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In higher dimensions, we explore planar hairy black hole configurations for a special subclass of the
Horndeski theory defined by two coupling functions depending on the kinetic term and enjoying shift
symmetry and reflection symmetry. For this analysis, we derive a set of new solutions given by time-
dependent as well as time-independent scalar field configurations. Additionally, we calculate their
thermodynamic quantities by using Wald formalism satisfying the first law of thermodynamics as well as a
Smarr relation. Together with the above, the Wald procedure allows us to compute the shear viscosity,
showing that for a suitable choice of the coupling functions the Kovtun-Son-Starinets bound is violated.
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I. INTRODUCTION

General relativity (GR) is without a doubt a very
successful standard model of gravity. Nevertheless, astro-
physical discoveries such as the accelerated expansion of
the Universe [1,2] and the recent first detection of gravi-
tational waves [3] have yielded the motivation to study
theories of gravity beyond GR.
There are many ways to construct modifications of GR,

one of them is to introduce new degrees of freedom given
by scalar fields and denominated as scalar-tensor theories.
In particular, Horndeski in the 1970s formulated a four-
dimensional theory defined by the metric gμν and a scalar
field ϕ, as well as their derivatives, where the equations of
motion are at most of the second order [4]. This peculiarity
makes the Horndeski theory a healthy one, because it does
not have ghosts or instabilities caused by higher orders
derivatives in the equations of motion.
An intuitive way to construct the Horndeski theory

action follows from the Galileon theory [5,6], with the
introduction of four functions dependent on the metric gμν,
the scalar field ϕ, and the kinetic term X ≔ − 1

2
gμν∂μϕ∂νϕ

which reads [7]

S½gμν;ϕ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
G2ðX;ϕÞ−G3ðX;ϕÞ□ϕ

þG4Xðð□ϕÞ2− ð∇μ∇νϕÞ2ÞþRG4ðX;ϕÞ

−
1

6
G5Xðð□ϕÞ3−3□ϕð∇μ∇νϕÞ2þ2ð∇μ∇νϕÞ3Þ

þGμν∇μ∇νϕGð5ÞðX;ϕÞ
�
; ð1Þ

where we define

GnX ≔
∂Gn

∂X ; n ¼ f2; 3; 4; 5g;
ð∇μ∇νϕÞ2 ≔ ð∇μ∇νϕÞð∇μ∇νϕÞ;
ð∇μ∇νϕÞ3 ≔ ð∇μ∇νϕÞð∇μ∇ρϕÞð∇ρ∇νϕÞ;

with R and Gμν being the scalar curvature and the Einstein
tensor respectively.
On the other hand, one of the peculiarities of planar

black holes is their relation to an ideal fluid given by the
gravity/gauge duality [8–10]. Within this scenario, it is
possible to compute the well-known ratio between the shear
viscosity η and the entropy density s, allowing us to check
the conjecture about a universal bound known as the
Kovtun-Son-Starinets (KSS) bound, which reads [11–14]

η

s
≥

1

4π
; ð2Þ

being demonstrated in a variety of gravity theories (see
for example [15–18]), where the shear viscosity can be
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obtained by effective coupling constants of the transverse
graviton on the location of the event horizon, via the
membrane paradigm [19], and corroborated by the Kubo
formula [20,21]. Recently, constructing a Noether charge
with a suitable choice of a spacelike Killing vector, and
following the Wald formalism [22,23], the η=s ratio was
calculated by using the infrared data on the black hole event
horizon [24], greatly simplifying the steps in comparison
with the previous procedure.
Nevertheless, in recent years it has been shown with

specific examples that the bound can be violated. In fact,
we can mention gravity theories such as the Einstein-
Hilbert Gauss-Bonnet model [25,26] as well as a particular
truncation of the Horndeski theory (1) [27,28].
In particular, in the present paper, we are interested in the

study of a subclass of the action (1) based on the work
developed in [29], where the theory in D dimensions takes
the form

S½gμν;ϕ� ¼
Z

dDx
ffiffiffiffiffiffi
−g

p
L; ð3Þ

and the Lagrangian is expressed as

L ¼ G2 þ G4Rþ G4X½ð□ϕÞ2 − ð∇μ∇νϕÞ2�; ð4Þ

where now G2 and G4 are arbitrary functions of the kinetic
term X and, as before, G4X ≔ ∂G4=∂X. The corresponding
equations of motion are of the following form:

Eμν ≔
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LÞ
δgμν

¼ 0; ð5Þ

Eϕ ≔ ∇μJμ ¼ 0; ð6Þ

where

Jμ ≔ −G2X∇μϕþ 2G4XGμν∇νϕ

− G4XX½ð□ϕÞ2 − ð∇μ∇νϕÞ2�∇μϕ

− 2G4XXð□ϕ∇μX −∇μ∇νϕ∇νXÞ; ð7Þ

while the equations with respect to the metric Eμν are
reported in the Appendix. Within this theory, we will focus
on black holes in arbitrary dimensions with a planar base
manifold for the event horizon, and the thermodynamics of
these configurations will be also examined. In addition, we
compute the shear viscosity η, and to perform this task in
the present paper we will utilize the formalism developed
in [24].
The rest of the paper is organized as follows. In Sec. II

we explore planar black holes with a linear time-dependent
scalar field ϕ, giving a general solution for some particular
cases for the functions G2 and G4. In Sec. III the time-
independent case is analyzed, whereas its thermodynamics

is studied in Sec. IV. In Sec. V, the shear viscosity is
computed, where the η=s ratio is obtained, and a condition
on the functions G2 and G4 is found where the KSS bound
can be violated. Finally, Sec. VI is devoted to our
conclusions and discussion.

II. DERIVATION OF THE SOLUTION WITH A
LINEAR TIME-DEPENDENT SCALAR FIELD

One of the peculiarities of scalar fields in scalar-tensor
theories of Horndeski type (3) and (4) is the existence of
time-dependent configurations compatible with the gravi-
tational sector. In particular, in the following studies, the
ansatz for the metric will be

ds2 ¼ −hðrÞdt2 þ dr2

fðrÞ þ r2
XD−2

i¼1

dx2i ; ð8Þ

and following the steps performed in [29,30], the scalar
field reads

ϕðr; tÞ ¼ φðrÞ þ qt; ð9Þ

where q is a constant. It is worth pointing out that this
structure for the scalar field has been successfully applied
with other kinds of topologies for the event horizon (see for
example [29–33]). Since the scalar field ϕ is time depen-
dent, the kinetic term X takes the form

X ¼ 1

2

�
q2

h
− fðφ0Þ2

�
: ð10Þ

Imposing a condition on the radial part of the current
Jr ¼ 0, we obtain the following relation for the metric
functions f and h:

f ¼ −
G2XrD−2h

ðD − 2Þ½GXðrD−3hÞ0 þ ðD − 3Þq2rD−4G4XX�
; ð11Þ

where ð0Þ denotes the derivative with respect to the radial
coordinate r and

GðXÞ ¼ ðG4 − 2XG4XÞ; GX ≔ ∂G=∂X: ð12Þ

It should be pointed out that for the time-dependent scalar
field (9), in addition to the “diagonal” gravitational field
equations (5) there is an “off-diagonal” term which
corresponds to the ðt; rÞ component, where the correspond-
ing field equation takes the form
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Etr ≔
�
−
G2X

2
þ G4X

ðD − 2Þf
2rD−2h

ðrD−3hÞ0 þG4XX

×
ðD − 2Þf

2rh

�
h0

h
q2 þ ðrD−3hÞ0

rD−3 fðφ0Þ2
��

qφ0 ¼ 0:

ð13Þ

This latter equation, together with (10), also gives rise to
the relation (11), and it is worth noting that this fact reflects
the consistency of our procedure. Taking into account the
relation (11), we can recast the ðr; rÞ component of the
equations of motion (5) in the following form:

ðrD−3hÞ0∂XðG2GÞ þ ðD − 3Þq2rD−4∂XðG2G4XÞ ¼ 0: ð14Þ

Having combined Eq. (14) and the relation for metric
functions (11), we can also derive the following relation:

f ¼ −
r2

ðD − 2ÞðD − 3Þq2
∂XðG2GÞ

∂XðG4G4XÞ
h; ð15Þ

where we note that it cannot be applied to a time-
independent scalar field (this is q ¼ 0).
Using Eqs. (11), (14), and (15), the ðt; tÞ component of

the Einstein equations (5) acquires the structure

−
ðD − 2Þh

2rG

�
f
h
G2

�0
¼ 0; ð16Þ

and it follows immediately that

f
h
G2 ¼ C; ð17Þ

where C is an integration constant. Here it is important to
note that we do not impose any asymptotic behavior at the
beginning, but it follows from the solutions we will obtain
below. Finally, combining the solution (17) together with
the relation (15), we obtain

−
r2

ðD − 2ÞðD − 3Þq2
∂XðG2GÞ

∂XðG4G4XÞ
¼ C

G2
: ð18Þ

This relation demonstrates clearly that kinetic term X ¼
XðrÞ can be derived algebraically for given functions G2

and G4, and it is in complete agreement with the result
obtained previously for the four-dimensional case [29].
Having obtained the explicit form of the function XðrÞ, one
can use Eq. (14) to find the metric function hðrÞ, and finally
using the relation (15) we derive the metric function fðrÞ.
We also point out that the constant C in the relation (17)
should be positive (C > 0), because the metric functions
hðrÞ and fðrÞ should be of the same sign in any point on
their domains of variation. In the following lines, we set
C ¼ 1 without any loss of generality of conclusions.

Since no specific conditions have been imposed on the
functions G2 and G4, we can choose them freely and try to
find explicit structures for the metric functions hðrÞ and
fðrÞ, as well as the explicit expression for the kinetic term
XðrÞ. Below we examine a few cases for the functions G2

and G4 for which it is possible to obtain explicit expres-
sions of the metric functions, at least in a relatively simple
form. Before we start considering some particular cases, we
would like to stress that the only equation which has not
been used explicitly when we derived the relations (15),
(17), and (18) is the ðxi; xiÞ component from the field
equations (5). Therefore, we might expect that this equation
gives rise to some conditions which should be imposed on
the functions G2 and G4, being written as follows:

G
�
1

2

ffiffiffi
f
h

r � ffiffiffi
f
h

r
h0
�0

þ ðD − 3Þ
2rD−3h

ðrD−4fhÞ0
�

−
G2

2
þ G0

�
h0

2h
þD − 3

r

�
f þ ðD − 3Þq2

2rD−3G4X

×

�
rD−4fG2

4X

h

�0
¼ 0: ð19Þ

If we now use relation (17), the latter equation can be
simplified to

ðrD−3hÞ00
rD−3G

−G2 þ
ðD − 3Þq2
rD−3G4X

�
rD−4G2

4X

G2

�0
¼ 0: ð20Þ

It is worth noting that the above-written equation can be
applied to the time-independent field, namely in this case
q ¼ 0, and the equation can be cast as follows:

ðrD−3hÞ00 − rD−3GG2 ¼ 0: ð21Þ

In the following, we will use Eq. (20) to check whether
some additional conditions for G2 and G4 appear, allowing
us to obtain explicit expressions for hðrÞ and fðrÞ.

A. Case A

As a first case, we assume that both G2 and G4 are linear
functions of X:

G2 ¼ αþ βX; G4 ¼ ξþ γX; ð22Þ

where α, β, ξ, and γ are constants. By using the relation (18)
together with β ¼ −γα=ξ, we obtain

X ¼ 1

γ

�
ξ −

�
γξðD − 2ÞðD − 3Þ

2α

�
1=3

�
q
r

�
2=3

�
: ð23Þ

Now, taking into account Eq. (14), one can obtain the
explicit structure for the metric function hðrÞ, which takes
the following form:
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hðrÞ ¼ −
M
rD−3 −

�
2ðD − 3Þ2αγ2q4

ξðD − 2Þ
�

1=3 3r2=3

ð3D − 7Þ ; ð24Þ

whereM is a positive integration constant. In order to have
a black hole solution the metric function hðrÞ should be
positive at least for sufficiently large r; consequently, it
means that the second term in the relation (24) has to be
positive and it takes place if α=γ < 0 with ξ > 0. To derive
the metric function fðrÞ, according to the relation (17), one
also needs the explicit relation for the function G being
obtained via the relations (12) and (23) given by

G2 ¼
�
γξðD − 2ÞðD − 3Þq2

2α

�
2=3 1

r4=3
: ð25Þ

Substituting the functions (24) and (25) into Eq. (20), we
can check that this equation is satisfied as an identity
without any conditions on the parameters of the functions
G2 and G4. Here we would also like to emphasize that a
similar conclusion can be made regarding all of the chosen
forms of G2, G4, and hðrÞ that we will consider below. Just
for completeness, after a redefinition of the coupling
constants γ, α, and ξ, as well as for the integration constant
M, we recover the asymptotically Lifshitz black hole in
arbitrary dimensions found in [34].

B. Case B

Now we suppose that the functions G2 and G4 are

G2 ¼ αðξ − γXÞk; G4 ¼ ξþ γX; ð26Þ

and using Eq. (18) we obtain

X ¼ 1

γ

�
ξ −

�ðD − 2ÞðD − 3Þγq2
ðkþ 1Þα

� 1
kþ2

r−2=ðkþ2Þ
�
; ð27Þ

where k ≠ −1 and k ≠ −2, and Eq. (14) gives rise to the
following form of the metric function hðrÞ:

hðrÞ ¼ −
M
rD−3 −

kðkþ 2ÞðD − 3Þγq2
ðkþ 1Þ½ðkþ 2ÞðD − 3Þ þ 2�

r
2

kþ2

Ā
; ð28Þ

where

Ā ¼
�ðD − 2ÞðD − 3Þγq2

αðkþ 1Þ
�
1=ðkþ2Þ

;

withM a positive integration constant. Finally, via Eq. (21)
we obtain

G2 ¼ Ā2r−4=ðkþ2Þ; ð29Þ

allowing us to obtain the expression for the metric function
fðrÞ by using the relation (17).

One can easily check that if k ¼ 1, and after a redefi-
nition of the constants, the relations (27)–(29) are reduced
to the corresponding relations obtained for the previously
examined situation (Case A) corresponding to asymptoti-
cally Lifshitz black holes in higher dimensions.

C. Case C

For this situation, the functions G2 and G4 are chosen as

G2 ¼ αþ βXk; G4 ¼ ξþ γ
ffiffiffiffi
X

p
; ð30Þ

and the relation (18) allows us to arrive at

X ¼
�ðD − 2ÞðD − 3Þγq2

4kβξ2

� 2
2kþ1

r−
4

2kþ1 ð31Þ

where k ≠ − 1
2
. Using Eq. (14) we obtain the metric

function hðrÞ, which reads

hðrÞ ¼ −
M
rD−3 þ

ðD − 3Þγq2
2kξβ

�
α

2ðD − 1Þ Ã
−2kþ1

2 r2

−
ð4k2 − 1Þβ

2½ðD − 3Þð2kþ 1Þ þ 2� Ã
−1
2r

2k
2kþ1

�
; ð32Þ

where, as before, M is a positive integration constant and
we denoted for simplicity:

Ã ¼
�

γ

4kβξ2
ðD − 2ÞðD − 3Þq2

�
2=ð2kþ1Þ

:

It is easy to check that

G2 ¼ ξ2; ð33Þ

and as a consequence if we impose ξ ¼ 1, we have that
fðrÞ ¼ hðrÞ. Here it is important to note that for this case
we have an anti–de Sitter (AdS) or de Sitter configuration
depending on the sign of

αðD − 3Þγq2
2ðD − 1Þ2kξβ Ã

−2kþ1
2 ;

together with 2k=ð2kþ 1Þ < 0. For the sake of complete-
ness, starting with k ¼ 1=2 from (30) we note that the third
term in the relation (32) disappears and the metric functions
take the very simple form

fðrÞ ¼ hðrÞ ¼ −
M
rD−3 þ

α

ðD − 1ÞðD − 2Þ r
2: ð34Þ

Therefore, for this particular case, we completely recover
the AdS or de Sitter situations of solutions known from the
standard general relativity gravity. We also point out that
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the solution (34) represents a black hole if we impose
α > 0.

D. Case D

Now, for an election of the functions given by

G2 ¼ αX2ð1þ γX2Þ3=4; G4 ¼ ξð1þ γX2Þ1=4; ð35Þ

Eq. (18) gives rise to

X ¼ −
γ

4αξ

ðD − 2ÞðD − 3Þq2
r2

; ð36Þ

while the metric function hðrÞ takes the form

hðrÞ ¼ −
M
rD−3 þ

3γ2ðD − 2ÞðD − 3Þ2
16αξðD − 5Þ

q4

r2
; ð37Þ

where from Eq. (21) we have

G2 ¼ ξ2
�
1þ γ3ðD − 2Þ2ðD − 3Þ2

16α2ξ2
q4

r4

�−3
2

; ð38Þ

while the metric function fðrÞ is obtained via Eq. (17).
Here it is important to note that, unlike the previous cases,
this solution enjoys other asymptotic behavior, where to
obtain a black hole, the presence of the constant q as well as
a positive integration constant M are providential. It is
worth noting that if D ¼ 5 the second term in (37) instead
of inverse quadratic dependence will have ∼ lnðrÞ=r2
character, allowing us to study the number of the locations
of the event horizon by using Lambert W functions [35]. It
should be also pointed out that to have a black hole we have
to imposeD ≥ 5, because ifD ¼ 4 the terms in (37) reverse
their roles, and for the particular case D ¼ 3 the function
(37) keeps the first term only.

E. Case E

For this case, let us take the functions G2 and G4 in the
following form:

G2 ¼ αð1þ γX2Þ5=4; G4 ¼ ξð1þ γX2Þ1=4; ð39Þ

where from Eq. (18) we obtain

X ¼ −
�

4α2ξ2

ðD − 2Þ2ðD − 3Þ2q4 r
4 − γ

�−1=2
; ð40Þ

and it follows immediately that the condition on the
coordinate r that should be imposed in order to provide
the function XðrÞ to be real is r4 ≥ γðD − 2Þ2ðD − 3Þ2q4=
ð4α2ξ2Þ, but we assume that these parameters are chosen in
such a way that this condition is fulfilled outside the event
horizon of the black hole that we are going to find here.

Using (40), we are able to find that the metric function hðrÞ
is given by

hðrÞ ¼ −
M
rD−3 þ

ðD − 3Þq2
2rD−3

×
Z

drrD−4
��

4α2ξ2

ðD − 2Þ2ðD − 3Þ2q4 r
4 − γ

�1
2

þ 2γ

�
4α2ξ2

ðD − 2Þ2ðD − 3Þ2q4 r
4 − γ

�−1
2

�
: ð41Þ

In general, the integrals in the above-written relations cannot
be written in terms of elementary functions, but it can be
represented in terms of hypergeometric functions as

hðrÞ ¼ −
M
rD−3 þ

αξ

ðD − 1ÞðD − 2Þ r
2

× 2F1

�
−
1

2
;
1 −D
4

;
5 −D
4

;
γðD − 2Þ2ðD − 3Þ2q4

4α2ξ2r4

�

þ γðD − 2ÞðD − 3Þ2q4
2αξðD − 5Þr2

× 2F1

�
1

2
;
5 −D
4

;
9 −D
4

;
γðD − 2Þ2ðD − 3Þ2q4

4α2ξ2r4

�
:

ð42Þ

The structure of the above-written solution might be a bit
complicated; for instance, for large r (r → þ∞) the asymp-
totic form of this function is as follows:

hðrÞ ≃ −
M
rD−3 þ

αξ

ðD − 1ÞðD − 2Þ r
2

þ γðD − 2ÞðD − 3Þ2q4
2αξðD − 5Þr2 ; ð43Þ

because both hypergeometric functions tend to 1 if r → þ∞.
The asymptotic relation (43) shows that for large radius the
leading term is of anti–de Sitter (or de Sitter) type:
∼ αξ

ðD−1ÞðD−2Þ r
2, depending on the sign of the parameters α

and ξ. Here it is important to note that this leading term does
not depend on parameter q, being completely defined by the
parameters of the functions G2 and G4 given previously
in (39).
It should also be stressed that the representation (42) is

valid only for even D while for odd D there are some
subtleties; it is easy to see that the first hypergeometric
function in (42) has some peculiarity if D ¼ 5 while the
second one for D ¼ 9. But from the integral form (41) it
follows that for odd D the results of the integration might
be written in terms of elementary functions. Namely, for
D ¼ 5 we arrive at the following explicit form for the
metric function hðrÞ (if γ > 0):
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hðrÞ¼−
M
r2
þq2

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2ξ2

9q4
r4− γ

s
þ15γq4

4αξr2
arcosh

�
αξ

3q2
ffiffiffi
γ

p r2
�
;

ð44Þ

whereas for γ < 0 instead of an arcosh function one should
utilize arsinh. For both cases, for a large r we have that

hðrÞ ≃ jαξjr2
12

þO

�
1

r2

�
;

and we can find AdS or de Sitter planar configurations
depending on the sign of the constantsα and ξ present in (39).
If D ¼ 7 the metric function hðrÞ takes an even simpler

form; namely it might be represented as a combination of
irrational functions:

hðrÞ ¼ −
M
r4

þ αξ

30r4

�
r4 −

100γq4

α2ξ2

�3
2

þ 20γq4

αξr4

�
r4 −

100γq4

α2ξ2

�1
2

: ð45Þ

It is straightforward to check that for large r, the given exact
relation gives rise to an asymptotic relation of the form
(43). Finally, from Eq. (21), the function G2 can be
represented as

G2 ¼ 4ξ2

ð1þ γX2Þ32 ; ð46Þ

while the kinetic term X takes the form found previously in
(40) for seven dimensions.

F. Case F

As a final case to analyze, we consider the following
form for the functions G2 and G4:

G2 ¼ αð1þ γX2Þ7=4; G4 ¼ ξð1þ γX2Þ1=4: ð47Þ

Equation (18) gives rise to

X ¼ −
ðD − 2ÞðD − 3Þ

16αξ

q2

r2
; ð48Þ

and the metric function hðrÞ takes the form

hðrÞ ¼ −
M
rD−3 þ

4αξ

ðD − 1ÞðD − 2Þ r
2

þ 3γðD − 2ÞðD − 3Þ2
16αξðD − 5Þ

q4

r2
: ð49Þ

Here we would also like to note that if D ¼ 5 the latter
term is of the form ∼ lnðrÞ=r2, where for this situation,

as Case D, the number of horizons can be analyzed in terms
of Lambert W functions [35]. The obtained metric function
(49) is very similar to the asymptotic relation (43). In
particular, the first and the second terms in these relations
coincide completely, whereas the third terms have the same
dependence on r, dimension of spacetime D, and the
parameter q.
Finally, we can write the explicit form for the function

G2 as

G2 ¼ ξ2
�
1þ γðD − 2Þ2ðD − 3Þ2

16α2ξ2
q4

r4

�−3=2
: ð50Þ

III. THE TIME-INDEPENDENT CASE

Now we will focus on a scalar field ϕ given by (9) with
q ¼ 0, where the kinetic term X is given by (10), being
expressed as

X ¼ −
1

2
fðφ0Þ2; ð51Þ

and the radial component Jr ¼ 0 of the equations of motion
with respect to the scalar field (7) is satisfied imposing the
condition (11).
For the time-independent scalar field Eq. (14), the ðr; rÞ

component can be written in the following form:

ðrD−3hÞ0∂XðG2GÞ ¼ 0: ð52Þ

According to [29], the above equation allows us to
conclude that we can find the kinetic term X in an algebraic
way, considering X ¼ constant such that ∂XðG2GÞ ¼ 0.
Finally, the ðt; tÞ component can be expressed as a differ-
ential equation with respect to the metric function f which
reads

−h
�ðD − 2ÞðG2rD−3fÞ0

rD−2G
−G2

�
¼ 0; ð53Þ

and the expressions for the metric functions f and h take
the form

fðrÞ ¼ hðrÞ ¼ G2

ðD − 1ÞðD − 2ÞG r2 −
M
rD−3 ; ð54Þ

where M, as before, is an integration constant. For this
situation, we can find a de Sitter or anti–de Sitter con-
figuration, where the radius takes the form

G2

ðD − 1ÞðD − 2ÞG ≔ l−2; ð55Þ

and the derivative of the scalar field as well as its explicit
expression are given by
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ðϕ0Þ2 ¼ −
2X
f

;

ϕðrÞ ¼ � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−2Xl2

p

ðD − 1Þ ln

�
r
D−3
2

�
r
l
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

l2
−

M
rD−3

s ��
; ð56Þ

together with the condition

2Xl2 ≤ 0;

while the remaining equations of motion with respect to the
metric Exixi ¼ 0 from (21) are trivially satisfied.
Here, it is worth pointing out that a particular form of the

functions G2 and G4, when both of them are linear
functions of X, also belong to the class of functions for
which X ¼ constant is satisfied, where this condition stems
directly from the equations of motion (5) for the ðr; rÞ
component. If we consider the relation (22), it follows from
Eq. (52) that

X ¼ βξ − αγ

2βγ
: ð57Þ

Taking into account Eqs. (11) (with q ¼ 0) and (53), we
obtain

fðrÞ ¼ hðrÞ ¼ −
M
rD−3 þ

β

ðD − 1ÞðD − 2Þγ r
2: ð58Þ

On the other hand, if we come back to the relation (52)
we can point out that this equation might be fulfilled if we
do not impose the condition XðrÞ ¼ constant as it has been
performed above. In fact, from the condition ∂XðG2GÞ ¼ 0,
we have that

G2G ¼ C1; ð59Þ

whereC1 is an integration constant. It is worth emphasizing
that here we do not impose any condition on the kinetic
term XðrÞ. The important conclusion which stems immedi-
ately from the relation (59) is the fact that the functions G2

and G4 in the Lagrangian (4) cannot be chosen independ-
ently; they have to obey the relation (59).
Equation (53) together with the condition (59) leads to

the following relation:

fG2 ¼ −
M
rD−3 þ

C1

ðD − 1ÞðD − 2Þ r
2; ð60Þ

and here again,M denotes an integration constant. We note
that the right-hand side of the relation (60) is very similar to
the metric functions f and h given by the relation (54), but
in the left-hand side of the relation (60) in contrast with (54)
we have product fG2. Surely, if the additional condition
XðrÞ ¼ constant is imposed there will be a complete

coincidence of the results up to a redefinition of the
constants.
To obtain the metric function h, we use the relation (11)

with q ¼ 0, once again taking into account the relations
(59) and (60), and we arrive at the following expression:

hðrÞ ¼ −
M
rD−3 þ

C1

ðD − 1ÞðD − 2Þ r
2: ð61Þ

Equation (61) is completely the same form as (54).
Therefore, the explicit form of the metric function hðrÞ
(61) is valid even if XðrÞ ¼ constant is not imposed, but for
a less restrictive condition, it is given by (59). At the same
time, the equality fðrÞ ¼ hðrÞ from (54) is violated in this a
bit more general case. Here we would also like to stress that
the form of the function G is completely defined by a
chosen form of the functions G2 or G4. We might also
expect that some constraints on the functions G2 and G4

might be imposed if one considers the field equation (5) for
the ðxi; xiÞ component, because it has not been used in the
procedure described above. Nevertheless, a careful check
shows that this equation does not impose any constraint.
Therefore the functions G2 and G4 might be chosen freely
with the only condition; namely, they should obey (59).

IV. THERMODYNAMICS FOR THE
TIME-INDEPENDENT SOLUTION

Given the steps performed previously to obtain planar
black holes solutions, in this section, we will explore their
thermodynamic behavior by using the Wald formalism
[22,23], where the main idea is the variation of the
Hamiltonian from a conserved Noether current.
The variation of the action (3) and (4) reads

δS ¼ ffiffiffiffiffiffi
−g

p ½Eμνδgμν þ Eϕδϕ� þ ∂μJ μ;

where, as before, Eμν and Eϕ are the equations of motion
with respect to the metric and the scalar field given by (5)
and (6) respectively, while J μ represents the surface term
which reads

J μ ¼ ffiffiffiffiffiffi
−g

p �
2ðPμðαβÞγ∇γδgαβ − δgαβ∇γPμðαβÞγÞ

þ δL
δðϕμÞ

δϕ −∇ν

�
δL

δðϕμνÞ
�
δϕþ δL

δðϕμνÞ
δðϕνÞ

−
1

2

δL
δðϕμρÞ

ϕσδgσρ −
1

2

δL
δðϕρμÞ

ϕσδgσρ

þ 1

2

δL
δðϕσρÞ

ϕμδgσρ

�
; ð62Þ

where we have
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Pμνλρ ¼ δL
δRμνλρ

¼ 1

2
G4ðgμλgνρ − gμρgνλÞ;

δL
δðϕμÞ

¼ Jμ;
δL

δðϕσρÞ
¼ 2G4Xð□ϕgσρ −∇σ∇ρϕÞ;

with Jμ given previously in (7).
In particular, for the metric (8) and a time-independent

scalar field ϕ ¼ ϕðrÞ, the only nonzero component of the
surface current J μ is the radial component J r which takes
the following form:

J r¼
ffiffiffi
h
f

s
rD−2

�
−G4

�
f
h

�
δh0 þh0

2

�
δf
f
−
δh
h

��

þD−2

r
δf

�
þG4Xfðφ0Þ2

��
h0

2h
þD−2

r

�
δf

þðD−2Þf
rh

δh

�
þ2G4Xf2

�
h0

2h
þD−2

r

�
φ0δφ0

�
: ð63Þ

It is worth noting that the current Jr from (7) vanishes;
therefore the term proportional to δϕ does not appear in the
relation (63).
To compute the entropy, by using the surface term given

in (62) we define a 1-form J ð1Þ ¼ J μdxμ and its Hodge
dual ΘðD−1Þ ¼ ð−1Þ � J ð1Þ. Then, after making use of the
equations of motion (this is Eμν ¼ 0 and Eϕ ¼ 0), we have

J ðD−1Þ ¼ ΘðD−1Þ − iξ � L ¼ −d � J ð2Þ;

where iξ is a contraction of the vector field ξμ on the first
index of �L. The above relation allows us to define a
(D − 2)-formQðD−2Þ ¼ �J ð2Þ such that J ðD−1Þ ¼ dQðD−2Þ,
where

QðD−2Þ ¼ Qα1α2���αD−2
¼ ϵα1α2���αD−2μνQ

μν

with

Qμν ¼
�
2Pμνρσ∇ρξσ − 4ξσ∇ρPμνρσ

þ δL
δϕμσ

ϕνξσ −
δL
δϕνσ

ϕμξσ

�
: ð64Þ

To obtain the first law of black hole thermodynamics, the
vector field ξμ is supposed to be a time-translation vector,
which is a Killing vector and it is null on the event horizon
rh. In particular, for a planar black hole metric, we obtain

Qtr ¼
ffiffiffi
h
f

s
rD−2

�
−
f
h
G4h0 þ

2ðD − 2Þ
r

G4Xf2ðφ0Þ2
�
: ð65Þ

Finally, the variation of the Hamiltonian reads

δH ¼ δ

Z
C
J ðD−1Þ −

Z
C
dðiξΘðD−1ÞÞ

¼
Z
ΣðD−2Þ

ðδQðD−2Þ − iξΘðD−1ÞÞ

¼ −
�
ðD − 2Þ

ffiffiffi
h
f

s
rD−3

�
G4δf

þ 2G4Xf

�ðφ0Þ2
2

δf − δX

�
− 4G4XXfXδX

�
ΣD−2

�

¼ −
ðD − 2Þ

G

ffiffiffi
h
f

s
rD−3ΣD−2δðG2fÞ; ð66Þ

where C and ΣðD−2Þ are a Cauchy surface and its boundary
respectively, ΣD−2 is the finite volume of the (D − 2)-
dimensional compact angular base manifold, G was
given previously in (12), and δX denotes variation of the
kinetic term for the scalar field X; namely, it equals

δX ¼ −ððφ0Þ2
2

δf þ fφ0δφ0Þ. Here we note that (66) has
two components, one of them located at infinity, and
denoted as H∞, and the other at the horizon, given by
Hþ. Due to the fact that there are two types of black hole
solutions for a time-independent scalar field, we split the
following analysis into two branches, namely one of them
is for the configuration (54)–(56), and we find

δH∞ ¼ ðD − 2ÞGΣD−2δM;

δHþ ¼ ðD − 2ÞðD − 1ÞGΣD−2rD−2
h

l2
δrh

¼ Tδð4πrD−2
h GΣD−2Þ; ð67Þ

with the AdS or de Sitter radius l given previously in (55),
and T is the Hawking temperature

T ¼ κ

2π

				
r¼rh

¼ 1

4π

�
h0ðrÞ

ffiffiffiffiffiffiffiffiffi
fðrÞ
hðrÞ

s �				
r¼rh

ð68Þ

constructed by the surface gravity κ which reads

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1

2
ð∇μξνÞð∇μξνÞ

r
; ð69Þ

and the timelike Killing vector ∂t ¼ ξμ∂μ given by

T ¼ ðD − 1Þrh
4πl2

: ð70Þ

According to the Wald procedure, the equality δH∞ ¼
δHþ implies the first law of black holes thermodynamics

dM ¼ TdSW; ð71Þ
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where from Eqs. (67)

M ¼ ðD − 2ÞGΣD−2M ¼ ðD − 2ÞGrD−1
h ΣD−2

l2
;

SW ¼ 4πGrD−2
h ΣD−2:

In order to have positive extensive thermodynamical
quantities, we consider the case of AdS-planar black holes,
where its radius l takes the form (55) with G2=G > 0. Just
for completeness, a higher-dimensional Smarr relation [36]

M ¼
�
D − 2

D − 1

�
TSW ð72Þ

is satisfied.
On the other hand, and following the same steps as

before, for the solution (59)–(61) we have

δH∞ ¼ ðD − 2ÞδMΣD−2 ¼ δM;

⇒ M ¼ ðD − 2ÞΣD−2M ¼ C1rD−1
h ΣD−2

ðD − 1Þ ;

T ¼ C1rh
2πðD − 2ÞGðXðrhÞÞ

;

where we suppose that G is a positive function for r ≥ rh,
while C1 andM are positive integration constants. Together
with the above, to satisfy the first law (71)

dM ¼ C1rD−2
h ΣD−2drh ¼ TdSW

¼ C1rh
4πðD − 2ÞGðXðrhÞÞ

dSW

⇒ SW ¼ 4πðD − 2Þ
Z

drhGðXðrhÞÞrD−3
h ΣD−2:

Obviously, if GðXðrhÞÞ is a constant that does not depend
on the location of the event horizon rh, we have that

SW ¼ 4πGrD−2
h ΣD−2;

fulfilling, in addition, the Smarr relation (72).
Here it is important to note that for some cases the Wald

relation for the entropy (or more generally the Wald
approach) might be ambiguous; this ambiguity appears
in particular for Horndeski-type theories. To cure these
ambiguities, the so-called solution phase-space method
(SPSM) was established, which can be treated as a further
elaboration of Wald’s approach [37]. A recent study also
shows that the definition of the black hole temperature
should be modified for the Horndeski theory, and it can be
explained due to different speeds of the propagations of
photons and gravitons [38]. Therefore, the black holes’s
temperature now can be defined as follows:

Tbh ¼ GT; ð73Þ

where T is the Hawking temperature (68) which is com-
pletely defined by the surface gravity κ (69). Now, from the
relation at infinity δH∞ for the time-independent scalar field
solutions (54)–(56) and (59)–(61), we can infer that

M ¼ ðD − 2ÞΣD−2M;

where we point out that here M might be treated as a mass
(thermodynamic) of the black hole.
On the other hand, considering the relation δHþ and

taking into account the relation (73), we can write

δHþ ¼ 4πðD − 2ÞTbhrD−3þ δrhΣD−2 ¼ TbhδS̄W;

where now S̄W is the entropy, which takes the following
form:

S̄W ¼ 4πΣD−2rD−2
h : ð74Þ

Here we have an agreement with the corresponding relation
in the framework of standard general relativity. Now we are
able to write the first law of black hole thermodynamics,
which now takes the form

dM ¼ TbhdS̄W:

It can be easily shown that a Smarr relation

M ¼
�
D − 2

D − 1

�
TbhS̄W

also holds.

V. EXPLORING THE VISCOSITY/ENTROPY
DENSITY RATIO

As was mentioned in the Introduction, planar black hole
configurations have a particularity which allows us to study
the viscosity/entropy density (η=s) ratio, where in our case
are the AdS solutions given by (54)–(56). As a first step, we
perform a transverse and traceless perturbation of the
metric (8) for D > 3 with h ¼ f, which reads

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ 2r2Ψðt; rÞdx1dx2 þ r2
XD−2

i¼1

dx2i ;

ð75Þ

where for the ansatz

Ψðt; rÞ ¼ ζtþ hx1x2ðrÞ;

with ζ a constant identified as the gradient of the fluid
velocity along the x1 direction [24], yields the following
linearized equation for hx1x2 :
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½GrD−2fðhx1x2Þ0�0 ¼ 0: ð76Þ
According to the Wald formalism [22,23] together with the
method [24], the shear stress is associated with the current

J x2 ¼ ffiffiffiffiffiffi
−g

p
Qrx2 ¼ GrD−2fðhx1x2Þ0; ð77Þ

where Qrx2 is defined by (64) together with a spacelike
Killing vector ∂x1 ¼ ξμ∂μ. The current (77) is conserved
due to the linear equation (76). Imposing the ingoing
horizon boundary condition

hx1x2 ¼ ζ

ffiffiffiffiffiffi
G4

G

r
logðr − rhÞ

4πT
þ � � � ;

as well as a Taylor expansion in the near horizon region rh,
that is,

h ¼ f ¼ 4πTðr − rhÞ þ � � � ;
where T is the Hawking temperature (70), we have

η ¼ ζG

ffiffiffiffiffiffi
G4

G

r
rD−2
h ¼ 1

4π

ffiffiffiffiffiffi
G4

G

r
ζs;

with the entropy density s given by

s ¼ SW

ΣD−2
¼ 4πrD−2

h G:

Finally, the viscosity/entropy density ratio takes the form

η

s
¼ 1

4π

ffiffiffiffiffiffi
G4

G

r
¼ 1

4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G4

G4 − 2XG4X

s
: ð78Þ

Some comments about the above result can be made. First
of all, similar to the cases [15–18], the (η=s) ratio (78) does
not depend on the event horizon rh. Nevertheless, together
with the constant 1=ð4πÞ a contribution depending on G4

and G appears. In addition, the viscosity/entropy density
ratio for the linear case (22), analyzed in [27], can be
recovered. As the linear situation, the above result allows us
to construct examples where

0 <
G4

G
¼ G4

G4 − 2XG4X
< 1;

with a suitable choice of parameters violating the KSS
bound, for example, for XG4X < 0 and G4 > 0. It is worth
pointing out that for the situationG4 ¼ constant, we have the
saturated situation [that is η=s ¼ 1=ð4πÞ]. Just for complete-
ness, theviscosity/entropydensity (η=s) ratio (78) also can be
found following the steps described in [12,26].

VI. CONCLUSIONS AND DISCUSSION

In the present paper, we explore new hairy black hole
solutions in arbitrary dimensions and a planar base mani-
fold based on the work developed in [29]. For this case, the
model is given by a special case of the Horndeski theory
with shift symmetry and reflection symmetry (3) and (4)
constructed by two coupling functions depending on the
kinetic term X. For these configurations, we split our
analysis based on the time dependence or time independ-
ence of the scalar field, obtaining a set of new configura-
tions depending on the relation between the coupling
functions G2 and G4. It is worth pointing out that depend-
ing on the form of the function G (12) constructed through
the kinetic term X and the function G4, together with
Eq. (17), we can find planar black holes configurations with
various asymptotic behaviors. For instance, there are
asymptotically AdS or de Sitter solutions (given by the
Cases C–F) for linear time-dependent scalar field configu-
rations as well as for the time-independent case. On the
other side, there are Lifshitz-type solutions and other
generalizations (obtained in Cases A and B).
Together with the above, the thermodynamics is analyzed

for the time-independent situation through the Wald formal-
ism [22,23]. It is worth pointing out that the thermodynam-
ical quantities are not unique due to the ambiguity present in
the Wald approach, which becomes remarkable for this kind
of scalar-tensor theory. To circumvent this inconvenience,we
consider the SPSM, which can be treated as a further
elaboration of Wald’s method [37], redefining the black
hole’s temperature [38] and implying that the mass and the
entropy resemble the standard general relativity extensive
quantities. For both situations, the first law, as well as a
higher-dimensional Smarr relation, are fulfilled.
In addition, the Wald procedure [22,23] together with the

method [24] allows us to compute the shear viscosity/
entropy density (η=s) ratio, wherein our situation depends
on the coupling functions G2 and G4, showing a new
specific example where the KSS bound (2) can be violated.
Somenatural extensions of thisworkwould be for example

to consider spherical or hyperbolical topologies for the event
horizon, the inclusions of electromagnetic sources (see for
example [35,39–42]), or even a recent extension denominated
as the degenerate-higher-order-scalar-tensor theory, allowing
us to add new degrees of freedom introducing a scalar field,
and avoiding Ostrogradsky instability due to its degeneracy
property [43–49].
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APPENDIX: EQUATIONS OF MOTION WITH RESPECT TO THE METRIC

In the following section, we present the equations of motion (5) based on the computations performed in [7]:

G1
μν ¼ −

1

2
G2X∇μϕ∇νϕ −

1

2
G2gμν;

G2
μν ¼ G4Gμν −

1

2
G4XR∇μϕ∇νϕ −

1

2
G4XX½ð□ϕÞ2 − ð∇α∇βϕÞ2�∇μϕ∇νϕ

− G4X□ϕ∇μ∇νϕþG4X∇λ∇μϕ∇λ∇νϕþ 2∇λG4X∇λ∇ðμϕ∇νÞϕ −∇λG4X∇λϕ∇μ∇νϕ

þ gμν

�
G4XX∇α∇λϕ∇β∇λϕ∇αϕ∇βϕþ 1

2
G4X½ð□ϕÞ2 − ð∇α∇βϕÞ2�

�
þ 2½G4XRλðμ∇νÞϕ∇λϕ −∇ðμG4X∇νÞϕ□ϕ� − gμν½G4XRαβ∇αϕ∇βϕ −∇λG4X∇λϕ□ϕ�
þ G4XRμανβ∇αϕ∇βϕ −G4XX∇αϕ∇α∇μϕ∇βϕ∇β∇νϕ;

where the equations are given by

Eμν ¼
X2
i¼1
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