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The response of a gravitating object to an external tidal field is encoded in its Love numbers, which
identically vanish for classical black holes (BHs). Here we show, using standard time-independent quantum
perturbation theory, that for a quantum BH, generically, the Love numbers are nonvanishing and negative,
and that their magnitude depends on the lowest-lying levels of the quantum spectrum of the BH. We
calculate the quadrupolar electric quantum Love number of slowly rotating BHs and show that it depends
most strongly on the first excited level of the quantum BH. We then compare our results to the same Love
number of exotic ultra compact objects and to that of classical compact stars and highlight their different
parametric dependence. Finally, we discuss the detectability of the quadrupolar quantum Love number in
future precision gravitational-wave observations and show that, under favorable circumstances, its
magnitude is large enough to imprint an observable signature on the gravitational waves emitted during
the inspiral phase of two moderately spinning BHs.
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I. INTRODUCTION

The gravitational-wave (GW) observations by LIGO and
the future observations by the planned Laser Interferometer
Space Antenna (LISA), offer opportunities for testing
strong gravity effects through precision GW measurements
during the inspiral phase of a compact binary system [1–4].
As the two companions spiral around each other, they are
tidally deformed [5,6], leaving a specific imprint on the
emitted GW waveform [7–12]. The tidal response of each
of the companions is quantified in terms of the tidal Love
numbers.
The weak external tidal field induces, generically, small

nonvanishing mass (electric) and current (magnetic)
moments. In the linear response approximation, the
moments are proportional to the external tidal field. The
largest of these induced moments is typically the mass
quadrupole, which is proportional to the quadrupolar tidal
field Eab, Qab ¼ − 2

3
k2R5Eab. Here k2 is the dimensionless

quadrupolar electric tidal Love number and R is the radius
of the inspiraling object.
The calculation of k2 is performed in great detail in [13–

15]. Its value is most sensitive to the object compactness1

C ¼ M=R. For the case that C approaches that of a black
hole (BH), C → 1=2, the Love number exhibits a universal
decrease, tending precisely to zero in the BH limit. This
universal behavior is a consequence of the BH no-hair

property [10,14,16,17]. The exact vanishing of k2 for BHs,
2

and being the largest of the dimensionless Love numbers,
makes k2 a key diagnostic for any deviations from classical
general relativity (GR).
In [21], the Love numbers for several exotic ultra-

compact objects (UCOs) were calculated and were shown
not to vanish. The numerical results exhibit a universal,
model-independent, logarithmic suppression on the relative
deviations from the Schwarzschild radius R ¼ 2Mð1þ ϵÞ.
We are interested in calculating the Love numbers of

large astrophysical BHs. As for any macroscopic object, the
Bohr correspondence principle implies that some quantum
state corresponds to the classical BH, no matter how large it
is. In the following, we use the term “quantum black hole”
(QBH) to mean the quantum state that corresponds to a
classical BH. The QBH is therefore a UCO that possesses a
horizon and, in addition, has a discrete spectrum of
quantum mechanical energy levels. These energy levels
can be viewed as coherent states that correspond to
macroscopic, semiclassical excitations of the QBH. In
the ground state of the QBH, the exterior geometry is
exactly the Schwarzschild geometry. But, when a QBH is in
an excited state, it displays deviations from its GR
description, and therefore it can be, in principle, distin-
guished from its classical counterpart.
The classical BH is bald, while the QBH has some

“quantum hair” [22–24]. Moreover, the properties of the
quantum hair can be entirely explained by an external
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1We use relativistic units G, c ¼ 1 and consider nonrotating

BHs unless stated otherwise.

2In [18,19] it is claimed that the Love number for spinning
BHs in an axisymmetric tidal field (m ≠ 0) is nonvanishing. The
results were challenged in [20].
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observer via the Bohr correspondence principle that
requires some specific changes to the near horizon geom-
etry, without any need to invoke new physical principles
[22,25]. The amount of information that the quantum hair
carries is limited. However, if observed, it could provide
unrivaled information on some properties of the spectrum
of the QBH [25–29]. Quantum imprints due to tidal heating
in the inspiral phase were also studied recently in [30,31].
We will show that the Love numbers are part of this

quantum hair and can, in principle, be observed. In practice,
it is k2 that seems to offer the best opportunity for detection.
Quantum effects for large astrophysical BHs are univer-

sally expected to be negligibly small, based on the expect-
ation that the strength of quantum effects is controlled by
the extremely small ratio of the Planck length squared to
typical curvatures l2P=R

2
S. However, we argue in the

following that the strength of quantum effects for QBHs
can be much larger.
In GR, the interior of a BH is empty except for a possibly

singular core. The firewall argument marked the beginning
of a new era in the theory of QBHs [32,33], indicating that
this picture is in need of a substantial revision. Forerunners
of the argument and a more recent review can be found in
[34–37], respectively.
Putting remnants aside, two main classes of solutions to

the firewall problem emerged as possible candidates. In the
first class the horizon region is a vacuum, but novel
nonlocal physics is introduced to resolve the information
paradox: the degrees of freedom very far from the horizon
are not distinct from the degrees of freedom inside the
horizon [38,39]. The singularity is often viewed as irrel-
evant, under the premise that it will be regularized some-
how in a way that does not affect the structure of spacetime
on horizon scales.
In the second class, BHs are described by nonsingular

states that do not collapse under their own gravity. Strong
quantum effects “smear” the would-be singularity over
horizon-sized length scales. These changes lead to a
spectrum of excitations whose characteristic scale is the
horizon rather than the Planck length. The self-consistency
of this description of the interior requires a significant
departure from semiclassical gravity, as well as some exotic
matter which is outside the realm of the standard model
[40]. Fuzzballs [41,42] and the polymer model [43] are in
this class. The new physics that resolves the singularity
introduces a new scale in addition to the Planck scale and
the ratio of the two scales can be viewed as a coupling
constant. For example, in string theory, this length scale is
the string scale ls, and it is rather the ratio g2s ¼ l2P=l

2
s that

controls the strength of quantum effects. The magnitude of
g2s is expected to be small, but of the order of all other
known gauge couplings, g2s ∼ 0.1.
Here, we present a general, closed expression for both

electric (polar) and magnetic (axial) Love numbers (tensor)
for QBHs in terms of their spectrum. The calculation is

performed in an analogy to the calculation of the
polarizability of an atom by using second-order time-
independent perturbation theory. We show that the Love
numbers are most sensitive to the lowest-lying energy level.
From this perspective, the Love numbers do not vanish
because the tidal field mixes a small amount of the first
excited level with the ground state.
In a follow up paper [44], we describe explicitly the

connection between the classical and quantum Love
calculations using the ideas presented in [45–48]. We first
establish an effective description for the interior fluid
modes of ultracompact objects as a collection of driven
harmonic oscillators characterized by their frequencies. We
then find the appropriate boundary conditions on the
perturbed Einstein equations and show that derivation of
the quantum Love number of a quantum black hole matches
exactly the standard classical calculation of the Love
number [13–15], when quantum expectation values are
replaced by the corresponding classical quantities, as
dictated by the Bohr correspondence principle. The quan-
tum Love number is equal to the classical Love number that
is computed in the traditional way. The current paper and
[44] have different goals. The goal of the current paper is to
study the response of a general quantum system to an
external tidal field and demonstrate how it acquires non-
vanishing Love numbers. On the other hand, the motivation
of [44] is to demonstrate how an object that possesses a
horizon can have a nonvanishing Love number. They are
similar in that both rely on the interpretation of the
nonrelativistic fluid modes as large quantum excitations.
The paper is organized as follows. In Sec. II we review

the standard calculation of the atom’s electric polarizability
using time-independent perturbation theory. Then, by
replacing the external electric field and the dipole moment
with the gravitational tidal field and the mass and current
moments, respectively, we derive a general expression for
the gravitational polarizability of a quantum mechanical
object—the Love numbers. Next, in Sec. III, by applying
the Bohr correspondence principle we evaluate the Love
number and find that it is negative, and its magnitude
depends on the lowest-lying levels of the quantum spec-
trum of the QBH. We demonstrate the ideas by replacing
the large excitations spectrum of the QBH with an
analogous semiclassical fluidlike description. Then by
imposing generic boundary conditions, we provide an
explicit expression of the Love number of QBHs.
Finally, in Sec. IV we discuss the possible observation
of the quantum Love numbers. We show that, under
favorable circumstances, future LISA observations could
indeed detect them by precise measurement of the spectrum
of GWs emitted during the inspiral phase of a binary
system of supermassive moderately spinning BHs. In the
Appendix, we discuss the promotion of the magnetic Love
numbers of a slowly rotating object to tensors and the spin
corrections to the tidal Love numbers.
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II. QUANTUM LOVE NUMBERS

As a prelude to the calculation of the quantum Love
numbers, we briefly recall the analogous calculation of the
polarizability of an atom. The atom is placed in a region of
an approximately uniform electric field Ei that is induced
by a weak external potential Uext, Ei ¼ − ∂Uext∂xi . The
interaction of the atom with the external electric field,
is expressed in terms of the dipole moment D ¼R
ρðx0Þx0dV 0, where the integral is performed over the

charge distribution. The interaction is given by
V̂ int ¼ −EiD̂i. The induced dipole moment of the per-
turbed atom can be calculated in second-order time-
independent perturbation theory [49]. In this case,
symmetry implies that the atom’s linear response to the
external electric field is then hΨ0jD̂ijΨi ¼ αEi, where
jΨ0i ¼ j1; 0; 0i is the ground state of the atom, jΨi is the
first-order correction to the atom ground state

jΨi ¼ jΨ0i þ
P

n;l;m jn; l; mi h1;0;0jV̂ intjn;l;mi
ΔE1;n

, and α is the

electric polarizability,

α ¼
X

n;jmj≤1

jhΨ0jD̂ijn; l ¼ 1; jmj ≤ 1ij2
ΔE1;n

; ð2:1Þ

and where l and m are the angular quantum numbers, n is
the radial quantum number and ΔE1;n ¼ E1 − En.
We derive an expression for the gravitational polar-

izability—the Love numbers—by replacing the external
electric field and the dipole moment by the tidal field and
the mass and current moments, respectively.
We consider the inspiral phase of a binary system, where

one of the companions is an object of massMext on a circular
orbit of radius b and the other is a nonrotating QBH of mass
MBH and radiusRS. In the early stages of the inspiral, the BH
responds to the external slowly varying tidal field that is
generated by its companion. For b ≫ RS one can expand the
Newtonian potential Uext ¼ −Mext=jb⃗ − x⃗j of the external
body in the vicinity of the BH in its local inertial

frame, Uðt; xÞext ¼ Uextð0Þ þ 1
2
∂2Uext∂xi∂xj j0xi

0
xj

0 þ � � �.
The interaction of the QBH with the external field is

expressed in terms of the quantum trace-free symmetric
mass and current multipole moments, Q̂ðlÞ and ŜðlÞ, these
being the quantum counterparts of the classical multipoles
[5]. We further assume that the expectation value of the
mass and current moments of the BH vanishes in the BH
ground state, as dictated by the angular symmetry of the
multipole operators and in accordance with the classical no-
hair theorems, denoting the ground state of the BH by jΨ0i,
hΨ0jQ̂ðlÞjΨ0i ¼ 0, hΨ0jŜðlÞjΨ0i ¼ 0. Since the external
potential is slowly varying, time-independent perturbation
theory should be a good approximation.
Let us evaluate explicitly the correction to the ground

state energy due to the induced quadrupole, Q̂ij. We follow
here the conventions of [13]. In analogy to the electric

polarizability calculation, V̂ int ¼ − 1
2
EijQ̂ij, where Eij ¼

∂2Uext∂xi∂xj is the tidal field. The sign of the interaction term is
important and leads, generically, to negative quantum Love
numbers. For neutron stars, the sign of the interaction term
is positive and it leads to positive Love numbers [13,21,50].
The physical reason is that for BHs, the mass as a function
of the radius MðRÞ is an increasing function, while for
neutron stars it is a decreasing function (see Fig. 2 of [50]).
For UCOs, the sign of the Love number is also, generically,
negative.
The leading-order correction to the BH ground state

quadrupole is given by

hΨ0jQ̂kljΨi

¼ −Eij

X
nr>1;jmj≤2

hΨ0jQ̂ijjnr; 2; mihnr; 2; mjQ̂kljΨ0i
ΔE1;nr

;

ð2:2Þ
where ΔE1;nr ¼ E1 − Enr . Here the radial number of the
ground state Ψ0 is denoted by nr ¼ 1, so the energy
of the ground state is E1 ¼ MBH. Symmetry implies that
the BH electric quadrupolar Love number is given by
1
2
hΨ0jQ̂ijjΨi ¼ −λ2Eij. Here λ2 is the dimensional quad-

rupolar Love number. The dimensionless Love number k2
is commonly defined as k2 ¼ 3

2
R−5λ2. From Eq. (2.2), it

follows that

k2 ¼ −
3

2R5

X
nr>1;jmj<2

1

2

jhΨ0jQ̂ijjnr; 2; mij2
jΔE1;nr j

: ð2:3Þ

Equation (2.3) is the main result of our paper. It demon-
strates that, generically, a quantum mechanical object must
have a nonvanishing quadrupolar Love number that
depends solely on the quantum state of the object and
its energy spectrum. The negative sign of k2 reflects the fact
that the energy of a BH increases when its radius becomes
larger, as previously explained.3 In [44], we showed
explicitly that the quantum Love number is equal to the
classical Love number that is computed in the traditional
way when quantum expectation values are replaced by the
corresponding classical quantities, as dictated by the Bohr
correspondence principle.
The general expressions for the higher-l electric and

magnetic quantum Love tensors can be obtained by
following the steps that led to Eq. (2.2):

kEl ¼ −
X

nr>1;l;jmj≤l

1

R2lþ1

ð2l − 1Þ!!
2ðl − 2Þ!

1

l!
jhΨ0jQ̂ðlÞjnr; l; mij2

ΔE1;nr

;

ð2:4Þ

3This argument is also supported by the shape Love number
[51,52].

QUANTUM LOVE NUMBERS PHYS. REV. D 105, 024043 (2022)

024043-3



kBl ¼−
X

n>1;l;jmj≤l

1

R2lþ1

ðlþ1Þð2l−1Þ!!
6ðl−2Þ!

1

l!
jhΨ0jŜðlÞjnr;l;mij2

ΔE1;nr

:

ð2:5Þ

Recently, in [53], it was shown that the magnetic Love
numbers of a slowly rotating object should be promoted to
tensors. We discuss this in more detail in addition to the
spin corrections to the tidal Love number in the Appendix.
Again, the conclusion is that, generically, QBHs must

posses nonvanishing Love numbers.

III. ELECTRIC QUADRUPOLAR
QUANTUM LOVE NUMBER

The starting point of our evaluation of k2 is Eq. (2.3). The
external quadrupole tidal field is proportional to the
spherical harmonic Y20 due to the symmetry of the inspiral
trajectory. The induced quadrupole shares this angular
dependence. It follows that

k2 ¼ −
3

4R5

X
nr

jhΨ0jQ̂jnr; 2; 0ij2
jΔE1;nr j

: ð3:1Þ

To calculate k2 we need to find the discrete quantum
spectrum of the QBH. In principle, we should solve the
quantum gravity equations and find the spectrum of the
BH. Remarkably, this can actually be done for specific
models (see, for example, [54]). Here, we rather solve the
corresponding classical wave equation and then use the
Bohr correspondence principle to find the spectrum in a
similar way to the way that the Bohr-Sommerfeld quan-
tization rule was used to find the spectra of atoms. A similar
procedure for scalar waves was carried out in [25]. First, we
use scaling arguments to estimate k2 and then support the
scaling arguments by a calculation.
On dimensional grounds, the coherent state energy spec-

trum of macroscopic excitations of the QBH takes the
classical form jΔE1;nr j ∼MBHω

2
nrR

2, where ωnr is the
frequency of the mode jnr; 2; 0i. The matrix element of
the quadrupole operator scales as jhΨ0jQ̂jnr; 2; 0ij∼
jΔE1;nr jR2 ∼MBHω

2
nrR

4. It follows that each term in

the sum in Eq. (3.1) scales as 1
R5

jhΨ0jQ̂jnr;2;0ij2
jΔE1;nr j ∼

jΔE1;nr j
R ∼ jΔE1;nr j

MBH
∼ ω2

nrR
2. This semiclassical treatment is

supported by observing that the occupation numbers N, in
the excited energy levels, scale as Nℏωnr ∼MBHω

2
nrR

2 so
N ∼ ðωnrRÞSBH ≫ 1. We may also use a scaling argument
and an explicit calculation to show that the contributions tok2
in Eq. (3.1) of the excited states above the first excited state
are suppressed, sowe can approximate the sumovernr by the
contribution from the first excited state. This is a typical
situation in most quantum systems. Furthermore, all the
terms in the sum are positive, so the approximate value of the

magnitude of k2 is an underestimate. In this case, it is justified
to approximate the sumby the contribution of the first excited
state. Putting the two scaling arguments together, we get an
estimate for k2,

k2 ¼ −
3

4R5

jhΨ0jQ̂j2; 2; 0ij2
jΔE1;2j

∼ −
jΔE1;2j
MBH

∼ −ω2
2R

2: ð3:2Þ

We now turn to a quantitative evaluation of k2, whose
aim is to calculate the order unity numerical factor in
Eq. (3.2). We emphasize that the estimate in Eq. (3.2) is
valid in a model-independent way. The specific model that
we discuss will serve to illustrate the procedure in a simple
model for which numerical factors can be calculated
analytically. Later we parametrize the Love number in
terms of the single parameter g2 and interpret its detect-
ability in terms of the estimate in Eq. (3.2).
Because gravity in the interior of the BH is strongly

coupled, one cannot use the semiclassical geometric
description in terms of a curved spacetime. It needs to
be replaced by describing gravity as an inertial force in a
flat space, a replacement that is allowed by virtue of
Einstein’s equivalence principle. The specific nature of
the excitations in the interior is unimportant and so is the
equivalence of the two descriptions of gravity. The only
relevant aspect is that excitations are macroscopic, horizon-
scale excitations so that applying the Bohr principle is
justified.
The idea is that the exotic matter in the interior of the

QBH can be effectively viewed as a fluid that supports
pulsating modes as for a relativistic star. These fluid modes
would exist in addition to the standard spacetime modes of
the exterior. The perturbations are divided into two sectors,
the fluid modes and spacetime modes. Due to their low
speed of sound and the compactness of the QBH, fluid
modes are decoupled from the spacetime perturbations as in
the Cowling approximation [55–57].
The boundary conditions (BCs) are chosen as follows.

Spherical symmetry requires fully reflecting BCs at the
center of the QBH. The QBH has an outer surface that
behaves just like a classical BH horizon in the classical
limit. In this case, the internal fluid modes decouple from
the exterior. Then, absence of transmission, or perfect
reflection at the outer surface, is the correct BC. When
quantum effects are small, the outer surface is only partially
opaque and so the reflection is not perfect. We found that,
quantitatively, both BCs lead to almost identical spectra.
Since the analysis is much simpler in the former case, we
will impose this BC at the outer surface and find the
spectrum of normal modes rather than quasinormal modes.
Thus, the conclusion is that the classical equation that we

need to solve is the Laplace equation,

∇⃗2Ψ2ðrÞ ¼ 0; ð3:3Þ
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with the generic BC Ψ2jr¼0 ¼ 0, and Ψ0
2jr¼R ¼ 0. The

solution of Eq. (3.3) is

Ψ2ðrÞ ¼ N 2j2ðqrÞY20ðθ;ϕÞ; ð3:4Þ

where j2 is the spherical Bessel function, Y20 is the (real)
spherical harmonic function with l ¼ 2,m ¼ 0 andN 2 is a
normalization factor which will be determined later. The
BC in this case allows only discrete values on the
magnitude of the wave number q,

j02ðqRÞ ¼ 0; ð3:5Þ

which is very well approximated by

qnr ¼
�
nr −

1

2

�
π

R
; nr ¼ 3; 4;…; ð3:6Þ

while for nr ¼ 2, the value is somewhat lower,

q2 ≃ 1.06
π

R
: ð3:7Þ

Condition (3.6) can also be viewed as a manifestation of
the Bohr quantization condition in the corresponding QBH.
Substituting P ¼ ℏq, we find

PR ¼ πℏ

�
nr −

1

2

�
: ð3:8Þ

We need to calculate jΔE1;2j and jhΨ0jQ̂j2; 2; 0ij using
the solution Ψ2;2 ¼ N 2;2j2ðq2rÞY20, with the wave number
given above. First, because the classical waves are non-
relativistic,

jΔE1;2j ¼
1

2
MBHω

2
2R

2 ¼ 1

2
MBHg2q22R

2: ð3:9Þ

In the last equality, we introduced a parametrized dis-
persion relation ω2

2 ¼ g2q22, where g2 ≪ 1 determines the
energy of the first excited level and is the only free
parameter of our model. The effective index of refraction
in the cavity is 1=g2 (see also [22,25]).
To evaluate the expectation value jhΨ0jQ̂j2; 2; 0ij,

Eq. (3.2), we will need a more elaborate calculation.
First, we need the general expression for the excitation
energies for nr ≥ 3,

jΔE1;nr j ¼
1

2
g2MBHπ

2ðnr −
1

2
Þ2; ð3:10Þ

where we have absorbed any additional nr-independent
factors into g2 and assumed that the dispersion relation is
the same for all modes. The excitation energy has to be
parametrically small compared to the BH mass,
jΔE1;nr j ≪ MBH. This condition restricts the validity of

the estimate in Eq. (3.10) and the range of nr in the sum in
Eq. (3.1) (see also the discussion in the subsequent section).
To proceed, the classical quantity that corresponds to the

matrix element jhΨ0jQ̂j2; 2; 0ij is given by

jhΨ0jQ̂j2; 2; 0ij ↔
Z

r2drdΩ2Δρ2;2ðrÞr2Y20Ψ2;2: ð3:11Þ

This quantity is evaluated by calculating the effective
energy density in the first excited state, Δρ2;2ðrÞ, using
the following comparison. On one hand,

jΔE1;nr j ¼
Z

r2drΔρ2;nrðrÞ: ð3:12Þ

On the other hand, to lowest order in g2, the energy jΔE1;nr j
is proportional to ω2

nr ,

jΔE1;nr j ¼
Z

r2drdΩ2jΨ2;nr j2ω2
nr

¼ jN 2;nr j2
Z

R

0

r2drj22

�
ωnr

g
r

�
ω2
nr ; ð3:13Þ

where we have used Eqs. (3.4) and (3.6) and performed
the angular integral. Comparing the two expressions for
jΔE1;nr j, we find that

ΔρðrÞ2;nrðrÞ ¼
jΔE1;nr j
I2;nr

j22

�
ωnr

g
r

�
ð3:14Þ

and

jN 2;nr j2 ¼
jΔE1;nr j
ω2
nrI2;nr

; ð3:15Þ

where I2;nr ¼ R3

π3ðnr−1
2
Þ3
R πðnr−1

2
Þ

0 y2dyj22ðyÞ. Substituting

Eq. (3.14) into expression (3.11) results in the following
expression:

jhΨ0jQ̂jnr; 2; 0ij ↔
Z

r2drdΩ2

jΔE1;nr j
I2;nr

j32

�
ωnr

g
r

�
ðY20Þ2

¼ jΔE1;nr jN 2;nr

I4;nr
I2;nr

; ð3:16Þ

where I4;nr ¼ R5

π5ðnr−1
2
Þ5
R πðnr−1

2
Þ

0 dyy4j32ðyÞ.
Putting all the pieces together we find that the corre-

sponding expression to the ratio appearing in Eq. (3.1) is
the following:
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hjΨ0jQ̂jnr; 2; 0ij2
jΔE1;nr j

↔
jΔE1;nr j2

ω2
nr

I24;nr
I32;nr

: ð3:17Þ

The sum of terms with nr ≥ 3 in Eq. (3.1) is therefore
given by

X
nr¼3

jΔE1;nr j2
ω2
nr

I24;nr
I32;nr

¼ 1

4
g2M2

BHR
3
X
nr¼3

π

�
nr −

1

2

�
ðĨ4;nrÞ2ðĨ2;nrÞ−3; ð3:18Þ

where we also use the energy spectrum Eq. (3.10) and the

integral Ĩ2;nr ¼
R πðnr−1

2
Þ

0 y2dyj22ðyÞ scales linearly with

πðnr − 1
2
Þ, and the integral Ĩ4;nr ¼

R πðnr−1
2
Þ

0 y4dyj32ðyÞ is
approximately a constant. The different scalings arise
because of the different scaling of integrals of even and
odd powers of the spherical Bessel function. The final
result is that the terms in the sum scale as 1=ðπðnr − 1

2
Þ2,

with odd nr terms being much smaller than even nr terms.
The nr ¼ 2 term is the largest in the sum and next largest
term is the nr ¼ 4 term, whose magnitude is about 1=5 of
the nr ¼ 2 term.
Once both jΔE1;2j and jhΨ0jQ̂j2; 2; 0ij are known, they

can be substituted into Eq. (3.2). The result is given by

k2 ¼ −
3

16

1

q2R
M2

BH

R2

J̃24
J̃32

ω2
2R

2

¼ −
3

16
q2R

M2
BH

R2

J̃24
J̃32

g2; ð3:19Þ

where the integrals J̃2 ¼
R q2R
0 y2dyj22ðyÞ and J̃4 ¼R q2R

0 y4dyj32ðyÞ can be evaluated analytically. Substituting
the numerical values of the integrals and setting
MBH=R ¼ 1=2, we arrive at our final result,

k2 ¼ −0.09ω2
2R

2 ¼ −0.18
jΔE1;2j
MBH

¼ −0.99g2: ð3:20Þ

As anticipated in Eq. (3.2), k2 scales as ω2
2R

2.
We can compare the value of k2 in Eq. (3.20) to the

values of k2 for other compact objects. For Neutron stars k2
is positive and its magnitude is much larger than the value
of k2 in Eq. (3.20). For the exotic UCOs, universal
logarithmic dependence was found in [21]. These analyses
assumed that some modifications lead to a shift at the UCO
outer surface R ¼ 2Mð1þ ϵÞ and concluded k2 ∼ 1=j ln ϵj
and that it is negative. The real part of the frequency of
spacetime modes for these UCOs for the n ¼ 2 mode is
ω2;UCO ∼ 1=j ln ϵj [58]. For the BH area quantization model
[59] (see also [30,60–62]), ωn ¼ αn=16πR, with α being a

dimensionless coefficient of order unity, so we can apply
our semiclassical treatment and from Eq. (3.2) calculate the
Love number k2 ≃ 3

16
ð α
8πÞ2.

IV. DETECTABILITY

Here, we discuss the possibility of measuring the
quantum Love number in future LISA observations of
supermassive BH binaries, which LISA can observe from
the early stages of the inspiral up to the coalescence. We
show that for such binary systems, the sensitivity is
sufficient for possibly detecting the quantum tidal defor-
mation effects for a range of values of g2. We include here
also the case of moderately spinning BHs whose dimen-
sionless spin parameter is χ ≲ 0.7. We later show that the
main effect of the spin is to modify the radius of the BH for
the same mass, R ¼ Mð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2i

p
Þ and that the direct

effect of the spin on the spectrum of the BH can be
neglected.
Following [63,64] (see also [65–67]), we determine for

which values of g2 the statistical error due to the detector
noise is small enough for observing the tidal deformation
effects. We also need to include tidal heating effects [68–
71] which are present because QBHs posses a horizon.
However, we found that these induce small changes to the
error estimation.
To estimate the statistical error in measuring the Love

number, we use a parameter estimation method based on the
FishermatrixΓij ¼ ð∂h∂θi jð ∂h∂θjÞ, where the inner product ð·j·Þ is
defined by ðh1jh2Þ ¼ 4Re

R fmax
fmin

h̃1ðfÞh̃�2ðfÞ
SnðfÞ df. The LISA noise

spectral density is denoted by SnðfÞ [1,72]. The minimal
frequency of LISA’s observation band is denoted by fmin,
fmin ≈ 10−5 Hz which corresponds to an observation time
of about one year [73]. The maximal frequency fmax is taken
to be the frequency at the innermost stable circular orbit
(ISCO) [74]. The model signal and the true signal are
parametrized by the function θi ¼ ðlnA; lnM; ln η;Ψc; tc;
χ1; χ2;ΛÞ, whose arguments are the amplitude A, the
chirp mass M ¼ η3=5M, the symmetric mass ratio
η ¼ M1M2=M2, the phase Ψc, the time at coalescence
tc, the dimensionless spin parameters χ1, χ2 and the
dimensionless average tidal deformability parameter

Λ ¼ 16
13
½ð1þ 12M2

M1
ÞM5

1

M5 Λ̃1 þ ð1þ 12M1

M2
ÞM5

2

M5 Λ̃2�, where

M ¼ M1 þM2, Λ̃i ¼ λi=M5 and λi is defined in Sec. II.
For this set of parameters, the root-mean-square error in
measuring Λ is expressed through the inverse of the Fisher
matrix σΛ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðΔΛÞ2i

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓ−1ÞΛΛ

p
.

For a binary inspiral, the Fourier transform of the signal
is modeled by h̃ðf; θiÞ ¼ AeiΨ, where Ψ ¼ ΨPP þΨTD þ
ΨTH are the phases of the point-particle, tidal deformability
and tidal heating effects, respectively.
The approximation method adopted here is the analytical

“TaylorF2 approximant” [75–77]. We include correction
terms to the GW phase in the form of spin-orbit, spin-spin
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and cubic-spin corrections up to 3.5 PN order relative to the
leading-order GW term [78,79], tidal deformability terms
to 5 PN and 6 PN order [67,80,81], and tidal heating
correction term for spinning BHs to the leading 2.5 PN
order relative to the leading-order GW term [78,82]. The
amplitude is taken to leading PN order and includes the
sky-averaged prefactor [73].
The justification for using the TaylorF2 approximate to

estimate the detectability of the Love number of the QBHs
is the following. As previously discussed, the only differ-
ence between a BH and a QBH is in the response of the
QBH to external perturbations. Except for this difference,
BHs and QBHs are indistinguishable to a distant external
observer as both can be viewed as point masses, being well
described by the spherically symmetric vacuum solution.
Thus, the TaylorF2 approximation for the QBH and the BH
is identical up to the subleading 5th PN order in which tidal
deformation effects enter. Consequently, the use of the
TaylorF2 approximate for BH-like objects is a standard
accepted practice in similar contexts [21,63,66].
The results presented in Fig. 1 indicate that it is possible

to place significant constraints on, or possibly measure, the
quantum Love number, jk2j ¼ 3.96 × g2ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2i

p
Þ−2,

for supermassive, moderately spinning binaries (M∼
106 M⊙; χi ≲ 0.7) at luminosity distance Dl ¼ 2 Gpc.
For example, taking g2 ¼ 0.06 and for spin χ ¼ 0.6 (so
k2 ≈ 0.073), the relative error jσΛ=Λj ≈ 0.2 leads to detec-
tions at 5σ confidence. Our results suggest that it would be
possible to measure α ≃ 12 of the area quantization model
to better than 1σ confidence.
For completeness, we wish to emphasize that the effect

of degeneracy among the parameters could have been
important for determination of the statistical error on Λ.
However, as pointed out in [83,84], even when the

degeneracy is maximized, its effect would have increased
the relative error on Λ by not more than its square root. We
conclude that including the effects of degeneracy is not
required at the level of accuracy that we have adopted, as it
would not have changed our main conclusion significantly.

V. SUMMARY

In this paper we calculated the Love number of QBHs
using standard time-independent quantum perturbation
theory. We showed that, unlike classical BHs whose
Love numbers vanish, the Love numbers of QBHs are
generically nonvanishing and negative and their magnitude
depends most strongly on the first excited level of the
quantum spectrum. We focused on evaluating the largest
Love number k2, the electric quadrupolar Love number.
Replacing quantum expectation values by the correspond-
ing classical quantities, as dictated by the Bohr correspon-
dence principle, we found that k2 of nonrotating QBHs
takes the universal form

k2 ¼ −Nω2
2R

2; ð5:1Þ

whereN is a positive numerical factor of order unity that is
determined by the generic boundary conditions of QBHs,
Eqs. (3.3) and (3.4), and the object’s excitation spectrum.
As shown in Sec. II, the result in Eq. (5.1) is universal and
holds for any macroscopic quantum object.
We then proceeded to show that the accumulated

dephasing due to the dissipation of tidal deformation in
supermassive moderately spinning binaries during ∼1 year
of observation is large enough to induce a significant
deviation on the orbital phase. Thus, indicating the detect-
ability of the Love number of QBHs with future precision
GW measurements.
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APPENDIX: EFFECTS OF SPIN

In this Appendix, we discuss two effects that depend on
the spin of the BH. First, the recent discovery in [53] that
magnetic Love numbers of a slowly rotating object should
be promoted to tensors and second, we show that the direct
effect of the spin on the spectrum of the BH can be
neglected, thus justifying the statement in the text that the
main effect of the spin is to modify the radius of the BH for
the same mass, R ¼ Mð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2i

p
Þ.
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FIG. 1. The relative statistical error in future LISA observations
of jσΛ=Λj for several values of g2 is shown as a function of the
spin parameter χ. We assume equal spin and equal mass M ¼
106 M⊙ companions and that the luminosity distance to the
binary system is Dl ¼ 2 Gpc. Points below the horizontal dashed
line correspond to detections at the 3σ level. The value g2 ¼ 0.18
is a limiting value for which jΔE1;2j ¼ MBH.
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Recently, in [53], it was demonstrated that the magnetic
Love numbers of a slowly rotating object should bepromoted
to tensors. For example, following [53], the magnetic Love
tensor for l ¼ 2 is given by ðk2Þijkl ¼ ðkB2 Þijkl þ ðkM2 Þijkl. The
scalar component ðkB2 Þijkl is related to the magnetic Love
number given in Eq. (2.4), ðkB2 Þijkl ¼ kB2 δ

i
kδ

j
l . The additional

spin induced term is given by

ðkM2 Þijkl ¼ −
X

n>1;jmj≤2

3

4R5

jhΨ0jŜMij jnr; 2; mij2
ΔE1;nr

×N ðYm
2 ÞijðYm

2 Þkl; ðA1Þ

where ŜMij is the l ¼ 2 current moment, ðYm
2 Þkl are azimuthal

symmetric-free tensors and N is a numerical factor that is
determined by the orthogonality of the generalized spherical
functions (see definitions in [53]). Similarly the magnetic
Love tensors for a general l can be obtained.

When the BH is spinning, its spin is coupled to the orbital
tidal field. The interaction energy takes the form [85,86]

V int ¼ −QijEij

¼ −λ2ðEij þ 2αBijkJk=MÞEij; ðA2Þ
where Jk ¼ M2χnk is the spin vector (χ is the dimensionless
spin parameter), α is a dimensionless coefficient of order
unity or less [85] andBijk is the l ¼ 3 octupolar tidal field. In
this form, since jBijkj ∼MjEijjv3 it is clear that the spin
corrections are 1.5 PN order higher than the leading quad-
rupolar term, and therefore can be neglected.
One can also view this as spin corrections to the

quadrupole moment, δQij ¼ −λ22αBijkJk, or as spin cor-
rections to the tidal Love number,

λ2 ∼ λχ¼0
2

�
1þ 2α

����Bijk

Eij

���� χM
�
∼ λχ¼0

2 ð1þ v3χÞ: ðA3Þ
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