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The axionlike particles with ultralight mass (∼10−22 eV) can be a possible candidate of dark matter,
known as the fuzzy dark matter (FDM). These particles form a Bose-Einstein condensate in the early
Universe which can explain the dark matter density distribution in galaxies at the present time. We study the
time evolution of ultralight axionlike field in the near region of a strong gravitational wave (GW) source,
such as binary black hole merger. We show that GWs can lead to the generation of field excitations in a
spherical shell about the source that eventually propagate out of the shell to minimize the energy density of
the field configuration. These excitations are generated toward the end of the merger and in some cases
even in the ringdown phase of the merger, therefore it can provide a qualitatively distinct prediction for
changes in the GW waveform due to the presence of FDM. This would be helpful in investigating the
existence of FDM in galaxies.
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I. INTRODUCTION

Fuzzy dark matter (FDM) is considered to be one of the
most promising candidates of dark matter. In this model,
the field is considered to be ultralight scalar field with mass
m ∼ 10−22 eV which forms a Bose-Einstein condensate
(BEC) at the early stage of the Universe [1–3]. Due to a
very high occupation number in galactic halos, this field
behaves like a classical field [1]. It has been shown that the
axionlike field (pseudo-Goldstone boson) with ultralight
mass can be a good possible field description for such
ultralight particles [4]. Since the mass of the particles in
this model is very small, the corresponding de Broglie
wavelength is of the astrophysical scales. Below this scale,
the uncertainty principle leads to the stability of density
perturbations in FDM against the gravitational collapse [1].
In this way, this model of dark matter resolves the over-
prediction in the number of substructures in dark matter
halos and cuspy core problem that arise with the WIMPs
model (weakly interacting massive particles model) of dark
matter [1,2].
As the FDM is expected to be present in the form of

granular structure (of length scale ∼1 kpc) inside the
galactic halos [5], where in the background of this medium
other astrophysical events, e.g., binary black hole (BBH)
mergers, binary neutron star (BNS) mergers, and supernova
(SN) explosions, could be occurring, and generating a
strong gravitational waves (GWs). Therefore, a natural
question arises that whether such a GW source has any

effect on FDM, or whether FDM can affect the source so
that the produced GWs get modified with observable
changes in the waveform. In this regard, the following
are the phenomena that have been discussed in the
literature. The exponential growth of occupation number
of ultralight scalar bosons near a rotating BH or NS has
been extensively studied under the phenomenon of super-
radiance instabilities [6–12]. This creates a bosonic cloud
around such objects, which causes their spin-down [6]. In
addition, it has been argued that the level transitions
between quantum states of such bosonic cloud, axions
(that constitute the bosonic cloud) annihilation to gravitons,
and bosenova collapse of the cloud can produce observable
GW signals [13,14]. The first two processes produce long-
lasting monochromatic GW signals, while the last process
produces the signal which is expected to be in the distinct
pattern of spikes separated by periods of time [14]. Further,
under these phenomena, various prospects of probing and
constraining the ultralight bosons with GWs detection at
LIGO and LISA have been proposed [15–23].
When such a rotating BH or NS is part of a binary, the

presence of bosonic clouds affects the inspiral motion of the
binary leading to an observable signal in the GWwaveform
on Earth [24,25]. In addition, the possibility of resonance
transitions between the growing and decaying modes of the
cloud make the cloudþ binary system much more inter-
esting [26–28]. These resonances occur when the orbital
frequency of binary matches the energy difference between
growing and decaying modes of the cloud. This depletes
the cloud by an amount that depends on the parameters of
cloudþ binary system, causing the generation of a greatly
enhanced and short-lived monochromatic GWs [26–29],
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which terminate much before the binary merger [26] (the
time duration of resonance transition is set by ΔΩ=γ, where
ΔΩ is the resonance bandwidth for transition, and γ is the
rate of change of orbital frequency of binary [28]). This
phenomenon can be used to set some observational con-
straints on the ultralight axionlike particles [29], e.g., the
observations of decay in orbital period of binary can set a
bound on the decay constant of ultralight axionlike par-
ticles [30], and on parameters of axions in general [31]. In
presence of a dark matter medium, the dephasing in GW
waveform has also been studied [32]. The various prospects
for axion searches with Advanced LIGO through binary
mergers are discussed in detail in [33]; see Refs. [34,35] for
review.
In addition to the above effects of binary merger and

FDM on each other, our work in Ref. [36] suggests an
interesting possibility of generation of field excitations in
FDM near a strong GW source, which can affect the GW
waveform toward the end of the merger and in some cases
even in the ringdown phase of the merger. This does not
require superradiance instabilities induced by rotating BH
or NS (though, the presence of bosonic clouds generated
due to superradiance instabilities may have additional
effects on it). Rather, the generation of field excitations
due to the phenomenon discussed in Ref. [36] is quite
general which only requires a strong GW source that
produces GWs of significantly large frequency, strain
amplitude, and duration.
In Ref. [36], it has been shown that a sustained spacetime

oscillations can excite a complex scalar field in symmetry
broken phase through parametric resonance. The space-
time oscillations directly couple to the momentum of field-
modes, which leads to the generation of field excitation
even at frequencies much smaller than the mass of
longitudinal-modes of the field. In the low frequency
regime, mainly transverse excitations are generated as
the modes corresponding to these excitations have zero
mass. The field undergoes parametric resonance if appro-
priate momentum-modes of the field corresponding to the
frequency of spacetime oscillations are present initially. It
also has been shown that the finite size effects of system
set a lowest frequency cutoff to induce this phenomenon:
only those spacetime oscillations are able to excite the
field whose angular frequency is ω≳ 4π=L, where L is the
system size [36]. This arises due to the fact that the
momentum-modes having wavelength larger than the upper
cutoff λL ¼ L cannot grow under the resonance process.
However, in the case of explicit symmetry breaking, in

addition to finite size effects, the lowest frequency cutoff to
excite the field under spacetime oscillations is also set by
the mass of pseudo-Goldstone boson [36]. In the case of
ultralight axionlike field, the mass of pseudo-Goldstone
boson is m ∼ 10−22 eV. Therefore to excite the most
dominant resonance modes of this field, the frequency of
spacetime oscillations must be ω≳ 0.1 μHz or equivalently

fGW ≳ 10 nHz, where fGW ¼ ω=2π is the frequency of
GWs. This required frequency is easily achieved by various
GW sources, such as BBH mergers, which can produce
GWs with a maximum frequency of up to ∼1 kHz with
significantly large strain amplitude. Further, the ultralight
bosons can have a wide range of possible masses between
10−33 eV to 10−10 eV [37,38]. Therefore for the above
maximum frequency produced by the binary merger
systems, the upper mass cutoff of the field that can be
excited by the passing of GWs will bem ∼ 10−11 eV. Thus,
GWs produced by binary mergers can excite ultralight
axionlike field having almost all possible mass range,
except for the field that has a much larger mass.
Therefore, this phenomenon is certainly not possible for
higher mass QCD axions as in such case the required GW
frequency would be way beyond the reach of any known
GW source with significantly large strain amplitude (for a
discussion on the QCD axions as a dark matter, see
Refs. [39–41]).
Thus, the restriction in the generation of field excitation

in FDM should only arise due to finite size effects and small
strain amplitude (and of course due to short duration of
GWs, which we discuss in Sec. II B 2). Indeed, these are the
two main competing factors which can affect the generation
of field excitation at different radial distances r from the
source. For small r, the finite size effects restrict the
generation of field excitation for frequencies that are
smaller than the cutoff frequency at 2-sphere for a given
r, whereas for larger r, the strain amplitude of GWs
becomes so small that it cannot generate field excitation.
Therefore, the generation of field excitation in FDM is
expected to occur only in a certain range of r, that is, in a
spherical shell about the GW source.
The generated field excitations in the shell has higher

energy density than the outer region of the shell. Therefore,
as soon as these excitations arise in spherical shell, in order
to minimize energy density of the field configuration, the
field excitations start propagating out of the shell. These
excitations are the perturbations in FDM (a superfluid
medium) in terms of fluid velocity, energy density, and
pressure on the top of a uniform medium with almost zero
fluid velocity. They may have acoustic (linear) perturba-
tions as well, which propagate in the fluid with the speed of
sound. Additionally, as soon as GWs pass completely, the
excited field in the shell starts rolling back toward the
minimum of the effective potential, and oscillates about it.
These various aspects make this phenomenon even more
interesting.
In this work, we consider ultralight axionlike field as a

field description for FDM. Our focus is to study the
evolution of this field near a strong GW source. In the
first part of the study, we show that a sustained spacetime
oscillations can generate excitations in the field that
initially has a uniform field configuration with small
random fluctuations. These excitations are generated under

SHREYANSH S. DAVE and SANATAN DIGAL PHYS. REV. D 105, 024039 (2022)

024039-2



the phenomenon of parametric resonance. Due to the
spacetime oscillations, the field configuration mainly goes
through two processes: first, the process of growth of some
specific field-modes following the resonance conditions
for the given spacetime oscillation frequency, and then the
process of generation of various other field-modes due to
nonlinear evolution of the field. This, in general, may
generate local superflow in FDM at a length scale smaller
than f−1GW but bigger than the length scale of initial
fluctuations. In the second part, we consider a model
GW waveform constructed using parameters of the
observed waveform for a BBH merger, and show that
the GWs produced by such source can also excite the field
in a spherical shell about the source. These excitations arise
toward the end of the merger and in some cases even in the
ringdown phase of the merger, which may provide a
distinct observable imprints on the measured GWs on
Earth. By using a sine-Gaussian GW waveform, we also
determine the parameter range of the waveform for which
the resonance growth is possible in FDM. For the study, we
solve the Klein-Gordon equation of motion for the field as
in our case the length scale of evolution of the system is
much smaller than the Compton wavelength m−1 of
associated particles; the nonrelativistic approximation,
which gives the Schrödinger-Poisson equation of motion
for FDM, is valid only for length scale larger than m−1 [1].
Recently, it has been shown that the presence of clouds

of ultralight axionlike field around BHs lead to a suppres-
sion in the strain amplitude and frequency of GWs in the
ringdown phase of the BBH merger [25]. This suppression
increases with the physical characteristic parameters of the
cloud such as mass parameter μ̃ ¼ GMm=ℏc and ampli-
tude of the field (where M is the total Arnowitt-Deser-
Misner mass of gravitational system). For a range of values
of such parameters of the cloud, the Bayesian analysis gives
the suppression in the frequency of GWs between 2.1–
8.6% [25]. Our results in the present work provide a
possible explanation for such suppression due to the
clouds. As mentioned earlier, in our case, the GWs passing
through FDM lead to the generation of field excitations
around the source that occurs toward the end and in the
ringdown phase of the merger. Therefore, this should
increase the total energy of the field configuration. As
the energy of field configuration is increased due to GWs,
therefore because of energy conservation, the GWs should
lose their energy in these two phases of the merger, which
leads to the suppression in strain amplitude and frequency
of GWs as observed in Ref. [25]. In this way, our study
along with the study in Ref. [25] open a new possibility of
indirect detection of FDM and constraining such dark
matter model by studying the discrepancy in between
expected GW waveform from a well known GW source
and the measured waveform on Earth. In the specific case
of binary merger systems, this discrepancy must arise
toward the end and in the ringdown phase of the merger.

Thus, it provides a qualitatively distinct predictions for
changes in the GW waveform compared to other prospects
discussed earlier.
This paper is organized in the following manner. In

Sec. II, we provide the field equation for FDM minimally
coupled to gravity with oscillating spacetime metric. Then
we consider two cases. In Sec. II A, we consider a
continuous GW waveform and show that this leads to
the generation of field excitation induced by parametric
resonance. Then in Sec. II B, we again consider two cases.
In Sec. II B 1, we consider a model GW waveform
constructed using parameters of BBH merger, and show
that this can lead to the generation of excitations in FDM in
a spherical shell about the GW source, which are generated
toward the end of the merger and in some cases even in the
ringdown phase of the merger. In Sec. II B 2, by using sine-
Gaussian GW waveform, we determine the resonance
growth zone for FDM, for a parameter range of the
waveform. Finally, we conclude in Sec. III.

II. FIELD EXCITATION IN FDM

To study the effects of spacetime oscillations on ultra-
light axionlike field “a,” we consider time-dependent
perturbations in the Minkowski metric, such as
gμν ¼ diagð−1; 1 − h; 1þ h; 1Þ, where h≡ hðt; zÞ and
jhj < 1. The action of the field on the spacetime manifold
with the given metric is [4]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
F2gμν∂μa∂νa − μ4ð1 − cos aÞ

�
; ð1Þ

where g ¼ detðgμνÞ ¼ −ð1 − h2Þ, and the parameter F has
values in the range 1016 GeV≲ F ≲ 1018 GeV [4]. Mass
of the field a is given by m ¼ μ2=F [4], where m ∼
10−22 eV is taken in this study. The equation of motion for
the field is given by [36,42]

□a −
1

F2

dV
da

¼ 0; ð2Þ

where the effective potential VðaÞ ¼ μ4ð1 − cos aÞ and the
covariant d’Alembertian is given by

□a ¼ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νaÞ: ð3Þ

In the expanded form, the field equation becomes

htat−hzaz
h−1ð1−h2Þ−attþ

axx
1−h

þ ayy
1þh

þazz−m2 sina¼ 0; ð4Þ

where derivatives are defined as ξα ¼ ∂ξ=∂α, ξαα ¼
∂2ξ=∂α2 for ξ≡ ðh; aÞ and α≡ ðt; x; y; zÞ.
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A. With continuous GW waveform

We consider a continuous GW waveform with
hðt; zÞ ¼ ε sinðωðt − zÞÞ, where ε and ω are the time-
independent strain amplitude and angular frequency of
GWs, respectively. We define fðt; zÞ ¼ 1 − hðt; zÞ. With
this waveform, the above field equation becomes

ε2ω sinð2ωðt − zÞÞ
2fðt; zÞfð−t;−zÞ ðat þ azÞ − att þ

axx
fðt; zÞ þ

ayy
fð−t;−zÞ

þ azz −m2 sin a ¼ 0: ð5Þ

This field equation leads to the phenomenon of parametric
resonance [36], in which some specific momentum-modes
of the field, following the respective resonance conditions,
grow with time and lead to the field excitation.
The above equation can be used for the evolution of field

a around a continuous GW source. However, as the
coefficient of second-order spatial derivative of field with
respect to z is trivially one, i.e., nonoscillating, therefore the
field-modes corresponding to z-axis do not grow reso-
nantly. Thus, for simplicity of solving the above equation
numerically, we take the following assumptions: (i) instead
of considering three-dimensional space, we solve this
equation on a two-dimensional surface by assuming that
there is no variation of field along third axis (i.e., along z-
axis), (ii) instead of solving it on a surface of 2-sphere, we
solve it on a torus geometry, where we take lattice structure
as a flat sheet that forms xy-plane (z ¼ 0 plane) and use
periodic boundary conditions. Certainly, the quantitative
values of our results could be affected due to this choice of
boundary conditions, as discussed in some detail in
Ref. [36]. In the regime where finite size effects dominate,
the periodic boundary conditions impose more restrictions
in the generation of field excitations under the phenomenon
of parametric resonance in comparison with the use of fixed
boundary conditions [36]. However, other than this, these
boundary conditions do not have any qualitative effect on
the phenomenon. With these assumptions, the above
equation reduces to

ε2ω sinð2ωtÞ
2fðtÞfð−tÞ at − att þ

axx
fðtÞ þ

ayy
fð−tÞ −m2 sin a ¼ 0; ð6Þ

where the function fðtÞ ¼ 1 − ε sinðωtÞ. We define dimen-
sionless variables as t0 ¼ mt, x0 ¼ mx, y0 ¼ my, z0 ¼ mz,
and ω0 ¼ ω=m. With these variables, the function fðtÞ
remains unchanged, i.e., fðt0Þ ¼ fðtÞ, and the equation of
motion becomes

ε2ω0 sinð2ω0t0Þ
2fðt0Þfð−t0Þ at0 − at0t0 þ

ax0x0

fðt0Þ þ
ay0y0

fð−t0Þ − sin a ¼ 0: ð7Þ

We take the mass of the field asm ¼ 10−22 eV [4], and a
fix value of GW frequency as fGW ¼ ω=2π ¼ 250 Hz [43]

which gives ω0 ¼ 1.05 × 1010. For numerical simulation,
the validity of the above equation demands that the time
step of field evolution Δt0 should be Δt0 ≪ 1=ω0.
Therefore, we take Δt0 ¼ 3 × 10−12 as the minimum time
step, and lattice spacing as Δx0 ¼ Δy0 ¼ 2Δt0. With this,
Δt ¼ 2 × 10−5 s and Δx ¼ Δy ¼ 12 km. For simulations,
we consider N ¼ 200 lattice points in each spatial direc-
tion. Therefore, the total surface area of the torus will be
N2Δx × Δy ¼ 5.76 × 106 km2. Note that to avoid finite
size effects on the field evolution, the condition L ¼
NΔx ≥ 2=fGW should be satisfied [36], where L is the
system size in each direction. For the given fGW and N, the
above condition becomes Δx ≥ 12 km, where the chosen
lattice spacing is already at the lowest threshold.
For an estimate of the strain amplitude ε, we adopt the

following procedure. If we consider a 2-sphere around a
GW source having the surface area given above, then the
radius of that sphere will be r ¼ 677 km; we denote this
radius by r0. (At such a distance from the source, spacetime
curvature may affect the field evolution and also, there may
be small deviation from the Newtonian approximation
taken below. However, as the main focus of this work is
to show the effects of spacetime oscillations on the field,
such as resonance growth etc., which should not be affected
due to the overall spacetime curvature, therefore for
simplicity, we ignore this in our study.) Therefore, at this
distance from the GW source, the strain amplitude will be
given by ε ¼ here=r0, where he is the strain amplitude
measured on Earth and re is the distance between GW
source and the Earth. We consider a particular GW source
that has he ¼ 1.0 × 10−21 and re ¼ 410þ160

−180 Mpc [43].
(These values are taken just for an estimate of ε,
though the source in Ref. [43] produces a time varying
GWs, which is considered in the next subsection.) This
gives ε ¼ 0.019þ0.007

−0.009 .
With the given parameters of spacetime oscillations, we

perform numerical simulations to solve Eq. (7). For
simulations, we prepare an initial field configuration having
field values close to the minimum of effective potential
with small random fluctuations. These field fluctuations are
necessary to excite the field as the spacetime oscillations
only couple to the field through spacetime derivatives; see
Eq. (7). These fluctuations are not unphysical, rather, can
arise naturally due to thermal and/or quantum fluctuations.
Since the minimum of effective potential is at a ¼ 0,
therefore fluctuations in the field aðx; yÞ at initial time
are considered about a ¼ 0. For this, we consider the initial
field configuration aðx; yÞ which varies randomly on lattice
points within the range [−β, β].
We now estimate the possible range of β for FDM. The

BBH merger event, which we have considered, has
occurred at 410þ160

−180 Mpc distance away from the Earth.
Thus, at the time of event, the age of the Universe should be
12.46þ0.59

−0.52 Byr. At this stage, the temperature of Universe
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could be roughly the same as at present, which is
T ¼ 2.73 K. Therefore, we consider the temperature of
Universe at the time of event as the present Universe
temperature and assume that the temperature of FDM is
also the same as that of the Universe. (However, it should
be noted that the location where we are studying the
phenomenon of field excitations being close to a strong
gravitational field. Therefore, it is possible that temperature
may be locally higher than the ambient temperature of the
Universe, which may slightly raise the bound of β which
we calculate here.)
The thermal energy at a temperature is given by T (we

work in the unit system in which kB ¼ c ¼ ℏ ¼ 1). Thus,
in natural units, T is the amount of energy available in the
system to rotate the axionlike field a uniformly to an angle
β in a given volume ðΔxÞ3. Thus, by ignoring the gradient
energy at the boundary of such rotated configuration arising
due to fluctuation, we have the relation ðΔxÞ3ΔVðaÞ ¼ T,
where ΔVðaÞ ¼ VðβÞ − Vð0Þ ¼ μ4ð1 − cos βÞ. By using
the series expansion of cosine function for small β in this
relation, we obtain

β ≈
1

μ2

�
2T

ðΔxÞ3
�1

2

: ð8Þ

Putting μ2 ¼ 10−8 MeV2 for m ¼ 10−22 eV and
F ¼ 1017 GeV, and the values of Δx and T as given
above, give β ≈ 1.5 × 10−22 rad. Whereas, for the given
range of values of m and F, the values of β varies between
10−10 rad to 10−35 rad.
In simulations, β smaller than 10−7 rad (in orders of

magnitude) goes beyond the smallest precision of compu-
tation for potential energy density. Therefore, we only can
take β ¼ 10−7 rad as the smallest value for the study.
However, it should be noted that the phenomenon in which
we are interested is independent from the choice of the
initial fluctuations of field (of course, the quantitative
values of the outcome depend on it). Therefore, in this
subsection, where we study a general possibility of para-
metric resonance in FDM, we take β ¼ π=10, a greatly
large value as a choice, and comment on the results for
lower values of β. Whereas, in the next subsection, where
we deal with BBHmerger case, we take β ¼ 10−7 rad—the
smallest value which can be taken for the study—and
present the results. In most of the cases, we present results
in terms of percentage growth in potential energy density
due to passing of GWs, which we show to be roughly
independent from the choice of β. Therefore, we hope that
the presented results will be valid even for the actual value
of β as estimated above.
We utilize the periodic property of the effective potential,

i.e., its invariance under a → aþ 2π, while calculating
certain quantities such as the total energy density.
Following this property of effective potential, we bring
back the field within the range [−π, π] if it goes beyond this

range during the evolution. This ensures that the gradient
energy is calculated correctly. We numerically solve Eq. (7)
on torus with the given initial field configuration by using
the second-order Leapfrog method [44].
In earlier work [36], it has been shown that a sustained

spacetime oscillations can excite an initial field configu-
ration, in which some specific momentum-modes of the
field grow following the resonance conditions for the given
oscillation frequency ω. These field excitations are induced
by the phenomenon of parametric resonance. Under this
phenomenon, at the early stage of the generation of field
excitation, the whole field configuration acquires some
specific momentum-modes with growing amplitude with
time. However, at later times, the field dynamics becomes
much more complicated because of nonlinearity of the field
evolution, due to which various other momentum-modes of
the field are also generated (modes that are not even related
with the resonance conditions). To show this for the present
case, we write the field a≡ aðx; yÞ in terms of components
a1 ≡ a1ðx; yÞ and a2 ≡ a2ðx; yÞ, where a1 ¼ cos a and
a2 ¼ sin a; here we are representing the angular field a
in terms of vector a1 îþ a2ĵ in the internal space of the
field. Furthermore, to understand the field configuration at
each time, we perform Fourier transform of the components
a1 and a2 as

ãiðk⃗; tÞ ¼
1

A

Z
b:c:

d2x⃗aiðx⃗; tÞeik⃗:x⃗; i ¼ 1; 2; ð9Þ

where A is the total area of the system, b.c. stands for
boundary condition, and k⃗ ¼ kxx̂þ kyŷ, x⃗ ¼ xx̂þ yŷ are
the momentum and position vectors, respectively.
In Fig. 1, we plot modulus of ãiðk⃗; tÞ for two time steps

of the field evolution, at t ¼ 0 (upper panel) and at t ¼
1.4 s (lower panel), in (kx=ω; ky=ω)-plane. In the left panel,

we plot jã1ðk⃗; tÞj, and in the right panel, jã2ðk⃗; tÞj. For the
simulation, the parameters of spacetime oscillations are
taken as fGW ¼ 250 Hz and ε ¼ 0.026 (maximum possible
value of ε estimated earlier). As mentioned earlier, we
consider the initial field configuration aðx; yÞ which varies
randomly around zero, so naturally the distribution of
jã1ðk⃗; tÞj takes a peak at zero-momentum with a value
of about 1, while the distribution of jã2ðk⃗; tÞj shows some
random variations depending on the initial random fluctu-
ations of the field, with a very small magnitude. This
represents the zero-momentum BEC state of FDM, which
depends on the sequence of random numbers used to
generate the initial field configuration. At time t ¼ 1.4 s,
due to sustained spacetime oscillations, some specific
momentum-modes of a2 have grown around kx ≈ ω=2,
ky ≈ 0 (kx ≈ 0.5 peV for the given ω) with peak value∼0.6,
while the magnitude of zero-momentum mode of a1 has
decreased. This may generate a superflow in FDM in
some local regions that have length scale smaller than f−1GW
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(half-wavelength of the generated field-modes) but bigger
than Δx (the length scale of initial fluctuations) such that
the net global flow is zero. We have seen a noticeable
growth in these momentum-modes starting from the time
t ≃ 0.9 s which continues to grow till the time t ¼ 1.4 s. At
later times, with further evolution, the field acquires various
other momentum-modes because of nonlinear field
dynamics.
As mentioned earlier, this growth in the specific momen-

tum-modes is occurring due to parametric resonance of the
field, where these modes are generated following the
respective resonance conditions, that is, the relation
between kx, ky, m, and ω. We determine the resonance
conditions for Eq. (7) by writing in the momentum-space
and then linearizing it; see Ref. [36] for more details. We
find that the resonance conditions for Eq. (7) follow the
relation k2x þ k2y þm2 ≈ ðnω=2Þ2, where n ¼ 1; 2; 3;….
Since in our case ω ≫ m, therefore the above relation
reduces to k2x þ k2y ≈ ðnω=2Þ2: an equation of circle in the
momentum-space. The growth in momentum-modes in
Fig. 1 clearly validates this relation.
Due to the generation of field excitation, the energy

density of the system keeps on increasing with time and
reaches a maximum value. In simulation, we calculate the
total energy density of the system TðaÞ

00 ¼ μ4T 0ðaÞ
00 at each

time, where

T 0ðaÞ
00 ¼ a2t0

2
þ a2x0
2fðt0Þ þ

a2y0

2fð−t0Þ þ ð1 − cos aÞ: ð10Þ

To calculate these terms, we utilize the periodic property of
the effective potential as mentioned earlier, under which we
bring back the field within the range ½−π; π� if it goes
beyond this during the evolution. We calculate average
values of all above terms on two-dimensional lattice at each
time. We see the growth in each term of the energy density
due to the generation of field excitations induced by
spacetime oscillations. In Fig. 2, we show the time
evolution of average potential energy density (multiplied
by μ−4) for the given value of fGW and ε (since the scale of
the potential energy density is set by μ, we choose to
measure the potential energy density in the units of μ4).
Since in the initial field configuration, the field varies
randomly between the range ½−β; β� where β is a small
number, the average value of the potential energy density is
initially very small. Under the sustained spacetime oscil-
lations, when the field achieves full excitations, it covers
the whole field-space in the range ½−π; π�. In such a
situation, the average value of VðaÞμ−4 becomes ∼1 as
can be seen in the figure.
We find that, the total energy density of the field achieves

roughly two orders of magnitude growth from the initial
value. As mentioned earlier, for this simulation, we have
taken β ¼ π=10, which gives a large initial fluctuations to
the field. Instead of it, if we take β ¼ π=200, it gives
smoother initial fluctuations to the field due to which the
total energy density of the initial field configuration is
reduced compared to the former case. We see that even in
the latter case, the resonance growth of the field begins
around the same time as in the former case, that is, at time
t ≃ 0.9 s. However, due to the lower initial energy density
in the latter case, the field takes longer time to achieve full
excitations; in the former case, it takes the time t ≃ 1.7 s,
while in the latter case, it takes t ≃ 2.6 s, to achieve full
excitations.

FIG. 1. Figure shows the distribution of jã1ðk⃗; tÞj (left panel)
and jã2ðk⃗; tÞj (right panel) at initial time and at time t ¼ 1.4 s.
The parameters of spacetime oscillations are fGW ¼ 250 Hz and
ε ¼ 0.026. Figure clearly shows that under the spacetime
oscillations the initial field configuration (a1, a2) that has
dominantly zero-momentum mode is excited to acquire
higher momentum-modes following the resonance condition
kx ≈ ω=2, ky ≈ 0.
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FIG. 2. Figure shows the grwoth in average potential energy
density (multiplied by μ−4) under the sustained spacetime
oscillations.
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We also see that increasing values of fGW and ε reduces
the time to achieve field excitations (if the appropriate
momentum-modes of the field corresponding to frequency
ω are present initially). Thus, a stronger GW source can
excite the field in relatively shorter time. As discussed
earlier, as soon as the spacetime oscillations stop, the field
starts rolling-back toward the minimum of the effective
potential, which leads to the oscillations in the field about
the minimum.

B. With time varying GW waveform

1. BBH merger GW waveform

In the previous case, we have taken a continuous GW
waveform that enables the field a to excite under the
phenomenon of parametric resonance. However, BBH and
BNS mergers do not produce a continuous GWs. Rather,
these sources produce a time varying GWs whose ampli-
tude and frequency increase until the merger is completed.
Therefore, the phenomenon of generation of field excitation
may become much more complicated in this case. In this
subsection, a time varying GW waveform is considered to
study the field excitations near a strong GW source. For
simplicity, the GW waveform is taken to be

he ¼ 10−21½haehbt sinðωtÞ�; t ≤ t0;

he ¼ 10−21½hce−hdðt−t0Þ sinðωtÞ�; t > t0; ð11Þ

where ω ¼ 2πfGW, fGW ¼ expðfaefbt þ fcÞ, and (ha, hb,
hc, hd, fa, fb, fc, t0) are the phenomenological parameters
to be fitted using a known GW waveform. (Note that in
general, the strain amplitude of GWs produced by BBH or
BNS mergers are not spherically symmetry about the
source [45]. However, for simplicity here we ignore this,
and proceed by considering a spherically symmetric GW
strain amplitude about the source. We also ignore the cross-
polarization component of GWs.) We determine parameters
of the above function such that he shows a qualitatively
similar variation as the strain amplitude for a known GW
source. For this, we consider the GW source GW150914
[43], and model the waveform with the above function.
By taking some limiting values of he from the actual
waveform, we obtain fa ¼ 2.9 × 10−8, fb ¼ 42.5 s−1,
fc ¼ 3.465, and the remaining parameters, for the
two possible values of the merger time t0, as given in
the Table-I. The values of hd are taken such that he becomes
close to zero at time t ¼ 0.44 s [43] for both the cases. With
this, the ringdown phase of the merger lasts longer for Set I
parameters than for Set II parameters.
The GW waveform given by the above function is not

exactly the same as that produced by GW150914, though
the qualitative variation in the strain amplitude and fre-
quency of the waveform is similar to this source [43]. It
should be noted that the focus of the present study is to

demonstrate a general possibility of generation of field
excitation due to passing of GWs, without focusing on any
particular GW source. Certainly, a detailed structure of the
GW waveform can affect the generation of field excitations
quantitatively. In fact, we show that our results are highly
sensitive to the parameters of the GW waveform used for
the simulation.
To perform simulations, in this case also, we continue

with the assumptions that there is no variation of the field
along z-direction (along r in spherical polar coordinates)
and the consideration of the lattice structure as a flat sheet
forming z ¼ 0 plane with periodic boundary conditions.
Under these assumptions and in terms of dimensionless
variables, Eq. (4) becomes

ht0at0

h−1ð1 − h2Þ − at0t0 þ
ax0x0

1 − h
þ ay0y0

1þ h
− sin a ¼ 0; ð12Þ

where h ¼ here=r, and from Eq. (11),

ht0 ¼Rhae
h0bt

0 ½h0b sinðω0t0ÞþΩ�; t0 ≤ t00;

ht0 ¼Rhce−h
0
dðt0−t0 0Þ½−h0d sinðω0t0ÞþΩ�; t0 > t00; ð13Þ

where R ¼ 10−21re=r, h0b ¼ hb=m, h0d ¼ hd=m, t00 ¼ mt0,
Ω¼ðω0þω0

t0 t
0Þcosðω0t0Þ, ω0

t0 ¼ω0faf0be
f0bt

0
, and f0b ¼ fb=m.

Using these parameters of GWs, we perform simulations to
solve Eq. (12). We take the same lattice spacing Δx (that
gives r ¼ r0) and time step Δt as used before, and β ¼
10−7 rad for the initial field fluctuations. We take the
maximum possible value of re for the source GW150914,
which is re ¼ 570 Mpc [43]. We follow the same pro-
cedure of calculating r and strain amplitude h as used in the
last subsection.
In Fig. 3, we plot the time evolution of average potential

energy density (multiplied by μ−4) for the given sets of
parameters. Curve 1h corresponds to the case when the
actual h has been taken [as defined in Eq. (11)], while curve
2h corresponds to the case when factor two is multiplied
into h. In the upper panel, the plot shows the time evolution
of the potential energy density for Set I GW waveform,
which is only plotted for the case of 2h (brown). For 1h, the
overall growth in potential energy density is approximately
1.1% from the initial value, which is very small to show in
the plot. The growth in the potential energy density for the
case of 2h is approximately 3.9%. In the lower panel, the
plot shows the time evolution of the potential energy

TABLE I. Table provides values of some parameters of GW
waveform, given in Eq. (11), for two possible values of the
merger time t0.

ha hbðs−1Þ hc hdðs−1Þ t0ðsÞ
Set I 7.7 × 10−4 17.5 1.3 300.0 0.425
Set II 1.1 × 10−3 16.4 1.3 500.0 0.43
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density for Set II GW waveform for 1h (blue) and 2h (red)
cases. In these two cases, there are approximately 5.6% and
24.3% overall growth in the potential energy density from
the initial value at the given constant r-hypersurface. The
curve 2h in the plot indicates that a relatively strong GW
source can cause a very large growth in the energy density
of FDM. The percentage growth in total energy density is
also in the same order as that for potential energy density.
The growth in the potential energy density for Set I and

Set II has basically two distinct features: (i) the overall
growth in the potential energy density, and (ii) the time-
domain of the occurrence of these growths. The overall
growth for Set I is lesser than the growth for Set II. This is
because for Set II, a large strain amplitude and frequency
are simultaneously present in the waveform toward the end
of the merger to generate large excitations in FDM, which
is somewhat absent for Set I. On the other hand, for Set I,
since the ringdown phase persists for a longer time, the
growth in potential energy density continues even after time
t0 [0.98t0 ≲ t≲ 1.013t0], which is quite different from the
case of Set II in which growth is very rapid around time t0
[0.98t0 ≲ t≲ t0] and stops quickly after it. All this suggests
that the generation of field excitations is highly sensitive to
the parameters of the GW waveform, which based on these
parameters can be generated toward the end as well as in the
ringdown phase of the merger.
We also study the distribution of field-modes in (kx, ky)-

plane at t0 time, as done in Fig. 1. We find that for each case
in Fig. 3, the initial distribution of jã2ðk⃗; tÞj is redistributed
at time t0 without much growth, and takes peak at a higher
momentum causing growth in energy density of FDM.
We have verified that the percentage growths discussed

in Fig. 3 are independent from the strength of the initial

field fluctuations, that is, from the choice of β. We find that
for the range of β from 10−1 to 10−7 rad, the percentage
growth in potential energy density for Set II parameters
(with 1h) randomly varies between 5.1-5.7% (an extremely
small random variation for many orders of magnitude
change in β), which shows that it is almost independent
from the choice of β. It indicates that our results could be
valid even for the actual value of β, i.e., for β ∼ 10−22 rad,
as estimated previously for FDM.
It should be noted that due to finite size effects, the field

cannot achieve excitations until the frequency of GWs
becomes equal or exceeds the lowest frequency cutoff
fGW ¼ 250 Hz for this hypersurface. Certainly, for higher
r-hypersurfaces, the frequency cutoff will be lesser than
fGW ¼ 250 Hz, which would provide a larger time-domain
for the field to achieve excitations. However with increas-
ing r, the strain amplitude also decreases, which can
suppress the generation of field excitation. On the other
hand, although the strain amplitude becomes larger for
smaller r, the finite size effects suppress the generation of
excitations. Therefore, the field excitations are expected to
be generated in a spherical shell about the GW source with
maximum excitation at an optimum radial distance r.
Although this investigation requires full (3þ 1)-dimen-
sional simulations, in the given simulation setup, we now
show that our this expectation is true.
In Fig. 4, we plot the percentage growth in average

potential energy density δVðaÞ ¼ Vðt>t0Þ−Vðt¼0Þ
Vðt¼0Þ × 100% at

different r. The simulations are performed using parameters
of Set II. However, for this study, we stop the spacetime
oscillations after time t0 for each r to avoid any ambiguity
in the choice of hd that may arise while simulating

1.1
1.12
1.14
1.16
1.18
1.2 2h

Set-I
t0 = 0.425 s

1.1
1.15

1.2
1.25

1.3
1.35

1.4
1.45

0.97 0.98 0.99 1 1.01 1.02 1.03

Set-II
t0 = 0.43 s

1h

2h

t/t0

FIG. 3. Figure shows the growth in average potential energy
density (multiplied by μ−4) at r ¼ r0 hypersurface for Set I (upper
panel) and Set II (lower panel). These growths arise around t0
time, that is, toward the end and in the ringdown phase of the
merger. Curve 1h corresponds to the case when the actual h has
been taken, while curve 2h corresponds to the case when factor
two is multiplied into h.
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FIG. 4. Figure shows the percentage growth in average poten-
tial energy density δVðaÞ at different r from GW source;
r0 ¼ 677 km. This entire curve is a result of a combination of
finite size effects and strain amplitude, which shows that only in a
spherical shell about the GW source, field excitations can be
generated.
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hypersurfaces for r < r0. This consideration does not affect
the physical aspects in which we are interested. To change r
in the simulations, we change Δx (=Δy). As the maximum
momentum-mode present in the initial field configuration is
given by kmax ¼ 2π=Δx, therefore with the change in Δx,
the momentum-modes present in the initial field configu-
ration also change. This may affect the resonance process
quantitatively. However, its effects should not be very
significant as the overall change in kmax is only between
69.8 to 209.3 peV for the given range of Δx (6.0–18.0 km)
in Fig. 4. As discussed above, the entire curve in Fig. 4 is a
result of a combination of finite size effects and strain
amplitude, which clearly shows that the field excitations
can arise only in a spherical shell about the GW source.
Throughout the evolution, the field remains in the linear

regime, and hence the momentum-modes of the field
corresponding to z-axis will not be affected by the growth
of kx and ky modes of the field. Therefore, in this case, our
(2þ 1)-dimensional simulation is a reasonable approxima-
tion to the full (3þ 1)-dimensional simulations. However,
as mentioned earlier, the generation of field excitation in
FDM should cause a loss in GW energy due to energy
conservation. Therefore, this process of generation of field
excitation should modify the actual waveform produced by
the GW source, especially toward the end of the merger.
Therefore, to study the backreaction of the generated field
excitations, in determining the actual changes in the GW
waveform, one needs to solve full Einstein’s equation,
which is not our focus in this work.
In this study, the results are presented using a model GW

waveform that is suitable for an observed GW waveform
on Earth. We have considered it as an actual waveform
produced by a source, and performed the simulations. With
the simulation results, we then conclude that the GWs can
generate field excitations in FDM around the source, which
would modify the GW waveform due to energy loss. Thus,
this study suggests that the GWs observed on Earth may
have already been affected due to the presence of FDM. A
detailed study will reveal whether such a change in the GW
waveform can be observed experimentally, and if it does, it
will indirectly show the existence of FDM in the inter-
mediate region between the GW source and the Earth.

2. Sine-Gaussian GW waveform

In the previous subsection, we have shown, by using a
specific GW source, that a time varying GWs can generate
field excitations in FDM. Indeed, some GW sources, such
as core-collapse supernovae (CCSNe), generate transient
GWs whose duration may vary from one source to another.
We now show that the duration of GWs may affect the
generation of field excitations in FDM. To analyze it, we
consider a sine-Gaussian function as an ad hoc GW
waveform [46–50], which is also used to model the GW
waveform produced by CCSNe [49,50]. This waveform is
given by

h ¼ h0 expð−ðt − t0Þ2=τ2Þ sinð2πfGWtÞ; ð14Þ

where h0 is an amplitude scale factor, t0 is the arrival time
of GW signal, τ quantifies the duration of signal, and fGW
is the frequency of GWs. For simplicity, we again ignore
the cross-polarization component of GWs.
In this case also, we use the same simulation parameters

as used in the last subsections to solve Eq. (12). For the
study, we take t0 ¼ 0.3 s, and fGW ¼ f250; 500g Hz. The
value of t0 is chosen sufficiently large compared to τ so that
its value cannot affect the growth in the average potential
energy density. Our focus is to determine the parameter
range of this waveform for which FDM can be excited. A
GW waveform with arbitrarily small τ cannot generate
resonance growth in FDM. The same is also true for a
waveform with arbitrarily small h0. Therefore, in the
parameter space ðh0; τÞ, for each frequency fGW, there
should be resonance growth zone and growth forbidden
zone partitioned by a curve whose horizontal and vertical
asymptotes are at h0 ≠ 0 and τ ≠ 0, respectively. As
already discussed, the frequency cutoff to generate reso-
nance growth is set by the finite size effects on the
respective r-hypersurface from the source.
In Fig. 5, we plot the resonance cutoff points in

parameter space (h0; τ) for each fGW, which divide the
parameter region of possible resonance growth to the
growth forbidden zone. In the simulations, we observe
resonance growth only for those h0 that have value higher
than the plotted points for each τ. Thus, the resonance
growth zone covers the region above these points for the
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FIG. 5. Figure shows the resonance growth zone and growth
forbidden zone for FDM in parameter space (h0; τ). The analysis
is done for fGW ¼ 250 Hz (empty circles) and fGW ¼ 500 Hz
(filled circles), at r0 hypersurface; r0 ¼ 677 km. The resonance
growth zone covers the region above the plotted points for the
respective fGW. This zone is strongly reduced toward smaller τ by
decreasing frequency, which is depicted by arrows. The errors in
the plot indicate the uncertainty in determination of value of h0
for which there is no resonance growth.
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respective fGW. With increasing values of h0 and τ above
theses points, the overall growth in average potential
energy density increases. The errors in the plot indicate
the uncertainty in determination of value of h0 for which
there is no resonance growth. This plot clearly indicates
that the generation of field excitations in FDM is only
possible with the GWs that have a significant duration and
strain amplitude. It is also clear from Fig. 5 that the
resonance growth zone is strongly reduced toward smaller
τ by decreasing frequency, which is depicted by arrows
in the plot. The plotted points for fGW ¼ 500 Hz can be
best fitted by the function h0 ¼ 10−3ð5.3ðτ − 3.3 ×
10−3Þ−0.84 þ 2.0Þ indicating to have the lowest cutoff for
τ as well as h0 to generate resonance growth at the two
extremes, τ → 0 and τ → ∞, respectively.
The result presented in Fig. 5 has important phenom-

enological implications for CCSNe. It may be possible that
some CCSNe generate GWs whose parameters are such
that they are capable of generating field excitations in FDM
in a spherical shell. It is expected that the GWs produced
by a CCSN carry the information of explosion mechanism,
more specifically, the magnitude and character of deviation
of the core from its spherical symmetry [49]; for a review,
see [51]. Thus, with the detection of the GWs produced by
CCSNe, one is expected to be able to probe the dynamics of
deep inside the core of SNe. However, as we argue that
GWs produced by CCSNe, in some parameter range, could
excite FDM present in the outer space, hence should lose
some energies due to energy conservation. Therefore, this
process may hide some relevant information of CCSNe that
are expected to be studied by detecting GWs. We will
explore this in more detail in our future work.

III. CONCLUSIONS

In this work, we have shown that strong gravitational
waves (GWs) can generate field excitations in fuzzy dark
matter (FDM) in spherical shell about the GW source. The
field description for FDM is considered as an ultralight
axionlike field having mass m ∼ 10−22 eV, where initially
the field is taken at the minimum of effective potential with
small random fluctuations. These generated excitations can
lead to the generation of local superflow in FDM. As soon
as these excitations arise, in order to minimize the energy
density of the field configuration, they start propagating out

of the shell as the perturbations in FDM. These excitations
may have acoustic (linear) perturbations as well, which
propagate with the speed of sound in medium.
We have shown, by using a model GW waveform

suitable for a binary black hole (BBH) merger, that
GWs can generate field excitations in FDM toward the
end and in the ringdown phase of the merger. Due to energy
conservation, while generating these excitations, GWs will
lose their energy in these two phases of the merger, due to
which GW waveform should get modified. Thus, our
results can provide a qualitatively distinct prediction for
the presence of FDM around the GW source than the other
prospects discussed earlier in literature. This may be
observed in the measurement of GWs on Earth, which
requires a detailed investigation. A detailed study in
Ref. [25] shows a suppression in the strain amplitude
and frequency of GWs in the ringdown phase of
BBH merger due to the presence of clouds of ultralight
axionlike field. A possible explanation for such suppression
can be given due to the phenomenon discussed in the
present work.
The generation of field excitations is not only limited to

the above choice of parameters of field and GW source,
rather, can be possible for a wide range of masses of
axionlike field and for any strong GW source. Indeed, we
have also shown that a sine-Gaussian GW waveform can
generate field excitations in FDM, and determined the
resonance growth zone for a parameter range of this
waveform. Thus, the main criteria, we obtain to generate
the field excitations in FDM, are: (i) the angular frequency
of GWs should be ω ≥ m, (ii) the surface area of the
2-sphere about the source must be large enough to avoid
finite size effects, and (iii) the strain amplitude on that
2-sphere, and the duration of GWs, should be large enough
to generate field excitations.
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