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In this paper we describe a model of a four-dimensional spherically symmetric black hole in a limiting
curvature theory of gravity. In this theory the Einstein-Hilbert action is modified by adding to the action
terms providing inequality constraints on chosen curvature invariants. We demonstrated that in such a
model, instead of formation of the curvature singularity, the spacetime remains regular in the black hole
interior. For black holes with gravitational radius much larger than the radius l of the critical curvature the
obtained solutions describe a space exponentially expanding in one direction and periodically oscillating in
the other two (spherical) directions.
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I. INTRODUCTION

Existence of singularities in general relativity (GR) is a
well-known “headache” of this theory. According to GR
they exist both in cosmology and inside black holes.
Famous theorems proved by Penrose and Hawking [1–3]
imply that such singularities are inevitable provided physi-
cally reasonable energy conditions are satisfied. Exact
solutions of Einstein equations show that both cosmologi-
cal and black hole singularities are related to an infinite
growth of spacetime curvature. In spite of this common
property there exists an important difference between these
two types of singularities. Homogeneous isotropic uni-
verses are conformally flat, so that their Weyl tensor
vanishes. Their singularity is related to an infinite growth
of the Ricci tensor. In order to prevent its formation it is
sufficient to modify the matter stress-energy tensor.
Certainly, such a modification should violate some energy
conditions. Inside a static or stationary black hole the
singularity is related to infinite growth of the Weyl tensor,
and it cannot be prevented by simple modification of the
matter stress-energy tensor. This property makes the
problem of black hole singularities more complicated.
There is a general belief that the ultraviolet (UV)

incompleteness of GR can be cured by a properly chosen
modification of this theory. Namely, one can expect that in
such a modification the curvature invariants cannot grow
infinitely and are always less than some limiting value. This
condition was formulated by Markov [4,5] as a new
fundamental principle of theoretical physics. A natural
question is: If curvature singularities are eliminated in a
theory satisfying the limiting curvature condition, how the
spacetime properties would be modified in the domains

with high curvature close to the critical one. There are
several publications where this question was addressed. It
was demonstrated that in cosmology the existence of the
limiting curvature opens a possibility of bouncing cosmo-
logical models [4–21]. For black holes the validity of this
principle makes it possible to form new universes in their
interior [22–25].
There exist several models which obey the limiting

curvature condition. For example, one can include in the
theory of gravity dilaton scalar fields and find their
potential which allows one to restrict curvature (see e.g.,
[19,20,26]).
Recently, the authors of the present paper proposed a new

approach in which the limiting curvature condition is
satisfied. This is achieved by adding to the Einstein-
Hilbert action of GR extra terms which provide fulfilment
of inequality constraint(s) restricting the value of chosen
curvature invariant(s). Basic mechanism of application of
such inequality constraints to classical mechanics is dis-
cussed in [27]. Limiting curvature models for 2D black holes
and for cosmology were studied in [28,29], respectively.
In the present paper we continue to study the limiting

curvature theory of gravity. Now we focus on the problem
of the interior of a four-dimensional spherically symmetric
black hole. In Sec. II we discuss spherically symmetric
metrics and their curvature invariants. In Sec. III we present
a reduced action approach. Modification of the gravita-
tional theory by including inequality constraint restricting
curvature is described in Sec. IV. Linear in curvature
invariants inequality constraints are discussed in Sec. V.
Next four sections contain derivation and analysis of
solutions describing the interior of the black hole in the
constructed limiting curvature models. Summary of results
and their discussion is the subject of Sec. X. An Appendix
collects useful formulas, which are used in the “main body”
of the paper.
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II. SPHERICALLY SYMMETRICMETRIC AND ITS
CURVATURE INVARIANTS

A. Metric

Schwarzschild metric is a spherically symmetric solution
of vacuum Einstein equations. It has a well-known form,

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ dr2

1 − 2M
r

þ r2dω2; ð2:1Þ

where dω2 ¼ dθ2 þ sin2θdϕ2 is a metric on 2D round
sphere. The existence of the Killing vector ξ ¼ ∂t for this
metric is a consequence of Birkhoff’s theorem. The
parameter M is the mass of a static black hole described
by metric (2.1). In the black hole’s interior, that is for
r < 2M, we write this metric in the form,

ds2 ¼ −
dr2

f
þ fdt2 þ r2dω2; f ¼ 2M

r
− 1: ð2:2Þ

The coordinate t is still the Killing parameter, but now
ð∇tÞ2 > 0, so that t is a spatial coordinate. The metric
function f ¼ −ð∇rÞ2 is positive in the black hole interior,
so that the coordinate r is a timelike coordinate. We define a
new time coordinate τ as follows:

τ ¼ −
Z

r

2M

drffiffiffi
f

p : ð2:3Þ

Calculating this integral one finds the following relation
between τ and r∶

τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð2M − rÞ

p
þM arcsin

�
M − r

r

�
þ 1

2
πM: ð2:4Þ

Parameter τ has a simple meaning. Namely, it is a proper
time along a world line with fixed values of ðt; θ;ϕÞ. The
integration constant is chosen so that τ ¼ 0 at r ¼ 2M. At
r ¼ 0 one has τ ¼ πM. Kretschmann curvature invariant
K ¼ RαβγδRαβγδ calculated for this metric is

K ¼ 48M2

r6
: ð2:5Þ

It infinitely grows in the black hole interior in the vicinity of
a singularity at r ¼ 0.
The existence of singularities is a well-known “illness”

of the general relativity. Our goal is to study how this
prediction is changed if one modifies the theory by
imposing the limiting curvature restriction. In such a model
the metric (2.2) remains valid until the spacetime curvature
reaches some limiting value. Later we specify its concrete
choice but at the moment we assume that this happens at
some value of the radial coordinate r ¼ r0 < 2M.

For the later time the form of the metric would be
different from (2.2). We write this metric in the following
general form:

ds2 ¼ −b2dτ2 þ B2dt2 þ a2dω2; ð2:6Þ

where a, b and B are functions of time τ. Let us make some
explanation concerning this choice. Metric (2.6) has the
Killing vector ξ ¼ ∂t which it inherited from (2.2) and t is a
spacelike coordinate. There is an ambiguity in the choice of
the time coordinate τ, and the presence of the metric
coefficient bðτÞ reflects this. In a special gauge bðτÞ ¼ 1
the coordinate τ coincides with the proper time parameter.
At the moment we keep bðτÞ arbitrary. This allows one to
reduce the action of the theory to a functional depending on
three functions, bðτÞ, aðτÞ and BðτÞ, such that its variations
give a complete set of equations. After the variation one can
fix the choice of gauge.
We shall use two options:
(i) Synchronous gauge: bðτÞ ¼ 1,

ds2 ¼ −dτ2 þ BðτÞ2dt2 þ aðτÞ2dω2: ð2:7Þ

(ii) Radial gauge in which

ds2 ¼ −
1

fðrÞ dr
2 þ e2γðrÞfðrÞdt2 þ r2dω2: ð2:8Þ

It is easy to see that

ξ2 ¼ B2 ¼ e2γf; f ¼ −ð∇rÞ2: ð2:9Þ

Any symmetric tensor Aμν which respects the sym-
metries of the metric (2.6), that is which is invariant under
rotations, translation t → tþ a and reflection t → −t, has
the following form:

Aν
μ ¼ diagðA

0

ðτÞ;A
1

ðτÞ; ÂðτÞ; ÂðτÞÞ: ð2:10Þ

B. Curvature invariants

The Riemann curvature tensor for the metric (2.6) has
four nonvanishing components,1

1This property is also valid for a spherically symmetric metrics
which depends on both space and time coordinates. Narlikar and
Karmarkar [30] proposed that this set of four invariants is
sufficient for the construction of all other algebraic invariants
of the curvature tensor. The metric (2.6) belongs to a wider class
of so-called warped product metrics. A discussion of the
complete set of curvature invariants which is sufficient for
construction of algebraic curvature invariants and further refer-
ences can be found in [31].
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Rτ̂ t̂ τ̂ t̂ ¼ −v; Rτ̂ θ̂ τ̂ θ̂ ¼ −q; ð2:11Þ

Rt̂ θ̂ t̂ θ̂ ¼ u; Rθ̂ ϕ̂ θ̂ ϕ̂ ¼ p: ð2:12Þ

The hat over indices of the curvature means that the
components of this tensor are calculated in the tetrad
formed by unit vectors along the corresponding coordinate
lines. The curvature invariants ðp; q; u; vÞ are

p ¼ _a2 þ b2

a2b2
; q ¼ ä

ab2
−

_a
a

_b
b3

; ð2:13Þ

u ¼ _a _B
aBb2

; v ¼ B̈
Bb2

−
_B
B

_b
b3

: ð2:14Þ

A dot in these expressions means the derivativewith respect
to τ. The curvature invariants in the radial gauge (2.8) are

p ¼ f þ 1

r2
; q ¼ f0

2r
; u ¼ fγ0

r
þ f0

2r
; ð2:15Þ

v ¼ fγ0 þ fγ02 þ 1

2
f00 þ 3

2
f0γ0: ð2:16Þ

Here the prime means a derivative with respect to r. Any
scalar polynomial invariant constructed from the Riemann
tensor is a polynomial of four variables ðp; q; u; vÞ. If these
variables are restricted, then the value of the corresponding
polynomials will be bounded as well. This means that the
limiting curvature condition for these curvature invariants is
valid, if for the metric under consideration the eigen values
of curvature ðp; q; u; vÞ are bounded.
Let us note that these eigen values can be presented as

functions of curvature invariants. For example this can be
done as follows. Let us note that the Riemann tensor can be
decomposed into three irreducible terms: the Weyl tensor
Cαβγδ, the traceless Ricci tensor Sαβ ¼ Rαβ − 1

4
gαβR, and

the Ricci scalar R. As the result, the scalar polynomial
curvature invariants can be constructed solely in terms of
scalar invariants made of these irreducible parts. It is easy to
check that the nonvanishing tetrad components of the Weyl
tensor are defined by only one function C,

Cτ̂ t̂ τ̂ t̂ ¼
1

3
C; Cτ̂ θ̂ τ̂ θ̂ ¼ −

1

6
C; Cτ̂ ϕ̂ τ̂ ϕ̂ ¼ −

1

6
C;

Cθ̂ ϕ̂ θ̂ ϕ̂ ¼ 1

3
C; Ct̂ θ̂ t̂ θ̂ ¼ −

1

6
C; Ct̂ ϕ̂ t̂ ϕ̂ ¼ −

1

6
C;

where

C ¼ p − q − uþ v: ð2:17Þ

Thus, any scalar invariant made of some power of the Weyl
tensor is proportional to the same power of C [see, e.g.,
Eq. (A3)]. The other necessary three relations connecting
eigen values of the Riemann tensor with scalar curvature
invariants are

R ¼ 2ðpþ 2qþ 2uþ vÞ;
S2 ≡ SμνSμν ¼ ðp − vÞ2 þ 2ðq − uÞ2;
S3 ≡ SνμSανS

μ
α ¼ −3ðp − vÞðq − uÞ2: ð2:18Þ

The Eqs. (2.17)–(2.18) are functionally independent and
they alow one to express locally the eigen values
ðp; q; u; vÞ in terms of C, R, S2, S3. However, we found
it easier to impose restrictions on eigen values directly.
In what follows the following simple remarks will be

useful.
(i) Let us consider a two dimensional spacetime with

metric,

dγ2 ¼ −b2ðτÞdτ2 þ B2ðτÞdt2: ð2:19Þ

Its 2D curvature is ð2ÞR ¼ 2v, where v is given
in (2.14).

(ii) Consider three-dimensional spacetime with metric,

dΓ2 ¼ −b2ðτÞdτ2 þ aðτÞ2dω2: ð2:20Þ

The Einstein tensor for it is ð3ÞGμ
ν ¼ −diagðp; q; qÞ,

where p and q are given in (2.13).
Hence, if one restricts 2D curvature for metric dγ2 and 3D
curvature invariants for metric dΓ2 then the 4D curvature
invariants (2.11)–(2.12) will be also restricted, provided an
additional invariant u is bounded.
For the Schwarzschild metric these curvature invariants

take the form,

p ¼ v ¼ −2q ¼ −2u ¼ 2M
r3

: ð2:21Þ

The Ricci tensor, the traceless Ricci tensor, and the Einstein
tensor for the metric (2.6) are linear combinations of the
basic invariants ðp; q; u; vÞ. These expressions as well as
expressions for quadratic in curvature invariants are col-
lected in the Appendix.
The curvature invariants q and v which enter the

expression (2.11) for the Riemann tensor contain second
derivatives of the metric functions aðτÞ and BðτÞ. Using
covariant derivatives of the Riemann curvature one can
construct additional set of scalar invariants, which contain
higher derivatives of these functions. For example, one has

Rτ̂ t̂ τ̂ t̂;τ̂ ¼ −
a
B
_vþ…; ð2:22Þ

Rτ̂ θ̂ τ̂ θ̂;τ̂ ¼ Rτ̂ ϕ̂ τ̂ ϕ̂;τ̂ ¼ − _qþ… ð2:23Þ

As earlier we use the hat over indices to indicate that the
components of this tensor are calculated in the orthonormal
tetrad. The dots denote terms which contain less than three
time derivatives of the metric functions. All other compo-
nents of the covariant derivatives of the Riemann tensor
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which contain _q and _v can be obtained by permutations of
the indices in (2.22) and (2.23).

III. REDUCED ACTION

Let us consider an action,

S ¼ 1

κ

Z
d4x

ffiffiffiffiffiffi
−g

p
LðgÞ; κ ¼ 8πG: ð3:1Þ

Here the Lagrangian LðgÞ depends on the metric g and its
derivatives. Besides this it may depend also on some other
variables which will be specified later. We use the follow-
ing notation for the variation of this action over the metric:

Tαβ ¼ 2ffiffiffiffiffiffi−gp δS
δgαβ

: ð3:2Þ

We assume that the Lagrangian L is a scalar and equations
of motion for other fields which enter L are satisfied then
the following conservation law is valid:

Tαβ
;β ¼ 0: ð3:3Þ

Tensor T being calculated for the metric (2.6) has the
form (2.10). We call such a tensor a reduced one. This
reduced tensor can be obtained in a different way. Let us
substitute first the ansatz (2.6) into the Lagrangian LðgÞ. As
the result one gets the Lagrangian as a function of bðτÞ,
aðτÞ, BðτÞ and their derivatives. Since it does not depend on
t, θ and ϕ, one can integrate the action S over these
coordinates. As a result one has

S ¼ 1

κ
VS; ð3:4Þ

where we defined the dimensionally reduced action,

S ¼
Z

dτa2bBLða; b; BÞ: ð3:5Þ

Here Lða; b; BÞ ¼ LðgÞ computed on the metric (2.6), and
V is the volume,

V ¼
Z

sin θdθdϕdt ¼ 4π

Z
dt: ð3:6Þ

This (formally infinite) factor does not affect the equations
of motion derived from the action and can be omitted.
By varying the reduced action with respect to its argu-

ments b, a and B one obtains three quantities, which
coincide with the components of the reduced tensor T ,

T τ
τ ¼

1

a2B
δS
δb

; ð3:7Þ

T t
t ¼

1

a2b
δS
δB

; ð3:8Þ

T θ
θ ¼ T ϕ

ϕ ¼ 1

2abB
δS
δa

: ð3:9Þ

The relation between this reduced tensor and the stress-
energy tensor (3.2), when evaluated on the spacetime (2.6),
is T β

α ¼ κTβ
α. In what follows we shall use the approach

based on the reduced action for obtaining the gravitational
equations in our model.
For the metric (2.6) the conservation law (3.2) gives the

following relation:

∂τT τ
τ ¼

_B
B
½T t

t − T τ
τ� þ 2

_a
a
½T θ

θ − T τ
τ�: ð3:10Þ

Thus if we know T τ
τ and T θ

θ components, then T t
t can be

expressed in terms of them.

IV. INEQUALITY CONSTRAINTS

In a model with the limiting curvature we consider the
action (3.1) with the Lagrangian LðgÞ of the form,

LðgÞ ¼ Lg þ Lc: ð4:1Þ

Here Lg ¼ 1
2
R is the Lagrangian for Einstein-Hilbert action

and Lc is a part of the Lagrangian responsible for inequality
curvature constraints. In what follows we use ansatz (2.6)
for the metric, and our starting point is the following
reduced action:

S ¼
Z

dτa2bBL; ð4:2Þ

L ¼ Lg þ
X
j

χjðΦj þ ζ2jÞ: ð4:3Þ

Here Lg is the reduced form of the Einstein-Hilbert action,

Lg ¼
1

2
R ¼ pþ 2qþ 2uþ v: ð4:4Þ

After integration by parts one can present this part of the
action in the form,

Sg ¼
Z

dτB

�
b −

_a2

b
− 2

a _a _B
Bb

�
: ð4:5Þ

Its variations give

Gτ
τ ¼

1

a2B

δSg

δb
¼ −ðpþ 2uÞ; ð4:6Þ
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Gt
t ¼

1

a2b

δSg

δB
¼ −ðpþ 2qÞ; ð4:7Þ

Gθ
θ ¼

1

2abB
δS
δa

¼ −ðqþ uþ vÞ: ð4:8Þ

It is easy to see that as expected the obtained expressions
coincide with the components of the reduced Einstein
tensor (see Appendix).
The action (4.2) contains also a part which is responsible

for the inequality constraints. We choose constraint func-
tions in the form,

Φj ¼ Φjðp; q; u; v;ΛjÞ: ð4:9Þ

Basically, Φj is a scalar invariant constructed from the
curvature tensor, and Λj is a limiting value parameter for
this invariant. Each of such constraints is accompanied by a
pair of Lagrange multipliers χj and ζj. By varying the
action S over these multipliers one gets relations,

Φjðp; q; u; v;ΛjÞ þ ζ2j ¼ 0; χjζj ¼ 0: ð4:10Þ

The first of these relations shows that Φj ≤ 0 so that
ζ2j ¼ −Φj. If Φj < 0 the second relation implies that
χj ¼ 0. This function becomes nonzero only when the
first equality is saturated and the curvature invariant Φj

reaches its limiting value,

Φj ¼ 0: ð4:11Þ

We call χjðτÞ a control function.
When all control functions vanish, the constrains do not

contribute into the gravity equations, so that they are
identical with the equations obtained from the reduced
Einstein-Hilbert action. We call this regime subcritical.
After one of the constraints is saturated and the corre-
sponding curvature invariant reaches its critical value a
solution becomes supercritical. It follows along this con-
straint, while the gravitational equations will be modified
by adding terms dependent on χ and its derivatives which

can be obtained by variation over the metric of the
corresponding constraint term.
After a subcritical solution enters the supercritical regime

its behavior may be different. If at some moment of time τ1
the control function χjðτ1Þ (with some of its derivatives)
vanishes and the other constraint functions are still non-
saturated, the solution can return to its subcritical regime. If
during the supercritical evolution along the constraint
number j the other constraint function (say with number
i ≠ j) becomes saturated, the system can slip to it or its
motions will be restricted by both constraints simultane-
ously. These options and other properties of solutions of the
considered model with limiting curvature depend on the
number of the inequality constraints and their structure.

V. LINEAR CONSTRAINTS

In this paper we consider linear in curvature constraints.
The most general form of such a constraint is

Φ≡ ρp − μqþ νuþ σv − Λ ¼ 0; Λ ¼ 1

l2
: ð5:1Þ

Here p, q, u and v are basic curvature invariants defined in
(2.13), and ρ, μ, ν, and σ are dimensionless constants. Our
choice of sign for the term with the coefficient μ will be
convenient in further discussions. ParameterΛ plays the role
of the limiting curvature value. It has dimension ½length�−2.
We denote by l the corresponding critical length scale.
As we already mentioned the control function χ in the

subcritical regime vanishes and the gravitational equations
are identical with the standard Einstein equations. For our
problem this means that the subcritical solution coincides
with the Schwarzschild metric (2.1). Let us discuss the
form of these equations in the supercritical regime, which
corresponds to ζ ¼ 0. Then the reduced Lagrangian (4.3) at
this phase is of the form,

L¼ðpþ2qþ2uþvÞþðρp−μqþνuþσv−ΛÞχ: ð5:2Þ

Variation with respect to control function χ give the
constraint (5.1), while the gravitational equations gives
the following set of equations.

(i) The ðτ; τÞ equation,

_a2

a2
þ 1

a2
þ 2

_a _B
aB

¼ ρ

�
−
_a2

a2
þ 1

a2

�
χ − μ

�
_a
a
_χ þ

�
_a2

a2
þ _a _B

aB

�
χ

�
− ν

_a _B
aB

χ þ σ
_B
B

�
_χ þ 2

_a
a
χ

�
− Λχ: ð5:3Þ

(ii) The ðt; tÞ equation,

_a2

a2
þ 1

a2
þ 2

ä
a
¼ ρ

�
_a2

a2
þ 1

a2

�
χ − μ

ä
a
χ − ν

�
_a
a
_χ þ

�
ä
a
þ _a2

a2

�
χ

�
þ σ

�
χ̈ þ 4

_a
a
_χ þ 2

�
ä
a
þ _a2

a2

�
χ

�
− Λχ: ð5:4Þ
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(iii) The ðθ; θÞ equation,

ä
a
þ _a _B

aB
þ B̈
B
¼ −ρ

�
_a
a
_χ þ

�
ä
a
þ _a _B

aB

�
χ

�
−
μ

2

�
χ̈ þ

�
2
_a
a
þ 2

_B
B

�
_χ þ

�
2
ä
a
þ 2

_a _B
aB

þ B̈
B

�
χ

�

−
ν

2

�
_B
B
_χ þ B̈

B
χ

�
þ σ

B̈
B
χ − Λχ: ð5:5Þ

Thus we have a set of four equations (5.1), (5.3), (5.4)
and (5.5) for three functions aðτÞ, bðτÞ and χðτÞ. However,
they are not independent. The conservation law (3.10)
establishes relation between Eqs. (5.3)–(5.5). One can
reduce the total number of independent equations for three
functions aðτÞ, bðτÞ, χðτÞ to two in two different ways:

(i) Use besides the constraint (5.1) the first order
equation (5.3) together with one of the other two
equations, (5.4) and (5.5);

(ii) Use Eqs. (5.1), (5.4) and (5.5).

In the latter case the Eq. (5.3) should be imposed on the
initial conditions at some time τ0. The conservation law
(3.10) guarantees that the system is consistent and con-
dition (5.3) is valid for any τ.
Let us consider the first option. Using the constraint

equations we write the corresponding three equations
containing second derivatives in the following form:

−μqþ σv ¼ Λ − ρp − νu; ð5:6Þ

½2þ ðν − 2σÞχ�qþ σv − σχ̈ ¼ −p − ν

�
_a
a
_χ þ

�
pþ u −

1

a2

�
χ

�
þ σ

�
4
_a
a
_χ þ 2

�
p −

1

a2

�
χ

�
; ð5:7Þ

ð1þ ρχÞqþ
�
1þ 1

2
ðμþ νÞ

�
χvþ 1

2
μχ̈ ¼ −u −

�
ðρþ μÞ _a

a
þ
�
μþ ν

2

�
_B
B

�
_χ − ρðpþ uÞχ − ðμþ νÞuχ: ð5:8Þ

This system of equations is written in such a form where the
terms with second derivatives stand in their left-hand side,
while the right-hand side does not contain these second
order derivatives. This set of equations can be written in a
matrix form,

U

0
B@ q

v

χ̈

1
CA ¼ …;

where U is the following 3 × 3 matrix:

U ¼

0
B@

−μ σ 0

2þ ðν − 2σÞχ σχ −σ
1þ ρχ 1þ μþν

2
χ μ

2

1
CA:

Determinant of this matrix is

detU ¼ −σ½σ þ 2μþ ðρσ − σμþ μ2 þ μνÞχ�: ð5:9Þ

At the transition point, when χ ¼ 0 and _χ ¼ 0, the
system of these equations is

−μqþ σv ¼ Λ − ρp − νu;

2q − σχ̈ ¼ −p;

qþ vþ μ

2
χ̈ ¼ −u: ð5:10Þ

At this point detU ¼ −σðσ þ 2μÞ. If σ ≠ 0 and σ þ 2μ ≠ 0

relations (5.10) allow one to find second derivatives ä, B̈, χ̈.
This means that at least in the vicinity of the transition point
there exists a unique regular solution.

VI. PHASE I: v ≤ Λ CONSTRAINT

A. Transition between sub- and supercritical regimes

When detU ≠ 0 the system equations (5.1), (5.4) and
(5.5) can be presented in an equivalent form resolved with
respect to the second derivatives ä, B̈ and χ̈1. We call set of
equations normal. The initial conditions for this normal set
of equations are

aðτ0Þ ¼ a0; _aðτ0Þ ¼ _a0;

Bðτ0Þ ¼ B0; _Bðτ0Þ ¼ _B0;

χðτ0Þ ¼ χ0; _χðτ0Þ ¼ _χ0: ð6:1Þ
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If the functions in the right-hand side of the normal
equations are regular in the vicinity of a point (6.1) then,
this set of equations has a regular unique solution.
In order to satisfy condition detU ≠ 0 the constant σ

which enter the linear constraint (5.1) should be nonzero.
The simplest choice which satisfies this property is

Φ ¼ v − Λ ¼ 0: ð6:2Þ

Let us discuss now a transition between sub- and
supercritical regimes for this choice of the constraint
function. In what follows it is very convenient to use
dimensional quantities and dimensional form of the equa-
tions. It can be done by using the fundamental length scale
l. We denote by hat over a quantity its dimensionless form.
Thus we have

p̂ ¼ l2p; q̂ ¼ l2q; û ¼ l2u; v̂ ¼ l2v;

χ̂1 ¼ χ1; â ¼ a=l; B̂ ¼ B; t̂ ¼ t=l;

M̂ ¼ M=l; Λ̂ ¼ l2Λ ¼ 1: ð6:3Þ

In these variables the constraint equation (6.5) takes a
simple form,

v̂ ¼ 1: ð6:4Þ

For our problem a subcritical solution coincides with
metric (2.2). We denote by τ0 the time when the transition
from subcritical to supercritical regime occurs. Then (6.2)
can be written in the form,

v̂0 ¼ p̂0 ¼ −2q̂0 ¼ −2û0 ¼
2M̂
â30

¼ 1: ð6:5Þ

Hence,

â0 ¼ m≡ ð2M̂Þ1=3: ð6:6Þ

In what follows we assume that the transition to the
supercritical regime happens inside the horizon of the
black hole, so that m > 1.
Using relation,

dr
dτ

¼ −
ffiffiffi
f

p
; Bðτ0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p
; ð6:7Þ

one can write the initial conditions (6.1) at the transition
point as follows:

â0 ¼ m;
dâ
dτ̂

����
0

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − 1

p
;

B̂0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − 1

p
;

dB̂
dτ̂

����
0

¼ 1

2
m; ð6:8Þ

χ̂10 ¼ 0;
dχ̂1
dτ̂

����
0

¼ 0: ð6:9Þ

B. Field equations and their solutions

Starting from now we shall be working only with
dimensionless quantities. Since presence of many hats in
formulas makes them unwieldy, we adopt the following
agreement. We simply omit all the hats in the intermediate
results. One can always easily restore dimensions in the
final results by restoring the hats over all the quantities and
after this using relations (6.3).
Let us write a system of equations for the supercritical

regime. The constraint (6.4) gives

B̈ − B ¼ 0: ð6:10Þ

Putting ρ ¼ μ ¼ ν ¼ 0, σ ¼ 1 and using (6.10) one can
write (5.8) as follows:

äþ
_B
B
_aþ a ¼ 0: ð6:11Þ

We denote by χ1 a control function associated with the
constraint v ¼ 0. Then (5.3) gives

_B
B
_χ1 þ ð2u − 1Þχ1 ¼ pþ 2u: ð6:12Þ

Expressions for p and u which enter this equation are given
by (2.13). The set of three equations (6.10)–(6.12) with
initial conditions,

a0 ¼ m; _a0 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − 1

p
;

B0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − 1

p
; _B0 ¼

1

2
m; χ1;0 ¼ 0: ð6:13Þ

The condition _χ1;0 ¼ 0 at the transition point follows
from (6.12).
A solution of (6.10) satisfying (6.13) is

BðτÞ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m2 − 4

p
coshðτ − τ0 þ ϕÞ; ð6:14Þ

where

tanhϕ ¼ m

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − 1

p : ð6:15Þ

Substituting expression for B into (6.11) one gets

äþ tanhðτÞ _aþ a ¼ 0; τ̄ ¼ τ − τ0 þ ϕ: ð6:16Þ

A solution of this equation can be written in terms of
associated Legendre functions Pν

μðzÞ and Qν
μðzÞ,
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aðτÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
coshðτ̄p Þ

h
CPP

i
ffiffi
3

p
2

−1
2

ðtanh τ̄Þ

þ CQQ
i
ffiffi
3

p
2

−1
2

ðtanh τ̄Þ
i
: ð6:17Þ

Constants CP and CQ can be fixed by the initial conditions
(6.13) and have the form,

CP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
coshϕ

p

W
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanh2ϕ − 1

4

q h
Q

i
ffiffi
3

p
2

−1
2

ðtanhϕÞ

− ð1 − i
ffiffiffi
3

p
Þ tanhϕQi

ffiffi
3

p
2

1
2

ðtanhϕÞ
i
;

CQ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
coshϕ

p

W
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanh2ϕ − 1

4

q h
P
i
ffiffi
3

p
2

−1
2

ðtanhϕÞ

− ð1 − i
ffiffiffi
3

p
Þ tanhϕPi

ffiffi
3

p
2

1
2

ðtanhϕÞ
i
;

where

W ¼ 1þ e−π
ffiffi
3

p

π

�
Γ
�
1

2
þ i

ffiffiffi
3

p

2

��
2

; ð6:18Þ

and ΓðzÞ is the gamma function. Note that the solution
(6.17) is real despite of the complex parameters entering the
expression. For large m ≫ 1 the asymptotic of CP and CQ

coefficients is

CP ¼ ð0.40805þ 1.6113iÞmþOðm−1Þ;
CQ ¼ ð114.14 − 23.130iÞmþOðm−1Þ: ð6:19Þ

Figure 1 shows a plot of aðτÞ computed for m ¼ 1000.
Qualitatively the plots look very similar for all values of
m > 2. One can see that aðτÞ at this phase is a monoton-
ically decreasing function, and there always exists such a
moment of time τ ¼ τ� when it vanishes. The value of τ�
depends on the parameter m (6.6), but for large m,
corresponding to large black hole mass, it is almost

constant. This dependence is depicted in Fig. 2. In the
limit τ → τ� the invariants p and q infinitely grow. In order
to prevent this, in what follows we shall impose an
additional constraint. We discuss a choice of this constraint
in the next section. Here we just continue our study of the
stage with one constraint v ¼ 1.
The control function χ1ðτÞ can be found by solving

Eq. (6.12). A solution satisfying the initial condition
χ1ðτ0Þ ¼ 0 is

χ1ðτÞ ¼ 1þ
_B
a2

�
−
a20
_B0

þ
Z
τ0

dτ
a2B
_B2

ð1þ pÞ
�
: ð6:20Þ

Note that due to (6.13),

a20
_B0

¼ 2m: ð6:21Þ

C. Case of large m

When the radius r0 where the Schwarzschild metric
reaches the critical curvature is much larger than the critical
length l the dimensionless parameter m, (6.6), is large. In
this regime

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − 1

p
¼ mþOðm−1Þ. Neglecting terms

Oðm−1Þ in (6.13) one gets the following initial conditions:

a0 ¼ − _a0 ¼ B0 ¼ 2 _B0 ¼ m: ð6:22Þ

Let us denote

ā ¼ a
m
; B̄ ¼ B

m
; ð6:23Þ

then one has

̈B̄ − B̄ ¼ 0; ̈āþ
_̄B
B̄
āþ ā ¼ 0;

_̄B
B̄
_χ1 þ ð2u − 1Þχ1 ¼ pþ 2u;

ā0 ¼ − _̄a0 ¼ B̄0 ¼ 2 _̄B0 ¼ 1: ð6:24Þ

FIG. 1. Typical evolution of the scale parameter along the
primary constraint. Before the moment when aðτÞ vanish, the
secondary constraint enters the play to limit growing curvature
invariants.

FIG. 2. The dependence of τ� on the parameter m. Its
asymptotic value at large m is τ� ¼ τ0 þ 1.031.
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In these equations,

u ¼ _̄a
ā

_̄B
B̄
: ð6:25Þ

Since m is large, one can use the following approximate
expression for p ¼ ð _̄a=āÞ2. Thus whenm is large both field
equations and initial conditions in (6.24) do not depend on
m and are universal in this sense.
Solutions for B̄ and ā are

B̄ðτÞ ¼
ffiffiffi
3

p

2
coshðτ̄Þ; tanhϕ ¼ 1

2
; τ̄ ¼ τ − τ0 þ ϕ;

āðτÞ ¼
h
cPP

i
ffiffi
3

p
2

−1
2

ðtanh τ̄Þ þ cQQ
i
ffiffi
3

p
2

−1
2

ðtanh τ̄Þ
i

ffiffiffiffiffiffiffiffiffiffiffiffi
cosh τ̄

p : ð6:26Þ

Here

cP ¼ 0.40805þ 1.6113i; cQ ¼ 114.14 − 23.13i:

ð6:27Þ

A plot of āðτÞ is shown by the solid line in Fig. 3. The
function āðτÞ monotonically decreases starting from the
initial value ā0 ¼ 1 and becomes zero at τ ¼ τ�, where
τ� − τ0 ¼ 1.03. The invariant q evaluated on the exact
solution starts from qðτ0Þ ¼ −1=2 and then grows with
time. It vanishes at τ ≈ τ0 þ 0.26966 and becomes positive
for later times. In the vicinity of τ� both invariants p and q
infinitely grow.
The approximate solution, corresponding to the linear

asymptotic of ā at τ ¼ τ0 is given by the dashed line in
Fig. 3. It has a simple form,

ā ¼ 3

4

�
1 − sin

� ffiffiffi
2

p
ðτ − τ0Þ − arcsin

1

3

��
; ð6:28Þ

which approximates the exact solution āðτÞ (6.26) in the
range τ ∈ ðτ0; τ0 þ 0.3Þ with the accuracy 10−3. The basic

curvature invariants p and q calculated for this solution
obey the equation,

p ¼ 2ð1þ qÞ: ð6:29Þ

The solution (6.20) for the control function χ1 takes the
form,

χ1ðτÞ ¼ 1þ
_̄B
ā2

�
−2þ

Z
τ

τ0

dτ
B̄
_̄B
2
ð _̄a2 þ ā2Þ

�
: ð6:30Þ

At the initial point both the control parameter and its
derivative vanish χ1ðτ0Þ ¼ 0, _χ1ðτ0Þ ¼ 0. Then it mono-
tonically grows with time. This property can be easily seen

because for τ > τ0 the functions B̄,
_̄B, and the integrand in

(6.30) are positive definite functions. The behavior of the
control parameter is depicted in Fig. 4. It means that the
control function χ1 will never vanishes again, and the
solution for the metric will evolve along this constraint till
the moment, when the conditions for the secondary con-
straint are fulfilled.

VII. PHASE II

A. Field equations

As we saw in the previous section the constraint v ¼ 1
does not prevent growth of curvature invariants p and q. To
restrict them one needs, besides this primary constraint
v ¼ 1, to impose an additional secondary constraint.
Namely, we assume that the first supercritical phase ends
at some moment of time τ ¼ τ1. After this moment the
supercritical solution evolves preserving both, primary and
secondary constraints. At the second phase there exist two
control functions χ1 and χ2 associated with both con-
straints. Their evolution is determined by gravitational
equations. The initial value of the primary control function
χ1 at τ ¼ τ1 can be found by using solution (6.20), while
control function χ2 and its derivative vanish at this point.
The reduced Lagrangian for this model reads

FIG. 3. The exact solution āðτÞ (solid line) and the approximate
one (dashed line). The scale factor vanishes at the moment τ�. But
before this moment the secondary constraint changes the dy-
namics and stops the collapse of āðτÞ.

FIG. 4. The limit of largem for the control parameter χ1ðτÞ. We
draw the plot in the interval 0 ≤ τ − τ0 ≤ 0.27. For larger τ it
continues to grow monotonically.
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L ¼ Lg þ χ1ðΦ1 þ ζ21Þ þ χ2ðΦ2 þ ζ22Þ;
Φ1 ¼ v − Λ1; Φ2 ¼ p − μq − Λ2; ð7:1Þ

where Lg is the reduced Einstein Lagrangian given by
Eq. (4.4). This Lagrangian is written in dimensional units.
Recall that starting with Sec. VI B, instead of the dimen-
sional invariants entering this expression, we use their
dimensionless versions (6.3), normalized using the funda-
mental length parameter l defined as l−2 ¼ Λ1, and, for
simplicity, omit “hat.” This simplification makes formulas
more transparent and should not lead to much confusion.
Final dimensional quantities can be easily restored by
multiplication to a proper power of l. For the
Lagrangian in dimensionless units we have to substitute
Λ1 → 1 and Λ2 → λ.

1. Primary constraint

This constraint v ¼ 1 is the same as at the first phase,

B̈ − B ¼ 0: ð7:2Þ

Its solution, obtained for phase I,

BðτÞ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m2 − 4

p
coshðτ − τ0 þ ϕÞ;

tanhϕ ¼ 1

2

mffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − 1

p ; ð7:3Þ

evidently satisfies the required continuity conditions
at τ ¼ τ1.

2. Secondary constraint

For the secondary constraint at phase II we use a
constraint function which is linear in the curvature invar-
iants. We choose it in the form,

p − μq ¼ λ: ð7:4Þ

Here, as earlier, we use dimensionless quantities normal-
ized by the length scale l, μ ∈ ð0; 1Þ is a dimensionless
constant and λ ¼ Λ2=Λ1. Note that at the second phase
p > 1 and q > −1=2. Therefore,

λ > 1þ μ

2
: ð7:5Þ

Equation (7.4) gives the following equation:

_a2

a2
þ 1

a2
− μ

ä
a
¼ λ: ð7:6Þ

The solution for aðτÞ in the phase I and condition of
continuity of aðτÞ and _aðτÞ at the second transition point
τ ¼ τ1 uniquely specifies the metric function aðτÞ during
the second phase.

3. ðθ;θÞ gravitational equation
At phase II ðθ; θÞ equation has the form,

ä
a
þ _a _B

aB
þ 1

¼ −
�
_a
a
_χ2 þ

�
ä
a
þ _a _B

aB
þ _a2

a2
þ 1

a2

�
χ2

�

−
μ

2

�
χ̈2 þ

�
2
_a
a
þ 2

_B
B

�
_χ2 þ

�
2
_a _B
aB

þ 1

�
χ2

�
: ð7:7Þ

For known metric functions aðτÞ and BðτÞ this is a second-
order linear ordinary differential equation for χ2ðτÞ. Two
integration constants in its solution are fixed by the initial
conditions,

χ2ðτ1Þ ¼ _χ2ðτ1Þ ¼ 0: ð7:8Þ

4. ðτ;τÞ gravitational equation
ðτ; τÞ gravitational equation is of the form,

_a2

a2
þ 1

a2
þ 2

_a _B
aB

¼
�
−
_a2

a2
þ 1

a2

�
χ2

− μ

�
_a
a
_χ2 þ

�
_a2

a2
þ _a _B

aB

�
χ2

�
− λχ2

þ
_B
B

�
_χ1 þ 2

_a
a
χ1

�
− χ1: ð7:9Þ

For known functions aðτÞ, BðτÞ and χ2ðτÞ this is a first-
order linear differential equation for χ1ðτÞ. The expression
(6.20) at τ1 determines the initial conditions for χ1ðτ1Þ.
Hence, the control function χ1ðτÞ is uniquely defined at the
second phase.
Let us summarize: A set of four equations (7.2), (7.6),

(7.7) and (7.9) with the above described initial conditions
uniquely determines four functions aðτÞ, BðτÞ, χ1ðτÞ and
χ2ðτÞ at the phase II. Let us discuss now properties of this
solution.

VIII. PHASE II: SOLUTION OF THE SECONDARY
CONSTRAINT

The solution of the primary constraint was already
described [see (7.3)]. In this section we discuss solutions
of the secondary constraint (7.4) at phase II. For this
purpose it is convenient to use a representation of such
solutions on two-dimensional ðp; qÞ plane shown in Fig. 5.
This figure contains a set of lines connected with the

evolution of the system. A straight line Γ0 represents a
subcritical Schwarzschild solution. On this line q ¼ − 1

2
p.

At a point 0 where p ¼ 1 and q ¼ −1=2 the invariant v
reaches its critical value v ¼ 1. It happens at point 0 where
the first phase of the supercritical solution starts. Line Γ1

shows p and q during this phase. The second phase starts at
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point 1. At this phase the supercritical solution obeys both
constraints v ¼ 1 and p − μq ¼ λ, and Γ2 is a straight line
representing this solution. This line intersects p axis at
p ¼ λ. For 0 < μ < 1 the line Γ1, being continued to larger
value of p, crosses the line Γþ, where p ¼ q, at the point

p ¼ q ¼ λþ ¼ λ

1 − μ
: ð8:1Þ

Similarly, if one continues Γ2 to a small value of p, then for
μ > 0 it intersects q-axis at q ¼ −λ− ¼ −λ=μ < 0. In what
follows we impose the following restriction on the param-
eter μ, 0 < μ < 1.

A. Solving secondary constraint equation

1. Function aðτÞ at the beginning of the second phase

To estimate the function aðτÞ at the second transition
point 1 for large m one can use the approximate equa-
tion (6.29). In this approximation point 1 is the intersection
of two straight lines Γ1 and Γ2. Simultaneous solution of
two equations p ¼ 2ð1þ qÞ and p − μq ¼ λ gives

q1 ¼ −
2 − λ

2 − μ
: ð8:2Þ

Using the approximate solution (6.28) one finds

ā1 ¼
3

2

1

2þ q1
: ð8:3Þ

Relations (8.2) and (8.3) give

a1 ¼ mā1; ā1 ¼
3

2

2 − μ

2þ λ − 2μ
: ð8:4Þ

It is easy to check that a1 ≤ a0 for λ ≥ 1þ μ=2. Relation
(8.4) shows that for the parameters μ and λ of order of one,
the initial value of function aðτÞ at the beginning of the
second phase a1 is large (proportional to m).

2. Solution

To solve Eq. (7.4) we denote

p ¼ pðyÞ; y ¼ lnða2=a21Þ; ð8:5Þ

where a1 ¼ aðτ1Þ Then using definitions of p and q one
gets the following equation:

dp
dy

¼ q − p: ð8:6Þ

We choose the second transition point 1 to lie below Γþ, so
that dpdy < 0 at this point. We also assume that _a1 < 0, then
in the vicinity of 1 the function a decreases and p increases.
This means that a point representing the solution on ðp; qÞ
plane moves up along the line Γ2. Using (8.6) one gets

y ¼
Z

p

p1

dp
q − p

: ð8:7Þ

Here p1 is a value of p at point 1. This relation gives

λþ − p
λþ − p1

¼
�
a
a1

�
γ

; γ ¼ 2ð1 − μÞ
μ

: ð8:8Þ

One gets

p ¼ λþ − ðλþ − p1Þ
�
a
a1

�
γ

: ð8:9Þ

Using the definition of p (2.13) one has

_a2 ¼ a2p − 1: ð8:10Þ

Thus a2p ≥ 1 and

FIG. 5. At the beginning the system evolves along Γ0 governed
by the pure Einstein equations. At the point 0 the conditions for
the primary constraint are satisfied and further evolution goes
along the line Γ1 till the point 1, where the secondary constraint
enters the play. After this point the system evolves along the line
Γ2 towards the point 2. This is the bouncing point, corresponding
to a minimal scale parameter aðτÞ. After this bounce the system
oscillates along Γ2 between the bouncing points 2 and 3.
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p ¼ 1

a2
ð8:11Þ

at the turning points where _a ¼ 0. It is easy to check that
there exist two turning points corresponding to minimum
and maximum values of a. At the point of the minimum one
has

a2 ≈
1ffiffiffiffiffi
λþ

p �
1þ 1

2

�
1 −

p1

λþ

�
ð ffiffiffiffiffi

λþ
p

a1Þ−γ
�
: ð8:12Þ

This expression is written in an approximation when the
quantity λþa21 is large. The maximum value of a is

a3 ≈ Aa1; A ¼
�
1 −

p1

λþ

�
−1
γ

: ð8:13Þ

Let us summarize. A point in ðp; qÞ plane representing a
supercritical solution aðτÞ at phase II moves up along Γ2.
The value of a decreases until it reaches its minimal value at
point 2 (see Fig. 5). We denote by τ2 time when it happens.
Relation (8.7) shows that this point always is below the line
Γþ. For large a1, that is when a1 ≫ λ−1=2þ , point 2 is located
very close to Γþ. Later for τ > τ2 the point representing the
solution moves down along Γ2 to smaller value of p. In a
general case, the control function χ2ðτÞ cannot become zero
simultaneously with its derivative, so that this supercritical
solution aðτÞ always remains on the line Γ2. It passes
through point 1 and reaches its maximum value amax at
point 3. This happens at time τ3. After this, the function
aðτÞ decreases again. This motion is periodic, and its period
is

T ¼ 2ðτ3 − τ2Þ ¼ 2

Z
a3

a2

daffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðaÞa2 − 1

p : ð8:14Þ

The corresponding Penrose diagram of the “eternal” black
hole with the oscillating universe inside it is depicted
in Fig. 7.
It should be emphasised that in this approach we put

constraints only on the curvatures p, q, and v. However, the
curvature invariant u ¼ _a _B

aB is finite automatically. This is
because primary constraint guarantees that j _B=Bj ≤ 1,
while the finite value of p and the property, that scale
factor a never vanishes on the solution in question,
makes j _a=aj ≤ finite too.

B. Special case μ= 1=2

There is a special choice of the parameter μ ¼ 1=2, for
which Eqs. (8.9)–(8.10) can be integrated analytically. For
this choice one also has

λ− ¼ λþ ¼ 2λ; γ ¼ 2: ð8:15Þ

This relation implies, that during periodic change of the
function aðτÞ, the curvature invariants remain in the
following intervals:

p ∈ ð0; 2λÞ; q ∈ ð−2λ; 2λÞ: ð8:16Þ

Let us discuss this case in more detail.
Let us denote

a ¼ a1α; ð8:17Þ

then Eq. (8.10) can be written in the form,

_α2 ¼ ðλþ − p1Þðα2 − α22Þðα23 − α2Þ;

α22;3 ¼
λþ

2ðλþ − p1Þ
�
1 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4ðλþ − p1Þ
λ2þa21

s �
: ð8:18Þ

Here α2 and α3 correspond to signs minus and plus in (8.18)
respectively. Equation (8.18) gives

τ − τ1 ¼ −
a1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λþ − p1

p NðαÞ;

NðαÞ ¼
Z

α

1

dαffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα2 − α22Þðα23 − α2Þ

p : ð8:19Þ

This integral can be calculated exactly with the following
result:

NðαÞ ¼ i
α2

½Fðϕ; kÞ − Fðϕ1; kÞ�; ð8:20Þ

where

sinϕ ¼ α

α3
; sinϕ1 ¼

1

α3
; k ¼ α3

α2
: ð8:21Þ

Here Fðϕ; kÞ is the Legendre’s incomplete elliptic integral
of the first kind. Note that for α2 ≤ α ≤ α3 the function
NðαÞ is a real. The period of oscillations is given by the
integral,

T ¼ 2
a1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λþ − p1

p Z
α3

α2

dαffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðα2 − α22Þðα23 − α2Þp
¼ 2a1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λþ − p1

p
α3

K

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

α22
α23

s �
: ð8:22Þ

HereKðkÞ is the Legendre’s complete elliptic integral of the
first kind.

C. Case of small μ

The secondary constraint takes simpler form p ¼ λ for
μ ¼ 0. Let us discuss properties of phase II supercritical
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solution for small values of the parameter μ. We demon-
strate that in fact the limit μ → 0 is quite singular.
For small μ line Γ2 representing a solution on ðp; qÞ

plane (see Fig. 5) becomes almost vertical. To mark points
on this line it is more convenient to use parameter q instead
of p. This can be done by using the following relation:

λþ − p ¼ μðλþ − qÞ: ð8:23Þ

Equation (8.10) can be written in the form,

_α2 ¼ UðαÞ;

UðαÞ ¼ λþα2 − ðλþ − q1Þμα
2
μ −

1

a21
: ð8:24Þ

Here α ¼ a=a1 and a1 is the value of aðτÞ at the beginning
of phase two τ ¼ τ1, while q1 is the value of q at this time.
Figure 6 shows a plot of function UðαÞ for small μ. The

potential function UðαÞ has a maximum when dU=dα ¼ 0.
It happens at

α� ¼
�
1 −

ð1 − μÞq1
λ

�
−μ
2

≈ 1þ μq1
2λ

; ð8:25Þ

which is for small μ is very close to unity. The values α2 and
α3 where Uðα2;3Þ ¼ 0 correspond to the turning points,
where α reaches its minimum and maximum values,
respectively. For a1 ≫ 1 one can use relations (8.12)
and (8.13) to find the values of α2 and α3. Parameter A
which enters the latter expression is slightly larger that 1.
The function αðτÞ is periodic with the period,

T ¼ 2

Z
α3

α2

dα
1ffiffiffiffiffiffiffiffiffiffiffi
UðαÞp : ð8:26Þ

For small μ this period in dimensionless units is

T ≈
2ffiffiffi
λ

p lnð2
ffiffiffi
λ

p
a1Þ: ð8:27Þ

Here we used the property that λþ ¼ λ
1−μ ≈ λ.

At the turning point where α ¼ α3 one has

p3 ¼
1

α23a
2
1

: ð8:28Þ

Since α3 ≈ 1 for large a1, one has

p3 ≈
1

a21
≪ 1: ð8:29Þ

The invariant q at this point can be calculated either using
the relation,

q ¼ 1

2α

dU
dα

; ð8:30Þ

or the secondary constraint equation which gives

q ¼ p − λ

μ
: ð8:31Þ

One has

q ¼ λþ − ðλþ − q1Þα
2
μ: ð8:32Þ

At τ ¼ τ1 we have α ¼ 1 and q ¼ q1, as expected. For
τ > τ1 the metric function α decreases, and the second term
in the right-hand side of (8.32) becomes small very fast. At
this stage q ≈ λþ. After bounce the function aðτÞ increases
until it reaches its turning point where it has its maximal
value α3. Near this turning point one has

q3 ≈ −λ− ¼ −
λ

μ
: ð8:33Þ

Thus for large a1 and small μ the point ðp3; q3Þ is close to
the point 4 in Fig. 5. In the limit μ → 0 the invariant q
grows infinitely near the turning point 3. This case does not
satisfy the adopted limiting curvature condition.

IX. PHASE II: CONTROL FUNCTIONS

The dynamics of the control functions at phase II is
described by the gravity equations (7.7) and (7.9) restricted
by the constraints. The control function χ2 is defined by
(7.7) with the initial conditions,

χ2ðτ1Þ ¼ 0; _χ2ðτ1Þ ¼ 0: ð9:1Þ

The Eq. (7.7) is the second order ordinary differential
equation, therefore its solution is uniquely defined by these
initial conditions. The function BðτÞ is defined by the
solution of the primary constraint (6.10) and is given by
(6.14). The secondary constraint, in its turn, defines the
function aðτÞ. Therefore we unambiguously obtain func-
tions B, a, and χ2. Then their substitution into (7.9) leads to

FIG. 6. The potential function UðαÞ for small μ.
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the first order differential equation for the control function
χ1. The initial condition for this function comes from its
value at the end of the phase I χ1ðτ ¼ τ1Þ. Thus the whole
evolution of the system is completely fixed.
If the control parameter χ2 and its derivative _χ2 vanish

simultaneously at some point, then the system would slip to
the phase I again. However, it is virtually improbable,
because the equations for the control parameters explicitly
depend on the function BðτÞ which grows irreversibly. So,
even if χ2 vanishes at some moment, in a generic case its
derivative does not vanish and the system will continue to
evolve along the secondary constraint. It means that in the
generic case the system will indefinitely stay on the
secondary constraint and it permanently oscillates between
the points 2 and 3 (see Fig. 5).

X. SUMMARY AND DISCUSSIONS

In this paper we discuss properties of black holes in the
limiting curvature theory of gravity [28,29]. Namely, we
consider four-dimensional spherically symmetric black
holes and study properties of their interior in a model,
where the curvature invariants are restricted. To satisfy the
limiting curvature condition, we modified the Einstein-
Hilbert action by adding terms which impose inequality
constraints on the curvature invariants. In a general case
each of such constraintsΦi ≤ 0 is accompanied by a pair of
the Lagrange multipliers χi and ζi. A solution of the field
equations, which are derived from such an extended action,
can have different regimes. In a subcritical regime, where
all constraint functions obey conditions Φi < 0, the
control functions χi vanish, and the equations coincide
with the unmodified Einstein equations, while Lagrange
multipliers ζi can be expressed in terms of solutions of
these equations. When at least one of the constrains is
saturated, the regime is changed. A corresponding control
function(s) χi becomes non-zero, while ζi ¼ 0. Such a
regime is called supercritical.
We assumed that a transition from sub- to supercritical

regimes happens inside the event horizon of the black hole
at some radius r0 where the spacetime curvature reaches its
critical value Λ ¼ 1=l2. For r > r0 the solution coincides
with Schwarzschild metric and r0 ¼ lm ¼ lð2M=lÞ1=3,
where M is the black hole mass. We assumed that the
metric for smaller radius r preserves its symmetries
inherited from the Schwarzschild metric. Namely, it is
spherically symmetric and possesses an additional Killing
vector, which is spacelike in the black hole interior. Such a
metric has four independent curvature invariants, which we
denoted by p, q, u and v. We restrict our consideration by
assuming that the constraint functions are the linear
combinations of these invariants.
Certainly, there exists an ambiguity in the choice of the

coefficients in these linear functions of the invariants and in
the number of adopted inequality constraints. In specifying
a model we use the following observations.

(i) Invariant v coincides with a half of scalar curvature
ð2ÞR of 2D slice spanned by time τ and Killing vector
ξ of our 4D metric [see (2.19)]. In our previous paper
[28] we demonstrated that a restriction imposed on
ð2ÞR makes the interior of the corresponding 2D
black hole free of singularities and the correspond-
ing metric describes an expanding two-dimensional
de Sitter universe in the black interior.

(ii) Invariants p and q coincide with eigenvalues of the
Einstein tensor of 3D slice spanned by time τ and two-
spheres of our 4D metric [see (2.20)]. In our previous
paper [29] we studied in detail linear (as well as more
general) constraints, which guarantee the limiting
property of corresponding curvature invariants.

In the supercritical regime with one inequality constraint
the corresponding extended action gives four equations for
three functions: aðτÞ, BðτÞ and the control function χðτÞ.
Three of them are of the second order in derivatives and one
is the first order equation. If the initial conditions satisfy
this first order equation, then it is valid for a later time, and
the system of equations is consistent. We obtained con-
ditions when three “dynamical” equations can be resolved
with respect to the second order derivatives of the field
variables. We showed that these conditions are satisfied at
the transition point between sub- and supercritical regimes
only when the constraints function contains invariant v.
Based on these observations we imposed the first

constraint of the form jvj ≤ Λ. We demonstrated that the
invariants p and q are not restricted for such supercritical
solution. In order to restrict these invariants, following [29]
we imposed a secondary constraint in the form
p − μq ≤ λΛ, where λ ≥ 1 and μ ∈ ð0; 1Þ are dimension-
less parameters. After this secondary constraint is saturated,
the supercritical solution enters the phase II, in which both
constraints are valid. Our analysis shows that in this regime
all the curvature invariants (including u) are restricted and
the solution satisfies the limiting curvature condition.
Let us describe main qualitative properties of the

solutions for the black hole interior in this model. After
the solution enters its phase II, the metric function BðτÞ
continues its growth. The metric function aðτÞ, which at
beginning of the phase II is of order of ml, decreases until
it reaches its minimal value a ≈ l. After this it increases
until it reaches its maximal value, which is slightly larger
thanml. Study properties of solutions for control functions
associated with constraints shows that, after the solution
enters the supercritical regime, it cannot leave it. In other
words, the function aðτÞ is periodic. During this periodic
motion all the curvature invariants (including u) are
bounded. Let us note that similar periodic models for a
black hole interior were discussed earlier in [26,32].
The Penrose diagram of the obtained solution is pre-

sented in Fig. 7. It shows that in subcritical domain, which
includes horizon and everything behind it, the solution is
identical to that of the “eternal” Schwarzschild black hole.
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At the beginning of the supercritical domain, when curva-
ture invariants reach their limiting values, the solution
transforms to the universe with oscillating radius. The
Penrose diagram covers only ðτ; tÞ-section [or ðr; tÞ-section
in the radial coordinates] of the spacetime. On the super-
critical stage the primary constraint leads to the solution
(7.3) for BðτÞ. For this function the 2D metric has constant
two-dimensional scalar curvature. It means that the 2D
metric (2.19) describes 2D de Sitter geometry in global
coordinates. This property of the supercritical stage is
common both for the derived solution and the black hole
solution [28] in the 2D limiting curvature gravity. Though
during subcritical stages these solutions in ðτ; tÞ-section are
different, their global structure is the same. Thus, this
Penrose diagram Fig. 7 in ðτ; tÞ-sector is similar to that of
the eternal 2D black hole [28] in the 2D limiting curvature
gravity.
On the other hand the section t ¼ const, described by

the metric (2.20), corresponds to the 3D universe with the
periodically oscillating radius aðτÞ. One can compute the
expansions θðlÞ and θðkÞ along outgoing lα and ingoing kα

radial null geodesics [33]. It happens that during the
evolution inside the future horizon they are given by
θðlÞ ¼ θðkÞ ¼ 2_a=ðaBÞ. Since the metric functions a and B
are finite in the black hole interior for our solution both
expansions are finite as well. The sign of the expansions are
defined by the sign of _a. It means that inside the future
horizon the solution enters the supercritical stage with
negative expansions. After a finite proper time, the expan-
sions vanish and become positive, then they continue to

oscillate with the finite period T Eq. (8.14). Hence in
classification by [33] the interior of the black hole in the
limiting curvature gravity model belongs to the class of the
one-way (hidden) wormhole.
Our approach guarantees finiteness of the chosen set of

curvature invariants; in this sense it leads to regular
geometries. But as it was demonstrates by Yoshida and
Brandenberger [34] on the example of their theory with
limited curvature invariants, it does not guarantee absence
of other singularities, related with nongeometrical degrees
of freedom. Limited curvatures are achieved at the expense
of introduction of some kind of extra degrees of freedom
that may diverge on their own. This problem requires
special analysis for every particular model and is an
interesting topic for further study.
In 1990 Morgan published a paper [24], in which he

discussed a model for a black hole interior satisfying a
condition of the limiting curvature. He obtained a solution
which was quite similar to the metric proposed earlier in
[22,23], where a possibility of a new universe formation in
the black hole interior was discussed.2 Morgan imposed
two constraints, which in our notations are of the form
v ¼ p ¼ Λ, and solved them for the spherically symmetric
metric. These equations were chosen “ad hoc,” and he did
not derive them from an action. This differs Morgan’s
approach from the one presented in the present paper.
Using the extended action for the inequality constraints
allows one not only to obtain the corresponding
constraint(s) in the supercritical phase, but also to keep
trace of the behavior of the control function(s) which play
the role of indicators, informing when transition between
different regimes of the solution is possible. The condition
that two phases with v ¼ Λ and p ¼ Λ starts simulta-
neously can be achieved in our model as well. However, as
we demonstrated, the secondary constraint of the form p ¼
Λ is rather singular. For this transition there is a jump of the
invariant q at the transition point from q ¼ − 1

2
Λ to q ¼ Λ.

Such a jump is formally allowed by equations; however it
would result in the appearance of a nonintegrable singu-
larities in invariants constructed from covariant derivatives
of the curvature, for example,

Rαβγδ;ϵRαβγδ;ϵ ∼ ½δðτÞ�2: ð10:1Þ

This result directly follows from (2.22). This unpleasant
property is absent when μ ≠ 0.
When the parameter μ in the secondary constraint

vanishes, the function aðτÞ after bounce still increases,
but our results show that, in a general case, it cannot slip to
the subcritical solution after this, since the required con-
ditions for the control functions are not satisfied. As a result
the exponential expansion of both functions aðτÞ and BðτÞ

FIG. 7. The Penrose diagram for the eternal black hole with an
oscillating universe in its interior. The thin solid line marks the
boundary of region τ ¼ τ0 corresponding to the scale factor
a ¼ a0, when the primary constraint starts to govern the
dynamics. The “lens” above it describes the universe with the
oscillating radius aðτÞ. The dotted lines denote the surfaces τ ¼
const which correspond to the minimal a ¼ a2, while the dashed
lines correspond to the maximal values of radii a ¼ a3. Vertical
ellipsis denotes an infinite set of such surfaces.

2A possibility of several or many new universes creation inside
a black hole was discussed in [25].
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continues forever. However, as we demonstrated, if one
slightly modified the secondary constraint and use the
secondary constraint with nonzero μ instead, the behavior
of the function aðτÞ is very different. Namely, it always has
a second turning point where it takes maximal value. For
small μ the curvature invariants near this point are large. In
this sense the choice of the constraints proposed by Morgan
is singular. Periodic property of aðτÞ is valid for any
μ ∈ ð0; 1Þ. In order to guarantee that all the invariants are
finite and uniformly bounded, it is sufficient to take μ to be
not too small. We present an explicit solution for the case
μ ¼ 1=2 which illustrates this property.
As we mentioned, we restricted ourselves by a case of

constraints that are linear in curvature invariants. It is
interesting to investigate a more general class of con-
straints. There are two interesting questions: (i) What
happens when one or both constraints are nonlinear
functions of basic invariants? (ii) Can one achieve the
limiting curvature property by imposing only one properly
chosen inequality constraint? Partial answer to the first
question is the result presented in [29]. Namely, it was
shown that one can impose a quite general nonlinear
constraint in ðp; qÞ sector of the form φðp; q;ΛÞ ¼ 0,
which guarantees a similar periodic behavior of aðτÞ as for
the linear constraint described in this paper. For this
purpose the function φðp; q;ΛÞ ¼ 0 should satisfy several
rather general conditions, discussed in this paper. The
second question at the moment is open. Another interesting
question is about stability of the proposed solutions. As
soon as we remain in the class of metrics (2.6) and for linear
constraints, the obtained solutions for the metric are stable.
The other question is about stability of the modes that may
deviate from this class of metrics. In this case one has to
impose extra constraints on curvature invariants, that
become independent on a more general class of metrics.
Then the limiting curvature solution also could be found,
and the analysis of stability has to be done in a way similar
to that of [20]. This is an interesting problem for future
analysis, but even if there appear new instabilities they will
not necessarily lead to singularities, because our limiting
curvature method provides us with the tools to tame all
kinds of singularities.
The approach presented in this paper can be used for

analysis of the contracting Kasner universe in the limiting
gravity model. One can expect that by a proper choice of
the inequality curvature constrains one can obtain regular
solutions describing bouncing anisotropic universes. This
mechanism of suppression of the anisotropy growth in a
contracting universe might be of interest in cosmological
applications.
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APPENDIX: USEFUL FORMULAS

One can check that the Ricci tensor Rν
μ and the Einstein

tensor Gν
μ, and the traceless part of the Ricci tensor Sνμ ≡

Rν
μ − 1

4
δνμR for the metric (2.6) can be written as follows:

Rν
μ ¼ diagð2qþ v; 2uþ v; pþ qþ u; pþ qþ uÞ;

−Gν
μ ¼ diagðpþ 2u; pþ 2q; qþ uþ v; qþ uþ vÞ;

Sνμ ¼
1

2
diag½−pþ 2q − 2uþ v;

− p − 2qþ 2uþ v; p − v; p − v�: ðA1Þ

We denote

R2 ¼ RμνRμν; K ¼ RαβγδRαβγδ: ðA2Þ

Then one has

R ¼ 2ðpþ 2qþ 2uþ vÞ;
R2 ¼ ðp − vÞ2 þ 2ðq − uÞ2

þ ðpþ 2qþ 2uþ vÞ2;
K ¼ 4ðp2 þ 2q2 þ 2u2 þ v2Þ;

SμνSμν ¼ ðp − vÞ2 þ 2ðq − uÞ2;
SνμSανS

μ
α ¼ −3ðp − vÞðq − uÞ2;

CαβγδCαβγδ ¼ 4

3
ðp − q − uþ vÞ2;

Cαβ
γδCγδ

σρCσρ
αβ ¼ 4

9
ðp − q − uþ vÞ3: ðA3Þ

The scalar invariants of nth power in the Riemann tensor
are

Rn ¼ Rα1α2
β1β2Rβ1β2

γ1γ2 � � �Rδ1δ2
α1α2

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{n

¼ 2nðpn þ 2qn þ 2un þ vnÞ: ðA4Þ

The Kretschmann invariant is given by K ¼ R2.
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