γ, the numerator

and denominator of the Eq. (27) are zero; however,

lim
Ωξ→

γffiffiffiffi
ΩΛ

p
Ts ¼

ð ffiffiffiffiffiffiffi
ΩΛ

p
− 1Þ logð1−

ffiffiffiffiffi
ΩΛ

pffiffiffiffiffi
ΩΛ

p þ1
Þ − 2

ffiffiffiffiffiffiffi
ΩΛ

p

6γðΩΛ −
ffiffiffiffiffiffiffi
ΩΛ

p Þ ; ð29Þ

i.e., Ts is continued forΩξ > γ and there is a change of sign
inΩξ ¼ γ=

ffiffiffiffiffiffiffi
ΩΛ

p
for both the numerator and denominator in

Eq. (27), yielding that Ts is always positive because when
Ωξ > γ=

ffiffiffiffiffiffiffi
ΩΛ

p
the argument of the logarithm is lower than 1

(negative numerator) and the denominator is negative,
as can be seen in Fig. 2, where Ts given by Eq. (27) is
plotted as a function of Ωξ. In Fig. 1 the red dashed lines
represents two times of singularities according to
Eq. (27), for Ωξ ¼ 1.5 and Ωξ ¼ 1.1, where the time of
singularities are T ¼ 0.812997, which is roughly
equivalent to 11.6969 Gyrs (0.86 times the lifetime of
ΛCDM universe); and T ¼ 2.26375, corresponding to
32.5695 Gyrs (2.4 times the lifetime of ΛCDM universe),
respectively.
For Ωξ < γ, there are no future singularities [no finite

time is obtained from Eq. (27)]. From Eq. (26) we can see
that EðTÞ follows very close the behavior of the standard
model, ending with a de Sitter behavior at T → þ∞, which
can be seen taking E ¼ ffiffiffiffiffiffiffi

ΩΛ
p

[equivalent to the solution
given by Eq. (13)] in Eq. (26).
In order to classify these singularities we need to explore

the effective EoS of the models found. From Eqs. (5), (7),
and the EoS one obtains as [25] that

γeff ¼ γ þ Π
3H2

; ð30Þ

FIG. 1. Numerical behavior of EðTÞ, given by Eq. (26), for
different values of Ωξ and for the particular values of γ ¼ 1 and
ΩΛ ¼ 0.69. We also plotted the ΛCDM model. The red dashed
lines represent the times of singularities given by Eq. (27) for
Ωξ ¼ 1.5 and Ωξ ¼ 1.1, respectively.

FIG. 2. Behavior of the time of singularity given by
Eq. (27) as a function of Ωξ, for the particular values of
γ ¼ 1 and ΩΛ ¼ 0.69.
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and from Eq. (4) it is possible to find an expression for the
viscous pressure given by

Π ¼ −2 _H − 3γH2; ð31Þ

where using the above expression, we will have for (30) the
expression

γeff ¼ −
2 _H
3H2

; ð32Þ

and using Eq. (8) in our dimensionless notation we will
have

γeff ¼ γ −ΩξEþ ΩξΩΛ

E
−
ΩΛγ

E2
: ð33Þ

This γeff represents the effective EoS of a universe with a
DE component modeled by a CC and a dissipative
component. The phantom behavior of our solutions can
be associated with the global composition of the universe.
Figure 3 shows the behavior of γeff as a function of T for
the solutions found, for different values of Ωξ.
Let see now the type of singularities that we found in the

dissipative CDM case (γ ¼ 1). For the solutions without
singularities, i.e., Ωξ < 1, γeff evolves to 0, representing
the dominance of the CC at very far future times. In the
solution with Ωξ > 1, ρ and p diverge and, therefore, from
Eq. (3) H and a diverge, i.e., these solutions present Big
Rip singularities because γeff from Eq. (33) is always
phantom, as can be seen from Fig. 3. It is important to note
that since H and _H go to infinity for this singularity, then
the Ricci scalar given by Eq. (22) also diverges.

B. Late-time singularities with Λ < 0

In this section we will study the singularities that arise
from the solutions of Eq. (8) for a negative CC whenm ¼ 0
and m ¼ 1. In this case, in order to compare with ΛCDM

model, we will set in the general solutions γ ¼ 1 (CDM)
and ΩΛ ¼ −0.69. It is important to note from Eq. (4) that
the model with a negative CC can still give an accelerated
solution because of the negative pressure due to the
bulk viscosity. Therefore, the election of ΩΛ ¼ −0.69 is
the first natural election in a further comparison, because,
from Eqs. (3) and (7), the usual Friedmann’s constraint
Ωm þ ΩΛ ¼ 1 is not already valid and the values ofΩΛ can,
in principle, take any negative value.

1. Cases for m= 0

In this case we have three different types of solutions
depending on if the discriminant, Δ0, given by Eq. (15) is
greater than, equal to, or lower than zero.

(i) Case Δ0 > 0. In this case the constraint for the
values of a negative CC is

−
�
Ωξ

2γ

�
2

< ΩΛ < 0: ð34Þ

We already have explained that this solution does
not present any kind of singularity due to its
bouncing behavior and the solution was already
found in Eq. (24) (for the Hubble parameter) and in
Eq. (25) (for the scale factor). It is interesting to
mention that despite having a negative CC, this
solution does not present Big Crunch singularity,
and at late times displays a de Sitter–like expansion.

(ii) Case Δ0 ¼ 0. In this case the CC takes the particular
value

ΩΛ ¼ −
�
Ωξ

2γ

�
2

; ð35Þ

and the solution for EðTÞ takes the form

EðTÞ ¼
4þ 3Ωξð1 − Ωξ

2γÞT
4þ 6γð1 − Ωξ

2γÞT
: ð36Þ

The corresponding scale factor is given by

aðtÞ ¼ exp
�
Ωξ

2γ
T
��

3γ

2
T
�
1 −

Ωξ

2γ

�
þ 1

� 2
3γ

: ð37Þ

It is straightforward to see from Eq. (36) that if Ωξ ¼ 2γ,
then E ¼ 1 for all time, corresponding to our de Sitter–like
solution given by (17). If Ωξ > 2γ, E goes to zero in a
future time Tc, given by

Tc ¼ −
4

3Ωξð1 − Ωξ

2γÞ
> 0; ð38Þ

which indicates that the scale factor takes a maximum
value at this time and, from Eq. (37), goes to zero at a time
given by

FIG. 3. Behavior of γeff given by Eq. (33) as a function of T for
the solutions with m ¼ 1, γ ¼ 1, and ΩΛ ¼ 0.69, for different
values of Ωξ. We also plotted γeff for the ΛCDM model. The red
dashed lines represent the times of singularities given by Eq. (27)
for Ωξ ¼ 1.5 and Ωξ ¼ 1.1, respectively.
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Ts ¼ −
2

3γð1 − Ωξ

2γÞ
> 0: ð39Þ

From Eq. (36) we can see that at the above time E → −∞,
which means, from Eq. (3), that ρ diverges and, from the
EoS, p diverges, indicating that in this case the future
singularity corresponds to a Big Crunch (Type OB singu-
larity). It is important to note that since H and _H go to
minus infinity for this singularity, then the Ricci scalar
given by Eq. (22) also diverges. On the other hand, if
Ωξ < 2γ, then E > 0 for all time and goes to the value
Ωξ=2γ when T → þ∞. Therefore, this solution asymptoti-
cally takes a de Sitter–like behavior given by Eq. (17). Note
that for Ωξ ≤ 2γ effectively we can drive the acceleration
expansion of the universe when a negative CC is considered
in our model, due only to the negativeness of the viscous
pressure.
In Fig. 4 we display the behavior of the Hubble

parameter (36) for γ ¼ 1. The Big Crunch singularity
appears for the particular values of γ ¼ 1 and Ωξ ¼ 3

evaluated in Eq. (39), and leads to Ts ¼ 4=3, which is
roughly equivalent to 19.18 Gyrs (1.45 times the lifetime of
the ΛCDM universe).
From Eq. (32) the effective barotropic index for this

solution is

γeff ¼ γ −
Ωξ

E
þ jΩΛjγ

E2
; ð40Þ

and from the solution given by Eq. (36), we have

γeff ¼
16γðΩξ

2γ − 1Þ2

ð4 − 3ΩξTðΩξ

2γ − 1ÞÞ2
: ð41Þ

Note that, if we substitute Eq. (38) (where E ¼ 0 and a
takes his maximum value) in Eq. (41), we will get
γeff → þ∞, and if we substitute Eq. (39) (Big Crunch

time) we will get γeff ¼ γ (according to Eq. (40). The
behavior of this γeff is presented in the Fig. (5).
It is important to mention that as the viscosity increases,

the value of ΩΛ also increases, which can be seen from
Eq. (35); also the time Tc, where the scale factor takes its
maximum value, occurs after the current time.
(iii) Case Δ0 < 0. In this case the dimensionless density

parameter associated with the negative CC satisfied
the following inequality:

ΩΛ < −
�
Ωξ

2γ

�
2

; ð42Þ

and the exact solution takes the following form:

EðTÞ¼−
ffiffiffiffiffiffiffiffi
jΔ̄0j

p
2

tan

�
3γ

ffiffiffiffiffiffiffiffi
jΔ̄0j

p
T

4
−arctan

�
2−Ωξ

γffiffiffiffiffiffiffiffi
jΔ̄0j

p
��

;

þΩξ

2γ
: ð43Þ

with a scale factor given by

aðTÞ¼ exp

�
Ωξ

2γ
T

�

×

8>><
>>:
cosh

h
3γ

ffiffiffiffiffiffi
jΔ̄0j

p
4

T− arctan
�

2−
Ωξ
γffiffiffiffiffiffi

jΔ̄0j
p

	i

cos ½arctanð 2−
Ωξ
γffiffiffiffiffiffi

jΔ̄0j
p Þ�

9>>=
>>;

2
3γ

:

ð44Þ

In order to explore the possibility of future singularities,
we found from Eq. (43) T as a function of E, obtaining

FIG. 4. Behavior of EðTÞ, given by Eq. (36) for different values
of Ωξ and for the particular value of γ ¼ 1. ΩΛ is given by
Eq. (35). We also plotted the ΛCDM model. The red dashed line
represent the singularity time given by Eq. (39) for Ωξ ¼ 3.

FIG. 5. Behavior of γeff given by Eq. (41) as a function of T for
the solution with m ¼ 0 and Δ0 ¼ 0, for the particular value of
γ ¼ 1 and for ΩΛ given by Eq. (35), for different values of Ωξ. Tc

and Ts are given by (38) and Eq. (39), respectively. We also
plotted the γeff for the ΛCDM model.

CRUZ, GONZÁLEZ, and JOVEL PHYS. REV. D 105, 024047 (2022)

024047-8



TðEÞ ¼ 4

3γ
ffiffiffiffiffiffiffiffi
jΔ̄0j

p

×

�
arctan

�Ωξ

γ − Effiffiffiffiffiffiffiffi
jΔ̄0j

p
�
þ arctan

�
2 − Ωξ

γffiffiffiffiffiffiffiffi
jΔ̄0j

p
��

: ð45Þ

From this equation we can notice that E is zero in a time
given by

Tc ¼
4

3γ
ffiffiffiffiffiffiffiffi
jΔ̄0j

p

×
�
arctan

� Ωξ

γffiffiffiffiffiffiffiffi
jΔ̄0j

p
�
þ arctan

�
2 − Ωξ

γffiffiffiffiffiffiffiffi
jΔ̄0j

p
��

; ð46Þ

which indicates that the scale factor takes a maximum value
at this time and goes to zero when E → −∞, as can be seen
from Eq. (45), in a time given by

Ts ¼
4

3γ
ffiffiffiffiffiffiffiffi
jΔ̄0j

p ×
�
π

2
þ arctan

�
2 − Ωξ

γffiffiffiffiffiffiffiffi
jΔ̄0j

p
��

; ð47Þ

i.e., a → 0, as can be shown if we substitute the time given
in Eq. (47) in (44). So, from Eq. (3) ρ diverges and from the
EoS p also diverges. Therefore, at this time occurs a Big
Crunch singularity (Type 0B). It is important to note that
sinceH and _H go to minus infinity for this singularity, then
the Ricci scalar given by Eq. (22) also diverges. This is the
only scenario that we have for this solution and a de Sitter
asymptotic expansion is not possible, as can be checked
from Eq. (16). In Fig. 6 we present the behavior for E as a
function of T, given by Eq. (43). The value of time of
singularity shown in this figure is T ¼ 0.609495, which is
roughly equivalent to 8.76906 Gyrs (0.64 times the life of
the ΛCDM universe).
For the solution given by Eq. (43) we have, from

Eq. (40), that

γeff ¼
γjΔ̄0j sec

�
3
4
γ

ffiffiffiffiffiffiffiffi
jΔ̄0j

p
T − arctan

�
2−

Ωξ
γffiffiffiffiffiffi

jΔ̄0j
p

		2

4
�
Ωξ

2γ −
ffiffiffiffiffiffi
jΔ̄0j

p
2

tan
�
3
4
γ

ffiffiffiffiffiffiffiffi
jΔ̄0j

p
T − arctan

�
2−

Ωξ
γffiffiffiffi
Δ0

p
			2

;

ð48Þ

Note that, if we substitute Eq. (46) (where E ¼ 0) in
Eq. (48) we will get γeff → þ∞, and if we substitute
Eq. (47) we will get γeff ¼ γ (according to Eq. (40). The
behavior of the above expression is presented in Fig. 7.

2. Cases for m= 1

In this case the solution is given by

TðEÞ ¼
2Ωξ

ffiffiffiffiffiffiffiffiffijΩΛj
p

log
�ð1þjΩΛjÞ

1
2ðγ−EΩξÞ

ðE2þjΩΛjÞ
1
2ðγ−ΩξÞ

	

3
ffiffiffiffiffiffiffiffiffijΩΛj

p ðγ2 þ Ω2
ξ jΩΛjÞ

þ
2γ
�
arctan

�
1ffiffiffiffiffiffiffi
jΩΛj

p
	
− arctan

�
Effiffiffiffiffiffiffi
jΩΛj

p
		

3
ffiffiffiffiffiffiffiffiffijΩΛj

p ðγ2 þ Ω2
ξ jΩΛjÞ

: ð49Þ

Note that T → ∞; ∀E when Ωξ ¼ γ, in other words, this
case represents the de Sitter case given by Eq. (20), that is
HðtÞ ¼ H0, ∀ t, as it can be seen from Fig. 8. If Ωξ < γ,
E ¼ 1 at T ¼ 0 and goes to zero in a future time Tc given by

Tc ¼
2Ωξ

ffiffiffiffiffiffiffiffiffijΩΛj
p

log
�

ð1þjΩΛjÞ
1
2ðγÞ

ð
ffiffiffiffiffiffiffi
jΩΛj

p
Þðγ−ΩξÞ

	

3
ffiffiffiffiffiffiffiffiffijΩΛj

p ðγ2 þΩ2
ξ jΩΛjÞ

þ
2γ
�
arctan

�
1ffiffiffiffiffiffiffi
jΩΛj

p
		

3
ffiffiffiffiffiffiffiffiffijΩΛj

p ðγ2 þΩ2
ξ jΩΛjÞ

; ð50Þ

indicating that the scale factor takes amaximumvalue at this
time, and goes to zero when E → −∞ at a time given by

FIG. 6. Behavior of EðTÞ given by Eq. (43), for different values
of Ωξ and for the particular values γ ¼ 1, ΩΛ ¼ −4, and Ωξ ¼ 3,
according to restriction (42). We also plotted the ΛCDM model.
The red dashed line represents the singularity time given by
Eq. (47).

FIG. 7. Behavior of γeffðTÞ, given by Eq. (43), for the solution
with m ¼ 0 and Δ0 < 0, for the particular values of γ ¼ 1 and
ΩΛ ¼ −4. We useΩξ ¼ 3 according to restriction (42). Tc and Ts

are given by (46) and Eq. (47), respectively. We also plotted γeff
for the ΛCDM model.
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Ts1 ¼
2Ωξ log ðð1þ jΩΛjÞ12ð Ωξ

γ−Ωξ
ÞÞ

3ðγ2 þ Ω2
ξ jΩΛjÞ

þ
2γðarctanð 1ffiffiffiffiffiffiffi

jΩΛj
p Þ þ π

2
Þ

3
ffiffiffiffiffiffiffiffiffijΩΛj

p ðγ2 þ Ω2
ξ jΩΛjÞ

: ð51Þ

Therefore, if a → 0 and since E → −∞, from Eq. (3) ρ
diverges and from the EoS p also diverges, so this solution
represents a universe with a Big Crunch type future
singularity (Type 0B) and γeff from (33) goes to infinity.
It is important to note that sinceH and _H go tominus infinity
for this singularity, then the Ricci scalar given by Eq. (22)
also diverges. In Fig. 8 we have numerically found the
behavior ofE as a function ofT, given byEq. (49). Thevalue
of time of singularity shown in this figure is Ts1 ¼ 1.79003,
which is roughly equivalent to 25.7539 Gyrs (1.87 times the
life of the ΛCDM universe).
If Ωξ > γ, E > 0 for all time and goes to infinity in a

finite time given by

Ts2 ¼
2Ωξ log ðð1þ jΩΛjÞ12ð −Ωξ

γ−Ωξ
ÞÞ

3ðγ2 þ Ω2
ξ jΩΛjÞ

þ
2γðarctanð 1ffiffiffiffiffiffiffi

jΩΛj
p Þ − π

2
Þ

3
ffiffiffiffiffiffiffiffiffijΩΛj

p ðγ2 þ Ω2
ξ jΩΛjÞ

: ð52Þ

As in the case of a positiveCC,Eq. (52) is always positive for
any value ofΩξ > γ. Now, if we substitute γ ¼ 1 (dust case)
and if we use ΩΛ ¼ −0.69 (to compare with the case of
positive CC), then for Ωξ > 1, ρ and p diverge and, there-
fore, from Eq. (3) H and a diverge, i.e., these solutions
present Big Rip singularities because γeff from (33) is
always phantom, as can be seen fromFig. 9. In this figure for
Ωξ ¼ 1.5, we have a Big Rip singularity time of
T¼0.315246, which is roughly equivalent to 4.53558 Gyrs
(0.33 times the life of theΛCDMuniverse). It is important to

note that since H and _H go to infinity for this singularity,
then the Ricci scalar given by Eq. (22) also diverges.

C. Early-time singularities for the case of Λ > 0

In the case of early singularities we explore the behavior
of our exact solutions backward in time, taking γ ¼ 4=3
(radiation) or even γ ≤ 2 (quasistiff fluid), assuming that
some kind of dissipation is possible at these very early
stages. As an initial condition for our solutions, we will
assume that Ωradiation takes values very close to one, which
is reasonable to assume during the radiation dominant era. In
order to make comparisons we will consider an early
evolution stage of the ΛCDM model. Our model is based
on the composition of only two fluids, (i) dissipative matter
(ii) dark energymodeled as a CC. According to our previous
discussion, radiation is imposed as the dominant fluid in
relation to the value of ΩΛ, therefore from Eq. (4) for an
arbitrary very early radiation timewe can consider the value
of ΩΛ ¼ 10−6, in order to use the exact solution found and
explore its behavior to the past. On the contrary, during the
current DE era the actual value of radiation density,
according to observation, is Ωradiation ¼ 9.72 × 10−5 [7,98].
The below discussion correspond to the case of a

dissipative radiation fluid. The initial condition chosen,
T ¼ H0t ¼ 0, represents the arbitrary moment during the
radiation dominance when ΩΛ ¼ 10−6 and 1 − ΩΛ ¼
Ωradiation is very close to one. Here H0 and a0 ¼ 1 are the
Hubble parameter and the scale factor at this arbitrary
moment and we keep the definition for EðTÞ. Clarifying
these new particular initial conditions, we can use the
solutions previously found looking their behavior backward
in time. The value of Ωξ represents then the dimensionless
density of dissipation at this initial time chosen above.

1. Case for m=0

We have found that the only solution for a positive CC is
given, in this case, when the discriminant of Eq. (15) is

FIG. 8. Numerical behavior of EðTÞ, given by Eq. (49), for
different values of Ωξ and for the particular values of γ ¼ 1 and
ΩΛ ¼ −0.69. We also plotted the ΛCDM model. The red dashed
line represents Ts1 and Ts2 given by Eq. (51) and Eq. (52),
respectively.

FIG. 9. Behavior of γeff given by Eq. (33) as a function of T for
the solutions with m ¼ 1, for the particular values of γ ¼ 1 and
ΩΛ ¼ −0.69, and different values of Ωξ. We also plotted γeff for
the ΛCDM model. Tc, Ts1, and Ts2 are given by Eq. (50),
Eq. (51), and Eq. (52), respectively.
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positive, but this solution presents a bouncing behavior as it
was discussed in Sec. IVA 1, so this solution describes a
regular universe without an early singularity.

2. Case for m=1

The general solution for an arbitrary γ for this case
corresponds to the expression (26). The expression (27)
corresponds to a time when the energy density and E tend
to infinity, which are the same conditions required to have
an early Type 0A (Big Bang) singularity, with the differ-
ence that, in this case, the scale factor tends to zero. We
already have discussed analytically and graphically (see
Fig. 2) Eq. (27), showing that is strictly positive, so this
universe does not have early singularities. We will later
discuss in detail in Sec. V the behavior of this solution at
early times.

D. Early-time singularity for the case of Λ < 0

1. Cases for m= 0

For this case the only solutions that present singularities
are those with a discriminant equal to or less than zero;
recall when Δ0 > 0 the solution has a bouncing-type
behavior given by (25).

(i) Case Δ0 ¼ 0. We consider the behavior backwards
in time of expression EðTÞ and aðTÞ given by (36)
and (37), respectively. Even more, for this solution
the time for singularity is given by (39), resulting in
a scale factor of null value, and since H and _H go to
infinity for this singularity, then the Ricci scalar
given by Eq. (22) also diverges. To get a early
singularity we have a restriction for Ωξ from (39)
given by Ωξ < 8=3 for the case of radiation. In this
sense, ρ and p diverge, so we will get a Type 0A
singularity (Big Bang). From the value of the CC,
Eq. (35) leads to Ωξ ¼ 7 × 10−3. In Fig. 10 we
present the behavior for E as a function of T, given
by Eq. (43).

(ii) Case Δ0 < 0. We consider the behavior backwards
in time of expression EðTÞ and aðTÞ given by
Eqs. (43) and (44), respectively. Even more, for
this solution the time for singularity is given by (47),
resulting in a scale factor of null value, and since H
and _H go to infinity for this singularity, then the
Ricci scalar given by Eq. (22) also diverges. For
early-time singularity we need to consider, from
(45), E → þ∞ to get

Ts ¼
4

3γ
ffiffiffiffiffiffiffiffi
jΔ̄0j

p ×

�
−
π

2
þ arctan

�
2 − Ωξ

γffiffiffiffiffiffiffiffi
jΔ̄0j

p
��

: ð53Þ

From the previous expression ρ and p diverge, so
this is a type 0A singularity (Big Bang). The value of
ΩΛ ¼ −10−6 leads to Ωξ < 3 × 10−3 from Eq. (42).
In Fig. 11 we present the behavior for E as a function
of T, given by Eq. (43).

2. Case m=1

We discuss in Sec. IV B 2 that the time for singularity is
given by (52) and is strictly positive, so this solution as in
the case of positive CC does not have a singularity in early
stages either. A detailed discussion about this behavior will
be done in Sec. V

V. SOFT-BIG BANG

As we have discussed in Sec. IV C 2, the solution given
by Eq. (26) (case with m ¼ 1 and ΩΛ > 0), when Ωξ < γ,
describes a universe without initial singularity. In this
particular solution, when T → −∞, we obtain that the
Hubble parameter is given by Eq. (20), and the same
behavior is obtained if we consider a negative CC as can be
seen in Eq. (49). In Fig. 12 we have numerically found the
behavior of E as a function of T.
Note that taking the limit Ωξ → 0 in Eq. (20) we obtain

that E → ∞, which is the behavior corresponding to a Big

FIG. 10. Behavior of EðTÞ, given by Eq. (36) for γ ¼ 4=3,
ΩΛ ¼ −106. Ωξ is restricted by Eq. (35). We also plotted the
ΛCDMmodel. The red dashed line represents the singularity time
given by Eq. (39)

FIG. 11. Behavior of EðTÞ given by Eq. (43), for the particular
values γ ¼ 4=3, ΩΛ ¼ −10−6 and Ωξ ¼ 2 × 10−3, according to
restriction (42). We also plotted the ΛCDM model. The red
dashed line represent the singularity time given by Eq. (53).
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Bang singularity in the past. Hence, this solution turns into
a ΛCDM model with a Big Bang singularity when
dissipation is neglected. The behavior of the scale factor
is shown in Fig. 13.
At T → −∞, H → γ=ð3ξ0Þ and _H → 0, so the Ricci

scalar given by Eq. (22) takes the value

R ¼ 4γ2

3ξ20
; ð54Þ

indicating that there is no curvature singularity in this
solution. In the infinity past a ¼ 0 and H takes a constant
value. If ξ0 → 0 the behavior of the standard model is
recovered with R → ∞ when a ¼ 0 in some finite time in
the past. The inclusion of dissipation without a CC led to
these soft-Big Bang scenarios [55].
This solution is different from the soft-Big Bang studied

in [85,86] or from other singularity-free models these
suggested by Israel and Rosen [99], or by Blome and
Priester [100] where the universe begins from either by a
tiny bubble in a homogeneous and isotropic quantum
state with the diameter of a Planck length as an initial
condition, or start from an Einstein-static universe, with a
radius determined by the value of Λ, before entering a
never-ending period of de Sitter expansion. The solution

discussed in [85] has the particularity of having a finite
scale factor in the infinite past.

VI. CONCLUSIONS AND FINAL DISCUSSIONS

We have discussed throughout this work the late and
early-times behavior of the exact solutions of viscous
ΛCDM models, looking for the conditions to have future
and past singularities, following the classification given in
[80,81], and we have also found the possibility of solutions
describing regular universes. In the late-time model we
consider a universe filled with dissipative CDM and CC
and in the early-time model we consider a universe filled
with dissipative radiation and CC, taking into consideration
two different expressions for the dissipation, a constant
bulk viscosity and a bulk viscosity proportional to the
energy density. We extend this study for a dissipative fluid
model with a negative CC. In the Table I we summarize the
early and late-time singularities obtained in each solution
and in Table II we summarize the asymptotic early and late
behavior without singularities found for these models.
For a positive CC in the late-time behavior a remarkable

result of the solution with m ¼ 1 and Ωξ < 1 is that the
solution behaves at late times like the de Sitter model,
regardless of the viscosity value. In this sense this solution
is suitable to constraint with the cosmological data,
knowing that it evolves very close to the ΛCDM model.
For a negative CC in the late-time behavior a remarkable

result for the solution with m ¼ 1 is that the dissipation in
the DM component can drive the accelerated expansion and
even a future Big Rip singularity, avoiding the big crunch
singularity, that occurs for a flat DM filed universe with
negative CC.
It is important to mention that within the context of

singularities in phantom DE, the little rip singularity is
discussed in the literature [87,101,102] under the context of
having a universe in which the DE density increases
without bound and the universe never reaches a finite time
for singularity. In our work these types of singularities do
not appear because we are not considering phantom DE and
unlike this we have asymptotic de Sitter–like behaviors
with values of E ¼ 1 as can be seen the Table II. In the
same way, let us note that our Big Rip Type I singularities
also occur with phantomlike behavior with a parameter of
state given by Eq. (33), but this type of phantom occurs in
the context of our total fluid composed of dissipative DM
and CC. Our results show that it is possible to extend the
classification of Big Rip singularity to models where the
phantom EoS is effective and does not necessarily appear in
phantom DE models.
For a positive CC in the early-time behavior a remark-

able result is that we only have universes without singu-
larities. A special case appears for the solution with m ¼ 1
which represents scenarios without singularity as we
discussed in Sec. V. For this particular solution, beyond
not having singularity, is that its behavior is very similar to

FIG. 12. Numerical behavior for EðTÞ given by Eq. (26) for
m ¼ 1, ΩΛ ¼ 10−6, and γ ¼ 4=3. We also plotted the behavior of
the ΛCDM model.

FIG. 13. Behavior of numerical integration from Eq. (26) to get
aðTÞ for m ¼ 1, ΩΛ ¼ 10−6, and γ ¼ 4=3. We also plotted the
behavior of the ΛCDM model.
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the standard model for very small values of viscosity, in
addition to being different from other singularity-free
models [85,86,99,100]. This behavior is independent of
the sign of the CC. In [55] a similar behavior was obtained
without the inclusion of the CC. In our solution a CC is
considered and the soft Big Bang is characterized by having
a zero scale factor at a very past time, which is different
from the obtained in [85].
For a negative CC in the early-time behavior a remark-

able result is that the singularities only appears in the case
withm ¼ 0, and the constraints in the parameters show that
the singularity required values of Ωξ that depend on the
values of the CC. So, despite the fact that in early times its
contribution is very small, its presence is required for the
existence of this singularity.
Our results indicate that the inclusion of dissipation in

the ΛCDM model leads to solutions where the Big Rip

singularities appear without a phantom DE and the avoid-
ance of Big Bang singularities is also possible. Therefore,
the dissipation mechanism, which is a more realistic
description of cosmic fluid, can alleviate the theoretical
problems of phantom DE and initial singularities, and also
we can obtain solutions whose behavior is very similar to
the standard ΛCDM model.
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TABLE I. Classification of the early and late-time singularities.

Solution Late-time Early-time Condition

m ¼ 0 and Δ0 ¼ 0 Type 0B (Big Crunch) Ωξ > 2 ΩΛ ¼ −ðΩξ

2
Þ2

Type 0A (Big Bang) Ωξ < 8
3
ΩΛ ¼ −ð3Ωξ

8
Þ2

m ¼ 0 and Δ0 < 0 Type 0B (Big Crunch) ΩΛ < −ðΩξ

2
Þ2

Type 0A (Big Bang) ΩΛ < −ð3Ωξ

8
Þ2

m ¼ 1 and ΩΛ > 0 Type I (Big Rip) Ωξ > 1 γeff < 0

m ¼ 1 and ΩΛ < 0 Type 0B (Big Crunch) Ωξ < 1

Type I (Big Rip) Ωξ > 1 γeff < 0

TABLE II. Classification of the asymptotic behavior for early and late times without singularities.

Solution Late-time Early-time Condition

m ¼ 0 and Δ0 > 0 Ωξ
γ þ

ffiffiffiffi
Δ̄0

p
2

1 < γ < 2 Ωξ0 > 0 −ðΩξ

2γÞ2 < ΩΛ < 0

Ωξ
γ −

ffiffiffiffi
Δ̄0

p
2

1 < γ < 2 Ωξ0 > 0 −ðΩξ

2γÞ2 < ΩΛ < 0

m ¼ 0 and Δ0 ¼ 0 Eds ¼ 1 Eds ¼ 1 Ωξ ¼ 2γ ΩΛ ¼ −1
Eds ¼ Ωξ

2
Ωξ < 2 ΩΛ ¼ −ðΩξ

2
Þ2

m ¼ 1 and ΩΛ > 0 Eds ¼ 1 Eds ¼ 1 Ωξ ¼ 1

Eds ¼
ffiffiffiffiffiffiffi
ΩΛ

p
Ωξ < 1

Soft-Big Bang Eds ¼ 4
3Ωξ

Ωξ < 4
3

m ¼ 1 and ΩΛ < 0 Eds ¼ 1 Eds ¼ 1 Ωξ ¼ 1

Soft-Big Bang Eds ¼ 4
3Ωξ

Ωξ < 4
3
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