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Spontaneous scalarization is a mechanism that allows a scalar field to go undetected in weak gravity
environments and yet develop a nontrivial configuration in strongly gravitating systems. At the perturbative
level it manifests as a tachyonic instability around spacetimes that solve Einstein’s equations. The endpoint
of this instability is a nontrivial scalar field configuration that can significantly modify a compact object’s
structure and can produce observational signatures of the scalar field’s presence. Does such a mechanism
exists for vector fields? Here we revisit the model that constitutes the most straightforward generalization of
the original scalarization model to a vector field and perform a perturbative analysis. We show that a ghost
appears as soon as the square of the naive effective mass squared becomes negative anywhere. This result
poses a serious obstacle in generalizing spontaneous scalarization to vector fields.
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I. INTRODUCTION

The first gravitational wave (GW) signal from a compact
binary coalescence detected by the LIGO-Virgo collabo-
ration [1] in 2015 opened a new vista into the nonlinear and
highly dynamical regime of gravity. Moreover, and perhaps
more excitingly, GWs now allow us to probe (or constrain)
new physics beyond GR and the Standard Model [2–7].
This had so far been limited to astronomical probes either in
the weak gravitational field and slow velocity in our Solar
System or in the strong gravitational field, but small
velocity and large separation regime of binary pulsars [8,9].
In this context, a particularly appealing new physics

scenario is one where new fundamental fields lie “dormant”
in weak-gravity environments and yet manage to have
significant effects in strongly-gravitating bodies and sys-
tems. The prototypical theory that achieves this was first
introduced by Damour and Esposito-Farèse [10,11] and
involves a massless scalar field φ. The theory is described
by the action

SDEF ¼
1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − 2∇μφ∇μφÞ

þ Sm½Ψm;Ω2
DEFðφÞgμν�; ð1Þ

where g is the metric determinant, R is the Ricci scalar, Sm
is the action of matter fields Ψm, which couple to
Ω2

DEFðφÞgμν, with ΩDEF ¼ exp ðβφ2=2Þ; β being a dimen-
sionless constant.
The scalar field satisfies the field equation

□φ ¼ −4πβΩ4
DEFT̃φ; ð2Þ

where T̃ is the trace of the matter field’s energy-momentum
tensor. Equation (2) clearly admits a vanishing scalar field
as a solution. However this is not the only solution for a
given matter configuration. Linearized scalar field pertur-
bations δφ on the background of a neutron star can be
shown to obey a wave equation

ð□ − μ2effÞδφ ¼ 0; μ2eff ¼ −4πβΩ4
DEFT̃; ð3Þ

where μ2eff is a position dependent effective mass squared.
For a neutron star described by a perfect fluid, T̃ ¼ 3p̃ − ε̃
(where p̃ is the pressure and ε̃ the total energy density).
Typically T̃ < 0 and thus these perturbations can become
tachyonic when β < 0 [12,13], with only a weak depend-
ence on the equation of state [14–16]. Numerical simu-
lations show that this linear instability is ultimately
nonlinearly quenched and thus the star becomes
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spontaneously scalarized. Due to Eq. (2), these scalarized
stars coexist with the GR solutions [defined as stars with
φ ¼ 0] and, importantly, are energetically favored: thus
they can form dynamically from stellar collapse [14,17–20]
or in neutron star binaries [21–26].
The Damour–Esposito-Farèse scalarization model can-

not lead to black holes scalarization unless the latter is
induced by surrounding matter [27,28]. However, more
general models which fashion couplings with the Gauss-
Bonnet invariant, have been shown to lead to black hole
scalarization, controlled by the mass [29,30] or by the spin
of the black hole [31–33] and can take place in stellar
collapse [34]. Black hole scalarization can also have
potentially observable effects in binary black hole binaries

]35–37 ] and be induced by other curvature scalars, such as
the Pontryagin invariant [38,39]. The instability leading to
scalarization can also be understood from a quantum field
theory perspective, see, e.g., Refs. [40–42].
A different type of generalization of the Damour–

Esposito-Farèse mechanism that has been explored is to
extend it to vector fields [43]. Inspired by [10,11], Ref. [43]
studied the action

Sv ¼
1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − FμνFμν − 2μ2vAμAμÞ

þ Sm½Ψm;Ω2
vðAμÞgμν�; ð4Þ

where Fαβ ¼ ∇αAβ −∇βAα is the antisymmetric Faraday
tensor and Aα is a vector field with bare mass μv.

1 In
analogy with ΩDEF, the conformal factor is chosen as
Ωv ¼ exp ðβAμAμ=2Þ, where β is a free parameter of the
theory. The field equation of Aμ is

∇μFμα ¼ ðμ2v − 4πβΩ4
vT̃ÞAα: ð5Þ

This equation promotes the bare mass μv of the Proca field
to what appears to be an effective mass squared μ2eff ¼ ẑμ2v,
where

ẑ ¼ 1 − 4πðβ=μ2vÞΩ4
vT̃; ð6Þ

for linearized vector field perturbations. This effective mass
squared can become negative in the presence of dense
matter as in the theory (1). This property is not specific to
the theory (4), and is shared with other vector-tensor
theories with curvature coupling terms [45–48] or disfor-
mal couplings [49,50].
Based on the similarity between the field equations (2)

and (5) it is natural to expect that in the theory (4), Aμ could
also become tachyonically unstable around sufficiently
compact neutron stars and a spontaneous vectorization
mechanism exists. Although nonlinear vectorized neutron

star solutions have indeed been shown to exist in [43], the
perturbative manifestation of vectorization has not been
explored yet. This leaves a number of open questions
unanswered. In particular, a massive vector Aμ is known to
propagate an additional longitudinal degree of freedom.
What is its role in this process? Could vectorization be
scalarization in disguise to some extent? More generally,
can it be understood intuitively, as is the case for scala-
rization, as a tachyonic instability quenched by nonlinear-
ities? Answering these questions is important from a
model-building perspective, but also from a phenomeno-
logical perspective. They become even more pressing once
one observes that, intuitively speaking, the aforementioned
longitudinal mode gets contributions in its kinetic term
from the AμAμ terms in the action. That kinetic term will
therefore have a nontrivial structure, which in turn raises
doubts about whether this mode is well behaved.
Motivated by these questions, here we revisit the model

of Ref. [43] from a perturbative perspective and indeed
uncover a ghost instability. Therefore vectorization appears
to be fundamentally different from scalarization. It also
strongly suggests that the time-evolution problem of a star
undergoing vectorization is potentially ill-posed, casting
serious doubts on the viability of this theory and other
related ones. Combined with the work [51] which also
found ghost (and gradient) instabilities in generalized Proca
theories in compact object backgrounds, our work raises
serious questions about the possibility to generalize the
original mechanism of Damour and Esposito-Farèse
beyond scalars since all proposed vectorization theories
feature at least ghost instabilities.
The remainder of this paper explains how we arrived at

these conclusions. In Secs. II and III we review the model
introduced in [43], restore gauge invariance by performing
the Stuckelberg trick and analyse the resulting field
equations. In Sec. IV we linearize the theory’s action in
the background of a nonrotating, spherically symmetric star
and show how ghost instability appears. In Sec. V we lift
the assumption of linearized gauge field perturbations and
consider the complete set of field equations. We show how
ghosts, which first went unnoticed in [43], arise. In Sec. VI
we summarize our main results.
We work with geometrical units c ¼ G ¼ 1 and use the

ð−;þ;þ;þÞmetric signature. Symmetrization of indices is
defined as AðαβÞ ≡ ðAαβ þ AβαÞ=2 and the antisymmetriza-
tion by A½αβ� ≡ ðAαβ − AβαÞ=2.

II. A MODEL FOR SPONTANEOUS
VECTORIZATION WITH GAUGE SYMMETRY

Action (4) has been constructed in analogy with (1), but a
caveat of the resulting tensor-vector theory is absence of
gauge invariance under Aα → Aα þ ∂αλ (λ being a scalar
function) due to the mass term μ2vAμAμ. To restore gauge
invariance, and at the same time more easily investigate the

1Ref. [44] is an earlier study of a similar theory that is mainly
concerned with cosmology.
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different degrees of freedom in the vector field, we can
apply the Stueckelberg trick [52]. It consists of introducing
a scalar field ψ (the Stueckelberg field) through the
substitution

Aα → Aα þ μ−1v ∇αψ ; ð7Þ

which results in a scalar-vector-tensor theory,

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − FμνFμν

−2gμνðμvAμ þ∇μψÞðμvAν þ∇νψÞ�
þ Sm½Ψm;Ω2ðAα;∇αψÞgμν�; ð8Þ

with conformal factor

lnΩ ¼ β

2μ2v
gμνðμvAμ þ∇μψÞðμvAν þ∇νψÞ: ð9Þ

The theory is now gauge invariant under the simultaneous
transformations:

Aα → Aα þ∇αλ; ψ → ψ − μvλ: ð10Þ

We see that ψ can be set to zero by a suitable choice of λ
and thus the action (4) is a gauge-fixed version of
action (8).
Indeed, for β ¼ 0 the conformal factor Ω becomes unity

and we recover the Stueckelberg theory minimally coupled
to gravity (see, e.g., [53]). If we fix a gauge where ψ ¼ 0
(we call this the “Proca gauge”), we obtain the non-
minimally coupled Einstein-Proca theory of Ref. [43]. If
we instead take μv → 0 we obtain the Einstein-Maxwell
theory with the addition of a scalar field. In Proca theory the
μv → 0 limit has an apparent discontinuity of the longi-
tudinal polarization mode of Aα. In the “Stueckelberged”
version of the same theory, the μv → 0 limit is manifestly
continuous and corresponds to the decoupling between ψ
and Aα (the latter associated with the usual Maxwell
theory). Note that, when β ≠ 0, maintaining regularity of
Ω requires that β approaches zero at least as fast as μ2v when
taking the limit μv → 0.
The action (8) is written in the Einstein frame (thus we

call gαβ the Einstein frame metric). We will refer to g̃αβ ¼
Ω2gαβ as the Jordan frame metric. We will use tildes to
denote objects in the Jordan frame, some of which, as T̃,
already appeared in the Introduction.

III. THE FIELD EQUATIONS

The field equations of the theory can be obtained by
varying the action (8) with respect to ψ , Aα and gαβ:

□ψ ¼ −μv∇μAμ þ ð4π=μvÞ∇μðαμAΩ4T̃Þ; ð11Þ

∇μFμα ¼ μvgμαðμvAμ þ ∂μψÞ − 4πααAΩ4T̃; ð12Þ

Gαβ ¼ 8πðTe
αβ þ Ts

αβ þ TαβÞ; ð13Þ

where,

αμA ≡ ∂ lnΩ
∂Aμ

¼ μv
∂ lnΩ
∂ð∇μψÞ

¼ β

μv
ðμvAμ þ∇μψÞ; ð14Þ

and we defined the individual energy-momentum contri-
butions from “pure electromagnetic” theory Te

μν and from
the “Stueckelberg contribution” to the action Ts

μν,

Te
αβ ¼

1

4π

�
FμαFνβgμν −

1

4
gαβFμνFμν

�
; ð15Þ

Ts
αβ ¼

1

4π

�
ðμvAα þ∇αψÞðμvAβ þ∇βψÞ

−
1

2
gαβðμvAμ þ∇μψÞðμvAμ þ∇μψÞ

�
: ð16Þ

The Jordan frame energy-momentum tensor of matter fields
and its trace are defined as

T̃αβ ≡ −
2ffiffiffiffiffiffi−gp δSm

δg̃αβ
; and T̃ ≡ g̃μνT̃μν: ð17Þ

We also have by construction:

∇αFβγ þ∇γFαβ þ∇βFγα ¼ 0: ð18Þ

Going back to Eq. (12) and due to ∇μ∇νFμν ¼ 0, it is
convenient to define a current jα as:

jα ¼ μvgμαðμvAμ þ∇μψÞ − 4πααAΩ4T̃; ð19Þ

which is conserved

∇μjμ ¼ 0: ð20Þ

In terms of jα we have:

μ2v∇μAμ ¼ −∇μðμv∇μψ − 4παμAΩ4T̃Þ: ð21Þ

In the absence of matter (T̃ ¼ 0) and in the Proca gauge
(ψ ¼ 0), Eq. (21) becomes the Lorenz constraint on Aα of
Proca theory. Thus, the field equation for ψ [cf. Eq. (11)]
and the Lorenz constraint on Aμ are tightly connected.
We can see the first sign of the ghost by introducing a

third metric,

ḡαβ ¼ ẑ−1gαβ; ð22Þ

in terms of which the scalar field equation becomes
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□̄ψ ¼ −ḡμν
�
μv∇̄μAν þ

1

2
ð∇̄μ log ẑÞð∇̄νψ þ μvAνÞ

�
: ð23Þ

This third metric can, in principle, have a signature change
in some parts of the spacetime due to the ẑ−1 term. If this
happens, the field will be a ghost in at least some region
compared to any field which is coupled to a fixed signature
metric. Another potential problem is the fact that this metric
changes sign by diverging, rather than crossing zero, in a
similar vein discussed in [54,55]. It is unclear whether there
is a rectification for such a problem, or, worse, whether the
theory can evolve from a state where this metric has a fixed
signature to another where the signature changes.
It is also instructive to consider the limit μv ¼ 0, with

β → 0 as fast as μ2v. In this limit, the Stueckelberg field ψ is
no longer affected by gauge transformations, so Aμ

becomes a gauge field. Then Aμ smoothly decouples from
ψ and the matter fields. However, there is still coupling to
gravity and ψ continues to be coupled to matter. In
particular, Eq. (23) becomes,

□̄ψ ¼ −
1

2
ḡμνð∇̄μ log ẑÞð∇̄νψÞ; ð24Þ

note that ẑ does not depend on Aα here. So, ψ will become a
ghost when the ḡμν metric changes signature and, as it is
coupled to gravity and matter, its ghostly nature is physical.
This same procedure is used in the Stueckelberg picture of
Proca theory to show that ψ and Aμ decouple and hence
there is no discontinuity as μv ¼ 0 (i.e., no degree of
freedom disappears). In this setting, one has β ¼ 0, flat
spacetime, and no matter.
One may object that ψ can be completely removed by a

gauge choice such as the Proca gauge ψ ¼ 0, and thus the
ghost can be exorcised. For this reason we will use the rest
of the paper to assuage any doubts. We will begin by
examining the quadratic Lagrangian for scalar-vector
perturbations around a neutron star GR solution. Doing
so wewill find there exists a gauge invariant scalar field that
suffers the same problems.

IV. PERTURBATIVE ANALYSIS

A. Background spacetime and
overview of the calculation

In this section we explore the test-field limit of our theory,
where we study the dynamics of ψ and Aα in a background
corresponding to a stellar solution of Einstein’s field equa-
tions, i.e., a solution of the Tolman–Oppenheimer–Volkoff
(TOV) equations [56,57] whose line element we write as

ds2 ¼ −eνdt2 þ r
r − 2μ

dr2 þ r2ðdθ2 þ sin2 θdϕÞ; ð25Þ

where ν (lapse) and μ (mass function) are functions of the
radial coordinate r only.

In Sec. IV B we will linearize the field equations for
small field perturbation δψ and δAμ at the level of the field
equations (11)–(12), and show how the ghost arises in this
background. Then, in Sec. IV C, we reach the same
conclusion by directly perturbing the Lagrangian, by
expanding it to second order in the fields on the same
background.

B. Linearized field equations

We are interested in studying the dynamics of δAα and
δψ propagating on the background line element (25). To
proceed we decompose δψ and δAα in scalar and vector
harmonics respectively. This is the convenient basis to
expand scalar and vector fields on the unit two-sphere and,
thus, in problems with spherical symmetry. We follow
closely the presentation by Rosa and Dolan [58], but with a
slightly different normalization. More specifically, we write
δψ as

δψ ¼ 1

r

X
lm

σlmðt; rÞYlmðθ;ϕÞ; ð26Þ

where Ylm ¼ Ylmðθ;ϕÞ are the spherical harmonics with
l ¼ 0; 1; 2…, and jmj ≤ l. For the vector perturbations, we
decompose δAα as

δAα ¼
1

r

X4
i¼1

X
lm

ciulmðiÞ ðt; rÞZðiÞlm
α ðθ;ϕÞ; ð27Þ

where c1 ¼ c2 ¼ 1, c3 ¼ c4 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

, and ZðiÞlm
α

are the vector harmonics given by

Zð1Þlm
α ¼ ½1; 0; 0; 0�Ylm; ð28Þ

Zð2Þlm
α ¼ ½0; 1; 0; 0�Ylm; ð29Þ

Zð3Þlm
α ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp ½0; 0; ∂θ; ∂ϕ�Ylm; ð30Þ

Zð4Þlm
α ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp ½0; 0; csc θ∂ϕ;− sin θ∂θ�Ylm: ð31Þ

These functions are orthonormal when integrated on the
unit two-sphere, according to the inner product,

Z
ðZðiÞlm

μ Þ�ημνZði0Þl0m0
ν sin θdθdϕ ¼ δii0δll0δmm0 ; ð32Þ

where ηαβ ≡ diag½1; 1; ð1=r2Þ; 1=ðr2 sin2 θÞ�.
Under parity inversion x → −x0 (or equivalently, in

spherical coordinates, θ → π − θ and ϕ → ϕþ π), the first
three harmonics (i ¼ 1, 2, 3) pick a factor of ð−1Þl, while
the fourth (i ¼ 4) picks a factor of ð−1Þlþ1. We follow the
literature convention and call the former “even parity”
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modes and the latter “odd parity” modes. The scalar
perturbation δψ is of even parity.
At this point it will be useful to follow a similar

procedure to [51]. We expand the Stueckelberged action
(8) around a GR solution to second order in the test field
approximation and find,

S2½δA; δψ � ¼
1

4π

Z
d4x

ffiffiffiffiffiffi
−g

p ½2ð∇νδAμÞð∇½μδAν�Þ

− zðμvδAμ þ∇μδψÞðμvδAμ þ∇μδψÞ�; ð33Þ

where,

z ¼ 1 − 4πðβ=μ2vÞT̃; ð34Þ

which is unity outside the star, where T̃ ¼ 0. Note that we
could have arrived at an action of this form by using the
Stueckelberg trick in the Proca Lagrangian with a “dressed
mass” zμ2v. Therefore, the results of this section apply to
any theory whose quadratic Lagrangian can be put in this
form, i.e., where one would naively expect just a screened
Proca field prone to develop a tachyonic instability.
Substituting the decompositions of δAα and ψ in harmon-
ics, results in a Lagrangian, with even and odd-parity sector
decoupled from one another. We look at each sector next.

C. Monopolar even-parity quadratic Lagrangian

We first focus on the monopole perturbations
(l ¼ m ¼ 0), which have the lowest instability threshold
and belong to the even-parity sector. Since Y00 ¼ constant,
only the i ¼ 1, 2 vector harmonics are defined [58]. This
means that we would need to work with three variables σ00,

uð1Þ00 , and uð2Þ00 ,

δAα ¼
1

2
ffiffiffi
π

p ½u1ðt; rÞ; u2ðt; rÞ; 0; 0�; ð35aÞ

δψ ¼ 1

2
ffiffiffi
π

p
r
σðt; rÞ; ð35bÞ

where, to shorten the notation, we use σ ¼ σ00, u1 ¼ uð1Þ00 ,

and u2 ¼ uð2Þ00 hereafter.
Inserting Eqs. (35) in the action (33) and integrating over

the angular coordinates leaves us with,

SðeÞ2 ¼
Z

dtdr
e−

ν
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r − 2μ

p
4πr5=2

�
z
2μ2v

�
r3ðμvru1 þ _σÞ2

r − 2μ

−eνðσ − rðμvru1 þ σ0ÞÞ2
�
þ r4

2
½u01 − _u2�2

�
; ð36Þ

where we defined ð·Þ0 ¼ ∂rð·Þ and ð·Þ
·

¼ ∂t ð·Þ. It can be
readily verified that under the gauge transformation (10)
with λ ¼ l=ð2 ffiffiffi

π
p

rÞ that,

σ → σ − μvl; fu1; u2g → fu1; u2g þ f_l=r; ðl=rÞ0g;
ð37Þ

and that the action (36) is invariant under this trans-
formation. In fact, it can be verified that, the combination,

Φ ¼ _u2 − u01; ð38Þ

is itself gauge invariant (proportional to the l ¼ 0 compo-
nent of the electric field). If we introduce the auxiliary field
ϕ such that, on shell, ϕ ¼ r2Φ, we can rewrite Eq. (36) as,

SðeÞ2 ¼
Z

dtdr
e−

ν
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r − 2μ

p
4πr5=2

�
z
2μ2v

×

�
−eνðσ − rðμvru2 þ σ0ÞÞ2 þ r3ðμvru1 þ _σÞ2

r − 2μ

�

þ 1

2
ϕð2r2Φ − ϕÞ

�
: ð39Þ

In this formulation, ϕ, u1, and u2 are all nondynamical:
their equations of motion can be solved algebraically in the
form, e.g.,

u1 ¼ u1½u2; ∂u2;ϕ; ∂ϕ; σ; ∂σ�: ð40Þ

We can then replace this solution directly into the action,
“integrating out” whichever field. Integrating out u1 and u2
one arrives at an action that is a functional of ϕ alone (all
terms involving σ cancel). This transfers all of the dynamics
from σ to ϕ. The resulting action has the form,

SðeÞ2 ¼
Z

dtdr
e−

ν
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r − 2μ

p
4πr5=2

�
1

2z

�
e−ν _ϕ2 −

�
1 −

2μ

r

�
ϕ02

−
2C×

zr2
ϕϕ0 þ

�
−zþ z0C1

zr2
þ C2

4r3

�
ϕ2

��
; ð41Þ

where

C× ¼ rðr − 2μÞz0
þ z½ðr − 2μÞð4þ rν0Þ − 2rð1 − 2μ0Þ�; ð42Þ

C1 ¼ ν0rðr − 2μÞ þ 2rμ0 − 2μ; ð43Þ

C2 ¼
r2ð1 − 2μ0Þ2

r − 2μ
− f6rð1 − 2μ0Þð3þ rν0Þ þ 8r2μ00

− ðr − 2μÞ½17þ rν0ð14þ rν0Þ − 4r2ν00�g: ð44Þ

We see immediately that the sign of the kinetic con-
tribution changes if z does (and also diverges when z
crosses 0). That is, we have shown that, in this situation,
there is a gauge invariant statement of the problems
discussed in Sec. II, arising from Eq. (23).
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D. Odd-parity quadratic Lagrangian

Having identified the presence of a ghost in the even-
parity sector, it is natural to ask whether such ghosts also
arise in the odd-parity sector, which contains a single
degree of freedom u4, with multipole l ≥ 1. We find, after
integration over the angular coordinates,

SðoÞ2 ¼
X∞
l¼1

Z
dtdr

e
ν
2ð1 − 2μ=rÞ−1

2

4πlðlþ 1Þ
�
e−νð _u4Þ2

−
�
1 −

2μ

r

�
ðu04Þ2 −

�
lðlþ 1Þ

r2
þ zμ2v

�
u24

�
; ð45Þ

where we defined u4 ¼ uð4Þl0 and set m ¼ 0 due to the
background’s spherical symmetry.
Hence, we see that u4 is prone to a tachyonic instability

controlled by the same effective mass squared zμ2v also
responsible for inducing a ghost instability in the even-
parity sector. Indeed, the term between square brackets is
the effective potential for massive vector axial perturbations
found in [58], Eq. (13), for z ¼ 1. We then conclude that the
axial sector can become tachyonic unstable, but the
dominant effect occurs at lower multipole: the ghost
instability in the even-sector.

V. UNVEILING THE GHOST
IN THE PROCA GAUGE

We have identified a ghost instability in the scalar sector
of our theory, however no ghosts were reported in the
spontaneous vectorization theory introduced in Ref. [43],
or related theories investigated in Refs. [45–48]. In this
section and related Appendices, we will demonstrate that
these theories contain divergent terms in their field equa-
tions irrespective of whether one uses the Stueckelberg
trick to restore gauge symmetry or not.
Recall that the Proca gauge (ψ ¼ 0) is equivalent to the

spontaneous vectorization theory of Ref. [43]. Effectively,
this gauge undoes the Stueckelberg trick (7) and we only
need to consider Eq. (5). Since there is no separate equation
for ψ in this picture and there are no divergent terms in this
field equation, it is unclear where the ghost lurks. This is
elucidated by considering the constraint equation.
Since ∇μ∇νFμν ¼ 0 still holds due to the antisymmetry

of Fμν in Eq. (5), we obtain

∇μ½ðμ2v − 4πΩ4βT̃ÞAμ� ¼ 0: ð46Þ

This is the generalized version of the ∇μAμ ¼ 0 constraint
for a minimally coupled Proca field.
The puzzling aspect of Eq. (5) is that it does not have any

explicit indication of a ghost, however we now know from
our discussion in Sec. III that the constraint (46) given in
the form of a conserved current in Eq. (20) is also crucial to

understand the time evolution. Indeed, the constraint
imposes a time evolution for A0 that will reveal the ghost.2

Let us rewrite the constraint in terms of ẑ [cf. Eq. (6)],

∇μðẑAμÞ ¼ 0: ð47Þ

We can convert the covariant derivatives to partial deriv-
atives to obtain

∂0ð
ffiffiffiffiffiffi
−g

p
ẑA0Þ ¼ −∂ið

ffiffiffiffiffiffi
−g

p
ẑAiÞ; ð48Þ

where i runs over the spatial coordinates. We see that this
time-evolution equation has divergent terms due to the
behavior of ẑ, even if all fields other than A0 are regular.
Outside any matter distribution ẑ ¼ 1 and we require ẑ < 0
in some part of spacetime if we want an astrophysical
object to vectorize. Since ẑ is continuous, it has to vanish at
some point. There is no symmetry to ensure that

ffiffiffiffiffiffi−gp
ẑA0

vanishes where ẑ vanishes since ẑ and its derivatives do not
vanish at the same spacetime points in general. This means,
A0 will generically diverge even if

ffiffiffiffiffiffi−gp
ẑA0 stays regular.

Alternatively, we can move the ẑ term outside the derivative
on the left-hand side, which means that now the coefficient
of the leading time derivative of A0 vanishes at certain
points. This means that the divergent terms we observed in
the ghost instabilities of ψ manifest themselves not directly
in the field equation (5), but in the constraint equation (46),
or equivalently, in Eq. (48).
The dynamics of A0 implied by Eq. (48) is first order in

time, thus not strictly of the same nature of the wave
equation obeyed by ψ. Nonetheless, the change of sign in
the time derivative leads to an analogous pathology. This
can be understood by recasting the field equation (5) into an
explicitly hyperbolic form.
Let us start by rearranging the constraint (47) as

∇μðẑAμÞ ¼ 0 ⇒ ∇μAμ ¼ −Aμ∇μ ln jẑj ð49Þ

Next, we manipulate Eq. (5) as follows

ẑμ2vAα ¼ ∇μF
μ
α;

¼ ∇μ∇μAα −∇μ∇αAμ;

¼ □Aα −∇α∇μAμ − Rμ
νμαAν;

¼ □Aα þ∇αðAμ∇μ ln jẑjÞ − RαμAμ; ð50Þ

2Note that A0 is not a dynamical degree of freedom in the
standard Hamiltonian sense [59]. The zeroth-component of the
equation of motion (5), is not a time-evolution equation; it
imposes an elliptic constraint on A0 in terms of the other
components of the vector and matter fields. However, one can
indirectly calculate how A0 evolves in time through the evolution
of these other degrees of freedom, which can be obtained by the
constraint.
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where we related the commutator of two covariant deriv-
atives to the Riemann tensor in the third line, and used the
constraint equation (49) in the fourth line. We finally obtain

□Aα þ ð∇μ ln jẑjÞ∇αAμ ¼ MαμAμ; ð51Þ

where we defined the mass-squared tensor

Mαβ ¼ ẑμ2vgαβ þ Rαβ −∇α∇β ln jẑj: ð52Þ

We should be cautious about the fact that ẑ contains Aα

terms [inside the conformal factor; cf. Eq. (6)], which,
strictly speaking, means that∇α∇β ln jẑj also belongs to the
principal part of the differential equation. However, for
perturbative values of Aα, such as in a fixed background
calculation of Sec. IV, this dependence can be ignored to
leading order and Mαβ becomes a proper mass-square
tensor. Hence, Eq. (51) can be viewed as a generalized
massive wave equation.
Equation (51) has a divergent mass term due to various

factors of ẑ−1 on its right-hand side. We have the option of
moving these factors to the left-hand side, which means the
principal part becomes ẑ□Aμ. This is a field equation prone
to a ghost instability since ẑ changes sign as we discussed
before in Eq. (23). One can also analyze the equation of
motion for each vector harmonic, which likewise leads to
divergent effective mass terms.
The behavior of ẑ is slightly modified for a vector field

with no intrinsic mass, μv ¼ 0. In this case Eq. (6), and
correspondingly Eq. (47), are modified as

ẑ ¼ −4πβΩ4
vT̃ ¼ −4πβΩ4

vð3p̃ − ε̃Þ; ð53Þ

where we assume the neutron star matter to behave as a
perfect fluid with Jordan frame total energy density ε̃ and
pressure p̃ as before. We see that ẑ vanishes outside the star
and is generally negative within it; thus it never crosses
zero. However, there are still divergences.
The first case of the divergence in the field equations for

μv ¼ 0 occurs at the surface of the neutron star. The
relevant part of the TOV equations for a spherically
symmetric star is [56,57],

dp̃
dr

¼ −
ε̃μ

r2

�
1þ p̃

ε̃

��
1þ 4πp̃r3

μ

��
1 −

2μ

r

�
−1
: ð54Þ

In the outer layers of the star one has p̃ ≪ ε̃ and 4πp̃r3 ≪ μ
[60,61], which allows us to approximate Eq. (54) as

dp̃
dϱ

¼ −ρ̃g; ð55Þ

where we approximated the total energy-density as equal to
the rest mass density (ε̃ ≈ ρ̃), introduced the proper radial
length ϱ [related to the coordinate radius r as

dϱ=dr ¼ ð1 − 2μ=rÞ−1=2], and defined the “local gravita-
tional acceleration” g ¼ ðμ=r2Þð1 − 2μ=rÞ−1=2 [60].
Focusing on the outer envelope of the star [62], we can

approximate the spacetime as being Schwarzschild, i.e.,
μ ≈M and ν ¼ lnð1 − 2M=rsÞ in Eq. (25), where M is the
mass and rs the radius of the star. We can further introduce
a local proper depth ʓ ¼ ðR − rÞð1 − 2M=rsÞ−1=2, in terms
of which we can recast Eq. (55) as,

dp̃
dʓ

¼ gsρ̃; ð56Þ

i.e., the equation of a plane-parallel atmosphere with a
relativistic-corrected surface gravity gs ¼ gðrsÞ ¼ ðM=rsÞ
ð1 − 2M=rsÞ−1=2. In the outermost stellar layers, the main
contribution to the pressure is due to a nonrelativistic
degenerate electron gas, for which Eq. (56) can be solved
exactly (see Ref. [60], Sec. 6.9), yielding the scaling ρ̃ ∝ з3=2

and, within the same assumptions, T̃ ∝ −4πβʓ3=2. This, in
turn, means that ∇μ ln jẑj and the effective mass diverge on
the surface, completing our argument. The same reasoning
can in principle be applied to other systems which have an
interface of vacuum and matter, suggesting that any such
interfaces would lead to a divergence in the vector field
equations in general. These divergences at the surface of the
star are not exclusive to the vector-tensor model considered
here, but are known to also arise, albeitwith a different origin,
in Palatini fðRÞ [63–65] and in Eddington-inspired Born-
Infeld [66] theories. See also [67,68].
The second case of divergence in the field equations for

μv ¼ 0 is related to massive neutron stars. Although T̃ is
negative in general, it can switch sign and become positive
in the core of such stars for some equations of state (see
e.g., [69–72]). This means that ẑ vanishes somewhere
inside the star [cf. Eq. (53)], where our previous results
for the μv ≠ 0 case directly apply.
Overall, the above discussion provides a heuristic tool to

identify ghosts in spontaneous vectorization theories. If the
spacetime dependent μ2eff vanishes in nonvacuum regions in a
theory with field equation ∇μFμα ¼ μ2effA

α, this generically
leads to divergent terms in the explicitly hyperbolic field
equations. In other words, despite the appearances and the
naming we used, μeff is not the effective mass of all physical
degrees of freedom. A careful analysis reveals that the true
effective mass diverges as in Eq. (51), which was overlooked
in the original spontaneous vectorization theory of Ref. [43]
and other similar theories. We work this out explicitly in
AppendixA (for theHellings-Nordtvedt vector-tensor theory
[73,74] studied in [45]) and in Appendix B (for the vector-
Gauss-Bonnet theory of [46,48]).

VI. CONCLUSIONS

We revisited the tensor-vector gravity model proposed in
Ref. [43] and explored the vectorization process using
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perturbation theory. This was done by working with a
gauge invariant, Stueckelberg version of the theory and
complemented with an analysis of the Lorenz constraint in
the Proca gauge. In analogy with scalarization, one would
expect to see the vector field develops a tachyonic
instability, which is then quenched nonlinearly, and this
process gives rise to the vectorized configurations found in
previous work. Instead, we have uncovered a ghost
instability. This results demonstrates quite clearly that
the strong resemblance of this model of vectorization to
the Damour–Esposito-Farèse model of scalarization is in
fact rather misleading and a phase transition process that is
physically similar to scalarization does not take place.
A potential way out may exist if one can tame the ghost

instability nonlinearly, similar to the quenching of the
tachyonic instability in scalarization. Indeed, “ghost-based
spontaneous tensorization” has been investigated [75]. In
the vectorization model studied here, ghosts appear inad-
vertently, and there is no explicit derivative coupling before
the introduction of the Stueckelberg mechanism. Yet, if a
nonlinear quenching mechanism exists, it could, in prin-
ciple, suppress the ghost. Note that the ẑ term in Eq. (47)
that controls the instability approaches its GR value of
ẑ ¼ 1 when AμAμ → ∞ (for β < 0). Hence, a solution with
large vector field values can lead to a case where ẑ > 1

everywhere. This possibility was recently investigated for
action (4) in Ref. [76], and all computed static and
spherically symmetric vectorized neutron stars were shown
to still carry ghost or gradient instabilities. Hence, there is
no sign of a quenching of the instabilities so far.
The main issue however with the ghost instabilities we

investigated is that it is not known whether their time
evolution can be done. Even if a vector field growing to
large values might quench the ghost, it is not clear if the
very time evolution of the vector field that leads to growth
can be formulated as a well-posed initial value problem due
to the divergent terms such as those in Eq. (51). The
resolution of this issue requires a mathematical analysis of
the partial differential equations we have, which is beyond
the scope of this work. We remark that these are not
problems in the Proca limit of our model and in the absence
of matter, in which numerical relativity simulations have
been performed, e.g., in Refs. [77–79].
Spontaneous vectorization theories with restored gauge

symmetry were also conceived using the Higgs mechanism
rather than the Stueckelberg mechanism [80], inspired by
the gravitational Higgs mechanism [81–83]. However, this
theory [80] also has divergent terms in its field equations
akin to Eq. (50), hence, it is susceptible to the same ill-
posedness problems we discussed here.
We worked on the specific theory of Eq. (5), but other

spontaneous vectorization models in the literature have
similar field equations where ∇μFμα directly appears as the
principal part [44–49]. Hence, a constraint can be obtained
the same way as we did, which leads to divergent terms

using the arguments in Sec. Vor related ones, as we show in
Appendices A and B.
Lastly, we stress that our results are relevant for most

known extensions of spontaneous scalarization to other
fields, not just the vectors, and our study can be considered
as a first step to obtain a no-go theorem for extending
spontaneous scalarization to other fields. For vector fields,
Garcia-Saenz et al. [51] has identified the presence of ghost
and gradient instabilities in the background of compact
objects in a broad class of generalized Proca theories
[84,85]. Similar concerns were also raised in the context
of cosmology in Ref. [86]. Going beyond vector fields, all
known formulations of nonminimally coupled spin-2 fields
that could spontaneously grow are known to lead to ghost
instabilities as well [75]. Likewise, p-form fields also have
the same constraint structure we discussed in Sec. V, hence
they suffer from similar divergent terms [87]. Spontaneous
growth of spinor fields as it was introduced in Ref. [88] also
contains divergent terms.
The only potential exception to our long list of prob-

lematic theories is a second form of spontaneous spinori-
zation theory proposed in Ref. [89], whose equations of
motion are not known to feature divergences. It remains to
be seen if other well-posed theories exist. If this is the case,
understanding what distinguishes these theories at a fun-
damental level from the problematic ones may lead to a
proper no-go theorem for arbitrary generalizations of
spontaneous scalarization.
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APPENDIX A: THE HELLINGS-NORDTVEDT
THEORY

In this Appendix we apply the approach of Sec. V to
examine the field equations in the Hellings-Nordtvedt
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[73,74] vector-tensor theory studied in Ref. [45] as a
vectorization model.
In this theory, the vector field obeys the field equation,

∇μFμα −
1

2
ωRAα −

1

2
ηRα

μAμ ¼ 0; ðA1Þ

where ω and η are dimensionless coupling constants.
Let us first obtain a generalized Lorenz constraint

satisfied by Aα by taking a covariant derivative of
Eq. (A1) and using ∇ν∇μFνμ ¼ 0,

∇μðωRAμ þ ηRμ
νAνÞ ¼ 0: ðA2Þ

We can expand this equation and replace the Ricci tensor
with the Einstein tensor and the Ricci scalar. The resulting
constraint equation is,

∇μAμ þ Aμ∇μ ln jωRj þ
2η

ηþ 2ω

1

R
Gμ

ν∇μAν ¼ 0: ðA3Þ

We can now return to Eq. (A1), write Fαβ in terms of Aα,
follow the same steps that lead to Eq. (50), and find:

□Aα −∇α∇μAμ −
�
1

2
ωRgαμ þ

�
1þ η

2

�
Rαμ

�
Aμ ¼ 0:

ðA4Þ

At last, using Eq. (A3) we obtain,

□Aα þ∇μ lnðjωRjÞ∇αAμ þ∇α

�
2η

ηþ 2ω

1

R
Gμ

ν∇μAν

�

−MαμAμ ¼ 0; ðA5Þ

where

Mαβ ¼
1

2
ωRgαβ þ

�
1þ η

2

�
Rαβ −∇α∇β ln jωRj; ðA6Þ

which should be compared against Eq. (52). Note that in
Eq. (A5) the last term in the first line is also second order,
hence, it contributes to the principal part of the differential
equation in addition to the wave operator. Hence, this
equations is not in an explicitly hyperbolic form, and we
cannot immediately identifyMαβ as a squared-mass tensor
whose eigenvalues are related to the effective masses of the
individual degrees of freedom. However, such identifica-
tion is possible in the special case η ¼ 0 in which the
problematic term vanishes and then:

Mðη¼0Þ
αβ ¼ ðω=2ÞRgαβ þ Rαβ −∇α∇β ln jωRj: ðA7Þ

We see, by comparing with Eqs. (A7) and (52), that ωR
plays the role of ẑ. We then conclude that a ghost arises for
the same reasons discussed in Sec. V.
For the general case η ≠ 0 it is more convenient to

analyse the constraint (A2) which we write as,

∇αðΞα
βAβÞ ¼ 0; ðA8Þ

where

Ξα
β ¼ ηGα

β þ ðωþ η=2ÞRδαβ: ðA9Þ

Let us focus on the perturbative regime where the
background metric is fixed and the Einstein equations
hold, i.e., Gαβ ¼ 8πTαβ [45]. For a static, spherically
symmetric perfect fluid star with energy density ε and
pressure p,

Ξα
β ¼ 4πη½ðε − pÞδαβ − 2ðεþ pÞδα0δ0β�

þ 8πωðε − 3pÞδαβ; ðA10Þ

which is diagonal. The constraint can then be written as

∂0ð
ffiffiffiffiffiffi
−g

p
Ξ0

0A0Þ ¼ −
X
k

∂kð
ffiffiffiffiffiffi
−g

p
Ξk

kAkÞ; ðA11Þ

where we wrote the summation over the spatial coordinates
k explicitly to avoid confusion. This means the diagonal
elements have the role of a generalized ẑ in the massless
case in Eq. (53). We see that ∂0A0 has a contribution in the
form of

∂0A0 ¼ −
∂rðΞr

rÞ
Ξ0

0

Ar þ… ðA12Þ

The behavior of this term is given by the dependence of the
energy density and the pressure on the radial coordinate at
the surface of the star. We normally encounter power law
dependence in stars due to the TOV equations as we
mentioned in relation to Eq. (53). Hence, ∂0A0 diverges
for generic configurations of Aμ.
We conclude by noticing that the constraint equations of

disformally coupled vector-tensor theories of Refs. [49,50]
have a similar structure to Eq. (A8), which would lead to
similar results in terms of divergences.

APPENDIX B: VECTOR-GAUSS-BONNET
THEORY

In this Appendix we apply the approach of Sec. V to
examine the field equations in the vector-Gauss-Bonnet
theory introduced in Ref. [46], and further studied in
Ref. [48]. The motivation behind these theories is to
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generalize the spontaneous scalarization of black holes
[29,30] to vector fields.
In this theory, the vector field obeys the field equation,

∇μFμα ¼ vAα − fGAα; ðB1Þ

with

v ¼ 1

2

dVðAμAμÞ
dðAμAμÞ ; f ¼ 1

2

dFðAμAμÞ
dðAμAμÞ ; ðB2Þ

where V is the vector field’s self-interaction potential, F
prescribes the coupling between the vector field and G, the
Gauss-Bonnet invariant. For small field perturbations, the
potential V and coupling function F considered in Ref. [48]
reduce to:

v ¼ μ2v; f ¼ β=2; ðB3Þ

where μ2v is the bare mass of Aα and β a coupling constant.
As with Eq. (5), one can identify an “effective mass
squared” μ2eff ¼ ẑμ2v, but where now ẑ ¼ 1 − ðβ=μ2vÞG=2.
We can now proceed in the same manner as in Sec. V to

obtain

□Aα þ ð∇μ ln jẑjÞ∇αAμ −MαμAμ ¼ 0; ðB4Þ

where

Mαβ ¼ μ2vẑgαβ −∇β∇α ln jẑj; ðB5Þ

[compare against Eqs. (51)–(52)] where the absence of the
Ricci tensor is due to the assumption of the GR background

being Ricci flat [48]. Therefore, this theory suffers from a
ghost instability as the one considered in Ref. [43].
For a Schwarzschild black hole, G is positive every-

where. Thus, for v ¼ 0 the above argument cannot be
repeated verbatim. However, G, and hence the effective
mass squared, changes sign in some regions outside the
event horizon of black holes with dimensionless spin ≳0.5
[93]. Therefore, these commonly encountered astrophysical
systems lead to divergent field equations in such theories.
Neutron stars also feature divergences for the case of

v ¼ 0. On a fixed general relativistic background, the
Gauss-Bonnet invariant of a static spherically symmetric
perfect fluid star of energy density ε and pressure p is given
by [30]

GðrÞ ¼ 48μ2

r6
− 128π

�
2πpþ μ

r3

�
ε; ðB6Þ

which is positive definite outside the star. On the other
hand, near the center of the star r ¼ rc, the TOV equations
imply that the mass function is approximately

μc ¼ μðrcÞ ≈
4

3
πεcr3c; ðB7Þ

where εc ¼ εðrcÞ is the central energy density. We then find
that in the star’s center,

Gc ≈ −256π2ðpc þ εc=3Þεc; ðB8Þ

where pc ¼ pðrcÞ is the central pressure. The right-hand
side of Eq. (B8) is negative meaning that G, and thus μ2eff ,
change sign within the star, numerically found to happen
near the surface [30].
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