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We systematically study the field equations of fðQÞ gravity for spherically symmetric and stationary
metric-affine spacetimes. Such spacetimes are described by a metric as well as a flat and torsionless affine
connection. In the symmetric teleparallel equivalent of general relativity (STEGR), the connection is pure
gauge and hence unphysical. However, in the nonlinear extension fðQÞ, it is promoted to a dynamical field
which changes the physics. Starting from a general metric-affine geometry, we construct the most general
static and spherically symmetric forms of the metric and the affine connection. We then use these symmetry
reduced geometric objects to prove that the field equations of fðQÞ gravity admit general relativity (GR)
solutions as well as beyond-GR solutions, contrary to what has been claimed in the literature. We formulate
precise criteria, under which conditions it is possible to obtain GR solutions and under which conditions it
is possible to obtain beyond-GR solutions. We subsequently construct several perturbative corrections to
the Schwarzschild solution for different choices of fðQÞ, which in particular include a hair stemming from
the now dynamical affine connection. We also present an exact beyond-GR vacuum solution. Lastly, we
apply this method of constructing spherically symmetric and stationary solutions to fðTÞ gravity, which
reproduces similar solutions but without a dynamical connection.
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I. INTRODUCTION

General relativity (GR) is by far the most successful
description of gravity we have. Its predictions for gravi-
tational effects on solar system scales and on cosmological
scales fit the observations very well. However, some slight
tensions, such as the H0 tension, have appeared over the
past few years. In addition, theoretical difficulties such as
singularities, quantum gravity and a lacking explanation for
the origin of dark matter and dark energy spoil the beauty of
GR. It is thus fruitful to look at generalizations of GR,
which might resolve both observational and theoretical
issues.
One such generalization is provided by symmetric tele-

parallelism (ST), which is rooted in a different set of
geometric postulates than GR. The key difference between
STand GR is the role played by the affine connection, Γα

μν.
In GR, it is postulated that the connection is torsionless and
metric-compatible, which immediately implies that it is
uniquely given by the Levi-Civita connection. In ST the
postulate of metric-compatibility is dropped, and one
instead demands that Γα

μν is torsionless and gives rise to
a vanishing Riemann tensor. As long as the connection
satisfies these postulates, it can be chosen arbitrarily, and,

in particular, it is independent of the metric. With curvature
and torsion of Γα

μν postulated to be zero, the only nontrivial
object left in ST which characterizes the affine geometry is
the nonmetricity tensor, Qαμν. This tensor can be used to
construct the so-called nonmetricity scalarQ, which will be
defined in Sec. II, and which in turn defines the action of
ST: S½g;Γ� ≔ R

d4x
ffiffiffiffiffiffi−gp

Q. It is well-known [1–5] that this
action is equivalent to the Einstein-Hilbert action of GR up
to a boundary term. ST therefore provides a different
geometric description of gravity, which is nevertheless
equivalent to GR. In particular, it can be shown that the
affine connection only appears in a boundary term in the
action, and it is hence unphysical. More precisely, the field
equations of the metric do not depend on the choice of
connection, and the connection field equations are identi-
cally satisfied for any choice of connection which is
compatible with the postulates of ST. This means that
the physical degrees of freedom reside in the metric while
the connection does not carry any physical information.
This changes when one considers generalizations, such

as generic theories which are quadratic in the nonmetricity
tensor [6] or extensions of ST [7]. What is of interest to
us in the present paper is the nonlinear extension described
by

R
d4x

ffiffiffiffiffiffi−gp
fðQÞ [1], where f is an a priori arbitrary

function. Not only is this theory not equivalent to fðRÞ
gravity, but the theory now harbors degrees of freedom in
the metric and in the affine connection, because the
dependence on Γα

μν can no longer be absorbed in a
boundary term in the action.
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The connection can thus be expected to influence the
metric, which describes the gravitational field. In this paper
we show that this expectation is indeed realized, contrary to
what has been claimed in the literature [8,9]. We show this
by systematically studying the most general stationary and
spherically symmetric spacetimes within fðQÞ gravity.
The paper is organized as follows: Sec. II is dedicated to

introducing symmetric teleparallelism, via the Palatini
formalism, as well as fðQÞ gravity. This serves the purpose
to recall basic definitions and fixing notations and con-
ventions. In Sec. III we perform a detailed symmetry
reduction of the metric and the connection. In particular,
we show that there are two ways of giving an explicit
parametrization of stationary, spherically symmetric, tor-
sionless, and flat connections (Secs. III C and III D).
Moreover, we show that the trivial connection (i.e., the
connection in coincident gauge, Γα

μν ¼ 0) fails to be
spherically symmetric and that the connection used in
[8,9] belongs to the second parametrization class studied
here (cf. Table II for a definition of this class). In Sec. III E
we then show that the first parametrization class can be
obtained from the second one by a well-defined double
scaling limit. We also show that the metric can be brought
into a diagonal form—with two arbitrary functions of r in
the first half of the diagonal and the standard metric of a
2-sphere on the second half of the diagonal—by means of a
diffeomorphism which does not alter the structure and
defining properties of the above-mentioned parametriza-
tions of the connection.
Subsequently, in Sec. IV, we use the diagonal metric and

the two classes of connection to perform a symmetry
reduction of the metric and connection field equations of
fðQÞ gravity. In Sec. IV B, we show that the first para-
metrization class cannot produce any solutions which go
beyond the standard Schwarzschild-de Sitter-Nordström
solution. The symmetry reduced field equations for the
second parametrization class, which we discuss in Sec. IV
A, offer more flexibility. We discuss under which con-
ditions the field equations can produce solutions beyond
the well-known GR solutions for spherically symmetric and
stationary spacetimes—and we explain why the connection
used in [8,9] could only produce GR solutions for arbitrary
choices of the function f.
In Sec. V, we use our insights to describe approximate

solutions which go beyond Schwarzschild-de Sitter-
Nordström for fðQÞ ¼ Qþ αQ2, assuming α is a small
parameter. In Sec. V E we also present an exact vacuum
solution which goes beyond GR for the case fðQÞ ¼ Qκ,
for κ ∈ Rnf0g, demonstrating that such solutions exist in
fðQÞ gravity.
Finally, in Sec. VI, we sketch how the approach

described in detail for fðQÞ can be transferred to fðTÞ
gravity, a generalization of metric teleparalellism. This
theory of gravity is described again by a metric and a
connection, but the latter is now postulated to be flat and

metric-compatible, but with nonvanishing torsion. Since
the construction of stationary and spherically symmetric
affine geometries, as well as the analysis of the equations of
motion, work in complete analogy to fðQÞ gravity, one can
easily construct the most general stationary, spherically
symmetric, flat, and metric-compatible spacetimes of fðTÞ
gravity. We report our results, and their relations to fðQÞ
gravity, and compare them to the literature [10–14].
We conclude the paper in Sec. VII with a brief discussion

of the main results and an outlook on future research.

II. SYMMETRIC TELEPARALLELISM
AND f ðQÞ GRAVITY

Let ðM; gμν;Γα
μνÞ be a metric-affine geometry, where

M is a four-dimensional manifold, gμν denotes the com-
ponents of the metric tensor of signature ð−;þ;þ;þÞ, and
Γα

μν represents an affine connection. The connection
defines a notion of covariant differentiation through its
action on vectors V and covectors ω,

∇μVα ¼ ∂μVα þ Γα
μλVλ

∇μωα ¼ ∂μωα − Γλ
μαωλ; ð2:1Þ

and it can be used to describe three independent geometric
properties of a spacetime: curvature, torsion, and non-
metricity. The first two objects, curvature and torsion, are
defined by

Rα
βμν ≔ 2∂ ½μΓα

ν�β þ 2Γα
½μjλjΓ

λ
ν�β

Tα
μν ≔ 2Γα½μν�; ð2:2Þ

and symmetric teleparallelism demands that both tensors
vanish. We refer to

Rα
βμν ¼! 0 and Tα

μν ¼! 0 ð2:3Þ

as the postulates of symmetric teleparallelism. With cur-
vature and torsion set to zero, the nonmetricity tensor is the
only remaining nontrivial object. As it measures the failure
of the connection to be metric-compatible, it is defined by

Qαμν ≔ ∇αgμν ¼ ∂αgμν − 2Γλ
αðμgνÞλ: ð2:4Þ

Notice that the Riemann and torsion tensor depend on the
connection only, while the nonmetricity tensor also
depends on the metric. Due to the symmetry of the
nonmetricity tensor in its last two indices, at quadratic
order there are only five independent scalars that can be
built from the nonmetricity tensor. Hence, a natural starting
point for defining a Lagrangian which describes gravity in
terms of nonmetricity is a linear combination of these five
terms. As it turns out [1,2,4], GR is described by a linear
combination of only four of these contractions, which
define the so called nonmetricity scalar,
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Q ≔ −
1

4
QαβγQαβγ þ 1

2
QαβγQβαγ þ 1

4
QαQα −

1

2
c5QαQ̄α;

ð2:5Þ

where Qα ≔ Qαν
ν and Q̄α ≔ Qν

να denote the two inde-
pendent traces of the nonmetricity tensor. Since any
connection can be decomposed into its torsion-, nonme-
tricity-, and Levi-Civita-parts, it is easy to show that the
nonmetricity scalar can be written as

Q ¼ DμðQμ − Q̄μÞ þR; ð2:6Þ

where Dμ denotes the covariant derivative with respect to
the Levi-Civita connection and R is the Ricci scalar of
the Levi-Civita connection. This identity shows that sym-
metric teleparallelism, defined by the action S½g;Γ� ≔R
d4x

ffiffiffiffiffiffi−gp
Q, is equivalent to the Einstein-Hilbert formu-

lation, S½g� ≔ R
d4x

ffiffiffiffiffiffi−gp
R, up to a boundary term.

It makes it also evident that the connection of ST is
unphysical, since it is completely contained in the boundary
term and only the Levi-Civita part of Γα

μν contributes to the
metric field equations. Hence, the physical degrees of
freedom are all contained in the metric and the connection
can be freely chosen, as long as it satisfies the postulates of
symmetric teleparallelism.
In the present work, however, we are not interested in the

theory defined by Q alone. Rather, we want to consider
nonlinear extensions defined by the action functional [1],

S½g;Γ; λ; ρ� ≔
Z
M

d4x

�
1

2

ffiffiffiffiffiffi
−g

p
fðQÞ þ λα

βμνRα
βμν

þ ρα
μνTα

μν

�
þ Smatter; ð2:7Þ

where the tensor densities λαβμν and ρα
μν act as Lagrange

multipliers which enforce the postulates of symmetric
teleparallelism and where f is an arbitrary function solely

subjected to the condition f0ðQÞ ≔ dfðQÞ
dQ ≠ 0. This last

requirement is necessary in order to obtain nontrivial field
equations.
It is important to notice that for generic f, there is no

identity analogous to (2.6). Hence, in fðQÞ gravity, the
connection can in general not be absorbed into a boundary
term, and it has to be expected that Γα

μν carries degrees of
freedom, in addition to the ones contained in the metric.
There is evidence for this in the existing literature [7], andwe
will show this explicitly in this paper in Sec. IVand in Sec. V.
Moreover, the connection can no longer be arbitrarily chose,
as was done in [8,9], since it has its own, nontrivial, field
equations which need to be satisfied. Concretely, the field
equations of fðQÞ gravity are given by [2]

Mμν ≔
2ffiffiffiffiffiffi−gp ∇α½

ffiffiffiffiffiffi
−g

p
Pα

μνf0ðQÞ� þ f0ðQÞqμν

−
1

2
fðQÞgμν − Tμν ¼ 0

Cα ≔ ∇μ∇νð
ffiffiffiffiffiffi
−g

p
f0ðQÞPμν

αÞ ¼ 0; ð2:8Þ

where Tμν denotes the stress-energy tensor (not to be
confused with the torsion tensor which carries an addition
contravariant index) and where we have introduced the
nonmetricity conjugate Pα

μν and the symmetric tensor qμν
defined by

Pα
μν ≔

1

2

∂Q
∂Qα

μν ¼ −
1

4
Qα

μν þ
1

2
QðμανÞ

þ 1

4
gμνQα −

1

4
ðgμνQ̄α þ δαðμQνÞÞ

qμν ≔
∂Q
∂gμν ¼ PðμjαβQνÞμν − 2PαβðνQαβjμÞ: ð2:9Þ

Themetric field equations in (2.8) can also be rewritten in the
useful and more suggestive form [8,9],

f0ðQÞGμν −
1

2
gμνðfðQÞ − f0ðQÞQÞ

þ 2f00ðQÞPα
μν∂αQ ¼ Tμν; ð2:10Þ

wheref00 denotes the second derivative of fwith respect toQ
andGμν is the Einstein tensor (with respect to the Levi-Civita
connection and with vanishing cosmological constant). In
this form, it becomes obvious that for fðQÞ ¼ Qþ 2Λ, the
metric field equations are equivalent to the Einstein field
equations with cosmological constant Λ.
In particular, in this case the theory only propagates

2 degrees of freedom of the metric, while the connection is
pure gauge. As mentioned above, for a generic function f it
can be expected, and there is also evidence from a
perturbative analysis [7], that the theory propagates more
than 2 degrees of freedom and should therefore lead to
potentially interesting deviations from GR. Indeed, we will
see later (cf. Secs. IV and V) that under certain conditions,
the connection is no longer pure gauge, but rather, one
component becomes dynamical and this leads to solutions
which go beyond the standard GR solutions.
We conclude this section by recalling that there exists a

special gauge choice in which symmetric teleparallelism,
where the connection can be arbitrarily chosen, can be cast
in a particularly simple form: the so-called coincident
gauge [1]. In this gauge, the connection is trivial, i.e.,
Γα

μν ¼ 0. It is obtained by observing that the first postulate
of symmetric teleparallelism, the vanishing of curvature,
implies that the connection must have the form,

Γα
μν ¼ ðΛ−1Þαρ∂μΛρ

ν; ð2:11Þ
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where Λα
β ∈ GLð4;RÞ. The requirement of vanishing

torsion further restricts the matrix Λα
β to have the form

Λα
β ¼ ∂βξ

α, for arbitrary ξα, and the connection conse-
quently becomes

Γα
μν ¼

∂xα
∂ξλ ∂μ∂νξ

λ: ð2:12Þ

Hence, the connection can be set globally to zero by the
affine gauge choice ξα ¼ Mα

βxβ þ ξα0 , where Mα
β is a

nondegenerate matrix with constant entries and ξα0 is a
constant vector [2].

III. SYMMETRY REDUCTION OF THE METRIC
AND THE CONNECTION

Our goal is the study of the field equations of fðQÞ gravity
for spherically symmetric and stationary spacetimes. To that
end, we first assume that the ten metric components and the
64 components of the affine connection can be expressed in
the chart ðt; r; θ;ϕÞ ∈ R ×R>0 × ½0; π� × ½0; 2πÞ. The next
step is to find the most general form of the metric and the
connection which respect the symmetries of the spacetime
and, in the case of the connection, which is compatible with
the postulates of symmetric teleparallelism.
The notion of symmetry we use is the same as the one

given in [10], and we recall it here for convenience: Let G
be a group,Φ∶G ×M → M the action of the group on the
spacetime manifold M, and denote by Φu∶M → M for
u ∈ G the induced diffeomorphism. We then say that a
metric-affine geometry ðM; gμν;Γα

μνÞ is symmetric under
the group action if and only if

ðΦ�
ugÞμν ¼ gμν

ðΦ�
uΓÞαμν ¼ Γα

μν; ð3:1Þ

for all u ∈ G and where Φ�
u denotes the pull-back of Φu. In

our case, the group G will be the group of spatial rotations,
SOð3Þ, and the group of time translations. Moreover, in
practice, it is more convenient to consider infinitesimal
actions of G on the metric-affine geometry. The above
symmetry conditions can then easily be reexpressed as

ðLξgÞμν ¼ 0

ðLξΓÞαμν ¼ 0; ð3:2Þ

where Lξ stands for the Lie derivative along ξ, which
representatively stands for the generating vector fields of
the Lie algebra g of G. Our task is therefore to implement
(3.2) for the generator of time-translations and the gen-
erators of SOð3Þ. Of course, the most general spherically
symmetric and stationary form of the metric is well-known
and we can simply state the result,

gμν ¼

0BBB@
gtt gtr 0 0

gtr grr 0 0

0 0 gθθ 0

0 0 0 gθθ sin2 θ

1CCCA; ð3:3Þ

where all four independent components fgtt; gtr; grr; gθθg
only depend on r. In the case of the connection, we could
refer to the results reported in [10], where the symmetry
reduction of a general affine connection under the action of
G ¼ SOð3Þ has been carried out. However, wewill perform
the symmetry reduction of the connection in detail under
the additional assumptions that it is torsionless and sta-
tionary. With the former assumption we already achieve the
implementation of one of the two postulates of symmetric
teleparallelism. The assumption of stationarity will play an
important role in Sec. III B, where we implement the
second postulate of symmetric teleparallelism. Note that
of the three conditions the connection has to fulfill,
LζΓα

μν ¼ 0, Tα
μν ¼ 0, Rα

βμν ¼ 0, the first and second
are linear in Γα

μν and thus have unique solutions. But
the Riemann tensor is quadratic in the connection, and one
might thus obtain several solutions for the connection.

A. Symmetry reduction of Γα
μν under

the assumption that Tα
μν = 0

The torsionless condition, Tα
μν ¼! 0, simply forces the

connection to be symmetric in its lower indices, Γα½μν� ¼ 0.
This reduces the amount of independent connection com-
ponents from 64 to 40. Next, we implement the condition
of stationarity. Since the generating vector field of time-
translations is simply given by T ≔ T α∂α ¼ ∂t, we
immediately find

ðLT ΓÞαμν ¼ ∂tΓα
μν ¼! 0: ð3:4Þ

In words: All 40 components of the connection are,
unsurprisingly, time-independent. Implementing spherical
symmetry requires a little more work. To begin with, we
recall that the generating vector fields of SOð3Þ are

Rx ≔ Rα
x∂α ¼ sinϕ∂θ þ

cosϕ
tan θ

∂ϕ

Ry ≔ Rα
y∂α ¼ − cosϕ∂θ þ

sinϕ
tan θ

∂ϕ

Rz ≔ Rα
z∂α ¼ −∂ϕ: ð3:5Þ

It is easiest to start with the generator Rz since this one
simply gives us

ðLRz
ΓÞαμν ¼ −∂ϕΓα

μν ¼! 0; ð3:6Þ
which means that all connection components are indepen-
dent of the angular coordinate ϕ. To implement the
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remaining two symmetry conditions, it is convenient to
study linear combinations of Lie derivatives. The first one
reads

cosϕðLRx
ΓÞαμν þ sinϕðLRy

ΓÞαμν ¼! 0; ð3:7Þ

and it leads to a set of equations which explicitly determine
28 of the 40 connection components. The solutions can be
subdivided into three groups. The first group consists of 20
components which are forced to be zero,

Γt
tθ ¼ 0 Γt

tϕ ¼ 0 Γt
rθ ¼ 0 Γt

rϕ ¼ 0 Γt
θϕ ¼ 0

Γr
tθ ¼ 0 Γr

tϕ ¼ 0 Γr
rθ ¼ 0 Γr

rϕ ¼ 0 Γr
θϕ ¼ 0

Γθ
tt ¼ 0 Γθ

tr ¼ 0 Γθ
rr ¼ 0 Γθ

θθ ¼ 0 Γθ
θϕ ¼ 0

Γϕ
tt ¼ 0 Γϕ

tr ¼ 0 Γϕ
rr ¼ 0 Γϕ

θθ ¼ 0 Γϕ
ϕϕ ¼ 0:

ð3:8Þ

The second group contains two components which are
explicitly given by trigonometric functions,

Γθ
ϕϕ ¼ − cos θ sin θ

Γϕ
θϕ ¼ cot θ: ð3:9Þ

This is an important result, since it tells us that the
coincident gauge, i.e., the trivial connection Γα

μν ¼ 0, fails
to be spherically symmetric. Any attempt to find spheri-
cally symmetric solutions to the field equations of fðQÞ
gravity using the coincident gauge is therefore bound to
fail, and one should expect inconsistencies, unless we are in
symmetric teleparallelism which is described by the affine
function fðQÞ ¼ aQþ b. Finally, we find that in the third
group, six components can be expressed algebraically in
terms of other components,

Γt
ϕϕ ¼ Γt

θθsin2θ Γr
ϕϕ ¼ Γr

θθsin2θ Γϕ
tθ ¼ −Γθ

tϕcsc2θ

Γθ
tθ ¼ Γϕ

tϕ Γϕ
rθ ¼ −Γθ

rϕcsc2θ Γθ
rθ ¼ Γϕ

rϕ: ð3:10Þ

From the initially 40 independent connection components,
we are left with 40 − 20 − 2 − 6 ¼ 12 components. These
twelve independent components are

fΓt
tt;Γt

tr;Γt
rr;Γt

θθ;Γr
tt;Γr

tr;Γr
rr;Γr

θθ;Γϕ
tϕ;Γθ

tϕ;Γϕ
rϕ;Γθ

rϕg; ð3:11Þ

and these are functions of r and θ, potentially. We can further restrict the functional dependence of these components by
considering the last symmetry condition which reads

sinϕðLRx
ΓÞαμν − cosϕðLRy

ΓÞαμν ¼! 0: ð3:12Þ
This condition leads to a total of twelve first order differential equations for precisely the twelve independent components
given in (3.11). These equations are explicitly given by

∂θΓθ
tϕ − Γθ

tϕ cot θ ¼ 0 ∂θΓθ
rϕ − Γθ

rϕ cot θ ¼ 0 ∂θΓt
tt ¼ 0 ∂θΓt

tr ¼ 0

∂θΓt
rr ¼ 0 ∂θΓt

θθ ¼ 0 ∂θΓr
tt ¼ 0 ∂θΓr

tr ¼ 0

∂θΓr
rr ¼ 0 ∂θΓr

θθ ¼ 0 ∂θΓϕ
tϕ ¼ 0 ∂θΓϕ

rϕ ¼ 0: ð3:13Þ
The first two differential equations in the first line are easily solved and give us

Γθ
tϕ ¼ sin θc1ðrÞ and Γθ

rϕ ¼ sin θc2ðrÞ; ð3:14Þ
where c1 and c2 are arbitrary functions of r, while the remaining ten equations tell us that the other components are only
functions of r. This completes the symmetry reduction of the connection, andwe are leftwith the twelve independent functions,

fc1ðrÞ; c2ðrÞ;Γt
ttðrÞ;Γt

trðrÞ;Γt
rrðrÞ;Γt

θθðrÞ;Γr
ttðrÞ;Γr

trðrÞ;Γr
rrðrÞ;Γr

θθðrÞ;Γθ
tθðrÞ;Γθ

rθðrÞg: ð3:15Þ

We will use the results obtained in this subsection in order
to implement Rα

μνρ ¼! 0. This will be the subject of the next
subsection, and it will further reduce the amount of
independent connection components.

B. Implementation of Rα
μνρ = 0

In the previous subsection, we already used the sym-
metric teleparallelism postulate that Tα

μν ¼ 0, and we

imposed the symmetry conditions (3.4), (3.6), (3.7), and
(3.12). From these conditions we learned that there are only
twelve independent connection components, all of which
are solely functions of r, and that the remaining 28
components are given by Eqs. (3.8)–(3.10). We can now
use these facts to simplify the equations which arise from
imposing that the Riemann tensor of Γα

μν has to vanish.
After rather long and unenlightening computations, one
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finds 24 nontrivial equations. Since the Riemann tensor is
quadratic in Γ and linear in ∂Γ, and because half the
connection components are zero, one can reasonably expect
that these 24 equations can be separated into nonlinear
algebraic equations and first-order differential equations.
Indeed, one finds that there are twelve algebraic equations,

Γt
θθΓθ

tϕ ¼ 0

Γr
θθΓθ

tϕ ¼ 0

Γt
θθΓθ

rϕ ¼ 0

Γr
θθΓθ

rϕ ¼ 0

Γt
θθΓθ

tϕ þ Γr
θθΓθ

rϕ ¼ 0

1þ Γt
θθΓϕ

tϕ þ Γr
θθΓϕ

rϕ ¼ 0

Γt
trΓr

θθ þ Γt
θθðΓt

tt − Γϕ
tϕÞ ¼ 0

Γt
θθΓr

tt þ Γr
θθðΓr

tr − Γϕ
tϕÞ ¼ 0

Γr
ttΓθ

rϕ þ Γθ
tϕðΓt

tt − 2Γϕ
tϕÞ ¼ 0

Γθ
rϕðΓr

tr − Γϕ
tϕÞ þ Γθ

tϕðΓt
tr − Γϕ

rϕÞ ¼ 0

Γϕ
tϕðΓt

tt − Γϕ
tϕÞ þ Γr

ttΓϕ
rϕ þ ðΓθ

tϕÞ2 csc2 θ ¼ 0

Γt
trΓϕ

tϕ þ Γϕ
rϕðΓr

tr − Γϕ
tϕÞ þ Γθ

tϕΓθ
rϕ csc2 θ ¼ 0;

ð3:16Þ

for only ten of the twelve independent connection compo-
nents. The remaining twelve equations are first-order
differential equations,

∂rΓθ
tϕ ¼ 0

∂rΓϕ
tϕ ¼ 0

∂rΓr
tr ¼ Γt

rrΓr
tt − Γt

trΓr
tr

∂rΓt
tt ¼ Γt

trΓr
tr − Γt

rrΓr
tt

∂rΓt
θθ ¼ Γt

θθðΓϕ
rϕ − Γt

trÞ − Γt
rrΓr

θθ

∂rΓr
θθ ¼ Γr

θθðΓϕ
rϕ − Γr

rrÞ − Γt
θθΓr

tr

∂rΓθ
rϕ ¼ Γθ

rϕðΓr
rr − 2Γϕ

rϕÞ þ Γt
rrΓθ

tϕ

∂rΓr
tt ¼ Γr

ttðΓt
tr − Γr

rrÞ þ Γr
trð1 − Γt

ttÞ
∂rΓt

tr ¼ Γt
rrðΓt

tt − Γr
trÞ þ Γt

trðΓr
rr − Γt

trÞ
∂rΓθ

tϕ ¼ Γθ
rϕðΓr

tr − Γϕ
tϕÞ þ Γθ

tϕðΓt
tr − Γϕ

rϕÞ
∂rΓϕ

rϕ ¼ Γϕ
rϕðΓr

rr − Γϕ
rϕÞ þ Γt

rrΓϕ
tϕ þ ðΓθ

rϕÞ2 csc2 θ
∂rΓϕ

tϕ ¼ Γϕ
rϕðΓr

tr − Γϕ
tϕÞ þ Γt

trΓϕ
tϕ þ Γθ

tϕΓθ
rϕ csc2 θ:

ð3:17Þ

Let us first have a closer look at the algebraic equa-
tions (3.16): Because there are more equations than
independent functions, it is not clear whether the equations
can even be solved and because they are nonlinear, one
cannot expect to find unique solutions. As it turns out, the

system of equations can be solved, and one finds five
distinct sets of solutions. In each solution set, one can
express some connection components in terms of other
components in a highly nonlinear fashion. However, what
is remarkable, is that all five solution sets share one
particularly simple solution,

Γθ
tϕ ¼ 0 and Γθ

rϕ ¼ 0: ð3:18Þ

A quick look at Eq. (3.14) reveals that this is equivalent to

c1ðrÞ ¼ 0 and c2ðrÞ ¼ 0; ð3:19Þ

which reduces the amount of independent connection
components (3.15) from twelve to ten. Moreover, if we
plug (3.18) back into the algebraic equations, we find the
simpler system,

1þ Γt
θθΓϕ

tϕ þ Γr
θθΓϕ

rϕ ¼ 0

Γt
θθðΓt

tt − Γϕ
tϕÞ þ Γt

trΓr
θθ ¼ 0

Γr
θθðΓr

tr − Γϕ
tϕÞ þ Γt

θθΓr
tt ¼ 0

Γϕ
tϕðΓt

tt − Γϕ
tϕÞ þ Γr

ttΓϕ
rϕ ¼ 0

Γϕ
rϕðΓr

tr − Γϕ
tϕÞ þ Γt

trΓϕ
tϕ ¼ 0: ð3:20Þ

Notice that these are five equations for eight connection
components, fΓt

tt;Γt
tr;Γt

θθ;Γr
tt;Γr

tr;Γr
θθ;Γϕ

tϕ;Γϕ
rϕg.

Hence, it is now obvious that the system is solvable but
underdetermined, and clearly we obtain the same five
distinct sets of solutions as before. After all, we used the
algebraic equations to obtain the solution (3.18).
Now we turn to the differential equations. Since no

matter which of the five solution sets we use, we always
find (3.18), we can use this solution to simplify the twelve
differential equations. Notice that (3.18) implies that the
first, the seventh and the tenth differential equation are
trivially satisfied, while the last two loose their csc2 θ terms.
Furthermore, the second equation can easily be solved, and
we find

∂rΓϕ
tϕ ¼ 0 ⇔ Γϕ

tϕ ¼ c; ð3:21Þ

where c ∈ R is a constant (since at this stage we already
know that every independent connection component is
purely a function of r). After using (3.21), the last differ-
ential equation turns into an algebraic equation,

Γϕ
rϕðΓr

tr − cÞ þ Γt
trc ¼ 0: ð3:22Þ

We can therefore update our system (3.20) of algebraic
equations by adding (3.22) to it. This gives us a total of six
algebraic equations for eight connection components.
Moreover, since we solved one differential equation, three
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dropped out, and one turned into an algebraic equation, we
are now left with seven differential equations,

∂rΓr
tr ¼ Γt

rrΓr
tt − Γt

trΓr
tr

∂rΓr
tt ¼ Γr

trðΓr
tr − Γt

ttÞ þ Γr
ttðΓt

tr − Γr
rrÞ

∂rΓϕ
rϕ ¼ Γϕ

rϕðΓr
rr − Γϕ

rϕÞ þ cΓt
rr

∂rΓt
tt ¼ Γt

trΓr
tr − Γt

rrΓr
tt

∂rΓt
tr ¼ Γt

rrðΓt
tt − Γr

trÞ þ Γt
trðΓr

rr − Γt
trÞ

∂rΓt
θθ ¼ Γt

θθðΓϕ
rϕ − Γt

trÞ − Γt
rrΓr

θθ

∂rΓr
θθ ¼ Γr

θθðΓϕ
rϕ − Γr

rrÞ − Γt
θθΓr

tr: ð3:23Þ
Notice that these equations allow us to reexpress the
r-derivative of seven of the ten independent connection
components. The only components which do not appear on
the left-hand side are Γt

rr and Γr
rr (and Γϕ

tϕ ¼ c, whose
derivative is trivial). Furthermore, observe that the right-
hand side of the first equation in (3.23) is equal to (−1)
times the right-hand side of the fourth equation. This means
we get the following relation between the left-hand sides:

∂rΓr
tr ¼ −∂rΓt

tt ⇔ Γt
tt ¼ k − Γr

tr; ð3:24Þ

where k ∈ R is a constant. This follows again from the fact
that all connection coefficients we are left with are purely
functions of r. This is again a useful relation, and we are left
with six differential equations. As we will see later, the six
differential equations play a crucial role in determining the
propagating degrees of freedom of fðQÞ gravity.
This is all the information we can extract from the

differential equations at this point. The next step is to return
to the algebraic equations, supplemented by the new
equation (3.22), and study the solution sets which arise
from solving these equations. Before doing so, let us briefly
summarize the situation thus far:
(1) We started with a general affine connection Γα

μν,
which has 64 independent components.

(2) Implementing Tα
μν ¼! 0 in Sec. III A brought this

number down to 40 independent components.
(3) The first two symmetry conditions, Eqs. (3.4) and

(3.6), told us that all connection components are
independent of the coordinates t and ϕ.

(4) The third symmetry condition, Eq. (3.7), told us that
the 20 components (3.8) are zero. Moreover, we
found that two components are given solely by
trigonometric functions, Eq. (3.9), and we found
six algebraic relations in (3.10). This brought the
number of independent components down to
40 − 20 − 2 − 6 ¼ 12, and we learned that the con-
nection in coincident gauge fails to be spherically
symmetric.

(5) The fourth symmetry condition, Eq. (3.12), gave use
twelve first order differential equations. These equa-
tions tell us that all twelve independent connection

components are functions of r alone and no other
coordinate. [Minor exception for the components in
(3.14), but they turn out to be zero later on.]

(6) We then proceeded to implement Rμ
νρσ ¼! 0 in this

subsection, and we found that we get twelve non-
linear algebraic equations and twelve first order
differential equations. The nonlinear equations
all have two solutions in common: Γθ

tϕ ¼ 0 and
Γθ

rϕ ¼ 0. These solutions eliminate c1ðrÞ and c2ðrÞ
from the list of independent connection components.
Hence, we are left with the ten independent com-
ponents fΓt

tt;Γt
tr;Γt

rr;Γt
θθ;Γr

tt;Γr
tr;Γr

rr;Γr
θθ;

Γϕ
tϕ;Γϕ

rϕg, which are all functions of r and nothing
else.

(7) Among the differential equations we find
∂rΓϕ

tϕ ¼ 0, which tells us that Γϕ
tϕ is a constant.

Moreover, we found the relation ∂rΓr
tr ¼ −∂rΓt

tt,
which implies Γt

tt ¼ k − Γr
tr. This reduces our

list of independent connection components to
fc; k;Γt

tr;Γt
rr;Γt

θθ;Γr
tt;Γr

tr;Γr
rr;Γr

θθ;Γϕ
rϕg,

where c and k are real constants.
(8) Finally, there are six differential equations left.

These differential equations allow us to express
the r-derivative of the connection components
fΓt

tr;Γt
θθ;Γr

tt;Γr
tr;Γr

θθ;Γϕ
rϕg in terms of the

other connection components. What remains unde-
termined are the derivatives ∂rΓt

rr and ∂rΓr
rr.

This means that in the field equations, only Γt
rr

and Γr
rr can become dynamical.

(9) We also have six nonlinear algebraic equations
for the eight connection components
fc; k;Γt

tr;Γt
θθ;Γr

tt;Γr
tr;Γr

θθ;Γϕ
rϕg. Notice that

these are the same variables as in bullet point 8.
(apart from c and k). Clearly, the system is under-
determined, and we should expect to get more than
one solution to these equations.

Indeed, we find that the remaining algebraic equations now
admit two solution sets. Since these solution sets look
independent, we will study them separately in Secs. III C
and III D. We will then show in Sec. III E that the two sets
are actually related to each other by a double scaling limit.
It is nevertheless convenient to distinguish between the two
sets and they both play a crucial role in the study of the
symmetry reduced field equations of fðQÞ gravity, which
will be discussed in Sec. IV.

C. Solution set 1

As mentioned in the previous subsection, we are left with
six nonlinear algebraic equations, given by (3.20) and
(3.22). These equations do not admit a unique solution.
Rather, there are two sets of solutions. For the first solution
set we find that two components are zero, and three
components can be expressed in terms of the constants
c, k, and the function Γϕ

rϕ,
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Γt
θθ ¼ −

1

c
Γr

tr ¼ k − c Γt
tr ¼

2c − k
c

Γϕ
rϕ

Γr
θθ ¼ 0 Γr

tt ¼ 0: ð3:25Þ

Clearly, we have to assume that c ≠ 0 for this solution set to
be well-defined and admissible. Applying this solution set
to the differential equations (3.23) reduces them to four
algebraic equations,

ðc − kÞΓϕ
rϕ ¼ 0

ðc − kÞð2c − kÞ ¼ 0

ðc − kÞð2c − kÞΓϕ
rϕ ¼ 0

c − k ¼ 0; ð3:26Þ

and two differential equations,

cΓt
rr þ Γϕ

rϕðΓr
rr − Γϕ

rϕÞ − ∂rΓϕ
rϕ ¼ 0

ð2c − kÞðc2Γt
rr þ cΓr

rrΓϕ
rϕ þ ðk − 2cÞðΓϕ

rϕÞ2 − c∂rΓϕ
rϕÞ ¼ 0: ð3:27Þ

The algebraic equations have obviously a unique solution
which is given by

c ¼ k ≠ 0: ð3:28Þ
Applying this solution to the two differential equations
shows that they are actually the same, and we simply get

∂rΓϕ
rϕ ¼ cΓt

rr þ Γϕ
rϕðΓr

rr − Γϕ
rϕÞ: ð3:29Þ

This is all the information we can extract from these
equations. In particular, we do not find any further con-
ditions, constraints, or integrability conditions. What we
learn thus is the following: Solution set 1 describes a
stationary, spherically symmetric, torsionless, and flat
connection in terms of a real constant c ≠ 0 and the three
arbitrary functions Γt

rrðrÞ;Γr
rrðrÞ;Γϕ

rϕðrÞ. We refer to
these functions as the independent components which
define solution set 1, because every component which
belongs to solution set 1 can be expressed in terms of these
functions, the constant c, and trigonometric functions.
Moreover, the derivative ∂rΓϕ

rϕ can be expressed in terms
of the independent functions. The same is not true for the
derivatives ∂rΓt

rr and ∂rΓr
rr of the independent compo-

nents Γt
rr, Γr

rr: These derivatives remain undetermined and
potentially render these components dynamical.
These are the defining properties of solution set 1, and

they play a crucial role in simplifying the symmetry
reduced field equations in Sec. IV. We therefore summarize
all properties of solution set 1 in the following table for later
convenience and reference: Note that alternatively one
could also define Γϕ

rϕ as an arbitrary function, and in
turn fix Γt

rr by solving (3.29) for it. This can always be
done as c ≠ 0, and one obtains

Γt
rr ¼

1

c
ð∂rΓϕ

rϕ − Γϕ
rϕðΓr

rr − Γϕ
rϕÞÞ: ð3:30Þ

One could thus also choose Γϕ
rϕ as a possible connection

degree of freedom, which fixes Γt
rr, but this is just an issue

of the freely chosen parametrization of the connection.

D. Solution set 2

The algebraic equations (3.20) and (3.22) admit a second
set of solutions, which is explicitly given by

Γr
tr ¼ cþ cð2c− kÞΓt

θθ Γt
tr ¼ ð2c− kÞ Γ

t
θθ

Γr
θθ
ð1þ cΓt

θθÞ

Γr
tt ¼ −cð2c− kÞΓr

θθ Γϕ
rϕ ¼ −

1þ cΓt
θθ

Γr
θθ

; ð3:31Þ

where we have to assume Γr
θθ ≠ 0 in order to obtain well-

defined expressions. Just as in the previous subsection, we
insert the obtained solutions into the differential equa-
tions (3.23). This leads to six complicated looking equa-
tions. None of these equations is algebraic, and, moreover,
they are linearly dependent. After some elementary manip-
ulations, one finally finds the following two independent
expressions:

∂rΓt
θθ ¼−

Γt
θθ

Γr
θθ
½1þΓt

θθð3c− kþð2c− kÞΓt
θθÞ�−Γt

rrΓr
θθ

∂rΓr
θθ ¼−1− cΓt

θθð2þð2c− kÞΓt
θθÞ−Γr

rrΓr
θθ: ð3:32Þ

There are now no more equations, constraints, or
integrability conditions we can exploit. Hence, we find
that in solution set 2 every component of the stationary,
spherically symmetric, torsionless, and flat connection
can be expressed in terms of two arbitrary constants,
c; k ∈ R, the four functions Γt

rrðrÞ;Γt
θθðrÞ;Γr

rrðrÞ;
Γr

θθðrÞ, with Γr
θθ ≠ 0, and trigonometric functions.

Just as in the previous subsection, we refer to the
above four functions as the independent connection
components which define solution set 2. The derivatives
∂rΓt

rr and ∂rΓr
rr remain undetermined, while the

derivatives ∂rΓt
θθ and ∂rΓr

θθ can be expressed in terms
of the independent connection components via (3.32).
Table II summarizes all properties of solution set 2 for
later convenience and reference.
Instead of regarding Γt

rr and Γr
rr as being the free

functions, which then fix the first derivatives of Γt
θθ and
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Γr
θθ, one could define the latter two as free functions, and

in turn determine the former by the equations,

Γt
rr ¼

1

Γr
θθ

�
−
Γt

θθ

Γr
θθ
½1þ Γt

θθð3c − k

þ ð2c − kÞΓt
θθÞ� − ∂rΓt

θθ

�
ð3:33Þ

Γr
rr ¼

1

Γr
θθ
ð−1 − cΓt

θθð2þ ð2c − kÞΓt
θθÞ − ∂rΓr

θθÞ:

ð3:34Þ

Hence the (potential) connection degrees of freedom of Γt
rr

and Γr
rr may also be described by Γt

θθ and Γr
θθ, but this

again just a choice of parametrization.
Finally, we observe that the spherical connection used

in [8,9] falls into solution set 2. Indeed, if we choose
fc;k;Γt

rr;Γt
θθ;Γr

rr;Γr
θθg¼f0;0;0;0;0;−rg, then the only

nonvanishing connection components of solution set 2 are

Γr
θθ ¼−r Γr

ϕϕ ¼−rsin2θ Γθ
rθ ¼

1

r

Γθ
ϕϕ ¼−cosθ sinθ Γϕ

rϕ ¼
1

r
Γϕ

θϕ ¼ cotθ;

ð3:35Þ

which agrees precisely with the connection used in [8,9].

E. Solution set 1 as the double scaling limit
of solution set 2

Solution sets 1 and 2 have certain similarities, even
though solution set 2 has more free functions. We will now
show that solution set 1 can indeed be obtained from
solution set 2 by a double scaling limit.
The key component to consider is Γϕ

rϕ of solution
set 2, which can be expressed in terms of Γt

θθ and Γr
θθ (see

Table II). For solution set 1, Γϕ
rϕ is an arbitrary free

function of r. These facts suggest the following para-
metrization of Γt

θθ and Γr
θθ:

Γt
θθ ¼ −

1

c
þ λ

c
Φ and Γr

θθ ¼ λΨ; ð3:36Þ

where we have to assume c ≠ 0, λ is a parameter, andΦ and
Ψ are arbitrary functions of r. With this parametrization one
obtains in the λ → 0 limit and under the assumption that
k ¼ c,

lim
λ→0

Γϕ
rϕ ¼ −

Φ
Ψ
: ð3:37Þ

In words: The component Γϕ
rϕ of solution set 2 is mapped

to an arbitrary function of r, just as required by solution set
1. The parametrization (3.36) also ensures that the other
nontrivial components of solution set 2 are correctly
mapped to their counterparts in solution set 1,

limλ→0Γt
ttjk¼c ¼ c limλ→0Γt

trjk¼c ¼ −
Φ
Ψ

limλ→0Γt
ϕϕjk¼c ¼ −

sin2θ
c

limλ→0Γr
ttjk¼c ¼ 0 limλ→0Γr

trjk¼c ¼ 0 limλ→0Γr
ϕϕjk¼c ¼ 0

limλ→0Γθ
rθjk¼c ¼ −

Φ
Ψ
: ð3:38Þ

What remains to be checked is whether the double scaling
limit also allows us to recover Eq. (3.29) from the
Eqs. (3.32). Indeed, when plugging the parametrization
(3.36) into (3.32), one finds

∂rΦ ¼ Φ2

Ψ
− cΓt

rrΨ − λ
Φ3

Ψ
∂rΨ ¼ −Γr

rrΨ − λΦ2: ð3:39Þ

In turn, these relations can be used to show that

limλ→0∂rΓϕ
rϕjk¼c ¼−∂r

�
Φ
Ψ

�
¼ cΓt

rrþΓϕ
rϕðΓr

rr −Γϕ
rϕÞ:

ð3:40Þ
That is to say: We correctly recover Eq. (3.29) of solution
set 1. Thus, we have succeeded in showing that solution set

1 can be obtained from solution set 2 via a double scaling
limit. We can therefore regard solution set 2 as the most
general parametrization of a connection which is stationary,
spherically symmetric, torsionless, and flat.
There is also another point of view one can take, which

regards the choice of free connection variables. The main
difference between solution sets 1 and 2 is the para-
metrization; solution set 1 is given by the free function
Γϕ

rϕ, while in solution set 2 Γt
θθ is free and Γϕ

rϕ is fixed. In
order to see in a different way that solution set 1 can be
obtained from 2, we switch the parametrization in set 2, i.e.,
we now leave Γϕ

rϕ free and set

Γt
θθ ¼ −

1þ Γr
θθΓϕ

rϕ

c
: ð3:41Þ

With this, one obtains the remaining components of the
connection in solution set 2 as
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Γt
tt ¼ cþ ð2c − kÞΓr

θθΓϕ
rϕ; Γt

tr ¼
2c − k

c
ð1þ Γr

θθΓϕ
rϕÞΓϕ

rϕ; Γr
tt ¼ −cð2c − kÞΓr

θθ

Γr
tr ¼ k − c − ð2c − kÞΓr

θθ Γϕ
rϕΓr

ϕϕ ¼ sin2θΓr
θθ Γθ

tθ ¼ Γϕ
tϕ ¼ c

Γθ
rθ ¼ Γϕ

rϕ Γt
θθ ¼ −

1þ Γϕ
rϕΓr

θθ

c
Γt

ϕϕ ¼ −sin2θ
1þ Γϕ

rϕΓr
θθ

c
Γθ

ϕϕ ¼ − cos θ sin θ Γϕ
θϕ ¼ cot θ: ð3:42Þ

The flatness conditions in this parametrization becomes (3.29) and

∂rΓr
θθ ¼ −1þ ð1þ Γr

θθΓϕ
rϕÞ

�
2 −

�
2 −

k
c

�
ð1þ Γr

θθΓϕ
rϕÞ

�
− Γr

rrΓr
θθ: ð3:43Þ

Now in this parametrization of solution set 2 we first
observe that naively we would now want to set c ≠ 0; but of
course this limit can be taken without a problem, as the
parametrization from above shows. This demonstrates that
one has to choose the correct parametrizations for certain
limits. We also see in this parametrization that we can now
safely set Γr

θθ ¼ 0 and k ¼ c to obtain solution set 1,
where we must now, after taking these limits, demand
c ≠ 0. Note that if one puts Γr

θθ ¼ 0 one has to put k ¼ c
as well to have still zero curvature. This shows that solution
set 1 is contained in set 2, modulo the parametrization.

F. Diagonalizing the metric, canonical S2 part, and
transformation behavior of the solution sets

Let us recall that our goal is to study the field equations
of fðQÞ gravity for a stationary and spherically symmetric
affine geometry ðM; gμν;Γα

μνÞ. To that end, we have
performed a symmetry reduction of the connection in
Sec. III A and we have implemented the postulates of
symmetric teleparallelism in the Secs. III A and III B. This
led us to the two solution sets studied in the Secs. III C and
III D. These two sets arose from demanding that the
Riemann tensor of the affine connection vanishes, and
both sets represent a stationary, spherically symmetric,
torsionless, and flat connection. Moreover, we have seen in
Sec. III E that solution set 1 is the double scaling limit
of solution set 2, and this set cannot be further simp-
lified using symmetries or the postulates of symmetric
teleparallelism.
However, what we can try to further simplify is the

metric. At the beginning of Sec. III, we have stated that the
most general metric which is spherically symmetric and
stationary takes the form (3.3). This metric can be brought
into a simpler form via the application of a diffeomorphism
which eliminates the off diagonal component gtr and which
brings the S2 part of the metric into canonical form (i.e., it
maps gθθ to r2). Of course, if we apply this diffeomorphism
to the metric, we also need to apply it to the connection.
What we will show now, is that the metric can always
be brought into the described form and that the

diffeomorphism which allows us to do so maps the solution
sets of the connection onto themselves. In other words: The
diffeomorphism which simplifies the metric preserves the
structure of the solution sets.
To begin with, we notice that the symmetry reduced

metric (3.3) describes a warped geometry. This means the
following: Let ðB; hÞ and ðF ; σÞ be (pseudo-) Riemannian
manifolds, where B is called the base space andF the fiber.
Furthermore, let f∶B → R>0 be a strictly positive function
on the base space, called the warping factor. A warped
geometry is then the manifold M ≔ B ×f F which is the
topological space B × F endowed with the metric tensor
g ≔ h ⊕ fσ. Concretely, this means that the metric on the
total space M can be written as a metric tensor on B plus
a metric tensor on F times a positive function which
depends on the coordinates of B. In our case, we have
B ¼ R ×R>0, F ¼ S2, and fðt; rÞ ¼ gθθðrÞ. Notice that it
follows from the fact that the signature of (3.3) is
ð−;þ;þ;þÞ that gθθ is a strictly positive function of r.
We can therefore write the metric (3.3) equivalently as the
warped metric,

g ¼ httdt2 þ 2htrdtdrþ hrrdr2 þ fðrÞdΩ2; ð3:44Þ

where dΩ2 ≔ dθ2 þ sin2 θdϕ is the canonical metric on
the unit 2-sphere S2. Given the fact that f is a strictly
positive function, we can write it in the suggestive form
fðrÞ ¼ ρðrÞ2. This is merely a notational convention, and
we have not yet changed anything. But now we choose ρ as
a new coordinate, and we perform the change of coor-
dinates on the base space B from ðt; rÞ to ðt; ρÞ. This is a
rather trivial manipulation and the metric tensor in the new
coordinate system reads

g ¼ h0ttdt2 þ 2h0tρdtdρþ h0ρρdρ2 þ ρ2dΩ2; ð3:45Þ

where the transformed metric components are given by

h0tt ¼ htt; h0tρ ¼
�∂r
∂ρ

�
htr; h0ρρ ¼

�∂r
∂ρ

�
2

hrr: ð3:46Þ
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Hence, we can always bring the S2 part of the metric into
canonical form as long as ∂ρ

∂r ≡ 1
2
ffiffiffiffiffi
gθθ

p ∂gθθ∂r ≠ 0, which is

tantamount to demanding that gθθ is a monotonous function
of r. Let us denote the diffeomorphism which brings the
metric into the form (3.45) by ϕ1∶B → B and let us now
ask if there exists a second diffeomorphism ϕ2∶B → B
which eliminates the off diagonal term h0tρ. To that end, we
assume that ϕ2 only acts on t in the sense that it generates
the new coordinate system ðτ; ρÞ from ðt; ρÞ. Under this
assumption, the 1-form dt transforms as

dt ¼
�∂t
∂τ
�
dτ þ

�∂t
∂ρ

�
dρ: ð3:47Þ

Moreover, we demand that the B-part of the metric tensor in
the new coordinates takes the form,

gjB ¼ h¼! h̃ττdτ2 þ h̃ρρdρ2; ð3:48Þ

for some (not further specified) functions h̃ττ and h̃ρρ.
By inserting (3.47) into (3.48) we obtain the following
conditions: 8>>><>>>:

h0tt ¼! h̃ττð∂τ∂tÞ2

h0tρ ¼! h̃ττð∂τ∂tÞð∂τ∂ρÞ
h0ρρ ¼! h̃ρρ þ h̃ττð∂τ∂ρÞ2:

ð3:49Þ

These are three equations for the three unknown functions
τðt; ρÞ, h̃ττ, and h̃ρρ. Hence, the problem is in principle
solvable, provided one specifies initial conditions for
τðt; ρÞ. We can therefore eliminate the off diagonal term
h0tρ. All in all, we have defined two diffeomorphisms on
the base space B which diagonalize the metric and bring
the S2 part into canonical form. We can also combine
these two diffeomorphisms into ϕ2∘ϕ1∶B → B, with
ðϕ2∘ϕ1Þðt; rÞ ¼ ðτ; ρÞ.
In the sequel, we will drop all primes and tildes

and denote the metric components again by gμν, rather
than hμν. Also, we change notation and write ðt; rÞ
for ðτ; ρÞ (this is for simplicity and should not cause any
confusion). After applying ϕ2∘ϕ1, the metric can then be
written as

gμν ¼

0BBB@
gtt 0 0 0

0 grr 0 0

0 0 r2 0

0 0 0 r2 sin2 θ

1CCCA: ð3:50Þ

This is the form of the metric which we shall use from now
on and which will greatly simplify the field equations to
be studied in Sec. IV. However, we also need to determine

how the connection transforms under ϕ2∘ϕ1. In general, a
connection transforms as

Γ̃α
μν ¼

∂x̃α
∂xβ

∂xρ
∂x̃μ

∂xσ
∂x̃ν Γ

β
ρσ þ

∂x̃α
∂xλ

∂2xλ

∂x̃μ∂x̃ν : ð3:51Þ

under coordinate transformations and this could potentially
spoil the structure of the solution sets. However, notice that
ϕ2∘ϕ1 only acts on the base space B and that it leaves the
fiber F ¼ S2 invariant. Intuitively, we would therefore
expect that our diffeomorphism is compatible with spheri-
cal symmetry. Indeed, it is obvious that the metrics (3.3)
and (3.50) possess the same Killing vectors and hence share
the same isometry group. This confirms that the diffeo-
morphism ϕ2∘ϕ1 respects spherical symmetry. Moreover, a
diffeomorphism can neither produce curvature nor torsion.
But if Γ̃α

μν, i.e., the transformed connection, is invariant
under the isometries generated by the Killing vector fields
and if it is torsionless and flat, it gives rise to the same two
solution sets we have discussed in previous subsections.
Hence, we see that the diffeomorphism ϕ2∘ϕ1 maps the
solution sets onto themselves. This can also be confirmed
by a direct computation, see Appendix A.
The importance of this result is that it allows us to use the

simpler form of the metric, given by Eq. (3.50), together
with solution sets 1 and 2 for the connection. The metric in
the form (3.50) together with solution sets 1 and 2 for the
connection constitute the simplest and yet most general
metric-affine geometries which are stationary, spherically
symmetric, torsionless, and flat.

IV. SYMMETRY REDUCED FIELD EQUATIONS
FOR THE METRIC AND THE CONNECTION

In Sec. III we have performed a detailed symmetry
reduction of the metric-affine geometry ðM; gμν;Γα

μνÞ, and
we have found that the simplest—and yet most general
form—of a metric-affine geometry which is stationary,
spherically symmetric, torsionless, and flat is given by the
metric (3.50) and the connection has to be chosen such that
it belongs either to solution set 1 (see Table I) or to solution
set 2 (see Table II).
We now use the metric-affine geometries described

above to perform a symmetry reduction of the metric
and connection field equations (2.8). We first discuss the
symmetry reduced field equations for solution set 2, since,
as we have seen in Sec. III E, solution set 1 can be obtained
from solution set 2 by means of a double scaling limit.
Hence, once we understand the field equations for solution
set 2, we can immediately derive consequences for the field
equations of solution set 1.
However, before studying the symmetry reduction in

detail, we have a brief look at the structure of the field
equations. For both solution sets, the field equations have
the following form:
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Structure of metric field equations∶

0BBB@
Mtt Mtr 0 0

Mtr Mrr 0 0

0 0 Mθθ 0

0 0 0 Mθθsin2θ

1CCCA

Structure of connection field equations∶

0BBB@
Ct
Cr
0

0

1CCCA: ð4:1Þ

This is true for the vacuum case as well as in the presence of spherically symmetric matter distributions. What we observe is
that there are at most four independent metric field equations and at most two independent connection field equations.
Moreover, it turns out that we can learn a lot just by looking at the off diagonal equation Mtr. In the following subsection
we will studyMtr for solution set 2, and we will be able to derive necessary conditions for the existence of solutions which
go beyond Schwarzschild-de Sitter-Nordström. We also note here for completeness the forms of the scalar Q. For solution
set 1 we find

Q ¼ gttð2grrð3rðcrΓt
rr þ Γϕ

rϕðrΓr
rr − rΓϕ

rϕ þ 2ÞÞ − 2grr − 2Þ − 3r2Γϕ
rϕ∂rgrrÞ þ rgrr∂rgttð3rΓϕ

rϕ − 4Þ
2r2ðgrrÞ2gtt

; ð4:2Þ

TABLE II. A concise summary of all the properties which define solution set 2.

Independent
components

All connection components of solution set 2 can be expressed in terms of two
arbitrary constants, c; k ∈ R, the four functions Γt

rrðrÞ;Γt
θθðrÞ;Γr

rrðrÞ;Γr
θθðrÞ,

with Γr
θθðrÞ ≠ 0, and in terms of trigonometric functions.

Nonzero
components

There are 16 nonzero components in solution set 2 (all other components vanish):
The four independent functions Γt

rr, Γt
θθ, Γr

rr, Γr
θθ and

Γt
tt ¼ −cþ k − cð2c − kÞΓt

θθ Γt
tr ¼ ð2c−kÞΓt

θθð1þcΓt
θθÞ

Γr
θθ

Γt
ϕϕ ¼ sin2 θΓt

θθ

Γr
tt ¼ −cð2c − kÞΓr

θθ Γr
tr ¼ cþ cð2c − kÞΓt

θθ Γr
ϕϕ ¼ sin2 θΓr

θθ

Γθ
tθ ¼ c Γθ

rθ ¼ − 1þcΓt
θθ

Γr
θθ

Γθ
ϕϕ ¼ − cos θ sin θ

Γϕ
tϕ ¼ c Γϕ

rϕ ¼ − 1þcΓt
θθ

Γr
θθ

Γϕ
θϕ ¼ cot θ

Derivatives of
independent
components

Of the four independent functions, the r-derivatives of Γt
θθ and Γr

θθ can be expressed as
∂rΓt

θθ ¼ − Γt
θθ

Γr
θθ
½1þ Γt

θθð3c − kþ ð2c − kÞΓt
θθÞ� − Γt

rrΓr
θθ ∂rΓr

θθ ¼ −1 − cΓt
θθð2þ ð2c − kÞΓt

θθÞ − Γr
rrΓr

θθ,
while ∂rΓt

rr and ∂rΓr
rr cannot be expressed in terms of other components.

TABLE I. A concise summary of all the properties which define solution set 1.

Independent
components

All connection components of solution set 1 can be expressed in terms of the three
independent functions Γt

rrðrÞ;Γr
rrðrÞ;Γϕ

rϕðrÞ, the real constant c ≠ 0, and trigonometric functions.

Nonzero
components

There are twelve nonzero components in solution set 1 (all other components vanish),
Γt

rr Γr
rr Γϕ

rϕ

Γt
tt ¼ c Γt

tr ¼ Γϕ
rϕ Γt

θθ ¼ − 1
c

Γt
ϕϕ ¼ − sin2 θ

c
Γθ

tθ ¼ c Γθ
rθ ¼ Γϕ

rϕ

Γθ
ϕϕ ¼ − cos θ sin θ Γϕ

tϕ ¼ c Γϕ
θϕ ¼ cot θ

Derivatives of
independent
components

Of the three independent functions, the r-derivative of Γϕ
rϕ can be expressed

as ∂rΓϕ
rϕ ¼ cΓt

rr þ Γϕ
rϕðΓr

rr − Γϕ
rϕÞ, while ∂rΓt

rr and ∂rΓr
rr cannot be expressed in terms

of other components.
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while for solution set 2 we get

Q ¼ 1

2r2grr2gtt2Γr
θθ

2
ðgrr2Γr

θθ
2ðcr2Γr

θθ∂rgttðk − 2cÞ − 2crgttð2c − kÞðcrΓt
θθð2cΓt

θθ − kΓt
θθ þ 2Þ

þ Γr
θθðrΓr

rr − 2Þ þ rÞ þ 4gtt2ðcΓt
θθð2cΓt

θθ − kΓt
θθ þ 2Þ þ Γr

θθΓr
rrÞ − 2gttΓr

θθ∂rgttÞ
þ grrgttð2gttðΓr

θθ
2ðr2Γt

rrð2cΓt
θθðk − 2cÞ þ kÞ − 2Þþ

þ rΓr
θθðcΓt

θθ þ 1ÞðrΓr
rr þ 2Þð2cΓt

θθ − kΓt
θθ − 2Þ − ðΓt

θθ
2ðk − 2cÞ2 þ 2ÞðcrΓt

θθ þ rÞ2−
− Γr

θθ
3∂rgrrÞ þ rΓr

θθðcrΓr
θθ

2∂rgrrð2c − kÞ − ∂rgttðrðΓt
θθðcΓt

θθðk − 2cÞ þ kÞ þ 2Þ þ 4Γr
θθÞÞÞ

þ r2gtt2Γr
θθ∂rgrrðcΓt

θθ þ 1ÞðΓt
θθðk − 2cÞ þ 2ÞÞ: ð4:3Þ

A. Off diagonal metric field equation for solution set 2

For solution set 2, the off diagonal metric field equation
takes the form,

Mtr ¼
1

2
ðk − 2cð2c − kÞΓt

θθÞ∂rQf00ðQÞ ¼ 0; ð4:4Þ

which is valid in the vacuum as well as in the electro-
vacuum case. This equation can be solved in three distinct
ways which we will discuss in turn. The three different
possible solutions are
(1) ∂rQ ¼ 0;
(2) f00ðQÞ ¼ 0;
(3) 1

2
ðk − 2cð2c − kÞΓt

θθÞ ¼ 0.
The first option is tantamount to saying that the non-
metricity scalar, when evaluated on a solution of the field
equations, is constant. But this cannot yield a solution to the
field equations which goes beyond Schwarzschild-de
Sitter-Nordström. This can be readily seen from the
alternative form (2.10) of the metric field equations. Let
us rewrite these equations here for convenience,

f0ðQÞGμνþ
1

2
gμνðfðQÞ−f0ðQÞQÞþ2f00ðQÞPα

μν∂αQ¼Tμν:

ð4:5Þ

If we assume that a solution to the connection and metric
field equations exists such that Qsol ¼ const—we will see
in Sec. V that such solutions indeed exist, but one can also
use that Q is linear in Γr

rr, hence one can solve the
equations Q ¼ Qsol for Γr

rr for any Qsol ∈ R to obtain
such solutions by a choice of the connection—then the last
term on the left-hand side of (4.5) vanishes, and we are left
with

Gμν þ Λeffgμν ¼ T̄μν; ð4:6Þ

where, as we recall,Gμν is the standard Einstein tensor with
respect to the Levi-Civita connection and where we have
defined

Λeff ≔
1

2

fðQsolÞ − f0ðQsolÞQsol

f0ðQsolÞ
T̄μν ≔

1

f0ðQsolÞ
Tμν: ð4:7Þ

The first term, Λeff, is clearly constant and simply repre-
sents an effective cosmological constant, while T̄μν is just a
rescaled energy-momentum tensor. Notice that dividing by
f0 is allowed since we need to assume f0 ≠ 0 in order to
obtain nontrivial and self-consistent field equations. We
therefore reach the conclusion that assuming Qsol ¼ const
can only produce the Schwarzschild-deSitter-Nordström
solution for arbitrary f.
Let us now consider the second option, namely that the

off diagonal field equation Mtr is solved by f00ðQÞ ¼ 0. It
is important to notice that this equation has to hold on a
solution of all field equations; i.e., we should write
f00ðQsolÞ ¼ 0. We can now easily show that when
f00ðQsolÞ ¼ 0 and Qsol ≠ const., then it follows that f is
necessarily of the form fðQÞ ¼ aQþ b, where a and b are
real constants and this form of f holds everywhere, not just
on solutions. To see this, let us first assume that fðQÞ does
not have the above form. Then it follows that f00ðQsolÞ ¼ 0
is an equation which will be satisfied for at least one
Qsol [at least one solution needs to exist, otherwise
f00ðQsolÞ ≠ 0, but the solution needs not be unique]. But
if we fix Qsol via this equation, we find that Qsol is a
constant. Hence, we fall back into the GR regime for
arbitrary f, which we have already discussed above. If, on
the other hand side, we have fðQÞ ¼ aQþ b, then
f00ðQsolÞ ¼ 0 is trivially satisfied andQsol is not a constant.
This is what we wanted to prove.
We reach the conclusion that solving Mtr ¼ 0 via

f00ðQÞ ¼ 0 automatically leads us into the symmetric
teleparallelism sector of fðQÞ gravity. In particular, this
means that we can only get the Schwarzschild-de Sitter-
Nordström solution and nothing else. There is only one
little caveat, which also applies to solving Mtr via
∂rQ ¼ 0: We have only used the metric field equations
but completely neglected the connection field equations.
However, it is easy to see that these equations will not give
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rise to any constraints or inconsistencies which would alter
the conclusions we have reached thus far. In fact, the
connection field equations can be written in the schematic
form

Ct¼Að∂rQÞf00ðQÞþBð∂2
rQÞf00ðQÞþCð∂rQÞ2fð3ÞðQÞ¼0

Cr¼Dð∂rQÞf00ðQÞþEð∂2
rQÞf00ðQÞþFð∂rQÞ2fð3ÞðQÞ¼0;

ð4:8Þ

where A, B,C,D, E, and F are complicated functions of the
metric components, their derivatives, and connection com-
ponents. What matters is that the connection equations can
be written as polynomials in ∂rQ, f00ðQÞ, and their higher
order derivatives, as indicated by Eq. (4.8). This makes it
obvious that the solutions ∂rQ ¼ 0 or f00ðQÞ ¼ 0 to Mtr
automatically also satisfy the connection field equations.
Hence, no further constraints appear and the equations
are self-consistent. We can therefore confirm that solving
Mtr ¼ 0 via ∂rQ ¼ 0 or f00ðQÞ ¼ 0 only gives the
Schwarzschild-deSitter-Nordström solution (for arbitrary
f in the case of ∂rQ ¼ const, while f00ðQÞ simply reduces
fðQÞ to standard symmetric teleparallelism, as one would
expect).
What remains to be examined is the third option.

Namely, that Mtr ¼ 0 is solved by

k − 2cð2c − kÞΓt
θθ ¼ 0: ð4:9Þ

This is a constraint equation for the connection, and we
will see shortly that it does indeed eliminate 1 of 2 potential
degrees of freedom of the connection. To that end, we solve
(4.9) for Γt

θθ, which gives us

Γt
θθ ¼

k
2cð2c − kÞ for c ≠ 0 and k ≠ 2c: ð4:10Þ

Notice that since c and k are constants, Γt
θθ is now

constrained to be a constant. In particular, this means that
its derivative vanishes. But its derivative can also be written
in terms of other connection components (cf. last row of
Table II). We therefore obtain the condition,

0 ¼ −
kð8c2 þ 2ck − k2Þ
8c2ð2c − kÞ2Γr

θθ
− Γt

rrΓr
θθ ⇔ Γt

rr

¼ −
kð8c2 þ 2ck − k2Þ
8c2ð2c − kÞ2ðΓr

θθÞ2
: ð4:11Þ

This expression for Γt
rr is well defined since solution set 2

requires Γr
θθ ≠ 0 for its very definition, and we already had

to assume c ≠ 0 and k ≠ 2c in order to obtain (4.10).
Hence, what we find is that we can fix two of the four free
functions of solution set 2 in terms of other connection
components. More importantly, the constraint equa-
tion (4.9) allowed us to fix the component Γt

rr, whose

derivative was up to now not known. This means that up to
now, Γt

rr was a potential degree of freedom since its
derivative could in principle be determined by one of the
field equations. But since Γt

rr is now given by (4.11),
whose derivatives can all be determined without using the
field equations, it cannot become dynamical, and it is
therefore not a physical degree of freedom. Hence, the
constraint equation (4.9) has effectively removed a poten-
tial degree of freedom. The only connection component
which can now become dynamical is Γr

rr—or alternatively
Γr

θθ—because its derivative is undetermined and can
therefore not be eliminated from the field equations.
There is just a little caveat: Our considerations only hold

as long as c ≠ 0 and k ≠ 2c. To remedy this shortcoming,
i.e., to see what happens for c ¼ 0, we can solve the
constraint equation (4.9) for k,

k ¼ 4c2Γt
θθ

1þ 2cΓt
θθ

for 1þ 2cΓt
θθ ≠ 0: ð4:12Þ

Just as before, we can compute the derivative of (4.12) and
express the derivative of Γt

θθ in terms of other connection
components, using the relation shown in Table II. This
gives us again an equation which we can solve for a
connection component, and we obtain

Γt
rr ¼ −

Γt
θθ þ 5cðΓt

θθÞ2 þ 4c2ðΓt
θθÞ3

ð1þ 2cΓt
θθÞðΓr

θθÞ2
; ð4:13Þ

which is again well-defined under the assumptions for
which (4.12) is valid. The Eqs. (4.12) and (4.13) have the
advantage that they hold for c ¼ 0 and for k ¼ 2c. Both
options imply

c ¼ k ¼ 0 and Γt
rr ¼ −

Γt
θθ

ðΓr
θθÞ2

: ð4:14Þ

Hence, it is true in full generality1 that the constraint
equation (4.9) removes 1 degree of freedom, and only Γr

rr
is left as a candidate for a propagating degree of freedom
stemming from the connection.
Before concluding this subsection, we remark that the

connection field equations can be simplified by using
the constraint equation (4.9). In fact, one can show that
the equation Ct can be written as

Ct ¼ Aðk − 2cð2c − kÞΓt
θθÞ − Bð2cð2c − kÞ∂rΓt

θθÞ ¼ 0;

ð4:15Þ

1Notice that (4.12) demands 1þ 2cΓt
θθ ≠ 0, and it seems that

we have to treat this case separately. But this is not true: If
Γt

θθ ¼ − 1
2c, then the constraint equation (4.9) reduces to c ¼ 0,

which leads to an inconsistency. Hence, 1þ 2cΓt
θθ ¼ 0 is not

admissible, and we have therefore already found the most general
solution to the constraint equation.
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where A and B are functions of metric components and
their derivatives. The coefficient of A is simply the
constraint equation (4.9), while the coefficient of B is
the derivative of the constraint equation. This means that
once we have chosen a connection which satisfies the

constraint equation (4.9), the connection field equation Ct is
automatically satisfied. The equation Cr is not trivially
satisfied and it contains derivatives of Γr

rr. We therefore
find that after imposing (4.9), the field equations have the
following structure:

New structure of metric field equations∶

0BBB@
Mtt 0 0 0

0 Mrr 0 0

0 0 Mθθ 0

0 0 0 Mθθsin2θ

1CCCA

New structure of connection field equations∶

0BBB@
0

Cr
0

0

1CCCA: ð4:16Þ

This means there are at most three independent metric field
equations and one connection field equation for the
dynamical variables fgtt; grr;Γr

rrg. Alternatively, one
can trade Γr

rr for Γr
θθ and regard the latter as the dynamical

degree of freedom stemming from the connection.
The next natural step is to check the internal consistency

of these equations. This is necessary since the number of
field equations is larger than the number of dynamical
variables and it is therefore not clear whether these
equations can be solved consistently. In Sec. IV C we
show the self-consistency of the field equations, and we
will see on an abstract level that they produce solutions
which go beyond Schwarzschild-deSitter-Nordström.
However, before doing so, in Sec. IV B we briefly

discuss the implications of Mtr ¼ 0 for solution set 1.
In particular, we show that solution set 1 is not viable when
looking for solutions to fðQÞ gravity which go beyond GR.

B. Off diagonal metric field equation
for solution set 1

In the previous subsection we have found that the
off diagonal metric field equation can be solved in
three distinct ways. The different options which solve
Mtr ¼ 0 can be summarized as follows:
(1) ∂rQsol ¼ 0: If Mtr ¼ 0 is solved by ∂rQsol ¼ 0, or,

in other words, if Q is constant when evaluated on a
solution of the field equations—again one can see
from the form of Q that this can be achieved by
solving Q ¼ Qsol for Γr

rr—then it follows that one
can only find the Schwarzschild-de Sitter-Nordström
solution for arbitrary f (as long as f satisfies f0 ≠ 0,
which is required in order to obtain nontrivial field
equations).

(2) f00ðQsolÞ ¼ 0: If the second derivative of f is zero
when evaluated on a solution of the field equations,
and assuming that ∂rQsol ≠ 0, then it follows that f

is an affine function; fðQÞ ¼ aQþ b. This means we
are in the GR sector of fðQÞ gravity, and it naturally
follows that the only solution is Schwarzschild-de
Sitter-Nordström.

(3) Constraint (4.9): The constraint equation eliminates
two of the four free functions of solution set 2, and
we are left with 1 potential degree of freedom
stemming from the connection; Γr

rr. This is the
only option which allows us to get solutions to fðQÞ
gravity which go beyond GR. But from Sec. III E we
know how to obtain solution set 1 from set 2, in
particular we have to set Γt

θθ ¼ −1=c and k ¼ c
with now c ≠ 0. (4.9) then becomes the Eq. 3c ¼ 0,
which cannot be fulfilled. This is thus not an option.

Only the first two options are viable. Hence, solution set 1
can only give rise to the Schwarzschild-de Sitter-Nordström
solution.

C. Self-consistency of the remaining field equations
for solution set 2

In Sec. IVA we have seen that the constraint equa-
tion (4.9) is the only possibility to solve Mtr ¼ 0 which
does not immediately force the Schwarzschild-de Sitter-
Nordström solution on us. In particular, we have seen that
there are two options to solve the constraint (4.9). Both
options and the assumptions which go into them are
summarized in Table III for convenience.
What we need to do now is to show that the remaining

field equations are self-consistent and that they can indeed
produce solutions which go beyond GR. The consistency of
the equations is not immediately obvious since we have
potentially four independent equations for the 3 degrees of
freedom fgtt; grr;Γr

rrg. Moreover, we wish to rewrite the
equations in the simplest possible form so that they can, at
least in principle, be integrated. This needs to be done for
each option in Table III individually, but the strategy to get
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to the final results is always the same. This method works in
particular when including the electrovacuum.
(1) Choose one of the options from Table III and

simplify all equations and the nonmetricity scalar
Q using the chosen relations.

(2) Solve the Q scalar for Γr
rr. (This is the only weak

point of the strategy as there are scenarios in which
this step fails. We discuss the ramifications of this
failure in the next subsection.)

(3) Replace every Γr
rr in the metric and connection field

equations by the expression obtained in 2. In other
words: We trade Γr

rr in each equation for Q and we
treat Q as a degree of freedom. This step will
produce much more compact expressions.

(4) For each option, the metric field equations Mtt and
Mrr only contain first order derivatives of the

metric. Solve these equations for ∂rgtt and ∂rgrr.
This will produce expressions of the form,2

∂rgtt ¼ function1ðgtt; grr;Q; ∂rQ; CCÞ
∂rgrr ¼ function2ðgtt; grr;Q; ∂rQ; CCÞ; ð4:17Þ

where CC stands for “Connection Components.”
(5) The metric field equation Mθθ contains first order

derivatives of the metric and the second order
derivative ∂2

rgtt. Use (4.17) to eliminate the first
order derivatives and then solve Mθθ for ∂2

rgtt. This
leads to an expression of the form,

∂2
rgtt ¼ function3ðgtt; grr;Q; ∂rQ; CCÞ: ð4:18Þ

(6) Since we solved Q for Γr
rr and used the resulting

expression to simplify all field equations, the con-
nection equation Cr is a second order differential
equation for Q. Moreover, it contains first order
derivatives of the metric. Use (4.17) to get rid of the
first order derivatives of the metric and solve the
connection equation for ∂2

rQ.
(7) We can derive a consistency condition for the field

equations by looking at the Eqs. (4.17) and (4.18). In
fact, the r-derivative of ∂rgtt should be equal to ∂2

rgtt
and this leads to the consistency condition,

∂r function1ðgtt; grr;Q; ∂rQ; CCÞ ¼! function3ðgtt; grr;Q; ∂rQ; CCÞ: ð4:19Þ
Notice that function1 and function3 depend on the same arguments, but the derivative operator on the left hand side
generates an expression of the form,

∂r function1 ¼ function4ðgtt; grr;Q; ∂rQ; CC; ∂rgtt; ∂rgrr; ∂2
rQ; ∂rCCÞ: ð4:20Þ

The first order derivatives of the metric can be eliminated using (4.17) and the derivatives of the connection
components are all known: A quick look at Table II reveals that we know how to express all derivatives of connection
components, except ∂rΓt

rr and ∂rΓr
rr. But the options described in Table III all allow us to express Γt

rr in terms of
other connection components, and hence we also know how to express its derivative. Moreover, Γr

rr has been traded
for Q in all equations, hence there are no derivatives of Γr

rr which we need to worry about and the consistency
condition (4.19) becomes

function4ðgtt; grr;Q; ∂rQ; ∂2
rQ; CCÞ ¼! function3ðgtt; grr;Q; ∂rQ; CCÞ: ð4:21Þ

(8) Observe that the left-hand side of the consistency condition (4.21) depends on ∂2
rQ, while this term does not appear

on the right-hand side. At this point, we need to use the connection field equation, which we solved for ∂2
rQ in step 6.

Once we eliminate ∂2
rQ by the expression found in 6., we find that the consistency condition (4.21) is satisfied for

both options given in Table III.
This strategy uses all field equations, and it makes extensive use of the properties of solution set 2. What it shows is that
the field equations are self-consistent and that there are only three independent field equations, not four. The relevant
field equations are Mtt, Mrr and Cr, while Mθθ is trivially satisfied—as in GR—when the other three equations are
satisfied. Moreover, these equations determine the dynamical variables fgtt; grr;Γr

rrg, or, alternatively, fgtt; grr;Qg or

TABLE III. A summary of the different choices of connection
which satisfy the constraint equation (4.9).

The most general solution to Eq. (4.9)

Option 1
Γt

θθ ¼ k
2cð2c−kÞ

for c ≠ 0 and k ≠ 2c
Γt

rr ¼ − kð8c2þ2ck−k2Þ
8c2ð2c−kÞ2ðΓr

θθÞ2

Option 2
c ¼ k ¼ 0

Γt
rr ¼ − Γt

θθ

ðΓr
θθÞ2

2Strictly speaking, the functions 1 and 2 also depend on the matter fields as well as f and its first two derivatives. However, we will
suppress these dependencies for all appearing functions here and in the sequel for the sake of readability.
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fgtt; grr;Γr
θθg, as we will see shortly. What remains to be done is to write out explicitly the equations for ∂rgtt, ∂rgrr and

∂2
rQ derived from Mtt, Mrr and Cr for both options in Table III. For option 1 we find

∂rgtt ¼ −
gttð2þ grrðQr2 − 2 − fðQÞr2

f0ðQÞ ÞÞ
2r

þ
ððk−4cÞ2gttr2cð2c−kÞΓr

θθ
− 4Γr

θθgrrð2gtt − cð2c − kÞr2ÞÞ
8rf0ðQÞ ð∂rQÞf00ðQÞ

∂rgrr ¼
grrð2þ grrðQr2 − 2 − fðQÞr2

f0ðQÞ ÞÞ
2r

þ
grrð16rþ ðk−4cÞ2r2

cð2c−kÞΓr
θθ
þ 4Γr

θθgrrð2gttþcð2c−kÞr2Þ
gtt

Þ
8rf0ðQÞ ð∂rQÞf00ðQÞ ð4:22Þ

∂2
rQ ¼ ð∂rQÞ

2ð4cð2c − kÞΓr2
θθgrrðcr2ð2c − kÞ − 2gttÞ þ r2ðk − 4cÞ2gttÞ2

×

�
f128c2ðk − 2cÞ2ðQr2 − 2ÞΓr3

θθgttg
2
rrðcr2ð2c − kÞ − 2gttÞ

þ 16c3rð2c − kÞ3Γr4
θθg

2
rrððQr2 − 2Þgrr þ 6Þðcr2ð2c − kÞ − 2gttÞ

þ 8crð2c − kÞðk − 4cÞ2Γr 2
θθgttgrrðcr2ð2c − kÞððQr2 − 2Þgrr − 6Þ

þ gttðð6 − 3Qr2Þgrr þ 6ÞÞ þ r3ðk − 4cÞ4g2ttððQr2 − 2Þgrr − 2Þg

− grrr3ðð4c − kÞ2gtt − 4c2ð2c − kÞ2ðΓr
θθÞ2grrÞ

fðQÞ
f0ðQÞ

þ 2ð2ð4c − kÞ2Γr
θθgttgrrrþ ð4c − kÞ2gttr2 þ 4cð2c − kÞðΓr

θθÞ2grrð2gtt − cð2c − kÞr2ÞÞ f
00ðQÞ
f0ðQÞ ð∂rQÞ

− 2ðð4c − kÞ2gttr2 − 4cð2c − kÞðΓr
θθÞ2grrð2gtt − cð2c − kÞr2ÞÞ f

ð3ÞðQÞ
f00ðQÞ ð∂rQÞ

�
: ð4:23Þ

Observe that the only connection coefficients which
appear in these equations are c, k, and Γr

θθ. The constants c
and k are freely specifiable, but the function Γr

θθ is fixed,
up to an integration constant, by the differential equation,

∂rΓr
θθ ¼

1

2
þ k
4c

−
3

2c − k
− Γr

rrΓr
θθ: ð4:24Þ

This differential equation follows from the last row of
Table II when specialized to option 1 of Table III. Also,
recall that we traded Γr

rr forQ. Hence, if we replace Γr
rr by

its expression in terms of Q we obtain a highly nonlinear
differential equation, which nonetheless determines Γr

θθ (at

least in principle) in terms of the dynamical variables
fgtt; grr;Qg and in terms of an integration constant. Hence,
for the field equations (4.22) to produce a solution it is
necessary to choose three constants, c, k, and the integration
constant in (4.24), as well as initial conditions for the
dynamical degrees of freedom. Since the metric field
equations are first order, we need a total of two initial
conditions for the metric, and we need two initial conditions
for Q, given that its differential equation is second order.
The field equations derived from option 2 have a simpler

and more compact form, and they require less specifica-
tions in order to be solved,

∂rgtt ¼ −
gttð2þ grrðQr2 − 2 − fðQÞr2

f0ðQÞ ÞÞ
2r

þ gttðr2 − grrðΓr
θθÞ2Þ

Γr
θθrf0ðQÞ ð∂rQÞf00ðQÞ

∂rgrr ¼
grrð2þ grrðQr2 − 2 − fðQÞr2

f0ðQÞ ÞÞ
2r

þ grrððΓr
θθÞ2grr þ 2rΓr

θθ þ r2Þ
Γr

θθrf0ðQÞ ð∂rQÞf00ðQÞ ð4:25Þ
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∂2
rQ ¼ ð∂rQÞ

2½ðΓr
θθÞ2grr − r2� ð2rþ grrð4Γr

θθð1þ Γr
rrΓr

θθÞ þ 2r −Qr3Þ þ grrr3
fðQÞ
f0ðQÞ

−2ððΓr
θθÞ2grr þ 2Γr

θθgrrrþ r2Þ f
00ðQÞ
f0ðQÞ ð∂rQÞ −

�
ðΓr

θθÞ2grr − r2Þ f
ð3ÞðQÞ
f00ðQÞ ð∂rQÞ

�
: ð4:26Þ

Since option 2 demands c ¼ k ¼ 0, the only connection component which now appears in the field equations is Γr
θθ, which

is implicitly fixed by the differential equation,

∂rΓr
θθ ¼ −1 − Γr

rrΓr
θθ: ð4:27Þ

This equation is again derived from the last row of Table II when specialized to option 2 of Table III. After replacing Γr
rr by

its expression in terms of Q we find the highly nonlinear differential equation,

∂rΓr
θθ ¼ −

Γr
θθðfðQÞgrrr2ðΓr

θθ þ rÞ þ ð2r − grrð2Γr
θθ þ rÞðQr2 − 1ÞÞf0ðQÞÞ

2ððΓr
θθÞ2grr − r2Þf0ðQÞ : ð4:28Þ

In principle, this equation determines Γr
θθ in terms of

fgtt; grr;Qg and an integration constant. The origin of the
integration constant can also be understood in a different
way: Instead of treating Γr

rr or Q as a degree of freedom,
we can regard Γr

θθ as the degree of freedom stemming from
the connection. By solving the above differential equation
for Q and plugging the result into the connection field
equation for option 2, we obtain a differential equation for
Γr

θθ. This differential equation is now third order, and
hence we need to specify three initial conditions for Γr

θθ.
We therefore find that for option 2 we need to specify

initial conditions for fgtt; grr;Qg (1þ 1þ 2) and an
integration constant for (4.28), or, alternatively, provide
initial conditions for fgtt; grr;Γr

θθg (1þ 1þ 3). This latter
point of view with a third order differential equation for
Γr

θθ will be particularly useful in Sec. V, where we derive
approximate and exact solutions for fðQÞ gravity.
Before doing so, however, we show that there is also a

different strategy to tackle the symmetry reduced field

equations. More precisely, we show that the caveat alluded
to in step 2 of the above strategy opens up a rout to solve the
field equations in a different way. Namely, the connection
can be determined through a constraint equation, while the
metric remains dynamical. This will nevertheless lead to
solutions which go beyond GR.

D. Reduction of the field equations by a
constraint on the connection

In the previous subsection we saw that there are
two dynamical equations for the metric and one
dynamical equation for the connection. However, this
conclusion hinges crucially on the validity of step 2,
which requires us to solve Q for Γr

rr. A closer
examination of the nonmetricity scalar Q reveals that
this is only possible if the coefficient in front of Γr

rr is
different from zero. Concretely, one finds that Q takes
the schematic form,

Q ¼
8<:

1
4

�
ð4c−kÞ2

cð2c−kÞgrr −
4ðΓr

θθÞ2ð2gtt−cð2c−kÞr2Þ
gttr2

�
Γr

rr
Γr

θθ
þ other terms for option 1

2
�

1
grr

− ðΓr
θθÞ2
r2

�
Γr

rr
Γr

θθ
þ other terms for option 2:

ð4:29Þ

If we now impose the constraint that the factor in front of
Γr

rr vanishes, i.e., if we impose the condition that Γr
θθ is of

the form3

Γr
θθ ¼

8<:�
j4c−kj ffiffiffiffiffiffi−gtt

p
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4cð2c−kÞgrrðcð2c−kÞr2−2gttÞ
p foroption1

� rffiffiffiffi
grr

p foroption2
; ð4:30Þ

then it is no longer possible to trade Γr
rr for Q and the

strategy presented in the previous subsection does not work
anymore. However, this does not mean that the field
equations become inconsistent. In fact, if Γr

θθ has been
chosen to have one of the forms of (4.30), then it can be
shown that the connection field equation Cr is trivially
satisfied. We are thus left with the metric field equations,
and they turn out to be self-consistent. The strategy to show
self-consistency is as follows, which again holds when
including the electrovacuum.

3The signature of the metric demands that gtt < 0, and henceffiffiffiffiffiffiffiffi−gtt
p

is real for option 1.
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(1) Choose either option 1 or option 2 from Table III and
fix Γr

θθ by choosing the appropriate expression from
(4.30) for any choice of sign.

(2) Solve Mtt and Mrr for ∂rgtt and ∂rgrr. This gives
rise to expressions of the form,

∂rgtt ¼ function1ðgtt; grr; c; kÞ
∂rgrr ¼ function2ðgtt; grr; c; k; ∂rQÞ; ð4:31Þ

where c and k only appear for option 1 and where we
have suppressed the dependence of the two func-
tions on matter fields as well as the function f and its
derivatives. Observe that only ∂rgrr depends on ∂rQ.

(3) Take the expression for Q and simplify it using the
relations of option 1/option 2, the corresponding
form of Γr

θθ from (4.30) as well as the expressions
obtained in step 2. This leads to an expression of the
form,

Q ¼ function3ðgtt; grr; ∂rgtt; c; kÞ: ð4:32Þ

(4) Observe that only ∂rgtt appears in function3. Hence,
if we replace ∂rgtt by function1 and then take the
r-derivative of Q, we obtain an equation which we
can solve for ∂rQ. This leads to the schematic
expression,

∂rQ ¼ function4ðgtt; grr; c; kÞ; ð4:33Þ

which in turn can be used to replace ∂rQ in
function2. This gives us

∂rgtt ¼ function1ðgtt; grr; c; kÞ
∂rgrr ¼ gfunction2ðgtt; grr; c; kÞ: ð4:34Þ

(5) Plugging the above expressions for ∂rgtt and ∂rgrr
into the remaining metric field equation, Mθθ, does
not yield anything new. The equation Mθθ is
trivially satisfied. With this, we have exhausted all
field equations, and we have shown their self-
consistency even in the case where the connection
component Γr

θθ is fixed by a constraint equations,
rather than by a dynamical field equation.

In summary, we find that we can fix the connection
component Γr

θθ through one of the constraints in (4.30),
and we are then left with two dynamical equations for the
metric. To solve these equations, we need to specify initial
data for gtt and grr and, in the case of option 1, we also need
to specify c and k.

Also, notice that if we choose to solve the field equations
using the constraints (4.30), we need less initial data than
when we let the connection be dynamical.
In the next section we will derive approximate and exact

solutions for both, a dynamically determined connection
and one fixed by the constraints. We will focus on option 2
because the equations are more compact and simpler4 due
to the absence of c and k.

V. APPROXIMATE AND EXACT SOLUTIONS

Having shown that we have a self-consistent set of field
equations, it is now time to look for solutions. To that end it
is sensible to choose option 2 from Table III since the field
equations (4.25) have a simpler form than (4.22), and they
do not depend on an arbitrary choice of c and k—they only
need the specification of initial conditions in order to
produce well-defined solutions. Moreover, we want to use
the spherical connection considered in [8,9] as a partial
guide line toward finding solutions beyond the GR sol-
utions. The idea is that the spherical connection of [8,9] is
already known to produce the GR solutions for arbitrary f
and a controlled deformation of that connection could
therefore lead to deformations of the GR solutions for a
given choice of f. We will explain how this can be achieved
in a perturbative fashion in the next subsection.
However, before doing so, we want to consider the exact

spherical connection used in [8,9] in order to explicitly
show that it can only produce GR solutions for arbitrary f
and because this provides a concrete example for the fact
that solutions with Qsol ¼ const do exist.
As already noted in Sec. III D, the spherical connec-

tion is obtained by setting fc; k;Γt
rr;Γt

θθ;Γr
rr;Γr

θθg ¼
f0; 0; 0; 0; 0;−rg. The only nonzero connection coeffi-
cients are then explicitly given by

Γr
θθ ¼−r Γr

ϕϕ ¼−rsin2θ Γθ
rθ ¼

1

r

Γθ
ϕϕ ¼−cosθ sinθ Γϕ

rϕ ¼
1

r
Γϕ

θϕ ¼ cotθ: ð5:1Þ

This means that the spherical connection falls into solution
set 2 and that it corresponds to option 2 in Table III. Hence,
we can simply insert this connection into the field equa-
tions (4.25), and we obtain

4We have not found any (approximate) solutions when
including c or k, but it would be interesting to see what role
these constants play and how they affect solutions.
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∂rgtt ¼ −
gttð2þ grrðQr2 − 2 − fðQÞr2

f0ðQÞ ÞÞ
2r

− gttð1 − grrÞð∂rQÞ f
00ðQÞ
f0ðQÞ

∂rgrr ¼
grrð2þ grrðQr2 − 2 − fðQÞr2

f0ðQÞ ÞÞ
2r

þ grrð1 − grrÞð∂rQÞ f
00ðQÞ
f0ðQÞ

∂2
rQ ¼ 1

2
ð∂rQÞ

�
g2rrðQr2 − 2Þ þ grrð4þQr2Þ − 2

ðgrr − 1Þ2r þ grrr
grr − 1

fðQÞ
f0ðQÞ þ 2

f00ðQÞ
f0ðQÞ ð∂rQÞ − 2

fð3ÞðQÞ
f00ðQÞ ð∂rQÞ

�
: ð5:2Þ

If we multiply the first equation by grr and the second one
by gtt and then add the two multiples together we obviously
obtain

grr∂rgtt þ gtt∂rgrr ¼ 0 ⇔ gttgrr ¼ const: ð5:3Þ

This is already a first indication that we will obtain the GR
solution. If we now use the spherical connection to
compute the nonmetricity scalar Q we find

Q ¼ −
grr − 1

gttg2rrr
ðgrr∂rgtt þ gtt∂rgrrÞ: ð5:4Þ

Hence, if we evaluate Q on a solution of the field equa-
tions, which imply that grr∂rgtt þ gtt∂rgrr ¼ 0, we obtain
Qsol ¼ 0 from (5.4). In turn this implies that the connection
equation in (5.2) is trivially satisfied. Moreover, the metric
field equations in (5.2) reduce to

∂rgtt ¼ −
gttð1 − grrð1þ fð0Þr2

2f0ð0ÞÞÞ
r

∂rgrr ¼
grrð1 − grrð1þ fð0Þr2

2f0ð0ÞÞÞ
r

: ð5:5Þ

As anticipated, this shows explicitly that solutions with
Qsol ¼ const exist and that they can only produce the
Schwarzschild-de Sitter-Nordström solution5 for an arbi-
trary choice of f. Indeed, upon integrating the above
differential equations one finds

gtt ¼ c2 þ
c1c2
r

þ c2
6

fð0Þ
f0ð0Þ r

2 ≡ c2 þ
c1c2
r

þ c2Λeff

3
r2

grr ¼
1

c2gtt
; ð5:6Þ

where we have used that 1
2

fð0Þ
f0ð0Þ ≕Λeff acts as an effective

cosmological constant, as we have explained in Sec. IVA.
This example will also be the point of departure to construct
approximate solutions to fðQÞ gravity which go beyond

GR but which reduce to the GR solutions in an appropriate
limit. The key observation is that the metric field equations
for option 2 [cf. Eq. (4.25)] imply that

grr∂rgtt þ gtt∂rgrr
gttgrr

¼ ∂rðgttgrrÞ
gttgrr

¼ 2
Γr

θθ þ r
Γr

θθ

f00ðQÞ
f0ðQÞ ð∂rQÞ:

ð5:7Þ
This equation can easily be integrated, and one obtains

gttgrr ¼ c1 exp

�
2

Z
dr

Γr
θθ þ r
Γr

θθ

f00ðQÞ
f0ðQÞ ð∂rQÞ

�
; ð5:8Þ

where c1 is an integration constant chosen6 such that
gttgrr < 0. This equation shows again that the spherical
connection, which imposes Γr

θθ ¼ −r, reproduces the
GR relation gtt ∝ 1

grr
. Unsurprisingly, it also shows that

∂rQ ¼ 0 or f00ðQÞ produce this relation. However, what is
more important to us is that this equation suggests that we
can consider a deformation of the spherical connection
where Γr

θθ ¼ −rþ γðrÞ. This would lead to a deviation of
the typical gtt ∝ 1

grr
behavior of GR (although we will not

actually see this in all of the approximate solution derived
in the following subsections because the difference
between gtt and −1=grr are sometimes hidden in higher
order perturbations). In the next subsection we will make
this idea more precise and show that it is possible to obtain
an approximate solution for the Ansatz fðQÞ ¼ Qþ αQ2,
where α is assumed to be a small parameter.
We also report some results for fðQÞ ¼ Qþ αQκ for

integer κ ≥ 2 in Appendix B, which generalize some of the
results derived below.

A. Approximate vacuum solution beyond
GR for f ðQÞ=Q+αQ2

Since we wish to consider the deformation Γr
θθ ¼

−rþ γðrÞ, it is convenient to solve the differential equa-
tion (4.28) for Q and plugging the resulting expression into
the differential equation for ∂2

rQ. This results in a third
order differential equation for γðrÞ. Moreover, this equation
also contains terms proportional to fð3ÞðQÞ. Given the

5Our considerations also hold for the electrovacuum, but we
stuck to the pure vacuum case for simplicity.

6It follows from det g ≠ 0 and the signature of the metric that
gttgrr is strictly negative.
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complexity of this equation, it is sensible to first consider
the Ansatz fðQÞ ¼ Qþ αQ2, which gets rid of terms
proportional to fð3ÞðQÞ. Furthermore, we consider the pure
vacuum case with vanishing cosmological constant.
In the sequel we wish to consider α as being a small

parameter, i.e., jαj ≪ 1. We can therefore expect that this
Ansatz will lead to small deviations from the GR solutions,
and we choose the Ansätze,

gtt ¼ gð0Þtt þ αgð1Þtt þ α2gð2Þtt

grr ¼ gð0Þrr þ αgð1Þrr þ α2gð2Þrr

Γr
θθ ¼ −rþ αγð1Þ þ α2γð2Þ; ð5:9Þ

where gð0Þtt and gð0Þrr are given by the Schwarzschild solution,

gð0Þtt ¼ −
�
1 −

2M
r

�
and gð0Þrr ¼ −

1

gð0Þtt

: ð5:10Þ

We include second order terms in α because, as we will see
shortly, in the zeroth and first order equations, the metric
and the connection equations decouple from each other.
Only at second order do we find coupled equations which
imply that the connection influences the metric and leads to
what we dub a “connection hair.”
The next step is to plug these Ansätze into the field

equations and to solve them order by order. At zeroth order
we find, unsurprisingly, that the metric as well as the
connection field equations are trivially satisfied. At first
order in α we find that the metric field equations reduce to

∂rg
ð1Þ
tt ¼ 2Mrgð1Þtt − ðr − 2MÞ2gð1Þrr

ðr − 2MÞr2

∂rg
ð1Þ
rr ¼ ð2M þ rÞgð1Þrr

ð2M − rÞr ; ð5:11Þ

while the connection equation is identically fulfilled.7 As
anticipated, the metric field equations do not depend on the
connection and the connection field equations do not
depend on the metric. The above equations can easily be
integrated, and one finds

gð1Þtt ¼ c2 þ c1ðr − 2MÞ
r

gð1Þrr ¼ c2r
ðr − 2MÞ2 ; ð5:12Þ

where ci are real integration constants. We set c1 ¼ 0 in
order to obtain an asymptotically flat solution in the sense
that limr→∞ gtt ¼ −1 and limr→∞ grr ¼ 1. At this point one
notices that the only effect of the perturbations is to
renormalize the mass, in the sense that we can write the
full metric at first order in α as

gtt ¼ −1þ 2Mren

r

grr ¼ −
1

grr
; ð5:13Þ

where the renormalized mass is defined as

2Mren ≔ 2M þ αc2: ð5:14Þ

Since the integration constant c2 cannot be accessed
independently, the only observable mass is Mren, not M,
and the solution (5.13) is, to first order in α, indistinguish-
able from the Schwarzschild solution.
We now move to the second order and we find that the

metric equations now do depend on γð1Þ. After inserting the
solutions for gð1Þtt , and gð1Þrr into the second order equations
we find that they can be written as

∂rg
ð2Þ
tt ¼ −

− 2Mr5gð2Þtt
r−2M þ gð2Þrr r4ðr − 2MÞ − c2r5ðc2þc2ðr−2MÞÞ

ðr−2MÞ2 þ 16M2ð4γð1Þ − 4r∂rγ
ð1Þ þ r2∂2

rγ
ð1ÞÞ

r6

∂rg
ð2Þ
rr ¼ −c22r5 − gð2Þrr ðrþ 2MÞr3ðr − 2MÞ3 − 16M2ðr − 2MÞ2ð4γð1Þ − 4r∂rγ

ð1Þ þ r2∂2
rγ

ð1ÞÞ
r4ðr − 2MÞ4 ; ð5:15Þ

while for the connection field equations at second order we find the nontrivial equation,

16γð1Þ − 16r∂rγ
ð1Þ þ 6r2∂2

rγ
ð1Þ − r3∂3

rγ
ð1Þ ¼ 0: ð5:16Þ

The connection field equation can indeed be integrated, and we find the solution,

γð1Þ ¼ rðc5 þ c6r3 þ c7r3 lnðrÞÞ: ð5:17Þ

7Notice that at zeroth order in α we have symmetric teleparallelism, where the connection and the metric or not only independent, but
the connection is completely arbitrary. That is why at zeroth order there is no equation for the connection, there is only an identity. At
first order we do get an equation for the connection, but this equation is identically satisfied for γð0Þ ¼ −r. Only at second order can we
expect something interesting for the connection.
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After plugging the above solution for γð1Þ into the metric field equations, we are able to integrate them, and we find the
second order contributions to the metric,

gð2Þtt ¼ −c2c1 þ c3 − 2Mc4 − 48M2c6 − 16M2c7 − 48M2c7 lnðrÞ þ c4r
r

gð2Þrr ¼ rðc22 þ ðc3 − 16M2ð3c6 þ c7ÞÞðr − 2MÞ − 48M2c7 lnðrÞðr − 2MÞ
ðr − 2MÞ3 : ð5:18Þ

Notice that c5 does not appear in the metric. In order to
maintain asymptotic flatness, i.e., limr→∞ gtt ¼ −1 and
limr→∞ grr ¼ 1, we need to set c4 ¼ 0. In particular, we
obtain a new beyond GR logarithmic correction coming
from the connection γð1Þ—i.e., we obtain a “connection
hair.” The full metric components can be written as

gtt ¼ −
�
1 −

2Mren

r

�
þ α2

μ

r
ln

�
r
r�

�
grr ¼ −

1

gtt
: ð5:19Þ

The renormalized mass Mren is now given by

2Mren ≔ 2M þ αc2 þ α2ðc3 − 16M2ð3c6 þ c7ÞÞ; ð5:20Þ

where the second equation holds up to order α2. The scale
r� can be introduced by a shift in the constant c6 → c6 −
48M2c7 lnðr�Þ, in order to have a dimensionless argument
in the logarithm. We have also defined a new scale,

μ ≔ 48M2c7; ð5:21Þ

which characterizes the strength of the beyond GR cor-
rection—a new “black hole charge” or “connection hair.”
Notice that we can think of the connection solution (5.17)
as being parametrized by c5, μ and r�, while the solution
(5.19) is parametrized by Mren, μ, and r�. The connection
hair, which manifests itself in (5.19), is thus parametrized
by μ and r� only.
Notice that the logarithmic term can dominate over the 1

r
term in the sense that its magnitude becomes larger than the
magnitude of the 1

r term. When this happens, one would
expect clear deviations from the standard GR solution.
Interestingly, this can happen for small as well as for large
radii, without being in contradiction with asymptotic flat-
ness. In fact, one finds that for radii which satisfy the
inequality,

j lnðr=r�Þj > 2Mren

α2jμj ; ð5:22Þ

the magnitude of the logarithmic term dominates over the
magnitude of the 1

r term. The radius at which one term starts
to dominate over the other is given by

r ¼ r�e−
2Mren
α2μ ; ð5:23Þ

which can be a large radius (for μ < 0) or a small radius (for
μ > 0). All of this does not violate limr→þ∞ lnðrÞ=r ¼ 0.
The form of gtt in (5.19) is also particularly useful when we
want to inquire the location of the Killing horizon. To that
end, we just need to determine where the norm of the time-
translation Killing vector field T ≔ tα∂α vanishes. One
finds

gμνtμtν ¼ gtt ¼! 0⇒ 2Mrenþα2μ lnðr=r�Þ− r¼! 0: ð5:24Þ

Whether solutions to this equation exist, and the precise
number of solutions, depends on the choice of parameters.
We have proven the following proposition (the proof can be
found in Appendix C):
Proposition. The zeros of the equation,

2Mren þ α2μ ln ðr=r�Þ − r ¼ 0; ð5:25Þ

define the Killing horizons of the second order solution
(5.19). The number and location of the Killing horizons
depends on the real parameters Mren > 0, r� > 0, μ, and
α ≠ 0. The following statements can be made about the
Killing horizons:
(a) If μ ≤ 0, there is precisely one Killing horizon which

is located at

rhorizon ¼ α2jμjW
�

r�

α2jμj e
2Mren
α2 jμj

�
> 0; ð5:26Þ

where W is Lambert’s function. In the case where
μ ¼ 0, this reduces to

rhorizon ¼ 2Mren; ð5:27Þ

and in the case where the argument of the W-function
is large one obtains (up to second order in α)

rhorizon ¼ 2Mren−α2μ lnð2Mren=r�ÞþOðα4Þ: ð5:28Þ
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(b) If μ > 0, then there are8>>><>>>:
2Killing horizons if r�

α2μ
e
−2Mren

α2μ < e−1

1Killing horizon if r�
α2μ

e
−2Mren

α2μ ¼ e−1

noKilling horizons if r�
α2μ

e
−2Mren

α2μ > e−1

: ð5:29Þ

In the case where there is only one Killing horizon, it is
located at

rhorizon ¼ α2μ: ð5:30Þ

When there are two Killing horizons we distinguish
between the inner horizon, which is located at

rinner ¼ −α2 μW

�
−

r�

α2μ
e
−2Mren

α2μ

�
≈ r�e−

2Mren
α2μ > 0;

ð5:31Þ

and the outer horizon which is located at router > rinner
and for which there is no closed exact expression. The
location of the outer horizon can only be determined to
be approximately,

router ≈ 2M þ αc2 þOðα2Þ: ð5:32Þ

The considerations of this subsection can also be
generalized to the case of an electrovacuum and to a
nonzero cosmological constant. This generalization will be
the subject of the next subsection.

B. Approximate electro-vacuum solution beyond
GR for f ðQÞ=Q+αQ2 − 2Λ

To generalize the approximation scheme of the previous
subsection to the case of an electrovacuum, we need to
introduce the energy-momentum tensor,

Tμ
ν ¼ diag

�
ΛþQ2

r4
;ΛþQ2

r4
;Λ −

Q2

r4
;Λ −

Q2

r4

�
; ð5:33Þ

whereQ denotes the charge of the source. We choose again
the Ansatz,

gtt ¼ gð0Þtt þ αgð1Þtt þ α2gð2Þtt

grr ¼ gð0Þrr þ αgð1Þrr þ α2gð2Þrr

Γr
θθ ¼ −rþ αγð1Þ þ α2γð2Þ; ð5:34Þ

but now with

gð0Þtt ¼ −
�
1 −

2M
r

þQ2

r2
−
Λ
3
r2
�

and gð0Þrr ¼ −
1

gð0Þtt

:

ð5:35Þ

Just as in the previous subsection, we can solve the field
equations order by order. We do not give all details here as
they are completely analogously solved as for the vacuum
case. Unfortunately, the solution for γð1Þ is rather implicit,

γð1Þ ¼ rc3

�
1þ

Z
r
e
−1
2

P
4

i¼1

ð6Mþ7Λρ3Þ lnðρ−xiÞ
3Mþ2Λρ3 ρ3 lnðρÞdρ

�
þ rc4

Z
r
e
−1
2

P
4

i¼1

ð6Mþ7Λρ3Þ lnðρ−xiÞ
3Mþ2Λρ3 ρ3dρ; ð5:36Þ

where xi are the four solutions to the quartic equation,

3Q2 − 6Mxi − Λx4i ¼ 0: ð5:37Þ

However, we can discuss the casesQ ≠ 0, Λ ¼ 0 andQ ¼ 0, Λ ≠ 0 separately. We begin by setting Λ ¼ 0. Then the metric
components at second order in perturbation theory are given by

gtt ¼ −1þ 2Mren

r
−
Q2

ren

r2
þ α2μ

�
2Mren

r
−
Q2

ren

r2

�
ln

�
r2

r�2

�
2Mren

r
−
Q2

ren

r2

��
grr ¼ −

1

gtt
; ð5:38Þ

where we have defined

μ ≔ −
6c8
M

2Mren ≔ 2M þ αc2 þ α2ðc4 − 2Mð8c6 − 4c7Þ − 4c8Þ

Q2
ren ≔ Q2

�
1 − α2ð8c6 − 4c7Þ − 4α2

c8
2M

�
: ð5:39Þ
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The ci are integration constants, where c2 and c4 comes from solving theMtt equations for grr at first and second order in α,
respectively, and c6, c7, c8 come from solving the connection equation Cr at second order in α. The integration constants in
gtt were set to zero in order to have again limr→∞ gtt ¼ −1. The scale r� can again be introduced via a redefinition of c6, and
it ensures proper units. Next, let us set Q ¼ 0 but keep Λ different from zero. The solution for the metric is now given by

gtt ¼ −1þ 2Mren

r
þ Λren

3
r2 þ α2μ

�
2Mren

r
þ Λren

3
r2
�
ln

�
r�2

r2

�
2Mren

r
þ Λren

3
r2
��

grr ¼ −
1

gtt
; ð5:40Þ

where we have defined

μ ≔
4c8
18M

2Mren ≔ 2M þ αðc2 þ αc4Þ þ 24α2Mðc6 − c7Þ
9

Λren

3
≔

Λ
3

�
1þ 12α2ðc6 − c7Þ

9

�
: ð5:41Þ

The integration constants and scale r� arise in a similar
fashion as for the charged case above. We note that
using the functional equation of the logarithm in the
limits Q → 0 and Λ → 0, respectively, we obtain the
vacuum solutions from the previous subsection by
absorbing the powers of r in the logarithm in the
prefactor μ. Moreover, we see that the new correction
is simply the “background” GR potential times the
logarithm of the potential times or divided by r2 for
the charge and cosmological constant cases, respec-
tively. One can draw similar conclusions for the Killing
horizons as in the previous subsection, but we will not
go into details here.

C. Approximate solutions beyond GR
from constraints on the connection

In Sec. IV D we have seen that the field equations can
also be solved by imposing one of the constraints (4.30) on
Γr

θθ. We choose again to work with option 2, and we select
the constraint,

Γr
θθ ¼ � rffiffiffiffiffiffi

grr
p : ð5:42Þ

We call these two cases (I�), and we first discuss (Iþ). As
explained in Sec. IV D, the constraint ensures that the
connection field equation is satisfied, and we are hence left
with the two metric field equations Mtt and Mrr. In order
to find an approximate solution to these equations, we
choose again the Ansatz fðQÞ ¼ Qþ αQ2 together with

gtt ¼ gð0Þtt þ αgð1Þtt

grr ¼ gð0Þrr þ αgð1Þrr ; ð5:43Þ
where gð0Þtt and gð0Þrr are given by the standard Schwarzschild
solution (5.10). First of all, we notice that the field equations
Mtt and Mrr can be solved for ∂rgtt and ∂rgrr in full
generality,

∂rgtt ¼
gttðfðQÞgrrr2 − 4ð1þ ffiffiffiffiffiffi

grr
p Þf0ðQÞÞ

2ð2þ ffiffiffiffiffiffi
grr

p Þrf0ðQÞ

∂rgrr ¼ −
grrðfðQÞgrrr2 − 4ðf0ðQÞ þ ffiffiffiffiffiffi

grr
p Þðf0ðQÞ þ ð2þ ffiffiffiffiffiffi

grr
p Þr∂rQf00ðQÞÞÞ

2ð2þ ffiffiffiffiffiffi
grr

p Þrf0ðQÞ : ð5:44Þ

Moreover, it can be shown that the nonmetricity scalar can be written as

Q ¼ 2ð1þ ffiffiffiffiffiffi
grr

p Þðgttð1þ ffiffiffiffiffiffi
grr

p Þ þ r∂rgttÞ
gttgrrr2

: ð5:45Þ

After inserting the first line of (5.44) into the above expression of Q and using the Ansatz fðQÞ ¼ Qþ αQ2, we can get rid
of ∂rQ in the second line of (5.44) and any Q which appears from using the Ansatz fðQÞ ¼ Qþ αQ2. Hence, we end up
with equations which only depend on the metric components and nothing else. After inserting the Ansatz (5.43) into these
equations, we can expand them order by order. At zeroth order, we find trivially satisfied equations, as had to be expected.
At first order, we find nontrivial equations which can be integrated,

gð1Þtt ¼
�
1 −

2M
r

�
c2 þ

32

3M2

ðr − 2MÞ32
r
3
2

þ 1

M2r3

�
ln

�
1 −

2M
r

�
r2ðr − 3MÞ þMð2M2 þ 2r2 þMrð12þ c1rÞÞ

�
gð1Þrr ¼ r

ðr − 2MÞ2
�
c1 −

1

M
ln

�
1 −

2M
r

�
−
50M
r2

þ 46

r
−
16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r − 2M

p ðM − 2rÞð3M − rÞ
3Mr

5
2

�
: ð5:46Þ
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For the asymptotic limit we find

lim
r→∞

gtt ¼ −1þ α

�
32

3M2
þ c2

�
and lim

r→∞
grr ¼ 1; ð5:47Þ

which implies that we have to set c2 ¼ − 32
3M2 in order to obtain a standard asymptotically Minkowski solution. With this

choice of integration constant, we find that the first order corrections for large r can be written as

gtt ¼ −1þ 2Mren

r
þ α

32

r2
−

1

grr
¼ −1þ 2Mren

r
þ α

96

r2
; ð5:48Þ

where we have introduced the renormalized mass,

2Mren ≔ 2M − α

�
32

3M
þ c1

�
: ð5:49Þ

Hence, the first order beyond-GR corrections scale as 1
r2. As we will see shortly, for the case (I−) we obtain a different

scaling of the first order corrections. We now deal with (I−) analogously to (Iþ). The field equations are now given by

∂rgtt ¼
gttðfðQÞr2grr − 4f0ðQÞð ffiffiffiffiffiffi

grr
p − 1ÞÞ

2f0ðQÞrð ffiffiffiffiffiffi
grr

p − 2Þ

∂rgrr ¼ −
grrð4ð ffiffiffiffiffiffi

grr
p − 1Þðf00ðQÞrð ffiffiffiffiffiffi

grr
p − 2Þ∂rQ − f0ðQÞÞ þ fðQÞr2grrÞ

2f0ðQÞrð ffiffiffiffiffiffi
grr

p − 2Þ ; ð5:50Þ

and the nonmetricity scalar for (I−) takes the form,

Q ¼ 2ð ffiffiffiffiffiffi
grr

p − 1Þðr∂rgtt −
ffiffiffiffiffiffi
grr

p
gtt þ gttÞ

r2grrgtt
: ð5:51Þ

After using fðQÞ ¼ Qþ αQ2 and applying the Ansatz (5.43), one finds the first order solutions,

gð1Þtt ¼ ðr − 2MÞ
3r

0B@6M
r2 þ 64

M
ffiffiffiffiffiffiffi

r
r−2M

p þ 6 ln ð1−2M
r Þ

r−2M − 6 ln ð1−2M
r Þ

M þ 51−6c1M
2M−r þ 39

r

2M
þ 3c2

1CA
gð1Þrr ¼ r

ðr − 2MÞ2
�
−
4

ffiffiffiffiffiffiffiffiffi
r

r−2M
p ð68M2r − 24M3 − 44Mr2 þ 8r3Þ

3Mr3
þ 50M

r2
þ ln ð1 − 2M

r Þ
M

−
46

r
þ c1

�
: ð5:52Þ

The asymptotic limit is again easy to determine, and we find

lim
r→∞

gtt ¼ −1þ α

�
32

3M2
þ c2

�
and lim

r→∞
grr ¼ 1: ð5:53Þ

Upon fixing c2 ¼ − 32
3M2, we obtain limr→∞ gtt ¼ −1; i.e., we have again an asymptotically Minkowski solution. If we use

this value for the integration constant c2, we find that the first order corrections at large r are given by

gtt ¼ −1þ 2Mren

r
þ α

8M3

5r5
−

1

grr
¼ −1þ 2Mren

r
þ α

8M3

r5
; ð5:54Þ

where the renormalized mass now reads

2Mren ≔ 2M þ α

�
32

3M
− c1

�
: ð5:55Þ

Hence, we find that the corrections for the (I−) case scale like 1
r5
, and the solution is therefore virtually indistinguishable

from Schwarzschild at large radii.
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D. A comment on isotropic coordinates

We want to mention here a different Ansatz for the
metric, and its connection to the solutions above, namely
isotropic coordinates. In these coordinates one chooses not
gθθ ¼ r2, as we did above in Sec. III F, but gθθ ¼ gRRR2.
We denote the isotropic radius by R to distinguish it from
the Schwarzschild radial coordinate r. The line element can
then be written as

ds2 ¼ −gttdt2 þ gRRðdR2 þ R2dΩ2Þ; ð5:56Þ

were gtt and gRR are functions of R only. The coordinate
transformation that links isotropic and Schwarzschild
coordinates is given by

ln

�
R
R0

�
¼

Z
r

r0

dr
ffiffiffiffiffiffi
grr

p
r

: ð5:57Þ

Of course, since the difference between the isotropic and
the Schwarzschild Ansatz is just a choice of coordinates,
the results for the gravitational potential are the same as
for the ones discussed above; so this Ansatz might seem
pointless. Nevertheless, we found an interesting link. If we
want to plug the isotropic Ansatz into the equations of
motion, we have to choose an Ansatz for the connection.
But now we have an advantage in isotropic coordinates; the
spatial sections are flat. Isotropic coordinates are thus very
similar to cosmological spacetimes with flat spatial sec-
tions. We can therefore try to use the coincident gauge for
the connection, as it is the natural connection of flat
spacetimes in flat coordinates. In spherical coordinates
one then obtains the spherical connection, as used at zeroth
order perturbation theory in Sec. VA, or in [8,9], but just in
isotropic coordinates with R instead of r. Since the
connection is fixed, we will not find any new connection
hairs, but curiously enough we do find completely con-
sistent metric equations of motions; moreover, the con-
nection equations of motion are identically satisfied. Even
better, (5.35) is not a solution to the metric equations of
motion, so it might seem that this very simple Ansatz gives
again new black hole corrections. But we have actually
covered this already; if one performs the coordinate trans-
formation (5.57) and applies this to the spherical connec-
tion, one obtains precisely the same connection as we had
in case (I−). Hence (I−) corresponds to an “isotropic
Ansatz” to the black hole problem in fðQÞ gravity.

E. Exact vacuum solutions beyond GR for f ðQÞ=Qκ

So far we have only discussed approximate solutions
within the framework of perturbation theory, and we have
seen that fðQÞ admits “connection hair.”However, it is also
possible to derive exact solutions of fðQÞ gravity which go
beyond GR and where the connection appears as “hair,”
with a new scale rT appearing in the metric components.
The starting point are again the field equations (4.25) for

option 2 since these equations are simpler and only require
the specification of initial conditions, rather than the
arbitrary choice of the connection components c and k.
The main observation we need is that the metric field
equations for option 2 imply that

gttgrr ¼ c1 exp

�
2

Z
dr

Γr
θθ þ r
Γr

θθ

f00ðQÞ
f0ðQÞ ð∂rQÞ

�
; ð5:58Þ

as we had seen at the beginning of Sec. V. Performing
integrals is in general a daunting task, and it is often not
possible to compute them analytically. However, if we
assume that Γr

θθ is of the form,

Γr
θθ ¼ −λr; ð5:59Þ

where λ ∈ Rnf0g is an arbitrary constant, then the integral
becomes manageable. First of all, we notice that the choice
λ ¼ 1would again give us the spherical connection of [8,9],
which simply produces the GR solution for arbitrary f.
Hence, we have again a parametrization of Γr

θθ which
allows us to “deform” the spherical connection and “move
away” from the GR solution. Moreover, after inserting the
Ansatz (5.59) into the integral, we easily find

gttgrr ¼ c1ðf0ðQÞÞ2λ−1λ ; ð5:60Þ

where we have absorbed additional factors in the integra-
tion constant c1. We can use this equation to eliminate grr,
and we are therefore left with just gtt which needs to be
determined. To that end, we use the metric field equation
Mtt for the pure vacuum case, and we find

∂rgtt ¼
c1λ

2ð2λ − 1Þ
f0ðQÞλ−2λ

r
ðfðQÞr2 þ 2λf0ðQÞ

þ 2ð2λ − 1Þr∂rQf00ðQÞÞ − gtt

�
1

r
þ ∂rQf00ðQÞ

λf0ðQÞ
�
:

ð5:61Þ
We have already made use of both metric field equations,
and we are thus only left with the connection field equation
Cr. To analyze this equation, it is convenient to first
compute the nonmetricity scalar Q and then insert it into
Cr. For the nonmetricity scalar we find

Q ¼ λ − 1

2λ − 1

fðQÞr2 − 2ðλ − 1Þf0ðQÞ
r2f0ðQÞ : ð5:62Þ

At this point we need to make a choice for f in order to
continue. We choose8 fðQÞ ¼ Qκ, where κ ∈ Rnf0g. After
inserting this Ansatz for f into the above expression for Q,
we find that Q can be written as

8Unfortunately we could not proceed with the more interesting
choice fðQÞ ¼ Qþ αQκ .
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Q ¼ −
2κðλ − 1Þ2

1 − λþ κð2λ − 1Þ
1

r2
: ð5:63Þ

This is a very simple function of r, and when inserted into
the connection field equation one finds the polynomial
equation,

ðκ − 1Þðκð8 − 14λÞ þ 5ðλ − 1Þ þ κ2ð8λ − 4ÞÞ

×

�
κðλ − 1Þ2

ð1 − λþ κð2λ − 1ÞÞr2
�

κ

¼ 0: ð5:64Þ

This equation is solved by

λ ¼ 1; λ ¼ 5 − 8κ þ 4κ2

5 − 14κ þ 8κ2
: ð5:65Þ

The first solution simply produces the spherical connection.
The second solution is more interesting, but we also need to
assume that κ ∉ f1

2
; 5
4
g in order for this solution to be well-

defined. Moreover, it is now easy to check that all field
equations, Mtt, Mrr, Cr, and Mθθ, are satisfied. There is
therefore no new information we can gather, and we can use
all results obtained thus far to integrate the Eq. (5.61). We
find that gtt is given by

gtt ¼ c1rβ þ c2rα; ð5:66Þ
where c2 is an integration constant and where we have
defined

β ≔
8ð2κ − 3Þðκ − 1Þκ
5þ 4ðκ − 2Þκ ; α ≔

ð2κ − 3Þð5þ 4κð2κ − 3ÞÞ
5þ 4ðκ − 2Þκ :

ð5:67Þ
The solution for grr then follows from (5.60), and we find

grr ¼
�
8κ2 − 14κ þ 5

4κ2 − 8κ þ 5

�
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≕C

c1
c1 þ c2rγ

; ð5:68Þ

with γ ≔ α − β. Observe that if we choose κ ¼ 1, which
corresponds to the choice fðQÞ ¼ Q and which implies
β ¼ 0, α ¼ −1, and C ¼ 1, we obtain

gtt ¼ c1 þ
c2
r

and grr ¼
c1
gtt

: ð5:69Þ

In other words: The GR solution is correctly reproduced by
the Eqs. (5.66)–(5.68). This is a reassuring consistency test,
and we can now try to quantify how the solutions for κ > 1

deviates from the Schwarzschild solution by setting c1 ≡
−r−γs c2 and c2 ≡ −r−γT , where rs is the Schwarzschild
radius and rT is a new gravitational time dilation scale.
The gtt and grr components then read

gtt ¼ −
�
r
rT

�
β
�
1 −

�
rs
r

�
−γ
�

and grr ¼
C

1 − ðrsr Þ−γ
:

ð5:70Þ

In order to compare this to the Schwarzschild solution, we
need to assume γ < 0. This condition is satisfied for all
κ ∈ Rn½5

4
; 3
2
�; note that for κ ¼ 3=2 we have the trivial flat

solution α ¼ β ¼ 0. See also Fig. 1, which shows the
exponents α, β and γ as functions of κ. This assumption is
also reasonable since it leads to a well-behaved limit of grr
as r goes to infinity,

lim
r→∞

grr ¼ C: ð5:71Þ

However, the situation for gtt looks quite different. Its limit
for r → ∞ is given by

lim
r→∞

gtt ¼ − lim
r→∞

�
r
rT

�
β

: ð5:72Þ

This limit does not behave well because it either diverges
(β > 0) or it vanishes (β < 0). It is only interesting for
β ¼ 0, which is achieved for κ ¼ 0, κ ¼ 1, and κ ¼ 3

2
. But

FIG. 1. Left panel: The exponents α (solid blue curve), β (dashed red curve), and γ (dotted orange curve) as functions of κ. The shaded
blue region indicates the range where both, α and β are negative. Right panel: The function γ is negative except in the shaded orange
region which corresponds to the interval ½5

4
; 3
2
�.
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κ ¼ 0 is not admissible, since then fðQÞ ¼ 1, κ ¼ 1 is
simply symmetric teleparallelism, and κ ¼ 3

2
belongs to the

range of excluded κ values. Hence, the interpretation of the
metric at large radii is difficult unless we are in standard
symmetric teleparallelism, where the metric reduces to the
Schwarzschild solution.
We conclude this subsection by noting that this solution

is only close to Schwarzschild for κ very close to unity.
Even for f ¼ Q2 one has α ¼ 2.6 and β ¼ 3.2, which is far
from Schwarzschild; solar system tests would have
revealed such large deviations. These exact solutions are
thus physically not relevant. What is interesting, though, is
that exact solutions can be found which go beyond GR.
Finding physically interesting exact solutions is left as a
challenge for future work.

VI. APPLICATION TO f ðTÞ GRAVITY

There is yet another theory of gravity which is closely
related to symmetric teleparallelism and which together
with GR forms the trinity gravitational theories [4]—metric
teleparallelism (MT).
The underlying geometric framework of MT is closely

related to the one of ST studied in this paper, and we can
easily transfer some of our methods to MT in order to
discuss stationary and spherically symmetric solutions of
fðTÞ. Our discussion of fðTÞ gravity will be brief in the
sense that we will only report the basic results, but we will
not repeat the lengthy derivations which are analogous to
the ones for STwhich have been explained in great detail in
this paper. We begin by recalling basic definitions of MT
and fixing our notation. Subsequently, we will report the
symmetry reduced form of the metric, the connection, and
the field equations of MT. Finally, we discuss some
approximate solutions to the field equations.
We give first a brief introduction to MT, and then note the

stationary and spherically symmetric Ansatz for the MT
connection and the equations of motion. Results are
discussed last.

A. Metric teleparallelism and f ðTÞ gravity
Let ðM; gμν;Γα

μνÞ be a metric-affine geometry, where
M is a four-dimensional manifold, gμν denotes the com-
ponents of the metric tensor of signature ð−;þ;þ;þÞ, and
Γα

μν represents an affine connection. The latter is now
postulated to be flat and metric-compatible, but with
nontrivial torsion. That is, we postulate

Rα
βμν ¼! 0 and Qαμν ¼! 0: ð6:1Þ

As alluded to above, the only nontrivial object in this
metric-affine geometry is the torsion tensor, defined by

Tα
μν ≔ 2Γα½μν�: ð6:2Þ

Notice that the postulates of symmetric teleparallelism
imply that the connection is completely independent of
the metric. This is no longer true in metric teleparallelism
because the postulate of metric compatibility obviously
involves the metric as well as the connection.
To define a MT theory which is equivalent to GR, one

can proceed analogously to Sec. II. To that end, we notice
that due to the skew-symmetry of the torsion tensor, there
are three independent scalars which can be constructed
from Tα

μν. One can then define the following linear
combination of these scalars:

T ≔ −
1

4
TαμνTαμν −

1

2
TαμνTμαν þ TαTα; ð6:3Þ

where we have used the trace Tα ≔ Tμ
αμ and we refer to T

as the torsion scalar. Analogously to Sec. II, one can easily
derive the following relation:

−T þ 2DμTμ þR ¼ 0; ð6:4Þ

where Dμ denotes the covariant derivative with respect to
the Levi-Civita connection and R is the Ricci scalar of the
Levi-Civita connection. This shows that if we define the
action of MTas S½g;Γ� ≔ R

d4x
ffiffiffiffiffiffi−gp

T , we obtain an action
which is equivalent to Einstein-Hilbert, up to a boundary
term. Hence, in MT, just as in ST, only the Levi-Civita part
of the connection contributes, and everything else drops out
of the field equations. The connection does not carry any
physical degrees of freedom. Let us now consider the
nonlinear extension of MT to fðTÞ gravity. The action
defining this theory is simply given by

S½g;Γ; λ; ρ�

≔
Z
M

d4x

�
1

2

ffiffiffiffiffiffi
−g

p
fðTÞ þ λα

βμνRα
βμν þ ραμνQαμν

�
; ð6:5Þ

where the tensor densities λβμνα and ραμν act again as
Lagrange multiplies which enforce the MT postulates
(6.1). The function f is again arbitrary and only subjected

to the requirement that f0ðTÞ ≔ dfðTÞ
dT ≠ 0. As for fðQÞ

gravity, for generic f we can no longer remove the
connection from the action by a boundary term. Hence,
the connection equations of motion are no longer trivial and
the connection can propagate degrees of freedom. By
varying (6.5) with respect to the metric and the connection
leads to the equations of motion of fðTÞ gravity [2]. These
are explicitly given by

Mμν ≔ ð∇α þ TαÞ½SðμνÞαf0ðTÞ� þ f0ðTÞtμν
−
1

2
fðTÞgμν − Tμν ¼ 0

Cαβ ≔ −ð∇μ þ TμÞ
� ffiffiffiffiffiffi−gp

2
f0ðTÞS½αμβ�

	
¼ 0; ð6:6Þ
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where Sαμν, the so-called torsion conjugate, and the
symmetric tensor tμν are defined by9

Sαμν ≔
∂T

∂Tα
μν

¼ −
1

2
Tα

μν − T ½μ
α
ν� − 2δα

½μTν�

tμν ≔
1

2
SμαβTναβ − Tαβ

μSαβν: ð6:7Þ
Note the close similarity in the structure of these equations
with the ST counterparts, except for the form of the
connection equations of motion. One can then rewrite
the metric equations of motion in the more useful form,

f0ðTÞGμν −
1

2
gμνðfðTÞ−f0ðTÞTÞþf00ðTÞSðμνÞα∂αT ¼ Tμν;

ð6:8Þ
with Gμν being again the Einstein tensor with respect to the
Levi-Civita connection. For fðTÞ ¼ T þ 2Λ, this reduces to
the Einstein field equations with a cosmological constant.
In the next few subsections we will sketch the symmetry

reduction of the metric, the connection, and the field
equations, and finally discuss some perturbative solution.
We will see that there are some similarities with fðQÞ.

B. Symmetry reduction of the connection
and metric

Unsurprisingly, the symmetry reducedmetric has the same
form as in fðQÞ, namely, it is given by (3.3). Moreover, we

can apply the same diffeomorphisms which we described in
Sec. III F in order to bring themetric in the even simpler form
(3.50). This will not spoil the symmetry reduced form of the
connection for the same reasons given in Sec. III F: The
diffeomorphism respects the symmetry of the metric-affine
geometry, and it can neither create curvature nor nonme-
tricity. Thus, we choose to work with the simple form (3.50)
of the metric from now on.
Finding a parametrization of the connection which is

compatible with the postulates of MT can be achieved
analogously to what we did in the Secs. III. We start with a
general connection Γα

μν, which has 64 components, and
first apply the conditions for stationarity and spherical
symmetry. After that, we use the MT postulates (6.1) to
further eliminate connection components and knead the
connection into the simplest possible form. We only report
the main results here.
After implementing the symmetry conditions (3.4), (3.6),

(3.7), and (3.12), we obtained the same connection as in
[10], but with the additional property of being stationary,
which simply means all connection components are time-
independent.
In order to implement the MT postulates, one can again

split the arising equations into algebraic10 and differential
equations for the connection. By plugging the solutions of
the algebraic equations into the differential equations, one
can ultimately find the following form of the connection:

Γt
rt ¼

∂rgtt
2gtt

; Γt
rr ¼ � rðΓr

θθ
2 þ Γ̄r

θϕ
2Þ∂rgrr − 2grrðΓ̄r

θϕ
2 þ Γr

θθðΓr
θθ − r∂rΓr

θθÞ − rΓ̄r
θϕ∂rΓ̄r

θϕÞ
2r

ffiffiffiffiffi
gtt

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γr

θθ
2 þ Γ̄r

θϕ
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − grrðΓr

θθ
2 þ Γ̄r

θϕ
2Þ

q
Γt

θθ ¼ �
Γr

θθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − grrðΓr

θθ
2 þ Γ̄r

θϕ
2Þ

q
ffiffiffiffiffi
gtt

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γr

θθ
2 þ Γ̄r

θϕ
2

q ; Γt
ϕϕ ¼ sin2θΓt

θθ

Γt
θϕ ¼ −Γt

ϕθ ¼
Γr

θϕ

Γr
θθ
sin θΓt

θθ

Γr
rt ¼ −

gtt
grr

Γt
rt; Γr

rr ¼
∂rgrr
2grr

; Γr
ϕϕ ¼ sin2θΓr

θθ; Γr
θϕ ¼ −Γr

ϕθ ¼ sin θΓ̄r
θϕ

Γθ
θt ¼ −

gtt
r2

Γt
θθ; Γθ

ϕt ¼ −
gtt
r2

Γt
ϕθ; Γθ

θr ¼ −
grrΓr

θθ

r2
; Γθ

ϕr ¼
grr sinðθÞΓ̄r

θϕ

r2

Γθ
rθ ¼

1

r
; Γθ

rϕ ¼ sin θ
Γr

θθ∂rΓ̄r
θϕ − ∂rΓr

θθΓ̄r
θϕ

Γr
θθ

2 þ Γ̄r
θϕ

2
; Γθ

ϕϕ ¼ − cos θ sin θ

Γϕ
θt ¼ −

gttΓ̄r
θϕ

r2 sin θΓr
θθ
Γt

θθ; Γϕ
ϕt ¼ −

gtt
r2

Γt
θθ; Γϕ

rθ ¼ −
1

sin2θ
Γθ

rϕ

Γϕ
θr ¼ −

grrΓ̄r
θϕ

r2 sin θ
; Γϕ

ϕr ¼ −
grrΓr

θθ

r2
; Γϕ

rϕ ¼ 1

r
; Γϕ

θϕ ¼ Γϕ
ϕθ ¼ cot θ; ð6:9Þ

9Note that Sαμν is by definition antisymmetric in the last two indices, while—by using the explicit form of Sαμν—one can check that
tμν is indeed symmetric, as required by the symmetry of the metric equations of motion.

10Notice that the equations Qαμν ¼ 0 are purely algebraic and even linear in the connection, thus leading to unique solutions.
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with all other components vanishing. This result agrees
with the one reported in [12]. As alluded to before, the
connection and the metric are not completely independent,
because of Qαμν ¼ 0, and that is why the metric appears in
the above expressions for the connection components.
Moreover, the only free connection components are Γr

θθ

and Γ̄r
θϕ, where the latter is defined in the fourth line

above, both arbitrary functions of r only. In addition to
being free in specifying these components, we can also
freely choose the sign � which arises from taking the
square roots of the metric components. This sign has to be
chosen such that it is the same for all components, either
always the upper or the lower one. Thus, we obtain two
distinct parametrizations for the connection which we
denote by Γ�.
It is not surprising that the connection now has less free

components than in fðQÞ gravity: While the connections
both have to fulfil the symmetry and flatness conditions, in

fðQÞ it has to fulfil Tα
μν ¼ 0, which are 24 equations,

while in fðTÞ we must have Qαμν ¼ 0, which are 40
equations. The connection in fðTÞ is thus more constraint.
Also, note that the connection components are not con-
tinuous at Γr

θθ ¼ Γ̄r
θϕ ¼ 0. For instance, in the expression

for Γt
θθ, when taking such a limit one has to take care with

the order of the two limits Γr
θθ → 0 and Γ̄r

θϕ → 0.

C. Symmetry reduced field equations for the metric
and the connection

After having worked out the symmetry reduced form of
the connection, and having established that there are two
distinct parametrizations corresponding to a choice of sign,
we can now consider the symmetry reduced field equations.
By plugging (3.50) and (6.9) into the field equations (6.6),
one finds that they have the following structure:

Structure of metric field equations∶

0BBB@
Mtt Mtr 0 0

Mtr Mrr 0 0

0 0 Mθθ 0

0 0 0 Mθθsin2θ

1CCCA

Structure of connection field equations∶ ∂rTf00ðTÞ

0BBB@
0 Ctr 0 0

−Ctr 0 0 0

0 0 0 − sin θCθϕ
0 0 sin θCθϕ 0

1CCCA; ð6:10Þ

and we remark that the torsion scalar is explicitly given by

T ¼ 2

r2
ðrþ grrΓr

θθÞ∂rgtt þ gttð1þ grr þ Γr
θθ∂rgrr þ 2grr∂rΓr

θθÞ
grrgtt

ð6:11Þ

for both choices of sign in Γ�. Observe that the metric field
equations have the same structure as for fðQÞ gravity.
Moreover, one finds that the sign of Γ� not only has
absolutely no effect on the structure of the connection field
equations; it does not enter these equations at all. No matter
which sign we choose, we obtain exactly the same field
equations. Hence, we can drop the distinction between the
þ and− choice. The connection equations of motion have a
very simple form, and are given by

∂rTf00ðTÞCtr ¼ Mtr ¼ 0; ð6:12Þ

∂rTf00ðTÞCθϕ ¼ ∂rTf00ðTÞΓ̄r
θϕ ¼ 0: ð6:13Þ

In particular, we note that no derivatives of the connection
—apart from the ∂rT term—appear in the connection

equations of motion. The connection is thus not dynamical,
and the connection equations of motion are mere con-
straints. Let us now look more closely at the off diagonal
metric field equation, which reads

Mtr ¼ −
2

ffiffiffiffiffi
gtt

p
r2

Γr
θθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − grrðΓr

θθ
2 þ Γ̄r

θϕ
2Þ

Γr
θθ

2 þ Γ̄r
θϕ

2

s
× ∂rTf00ðTÞ ¼ 0: ð6:14Þ

This equation is again structurally similar to the equation
we obtained in fðQÞ gravity, To solve it, we either have
Tsol ¼ const, or f00ðT solÞ ¼ 0, or we end up with a
constraint equation for the connection.
Just as in fðQÞ gravity, the first two options will

immediately lead to trivially satisfied connection field
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equations. Using a similar argument as in Sec. IV,
one can show that f00ðT solÞ ¼ 0 immediately implies
fðTÞ ¼ aT þ b, and hence one can only obtain the
Schwarzschild-deSitter-Nordström solution of GR. Also,
if Tsol is a constant, we find from (6.8) the GR field
equations,

Gμν þ Λeffgμν ¼ T̄μν; ð6:15Þ

where Gμν is the standard Einstein tensor with respect
to the Levi-Civita connection and where we have
defined

Λeff ≔
1

2

fðTsolÞ − f0ðT solÞT sol

f0ðT solÞ
T̄μν ≔

1

f0ðT solÞ
Tμν: ð6:16Þ

This is exactly the same results obtained in Sec. IV for
fðQÞ gravity, and we thereby reproduce a result which was
already known in the literature (see for instance [15,16] but
also notice that our approach of setting Tsol ¼ const does
not break any symmetries). Notice that in the case of fðTÞ
gravity, we can immediately establish that solutions with
Tsol ¼ const are not an empty set. To that end, assume
Tsol ¼ const and solve (6.11) for Γr

θθ,

Γr
θθ ¼ −

1ffiffiffiffiffiffiffiffiffiffiffi
gttgrr

p

×

�
cþ

Z
r
dρ

gttð2þ ρð2þ T solρ
2ÞÞ þ 2ρ∂ρgtt

4
ffiffiffiffiffiffiffiffiffiffiffi
gttgrr

p
�
:

ð6:17Þ

Hence, the connection can, in principle, be fixed such that T
becomes a constant. Finally, the only choice left for solving
the off diagonal metric field equation which does not force
GR solutions on us is the constraint equation,

Γr
θθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − grrðΓr

θθ
2 þ Γ̄r

θϕ
2Þ

Γr
θθ

2 þ Γ̄r
θϕ

2

s
¼ 0: ð6:18Þ

Once Mtr is fulfilled Ctr is also fulfilled. Since the con-
nection field equation Cθϕ ¼ 0 uniquely implies Γ̄r

θϕ ¼ 0,
we find that the constraint equation (6.18) has the two
solutions,

Γr
θθ ¼ � rffiffiffiffiffiffi

grr
p : ð6:19Þ

With this, the off diagonal metric field equation and all
connection field equations are satisfied, and we find that the
connection (6.9) reduces to

Γt
rt ¼

∂rgtt
2gtt

; Γr
rr ¼

∂rgrr
2grr

; Γr
θθ ¼ � rffiffiffiffiffiffi

grr
p ; Γr

ϕϕ ¼ Γr
θθ sinðθÞ2;

Γθ
rθ ¼

1

r
; Γθ

θr ¼∓
ffiffiffiffiffiffi
grr

p
r

; Γθ
ϕϕ ¼ − cosðθÞ sinðθÞ;

Γϕ
rϕ ¼ 1

r
; Γϕ

ϕr ¼∓
ffiffiffiffiffiffi
grr

p
r

; Γϕ
θϕ ¼ Γϕ

ϕθ ¼ cotðθÞ; ð6:20Þ

with all other components vanishing. We call these two
solutions (III�). The sign ambiguity here comes only from
the choice of Γr

θθ; the connection is the same for both Γ�
for this connection choice.
Note especially that the two choices (III�) are in

complete analogy to the choices of connection for fðQÞ,
namely (I�), in Sec. V C. The important difference—apart
from the obvious differences in the forms of the whole
connections—is of course that in fðTÞ the connection is not
dynamical. Its equations of motion completely fix the
connection from the start, and leave no room for a
dynamical evolution. We can still have beyond GR sol-
utions for (III�), but they will not involve any connection
hairs in this sense. We now have only three equations of
motion left, namely Mtt;Mrr, and Mθθ. One can check
analogously to Sec. IV C that Mθθ follows from Mtt and
Mrr so we have only two equations left for the two metric
components gtt and grr. The analogy between fðTÞ and

fðQÞ gravity for stationary and spherically symmetric
spacetimes comes to its conclusion when one notes that
for each case (III�) the exact equations of motion are
identical for any f with those from fðQÞ gravity for the
cases (I�); in particular we have T ¼ Q. These fðTÞ black
hole solutions are thus merely a subset of fðQÞ solutions,
where the connection is fixed and given by (I�). This is the
main result of this section. As we have discussed the
equations and their (approximate) solutions already in
Sec. V C, we are done with these cases.
Note especially that the (approximate) beyond GR

solutions found in [13] are the same as we found for the
case (III−). The solution of [14] corresponds to the
case (IIIþ). In these references the fðTÞ theory was
discussed using tetrads instead of the full connection,
but one can check that the connections that were con-
structed there are precisely the same as the ones we derived
for (III�).
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Finally we note that a recent study of fðT ; BÞ black holes
in [17] has uncovered an interesting result. In [17], the
authors work in the Weitzenböck gauge, for which all
components of the spin connection vanish, and they
perform a symmetry reduction of the tetrad, rather than
the metric. What they find is that the tetrad can have
complex solutions which nevertheless represent a real
metric. Whether a symmetry reduction of the tetrad also
leads to complex solutions in fðTÞ gravity is left for future
investigations.

VII. CONCLUSION

In this paper we have systematically derived and
studied symmetry reduced field equations for fðQÞ
gravity, and we have sketched how a similar approach
can be applied to fðTÞ gravity. We began our analysis by
performing a systematic symmetry reduction of the
metric affine geometry described by ðM; gμν;Γα

μνÞ.
The main results, which have been extensively discussed
in Sec. III, are the following: (a) There are two classes of
parametrizations for the connection which guarantee that
the connection is stationary, spherically symmetric, tor-
sionless, and flat, as required by the postulates of
symmetric teleparallelism (cf. Secs. III C and III D);
(b) the connection in coincident gauge fails to be
spherically symmetric, which in part explains why
[8,9] were not able to find beyond-GR solutions in
fðQÞ which describe black holes; (c) the first para-
metrization class of the connection (also known as
solution set 1) can be obtained from the second class
(also known as solution set 2) by a double scaling limit
(see Sec. III E); (d) the metric can be brought into a
simple diagonal form, which is parametrized by only two
arbitrary functions of r, without spoiling the structure of
the solution sets for the connection, as explained in
Sec. III F. Hence, we have constructed the simplest, and
yet most general metric-affine geometry which is sta-
tionary, spherically symmetric, torsionless, and flat.
In Sec. IV we have discussed the implications of

the simple form of the metric and the two parametri-
zation classes of the connection for the field equations
of fðQÞ gravity. In Sec. IVA we have formulated
precise conditions under which fðQÞ either reduces to
symmetric teleparallelism, gives rise to GR solutions
for generic choices of f, or produces beyond-GR
solutions. In particular, this subsection fully explains
why [8,9] were not able to find any beyond-GR
solutions.
Additionally, we have shown in Sec. IV B that solution

set 1, while attractive because of its simplicity, is not
viable when looking for beyond-GR solutions. In the
Secs. V C and IV D we have extensively discussed the
self-consistency of the field equations, the number of
degrees of freedom they propagate, the initial data which
needs to be specified, and additional constraints on the

connection which can appear. We have seen that the
connection becomes dynamical, in stark contrast with
symmetric teleparallelism, where the connection is unphys-
ical, or that it can be completely fixed by additional
constraints. The latter option leads nevertheless to
beyond-GR solutions for the metric.
In Sec. V we finally constructed explicit beyond-GR

solutions. In the Secs. VA–VC we used a perturbative
approach to construct solutions for the pure vacuum as well
as the electrovacuum case and nonzero cosmological
constant case for the Ansatz fðQÞ ¼ Qþ αQ2, where α
is assumed to be small. We have done so for a dynamical
connection as well as for one which is fixed by the
additional constraint described in Sec. IV D.
In Sec. V E we even succeeded in finding exact solutions

which go beyond GR. These solutions ultimately turned out
to have undesirable properties, which make them physi-
cally unattractive. But it is nevertheless interesting that
exact solutions can be found, given the complexity of the
fðQÞ field equations.
Finally, in Sec. VI we sketched how the same methods

which have been described in detail for fðQÞ can be applied
to fðTÞ in order to perform a systematic symmetry
reduction of the metric, the connection, and the field
equations. There are many (perhaps surprising) structural
similarities between fðQÞ and fðTÞ which facilitate the
analysis of fðTÞ gravity. Moreover, we have also reported
some beyond-GR solutions for fðTÞ.
In conclusion, we have succeeded in showing the

consistency of the symmetry reduced field equations of
both, fðQÞ and fðTÞ gravity, we have formulated precise
criteria under which beyond-GR solutions can exist, and we
have shown that the GR solutions can exist for arbitrary
choices of f. Moreover, we have discussed a few pertur-
bative beyond-GR solutions to the fðQÞ and fðTÞ field
equations. Whether these solutions are stable or whether
they lead to instabilities is beyond the scope of the current
analysis and will be left for future work. We have also not
discussed the question of formation processes in the context
of fðQÞ or fðTÞ gravity. It would be interesting to under-
stand whether a realistic formation process could give rise
to one of the solutions discussed here or whether it leads to
beyond-GR solutions at all. This question is also left for
future work.
Finally, we note that a similar symmetry reduction

analysis to the one carried out here can be performed for
cosmological models. A detailed discussion will be given
elsewhere.
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APPENDIX A: CONNECTION
TRANSFORMATION WHEN DIAGONALIZING

THE METRIC

For the sake of eliminating doubt about whether
the diffeomorphism described in Sec. III preserves the
structure of the solution sets of the connection, we

explicitly determine the transformation of the connection
components. The untransformed components are denoted by
Γα

μν, the components after having applied ϕ2 are Γ̄α
μν, and

after applying ϕ1 we call them Γ̄α
μν. The same for the metric

components gμν. The order in which we apply ϕ1 and ϕ2 is
irrelevant. We then find that the components transform as

c̄ ¼ c

k̄ ¼ k

Γ̄t
rr ¼ Γt

rr −
1

gtt3Γr
θθ
½cðk − 2cÞgtr3Γr

θθ
2 þ gtr2gttΓr

θθð3c − kþ 3cð2c − kÞΓt
θθÞ

− gtt2∂rgtrΓr
θθ þ gttgtrðgttΓr

rrΓr
θθ − 2ð2c − kÞΓt

θθð1þ cΓt
θθÞ þ ∂rgttΓr

θθÞ�

Γ̄t
θθ ¼ Γt

θθ −
gtrΓr

θθ

gtt

Γ̄r
rr ¼ Γr

rr þ
cðk − 2cÞgtr2Γr

θθ

gtt2
þ 2cgtrð1þ ð2c − kÞΓt

θθÞÞ
gtt

Γ̄r
θθ ¼ Γr

θθ; ðA1Þ

and

c̄ ¼ c̄

k̄ ¼ k̄

Γ̄t
rr ¼

Γ̄t
rr

∂rḡθθ2

Γ̄t
θθ ¼ Γ̄t

θθ

Γ̄r
rr ¼

Γ̄r
rr∂rḡθθ − ∂2

r ḡθθ
∂rḡθθ2

Γ̄r
θθ ¼ Γ̄r

θθ∂rḡθθ: ðA2Þ

All other components are zero. The derivative relations
coming from the flatness condition remain, as they come
from the coordinate invariant condition Rα

βμν ¼ 0. The
constants are thus unchanged, and the diffeomorphisms can
be absorbed in the arbitrary components Γt

θθ and Γr
θθ. The

structure is preserved, as expected.

APPENDIX B: APPROXIMATE SOLUTIONS
FOR f ðQÞ=Q+αQκ

The perturbative solutions for fðQÞ ¼ Qþ αQ2 derived
in Sec. VA can be generalize to the Ansatz fðQÞ ¼ Qþ
αQκ for an integer κ which satisfies κ ≥ 2. The solutions are
derived in complete analogy to those for fðQÞ ¼ Qþ αQ2,
so we only report the final results for the metric compo-
nents here.

1. Connection hair solutions

This is the generalization of Sec. VA, which we
explicitly did for κ ¼ 3, 4 for vacuum. It turns out one
has to go to perturbation order κ in α in the metric, at which
the first order correction of the connection Γr

θθ ¼ −rþ
αγð1Þ enters in the form,

gtt ¼ −
�
1 −

2Mren

r

�
þ ακ

μ

r
ln

�
r
r�

�
; ðB1Þ

grr ¼ −
1

gtt
: ðB2Þ

μ and r� are new scales coming from the connection
integration constants in γð1Þ and Mren is the renormalized
mass.We suspect that this formula holds for all integer κ ≥ 2.

2. Constraint solutions

This is the generalization of (I�) of Sec. V C, which we
explicitly did for κ ¼ 3, 4, 5, 10 for vacuum. It turns out
that we only need to go to first order metric perturbations.
We then have found the formulas,

gtt ¼ −1þ 2Mren

r
þ α

23κ−1

ð2κ − 3Þr2κ−2 þOðr−2κþ1Þ; ðB3Þ

−
1

grr
¼ −1þ 2Mren

r
þ α

ð2κ − 1Þðκ − 1Þ23κ−1
ð2κ − 3Þr2κ−2 þOðr−2κþ1Þ

ðB4Þ
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for (Iþ), and

gtt ¼ −1þ 2Mren

r
þ α

ð−1Þκ2κð2MrenÞ2κ−
2κð4κ − 3Þr4κ−3 þOðr−4κþ2Þ;

ðB5Þ

−
1

grr
¼ −1þ 2Mren

r
þ α

ð−1Þκ2κð2MrenÞ2κ−1
2κr4κ−3

þOðr−4κþ2Þ

ðB6Þ

for (I−). We again suspect these formulas to hold for all
integer κ ≥ 2.

APPENDIX C: PROOF OF THE PROPOSITION
ON THE EXISTENCE AND NUMBER OF

KILLING HORIZONS OF SOLUTION (5.19)

Let f∶ð0;þ∞Þ → R be defined by r ↦ fðrÞ ¼
2Mren þ α2μ lnðr=r�Þ − r with Mren > 0, r� > 0, and
α ≠ 0. Clearly, this function is well-defined and smooth
on the whole open interval ð0;þ∞Þ. Its first derivative is
given by

f0ðrÞ ¼ α2μ

r
− 1; ðC1Þ

from which we can deduce that f is strictly monotonically
decreasing when μ ≤ 0. Moreover, we can infer that f has
an extremum at

rextr ¼ α2μ for μ > 0; ðC2Þ

and that no extremum exists in the case μ ≤ 0. This
extremum is a local maximum because

f00ðrextrÞ ¼ −
1

α2μ
< 0: ðC3Þ

The asymptotic behavior of f is given by

lim
r→0

fðrÞ ¼ −signðμÞ ×∞

lim
r→þ∞

fðrÞ ¼ −∞: ðC4Þ

It follows that rextr is not only a local maximum, it is
the global maximum of f and at that point the func-
tion takes the value fmax ≔ fðrextrÞ ¼ 2Mren − α2μþ
α2μ ln ðα2μ=r�Þ. From these properties of f we can deduce
the following about its zeros:
(a) When μ ≤ 0, f is a strictly monotonically decreasing

function which takes positive values [because
limr→0 fðrÞ ¼ þ∞] as well as negative values [be-
cause limr→þ∞ fðrÞ ¼ −∞]. Hence, because f is
continuous, it follows that f has precisely one zero
in the interval ð0;þ∞Þ. If μ ¼ 0, this zero is located at

rhorizon ¼ 2Mren. If μ < 0, the equation fðrÞ ¼ 0 is
solved by

rhorizon ¼ α2jμjW
�

r�

α2jμj e
2Mren
α2 jμj

�
; ðC5Þ

where W∶½−e−1;þ∞Þ → ½ − 1;þ∞Þ is Lambert’s W-
function. Notice that the argument of W is strictly
positive, and hence rhorizon is well-defined and larger
than zero, i.e., rhorizon ∈ ð0;þ∞Þ. If the argument of
the W-function is large compared to unity, we can use
the asymptotic expansion WðxÞ ¼ ln x − lnðln xÞ þ
Oð1Þ plus an expansion in α up to second order to
deduce

rhorizon ¼ 2Mren − α2μ lnð2Mren=r�Þ þOðα4Þ: ðC6Þ

This completes the proof of part a) of the proposition.
(b) Let us now assume that μ > 0. In this case we know

that both asymptotic values of f are negative,
limr→0 fðrÞ ¼ −∞ and limr→þ∞ fðrÞ ¼ −∞, and that
f possesses a global maximum. Hence, the number of
zeros of f depends on the value fmax. There are no
zeros when fmax < 0, there is precisely one zero when
fmax ¼ 0, and there are precisely two zeros when
fmax > 0. If fmax ¼ 0, the location of the horizon is
given by rextr, i.e.,

rhorizon ¼ rextr ¼ α2μ: ðC7Þ

The condition fmax ¼ 0 for the existence of this single
horizon can equivalently be rewritten as

r�

α2μ
e
−2Mren

α2μ ¼ e−1: ðC8Þ

Similarly, we can rewrite the condition fmax < 0 as

r�

α2μ
e
−2Mren

α2μ > e−1; ðC9Þ

which means that when the parameters ðMren; μ; r�; αÞ
satisfy this inequality, there is no zero and conse-
quently no horizon.
Finally we consider the case where fmax > 0, which

can be translated into the condition,

r�

α2μ
e
−2Mren

α2μ < e−1; ðC10Þ

which ensures the existence of two zeros, i.e., two
Killing horizons. On the interval ð0; rextrÞ, the function
f is strictly monotonically increasing from −∞ to
fmax > 0, while on the interval ðrextr;þ∞Þ the
function is strictly monotonically decreasing from
fmax > 0 to −∞. Hence, there is an inner Killing
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horizon contained in the interval ð0; rextrÞ and an outer
Killing horizon contained in ðrextr;þ∞Þ.
The inner horizon can be determined in closed form,

and it is given by (the justification why this is the inner
horizon follows below)

rinner ¼ −α2 μW

�
−

r�

α2μ
e
−2Mren

α2μ

�
: ðC11Þ

Observe that the argument of the W-function is
negative and that the condition (C10) ensures that
the argument lies in the domain of dependence of the
W-function, ½−e−1;þ∞Þ. Since the W-function is
negative for negative arguments and there is a minus
sign in front of the W-function, we conclude that
rinner > 0. Moreover, we observe that the argument
of the exponential function is strictly negative. Given
the exponential suppression of the argument of the
W-function, we can approximate it with its Taylor
expansion around zero, WðxÞ ¼ xþOðx2Þ. This
gives us

rinner ≈ r�e−
2Mren
α2μ : ðC12Þ

If this is indeed the inner horizon, it must satisfy the
condition rinner=rextr < 1. That this is the case follows
from (C10) and from (C12),

rinner=rextr ≈
r�

α2μ
e
−2Mren

α2μ < e−1 < 1: ðC13Þ

Hence, rinner is indeed the inner horizon. We could not
find a closed expression for the outer horizon, but if we
assume that α is a small parameter and if we then
expand fðrÞ up to first order in α (there are α’s also in
Mren), we find the approximate expression,

router ¼ 2M þ αc2 þOðα2Þ: ðC14Þ

The validity of this approximate expression can be
verified numerically. This completes the proof of the
proposition.
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[2] J. B. Jiménez, L. Heisenberg, and T. S. Koivisto, J. Cosmol.
Astropart. Phys. 08 (2018) 039.

[3] L. Heisenberg, Phys. Rep. 796, 1 (2019).
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