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Black holes in f(Q) gravity

Fabio D’ Ambrosio®, Shaun D. B. Fell,” Lavinia Heisenberg,” and Simon Kuhn®*
Institute for Theoretical Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093 Zurich, Switzerland

® (Received 9 September 2021; accepted 30 December 2021; published 18 January 2022)

We systematically study the field equations of f(Q) gravity for spherically symmetric and stationary
metric-affine spacetimes. Such spacetimes are described by a metric as well as a flat and torsionless affine
connection. In the symmetric teleparallel equivalent of general relativity (STEGR), the connection is pure
gauge and hence unphysical. However, in the nonlinear extension f(Q), it is promoted to a dynamical field
which changes the physics. Starting from a general metric-affine geometry, we construct the most general
static and spherically symmetric forms of the metric and the affine connection. We then use these symmetry
reduced geometric objects to prove that the field equations of f(Q) gravity admit general relativity (GR)
solutions as well as beyond-GR solutions, contrary to what has been claimed in the literature. We formulate
precise criteria, under which conditions it is possible to obtain GR solutions and under which conditions it
is possible to obtain beyond-GR solutions. We subsequently construct several perturbative corrections to
the Schwarzschild solution for different choices of f(Q), which in particular include a hair stemming from
the now dynamical affine connection. We also present an exact beyond-GR vacuum solution. Lastly, we
apply this method of constructing spherically symmetric and stationary solutions to f(T) gravity, which
reproduces similar solutions but without a dynamical connection.
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I. INTRODUCTION

General relativity (GR) is by far the most successful
description of gravity we have. Its predictions for gravi-
tational effects on solar system scales and on cosmological
scales fit the observations very well. However, some slight
tensions, such as the H, tension, have appeared over the
past few years. In addition, theoretical difficulties such as
singularities, quantum gravity and a lacking explanation for
the origin of dark matter and dark energy spoil the beauty of
GR. It is thus fruitful to look at generalizations of GR,
which might resolve both observational and theoretical
issues.

One such generalization is provided by symmetric tele-
parallelism (ST), which is rooted in a different set of
geometric postulates than GR. The key difference between
STand GR is the role played by the affine connection, I'*,,,..
In GR, it is postulated that the connection is torsionless and
metric-compatible, which immediately implies that it is
uniquely given by the Levi-Civita connection. In ST the
postulate of metric-compatibility is dropped, and one
instead demands that I, is torsionless and gives rise to
a vanishing Riemann tensor. As long as the connection
satisfies these postulates, it can be chosen arbitrarily, and,
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in particular, it is independent of the metric. With curvature
and torsion of I'*,,, postulated to be zero, the only nontrivial
object left in ST which characterizes the affine geometry is
the nonmetricity tensor, Q,,,. This tensor can be used to
construct the so-called nonmetricity scalar Q, which will be
defined in Sec. II, and which in turn defines the action of
ST: 8[g.T] = [ d*x,/=gQ. It is well-known [1-5] that this
action is equivalent to the Einstein-Hilbert action of GR up
to a boundary term. ST therefore provides a different
geometric description of gravity, which is nevertheless
equivalent to GR. In particular, it can be shown that the
affine connection only appears in a boundary term in the
action, and it is hence unphysical. More precisely, the field
equations of the metric do not depend on the choice of
connection, and the connection field equations are identi-
cally satisfied for any choice of connection which is
compatible with the postulates of ST. This means that
the physical degrees of freedom reside in the metric while
the connection does not carry any physical information.

This changes when one considers generalizations, such
as generic theories which are quadratic in the nonmetricity
tensor [6] or extensions of ST [7]. What is of interest to
us in the present paper is the nonlinear extension described
by [d*x/=gf(Q) [1], where f is an a priori arbitrary
function. Not only is this theory nor equivalent to f(R)
gravity, but the theory now harbors degrees of freedom in
the metric and in the affine connection, because the
dependence on I'“,, can no longer be absorbed in a
boundary term in the action.

© 2022 American Physical Society
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The connection can thus be expected to influence the
metric, which describes the gravitational field. In this paper
we show that this expectation is indeed realized, contrary to
what has been claimed in the literature [8,9]. We show this
by systematically studying the most general stationary and
spherically symmetric spacetimes within f(Q) gravity.

The paper is organized as follows: Sec. II is dedicated to
introducing symmetric teleparallelism, via the Palatini
formalism, as well as f(Q) gravity. This serves the purpose
to recall basic definitions and fixing notations and con-
ventions. In Sec. III we perform a detailed symmetry
reduction of the metric and the connection. In particular,
we show that there are two ways of giving an explicit
parametrization of stationary, spherically symmetric, tor-
sionless, and flat connections (Secs. IIIC and IIID).
Moreover, we show that the trivial connection (i.e., the
connection in coincident gauge, I'*,, = 0) fails to be
spherically symmetric and that the connection used in
[8,9] belongs to the second parametrization class studied
here (cf. Table II for a definition of this class). In Sec. I[II E
we then show that the first parametrization class can be
obtained from the second one by a well-defined double
scaling limit. We also show that the metric can be brought
into a diagonal form—with two arbitrary functions of r in
the first half of the diagonal and the standard metric of a
2-sphere on the second half of the diagonal—by means of a
diffeomorphism which does not alter the structure and
defining properties of the above-mentioned parametriza-
tions of the connection.

Subsequently, in Sec. IV, we use the diagonal metric and
the two classes of connection to perform a symmetry
reduction of the metric and connection field equations of
f(Q) gravity. In Sec. IV B, we show that the first para-
metrization class cannot produce any solutions which go
beyond the standard Schwarzschild-de Sitter-Nordstrom
solution. The symmetry reduced field equations for the
second parametrization class, which we discuss in Sec. IV
A, offer more flexibility. We discuss under which con-
ditions the field equations can produce solutions beyond
the well-known GR solutions for spherically symmetric and
stationary spacetimes—and we explain why the connection
used in [8,9] could only produce GR solutions for arbitrary
choices of the function f.

In Sec. V, we use our insights to describe approximate
solutions which go beyond Schwarzschild-de Sitter-
Nordstrom for f(Q) = Q + aQ?, assuming « is a small
parameter. In Sec. VE we also present an exact vacuum
solution which goes beyond GR for the case f(Q) = QF,
for k € R\{0}, demonstrating that such solutions exist in
£(Q) gravity.

Finally, in Sec. VI, we sketch how the approach
described in detail for f(Q) can be transferred to f(T)
gravity, a generalization of metric teleparalellism. This
theory of gravity is described again by a metric and a
connection, but the latter is now postulated to be flat and

metric-compatible, but with nonvanishing torsion. Since
the construction of stationary and spherically symmetric
affine geometries, as well as the analysis of the equations of
motion, work in complete analogy to f(Q) gravity, one can
easily construct the most general stationary, spherically
symmetric, flat, and metric-compatible spacetimes of f(T)
gravity. We report our results, and their relations to f(Q)
gravity, and compare them to the literature [10-14].

We conclude the paper in Sec. VII with a brief discussion
of the main results and an outlook on future research.

II. SYMMETRIC TELEPARALLELISM
AND f(Q) GRAVITY

Let (M,g,,,.I'",,) be a metric-affine geometry, where
M is a four-dimensional manifold, g,, denotes the com-
ponents of the metric tensor of signature (—, 4, +, +), and
I'*,, represents an affine connection. The connection
defines a notion of covariant differentiation through its
action on vectors V and covectors w,

v, Ve =9,v* 417,V

V, 0, = 0,0, — T 40, (2.1)
and it can be used to describe three independent geometric
properties of a spacetime: curvature, torsion, and non-
metricity. The first two objects, curvature and torsion, are
defined by

R, o= 20,15 + 210, T,

Ta,w = 21—‘0’[}4,/], (22)
and symmetric teleparallelism demands that both tensors
vanish. We refer to

R%,, =0 and T%, =0 (2.3)
as the postulates of symmetric teleparallelism. With cur-
vature and torsion set to zero, the nonmetricity tensor is the
only remaining nontrivial object. As it measures the failure
of the connection to be metric-compatible, it is defined by

Qam/ = vagm/ = aag/w - 21—%(1(;491/)/1' (24)
Notice that the Riemann and torsion tensor depend on the
connection only, while the nonmetricity tensor also
depends on the metric. Due to the symmetry of the
nonmetricity tensor in its last two indices, at quadratic
order there are only five independent scalars that can be
built from the nonmetricity tensor. Hence, a natural starting
point for defining a Lagrangian which describes gravity in
terms of nonmetricity is a linear combination of these five
terms. As it turns out [1,2,4], GR is described by a linear
combination of only four of these contractions, which
define the so called nonmetricity scalar,
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1 1 1 [P
Q= =7 00 O + 5 Qupy Q™ + 7 00" — 5 ¢50,0°.
(2.5)

where Q, == Q," and Q, = Q%,, denote the two inde-
pendent traces of the nonmetricity tensor. Since any
connection can be decomposed into its torsion-, nonme-
tricity-, and Levi-Civita-parts, it is easy to show that the
nonmetricity scalar can be written as

Q=D,(0" - 0" +R. (2.6)

where D, denotes the covariant derivative with respect to
the Levi-Civita connection and R is the Ricci scalar of
the Levi-Civita connection. This identity shows that sym-
metric teleparallelism, defined by the action S[g.T7]:=
J d4x\/—_g@, is equivalent to the Einstein-Hilbert formu-
lation, S[g == [d*x,/=gR, up to a boundary term.

It makes it also evident that the connection of ST is
unphysical, since it is completely contained in the boundary
term and only the Levi-Civita part of I'*,, contributes to the
metric field equations. Hence, the physical degrees of
freedom are all contained in the metric and the connection
can be freely chosen, as long as it satisfies the postulates of
symmetric teleparallelism.

In the present work, however, we are not interested in the
theory defined by Q alone. Rather, we want to consider
nonlinear extensions defined by the action functional [1],

1
Slg. T 4. p] = /M d*x (5 V=9f(Q@) + 2 R%,,

+ /)a’wTa;w> + Smatter» (2-7)

where the tensor densities 1,7 and p,** act as Lagrange
multipliers which enforce the postulates of symmetric
teleparallelism and where f is an arbitrary function solely
subjected to the condition f'(Q) := %&D # 0. This last
requirement is necessary in order to obtain nontrivial field
equations.

It is important to notice that for generic f, there is no
identity analogous to (2.6). Hence, in f(Q) gravity, the
connection can in general not be absorbed into a boundary
term, and it has to be expected that I'“,,, carries degrees of
freedom, in addition to the ones contained in the metric.
There is evidence for this in the existing literature [ 7], and we
will show this explicitly in this paper in Sec. IV and in Sec. V.
Moreover, the connection can no longer be arbitrarily chose,
as was done in [8,9], since it has its own, nontrivial, field
equations which need to be satisfied. Concretely, the field
equations of f(Q) gravity are given by [2]

2
M;w = \/_—gva[v _gPa;wf,(@)] +f/(Q)£I/w
1
- Ef(Q)gm/ - T/,u/ =0

Co = VY, (V=3 (@P*,) =0, (2.8)
where T, denotes the stress-energy tensor (not to be
confused with the torsion tensor which carries an addition
contravariant index) and where we have introduced the
nonmetricity conjugate P”,, and the symmetric tensor g,
defined by

a 1 aQ — 1 [04 1 a
w=2agm - 4w T2
1 1 -
+ ZgﬂyQa - Z (g,qua + 5a(;¢Qv))
0Q

= PlapQu™ = 2P (,Quppy-  (2.9)

The metric field equations in (2.8) can also be rewritten in the
useful and more suggestive form [8,9],

1

Q6w =5 9.(/(@) - f(Q)Q)

+2f"(@)P*,0,Q=T,, (2.10)
where f” denotes the second derivative of f with respect to Q
and G, is the Einstein tensor (with respect to the Levi-Civita
connection and with vanishing cosmological constant). In
this form, it becomes obvious that for f(Q) = Q + 2A, the
metric field equations are equivalent to the Einstein field
equations with cosmological constant A.

In particular, in this case the theory only propagates
2 degrees of freedom of the metric, while the connection is
pure gauge. As mentioned above, for a generic function f it
can be expected, and there is also evidence from a
perturbative analysis [7], that the theory propagates more
than 2 degrees of freedom and should therefore lead to
potentially interesting deviations from GR. Indeed, we will
see later (cf. Secs. IV and V) that under certain conditions,
the connection is no longer pure gauge, but rather, one
component becomes dynamical and this leads to solutions
which go beyond the standard GR solutions.

We conclude this section by recalling that there exists a
special gauge choice in which symmetric teleparallelism,
where the connection can be arbitrarily chosen, can be cast
in a particularly simple form: the so-called coincident
gauge [l]. In this gauge, the connection is trivial, i.e.,
I, = 0. Itis obtained by observing that the first postulate
of symmetric teleparallelism, the vanishing of curvature,
implies that the connection must have the form,

Faw/ — (A—l )apayAﬂw

(2.11)
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where A% € GL(4,R). The requirement of vanishing
torsion further restricts the matrix A"ﬁ to have the form
A"ﬁ = 8/;5", for arbitrary &%, and the connection conse-
quently becomes

ox%

Fa/w - 8_5}“

9,0,&". (2.12)

Hence, the connection can be set globally to zero by the
affine gauge choice &* = M"ﬂx/’ + &5, where M%; is a
nondegenerate matrix with constant entries and &§ is a
constant vector [2].

III. SYMMETRY REDUCTION OF THE METRIC
AND THE CONNECTION

Our goal is the study of the field equations of f(Q) gravity
for spherically symmetric and stationary spacetimes. To that
end, we first assume that the ten metric components and the
64 components of the affine connection can be expressed in
the chart (¢, 7,0,¢) € R x R x [0, z] x [0,27). The next
step is to find the most general form of the metric and the
connection which respect the symmetries of the spacetime
and, in the case of the connection, which is compatible with
the postulates of symmetric teleparallelism.

The notion of symmetry we use is the same as the one
given in [10], and we recall it here for convenience: Let G
be a group, ®: G x M — M the action of the group on the
spacetime manifold M, and denote by ®,: M — M for
u € G the induced diffeomorphism. We then say that a
metric-affine geometry (M, g,,,I'*,,) is symmetric under
the group action if and only if

(Cng)pw - g;w
(q’ZF)",w = Fa/wv (31)
for all # € G and where @;; denotes the pull-back of ®,,. In
our case, the group G will be the group of spatial rotations,
SO(3), and the group of time translations. Moreover, in
practice, it is more convenient to consider infinitesimal
actions of G on the metric-affine geometry. The above
symmetry conditions can then easily be reexpressed as

(ﬁég);w =0
(L), =0, (3.2)
where L. stands for the Lie derivative along &, which
representatively stands for the generating vector fields of
the Lie algebra g of G. Our task is therefore to implement
(3.2) for the generator of time-translations and the gen-
erators of SO(3). Of course, the most general spherically
symmetric and stationary form of the metric is well-known
and we can simply state the result,

9 Gr O 0
9 Grr 0 0
G = (; 0 o |63
Yoo
0 0 0 gpsin’0

where all four independent components {g,, 9, 9,r» Joo }
only depend on r. In the case of the connection, we could
refer to the results reported in [10], where the symmetry
reduction of a general affine connection under the action of
G = SO(3) has been carried out. However, we will perform
the symmetry reduction of the connection in detail under
the additional assumptions that it is torsionless and sta-
tionary. With the former assumption we already achieve the
implementation of one of the two postulates of symmetric
teleparallelism. The assumption of stationarity will play an
important role in Sec. III B, where we implement the
second postulate of symmetric teleparallelism. Note that
of the three conditions the connection has to fulfill,
Lre, =0, 1%, =0, R%,, =0, the first and second
are linear in I'”,, and thus have unique solutions. But
the Riemann tensor is quadratic in the connection, and one
might thus obtain several solutions for the connection.

A. Symmetry reduction of I'*,, under
the assumption that 7%, =0

The torsionless condition, 7¢,, éO, simply forces the
connection to be symmetric in its lower indices, I'*},,;) = 0.
This reduces the amount of independent connection com-
ponents from 64 to 40. Next, we implement the condition
of stationarity. Since the generating vector field of time-
translations is simply given by 7 :=7%0, =0, we
immediately find

(L7D)%, = 9,17, =0. (3.4)
In words: All 40 components of the connection are,
unsurprisingly, time-independent. Implementing spherical
symmetry requires a little more work. To begin with, we
recall that the generating vector fields of SO(3) are

R, = R, — sin g0y + 50 2,
tan @
a sin ¢
Ry = Ryaa = — COS ¢89 + ma,/)

R, = R0, = -0, (3.5)

It is easiest to start with the generator R, since this one
simply gives us
(Lr )

=~ =0, (3.6)

uv

which means that all connection components are indepen-
dent of the angular coordinate ¢. To implement the
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remaining two symmetry conditions, it is convenient to
study linear combinations of Lie derivatives. The first one
reads

cos ¢(Lr, )%, + sinp(Lr )%, =0,  (3.7)

1772
and it leads to a set of equations which explicitly determine
28 of the 40 connection components. The solutions can be
subdivided into three groups. The first group consists of 20
components which are forced to be zero,

[p=0 I'y=0 T'y=0 T, =0 Iy =0
[Mg=0 I"y=0 T"p=0 T, =0 T7p =0
=0 T, =0 T%,=0 T%,=0 T%,=0
I, =0 1%,=0 I?,=0 TI?,=0 F¢¢¢:

The second group contains two components which are
explicitly given by trigonometric functions,

{Ftttv 1—‘ttrv l—‘trrv Ftee’ Frttv 1—‘rtrv Frrrv Fr()&v F¢t(/)» 1—*0"/)’ F¢r{/)v Fgrqﬁ}’

I?%,, = —cos®sinf

I, = cot. (3.9)
This is an important result, since it tells us that the
coincident gauge, i.e., the trivial connection I'*,, = 0, fails
to be spherically symmetric. Any attempt to find spheri-
cally symmetric solutions to the field equations of f(Q)
gravity using the coincident gauge is therefore bound to
fail, and one should expect inconsistencies, unless we are in
symmetric teleparallelism which is described by the affine
function f(Q) = aQ + b. Finally, we find that in the third
group, six components can be expressed algebraically in
terms of other components,

FI¢¢ = F[(;gSinze Fr¢¢ = F’(,gsinzﬁ F¢t9 = —F9[¢CSC29
Fetg = F(/)mg F{/)ré) = —Fgrd,CSCzH Fgrg = F{/)r(/) (310)
From the initially 40 independent connection components,

we are left with 40 — 20 —2 — 6 = 12 components. These
twelve independent components are

(3.11)

and these are functions of r and 6, potentially. We can further restrict the functional dependence of these components by

considering the last symmetry condition which reads

sin ¢(£RXF)“W — cos ¢(£RVI“)“W =0.

!

(3.12)

This condition leads to a total of twelve first order differential equations for precisely the twelve independent components

given in (3.11). These equations are explicitly given by

agre,[/, - F€t¢ cotd =0 89F9r¢ - Fer(l, cotd =0 89Fln =0 861"’,, =0
O, =0 OpI"gg =0 OpI";, =0 G, =0

89F’,r — O 891'"99 - 0 89F‘/’,(/, — O 5‘91"‘/’,,/, — 0

(3.13)

The first two differential equations in the first line are easily solved and give us

1"9[¢ = sin@cl(r) and Femg = Sinch(r)’

(3.14)

where ¢; and ¢, are arbitrary functions of », while the remaining ten equations tell us that the other components are only
functions of r. This completes the symmetry reduction of the connection, and we are left with the twelve independent functions,

{Cl(r)’ C2(r)7 Fttt(r)’ F["(l"), Flrr(r)’ Ft‘%’(r)’ Frtt(r)’ Frtr(r)’ r‘rrr<r)7rr69(r)’ Fet&(r)’ Fere(’”)}-

We will use the resu}ts obtained in this subsection in order
to implement R, , = 0. This will be the subject of the next
subsection, and it will further reduce the amount of
independent connection components.

B. Implementation of R*,,,=0

In the previous subsection, we already used the sym-
metric teleparallelism postulate that 7%, =0, and we

(3.15)

|
imposed the symmetry conditions (3.4), (3.6), (3.7), and
(3.12). From these conditions we learned that there are only
twelve independent connection components, all of which
are solely functions of r, and that the remaining 28
components are given by Egs. (3.8)—(3.10). We can now
use these facts to simplify the equations which arise from
imposing that the Riemann tensor of I'“,, has to vanish.
After rather long and unenlightening computations, one
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finds 24 nontrivial equations. Since the Riemann tensor is
quadratic in I and linear in OI', and because half the
connection components are zero, one can reasonably expect
that these 24 equations can be separated into nonlinear
algebraic equations and first-order differential equations.
Indeed, one finds that there are twelve algebraic equations,

Iyl =0
[gl%y =0
[l .y =0
Il =0

ol 4+ Tl 0,y = 0
1+ To0? ) + Tl =0
I, g9 4+ Tgp(Ty =T 14) = 0
Clgol” i + T gg(T7y, =T%14) = 0
7,00, + 19,0, -2I7%,) =0
L0y (T =T7y) + T2 (T, =T ) = 0
I, —T?,) + 17, 0%, + (I7,) csc?0 =0
0, +17,,07, =T%,) + 19,07 ,cs¢20 = 0,
(3.16)
for only ten of the twelve independent connection compo-

nents. The remaining twelve equations are first-order
differential equations,

O,1%4=0
0,I?, 6=

oI, =r, 1, —1r,I1,

o, =117, —I",I",

9,99 =T'gp(T?,yy —=T") =T",.I"gg

0,17 g9 = I“’gg(l“"’,(/, —I7,) =Tl
0I,=1%,@I", -2I,)+1I",I%,

oI, =170, -=T7,,)+T",.(1-T",)

oI, =1, -17,)+1,(0",. -T",)

X0,y =10, (I, =T? ) +T9,(I'", =T? ;)
O,y =17 (I, =T%,) +T",I?, + (I?,,)*csc? 0
0Ty =T, (I, =T? ) + T, T + T, csc? 6.

(3.17)

Let us first have a closer look at the algebraic equa-
tions (3.16): Because there are more equations than
independent functions, it is not clear whether the equations
can even be solved and because they are nonlinear, one
cannot expect to find unique solutions. As it turns out, the

system of equations can be solved, and one finds five
distinct sets of solutions. In each solution set, one can
express some connection components in terms of other
components in a highly nonlinear fashion. However, what
is remarkable, is that all five solution sets share one
particularly simple solution,

=0 and I, =0. (3.18)

A quick look at Eq. (3.14) reveals that this is equivalent to

ci(r)=0 and c¢,(r) =0, (3.19)

which reduces the amount of independent connection
components (3.15) from twelve to ten. Moreover, if we
plug (3.18) back into the algebraic equations, we find the
simpler system,

1+ Tl 5 + Tl = 0
Doy =T%y) + T, 17 g = 0
oI, —T?,,) +Tlgl ", =0
I, —T?) +17,I?,=0
I, (I, —T?,) +17,1%, =0.

Iy

(3.20)

Notice that these are five equations for eight connection
components,  {I", . T, . Tg0. T7 1, 71, T 9. T 1, T? ).
Hence, it is now obvious that the system is solvable but
underdetermined, and clearly we obtain the same five
distinct sets of solutions as before. After all, we used the
algebraic equations to obtain the solution (3.18).

Now we turn to the differential equations. Since no
matter which of the five solution sets we use, we always
find (3.18), we can use this solution to simplify the twelve
differential equations. Notice that (3.18) implies that the
first, the seventh and the tenth differential equation are
trivially satisfied, while the last two loose their csc? @ terms.
Furthermore, the second equation can easily be solved, and
we find

8,F¢t¢ =0 F¢,¢ =cC, (321)
where ¢ € R is a constant (since at this stage we already
know that every independent connection component is
purely a function of r). After using (3.21), the last differ-
ential equation turns into an algebraic equation,

r,,I, —c) +I',c=0. (3.22)
We can therefore update our system (3.20) of algebraic
equations by adding (3.22) to it. This gives us a total of six
algebraic equations for eight connection components.
Moreover, since we solved one differential equation, three

024042-6



BLACK HOLES IN F(Q) GRAVITY

PHYS. REV. D 105, 024042 (2022)

dropped out, and one turned into an algebraic equation, we
are now left with seven differential equations,

oI, = 1—‘trrl—‘rn‘ - 1—‘ttrl—‘rtr

oI = Frtr(rrtr - rttt) + Frtt(rttr - l—‘rrr)
8rl—‘qﬁr(]‘) - F¢r¢ (Frrr - F¢r(/)) + Crlrr

oI, =r,I", -1,I1",

arFIZr - Ftrr(Fttt - Frtr) + l—‘llr(rrrr - Fttr)
9,0 g9 = Tgg(T?,5 = T",) =", T gy

0,99 =T gg(T?,y —=T7,) =Tl (3.23)
Notice that these equations allow us to reexpress the
r-derivative of seven of the ten independent connection
components. The only components which do not appear on
the left-hand side are I'",, and I'”,, (and I'? p = C, Whose
derivative is trivial). Furthermore, observe that the right-
hand side of the first equation in (3.23) is equal to (—1)
times the right-hand side of the fourth equation. This means
we get the following relation between the left-hand sides:
oI, =-o0Ir, e, =k-1",, (3.24)
where k € R is a constant. This follows again from the fact
that all connection coefficients we are left with are purely
functions of r. This is again a useful relation, and we are left
with six differential equations. As we will see later, the six
differential equations play a crucial role in determining the
propagating degrees of freedom of f(Q) gravity.

This is all the information we can extract from the
differential equations at this point. The next step is to return
to the algebraic equations, supplemented by the new
equation (3.22), and study the solution sets which arise
from solving these equations. Before doing so, let us briefly
summarize the situation thus far:

(1) We started with a general affine connection I'*,,,

which has 64 indepqndent components.

(2) Implementing 7%,, =0 in Sec. Il A brought this
number down to 40 independent components.

(3) The first two symmetry conditions, Eqs. (3.4) and
(3.6), told us that all connection components are
independent of the coordinates ¢ and ¢.

(4) The third symmetry condition, Eq. (3.7), told us that
the 20 components (3.8) are zero. Moreover, we
found that two components are given solely by
trigonometric functions, Eq. (3.9), and we found
six algebraic relations in (3.10). This brought the
number of independent components down to
40 —20 -2 — 6 = 12, and we learned that the con-
nection in coincident gauge fails to be spherically
symmetric.

(5) The fourth symmetry condition, Eq. (3.12), gave use
twelve first order differential equations. These equa-
tions tell us that all twelve independent connection

components are functions of r alone and no other
coordinate. [Minor exception for the components in
(3.14), but they turn out to be zero later 'on.]

(6) We then proceeded to implement R*,,, =0 in this
subsection, and we found that we get twelve non-
linear algebraic equations and twelve first order
differential equations. The nonlinear equations
all have two solutions in common: F9,¢ =0 and
I?,, = 0. These solutions eliminate ¢ (r) and ¢, (r)
from the list of independent connection components.
Hence, we are left with the ten independent com-
ponents {Fttt’ 1—‘ttrv 1—‘trrv Ft&&? l—‘rth Frtn Frrw Frﬁév
I?,,.1%,,4}, which are all functions of r and nothing
else.

(7) Among the differential equations we find
9,I'?,, = 0, which tells us that I'”,; is a constant.
Moreover, we found the relation 0,1, = —0,I",,,
which implies I'",, = k—T",.. This reduces our
list of independent connection components to
{C’ k’ Ftlr’ l—‘lrrv Ftb‘é)v Iﬂrtt’ l—‘rtr’ l—vrrv Frt‘)ﬁ’ F(/)r(/)},
where ¢ and k are real constants.

(8) Finally, there are six differential equations left.
These differential equations allow us to express
the r-derivative of the connection components
{Ft", Fteg, l"r”’ Fr,r, Frgg, F(/)r(/)} in terms of the
other connection components. What remains unde-
termined are the derivatives 9,I7,, and O,I7,,.
This means that in the field equations, only I',,
and I'",, can become dynamical.

(9) We also have six nonlinear algebraic equations
for the eight connection  components
{e. kT . T9p. T T, . 79, T?,,}. Notice that
these are the same variables as in bullet point 8.
(apart from ¢ and k). Clearly, the system is under-
determined, and we should expect to get more than
one solution to these equations.

Indeed, we find that the remaining algebraic equations now
admit two solution sets. Since these solution sets look
independent, we will study them separately in Secs. III C
and III D. We will then show in Sec. III E that the two sets
are actually related to each other by a double scaling limit.
It is nevertheless convenient to distinguish between the two
sets and they both play a crucial role in the study of the
symmetry reduced field equations of f(Q) gravity, which
will be discussed in Sec. IV.

C. Solution set 1

As mentioned in the previous subsection, we are left with
six nonlinear algebraic equations, given by (3.20) and
(3.22). These equations do not admit a unique solution.
Rather, there are two sets of solutions. For the first solution
set we find that two components are zero, and three
components can be expressed in terms of the constants
¢, k, and the function F4’,¢,
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1 2c—k
Mo = e I, =k-c I, = .

IMgg =0

r,,

I, =0. (3.25)
Clearly, we have to assume that ¢ # 0 for this solution set to
be well-defined and admissible. Applying this solution set
to the differential equations (3.23) reduces them to four
algebraic equations,

|

(c=kI?,,=0
(c—k)(2c—k)=0
(c=k)(2c—kI?,,=0
c—k=0, (3.26)

and two differential equations,

I, + l—‘(/J)r(/)(l—‘rrr - F¢f¢) - arrd)r‘/’ =0

(2¢ = k)(e T + I, T 4 + (k= 2¢)(T7,4)* = ¢0,I?,) = 0.

The algebraic equations have obviously a unique solution
which is given by

c=k#0. (3.28)

Applying this solution to the two differential equations
shows that they are actually the same, and we simply get
arr‘(ﬁr(ﬁ = cri’r + r¢r¢ (rrrr - F¢r¢> (329)
This is all the information we can extract from these
equations. In particular, we do not find any further con-
ditions, constraints, or integrability conditions. What we
learn thus is the following: Solution set 1 describes a
stationary, spherically symmetric, torsionless, and flat
connection in terms of a real constant ¢ # 0 and the three
arbitrary functions I',,(r),I",,(r),I'?,,(r). We refer to
these functions as the independent components which
define solution set 1, because every component which
belongs to solution set 1 can be expressed in terms of these
functions, the constant ¢, and trigonometric functions.
Moreover, the derivative 9,I"? r¢ can be expressed in terms
of the independent functions. The same is not true for the
derivatives 0,I",, and 0,I",, of the independent compo-
nents IV, I'",,: These derivatives remain undetermined and
potentially render these components dynamical.

These are the defining properties of solution set 1, and
they play a crucial role in simplifying the symmetry
reduced field equations in Sec. IV. We therefore summarize
all properties of solution set 1 in the following table for later
convenience and reference: Note that alternatively one
could also define F‘/’,¢ as an arbitrary function, and in
turn fix T, by solving (3.29) for it. This can always be
done as ¢ # 0, and one obtains

1
l—‘trr = E (6rr¢r¢ - F(/)r(ﬁ(rrrr - F{pnf)))' (330)
One could thus also choose F‘/’r,/, as a possible connection

degree of freedom, which fixes I'’,,, but this is just an issue
of the freely chosen parametrization of the connection.

(3.27)

D. Solution set 2

The algebraic equations (3.20) and (3.22) admit a second
set of solutions, which is explicitly given by

l"t
I, = c+c(2c—k)y, W”:(%—kh$@ﬂ+wﬁw)
60
1 + Crtgg

Frtt = —C(2C — k)rrgg I
06

e, =— (3.31)

where we have to assume ["yy # O in order to obtain well-
defined expressions. Just as in the previous subsection, we
insert the obtained solutions into the differential equa-
tions (3.23). This leads to six complicated looking equa-
tions. None of these equations is algebraic, and, moreover,
they are linearly dependent. After some elementary manip-
ulations, one finally finds the following two independent
expressions:

Flﬁf)
|

O gy = — 14T 99(Bc—k+ (2c—k)[Mgp)] =T, 1" g9

0199 =—1—cl"gg(2+ (2c —k)["gp) =T, T"gg.  (3.32)
There are now no more equations, constraints, or
integrability conditions we can exploit. Hence, we find
that in solution set 2 every component of the stationary,
spherically symmetric, torsionless, and flat connection
can be expressed in terms of two arbitrary constants,
c,k€R, the four functions TI7,.(r),["ge(r),I",.(r),
[go(r), with I"p9#0, and trigonometric functions.
Just as in the previous subsection, we refer to the
above four functions as the independent connection
components which define solution set 2. The derivatives
0", and 017, remain undetermined, while the
derivatives 0,I"py and 0,1y, can be expressed in terms
of the independent connection components via (3.32).
Table II summarizes all properties of solution set 2 for
later convenience and reference.

Instead of regarding I'',, and I"”,, as being the free
functions, which then fix the first derivatives of Iy, and
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I g9, one could define the latter two as free functions, and
in turn determine the former by the equations,

Iﬂ[rr = <_ [1 + Ft99(3c -k
Moo \ 1700

T (2e—K)0)] - arfge) (3.33)

1
Uy =5 (=1 = clMgy(2 + (2¢ = k)I"gp) — O, gp).
00

(3.34)

Hence the (potential) connection degrees of freedom of I' .,
and I'”,, may also be described by I'7gy and I'"y,, but this
again just a choice of parametrization.

Finally, we observe that the spherical connection used
in [8,9] falls into solution set 2. Indeed, if we choose
{c,k, T, T 99,7 .. T 99} =4{0,0,0,0,0,—r}, then the only
nonvanishing connection components of solution set 2 are

1
[Mog=—r [y =—rsin’0 TY,= .

1
IV, =—cosfsing T? , =— I'?4, = cotb,
r

(3.35)

which agrees precisely with the connection used in [8,9].
|

s t _
lim; o[, = ¢
limi_ml—"nh(:c = O
. 0 _

lim,_oI" gl = =

o
ok

What remains to be checked is whether the double scaling
limit also allows us to recover Eq. (3.29) from the
Egs. (3.32). Indeed, when plugging the parametrization
(3.36) into (3.32), one finds

P2 3
O=——cl",¥—A—
00 =g~ el ¥ =l
0¥ =T, ¥ — 1@2. (3.39)

In turn, these relations can be used to show that

. 0]
hmﬁ—>06rr¢r¢|kzc = _ar (a) = Crtrr + F¢r¢ (Frrr - F¢r¢)'
(3.40)

That is to say: We correctly recover Eq. (3.29) of solution
set 1. Thus, we have succeeded in showing that solution set

; t —
hm&—»OF tr|k:c -

hmﬂ—»OFrtr|k:c =

E. Solution set 1 as the double scaling limit
of solution set 2

Solution sets 1 and 2 have certain similarities, even
though solution set 2 has more free functions. We will now
show that solution set 1 can indeed be obtained from
solution set 2 by a double scaling limit.

The key component to consider is F‘f’,¢ of solution
set 2, which can be expressed in terms of Iy, and I (see
Table II). For solution set 1, F¢,¢, is an arbitrary free
function of r. These facts suggest the following para-
metrization of Ty, and I ,:

I A
thg = —E + Eq) and Frge = /ll“P,

(3.36)
where we have to assume ¢ # 0, 4 is a parameter, and ® and
Y are arbitrary functions of r. With this parametrization one

obtains in the 4 — 0 limit and under the assumption that
k=c,

)
liml?,, = —— .
1 rep ‘-P

lim (3.37)

In words: The component I'? r¢ Of solution set 2 is mapped
to an arbitrary function of 7, just as required by solution set
1. The parametrization (3.36) also ensures that the other
nontrivial components of solution set 2 are correctly
mapped to their counterparts in solution set 1,

sinZ@

c

_@ liml_,()r‘t(/)(/)|k:c ="

=)

limﬂ_,ol_‘r(/,,/)|k:c =0

(3.38)

|
1 can be obtained from solution set 2 via a double scaling
limit. We can therefore regard solution set 2 as the most
general parametrization of a connection which is stationary,
spherically symmetric, torsionless, and flat.

There is also another point of view one can take, which
regards the choice of free connection variables. The main
difference between solution sets 1 and 2 is the para-
metrization; solution set 1 is given by the free function
I'?,,, while in solution set 2 "y is free and I'? ; is fixed. In
order to see in a different way that solution set 1 can be
obtained from 2, we switch the parametrization in set 2, i.e.,
we now leave F‘/’,,/, free and set

1477,
—

thg - - (341)

With this, one obtains the remaining components of the
connection in solution set 2 as
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2c—k

Iy =c+(2c— k)rr66F¢r¢7 I, =
Fr,r =k—c— (ZC - k)rrgg

1+T?,,0

(1 +T76gT? )7 15

F¢,¢Fr¢¢ = Sinzgrrgg

I =—c(2c = k)Mgy
Fang = F¢,¢ =
1+T?,,I7 g

,y=T%, Tlp=- . I',, = —sin’0 .
1%, =—cosfsind  TI?y, = cotb. (3.42)
The flatness conditions in this parametrization becomes (3.29) and
k
0,99 = =14 (1 +T"gol'?,4) (2 - (2 - E) (1+ Fr90F¢,¢)> =17 1 gy (3.43)

Now in this parametrization of solution set 2 we first
observe that naively we would now want to set ¢ # 0; but of
course this limit can be taken without a problem, as the
parametrization from above shows. This demonstrates that
one has to choose the correct parametrizations for certain
limits. We also see in this parametrization that we can now
safely set ["y99 =0 and k = ¢ to obtain solution set 1,
where we must now, affer taking these limits, demand
¢ # 0. Note that if one puts Iy = 0 one has to put k = ¢
as well to have still zero curvature. This shows that solution
set 1 is contained in set 2, modulo the parametrization.

F. Diagonalizing the metric, canonical S* part, and
transformation behavior of the solution sets

Let us recall that our goal is to study the field equations
of f(Q) gravity for a stationary and spherically symmetric
affine geometry (M,g,,,I'*,). To that end, we have
performed a symmetry reduction of the connection in
Sec. Il A and we have implemented the postulates of
symmetric teleparallelism in the Secs. III A and III B. This
led us to the two solution sets studied in the Secs. III C and
HID. These two sets arose from demanding that the
Riemann tensor of the affine connection vanishes, and
both sets represent a stationary, spherically symmetric,
torsionless, and flat connection. Moreover, we have seen in
Sec. IIT E that solution set 1 is the double scaling limit
of solution set 2, and this set cannot be further simp-
lified using symmetries or the postulates of symmetric
teleparallelism.

However, what we can try to further simplify is the
metric. At the beginning of Sec. III, we have stated that the
most general metric which is spherically symmetric and
stationary takes the form (3.3). This metric can be brought
into a simpler form via the application of a diffeomorphism
which eliminates the off diagonal component g, and which
brings the S? part of the metric into canonical form (i.e., it
maps gy to r?). Of course, if we apply this diffeomorphism
to the metric, we also need to apply it to the connection.
What we will show now, is that the metric can always
be brought into the described form and that the

I
diffeomorphism which allows us to do so maps the solution
sets of the connection onto themselves. In other words: The
diffeomorphism which simplifies the metric preserves the
structure of the solution sets.

To begin with, we notice that the symmetry reduced
metric (3.3) describes a warped geometry. This means the
following: Let (BB, h) and (F, o) be (pseudo-) Riemannian
manifolds, where B is called the base space and F the fiber.
Furthermore, let f: B3 — R be a strictly positive function
on the base space, called the warping factor. A warped
geometry is then the manifold M := B x; F which is the
topological space B x F endowed with the metric tensor
g:=h @ fo. Concretely, this means that the metric on the
total space M can be written as a metric tensor on B plus
a metric tensor on J times a positive function which
depends on the coordinates of B. In our case, we have
B=RxR., F=38?%and f(t,r) = gg(r). Notice that it
follows from the fact that the signature of (3.3) is
(= +,+,+) that gy is a strictly positive function of r.
We can therefore write the metric (3.3) equivalently as the
warped metric,

g = hydf* + 2h,dtdr + h,,dr? + f(r)dQ?, (3.44)
where dQ? := d6? + sin? Od¢ is the canonical metric on
the unit 2-sphere S%. Given the fact that f is a strictly
positive function, we can write it in the suggestive form
f(r) = p(r)*. This is merely a notational convention, and
we have not yet changed anything. But now we choose p as
a new coordinate, and we perform the change of coor-
dinates on the base space B from (7, r) to (¢,p). This is a
rather trivial manipulation and the metric tensor in the new
coordinate system reads

g = W, df? + 20, didp + K, dp* + p2dQ2,  (3.45)

where the transformed metric components are given by

or or\?2
h;t = httv h;/) = <a_p) htr’ h;)/, - <a_p> hrr' (346)
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Hence, we can always bring the S? part of the metric into

i I — 1 99w ioh i
canonical form as long as 3- =3 T Or # 0, which is

tantamount to demanding that gy is a monotonous function
of r. Let us denote the diffeomorphism which brings the
metric into the form (3.45) by ¢,:8 — B and let us now
ask if there exists a second diffeomorphism ¢,:8 — B
which eliminates the off diagonal term hé/,. To that end, we
assume that ¢», only acts on ¢ in the sense that it generates
the new coordinate system (z,p) from (¢,p). Under this
assumption, the 1-form dr transforms as

ot ot
dr = (E) dr + <8_p> dp.

Moreover, we demand that the B-part of the metric tensor in
the new coordinates takes the form,

(3.47)

gdg=nh < h,.de® + fzppd/)z, (3.48)
for some (not further specified) functions %,, and fzpp.
By inserting (3.47) into (3.48) we obtain the following
conditions:

(3.49)

These are three equations for the three unknown functions
o(t,p), h,,, and ﬁpp. Hence, the problem is in principle
solvable, provided one specifies initial conditions for
7(t,p). We can therefore eliminate the off diagonal term
h;,,. All in all, we have defined two diffeomorphisms on
the base space B which diagonalize the metric and bring
the S? part into canonical form. We can also combine
these two diffeomorphisms into ¢,o¢,:58 — B, with
(2091)(2.7) = (7. p).

In the sequel, we will drop all primes and tildes
and denote the metric components again by g,,, rather
than £,,. Also, we change notation and write (z,7)
for (z,p) (this is for simplicity and should not cause any
confusion). After applying ¢,o¢;, the metric can then be
written as

g+ 0 0 0
0 g, O 0

G = 0 0 2 0 (350)
0 0 0 rsin’6

This is the form of the metric which we shall use from now
on and which will greatly simplify the field equations to
be studied in Sec. IV. However, we also need to determine

how the connection transforms under ¢,o¢. In general, a
connection transforms as

N ox* 9*x*
Pe " Oxt OxHOXY

fo _ Ox% OxP Ox° 5

= 0 o ox (3:51)

under coordinate transformations and this could potentially
spoil the structure of the solution sets. However, notice that
¢r0¢p; only acts on the base space B3 and that it leaves the
fiber F = &? invariant. Intuitively, we would therefore
expect that our diffeomorphism is compatible with spheri-
cal symmetry. Indeed, it is obvious that the metrics (3.3)
and (3.50) possess the same Killing vectors and hence share
the same isometry group. This confirms that the diffeo-
morphism ¢,o¢; respects spherical symmetry. Moreover, a
diffeomorphism can neither produce curvature nor torsion.
But if l:“,w, i.e., the transformed connection, is invariant
under the isometries generated by the Killing vector fields
and if it is torsionless and flat, it gives rise to the same two
solution sets we have discussed in previous subsections.
Hence, we see that the diffeomorphism ¢,o¢; maps the
solution sets onto themselves. This can also be confirmed
by a direct computation, see Appendix A.

The importance of this result is that it allows us to use the
simpler form of the metric, given by Eq. (3.50), together
with solution sets 1 and 2 for the connection. The metric in
the form (3.50) together with solution sets 1 and 2 for the
connection constitute the simplest and yet most general
metric-affine geometries which are stationary, spherically
symmetric, torsionless, and flat.

IV. SYMMETRY REDUCED FIELD EQUATIONS
FOR THE METRIC AND THE CONNECTION

In Sec. III we have performed a detailed symmetry
reduction of the metric-affine geometry (M, g,,.T'*,, ), and
we have found that the simplest—and yet most general
form—of a metric-affine geometry which is stationary,
spherically symmetric, torsionless, and flat is given by the
metric (3.50) and the connection has to be chosen such that
it belongs either to solution set 1 (see Table I) or to solution
set 2 (see Table II).

We now use the metric-affine geometries described
above to perform a symmetry reduction of the metric
and connection field equations (2.8). We first discuss the
symmetry reduced field equations for solution set 2, since,
as we have seen in Sec. III E, solution set 1 can be obtained
from solution set 2 by means of a double scaling limit.
Hence, once we understand the field equations for solution
set 2, we can immediately derive consequences for the field
equations of solution set 1.

However, before studying the symmetry reduction in
detail, we have a brief look at the structure of the field
equations. For both solution sets, the field equations have
the following form:
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TABLE I. A concise summary of all the properties which define solution set 1.

Independent All connection components of solution set 1 can be expressed in terms of the three
components independent functions I, (r),I'",,(r),I'?,,(r), the real constant ¢ # 0, and trigonometric functions.
Nonzero There are twelve nonzero components in solution set 1 (all other components vanish),
components r,, rr,, e,
Iy =c I, = F¢r(/) [Mgp = _%
[y = — S0 y=c My =T%,
1%, =—cosfsin@ I, =c I, = cotd
Derivatives of Of the three independent functions, the r-derivative of F"",¢ can be expressed
independent as 0,1, = cI', + 17 ,(I",, —=T?,,), while 8,I",, and 9,I",, cannot be expressed in terms
components of other components.

M, M, 0 0
. . M tr M rr 0 0
Structure of metric field equations:
0 0 My 0
0 0 0 Mgysin?6
G
. , C,
Structure of connection field equations: 0 (4.1)

0

This is true for the vacuum case as well as in the presence of spherically symmetric matter distributions. What we observe is
that there are at most four independent metric field equations and at most two independent connection field equations.
Moreover, it turns out that we can learn a lot just by looking at the off diagonal equation M,,. In the following subsection
we will study M,, for solution set 2, and we will be able to derive necessary conditions for the existence of solutions which
go beyond Schwarzschild-de Sitter-Nordstrom. We also note here for completeness the forms of the scalar Q. For solution
set 1 we find

_ gtt(zgrr(?’r(crrtrr + 1—Yﬁr(/)(rl—‘rrr - rF¢n/) + 2)) - 2.grr - 2) - 3r2r¢r¢ar9rr) + rgrrargtt(3rr¢r¢ - 4)

Q
2r? (grr)zgtt

, (4.2)

TABLE II. A concise summary of all the properties which define solution set 2.

Independent  All connection components of solution set 2 can be expressed in terms of two
components  arbitrary constants, ¢, k € R, the four functions I',.(r), T go(r), T",.(r), T ge(r),
with I ge(r) # 0, and in terms of trigonometric functions.

Nonzero There are 16 nonzero components in solution set 2 (all other components vanish):
components  The four independent functions I'",,, TV yg, T",,, [ and
I, =—=c+k—cec—kIMy r, = (Zc—k)r’reg;;ﬂr’w) [ yy = sin? 6T g
Iy =—c(2c=k)Myy I, =c+c2c—k)Iy 74y = sin® 0" gy
M,y=c e, = —% 1%, =—cosfsind
I, =c r,, = _% Iy, = cotd

Derivatives of Of the four independent functions, the r-derivatives of Iy and Iy, can be expressed as
independent g 17y, = —FZZ [1+T"99(3c =k + (2c = k)T gp)] =T, T"g9 0,17 g9 = =1 = cT"9(2 + (2¢ = k)" gg) = T, T" g,
components — ypije 0,I",. and 0,I"",, cannot be expressed in terms of other components.
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while for solution set 2 we get
1
Zrzgrrzgttzrr%’z

+ Fr@()(rrrrr -

Q:

(grr2Fr902(Crzrré'ﬁargtl(k - 20) - 2”9::(2C - k)(crl“’eg(ZcF’% — kI gg + 2)

2) 4+ 1) + 49,2 (T gp(2cT gg — kT g9 + 2) + T 0T ,) — 29,17 660,911)

+ grrgtt(2gtt(rr962(rzrtrr(zcrte(i(k - 20) + k) - 2)+
+ T ge(cT g + 1) (1T, + 2)(2cT g — kI gg — 2) = (T gg* (k — 2¢)* 4 2) (crT gg + 1)
—T709°0,9,) + 1T (1T 99> 0,9, (2¢ — k) — 0,91 (r(T (T g (k — 2¢) + k) 4 2) 4 417 gp)))

+ 29T 90,9, (T gg + 1) (T gg(k — 2¢) + 2)).

A. Off diagonal metric field equation for solution set 2

For solution set 2, the off diagonal metric field equation
takes the form,

1
M, =

=5 (k= 2¢(2c = K)"49)0,Qf"(@) = 0,

(4.4)

which is valid in the vacuum as well as in the electro-
vacuum case. This equation can be solved in three distinct
ways which we will discuss in turn. The three different
possible solutions are

(1 0,Q=0;

@) f"(@) =0

(3) 3(k—=2c(2c —k)I"gp) = 0.
The first option is tantamount to saying that the non-
metricity scalar, when evaluated on a solution of the field
equations, is constant. But this cannot yield a solution to the
field equations which goes beyond Schwarzschild-de
Sitter-Nordstrom. This can be readily seen from the
alternative form (2.10) of the metric field equations. Let
us rewrite these equations here for convenience,

F( @G+ 39 F(@) 1 (@)Q)+ 27 ()P0, Q=T,.

(4.5)

If we assume that a solution to the connection and metric
field equations exists such that Qg = const—we will see
in Sec. V that such solutions indeed exist, but one can also
use that Q is linear in I"”,,, hence one can solve the
equations Q = Qgq for I'”,, for any Qg, € R to obtain
such solutions by a choice of the connection—then the last
term on the left-hand side of (4.5) vanishes, and we are left
with

G/,w + Aeffg/w = Tﬂl/’ (46)
where, as we recall, G, is the standard Einstein tensor with

respect to the Levi-Civita connection and where we have
defined

(4.3)
|
Ass 1= lf(Qsol) - f/(@sol)@sol
o 2 f/(Qsol)
- 1
Tﬂ” = m T;w' (47)

The first term, Agg, 1S clearly constant and simply repre-
sents an effective cosmological constant, while T/w isjusta
rescaled energy-momentum tensor. Notice that dividing by
f" is allowed since we need to assume f’ # 0 in order to
obtain nontrivial and self-consistent field equations. We
therefore reach the conclusion that assuming Qg, = const
can only produce the Schwarzschild-deSitter-Nordstrom
solution for arbitrary f.

Let us now consider the second option, namely that the
off diagonal field equation M,, is solved by f”(Q) = 0. It
is important to notice that this equation has to hold on a
solution of all field equations; i.e., we should write
f"(Qso) =0. We can now easily show that when
f"(Qso)) = 0 and Qgq # const., then it follows that f is
necessarily of the form f(Q) = aQ + b, where a and b are
real constants and this form of f holds everywhere, not just
on solutions. To see this, let us first assume that f(Q) does
not have the above form. Then it follows that /”(Qgy) = 0
is an equation which will be satisfied for at least one
Qg0 [at least one solution needs to exist, otherwise
/" (Qse) # 0, but the solution needs not be unique]. But
if we fix Qg via this equation, we find that Qg is a
constant. Hence, we fall back into the GR regime for
arbitrary f, which we have already discussed above. If, on
the other hand side, we have f(Q)=aQ + b, then
" (Qg1) = 01s trivially satisfied and Qg is not a constant.
This is what we wanted to prove.

We reach the conclusion that solving M,. =0 via
f"(Q) =0 automatically leads us into the symmetric
teleparallelism sector of f(Q) gravity. In particular, this
means that we can only get the Schwarzschild-de Sitter-
Nordstrom solution and nothing else. There is only one
little caveat, which also applies to solving M, via
0,Q = 0: We have only used the metric field equations
but completely neglected the connection field equations.
However, it is easy to see that these equations will not give
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rise to any constraints or inconsistencies which would alter
the conclusions we have reached thus far. In fact, the
connection field equations can be written in the schematic
form

C,=A(0,Q)f"(Q)+B(0;Q)f"(Q) +C(9,0)*fV (@) =0
C,=D(0,Q)f"(Q)+E(8;Q)f"(Q)+F(9,Q) /(@) =0,
(4.8)

where A, B, C, D, E, and F are complicated functions of the
metric components, their derivatives, and connection com-
ponents. What matters is that the connection equations can
be written as polynomials in 0,Q, f”(Q), and their higher
order derivatives, as indicated by Eq. (4.8). This makes it
obvious that the solutions 9,Q = 0 or f”(Q) = 0 to M,,
automatically also satisfy the connection field equations.
Hence, no further constraints appear and the equations
are self-consistent. We can therefore confirm that solving
M, =0 via 9,0=0 or f’(Q)=0 only gives the
Schwarzschild-deSitter-Nordstrom solution (for arbitrary
£ in the case of 9,Q = const, while f”(Q) simply reduces
f(Q) to standard symmetric teleparallelism, as one would
expect).

What remains to be examined is the third option.
Namely, that M, = 0 is solved by

k—2c(2¢ —k)IMgg = 0. (4.9)

This is a constraint equation for the connection, and we
will see shortly that it does indeed eliminate 1 of 2 potential
degrees of freedom of the connection. To that end, we solve
(4.9) for Ty, which gives us

k

g =———
% 2c(2¢ — k)

forc#0 and k#2c. (4.10)

Notice that since ¢ and k are constants, Iy, is now
constrained to be a constant. In particular, this means that
its derivative vanishes. But its derivative can also be written
in terms of other connection components (cf. last row of
Table II). We therefore obtain the condition,

k(8¢c? + 2ck — k?
0=- ( 2C e 2 ) - l"trrl"r99 < l—‘trr
8¢ (26' - k) Frgg

2 _2
:_k(Sc +2ck k). @11)
8c?(2¢ = k)*(I"gp)?

This expression for I',, is well defined since solution set 2
requires ["y, # O for its very definition, and we already had
to assume ¢ # 0 and k # 2c¢ in order to obtain (4.10).
Hence, what we find is that we can fix two of the four free
functions of solution set 2 in terms of other connection
components. More importantly, the constraint equa-
tion (4.9) allowed us to fix the component I'?,., whose

derivative was up to now not known. This means that up to
now, I'',. was a potential degree of freedom since its
derivative could in principle be determined by one of the
field equations. But since T”,, is now given by (4.11),
whose derivatives can all be determined without using the
field equations, it cannot become dynamical, and it is
therefore not a physical degree of freedom. Hence, the
constraint equation (4.9) has effectively removed a poten-
tial degree of freedom. The only connection component
which can now become dynamical is ['",,—or alternatively
I"gp—because its derivative is undetermined and can
therefore not be eliminated from the field equations.

There is just a little caveat: Our considerations only hold
as long as ¢ # 0 and k # 2c. To remedy this shortcoming,
i.e., to see what happens for ¢ =0, we can solve the
constraint equation (4.9) for &,

4C2F199

k =
1 + ZCF’99

for 1 + 2CFt99 ?é 0. (412)

Just as before, we can compute the derivative of (4.12) and
express the derivative of Iy, in terms of other connection
components, using the relation shown in Table II. This
gives us again an equation which we can solve for a
connection component, and we obtain

gy +5¢(Igp)* + 4c*(Igp)

I, =
" (1 +2cTgg) (T gg)? '

(4.13)

which is again well-defined under the assumptions for
which (4.12) is valid. The Egs. (4.12) and (4.13) have the
advantage that they hold for ¢ = 0 and for k = 2¢. Both
options imply

Fté’t‘)
(T g)°

Hence, it is true in full generality1 that the constraint
equation (4.9) removes 1 degree of freedom, and only I'”,,
is left as a candidate for a propagating degree of freedom
stemming from the connection.

Before concluding this subsection, we remark that the
connection field equations can be simplified by using
the constraint equation (4.9). In fact, one can show that
the equation C, can be written as

c=k=0 and T',=-

(4.14)

C, = A(k - 2C(2C - k)rtgg) - B(2C(2C — k)arrtgg) = 0,
(4.15)

'Notice that (4.12) demands 1 + 2¢I™ o0 7 0, and it seems that
we have to treat this case separately. But this is not true: If
Mgy = —zic, then the constraint equation (4.9) reduces to ¢ = 0,
which leads to an inconsistency. Hence, 1 + 2¢I"yy = 0 is not
admissible, and we have therefore already found the most general
solution to the constraint equation.
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where A and B are functions of metric components and
their derivatives. The coefficient of A is simply the
constraint equation (4.9), while the coefficient of B is
the derivative of the constraint equation. This means that
once we have chosen a connection which satisfies the

New structure of metric field equations:

New structure of connection field equations:

This means there are at most three independent metric field
equations and one connection field equation for the
dynamical variables {g,, ¢, 1", }. Alternatively, one
can trade I'",, for ['"yy and regard the latter as the dynamical
degree of freedom stemming from the connection.

The next natural step is to check the internal consistency
of these equations. This is necessary since the number of
field equations is larger than the number of dynamical
variables and it is therefore not clear whether these
equations can be solved consistently. In Sec. IVC we
show the self-consistency of the field equations, and we
will see on an abstract level that they produce solutions
which go beyond Schwarzschild-deSitter-Nordstrom.

However, before doing so, in Sec. IVB we briefly
discuss the implications of M, = 0 for solution set 1.
In particular, we show that solution set 1 is not viable when
looking for solutions to f(Q) gravity which go beyond GR.

B. Off diagonal metric field equation
for solution set 1

In the previous subsection we have found that the
off diagonal metric field equation can be solved in
three distinct ways. The different options which solve
M,, = 0 can be summarized as follows:

(1) 0,Qgy = 0: If M,, = 01is solved by 0,Qg, = 0, or,
in other words, if Q is constant when evaluated on a
solution of the field equations—again one can see
from the form of @ that this can be achieved by
solving Q = Qg for I'",,—then it follows that one
can only find the Schwarzschild-de Sitter-Nordstrom
solution for arbitrary f (as long as f satisfies ' # 0,
which is required in order to obtain nontrivial field
equations).

(2) f"(Qgo) = 0: If the second derivative of f is zero
when evaluated on a solution of the field equations,
and assuming that 0,Qg # 0, then it follows that f

constraint equation (4.9), the connection field equation C, is
automatically satisfied. The equation C, is not trivially
satisfied and it contains derivatives of I'"",,. We therefore
find that after imposing (4.9), the field equations have the
following structure:

.0 0 0
M, 0 0
0 My, 0

0 0 Mypsin’@

(4.16)

is an affine function; f(Q) = aQ + b. This means we
are in the GR sector of f(Q) gravity, and it naturally
follows that the only solution is Schwarzschild-de
Sitter-Nordstrom.

(3) Constraint (4.9): The constraint equation eliminates
two of the four free functions of solution set 2, and
we are left with 1 potential degree of freedom
stemming from the connection; I'",,. This is the
only option which allows us to get solutions to f(Q)
gravity which go beyond GR. But from Sec. III E we
know how to obtain solution set 1 from set 2, in
particular we have to set Iy = —1/c and k = ¢
with now ¢ # 0. (4.9) then becomes the Eq. 3¢ = 0,
which cannot be fulfilled. This is thus not an option.

Only the first two options are viable. Hence, solution set 1
can only give rise to the Schwarzschild-de Sitter-Nordstrom
solution.

C. Self-consistency of the remaining field equations
for solution set 2

In Sec. IVA we have seen that the constraint equa-
tion (4.9) is the only possibility to solve M, = 0 which
does not immediately force the Schwarzschild-de Sitter-
Nordstrom solution on us. In particular, we have seen that
there are two options to solve the constraint (4.9). Both
options and the assumptions which go into them are
summarized in Table III for convenience.

What we need to do now is to show that the remaining
field equations are self-consistent and that they can indeed
produce solutions which go beyond GR. The consistency of
the equations is not immediately obvious since we have
potentially four independent equations for the 3 degrees of
freedom {g,, g,,,I",,}. Moreover, we wish to rewrite the
equations in the simplest possible form so that they can, at
least in principle, be integrated. This needs to be done for
each option in Table III individually, but the strategy to get
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TABLE IIl. A summary of the different choices of connection
which satisfy the constraint equation (4.9).

The most general solution to Eq. (4.9)

metric. Solve these equations for 0,g, and 0,g,,.
This will produce expressions of the form,

arglt - functi0n1 (gft’ grr’ Q’ arQ’ CC)

I, = k
Option 1 AR e fore#0and k#2c 8,9, = functiony (g, grs @, 9,Q, CC),  (4.17)
T RA 2=k ([ )
c=k=0 where CC stands for “Connection Components.”
Option 2 | —— (5) The metric field equation My, contains first order
o) derivatives of the metric and the second order
derivative 9%g,,. Use (4.17) to eliminate the first
to the final results is always the same. This method works in order derivatives anq then solve Myj for 07g,,. This
: . . leads to an expression of the form,
particular when including the electrovacuum.

(1) Choose one of the options from Table III and 5 )
simplify all equations and the nonmetricity scalar 079 = functions (g, g, @, 0,Q, CC).  (4.18)
Q using the chosen relations.

(2) Solve the Q scalar for I'",,. (This is the only weak (6) Since we solved Q for I'",, and used the resulting
point of the strategy as there are scenarios in which expression to simplify all field equations, the con-
this step fails. We discuss the ramifications of this nection equation C, is a second order differential
failure in the next subsection.) equation for Q. Moreover, it contains first order

(3) Replace every I, in the metric and connection field derivatives of the metric. Use (4.17) to get rid of the
equations by the expression obtained in 2. In other first order derivatives of the metric and solve the
words: We trade I'”,, in each equation for Q and we connection equation for 92Q.
treat @ as a degree of freedom. This step will (7) We can derive a consistency condition for the field

produce much more compact expressions.
(4) For each option, the metric field equations M,, and
M,, only contain first order derivatives of the

equations by looking at the Eqgs. (4.17) and (4.18). In
fact, the r-derivative of ,g,, should be equal to d2g,,
and this leads to the consistency condition,

®)

9, function, (g, g,, Q, 9,Q, CC) < functions(g,,, g,, Q, 0,Q, CC). (4.19)

Notice that function; and function; depend on the same arguments, but the derivative operator on the left hand side
generates an expression of the form,

9, function; = functiony(g,,, g, Q, 9,Q, CC, 8,.9,, 0,9,, 9>Q, ,CC). (4.20)

The first order derivatives of the metric can be eliminated using (4.17) and the derivatives of the connection
components are all known: A quick look at Table II reveals that we know how to express all derivatives of connection
components, except J,I",, and 0,I",.,.. But the options described in Table III all allow us to express I',., in terms of
other connection components, and hence we also know how to express its derivative. Moreover, I'",, has been traded
for @ in all equations, hence there are no derivatives of I'",, which we need to worry about and the consistency
condition (4.19) becomes

function, (g;;. g,,. @, 9,0, 9Q, CC) = functions (g, g,,. @, ,Q, CC). (4.21)

Observe that the left-hand side of the consistency condition (4.21) depends on 9>Q, while this term does not appear
on the right-hand side. At this point, we need to use the connection field equation, which we solved for 92Q in step 6.
Once we eliminate 9>Q by the expression found in 6., we find that the consistency condition (4.21) is satisfied for
both options given in Table III.

This strategy uses all field equations, and it makes extensive use of the properties of solution set 2. What it shows is that
the field equations are self-consistent and that there are only three independent field equations, not four. The relevant
field equations are M,,, M,, and C,, while My, is trivially satisfied—as in GR—when the other three equations are
satisfied. Moreover, these equations determine the dynamical variables {g,, g,..I",.}, or, alternatively, {g,, g,,, Q} or

“Strictly speaking, the functions 1 and 2 also depend on the matter fields as well as f and its first two derivatives. However, we will
suppress these dependencies for all appearing functions here and in the sequel for the sake of readability.
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{91, 9T 90}, as we will see shortly. What remains to be done is to write out explicitly the equations for 0,g,, 0,¢,, and
02Q derived from M,,, M,, and C, for both options in Table III. For option 1 we find

72
9u(2 + 9,,(@r° —2 - J55)

0 9n = — 2 /19
(U2 — AT g, (20, — (2 = K)2)
c(2¢ 00 o 1
- @ (0,9)1"(@)
grr(z + grr(@rz -2- f(%)lgz))
argrr =
2r
A i TR—
00 Y 8 /A 422
+ G 0.0 (@) (422
82Q — (ar@)
r 2(4¢(2¢ - k)l"’gegr,(crz(Zc — k) =2g,) + r*(k—4c)?g,)?
(1128620 - 20 (@7 =D a2 ) 20
+ 16C3r(2c - k)BFrgag%r«Qrz - 2)grr + 6)(C}’2(2C - k) - tht)
+ 8er(2e = K)(k = 46T Bygugin(cr2(2c = K)((QF% = 2)g,, — 6)
+ gtt((6 - 3@;»2)9" + 6)) + }"3 (k - 4C)4gt2t((Qr2 - 2)grr - 2)}
f(Q)
— g, ((4c = k)%g,, — 4c*(2c — k) (T o) *g,, .
+ 2(2(4C - k)zrr%’gttgrrr + (4C - k)zgttrz + 4C(2C - k) (Free)zgrr(zgtt - C(ZC - k)r2)> ];p/((g)) (8,@)
2.2 2 2 f (@)

—2((4c = k)*gur® — 4c(2c = k)(I"90)" 91+ (291 — ¢(2¢ — k)r7)) Q) (0,Q) ). (4.23)

least in principle) in terms of the dynamical variables
{94» 9,r» Q} and in terms of an integration constant. Hence,

Observe that the only connection coefficients which
appear in these equations are ¢, k, and I'” g9. The constants ¢

and k are freely specifiable, but the function I'"y is fixed,
up to an integration constant, by the differential equation,

1k 3

0,199 = 3 + dc 2e—k I, g (4.24)
This differential equation follows from the last row of
Table II when specialized to option 1 of Table III. Also,
recall that we traded I'”,, for Q). Hence, if we replace I'",, by
its expression in terms of Q we obtain a highly nonlinear
differential equation, which nonetheless determines Iy, (at
|

Q)2
gtt(2 + grr(@’”2 -2 i) ))

for the field equations (4.22) to produce a solution it is
necessary to choose three constants, c, k, and the integration
constant in (4.24), as well as initial conditions for the
dynamical degrees of freedom. Since the metric field
equations are first order, we need a total of two initial
conditions for the metric, and we need two initial conditions
for Q, given that its differential equation is second order.

The field equations derived from option 2 have a simpler
and more compact form, and they require less specifica-
tions in order to be solved,

(0,Q)1"(Q) (4.25)

S 2 _ | )2)
o _ _ 7(Q) g,,(r grr( 00 ) "
rYu 2 Fr@g”f’(@) ( r@)f (Q)
0 — 9rr(2 + g,,(@r2 -2- f;%’) ) + grr((rreﬁ)zgrr + 2T gg + r2)
o 2r [Maprf'(Q)
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(0,Q)
[(Frea)zgrr - ”2]

_2((Fr90)2grr + zrreﬂgrrr =+ r2)

2 _
Q=

(21‘ + grr(4rr949<1 + Frrrrrat‘)) + 2r— QrB) + grrr3

Q)
f(@)

6,0) - ((rwgr, e

f(Q)
f(@)

@)
f'//(@) (ar@)) *

(4.26)

Since option 2 demands ¢ = k = 0, the only connection component which now appears in the field equations is I'",, which

is implicitly fixed by the differential equation,

arrré'é' =-1- Frrrrrﬂe'

(4.27)

This equation is again derived from the last row of Table II when specialized to option 2 of Table III. After replacing I'”,, by
its expression in terms of Q@ we find the highly nonlinear differential equation,

I 00(f(Q)g,, 7> (T gp + 1) 4+ (2r — g, (217 g9 + r)(Qr* — 1)) f/(Q))

arrrt%’ =

In principle, this equation determines "y in terms of
{9:» 9,r» Q} and an integration constant. The origin of the
integration constant can also be understood in a different
way: Instead of treating I'”,. or Q as a degree of freedom,
we can regard [, as the degree of freedom stemming from
the connection. By solving the above differential equation
for Q and plugging the result into the connection field
equation for option 2, we obtain a differential equation for
I"pp. This differential equation is now third order, and
hence we need to specify three initial conditions for I p,.

We therefore find that for option 2 we need to specify
initial conditions for {g,,g,.Q} (1+142) and an
integration constant for (4.28), or, alternatively, provide
initial conditions for {g,,, g, g9} (1 + 1 4 3). This latter
point of view with a third order differential equation for
I'"py will be particularly useful in Sec. V, where we derive
approximate and exact solutions for f(Q) gravity.

Before doing so, however, we show that there is also a
different strategy to tackle the symmetry reduced field
|

2(<Fr99)zgrr - rz)f,(Q)

. (4.28)

equations. More precisely, we show that the caveat alluded
to in step 2 of the above strategy opens up a rout to solve the
field equations in a different way. Namely, the connection
can be determined through a constraint equation, while the
metric remains dynamical. This will nevertheless lead to
solutions which go beyond GR.

D. Reduction of the field equations by a
constraint on the connection

In the previous subsection we saw that there are
two dynamical equations for the metric and one
dynamical equation for the connection. However, this
conclusion hinges crucially on the validity of step 2,
which requires us to solve Q for I”,. A closer
examination of the nonmetricity scalar Q reveals that
this is only possible if the coefficient in front of I'”,, is
different from zero. Concretely, one finds that Q takes
the schematic form,

c(Zc—k)g,, gzzrz

@:

2( L (F'%”>2) D 1 otherterms
00

Grr r

If we now impose the constraint that the factor in front of
I'",, vanishes, i.e., if we impose the condition that [y is of
the form’

‘4C—k‘\/ —9ul

foroption 1
[y = V/4e(2e=k)g,, (c(2c—k) P =2g,,) P . (4.30)
+ \/;_ foroption2

The signature of the metric demands that g,, < 0, and hence
/=9 1s real for option 1.

1 ( (4c=k)® 4" 9)*2gu—c(2c=k)r?)
4

) 17 + other terms  for option 1
(4.29)
for option 2.

[
then it is no longer possible to trade I',, for Q and the
strategy presented in the previous subsection does not work
anymore. However, this does not mean that the field
equations become inconsistent. In fact, if Iy has been
chosen to have one of the forms of (4.30), then it can be
shown that the connection field equation C, is trivially
satisfied. We are thus left with the metric field equations,
and they turn out to be self-consistent. The strategy to show
self-consistency is as follows, which again holds when
including the electrovacuum.
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(1) Choose either option 1 or option 2 from Table III and
fix "y by choosing the appropriate expression from
(4.30) for any choice of sign.

(2) Solve M,, and M,, for 0,¢,; and 0,g,,. This gives
rise to expressions of the form,

9.9, = function, (g, g,,, ¢, k)

8rgrr = fUnCti0n2 (gtt’ grr7 c, k’ ar@)’ (431)
where ¢ and k only appear for option 1 and where we
have suppressed the dependence of the two func-
tions on matter fields as well as the function f and its
derivatives. Observe that only 9,g,, depends on 9,Q.

(3) Take the expression for Q and simplify it using the
relations of option 1/option 2, the corresponding
form of I gy from (4.30) as well as the expressions
obtained in step 2. This leads to an expression of the
form,

Q = functions (g, gy, 0,9s1» ¢, k). (4.32)

(4) Observe that only 0.,g,, appears in function;. Hence,
if we replace 0,g,, by function; and then take the
r-derivative of Q, we obtain an equation which we
can solve for 0,Q. This leads to the schematic
expression,

0,Q = functiony (g, g, ¢, k), (4.33)
which in turn can be used to replace 0,Q in
function,. This gives us

9,9, = function, (g, g,,. ¢, k)

d.g,, = function, (g, g, ¢, k). (4.34)
(5) Plugging the above expressions for 0,g,, and 0,g,,
into the remaining metric field equation, M, does
not yield anything new. The equation My, is
trivially satisfied. With this, we have exhausted all
field equations, and we have shown their self-
consistency even in the case where the connection
component [y, is fixed by a constraint equations,
rather than by a dynamical field equation.
In summary, we find that we can fix the connection
component [ gy through one of the constraints in (4.30),
and we are then left with two dynamical equations for the
metric. To solve these equations, we need to specify initial
data for g, and g,, and, in the case of option 1, we also need
to specify ¢ and k.

Also, notice that if we choose to solve the field equations
using the constraints (4.30), we need less initial data than
when we let the connection be dynamical.

In the next section we will derive approximate and exact
solutions for both, a dynamically determined connection
and one fixed by the constraints. We will focus on option 2
because the equations are more compact and simpler4 due
to the absence of ¢ and k.

V. APPROXIMATE AND EXACT SOLUTIONS

Having shown that we have a self-consistent set of field
equations, it is now time to look for solutions. To that end it
is sensible to choose option 2 from Table III since the field
equations (4.25) have a simpler form than (4.22), and they
do not depend on an arbitrary choice of ¢ and k—they only
need the specification of initial conditions in order to
produce well-defined solutions. Moreover, we want to use
the spherical connection considered in [8,9] as a partial
guide line toward finding solutions beyond the GR sol-
utions. The idea is that the spherical connection of [8,9] is
already known to produce the GR solutions for arbitrary f
and a controlled deformation of that connection could
therefore lead to deformations of the GR solutions for a
given choice of f. We will explain how this can be achieved
in a perturbative fashion in the next subsection.

However, before doing so, we want to consider the exact
spherical connection used in [8,9] in order to explicitly
show that it can only produce GR solutions for arbitrary f
and because this provides a concrete example for the fact
that solutions with Qg, = const do exist.

As already noted in Sec. III D, the spherical connec-
tion is obtained by setting {c,k,I",, g, I, . 799} =
{0,0,0,0,0,—r}. The only nonzero connection coeffi-
cients are then explicitly given by

1
Frgg =-r Fr¢¢ = —rsin29 Fgrg = ;

) 1
I?%,,=—cosfsind F¢,¢=; [, =cotd. (5.1)

This means that the spherical connection falls into solution
set 2 and that it corresponds to option 2 in Table III. Hence,
we can simply insert this connection into the field equa-
tions (4.25), and we obtain

“We have not found any (approximate) solutions when
including ¢ or k, but it would be interesting to see what role
these constants play and how they affect solutions.
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gtt(z + grr(@r2 -2- ];S’Q@r)z)) f”(@)
argtt == 2 - ( grr)(a Q) f/(@)
rr 2+ rr @r2—2—f(~,@)r2 "
o —° (2 + gnr( - @) + g (1 g,,)(a,@)fd((g))
) 9:Qr =2) +g,(4+0r") =2 g, (@ /(@) ()
e =360 (g = 1P e R 00— g o). 62

If we multiply the first equation by ¢,, and the second one
by g,; and then add the two multiples together we obviously
obtain

grrargtt + gttargrr =0 9u9rr = const. (53)
This is already a first indication that we will obtain the GR
solution. If we now use the spherical connection to
compute the nonmetricity scalar Q@ we find

grr -
gttgrr

(5.4)

1
@ - (grrargtt + gttargrr)

Hence, if we evaluate Q) on a solution of the field equa-
tions, which imply that ¢,,.0,9;, + 9,,0,9,, = 0, we obtain
Qg0 = 0 from (5.4). In turn this implies that the connection
equation in (5.2) is trivially satisfied. Moreover, the metric
field equations in (5.2) reduce to

2
gu(1 = g,,(1 +400))
0 = — . Sl
r
[(0)r?
9rr l_grr I+ 5700
0,97, = 2L 90+ 3rer)) (5.5)

r

As anticipated, this shows explicitly that solutions with
Qs = const exist and that they can only produce the
Schwarzschild-de Sitter-Nordstrdm solution” for an arbi-
trary choice of f. Indeed, upon integrating the above
differential equations one finds

Ci1Cy (O f(o) C1C

_ o Neff 2
[ 2+—r +6f/<0) 2+—+

3

1

b
C2G1

9rr = (56)

where we have used that é ff,(( >>
cosmological constant, as we have explained in Sec. IVA.
This example will also be the point of departure to construct

approximate solutions to f(Q) gravity which go beyond

=: Agff acts as an effective

SOur considerations also hold for the electrovacuum, but we
stuck to the pure vacuum case for simplicity.

GR but which reduce to the GR solutions in an appropriate
limit. The key observation is that the metric field equations
for option 2 [cf. Eq. (4.25)] imply that

Mg+ 1 f"(Q)
(@)

- ar(gttgrr) _

91Grr FrHG

91091 + 9110,y
91utGrr

(0,Q).

(5.7)

This equation can easily be integrated, and one obtains

[Mog + 1 "(Q)
w=crexp |2 [ dr 0,Q) |, 5.8
mio=crew (2 [ B LB 00)). 69
where ¢, is an integration constant chosen® such that

9u9r < 0. This equation shows again that the spherical
connection, which imposes Iy = —r, reproduces the
GR relation g, ocgi. Unsurprisingly, it also shows that

0,Q = 0 or f”(Q) produce this relation. However, what is
more important to us is that this equation suggests that we
can consider a deformation of the spherical connection
where I"g9 = —r + y(r). This would lead to a deviation of
the typical g;, i behavior of GR (although we will not

actually see this in all of the approximate solution derived
in the following subsections because the difference
between g, and —1/g,, are sometimes hidden in higher
order perturbations). In the next subsection we will make
this idea more precise and show that it is possible to obtain

an approximate solution for the Ansatz f(Q) = Q + aQ?,
where a is assumed to be a small parameter.
We also report some results for f(Q) = Q + aQ* for

integer k > 2 in Appendix B, which generalize some of the
results derived below.

A. Approximate vacuum solution beyond
GR for f(Q)=Q+aQ?

Since we wish to consider the deformation Iy =
—r+y(r), it is convenient to solve the differential equa-
tion (4.28) for Q and plugging the resulting expression into
the differential equation for 92Q. This results in a third
order differential equation for y(r). Moreover, this equation
also contains terms proportional to f©)(Q). Given the

®1t follows from det g # 0 and the signature of the metric that
g, 18 strictly negative.
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complexity of this equation, it is sensible to first consider
the Ansatz f(Q) = Q+ aQ?, which gets rid of terms
proportional to f©)(Q). Furthermore, we consider the pure
vacuum case with vanishing cosmological constant.

In the sequel we wish to consider a as being a small
parameter, i.c., |@| < 1. We can therefore expect that this
Ansatz will lead to small deviations from the GR solutions,
and we choose the Ansitze,

0 1 2

9u = ggt) + aggt) + azg§t>
0 1 2

g = 9% + agh) + g7
[go = —r +ayV) + a?y®,

where gﬁ?) and g£9) are given by the Schwarzschild solution,

2M 1
W=—(1-22) and ¢ =-——.
r (0)
i

We include second order terms in a because, as we will see
shortly, in the zeroth and first order equations, the metric
and the connection equations decouple from each other.
Only at second order do we find coupled equations which
imply that the connection influences the metric and leads to
what we dub a “connection hair.”

The next step is to plug these Ansitze into the field
equations and to solve them order by order. At zeroth order
we find, unsurprisingly, that the metric as well as the
connection field equations are trivially satisfied. At first
order in a we find that the metric field equations reduce to

(5.9)

(5.10)

(1) _ 2Mrgy’ — (r—2M)%g))

while the connection equation is identically fulfilled.” As
anticipated, the metric field equations do not depend on the
connection and the connection field equations do not
depend on the metric. The above equations can easily be
integrated, and one finds

(1) _C2+C1(V—2M)

o
r

(1 Cor

g = 27 (5.12)
where c; are real integration constants. We set ¢; = 0 in
order to obtain an asymptotically flat solution in the sense
that lim,_, , g,, = —1 and lim,_,, g, = 1. At this point one
notices that the only effect of the perturbations is to
renormalize the mass, in the sense that we can write the
full metric at first order in a as

2M
g =—1+=""
’
1
G9r = ——» (513)
grr
where the renormalized mass is defined as
2M on = 2M + ac,. (5.14)

Since the integration constant ¢, cannot be accessed
independently, the only observable mass is Mg, not M,
and the solution (5.13) is, to first order in «, indistinguish-
able from the Schwarzschild solution.

0,9u" = (r—2M)72 We now move to the second order and we find that the
W metric equations now do depend on y(!). After inserting the
argglr) — M’ (5.11) solutions for gg,] >, and g(,lr) into the second order equations
(M = r)r we find that they can be written as
|
@)
o e gD (r = 2M) — SRl 162 (4p1) — 4r0, ) + P02 )
argtt = - 7'6
)  —e3r’ — g@(r +2M) P (r —=2M)3 — 16M?(r — 2M)?(4y"V) — 470,yD) + r292y1))
0,957 = 7} 7 , (5.15)
r*(r—2M)
while for the connection field equations at second order we find the nontrivial equation,
16y — 1670,y + 6202y — P33y(1) = 0. (5.16)
The connection field equation can indeed be integrated, and we find the solution,
yV = r(es + cer® + c773 In(r)). (5.17)

"Notice that at zeroth order in @ we have symmetric teleparallelism, where the connection and the metric or not only independent, but
the connection is completely arbitrary. That is why at zeroth order there is no equation for the connection, there is only an identity. At
first order we do get an equation for the connection, but this equation is identically satisfied for y(©) = —r. Only at second order can we

expect something interesting for the connection.
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After plugging the above solution for y(!) into the metric field equations, we are able to integrate them, and we find the

second order contributions to the metric,

(@) —C2¢1 4¢3 —2Mcy — 48M%cq — 16M*c; — 48M? ¢, In(r) + cqr

9u" =
-
@ r(c% + (c3 = 16M?*(3cg + ¢7))(r —2M) — 48M?c5 In(r) (r — 2M) (5.18)
g = (r—2M)3 ' '
|
Notice that c¢s5 does not appear in the metric. In order to ;e r*e—sz'j"’ (5.23)

maintain asymptotic flatness, i.e., lim,_ . g, = —1 and
lim,_ . g, = 1, we need to set ¢, = 0. In particular, we
obtain a new beyond GR logarithmic correction coming
from the connection ym—i.e., we obtain a ‘“connection
hair.” The full metric components can be written as

2M
== (12 1 (1)
r r r

Gy = ——. 5.19
9n ( )

The renormalized mass M, is now given by

2Mgn = 2M + ac, + a*(c3 — 16M?(3ce + ¢7)),  (5.20)

where the second equation holds up to order . The scale
r* can be introduced by a shift in the constant ¢ — ¢4 —
48M?c; In(r*), in order to have a dimensionless argument
in the logarithm. We have also defined a new scale,

W= 48M?c, (5.21)
which characterizes the strength of the beyond GR cor-
rection—a new “black hole charge” or “connection hair.”
Notice that we can think of the connection solution (5.17)
as being parametrized by c¢s, 4 and r*, while the solution
(5.19) is parametrized by Mep, p, and r*. The connection
hair, which manifests itself in (5.19), is thus parametrized
by p and r* only.

Notice that the logarithmic term can dominate over the 1r
term in the sense that its magnitude becomes larger than the
magnitude of the } term. When this happens, one would
expect clear deviations from the standard GR solution.
Interestingly, this can happen for small as well as for large
radii, without being in contradiction with asymptotic flat-
ness. In fact, one finds that for radii which satisty the
inequality,

2Mren
alul

|In(r/r*)| > (5.22)

the magnitude of the logarithmic term dominates over the
magnitude of the ! term. The radius at which one term starts
to dominate over the other is given by

which can be a large radius (for 4 < 0) or a small radius (for
u > 0). All of this does not violate lim,_, | In(r)/r = 0.
The form of g,, in (5.19) is also particularly useful when we
want to inquire the location of the Killing horizon. To that
end, we just need to determine where the norm of the time-
translation Killing vector field 7 := 9, vanishes. One
finds

Gt = gy 10> 2Men +Puln(r/r) —r 0. (5.24)

Whether solutions to this equation exist, and the precise
number of solutions, depends on the choice of parameters.
We have proven the following proposition (the proof can be
found in Appendix C):

Proposition. The zeros of the equation,

2M g + @*uln (r/r*) —r =0, (5.25)

define the Killing horizons of the second order solution

(5.19). The number and location of the Killing horizons

depends on the real parameters M, > 0, r* > 0, x, and

a # 0. The following statements can be made about the

Killing horizons:

(a) If u <0, there is precisely one Killing horizon which
is located at

r* 2Mren

Thorizon = az|/4|W<a2 |I-4| EW) > 0, (5.26)

where W is Lambert’s function. In the case where
1 = 0, this reduces to

(5.27)

Thorizon = 2Mren,

and in the case where the argument of the W-function
is large one obtains (up to second order in )

T'horizon = 2Men — azﬂ In(2M e/ 1) + O(a4)' (5.28)
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(b) If u > 0, then there are

. i L . —2Mren
2Kilinghorizons  if45-e <« < ¢!
a’p

. _2Myen
ifL-e @ =el.
ap

1 Killing horizon (5.29)

_ 2Myen

2u > el

no Killing horizons  if 5-e
a’p

In the case where there is only one Killing horizon, it is
located at

(5.30)

— 2
T'horizon = O"H.

When there are two Killing horizons we distinguish
between the inner horizon, which is located at

_ 2Myen

* _2Mren
Tinner = —a’ MW<_ 2 e ) rrie < >0,

(5.31)

and the outer horizon which is located at royter > Finner
and for which there is no closed exact expression. The
location of the outer horizon can only be determined to
be approximately,
Fouter ¥ 2M + acy + O(a?). (5.32)
The considerations of this subsection can also be
generalized to the case of an electrovacuum and to a
nonzero cosmological constant. This generalization will be

the subject of the next subsection.
|

Foo_INTM (6M47A9%) In(p-x;) Foo_INTM (6M+700%) In(p-x;)
y(l) = rc; 1+/ e 24uimt want B In(p)dp +rc4/ e 24t want T pidp,

where x; are the four solutions to the quartic equation,

30% — 6Mx; — Ax} = 0.

B. Approximate electro-vacuum solution beyond
GR for f(Q)=Q+aQ*-2A
To generalize the approximation scheme of the previous

subsection to the case of an electrovacuum, we need to
introduce the energy-momentum tensor,

2 2 2 2
Tﬂy:diag(A+%,A+Q—4,A—Q—4,A—Q—4>, (5.33)
r r r

where Q denotes the charge of the source. We choose again
the Ansatz,

0 1 2
9 = ggt) + aggt) + azggz)

g = 0 + aghy) + a?g'?

g = —r +ayV) + a?y?), (5.34)
but now with
2M  Q* A 0
ggt):—<1——+ 5 —r2> and ggr):—w
r r 3 Gy
(5.35)

Just as in the previous subsection, we can solve the field
equations order by order. We do not give all details here as
they are completely analogously solved as for the vacuum

case. Unfortunately, the solution for y<1) is rather implicit,

(5.36)

(5.37)

However, we can discuss the cases Q # 0, A = 0 and Q = 0, A # 0 separately. We begin by setting A = 0. Then the metric
components at second order in perturbation theory are given by

XM, 0> oM 2 2 (2M 2
gn — _1 + rren _ rrzen + azﬂ< rren _ rzen ln ﬁ ren _ r;n

Grr = —">
9u

where we have defined

_ 6C8
T M

r r r

(5.38)

2M gn = 2M + ac, + a*(cy — 2M(8cg — 4cq) — deg)

2 = Q2<1 — @ (8cg — dey) — da? B )

T (5.39)
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The c; are integration constants, where ¢, and ¢, comes from solving the M, equations for g, at first and second order in a,
respectively, and cg, ¢7, cg come from solving the connection equation C, at second order in a. The integration constants in
g, were set to zero in order to have again lim,_, , g,, = —1. The scale 7* can again be introduced via a redefinition of ¢4, and
it ensures proper units. Next, let us set Q = 0 but keep A different from zero. The solution for the metric is now given by

2M A
gtt — _1 _"_ ren
r 3

9rr = —"">

In

where we have defined

._ 4C8
= 18m
My = M+ a(cy + acy) + §4a2M(c6 —c7)
Aren A 120(2(06 B C7)
=0 2T G)) 5.41
K < T (5.41)

The integration constants and scale r* arise in a similar
fashion as for the charged case above. We note that
using the functional equation of the logarithm in the
limits Q - 0 and A — 0, respectively, we obtain the
vacuum solutions from the previous subsection by
absorbing the powers of r in the logarithm in the
prefactor u. Moreover, we see that the new correction
is simply the “background” GR potential times the
logarithm of the potential times or divided by r> for
the charge and cosmological constant cases, respec-
tively. One can draw similar conclusions for the Killing
horizons as in the previous subsection, but we will not
go into details here.

|

2M
_i_ﬂﬂ_i_azﬂ(i_i_
r

Aven > r? 2Myen  Avren
2ren 2 ) 1 [ — 2
I R A N

(5.40)

C. Approximate solutions beyond GR
from constraints on the connection

In Sec. IVD we have seen that the field equations can
also be solved by imposing one of the constraints (4.30) on
I y9. We choose again to work with option 2, and we select
the constraint,

r

N

We call these two cases (IT), and we first discuss (I7). As
explained in Sec. IV D, the constraint ensures that the
connection field equation is satisfied, and we are hence left
with the two metric field equations M,, and M,... In order
to find an approximate solution to these equations, we
choose again the Ansatz f(Q) = Q + aQ? together with

0 1
I = g§z> + aggt)

G = 0+ aghy . (5.43)

Frgg - Zl: (5 42)

where gg?) and 959) are given by the standard Schwarzschild
solution (5.10). First of all, we notice that the field equations
M, and M,, can be solved for 0,g,, and 0,g,, in full
generality,

_ 9:(f(@)g,,r* —4(1 + /5,,)f'(Q))

O.q., —
o 22+ /) (@)
P g = _grr(f(Q)grrrz - 4(f/<Q) + \/.%)(f%Q) + <2 + \/g—rr)rargf//(@)» (5 44)
A 22+ G,)rf' (@) ' |
Moreover, it can be shown that the nonmetricity scalar can be written as
o = 2+ V89 + VGrr) + r0,gu) (5.45)

2
gttgrrr

After inserting the first line of (5.44) into the above expression of @ and using the Ansatz f(Q) = Q + aQ?, we can get rid
of 9,Q in the second line of (5.44) and any @ which appears from using the Ansatz f(Q) = Q + aQ?>. Hence, we end up
with equations which only depend on the metric components and nothing else. After inserting the Ansatz (5.43) into these
equations, we can expand them order by order. At zeroth order, we find trivially satisfied equations, as had to be expected.
At first order, we find nontrivial equations which can be integrated,

2M 32 (r—2M) 1 2M
g = <1 —T>c2 +3M2( 3 ) +op <ln <1 ——) r*(r=3M)+MQ2M?* + 217 +Mr(12+clr))>

2 r

(1) r 1 2M\  50M 46 16Vr—2M(M —2r)(3M —r)
= _(e—=—m(1-2) 2242 i :
M r 3Mr2

r p (5.46)
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For the asymptotic limit we find

32
limg, = -1 +a(z—>5+c, ] and limg, =1, (5.47)
r—00 IM r—o0
which implies that we have to set ¢, = 3332 in order to obtain a standard asymptotically Minkowski solution. With this

choice of integration constant, we find that the first order corrections for large r can be written as

2M 32 1 2M 96
gp=-1+—"+a5-—=-1+"—"S+a—, (5.48)
r r gy r r
where we have introduced the renormalized mass,

32
2Mren = 2M a <3_M + C1> (549)

Hence, the first order beyond-GR corrections scale as 5. As we will see shortly, for the case (I7) we obtain a different
scaling of the first order corrections. We now deal w1th (I™) analogously to (I'). The field equations are now given by

gzr(f(®>r2.grr - 4f/(Q>(\/E - 1))

0,9, =
o 27 @) = 2)
o g, = — grr(4(\/ 9rr — 1)(f”(@)l"( vV 9rr — 2)6r@ - f/(@)) + f(@)rzgrr) (5 50)
e 2 Q)r(Yar - 2) ’
and the nonmetricity scalar for (/7) takes the form,
@:2(\/9”_ 1)(razrgtt_\/grrgtt+gtt)‘ (551)
" 9rr9u
After using f(Q) = Q + aQ? and applying the Ansatz (5.43), one finds the first order solutions,
6M 6ln(1—M) 61n(1 ) 51-6e,M | 39
(1):<r—2M) + 4/ r—=2M + 2M—r +r+3c
I 3r oM 2
r 4,/ (68M?r — 24M° — 44Mr* +8r°)  50M In(1-2Y) 46
g = (- 2 5 )+ > (1- )—7+c1 (5.52)
(r—2M) 3Mr r M
The asymptotic limit is again easy to determine, and we find
lim 1+ 32 + and lim 1 (5.53)
i =- — =1. .
r—»oogn a 3M2 2 r—>oogrr
Upon fixing ¢, = — %, we obtain lim,_ o, g, = —1; i.e., we have again an asymptotically Minkowski solution. If we use
this value for the integration constant c,, we find that the first order corrections at large r are given by
2M sM3 1 2M sM?
gu=—1+""ta—~-—=-1+"T"ta—, (5.54)
r 57' 9rr r r
where the renormalized mass now reads
32
ZMren =2M +a 3M —Cy . (555)

Hence, we find that the corrections for the (/7) case scale like %, and the solution is therefore virtually indistinguishable
from Schwarzschild at large radii.
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D. A comment on isotropic coordinates

We want to mention here a different Ansatz for the
metric, and its connection to the solutions above, namely
isotropic coordinates. In these coordinates one chooses not
goo = 1*, as we did above in Sec. III F, but gy = grgR>.
We denote the isotropic radius by R to distinguish it from
the Schwarzschild radial coordinate r. The line element can
then be written as

ds? = —g,dr* + ggrr(dR? + R*dQ?), (5.56)
were g, and ggg are functions of R only. The coordinate
transformation that links isotropic and Schwarzschild
coordinates is given by

1n<£> = /rdr—“%r.
RO ro r

Of course, since the difference between the isotropic and
the Schwarzschild Ansatz is just a choice of coordinates,
the results for the gravitational potential are the same as
for the ones discussed above; so this Ansatz might seem
pointless. Nevertheless, we found an interesting link. If we
want to plug the isotropic Ansatz into the equations of
motion, we have to choose an Ansatz for the connection.
But now we have an advantage in isotropic coordinates; the
spatial sections are flat. Isotropic coordinates are thus very
similar to cosmological spacetimes with flat spatial sec-
tions. We can therefore try to use the coincident gauge for
the connection, as it is the natural connection of flat
spacetimes in flat coordinates. In spherical coordinates
one then obtains the spherical connection, as used at zeroth
order perturbation theory in Sec. VA, or in [8,9], but just in
isotropic coordinates with R instead of r. Since the
connection is fixed, we will not find any new connection
hairs, but curiously enough we do find completely con-
sistent metric equations of motions; moreover, the con-
nection equations of motion are identically satisfied. Even
better, (5.35) is not a solution to the metric equations of
motion, so it might seem that this very simple Ansatz gives
again new black hole corrections. But we have actually
covered this already; if one performs the coordinate trans-
formation (5.57) and applies this to the spherical connec-
tion, one obtains precisely the same connection as we had
in case (/7). Hence (/) corresponds to an ‘“isotropic
Ansatz” to the black hole problem in f(Q) gravity.

(5.57)

E. Exact vacuum solutions beyond GR for f(Q)=0Q*

So far we have only discussed approximate solutions
within the framework of perturbation theory, and we have
seen that f(Q) admits “connection hair.” However, it is also
possible to derive exact solutions of f(Q) gravity which go
beyond GR and where the connection appears as ‘“hair,”
with a new scale ry appearing in the metric components.
The starting point are again the field equations (4.25) for

option 2 since these equations are simpler and only require
the specification of initial conditions, rather than the
arbitrary choice of the connection components ¢ and k.
The main observation we need is that the metric field
equations for option 2 imply that

l—‘r /!
GuGrr = C1 EXP (2 / drl‘f—;”}/ ((g)) (a,@)), (5.58)

as we had seen at the beginning of Sec. V. Performing
integrals is in general a daunting task, and it is often not
possible to compute them analytically. However, if we
assume that Iy, is of the form,

Frgg = —/1r, (559)
where 1 € R\{0} is an arbitrary constant, then the integral
becomes manageable. First of all, we notice that the choice
A = 1 would again give us the spherical connection of [8,9],
which simply produces the GR solution for arbitrary f.
Hence, we have again a parametrization of Iy which
allows us to “deform” the spherical connection and “move
away” from the GR solution. Moreover, after inserting the
Ansatz (5.59) into the integral, we easily find

9uGrr = Cl(f/(@))2§7

where we have absorbed additional factors in the integra-
tion constant ¢;. We can use this equation to eliminate g,.,,
and we are therefore left with just g,, which needs to be
determined. To that end, we use the metric field equation
M, for the pure vacuum case, and we find

(5.60)

Or9u = 2(23lf 1)f/(€bﬁ (F(@)r? +241'(Q)
(5.61)

We have already made use of both metric field equations,
and we are thus only left with the connection field equation
C,. To analyze this equation, it is convenient to first
compute the nonmetricity scalar Q and then insert it into
C,. For the nonmetricity scalar we find

A=1 f(@rr=20-1)f(Q)
T 2-1 f(Q) '

At this point we need to make a choice for f in order to
continue. We choose® f(Q) = Q~, where k € R\{0}. After
inserting this Ansatz for f into the above expression for Q,
we find that Q can be written as

Q (5.62)

8Unfortunately we could not proceed with the more interesting

choice f(Q) = Q + aQ".
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k(A-1)2 1

R g pa Yyl

(5.63)

This is a very simple function of r, and when inserted into
the connection field equation one finds the polynomial
equation,

(k= 1)(k(8 = 142) + 5(A — 1) + k2(84 — 4))

_ 2 K
x K(d—1) —0. (5.64)
(1=2+x21-1))r?
This equation is solved by
5 — 8k + 4x>
A=1, A=, 5.65
5 — 14k + 8«? ( )

The first solution simply produces the spherical connection.
The second solution is more interesting, but we also need to
assume that k & {3.3} in order for this solution to be well-
defined. Moreover, it is now easy to check that all field
equations, M;,, M,,, C,, and My, are satistied. There is
therefore no new information we can gather, and we can use
all results obtained thus far to integrate the Eq. (5.61). We

find that g,, is given by
Gy = 177 4+ 1%, (5.66)

where ¢, is an integration constant and where we have
defined

8(2k —3)(k — 1)k
5+4(k-2)k

_ (2x = 3)(5 4+ 4x(2x — 3))
5+4(k-2)k
(5.67)

B =

The solution for g,, then follows from (5.60), and we find

<8K2 — 14k + 5>2 c
grr =

(5.68)

4> =8k +5 ) ¢+ e’

=C

FIG. 1.

with y := a — 3. Observe that if we choose x = 1, which
corresponds to the choice f(Q) = Q and which implies
=0, a=-1, and C = 1, we obtain

C c
9 = Cq + 72 and 9rr = g_l (569)

124

In other words: The GR solution is correctly reproduced by
the Egs. (5.66)—(5.68). This is a reassuring consistency test,
and we can now try to quantify how the solutions for x > 1
deviates from the Schwarzschild solution by setting ¢; =
—ri’cy and ¢, = —r7", where r¢ is the Schwarzschild
radius and ry is a new gravitational time dilation scale.
The g,; and g,, components then read

r\# re\ 7 c
= —| — 1— = d - .
9 ()( () > N O

(5.70)

In order to compare this to the Schwarzschild solution, we
need to assume y < 0. This condition is satisfied for all
k € R\[3.3]; note that for k = 3/2 we have the trivial flat
solution @ = f# = 0. See also Fig. 1, which shows the
exponents a, f# and y as functions of . This assumption is
also reasonable since it leads to a well-behaved limit of g,,
as r goes to infinity,

limg,, = C. (5.71)

However, the situation for g,; looks quite different. Its limit
for r - oo is given by

r\7#

; .

This limit does not behave well because it either diverges
(# > 0) or it vanishes (f < 0). It is only interesting for
p = 0, which is achieved for k =0, k = 1, and « = % But

limg, = —lim (5.72)

r—o0 r—o0

1.75 2

-0.2%

Left panel: The exponents « (solid blue curve), # (dashed red curve), and y (dotted orange curve) as functions of k. The shaded

blue region indicates the range where both, @ and f are negative. Right panel: The function y is negative except in the shaded orange

region which corresponds to the interval [, 3].
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x =0 is not admissible, since then f(Q) =1, k=1 is
simply symmetric teleparallelism, and xk = % belongs to the
range of excluded « values. Hence, the interpretation of the
metric at large radii is difficult unless we are in standard
symmetric teleparallelism, where the metric reduces to the
Schwarzschild solution.

We conclude this subsection by noting that this solution
is only close to Schwarzschild for x very close to unity.
Even for f = Q? one has @ = 2.6 and # = 3.2, which is far
from Schwarzschild; solar system tests would have
revealed such large deviations. These exact solutions are
thus physically not relevant. What is interesting, though, is
that exact solutions can be found which go beyond GR.
Finding physically interesting exact solutions is left as a
challenge for future work.

VI. APPLICATION TO f(T) GRAVITY

There is yet another theory of gravity which is closely
related to symmetric teleparallelism and which together
with GR forms the trinity gravitational theories [4]—metric
teleparallelism (MT).

The underlying geometric framework of MT is closely
related to the one of ST studied in this paper, and we can
easily transfer some of our methods to MT in order to
discuss stationary and spherically symmetric solutions of
f(T). Our discussion of f(T) gravity will be brief in the
sense that we will only report the basic results, but we will
not repeat the lengthy derivations which are analogous to
the ones for ST which have been explained in great detail in
this paper. We begin by recalling basic definitions of MT
and fixing our notation. Subsequently, we will report the
symmetry reduced form of the metric, the connection, and
the field equations of MT. Finally, we discuss some
approximate solutions to the field equations.

We give first a brief introduction to MT, and then note the
stationary and spherically symmetric Ansatz for the MT
connection and the equations of motion. Results are
discussed last.

A. Metric teleparallelism and f(T) gravity

Let (M,g,,,.I'",,) be a metric-affine geometry, where
M is a four-dimensional manifold, g,, denotes the com-
ponents of the metric tensor of signature (—, +, +, +), and
['*,, represents an affine connection. The latter is now
postulated to be flat and metric-compatible, but with
nontrivial torsion. That is, we postulate

ﬁﬂ,,—O and Q(W (6.1)

As alluded to above, the only nontrivial object in this
metric-affine geometry is the torsion tensor, defined by

T u = Q,Fa[m/]. (62)

Notice that the postulates of symmetric teleparallelism
imply that the connection is completely independent of
the metric. This is no longer true in metric teleparallelism
because the postulate of metric compatibility obviously
involves the metric as well as the connection.

To define a MT theory which is equivalent to GR, one
can proceed analogously to Sec. II. To that end, we notice
that due to the skew-symmetry of the torsion tensor, there
are three independent scalars which can be constructed
from 7¢,. One can then define the following linear
combination of these scalars:

1

Te==-T,,T* —

4 apv (63)

%TOWDT”OW + TaTa’
where we have used the trace T, := T",, and we refer to T
as the torsion scalar. Analogously to Sec. I, one can easily
derive the following relation:

-T+2D,T" +R =0, (6.4)
where D, denotes the covariant derivative with respect to
the Levi-Civita connection and R is the Ricci scalar of the
Levi-Civita connection This shows that if we define the
action of MTas S[g. I == [ d*x x,/=gT, we obtain an action
which is equivalent to Elnsteln Hilbert, up to a boundary
term. Hence, in MT, just as in ST, only the Levi-Civita part
of the connection contributes, and everything else drops out
of the field equations. The connection does not carry any
physical degrees of freedom. Let us now consider the
nonlinear extension of MT to f(T) gravity. The action
defining this theory is simply given by

Slg. T3 4, p)
1
= [\A d4.x <§ \/__gf(—l]—) + AaﬁﬂDRaﬂﬂv + paﬂDQaﬂ’/) ’ (65)

where the tensor densities 22 and p™* act again as
Lagrange multiplies which enforce the MT postulates
(6.1). The function f is again arbitrary and only subjected
to the requirement that f'(T) :=%@;&0. As for f(Q)
gravity, for generic f we can no longer remove the
connection from the action by a boundary term. Hence,
the connection equations of motion are no longer trivial and
the connection can propagate degrees of freedom. By
varying (6.5) with respect to the metric and the connection
leads to the equations of motion of f(T) gravity [2]. These
are explicitly given by

My = (Vo + To)[S4u)*f (D] + f(Ti
__f( )g/w — L = 0

c,,ﬁ==—<vﬂ+m[r Fmsiy] =0, 9

024042-28



BLACK HOLES IN F(Q) GRAVITY

PHYS. REV. D 105, 024042 (2022)

where S, the so-called torsion conjugate, and the
symmetric tensor 7, are defined by’
ar 1

Sam/ = =5 T{I#D - T[”rlb] - 25(1[”TU]
are, = 2

1
— af aff
v =55, T yep — T S (6.7)

Iy
Note the close similarity in the structure of these equations
with the ST counterparts, except for the form of the
connection equations of motion. One can then rewrite
the metric equations of motion in the more useful form,

1
F(0)Gu = 59 FT) = £ (D) + £ (1)) DT =Ty,
(6.8)

with G, being again the Einstein tensor with respect to the
Levi-Civita connection. For f(T) = T + 2A, this reduces to
the Einstein field equations with a cosmological constant.
In the next few subsections we will sketch the symmetry
reduction of the metric, the connection, and the field
equations, and finally discuss some perturbative solution.
We will see that there are some similarities with f(Q).

B. Symmetry reduction of the connection
and metric

Unsurprisingly, the symmetry reduced metric has the same
form as in f(Q), namely, it is given by (3.3). Moreover, we
|

can apply the same diffeomorphisms which we described in
Sec. Il F in order to bring the metric in the even simpler form
(3.50). This will not spoil the symmetry reduced form of the
connection for the same reasons given in Sec. IITF: The
diffeomorphism respects the symmetry of the metric-affine
geometry, and it can neither create curvature nor nonme-
tricity. Thus, we choose to work with the simple form (3.50)
of the metric from now on.

Finding a parametrization of the connection which is
compatible with the postulates of MT can be achieved
analogously to what we did in the Secs. III. We start with a
general connection I, which has 64 components, and
first apply the conditions for stationarity and spherical
symmetry. After that, we use the MT postulates (6.1) to
further eliminate connection components and knead the
connection into the simplest possible form. We only report
the main results here.

After implementing the symmetry conditions (3.4), (3.6),
(3.7), and (3.12), we obtained the same connection as in
[10], but with the additional property of being stationary,
which simply means all connection components are time-
independent.

In order to implement the MT postulates, one can again
split the arising equations into algebraic10 and differential
equations for the connection. By plugging the solutions of
the algebraic equations into the differential equations, one
can ultimately find the following form of the connection:

r(T 00" +1704°)0rGrr = 29, (M 0p” + T g0 (T 99 — 10,17 g9) = 1T 940,17 g)

0
r, =29
20y
oo \/ = g, (T g +17g47)
the == :l: N

V9 /T "o0”> + T gy’

r

r
th{/, = —Ft¢9 = —9(/) sin 91—"99

Fr()ﬁ
Frrl — _&F[rm Frrr _ argrr ) Frq’)(/) — Sin2€1"r99’
9rr 2grr
g g
Dy =="3T0  Tp==F3T Ty =
Y. — 1 0 —sin 91“’998,1_“’9(/) — 0,1 6ol " g
r9_r7 rg — I 2+1:*r 2
00 0
gttfr9¢ [/
r¢, — 2 % 1 , ¢, — 2 ,
o Psinfl"y, % o P2
g’rfr9¢ grrrrt%’ 1
[y, =-—2, T, =- . T =,
or r*sin @ ¢ r? T

979

F¢r6 = -

2r\/9u \/Freez + 17 4* \/”2 — 9T 90> +T7g47)

Ft(/)(/) = Sin29Ft99

Fr()(/, = —Fr(/,g = sin 6’1:"94,
o 9rr Sin(e)fr9¢

0
2 1ﬂr/)r* 2

I, = —cos®sinf

1
I
sin29 = "

F¢9¢ = F¢¢9 = COte, (69)

°Note that S, is by definition antisymmetric in the last two indices, while—by using the explicit form of S,**—one can check that

Iy

, 1s indeed symmetric, as required by the symmetry of the metric equations of motion.

""Notice that the equations Q,,, = 0 are purely algebraic and even linear in the connection, thus leading to unique solutions.
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with all other components vanishing. This result agrees
with the one reported in [12]. As alluded to before, the
connection and the metric are not completely independent,
because of Q,,, = 0, and that is why the metric appears in
the above expressions for the connection components.
Moreover, the only free connection components are [y
and fr9¢, where the latter is defined in the fourth line
above, both arbitrary functions of r only. In addition to
being free in specifying these components, we can also
freely choose the sign + which arises from taking the
square roots of the metric components. This sign has to be
chosen such that it is the same for all components, either
always the upper or the lower one. Thus, we obtain two
distinct parametrizations for the connection which we
denote by I't.

It is not surprising that the connection now has less free
components than in f(Q) gravity: While the connections
both have to fulfil the symmetry and flatness conditions, in
|

Structure of metric field equations:

Structure of connection field equations: 0, T

and we remark that the torsion scalar is explicitly given by

f(Q) it has to fulfil 7%, = 0, which are 24 equations,
while in f(T) we must have Q,, =0, which are 40
equations. The connection in f(T) is thus more constraint.
Also, note that the connection components are not con-
tinuous at [y = I 04 = 0. For instance, in the expression
for I'"y9, when taking such a limit one has to take care with
the order of the two limits [y, — 0 and f’9¢ - 0.

C. Symmetry reduced field equations for the metric
and the connection

After having worked out the symmetry reduced form of
the connection, and having established that there are two
distinct parametrizations corresponding to a choice of sign,
we can now consider the symmetry reduced field equations.
By plugging (3.50) and (6.9) into the field equations (6.6),
one finds that they have the following structure:

My My, 0 0
M, M, 0 0
0 My 0
0 0 Myysin?6
0 C, O 0
| G 00 o 1 (6.10)
0 0 0 —sin6Cq,,
0 0 sindCyy 0
gz (r+ 9:T"00)0,9u + 9u(1 + gyr + T 090, 9rr + 29,0, g0) (6.11)

—l]—:
r

for both choices of sign in ['*. Observe that the metric field
equations have the same structure as for f(Q) gravity.
Moreover, one finds that the sign of I'" not only has
absolutely no effect on the structure of the connection field
equations; it does not enter these equations at all. No matter
which sign we choose, we obtain exactly the same field
equations. Hence, we can drop the distinction between the
+ and — choice. The connection equations of motion have a
very simple form, and are given by

ar—[l— N(—I]—)Ctr =

M, =0, (6.12)

0, Tf"(T)Cop = 0, Tf"(T)"gy = 0.  (6.13)

In particular, we note that no derivatives of the connection
—apart from the 9, T term—appear in the connection

9rr9n

[

equations of motion. The connection is thus not dynamical,
and the connection equations of motion are mere con-
straints. Let us now look more closely at the off diagonal
metric field equation, which reads

2
Mtr:_\/g \/

X 8 'ﬂ'f//

— 9, (Tge” + l:r(a(/;z)
I‘*r9€2 + Frg(/}Z

(6.14)

This equation is again structurally similar to the equation
we obtained in f(Q) gravity, To solve it, we either have
Tso = const, or f"(Tgy) =0, or we end up with a
constraint equation for the connection.

Just as in f(Q) gravity, the first two options will
immediately lead to trivially satisfied connection field
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equations. Using a similar argument as in Sec. IV,
one can show that f”(Tgy) =0 immediately implies
f(T) =aT + b, and hence one can only obtain the
Schwarzschild-deSitter-Nordstrom solution of GR. Also,
if Tgo is a constant, we find from (6.8) the GR field
equations,

Guy + Aeffg/u/ = Tﬂb’ (615)
where G, is the standard Einstein tensor with respect

to the Levi-Civita connection and where we have
defined

_ lfﬂ—sol) B f/(Tsol)—[rsol
2 f /(—”—sol)
- 1

- /(—ﬂ—sol) TW‘
This is exactly the same results obtained in Sec. IV for
f(Q) gravity, and we thereby reproduce a result which was
already known in the literature (see for instance [15,16] but
also notice that our approach of setting Tg, = const does
not break any symmetries). Notice that in the case of f(T)
gravity, we can immediately establish that solutions with
Tso = const are not an empty set. To that end, assume
Tsol = const and solve (6.11) for Iy,

(6.16)

0 0

Ftrt _ ﬂ’ r, — r9rr ’
20y 29,
1 g

F9r9 = Feﬁr =7 - >
r r

y o] ) V9rr
F(/r(/)_;s Iﬂ(/qﬁr =+ ’ )

with all other components vanishing. We call these two
solutions (III*). The sign ambiguity here comes only from
the choice of I yy; the connection is the same for both I'*
for this connection choice.

Note especially that the two choices (III¥) are in
complete analogy to the choices of connection for f(Q),
namely (/F), in Sec. V C. The important difference—apart
from the obvious differences in the forms of the whole
connections—is of course that in f(T) the connection is not
dynamical. Its equations of motion completely fix the
connection from the start, and leave no room for a
dynamical evolution. We can still have beyond GR sol-
utions for (III*), but they will not involve any connection
hairs in this sense. We now have only three equations of
motion left, namely M,,, M,,, and My,y. One can check
analogously to Sec. IV C that My, follows from M,, and
M, so we have only two equations left for the two metric
components g,, and g,,.. The analogy between f(T) and

r

Iy,

06 —

I !
w \ 91t9rr
% (C n /r dp 9u(2+p(2+ -ﬂ—solpz)) + 2pap9n> .
4\/ 91:9rr

(6.17)

Hence, the connection can, in principle, be fixed such that T
becomes a constant. Finally, the only choice left for solving
the off diagonal metric field equation which does not force
GR solutions on us is the constraint equation,

. =9, (Tge” + ["p4%)
Moy 2 +17,,2
00 0¢

=0.

(6.18)

Once M,, is fulfilled C,, is also fulfilled. Since the con-
nection field equation Cy; = 0 uniquely implies " = 0,
we find that the constraint equation (6.18) has the two
solutions,

r

Frgg - Zl: .
grr

(6.19)

With this, the off diagonal metric field equation and all
connection field equations are satisfied, and we find that the
connection (6.9) reduces to

r

+ ’
V grr

Fr¢¢ = Frgg Sin(¢9)2,

I?,, = —cos(6)sin(6),

=T,y = cot(0), (6.20)

|
f(Q) gravity for stationary and spherically symmetric
spacetimes comes to its conclusion when one notes that
for each case (III*) the exact equations of motion are
identical for any f with those from f(Q) gravity for the
cases (I%); in particular we have T = Q. These f(T) black
hole solutions are thus merely a subset of f(Q) solutions,
where the connection is fixed and given by (/*). This is the
main result of this section. As we have discussed the
equations and their (approximate) solutions already in
Sec. VC, we are done with these cases.

Note especially that the (approximate) beyond GR
solutions found in [13] are the same as we found for the
case (III"). The solution of [14] corresponds to the
case (III7). In these references the f(T) theory was
discussed using tetrads instead of the full connection,
but one can check that the connections that were con-
structed there are precisely the same as the ones we derived
for (III%).
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Finally we note that a recent study of f(T, B) black holes
in [17] has uncovered an interesting result. In [17], the
authors work in the Weitzenbock gauge, for which all
components of the spin connection vanish, and they
perform a symmetry reduction of the tetrad, rather than
the metric. What they find is that the tetrad can have
complex solutions which nevertheless represent a real
metric. Whether a symmetry reduction of the tetrad also
leads to complex solutions in f(T) gravity is left for future
investigations.

VII. CONCLUSION

In this paper we have systematically derived and
studied symmetry reduced field equations for f(Q)
gravity, and we have sketched how a similar approach
can be applied to f(T) gravity. We began our analysis by
performing a systematic symmetry reduction of the
metric affine geometry described by (M, g,,.T%,).
The main results, which have been extensively discussed
in Sec. III, are the following: (a) There are two classes of
parametrizations for the connection which guarantee that
the connection is stationary, spherically symmetric, tor-
sionless, and flat, as required by the postulates of
symmetric teleparallelism (cf. Secs. IIIC and IIID);
(b) the connection in coincident gauge fails to be
spherically symmetric, which in part explains why
[8,9] were not able to find beyond-GR solutions in
f(Q) which describe black holes; (c) the first para-
metrization class of the connection (also known as
solution set 1) can be obtained from the second class
(also known as solution set 2) by a double scaling limit
(see Sec. IIIE); (d) the metric can be brought into a
simple diagonal form, which is parametrized by only two
arbitrary functions of r, without spoiling the structure of
the solution sets for the connection, as explained in
Sec. IITF. Hence, we have constructed the simplest, and
yet most general metric-affine geometry which is sta-
tionary, spherically symmetric, torsionless, and flat.

In Sec. IV we have discussed the implications of
the simple form of the metric and the two parametri-
zation classes of the connection for the field equations
of f(Q) gravity. In Sec. IVA we have formulated
precise conditions under which f(Q) either reduces to
symmetric teleparallelism, gives rise to GR solutions
for generic choices of f, or produces beyond-GR
solutions. In particular, this subsection fully explains
why [8,9] were not able to find any beyond-GR
solutions.

Additionally, we have shown in Sec. IV B that solution
set 1, while attractive because of its simplicity, is not
viable when looking for beyond-GR solutions. In the
Secs. VC and IV D we have extensively discussed the
self-consistency of the field equations, the number of
degrees of freedom they propagate, the initial data which
needs to be specified, and additional constraints on the

connection which can appear. We have seen that the
connection becomes dynamical, in stark contrast with
symmetric teleparallelism, where the connection is unphys-
ical, or that it can be completely fixed by additional
constraints. The latter option leads nevertheless to
beyond-GR solutions for the metric.

In Sec. V we finally constructed explicit beyond-GR
solutions. In the Secs. VA-V C we used a perturbative
approach to construct solutions for the pure vacuum as well
as the electrovacuum case and nonzero cosmological
constant case for the Ansatz f(Q) = Q + aQ?, where a
is assumed to be small. We have done so for a dynamical
connection as well as for one which is fixed by the
additional constraint described in Sec. IV D.

In Sec. V E we even succeeded in finding exact solutions
which go beyond GR. These solutions ultimately turned out
to have undesirable properties, which make them physi-
cally unattractive. But it is nevertheless interesting that
exact solutions can be found, given the complexity of the
f(Q) field equations.

Finally, in Sec. VI we sketched how the same methods
which have been described in detail for f(Q) can be applied
to f(T) in order to perform a systematic symmetry
reduction of the metric, the connection, and the field
equations. There are many (perhaps surprising) structural
similarities between f(Q) and f(T) which facilitate the
analysis of f(T) gravity. Moreover, we have also reported
some beyond-GR solutions for f(T).

In conclusion, we have succeeded in showing the
consistency of the symmetry reduced field equations of
both, f(Q) and f(T) gravity, we have formulated precise
criteria under which beyond-GR solutions can exist, and we
have shown that the GR solutions can exist for arbitrary
choices of f. Moreover, we have discussed a few pertur-
bative beyond-GR solutions to the f(Q) and f(T) field
equations. Whether these solutions are stable or whether
they lead to instabilities is beyond the scope of the current
analysis and will be left for future work. We have also not
discussed the question of formation processes in the context
of f(Q) or f(T) gravity. It would be interesting to under-
stand whether a realistic formation process could give rise
to one of the solutions discussed here or whether it leads to
beyond-GR solutions at all. This question is also left for
future work.

Finally, we note that a similar symmetry reduction
analysis to the one carried out here can be performed for
cosmological models. A detailed discussion will be given
elsewhere.

ACKNOWLEDGMENTS

L.H. is supported by funding from the European
Research Council (ERC) under the European Unions
Horizon 2020 research and innovation programme grant
agreement No. 801781 and by the Swiss National Science
Foundation Grant No. 179740.

024042-32



BLACK HOLES IN F(Q) GRAVITY

PHYS. REV. D 105, 024042 (2022)

APPENDIX A: CONNECTION
TRANSFORMATION WHEN DIAGONALIZING
THE METRIC

For the sake of eliminating doubt about whether
the diffeomorphism described in Sec. III preserves the
structure of the solution sets of the connection, we
|

explicitly determine the transformation of the connection
components. The untransformed components are denoted by

[%,,, the components after having applied ¢, are l_“”,w, and

after applying ¢p; we call them ™ - The same for the metric
components g,,. The order in which we apply ¢, and ¢, is
irrelevant. We then find that the components transform as

c=c
k=k
_ 1
l—‘l‘rr = trr - 3—l—‘r [C(k - zc)gtr3rr992 + gtrzgttrr99(3c -k + 3C(2C - k)Ftﬂﬂ)
Gl 00
= 910,91 T 00 + 9u9ir (9T 1T 09 = 2(2¢ = )T gp(1 + T gg) + 0,941 o))
[y = [lyp — 9" 00
Gu
_ c(k—=2¢)g,°T g9  2¢g, (1 + (2¢ — k)
l—*rrr _ l—*rrr + ( )2 tr [ + tr( ( ) 99))
Gu u
Iog = 1" gp, (A1)
and 1. Connection hair solutions
This is the generalization of Sec. VA, which we

= explicitly did for x = 3, 4 for vacuum. It turns out one

c=¢c . L . .

_ has to go to perturbation order « in « in the metric, at which

k=k the first order correction of the connection I7gy = —r +
= I ay() enters in the form,

. 8,@992 2M en H r
rt‘gg :ftge gtt = _(1 - r ) +(XK;1H<F>, (Bl)
o I7,,0:00 — 0700 .

" argé)ﬂz 9rr = ——- (BZ)

9u

T 99 = T" 990, 7go- (A2)

All other components are zero. The derivative relations
coming from the flatness condition remain, as they come
from the coordinate invariant condition R, = 0. The
constants are thus unchanged, and the diffeomorphisms can
be absorbed in the arbitrary components Iy and I'" 4. The
structure is preserved, as expected.

APPENDIX B: APPROXIMATE SOLUTIONS
FOR f(Q)=Q+aQ*

The perturbative solutions for f(Q) = Q + a@Q? derived
in Sec. VA can be generalize to the Ansatz f(Q) = Q +
aQ)* for an integer x which satisfies k > 2. The solutions are
derived in complete analogy to those for f(Q) = Q + aQ?,
so we only report the final results for the metric compo-
nents here.

1 and r* are new scales coming from the connection

integration constants in 7D and Mg, is the renormalized
mass. We suspect that this formula holds for all integer k > 2.

2. Constraint solutions

This is the generalization of (/%) of Sec. V C, which we
explicitly did for k = 3, 4, 5, 10 for vacuum. It turns out
that we only need to go to first order metric perturbations.
We then have found the formulas,

2Mren 23K_l

= -1 O(rth), (B3
gtt + r + a (2K _ 3)r2K_2 + (r ) ( )
1 2M (26— 1) (k= 1)23!
-1 ren O(r~2+1
o TEOE I
(B4)
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for (I7), and

oM (=1)*2K(2M g0 ) 5
=1 ren ren O(r+2),
G + r 4 ox (4 — 3)r*3 (r )
(B5)
1 2M —1)*2k(2M (o) *<!
—_—— =14 ren + a( ) K( . _;en) + O(r_4"+2)
9rr r 28K

(B6)

for (/7). We again suspect these formulas to hold for all
integer k > 2.

APPENDIX C: PROOF OF THE PROPOSITION
ON THE EXISTENCE AND NUMBER OF
KILLING HORIZONS OF SOLUTION (5.19)

Let f:(0,+00) > R be defined by r+ f(r)=
2Mygn + @Puln(r/r*) —r with My >0, r* >0, and
a # 0. Clearly, this function is well-defined and smooth
on the whole open interval (0, +o0). Its first derivative is
given by

(C1)

from which we can deduce that f is strictly monotonically
decreasing when p < 0. Moreover, we can infer that f has
an extremum at

Fextr = @2 for u >0, (C2)
and that no extremum exists in the case u < 0. This
extremum is a local maximum because

F(rone) = = <0 (©3)
The asymptotic behavior of f is given by
limy/(r) = ~sign(x) x oo

lim f(r) = —co. (C4)

It follows that rey, is not only a local maximum, it is

the global maximum of f and at that point the func-

tion takes the value frmax = f(Fextr) = 2Men — @’y +

a*uln (a®u/r*). From these properties of f we can deduce

the following about its zeros:

(a) When u <0, f is a strictly monotonically decreasing
function which takes positive values [because
lim,_ f(r) = +oo] as well as negative values [be-
cause lim,__ . f(r) = —oc]. Hence, because f is
continuous, it follows that f has precisely one zero
in the interval (0, +o0). If u = 0, this zero is located at

(b)

024042-34

Thorizon = 2Mien. If p < 0, the equation f(r) =0 is
solved by

¥ 2Mren
Fhorizon = O° |/4|W( 51 € <l )’ (CS)
@ |ul

where W:[—e™!, +00) = [ = 1, +00) is Lambert’s W-
function. Notice that the argument of W is strictly
positive, and hence ryqyizon 15 Well-defined and larger
than zero, i.e., Fhorizon € (0, +00). If the argument of
the W-function is large compared to unity, we can use
the asymptotic expansion W(x) =Inx —In(Inx) +
O(1) plus an expansion in a up to second order to
deduce
Thoizon = 2Men — @ pIn(2M 6n /1) 4- O(a*).  (C6)
This completes the proof of part a) of the proposition.
Let us now assume that g > 0. In this case we know
that both asymptotic values of f are negative,
lim,_ f(r) = —o0 and lim,_, |, f(r) = —oo, and that
f possesses a global maximum. Hence, the number of
zeros of f depends on the value f,,¢. There are no
zeros when frax < 0, there is precisely one zero when
fmax = 0, and there are precisely two zeros when
Fmax > 0. If frax = 0, the location of the horizon is
given by reyy, 1.€.,

Fhorizon = Fextr = OCH. (C7)
The condition f,, = 0 for the existence of this single
horizon can equivalently be rewritten as

* 2Mren
T2, — 1
e v =€ .

r

a’u

(C8)

Similarly, we can rewrite the condition f, < 0 as

* _ 2Myen
e @ >el

7

- (C9)

which means that when the parameters (Mg, i, 1'*, @)
satisfy this inequality, there is no zero and conse-
quently no horizon.

Finally we consider the case where fax > 0, which
can be translated into the condition,

* _ 2Myen

LA <o, (C10)

a’u
which ensures the existence of two zeros, i.e., two
Killing horizons. On the interval (0, rey), the function
f is strictly monotonically increasing from —oco to
Smax > 0, while on the interval (rgyy,+oo) the
function is strictly monotonically decreasing from
fmax > 0 to —oco. Hence, there is an inner Killing
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horizon contained in the interval (0, reyy) and an outer
Killing horizon contained in (reyy, +0).

The inner horizon can be determined in closed form,
and it is given by (the justification why this is the inner
horizon follows below)

r*  _2Mren
Tinner = —a’ ﬂW(_@e & > (C11)

Observe that the argument of the W-function is
negative and that the condition (C10) ensures that
the argument lies in the domain of dependence of the
W-function, [—e‘l,—i-co). Since the W-function is
negative for negative arguments and there is a minus
sign in front of the W-function, we conclude that
Tinner > 0. Moreover, we observe that the argument
of the exponential function is strictly negative. Given
the exponential suppression of the argument of the
W-function, we can approximate it with its Taylor
expansion around zero, W(x) = x+ O(x?). This
gives us

_2M2ren
~ * o
Finner ® Fre  @n . (C12)

If this is indeed the inner horizon, it must satisfy the
condition rinner/rextr < 1. That this is the case follows
from (C10) and from (C12),

r* _2M2|-En |
Tinner/ Textr & S—e o <e < 1.
au

(C13)

Hence, riner 1 indeed the inner horizon. We could not
find a closed expression for the outer horizon, but if we
assume that a is a small parameter and if we then
expand f(r) up to first order in « (there are o’s also in
M,qn), we find the approximate expression,

Fouter = 2M + acy + O(a?). (C14)
The validity of this approximate expression can be

verified numerically. This completes the proof of the
proposition.
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